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Abstract
The stable reduction theorem says that a family of curves of genus g ≥ 2 over a
punctured curve can be uniquely completed (after possible base change) by inserting
certain stable curves at the punctures. We give a new this result for curves defined over
C, using the Kähler–Einstein metrics on the fibers to obtain the limiting stable curves
at the punctures.

1 Introduction

Let X1, X2, . . . be a sequence of compact Riemann surfaces of genus g ≥ 2. A
consequence of the Deligne–Mumford construction of moduli space is the following.
There exists N > 0 and imbeddings Ti : Xi ↪→ P

N such that after passing to a
subsequence, Ti (Xi ) = Wi ⊆ P

N converges to a stable algebraic curve, i.e. a curve
W∞ ⊆ P

N whose singular locus is either empty or consists of nodes, and whose
smooth locus carries a metric of constant negative curvature. The stable reduction
theorem [6, 7] (stated below) is the analogue of this result with {Xi : i ∈ N} replaced
by an algebraic family {Xt : t ∈ �∗} where �∗ ⊆ C is the punctured unit disk.

The imbeddings Ti are determined by a canonical (up to a uniformly bounded
automorphism) basis of H0(Xi , mK Xi ) (here m ≥ 3 is fixed). We are naturally led to
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ask: Can one construct the canonical basis defining Ti explicitly? In Theorem 1.1 we
give an affirmative answer to this question.

The main goal of this paper is to give an independent analytic proof of these alge-
braic compactness results, which is the content of Theorem 1.2. We start with the Bers
compactness theorem, which says that after passing to a subsequence, the Xi con-
verge to a nodal curve in the Cheeger–Colding topology. We then use the technique of
Tian [18] Donaldson–Sun [9] which uses the Kähler–Einstein metric to build a bridge
between analytic convergence (in Teichmuller space) to algebraic convergence (in
projective space). The main difficulty is that unlike the [9, 18] settings, the diameters
of the Xi are unbounded and as a consequence, some of the pluri-canonical sections
on X∞ are not members of L2(X∞, ωKE), so one can’t apply the L2-Bergman imbed-
ding/peak section method directly. In order to solve this problem, we introduce the
“ε-Bergman inner product” on the vector space H0(Xi , mK Xi ), which is defined by
the L2 norm on the thick part of the Xi (unlike the standard Bergman inner product
which is the L2 norm defined by integration on all of Xi ) and we show that for fixed
m ≥ 3 the canonical basis defining Ti is an an orthonormal basis for this new inner
product. This establishes Theorem 1.1 which we then use to prove Theorem 1.2 (the
stable reduction theorem).

We start by reviewing the corresponding compactness results for Fano manifolds
established by Tian [18] in dimension two, and Donaldson–Sun [9] in higher dimen-
sions. Let (Xi , ωi ) be a sequence of Kähler–Einstein manifolds of dimension n with
c1 > 0, volume at least V and diameter at most D, normalized so that Ric(ωi ) = ωi .
The first step in the proof of the Donaldson–Sun theorem is the application of Gro-
mov’s compactness theorem which implies that after passing to a subsequence, Xi

converges to a compact metric space X∞ of dimension n in the metric sense, i.e. the
Cheeger–Colding (CC) sense. This first step is not not available in the c1 < 0 case due
to the possibility of collapsing and unbounded diameter. Nevertheless, the analogue
of this Cheeger–Colding property for Riemann surfaces of genus g ≥ 2 is available
thanks to the compactness theorem of Bers [2].

For the second step, Donaldson–Sun construct explicit imbeddings Ti : Xi ↪→ P
N

with the following properties. Let Xi → X∞ in the Cheeger–Colding sense as above.
Then there is a K-stable algebraic variety W∞ ⊆ P

N such that if Wi = Ti (Xi ) then
Wi → W∞ in the algebraic sense (i.e. as points in the Hilbert scheme). Moreover,
T∞ : X∞ → W∞ is a homeomorphism, biholomorphic on the smooth loci, where

T∞(x∞) = lim
i→∞ Ti (xi ) whenever xi → x∞. (1.1)

We summarize this result with the following diagram:

Xi Wi P
N

X∞ W∞ P
N

Ti

CC Hilb
T∞

(1.2)

123



An analytic proof of the stable reduction theorem

Here the vertical arrows represent convergence in the metric (Cheeger–Colding)
sense and the the algebraic (Hilbert scheme) sense respectively. The horizontal arrows
isomorphisms: Ti is an algebraic isomorphism, and T∞ is a holomorphic isomorphism.
For 1 ≤ i ≤ ∞, the maps Wi ↪→ P

N are inclusions.
The imbeddings Ti : Xi → P

N are the so called “Bergman imbeddings”. This
means Ti = (s0, . . . , sN )where the sα form an orthonormal basis of H0(Xi ,−mK Xi )

with respect to the Bergman inner product:

ˆ
Xi

(sα, sβ) ωn
i = δα,β (1.3)

Here m is a fixed integer which is independent of i and the pointwise inner product
is defined by (sα, sβ) = sα s̄βωm

i . Since the definition of Ti depends on the choice of
orthonormal basis s = (s0, . . . , sN ), we shall sometimes write Ti = Ti,s when we
want to stress the dependence on s.

Thus we assume Ric(ωi ) = −ωi and we wish to construct imbeddings Ti : Xi →
P

N such that the sequenceWi = Ti (Xi ) ⊆ P
N converges to a singularKähler–Einstein

variety W∞ with KW∞ > 0.
The condition that W∞ is a “singular Kähler–Einstein variety” can be made precise

as follows. Let W ⊆ P
N be a projective variety with KW ample. The work of Berman–

Guenancia [1] combined with the results of Odaka [13] tell us that the following
conditions are equivalent.

(1) There is a Kähler metricω on W reg such that Ric(ω) = −ω satisfying the volume
condition

´
W reg ωn = c1(KW )n . skip.02in

(2) W has at worst semi-log canonical singularities.
(3) W is K-stable

We wish to construct Ti in such a way that W∞ = limi→∞ Ti (Xi ) has at worst
semi-log canonical singularities. In this paper we restrict our attention to the case
n = 1.

Our long-term goal is to generalize the above theorem of [9] to the case where the
(Xi , ωi ) are smooth canonical models, of dimension n, i.e. Xi is smooth and c1(Xi ) <

0. The proof we present here is designed with that goal in mind. There are other
approaches, but this is the one that seems to lend itself most easily to generalization.
We have been able to extend the techniques to the case of dimension two, but that will
be the subject a future paper.

Remark 1.1 One might guess, in parallel with the Fano setting, that the Ti : Xi →
P

N should be the pluricanonical Bergman imbeddings, that is Ti = Ti,s where s =
(s0, . . . , sN ) and the sα form an orthonormal basis of H0(Xi , mK Xi ) with respect to
the inner product (1.3). But as we shall see, this does not produce the correct limit, i.e.
W∞, the limiting variety, is not stable. In order to get the right imbedding into projective
space, we need to replace Ti,s with T ε

i,s , the so called ε-Bergman imbedding, defined
below.

We first need to establish some notation. Fix g ≥ 2 and ε > 0. If X is a compact
Riemann surface of genus g, or more generally a stable analytic curve (i.e. a Riemann
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surface with nodes whose universal cover is the Poincaré disk) of genus g, we define
the ε-thick part of X to be

Xε = {x ∈ X : injx ≥ ε}

Here injx is the injectivity radius at x and the metric ω on X is the unique hyperbolic
metric satisfying Ric(ω) = −ω. It is well known that there exists ε(g) > 0 such that
for all X of genus g, and for all 0 < ε < ε(g), that X\Xε is a finite disjoint union of
holomorphic annuli.

Next we define the “ε-Bergman imbedding” T ε
s : X → P

N . Fix 0 < ε < ε(g)

and fix m ≥ 3. For each stable analytic curve of genus g, we choose a basis s =
{s0, . . . , sNm } of H0(X , mK X ) such that

ˆ
Xε

(sα, sβ) ω = δα,β

Here (sα, sβ) = sα s̄βω−m
i is the usual pointwise inner product. Such a basis is uniquely

determined up to the action of U (N + 1). Let T ε
s : X ↪→ P

Nm be the map T ε
s =

(s0, . . . , sNm ). Let W = T ε
s (X). One easily checks that W is a stable algebraic curve

and T ε
s : X → W is a biholomorphic map. In particular, we have the following simple

lemma.

Lemma 1.1 If X0 and X ′
0 are stable analytic curves, and s, s′ are orthonormal bases

for H0(X0, mK X0) and H0(X ′
0, mK X ′

0
) respectively, then the following conditions

are equivalent

(1) X0 ≈ X ′
0 (i.e. X0 and X ′

0 are biholomorphic).
(2) [T ε

s′(X ′
0)] ∈ U (N + 1) · [T ε

s (X0)]
(3) [T ε

s′(X ′
0)] ∈ SL(N + 1,C) · [T ε

s (X0)]
Here [T ε

s X0] ∈ Hilb is the point representing T ε
s X0 ⊆ P

N inHilb, the Hilbert scheme.

Now let Xi be a sequence of stable analytic curves of genus g (e.g Riemann surfaces
of genus g). Then a basic theorem of Bers [2] (we shall outline the proof below) says
there exists a stable analytic curve X∞ (for a precise definition see Definition 2.1)
such that after passing to a subsequence, Xi → X∞. By this we mean X reg

i → X reg∞
in the pointed Cheeger–Colding topology (see Definition 2.2). Here, for 1 ≤ i ≤ ∞,
X reg

i ⊆ Xi is the smooth locus. This provides the analogue of the left vertical arrow
in (1.2).

Theorem 1.1 Let Xi be a sequence of stable analytic curves of genus g. After passing
to a subsequence we have Xi → X∞ in the Cheeger–Colding sense as above. Then
there is a stable algebraic curve W∞ and orthonormal bases si of H0(Xi , mK Xi ),
such that if Wi = T ε

i (Xi ) then Wi → W∞ in the algebraic sense, i.e. as points in the
Hilbert scheme. Moreover, T∞|X reg

i
satisfies property (1.1).

The idea of using Teichmuller theory to understand moduli space was advocated
by Bers [2–5] in a project he initiated, and which was later completed by Hubbard–
Koch [11]. They define an analytic quotient of “Augmented Teichmuller Space”whose
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quotient by the mapping class group is isomorphic to compactified moduli space as
analytic spaces. Our approach is different and is concerned with the imbedding of the
universal curve into projective space.

Remark 1.2 . As we vary ε, the maps T ε
i differ by uniformly bounded transformations.

We shall see that if 0 < ε1, ε2 < ε(g) then T ε1
i = gi ◦ T ε2

i where the change of basis
matrices gi ∈ GL(N + 1,C) converge: gi → g∞ ∈ GL(N + 1,C). In particular,
limi T ε1

i (Xi ) and limi T ε2
i (Xi ) are isomorphic.

As a corollary of our theorem we shall give a “metric” proof of the stable reduction
theorem due to Deligne–Mumford [6, 7]:

Theorem 1.2 Let C be a smooth curve and f : X 0 → C0 be a flat family of stable
analytic curves over a Zariski open subset C0 ⊆ C. Then there exist a branched cover
C̃ → C and a flat family f̃ : X̃ → C̃ of stable analytic curves extending X 0 ×C̃ C0.
Moreover, the extension is unique up to finite base change.

In addition we show that the central fiber can be characterized as the Cheeger–
Colding limit of the general fibers. More precisely:

Proposition 1.1 Endow Xt with its unique Kähler–Einstein metric normalized so that
Ric(ωt ) = −ωt . Then for every t ∈ C0 there exist points p1t , . . . ., pμ

t ∈ Xt := f −1(t)

such that the pointed Cheeger–Colding limits Y j = limt→0(Xt , p j
t ) are the connected

components of X̃0\	 where X̃0 := f̃ −1(0) and 	 ⊆ X̃0 is the set of nodes of X̃0.
Moreover the limiting metric on X∞ is its unique Kähler–Einstein metric.

Remark 1.3 A slightly modified proof also gives the log version of stable reduction,
i.e for families (Xt , Dt ) where Dt is an effective divisor supported on n points and
K Xt +Dt is ample.We indicate whichmodifications are necessary at the end of Sect. 3.

Remark 1.4 In [16] and [17], Theorems 1.1 and Corollary 2.1 are shown to hold for
smooth canonical models of dimension n > 1. But these papers assume the general
version of Theorem 1.2, i.e. of stable reduction. In this paper we do not make these
assumptions. In fact, ourmain purpose here is to prove these algebraic geometry results
using analytic methods.

We shall first prove Theorem 1.1 under the assumption that the Xi are smooth, and
Theorem 1.2 under the assumption that the generic fiber of f smooth. Afterwards we
will treat the general case.

2 Background

Let X be a compact connected Hausdorff space, let r ≥ 0 and 	 = {z1, . . . , zr } ⊆ X .
We say that X is a nodal analytic curve if X\	 is a disjoint union Y1 ∪ · · · ∪ Yμ of
punctured compact Riemann surfaces and if for every z ∈ 	, there is a small open set
z ∈ U ⊆ X and a continuous function

f : U → {(x, y) ∈ C
2 : xy = 0}
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with the properties:

(1) f (z) = (0, 0)
(2) f is a homeomorphism onto its image
(3) f |U\{z} is holomorphic

If r = 0 then X is a compact Riemann surface.

Definition 2.1 We say that a nodal analytic curve X is a stable analytic curve if each of
the Y j is covered by the Poincaré disk. In other words, each of the Y j carries a unique
hyperbolic metric (i.e. a metric whose curvature is −1) with finite volume.

If X is a stable analytic curve we let K X be its canonical bundle. Thus the restriction
of K X to X\	 is the usual canonical bundle. Moreover, in the neighborhood of a point
z ∈ 	, that is in a neighborhood of of {uv = 0} ⊆ C

2, a section of K X consists of a pair
of meromorphic differential forms η1 and η2 defined on u = 0 and v = 0 respectively,
with the following properties: both are holomorphic away from the origin, both have
at worst simple poles at the origin, and res(η1) + res(η2) = 0.

We briefly recall the proof of the above characterization of K X for nodal curves.
A nodal singularity is Spec(B) where B = C[U , V ]/(V 2 − U 2). Then C[U ] →
C[U , V ] is generated byV which satisfies themonic equationV 2−U 2 = 0.According
the Lipman’s characterization of the canonical sheaf [12] if B = C[V ]/( f ) where
C = C[U1, . . . , Un] and f is a monic polynomial in V with coefficients in C , and if
X = Spec(B), then K X is the sheaf of holomorphic (n, n) forms on Xreg which can

be written as F · π∗(du1∧···dun)
f ′(v)

where π : X → Spec(C) and F is a regular function

on X . In our case, f (V ) = V 2 − U 2 so f ′(V ) = 2V which means that K X is free of
rank one, generated by du

2v or equivalently du
v
. If we consider the map C → X given

by t �→ (t, t) then du
v
pulls back to dt

t . On the other hand, if we consider t �→ (t,−t)

then du
v
pulls back to − dt

t .
If X is a compact Riemann surface of genus g ≥ 2, then vol(X) = 2g − 2. If X

is a stable analytic curve, we say that X has genus g if
∑

j vol(Y j ) = 2g − 2. Here
the volumes are measured with respect to the hyperbolic metric and the Y j are the
irreducible components of X reg.

Let X be a stable analytic curve. The following properties of K X are proved in
Harris-Morrison [10]:

(1) h0(X , mK X ) = (2m − 1)(g − 1) := Nm − 1 if m ≥ 2.
(2) mK X is very ample if m ≥ 3
(3) If m ≥ 3 the m-pluricanonical imbedding of X is a stable algebraic curve in PNm

Next we recall some basic results from Teichmuller theory. Fix g > 0 and fix S,
a smooth surface of genus g. Teichmuller space Tg is the set of equivalence classes
of pairs (X , f ) where X is a compact Riemann surface of genus g and f : S → X
is a diffeomorphism. Two pairs (X1, f1) and (X2, f2) are equivalent if there is a
bi-holomorphic map h : X1 → X2 such that f −1

2 ◦ h ◦ f1 : S → S is in Diff0(S),
diffeomorphisms isotopic to the identity. The pair (X , f ) is called a “marked Riemann
surface”. The space Tg has a natural topology: A sequence τn ∈ Tg converges to τ∞
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if we can find representatives fn : S → Xn , 1 ≤ n ≤ ∞ such that the sequence of
diffeomorphisms f −1∞ ◦ h ◦ fn converges to the identity.

The spaceTg has amanifold structure given by Fenchel–NielsenCoordinateswhose
construction we now recall. Choose a graph 
 with the following properties: 
 has
2g − 2 vertices, each vertex is connected to three edges (which are not necessarily
distinct since we allow an edge to connect a vertex to itself). For example, if g = 2,
then there are two such graphs: Either v1 and v2 are connected by three edges, or they
are connected by one edge, and each connected to itself by one edge.

Fix such a graph 
. It has 3g − 3 edges. Fix an ordering e1, . . . , en on the edges
where n = 3g − 3. Once we fix 
 and we fix an edge ordering, we can define a map
(R+ × R)n → Tg as follows. Given (l1, θ1, . . . , ln, θn) ∈ R

2n we associate to each
vertex v ∈ 
 the pair of pants whose geodesic boundary circles have lengths (li , l j , lk)
where ei , e j , ek are the three edges emanating from v. Each of those circles contains
two canonically definedpoints,which are the endpoints of the unique geodesic segment
joining it to the other geodesic boundary circles.

If all the θ j = 0, then we join the pants together, using the rules imposed by the
graph 
, in such a way that canonical points are identified. If some of the θ j are
non-zero, then we rotate an angle of l jθ j before joining the boundary curves together.

Thus we see that Tg is a manifold which is covered by a finite number of coordinate
charts corresponding to different graphs 
 (each diffeomorphic to (R+ × R)n) If we
allow some of the l j to equal zero, then we can still glue the pants together as above,
but this time we get a nodal curve. In this way, (R≥0 × R)n parametrizes all stable
analytic curves.

Teichmuller proved that the manifold Tg has a natural complex structure, and that
there exists a universal curve Cg → Tg , which is a map between complex manifolds,
such that the fiber above (X , f ) ∈ Tg is isomorphic to X . Moreover, if X → B is
any family of marked Riemann surfaces, then there exists a unique holomorphic map
B → Tg such thatX is the pullback ofCg . Fenchel–Nielsen coordinates are compatible
with the complex structure, i.e. they are smooth, but not holomorphic (although they
are real-analytic).

Remark 2.1 One consequence of Teichmuller’s theorem is the following. LetX → B
be a holomorphic family of marked Riemann surfaces and let F : B → (R+ × R)n

be the map that sends t to the Fenchel–Nielsen coordinates of Xt . Then F is a smooth
function. In particular, Xt → X0. This shows that in the stable reduction theorem, if
a smooth fill-in exists then it is unique.

Now let X be a compact Riemann surface. A theorem of Bers [2], Theorem 15 (a
sharp version appears in Parlier [15], Theorem 1.1) says that for g ≥ 2 there exists
a constant C(g), now known as the Bers constant, with the following property. For
every Riemann surface X of genus g there exists a representative τ = (X , f ) ∈ Tg

and a graph 
 (i.e. a coordinate chart) such that the Fenchel–Nielsen coordinates of
τ are all bounded above by C(g). This is analogous to the fact that PN is covered by
N + 1 coordinate charts, each biholomorphic to CN , and that give a point x ∈ P

N we
can choose a coordinate chart so that x ∈ C

N has the property |x j | ≤ 1 for all j . In
particular, this proves PN is sequentially compact.
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Bers [2] uses the existence of the Bers constant to show that the space of sta-
ble analytic curves is compact with respect to a natural topology (equivalent to the
Cheeger–Colding topology). For the convenience of the reader, we recall the short
argument. Let X j be a sequence of Riemann surfaces. Then after passing to a sub-
sequence, there is a graph 
 and representatives τ j = (X j , f j ) ∈ Tg such that the
Fenchel–Nielsen coordinates of τ j with respect to 
 are all bounded above by C(g)

(this is due to the fact that there are only finite many allowable graphs). After passing
to a further subsequence, we see τ j → τ∞ ∈ (R≥0 × R)n . If τ∞ ∈ (R+ × R)n then
the limit is a smooth Riemann surface. Otherwise, it is a stable analytic curve X∞.
Thus

X∞ = ∪μ
α=1Xα, and X reg∞ = �μ

α=1Y α (2.4)

where the second union is disjoint, and Y α = Xα\Fα where Xα is a compact Riemann
surface and Fα ⊆ Xα a finite set, consisting of the cusps.

Corollary 2.1 Let pα∞ ∈ Y α . Then there exist p1i , . . . , pμ
i ∈ Xi such that in the pointed

Cheeger–Colding topology, (Y α, pα∞) = lim j→∞(X j , pα
j ). Moreover, for every open

set pα∞ ∈ Uα∞ ⊆⊆ Y α there exist open sets pα
i ⊆ Uα

i ⊆ Xi and diffeomorphisms
f α

j : Uα∞ → Uα
j so that ( f α

j )∗ωα
j → ωα∞ and ( f α

j )∗ Jα
j → Jα∞ where ωα

j and ωα∞ are
the hyperbolic metrics on Uα

j and Uα∞, and Jα
j and Jα∞ are the complex structures on

Uα
j and Uα∞

Definition 2.2 In the notation of Corollary 2.1, we shall say ω j → ω∞ in the pointed
Cheeger–Colding sense and we shall write Xi → X∞.

Remark: Odaka [14] uses pants decompositions to construct a “tropical compactifica-
tion” of moduli space which attaches metrized graphs (of one real dimension) to the
boundary of moduli space. These interesting compactifications are compact Hausdorff
topological spaces but are no longer algebraic varieties.

3 Limits of Bergman imbeddings

Now let X be as in the theorem, and let ti ∈ C0 with ti → 0. Let Xi = Xti and
fix a pants decomposition of Xi . Then Bers’ theorem implies that after passing to a
subsequence we can find a nodal curve X∞ as above so that X j → X∞.

In order to prove the theorem, we must show:

(1) X∞ is independent of the choice of subsequence.
(2) After making a finite base change, we can insert X∞ as the central fiber in such a

way that the completed family is algebraic.

We begin with (2). Let X be a hyperbolic Riemann surface with finite area (i.e.
possibly not compact, but only cusps). The Margulis “thin-thick decomposition” says
that there exists ε(g) > 0 with the following property. There exists at most 3g − 3
closed geodesics of length less that ε(g). Moreover, for every ε ≤ ε(g) the set

X\Xε = {x ∈ X : injx < ε}
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is a finite union of of holomorphic annuli (which are open neighborhoods of short
geodesics) if X is compact, and a finite union of annuli as well as punctured disks,
which correspond to cusp neighborhoods if X is has singularities. We call these
annuli “Margulis annuli”. Moreover, V (ε), the volume of X\Xε , has the property
limε→0 V (ε) = 0. An elementary proof is given in Proposition 52, Chapter 14 of
Donaldson [8].

Now we define a modified Bergman kernel as follows: For convenience we write
ε = ε(g). This is a positive constant, depending only on the genus g. Let X be a stable
analytic curve. For η1, η2 ∈ H0(X , mK X ) let

〈η1, η2〉ε =
ˆ

Xε

η1η̄2hm
K EωK E (3.5)

and ‖η‖2ε = 〈η, ηε . If we replace Xε by X , we get the standard Bergman inner product.
Now fix m ≥ 3. Choosing orthonormal bases with respect to the inner product (3.5)

defines imbeddings T ε
i : Xi → P

Nm and T ε∞ : X∞ → P
Nm , which we call ε-Bergman

imbeddings. Our goal is to show

Theorem 3.1 Let X1, X2, . . . be a sequence of stable analytic curves of genus g. Then
there exists a stable analytic curve X∞ such that after passing to a subsequence if
necessary, Xi → X∞ in the Cheeger–Colding topology. For 1 ≤ i < ∞, we fix an
orthonormal basis si of H0(Xi , mK X ). Then there exists a choice of orthonormal
basis s∞ for X∞ such that after passing to a subsequence,

lim
i→∞ T ε

i,si
= T ε∞,s∞ (3.6)

In other words, if xi ∈ Xi and x∞ ∈ X∞ with xi → x∞, then

T ε
i (xi ) → T ε∞(x∞)

We assume first that the Xi are smooth and then later explain how to remove this
assumption. The proof of Theorem 3.1 rests upon the following.

Theorem 3.2 Fix g ≥ 2 and m, ε > 0. Then there exist C(g, m, ε) with the following
property.

‖s‖ε ≤ ‖s‖ε/2 ≤ C(g, m, ε)‖s‖ε

for all Riemann surfaces X of genus g and all s ∈ H0(X , mK X ).

To prove the theorem, we need the following adapted version of a result of
Donaldson–Sun. We omit the proof which is very similar to [9] (actually easier since
the only singularities of X∞ are nodes so the pointed limit of the Xi in the Cheeger–
Colding topology is smooth).

Proposition 3.1 Let Xi → X∞ be a sequence of Riemann surfaces of genus g converg-
ing in the pointed Cheeger–Colding sense to a stable curve X∞. Fix {s∞

0 , . . . , s∞
M } ⊆
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H0(X∞, mK X∞) an ε-orthonormal basis of the bounded sections (i.e. the L2(X∞)

sections, i.e. the sections which vanish at all nodes). Then there exists an ε-orthonormal
subset

{si
0, . . . , si

M } ⊆ H0(Xi , mK Xi )

such that for 0 ≤ α ≤ M, we have

si
α → s∞

α

in L2 and uniformly on compact subsets of X reg∞ . In particular, if xi ∈ X reg
i

xi → x∞ ⇐⇒ si
α(xi ) → s∞

α (x∞) for all 0

≤ α ≤ M ⇐⇒ T ν,ε
i (xi ) → T ν,ε∞ (x∞). (3.7)

where T ν,ε
i : X reg

i ↪→ P
M is the map xi �→ (si

0, . . . , si
M )(xi ) for 1 ≤ i ≤ ∞.

Proof of Theorem 3.2 Let Xi → X∞ as in Proposition 3.1. Choose (s∞
0 , . . . , s∞

M ) and
(t∞0 , . . . , t∞M ) which are ε and ε/2 orthonormal bases of the subspace of bounded
sections in H0(X∞, mK X∞) in such a way that t∞α = λ∞

α s∞
α for real numbers 0 <

λ∞
α < 1. Choose si

α → s∞
α and t i

α → t∞α as in Proposition 3.1 in such a way that
t i
α = λi

αsi
α with 0 < λi

α < 1. Clearly

λi
α → λ∞

α > 0 for 0 ≤ α ≤ M (3.8)

Choose additional sections si
α and t i

α for M + 1 ≤ α ≤ N so that {si
0, . . . , si

N } and
{t i
0, . . . , t i

N } are ε and ε/2 bases of H0(Xi , mK Xi ) and t i
α = λi

αsi
α with 0 < λi

α < 1
for 0 ≤ α ≤ N .

Now assume the theorem is false. Then there exists Xi → X∞ as above such that
λi

α → 0 for some α. We must have α ≥ M + 1 by (3.8). Choose M + 1 ≤ A < N
such that λi

α → 0 if and only if A ≤ α ≤ N . Since ‖si
α‖L2(Xε )

= 1 we may choose
s∞
α (ε) ∈ H0(X ε

i , K X∞|Xε∞) such that

si
α|Xε

i
→ s∞

α (ε) for M + 1 ≤ α ≤ Nuniformly on compact subsets of Xε (3.9)

Let T ε
i : Xi → W ε

i ⊆ P
N be the Kodaira map given by the sections si

0, . . . , si
N

and let W ε∞ = limi→∞ W ε
i . Let

T ε∞ : X ε∞ ↪→ W ε∞ and T ν,ε∞ : X reg∞ ↪→ P
M

be the Kodaira maps given by (s∞
0 , . . . , s∞

M , s∞
M+1(ε), . . . , s∞

N (ε)) and (s∞
0 , . . . , s∞

M ).
Thus

π ◦ T ε∞ = T ν,ε∞ |Xε∞ (3.10)
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where π : PN
M := P

N \{z0 = · · · = zM = 0} → P
M is defined by (z0, . . . , zN ) �→

(z0, . . . , zM ). Moreover

π(W ε∞ ∩ P
N
M ) ⊆ T ν,ε∞ (X reg

∞ )

Now the definition of A implies

T ε/2∞ (X ε∞) ⊆ Z ε/2∞ = {z ∈ W ε/2∞ : z A = z A+1 = · · · = zN = 0}

Thus (3.10) implies

T ν,ε/2∞ (X reg∞ ) ⊃ π(Z ε/2∞ ∩ P
N
M ) ⊃ π(T ε/2∞ (X ε∞)) = T ν,ε/2∞ (X ε∞)

Since the second set is constructible,

π(Z ε/2∞ ∩ P
N
M ) = T ν,ε/2∞ (X reg∞ \	ε)

where 	ε ⊆ X reg∞ \X ε∞ is a finite set.
Let x∞ ∈ X reg∞ \	ε . Then T ν,ε/2∞ (x∞) = π(w∞) for some w∞ ∈ Z ε/2∞ ∩ P

N
M .

Choose wi ∈ W ε/2
i such that wi → w∞ and choose xi ∈ Xi such that T ε/2

i (xi ) = wi .
Then (3.7) implies

T ε/2
i (xi ) → w∞ �⇒ π(T ε/2

i (xi )) → π(w∞)

�⇒ T ν,ε/2
i (xi ) → T ν,ε/2∞ (x∞) �⇒ xi → x∞

Thus we see that if x∞ ∈ X reg∞ \	ε there exists xi → x∞ such that

lim
i→∞ T ε/2

i (xi ) ∈ Z ε/2∞

Let x∞ ∈ X reg∞ . We say that x∞ is an ε-good point if for every xi → x∞,
limi→∞ si

α(xi ) = 0 for all A ≤ α ≤ N . The set of ε-bad points is finite (otherwise
W ε∞ would have infinitelymany components by the intermediate value theorem). Also,
every point in X2ε∞ is ε-good.

Lemma 3.1 Let x∞ ∈ X reg∞ and A + 1 ≤ α ≤ N. Then for every R > 0 we have

lim
i→0

 
BR(xi )

|t i
α|2 = 0 (3.11)

Proof Assume first that B2R(xi ) contains only good points. If (3.11) fails, there exists
c > 0 such that for infinitely many i we have

ffl
BR(xi )

|τi |2 ≥ c. Since |τi (x∞)| → 0

we see that |τi |2(x ′
i ) = c for some x ′

i ∈ BR(x∞). After passing to a subsequence
x ′

i → x ′∞ ∈ B2R(x∞) and |τi |2(x ′
i ) → c. This contradicts the assumption that B2R(xi )

contains only good points. To prove the lemma, it suffices to show that all points are
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good. Suppose not and assume x∞ is a bad point and choose R so that x∞ is the only
bad point in B2R(x∞). Assume that (3.11) fails and that

´
BR(xi )

|tαi |2 > cvol(BR(x∞))

for infinitely many i . Since all points in BR\Br are good, the previous step implies
for every 0 < r < R and for i sufficiently large,

 
Br (xi )

|tαi |2 ≥ c · vol(BR(x∞))

vol(Br (x∞))
and lim

j→∞

ˆ
BR(x j )\Br (x j )

|tαj |2 = 0

But t i
α is a holomorphic section so this contradicts the maximum principle if r is

sufficiently small. ��
Now we can complete the proof of Theorem 3.2. Assume A < N and fix A + 1 ≤
α ≤ N . Choose x∞ ∈ X reg∞ and xi → x∞. Choose R > 0 so that X ε/2

i ⊆ BR(xi ) for
all i . By Lemma 3.1 we see that 1 = ´

Xε/2 |t i
α|2 → 0, a contradiction.

We conclude that ifη j ∈ H0(X j , mK X j ) is a sequence such that the norms ‖η j‖2ε =
〈η j , η j ε = 1, then after passing to a subsequence, we have ( f α

j )∗η j → η∞ for some

η∞ ∈ H0(Xreg∞ , mK X∞|X reg∞ ) with ‖η‖ε = 1. Here the f α
j : Uα

j → Uα are as in the
statement of Corollary 1 and this is true for allUα and allα.Moreover, an orthornormal
basis of H0(X j , mK X j ), which is a vector space of dimension (2m − 1)(g − 1), will
converge to an orthonormal set of (2m − 1)(g − 1) elements in H0(Xreg∞ , mK X∞).
The main problem is to now show that these (2m − 1)(g − 1) elements extend to
elements of H0(X∞, mK X∞). If they extend, then they automatically form a basis
since H0(X∞, mK X∞) has dimension (2m −1)(g−1) and this would prove Theorem
3.1.

To proceed, we make use of the discussion of the Margulis collar in section 14.4.1
of [8]. Let λ > 0 be the length of C a collapsing geodesic in X j which forms a node
in the limit in X∞. We fix j and we write X = X j . Let

Aλ = {z ∈ C : 1 ≤ |z| ≤ e2πλ, λ ≤ arg(z) ≤ π − λ }/ ∼

where the equivalence relation identifies the circles |z| = 1 and |z| = e2πλ. Then [8]
shows A injects holomorphically into X in such a way that 1 ≤ y ≤ e2πλ maps to
C . The point is that the segment 1 ≤ y ≤ e2πλ is very short - it has size λ. But the
segments A ∩{arg(z) = λ} and A ∩{arg(z) = π −λ} have size 1. So for λ small, A is
a topologically a cylinder, but metrically very long and narrow in the middle but not
narrow at the ends. In other words, the middle of A is in the thin part, but the boundary
curves are in the thick part.

The transformation

τ = exp

(

i
ln z

λ

)

maps Aλ to the annulus

A′
λ = {exp(−(π − λ)/λ) ≤ |τ | ≤ exp(−1) }
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To summarize: We are given a sequence X j , and a geodesic C j in X j that collapses
to a node ν in Y α for some α. We are also given a sequence of orthonormal bases
{η j,1, . . . , η j,N } of H0(X j , kK X j ) where N = (2k − 1)(g − 1) and η j,μ → η∞,μ.
Here η∞,μ is a section of kK X∞ on X reg∞ . Fix μ and write η j = η j,μ and η∞ = η∞,μ.
We need to show that η∞ extends to all of X∞.

We may view η j as a k form on Aλ j or on A′
λ j

and η∞ as a k form on the punctured

disk A′
0. Write η j = f j (z)dzk = h j (τ )dτ k and η∞ = h∞(τ )dτ k . The discussion in

[8] shows that if we fix a relatively compact open subset U ⊆ A′
0, then h j → h∞

uniformly on U (this makes sense since U ⊆ A′
λ j

for j sufficiently large).
Since ‖η j‖L2 = 1 we have uniform sup norm bounds on the thick part of X j . Thus

‖η j‖L∞((Xi )ε ≤ C(ε) (3.12)

We want to use (3.12) to get a bound on the thin part. In z coordinates, (3.12)
implies

|η|ω = |Im(z)|k · | f (z)| ≤ C(ε) if arg(z) = λor arg(z) = 2π − λ (3.13)

since the boundary curves arg(z) = λ and arg(z) = 2π − λ are in the thick part. Here
we write η for η j and f for f j to lighten the notation.

Now

Im(z) = − exp(λ arg τ)(sin(λ ln |τ |) (3.14)

if we write f (z) = g(τ ), then (3.13) implies

|g(τ )| ≤ C(ε)

λk
for τ ∈ ∂ A′ (3.15)

Since f (z)dzk = h(τ )dτ k = g(τ )( dz
dτ

)k dτ k and dz
dτ

= zλ
iτ we see for λ small

|h j (τ )| ≤ 1

λk

∣
∣
∣
∣
dz

dτ

∣
∣
∣
∣

k

= 1

λk

|z|kλk

|τ |k ≤ 2

|τ |k

where the last inequality follows from the fact 1 ≤ |z| ≤ 2. Writing

u j (τ ) = h j (τ )τ k

Thus we see |u j (τ )| ≤ 2 for τ ∈ ∂ A′. The maximum principle now implies that
|u j (τ )| ≤ 2 for τ ∈ A′. Since this is true for all Xi , we see that any limit u∞
must satisfy the same inequality in the limit of the annuli, which is a punctured disk:
|h∞(τ )| · |τ |k ≤ C . This shows h∞ has at most a pole of order k.
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Fig. 1 A′
λ

Moreover u(0) is the residue

u(0) = lim
j→∞

1

2π
√−1

ˆ
|τ |=r

u j (τ )
dτ

τ
(3.16)

Here 0 < r ≤ exp(−1) is any fixed number (independent of j).
To summarize, we have now seen that a collar degenerates to a union of two punc-

tured disks and so the limit of the η j is a pair of k forms, η∞ = u∞(τ )
( dτ

τ

)k
and

η̃∞ = ũ∞(τ ′)
(

dτ ′
τ ′

)k
where u and ũ are holomorphic in a neighborhood of the origin

inC. There is one final condition that we need to check in order to verify that the limit
is in H0(X∞, kK X∞): Let R = exp(−1), r = exp(−π/2λ j ) and ε = exp(−π/λ j )

(so ελ j /r = r ). We must show ũ(0) = (−1)ku(0).
To check this, let τ̃ = ε j

τ
. Then Fig. 1 remains the same, with τ replaced by τ̃ and

f (z)dzk = u j (τ )

(
dτ

τ

)k

= u j (ε j/τ̃ )(−1)k
(

d τ̃

τ̃

)k

= ũ j (τ̃ )

(
d τ̃

τ̃

)k

Now we see

ˆ
|τ |=r

u j (τ )
dτ

τ
= (−1)

ˆ
|τ̃ |=ε j /r

u j

(ε j

τ̃

)
(−1)

d τ̃

τ̃
= (−1)k

ˆ
|τ̃ |=r

ũ j (τ̃ )
d τ̃

τ̃

In the second integral, the factor of (−1) outside the integral is due to the fact that
the orientation of the circle has been reversed and the (−1) inside the integral comes
from the change of variables. The second identity is a result of the fact that u(τ̃ ) is
holomorphic on the annulus {τ̃ ∈ C : ε j/r < τ̃ < r}. Taking limits as j → ∞ we
obtain ũ(0) = (−1)ku(0). This establishes Theorem 3.1 when the Xi are smooth.

Now assume the Xi are stable analytic curves, but not necessarily smooth. The
Fenchel–Nielsen coordinates of Xi determine a point [Xi ] ∈ (R≥0 ×R)n . The simple
observation we need is that (R>0 × R)n ⊆ (R≥0 × R)n is dense so we may choose
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a smooth Riemann surface X̃i such that [Xi ] ∈ (R≥0 × R)n is εi close to [Xi ] where
εi → 0 (i.e. Xi is smoothable). Now Corollary 2.1 implies that after passing to a
subsequence, X̃i → X∞ in the pointed Cheeger–Colding topology. We conclude that
Xi → X∞ as well. Moreover, one easily sees that T ε

i and T̃ ε
i have the same limit.

This proves (3.6) and completes the proof of Theorem 3.1 ��
Remark 3.1 The proof of the log version Theorem 3.1 is almost the same. The only
observation we need is the following. If X is a compact Riemann surface and D =
p1 + · · · + pn is a divisor supported on n points such that K X + D is ample, then
X\D has a unique metric ω such that Ric(ω) = −ω and ω has cusp singularities at
the points p j . Moreover, just as in the case n = 0, X has a pants decomposition. The
only difference is that we allow some of the length parameters to vanish, but this does
not affect the arguments. In particular, we can use the Fenchel–Nielson coordinates
to find a limit of the (X j , D j ) (after passing to a subsequence) and the T ε

j are defined
exactly as before.

Now suppose Xi is a sequence of compact Riemann surfaces of genus g converging
analytically to a nodal curve X∞ and let ηi be a Kähler metric on Xi is the same class
as the Kähler–Einstein metric ωi . We have seen that ωi → ω∞, the Kähler–Einstein
metric on X∞, in the pointed Cheeger–Colding sense. Let ω̃∞ be a Kähler metric
on X reg∞ and assume ω̃i → ω̃∞ in the pointed Cheeger–Colding sense. Let Ti (ω̃i ) :
Xi → P

N be the embedding defined by an orthonormal basis of H0(Xi , 3K Xi ) using
the metric ω̃i on the thick part of Xi and define T∞(ω̃∞) : X∞ → P

N similarly. Thus
the Ti and T∞ of Theorem 2 can be written as Ti (ωi ) and T∞(ω∞) and in this notation,
Theorem 2 says Ti (ωi ) → T∞(ω∞)

Corollary 3.1 After passing to a subsequence

Ti (ω̃i ) → T∞(ω̃∞)

Proof. Since ω̃∞ and ω∞ are equivalent on the thick part of X∞, we see that

Ti (ω̃i ) = γi ◦ Ti (ωi )

where γi ∈ GL(N + 1,C) has uniformly bounded entries as does γ −1
i . Thus after

passing to a subsequence, γi → γ∞ ∈ GL(N + 1,C) and

lim
i→∞ Ti (ω̃i ) = lim

i→∞ γi ◦ Ti (ω∞) = γ∞ ◦ T∞(ω∞) = T∞(ω̃∞)

Remark: The proof shows we only need to assume ω̃i → ω̃∞ on the thick part of X∞.

4 Existence of stable fill-in

Proof of Theorem 1.2 Let f : X 0 → C0 = C\{p1, . . . , pm} be a flat family of stable
analytic curves of genus g ≥ 2. We first observe that we can find some completion
(not necessarily nodal) Y → C of the family X 0 → C0. To see this let �X 0/C0 be

123



J. Song et al.

the sheaf of relative differential forms (i.e. the relative canonical line bundle when
X 0 is smooth). Then the Hodge bundle f∗KX 0/C0 is a vector bundle over C0 of rank
3g − 3 (see page 694 of Vakil [V]) and f∗K ⊗m

X 0/C0 is a vector bundle E0
m of rank

Nm − 1 := (2m − 1)(g − 1) for m ≥ 2. Choose Em → C an extension of the vector
bundle E0

m → C0 to the curve C .
For example, let U ⊆ C0 be any affine open subset over which E0

m is trivial and
let s0, . . . , sNm be a fixed O(U ) basis. Then if p j ∈ V ⊆ C0 is an affine open set
such that V \{p j } ⊆ U , then define E(V ) to be the O(V ) submodule of E0(V \{p j })
spanned by the sα .

Once E is fixed, we choose m ≥ 3 and let X 0 ↪→ P(E0) ⊆ P(E) be the canonical
imbedding. Then we define

Y ⊆ P(E) (4.1)

to be the flat limit of X 0 → C0 inside P(E) → C .
Nowwecomplete the proof ofTheorem1.2. To lighten the notation,we shall assume

m = 1 and write C0 = C\{0} where 0 := p1. Suppose ti ∈ C0 with ti → 0 and such
that we have analytic convergence Xti → X∞ where X∞ is an stable analytic curve.
We wish to show that there exists a smooth curve C̃ and a finite cover μ : C̃ → C
with the following property. If we let 	 = μ−1(0) (a finite set) there exists a unique
completion f̃ : X̃ → C̃ of μ∗X 0 → C̃\	 with X∞ = p−1(0̃) for all 0̃ ∈ 	.

Define

Z0 = {(t, z) ∈ C0 × Hilb(PNm ) : z ∈ Tt }

whereTt is the set of allHilbert points [T (Xt )]. Here T : Xt → P
Nm ranges over the set

of all Bergman imbeddings. In particular, Tt ⊆ Hilb(PNm ) is a singleG = SL(Nm +1)
orbit.

We claim that Z0 ⊆ C0 × Hilb(PNm ) is a constructible subset. To see this, let
U ⊆ C0 be an affine open subset and let σ0, . . . , σNm be a fixedO(U ) basis of Em(U ).
This basis defines an imbedding

S : π−1(U ) → U × P
Nm (4.2)

given by x �→ (π(x), σ0(x), . . . , σNm (x)). Define H : U → Hilb(PNm ) by H(t)
= Hilb(S(Xt )) and define the map

fU : G × U → U × Hilb(PNm ) given by(g, t) �→ (t, g · H(t))

Then fU is an algebraic map so its image is constructible. This shows Z0|U is con-
structible for every affine subset U ⊆ C0 and hence Z0 is constructible.

Now we fix 0 < ε < ε(g) and let W j = Tj (Xt j ) where Tj is the ε-Bergman
imbedding. Then (3.6) implies Tj (X j ) = W j → T∞(X∞) = Y∞, a stable algebraic
curve in P

Nm . Let Z → C be the closure of Z0 in C × Hilb(PNm ) ⊆ C × P
M . Here

P
M ⊃ Hilb(PNm ) is chosen so that there is a G action on PM which restricts to the G
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action on Hilb(PNm ). Then Z is a subvariety of C ×Hilb(PNm ) whose dimension we
denote by d. Let Zt the fiber of Z above t ∈ C . Then [Y∞] ∈ Z0.

To construct C̃ we use the Luna Slice Theorem: There exists W ⊆ C
M+1 a G[Y0]

invariant subspace such that [Y∞] ∈ P(W ) ⊆ P
M and such that the map

P(W ) × Lie(G) → P
M given by (x, ξ) �→ exp(ξ)x

is a diffeomorphism of some small neighborhood UW × V ⊆ P(W ) × Lie(G) onto
an open set � ⊆ P

M , with UW ⊆ P(W ) invariant under the finite group G[Y0]. After
shrinking UW if necessary, the intersection of a G orbit with UW \[Y0] is a finite set of
order m1|m where m = |G[Y0]|. In other words, the quotient G[Y0]\UW parametrizes
the G-orbits in PM that intersect UW .

Note that� contains (ti , [Yi ]) for infinitelymany i so (C×P(W ))∩Z is a projective
variety C1 of dimension at least one. Moreover, if we let C2 be the union of the
components ofC1 containing {0}×[Y∞], thenC2 contains infinitely many of (ti , [Yi ])
so the image of C2 → C contains infinitely many ti and thus C2 → C is surjective.
On the other hand, C2 → C is finite of degree m1 (this follows from the construction
of U (W )).

Let C̃ ⊆ C1 be an irreducible component of C1 containing (ti , [Yi ]) for infinitely
many i . Let H ⊆ G[Y∞] be the set of all σ ∈ G[Y∞] such that σ(C̃) = C̃ . Then H has
order d for some d|m1 and C̃ → C is finite of degree d.

Finally, we have C̃ ⊆ Z ⊆ C × Hilb(PNm ). This gives us a map C̃ → Hilb(PNm ).
If we pull back the universal family we get a flat family X̃ → C̃ which extends
X 0 ×C̃ C0. This completes the proof of Theorem 1.2. ��

5 Uniqueness of the stable fill-in

Let π : X∗ → �∗ ⊂ � be an algebraic family of stable curves genus g. We claim
that there exists a unique stable analytic curve X0 such that Xt → X0 in the Cheeger–
Colding sense as t → 0. This will establish the uniqueness statement of Theorem 1.2,
and since existence was demonstrated in the previous section, it completes the proof.

Let S : X ∗ → �∗ × P
Nm as in (4.2). For each t ∈ �∗, the set σ t =

(σ0(t), . . . , σNm (t)) is a basis of H0(Xt , mK Xt ). Let st = (s0(t), . . . , sNm (t)) be the
orthonormal basis of H0(Xt , mK Xt ) obtained by applying the Gram-Schmidt process
to the basis σ t and let T ε

t : Xt → P
N be the map T ε

t = T ε
st
. Here 0 < ε < ε(g) is

fixed once and for all. Remark 2.1 implies that t �→ [T ε
t (Xt )] defines a continuous

function �∗ → Hilb. Let

z : �∗ × SL(N + 1,C) → �∗ × Hilb

and

f : �∗ → �∗ × Hilb
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be the maps

z(t, g) = (t, g · [Tt (Xt )]) and f (t) = z(t, [Tt (Xt )]).

Let F = Im( f ) ⊆ � × Hilb and Z = Imz ⊆ � × Hilb. Let πF : F → � and
πZ : Z → � be the projection maps and F0 = π−1

F (0), Z0 = π−1
Z (0). Observe

that F0 ⊆ Hilb is closed and connected (this easily follows from the fact that �∗ is
connected and Hilb is compact and connected). Moreover, Theorem 3.1 implies that
every element of F0 is of the form T ε

s (X0) for some stable analytic curve X0 and some
basis s.
Claim: F0 is contained in the U (N + 1) orbit of [X0].

Assume the claim for the moment, and let us show that it implies uniqueness.
Suppose there exist subsequences ti , t ′i ∈ �∗ such that Xti → X0 and Xt ′i → X ′

0.
We must show that X0 ≈ X ′

0, i.e. X0 and X ′
0 are isomorphic stable analytic curves.

Theorem 3.1 implies there are bases s and s′ such that [T ε
s (X0)], [T ε

s′(X ′
0)] ∈ F0

so T ε
s′u(X ′

0) ∈ U (N + 1) · T ε
s (X0). Now Lemma 1.1 implies X0 ≈ X ′

0. This gives
uniqueness.

The set U = SL(N + 1,C) · [T ε
s (X0)] ⊆ Z0 is open since dim Z0 = dim SL(N +

1,C) and the stabilizer of [T ε
s (X0] is finite. Lemma 1.1 implies

F0 ∩ U ⊆ U (N + 1)[T ε
s (X0)] ⊆ U (5.1)

Now U (N + 1)[T ε
s (X0)] is compact and F0 is connected, so F0 ∩ U = F0. Thus the

claim follows from (5.1). ��
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