
Mathematische Annalen
https://doi.org/10.1007/s00208-024-02847-3 Mathematische Annalen

On the gradient rearrangement of functions

Vincenzo Amato1 · Andrea Gentile2 · Carlo Nitsch1 · Cristina Trombetti1

Received: 16 March 2023 / Revised: 3 November 2023 / Accepted: 7 March 2024
© The Author(s) 2024

Abstract
In this paper, we introduce a symmetrization technique for the gradient of a BV
function, which separates its absolutely continuous part from its singular part (sum
of jump and Cantorian part). In particular, we prove a L1 comparison between the
function and the symmetrization just mentioned. Furthermore, we apply this result to
obtain Saint-Venant type inequalities for some geometric functionals.

MSC Classification 26A45 · 35A23 · 35B45

1 Introduction

Let � be a bounded open set of Rn with finite perimeter (see Sect. 2 for its definition)
and let us denote, as in [7], by

BV0(�) := {
u ∈ BV(Rn) : u ≡ 0 in Rn \ �

}
.

The aim of the present paper is to define a symmetrization of the distributional
gradient of a BV function.

B Vincenzo Amato
vincenzo.amato@unina.it

Andrea Gentile
andrea.gentile2@unina.it

Carlo Nitsch
c.nitsch@unina.it

Cristina Trombetti
cristina@unina.it

1 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Universita‘ degli Studi di Napoli
“Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, Napoli 80126, Italy

2 Mathematical and Physical Sciences for Advanced Materials and Technologies, Scuola Superiore
Meridionale, Largo San Marcellino 10, Napoli 80126, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-024-02847-3&domain=pdf
http://orcid.org/0000-0002-9422-5651


V. Amato et al.

The interest in this topic essentially derives from the work [17] where the authors
deal with the following problems involving Hamilton-Jacobi equation

{
H(∇u) = f a.e. in �

u = 0 on ∂�
(1.1a)

{
K (|∇v|) = f� a.e. in ��

v = 0 on ∂��
(1.1b)

where �� is the ball centered at the origin with the same measure as � (in the
sequel just centered ball), H : Rn → R and K : R → R are measurable functions,
u, v ∈ W 1,p

0 and f� is the increasing rearrangement of f (see Sect. 2 for its definition).
In particular, under suitable assumptions on H and K , it is proven ([17, Theorem

2.2]) that whenever u, v are solutions to (1.1a) and (1.1b) respectively, then

‖u‖L1(�) ≤ ‖v‖L1(��).

In [2] the authors study the problem of maximization of the Lq norm among
functions with prescribed gradient rearrangement. Precisely, the following cases are
considered

• 1 ≤ q ≤ np
n−p if p < n,

• 1 ≤ q < +∞ if p = n,
• 1 ≤ q ≤ +∞ if p > n,

and for a fixed ϕ = ϕ∗ ∈ L p(0, |�|), they define

I (�) := sup

⎧
⎪⎨

⎪⎩
‖v‖Lq :

|∇v| ≤ f a.e. in �,

v ∈ W 1,p
0 (�)

f ≥ 0, f ∗ = ϕ∗

⎫
⎪⎬

⎪⎭
,

and they proved the following

Theorem 1.1 [2, Theorem 3.1] Let � be a bounded open set in R
n, let �� be the

centered ball, let R be its radius and let p, q, ϕ be as defined above.
Then, there exist v, g spherically symmetric on �� such that g∗ = ϕ, I (��) =

‖v‖Lq , and thus

v ∈ W 1,p
0 (�), v ≥ 0, |∇v| = g a.e. in ��.

Furthermore I (��) ≥ I (�) for all open sets � in Rn with |��| = |�|.
In [9] the author proved a representation formula for the function g, the existence

of which was proved in Theorem 1.1.
Let us also mention that in [14, 15] the authors studied the optimization of the norm

of a Sobolev function in the class of functions with prescribed rearrangement of the
gradient.
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The case of a Sobolev non-zero trace function for q = 1 is instead studied in [4].
The literature concerning rearrangements in the spacesW 1,p is exhaustive,whereas,

to our knowledge, results on BV functions are rarer. One of the most relevant papers in
this framework is [10] where the authors extend the validity of Polya-Szegö inequality
to BV functions. More specifically, they proved that if u ∈ BV(Rn), then its Schwarz
rearrangement u� (see Sect. 2 for its definition) belongs to BV(Rn) and it holds [10,
Theorem 1.3]

|Du�|(Rn) ≤ |Du|(Rn)

|Dsu�|(Rn) ≤ |Dsu|(Rn)

|Dju�|(Rn) ≤ |Dju|(Rn)

(1.2)

where Ds and D j denote respectively the singular and the jumppart of the gradient (see
[10] for their definitions). There is no analogue of (1.2) for the absolutely continuous
and the Cantorian part of the gradient, i.e. in the symmetrization procedure the total
variation of Da and Dc can be increased, as shown in the example given in [10].

In this paper, we want to introduce a symmetrization that keeps the absolutely
continuous part separate from the singular part (sum of jump and Cantorian part) of
the gradient. To be more precise, we define the radial function u� ∈ W 1,1(��) ∩
BV0(�

�) ∩ L∞(��) such that

⎧
⎪⎨

⎪⎩

|∇u�|(x) = |∇au|�(x) a.e. in ��

u�(x) = 1

Per(��)
|Dsu|(Rn) on ∂��

, (1.3)

where ∇au and Dsu will be defined in Sect. 2.
The main theorem can be stated as follows.

Theorem 1.2 Let � ⊂ R
n be a bounded open set with finite perimeter and let �� be

the centered ball. Assume that u is a non-negative function belonging to BV0(�) and
assume that u� is defined as in (1.3), then

‖u‖L1(�) ≤ ∥∥u�
∥∥
L1(��)

.

We will also deal with some applications, in particular we will consider

• a penalized torsional rigidity problem

TF (�,�) := − inf
ψ∈H1

0 (�)

(
1

2

∫

�

|∇ψ |2 dx −
∫

�

|ψ | dx + �|{|∇ψ | 
= 0}|
)

;

• a modified torsional rigidity

1

TG(�,m)
:= inf

ψ∈H1(�)

∫

�

|∇ψ |2 dx + 1

m

(∫

∂�

|ψ | dHn−1
)2

(∫

�

|ψ | dx
)2 .
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In both cases, we will prove a Saint-Venant type inequality:

TF (�,�) ≤ TF (��,�), TG(�,m) ≤ TG(��,m).

The paper is organized as follows: in Sect. 2 we recall some preliminary results and
useful tools for our aim, in Sect. 3 we prove our main result on the symmetrization of
the gradient for a BV function, while in Sect. 4 we present some applications of this
kind of symmetrization.

2 Notations and preliminaries

2.1 Functions of bounded variation

Let us summarize some basic notions concerning BV functions, for all the details we
refer for instance to [6, 10, 13].

In the following, � will be an open set of Rn .

Definition 2.1 A function u ∈ L1(�) is said to be a function of bounded variation
in � if its distributional derivative is a Radon measure, i.e.

∫

�

u
∂ϕ

∂xi
dx =

∫

�

ϕ dDiu ∀ϕ ∈ C∞
C (�),

with Du a Rn-valued measure in �. The total variation of Du will be denoted with
|Du|.

The set of functions of bounded variation in � is denoted by BV(�) and it is a
Banach space with respect to the norm ‖u‖BV(�) := ‖u‖L1(�) + |Du|(�).

Definition 2.2 Let E be a Ln-measurable set. The perimeter of E inside � is defined
as

Per(E,�) := |DχE |(�),

and we say that E is a set of finite perimeter in � if χE ∈ BV(�). If � = R
n , we

denote Per(E) := Per(E,Rn).

It is also worth mentioning the isoperimetric inequality for sets of finite perimeter.

Theorem 2.1 (Isoperimetric inequality)Let E ⊂ R
n beabounded set of finitemeasure.

Then it holds

|E | ≤ n− n
n−1 ω

− 1
n−1

n [Per(E)]
n

n−1 ,

where ωn is the measure of n-dimensional ball of radius 1.

By the Lebesgue decomposition Theorem, each component of Du can be decom-
posed with respect to the Lebesgue measure, namely

Diu = Da
i u + Ds

i u with Da
i u � Ln, Ds

i u ⊥ Ln .
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and
Da
i u = fi

¬Ln,

for some fi ∈ L1(�). So, defining

∂u

∂xi
:= fi , ∇au =

(
∂u

∂x1
, · · · ,

∂u

∂xn

)
and Dsu = (

Ds
1u, . . . , Ds

nu
)
,

we can write
dDu = ∇au

¬Ln + dDsu.

Clearly it holds

|Du|(A) = |Dau|(A) + |Dsu|(A) =
∫

A

∣∣∇au
∣∣ dx + |Dsu|(A),

for every Borel set A ⊆ �.
Let us recall the following Fleming-Rishel formula (see [16] or [13]):

Theorem 2.2 (Fleming-Rishel formula) Let � ⊂ R
n be an open set and let u ∈

BV(�), then for almost every t ∈ (−∞,+∞) the set {u > t} has finite perimeter in
� and it holds

|Du|(�) =
∫ +∞

−∞
Per({u > t},�) dt . (2.1)

Moreover if u ∈ L1(�) and

∫ +∞

−∞
Per({u > t},�) dt < +∞,

then u ∈ BV(�) and consequently (2.1) holds.

2.2 Rearrangements of functions

We now briefly recall some notions about rearrangements. We refer for instance to
[18, 19, 23] for all the details.

Definition 2.3 Let� be a measurable set and let u : � → R be a measurable function,
the distribution function of u is defined as

μ : [0,+∞) → [0,+∞) μ(t) = ∣∣({x ∈ � : |u(x)| > t})∣∣

where, here and throughout the paper, |E | denotes the n-dimensional Lebesgue mea-
sure of a measurable set E .

It can be proved that

• μ is a decreasing function in [0,+∞);
• μ is right-continuous;
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• μ(0) = |suppu| and μ(+∞) = 0;
• μ(t−) = ∣∣{x ∈ � : |u(x)| ≥ t}∣∣.

Definition 2.4 Let u : � → R be a measurable function, the decreasing rearrange-
ment of u is defined as

u∗ : R+ → R
+ u∗(s) = inf {t > 0 : μ(t) ≤ s}

and the increasing rearrangement of u as

u∗ : [0, |�|] → R
+ u∗(s) = u∗(|�| − s)

It can be proved that

• u∗ (u∗) is a decreasing (increasing) function in [0,+∞);
• u∗ and u∗ are lower semi-continuous;
• whenever u ∈ L∞(�) u∗(0) = ‖u‖L∞(�) and u∗(t) = 0 ∀t ≥ |suppu|;
• u∗(|�|) = ‖u‖L∞(�) and u∗(t) = 0 ∀0 ≤ t ≤ |�| − |suppu|;
• u∗ and u∗ have the same distribution function as u, so by Cavalieri’s principle the

L p norms are equal for every p;
• u∗(μ(t)) ≤ t for every non-negative t , μ(u∗(s)) ≤ s for every non-negative s;
• u∗(μ(t)−) ≥ t for every non-negative t , μ(u∗(s)−) ≥ s for every non-negative s;
• the Hardy-Littlewood inequality: for any u, v : � ⊆ R

n → R

∫

�

|u(x)v(x)| dx ≤
∫

��

u∗(x)v∗(x) dx =
∫

�

u∗(x)v∗(x) dx (2.2)

Definition 2.5 Let u : � → R be a measurable function. The Schwarz rearrange-
ment or the spherically symmetric decreasing rearrangement of u is defined as

u� : Rn → R
+ u�(x) = u∗(ωn|x |n)

where ωn is the Lebesgue measure of the unit n-dimensional ball.
Moreover the spherically symmetric increasing rearrangement of u is defined

as
u� : Rn → R

+ u�(x) = u∗(ωn|x |n)
It can be proved that

• u� (u�) is non-negative, radial and radially decreasing (increasing);
• u�, u� and u are equally distributed which means they have the same distribution
function;

• the Polya-Szegö inequality holds true [21]: if u ∈ W 1,p
0 (�), then u� ∈ W 1,p

0 (��)

and
‖∇u�‖L p(��) ≤ ‖∇u‖L p(�).

We recall the Theorem of Giarrusso and Nunziante ([17, Theorem 2.2]).
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Theorem 2.3 Let � ⊂ R
n be a bounded open set, let �� be the centered ball, let

p ≥ 1, let f : � → R be a measurable function, let H : Rn → R be measurable
non-negative functions and let K : [0,+∞) → [0,+∞) be a strictly increasing real-
valued function such that

0 ≤ K (|y|) ≤ H(y) ∀y ∈ R
n and K−1( f ) ∈ L p(�).

Let v ∈ W 1,p
0 (�) be a function that satisfies

{
H(∇v) = f (x) a.e. in �

v = 0 on ∂�
,

denoting by z ∈ W 1,p
0 (��) the unique spherically decreasing symmetric solution to

{
K (|∇z|) = f�(x) a.e. in ��

z = 0 on ∂��
,

then
‖v‖L1(�) ≤ ‖z‖L1(��).

Moreover, in [20] the following uniqueness result is proved:

Theorem 2.4 Let � ⊂ R
n be a bounded open set, let v ∈ W 1,1

0 (�) be a non-negative

function. Denote by f (x) = |∇v|(x) and byw ∈ W 1,1
0 (��) the decreasing spherically

symmetric solution to
|∇w| = f�.

If ‖v‖L1 = ‖w‖L1 then there exists x0 ∈ R
n such that � = x0 + ��, f = f�(· + x0)

and v = w(· + x0).

From now on � ⊂ R
n is a bounded open set with finite perimeter. Let us consider

BV0(�) := {
u ∈ BV(Rn) : u ≡ 0 in Rn \ �

}
,

and u a non-negative function belonging to BV0(�). Let us define

f (x, s) = (
u − u∗(s)

)
+(x) x ∈ R

n, s ∈ [0,+∞). (2.3)

The function f (·, s) belongs to BV0(�) for every s ∈ [0,+∞) since it is a trun-
cation of u (See [6, Theorem 3.96]). Moreover, for every s ∈ [0,+∞) we denote
by

G(s) = |Df (·, s)|(Rn) = |Da f (·, s)|(Rn) + |Ds f (·, s)|(Rn) = G1(s) + G2(s),
(2.4)

where Da f and Ds f are, respectively, the absolutely continuous part and singular
part of the measure Df .

The following corollary holds.
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Corollary 2.5 Let u be a non-negative function belonging to BV0(�) and let G(s) be
the function defined as in (2.4). Then for a.e. s ∈ [0,+∞):

G(s) =
∫ +∞

u∗(s)
Per({u > ξ}) dξ. (2.5)

Proof For a.e. s ∈ [0,+∞), applying 2.2 with E = R
n to the function f (·, s) defined

in (2.3), we have

G(s) =
∣∣∣D

(
(u − u∗(s)

)
+)

∣∣∣(Rn) =
∫ +∞

−∞
Per

({(
u − u∗(s)

)
+ > ξ

})
dξ. (2.6)

Moreover, we have

∫ +∞

−∞
Per

({(
u − u∗(s)

)
+ > ξ

})
dξ =

∫ +∞

0
Per

({
u − u∗(s) > ξ

})
dξ,

and a change of variables gives (2.5).

The following properties hold:

1. G is an increasing function on (0,+∞) by (2.5), constant in (|�|,+∞), it belongs
to BVloc([0,+∞)). Then, there exists a positive measure σ such that

G(s) =
∫

(0,s]
dσ(τ) ∀s ∈ [0,+∞); (2.7)

2. G1(s) =
∫

{u>u∗(s)}
|∇au| dx is increasing and AC on [0,+∞), then there exists a

function F1 belonging to L1([0,+∞)):

G1(s) =
∫ s

0
F1(τ ) dτ ∀s ∈ [0,+∞);

3. G2 is an increasing functionbelonging toBVloc([0,+∞)), so there exists a positive
measure σ2 such that

G2(s) =
∫

(0,s]
dσ2(τ ) ∀s ∈ [0,+∞).

Then, ∀s ≥ 0

G(s) = σ((0, s]) =
∫

(0,s]
dσ(τ) =

∫ s

0
F1(τ ) dτ +

∫

(0,s]
dσ2(τ ) (2.8)

We will need the following technical lemma which can be proved by arguing as [3,
Lemma 2.1].
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Lemma 2.6 Let � be a bounded open set in Rn. If g ∈ L1([0, |�|)), then there exists
a sequence of functions {gk} such that g∗

k = g∗ and

lim
k

∫ |�|

0
gk(s)ϕ(s) dx =

∫ |�|

0
g(s)ϕ(s) ds, ∀ϕ ∈ BV

([0, |�|)). (2.9)

3 Proof of Theorem 1.2

Let us define the following function

v(s) :=
∫ +∞

s

1

nω
1
n
n τ 1− 1

n

dσ(τ) ∀s ∈ [0,+∞), (3.1)

where σ is defined in (2.7). We observe that, since supp(σ ) ⊆ [0, |�|], v is identically
0 on (|�|,+∞), hence v ∈ BV0([0, |�|]).

As intermediate step towards Theorem 1.2, we prove the following proposition.

Proposition 3.1 Let � ⊂ R
n be a bounded open set with finite perimeter and assume

that u is a non-negative function belonging to BV0(�). If v(s) is the function defined
as in (3.1), then

u∗(s) ≤ v(s) for a.e. s ∈ [0,+∞). (3.2)

Proof The isoperimetric inequality implies

nω
1
n
n μ(t)1−

1
n ≤ Per({u > t}) ∀t ∈ [0. + ∞),

by (2.5) and (2.8) we have

G(s) =
∫ +∞

u∗(s)
Per({u > ξ}) dξ =

∫

(0,s]
dσ(τ) for a.e. s ∈ [0,+∞).

Hence, for all 0 ≤ s1 < s2 < +∞ we have

σ
(
(s1, s2)

) =
∫ s2

s1
dσ(τ) = lim

s→s−2
G(s) − G(s1)

= lim
s→s−2

∫ u�(s1)

u�(s)
Per({u > ξ}) dξ

≥ lim
s→s−2

∫ u�(s1)

u�(s)
nω

1
n
n μ(ξ)1−

1
n dξ = D

[
H(u∗)

](
(s1, s2)

)
,

where

H(τ ) =
∫ +∞

τ

nω
1
n
n μ(ξ)1−

1
n dξ.
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Since this holds for every open interval (s1, s2), we have

σ(A) ≥ D
[
H(u∗)

]
(A) ∀A ⊆ [0,+∞) Borel set. (3.3)

Observing that H is a Lipschitz function, D
[
H(u∗)

]
is given by (see [5])

D
[
H(u∗)

] =

⎧
⎪⎨

⎪⎩

−nω
1
n
n s

1− 1
n Du∗ on [0,+∞) \ Ju∗

−nω
1
n
n s

1− 1
n
(
(u∗)+ − (u∗)−

)
, on Ju∗

since μ(u∗(s)) = s a.e. with respect Du∗ (by the properties of the rearrangements)
and since for s ∈ Ju∗

H
(
((u∗)+(s)

) − H
(
((u∗)−(s)

) =
∫ u∗(s−)

u∗(s)
nω

1
n
n μ(ξ)1−

1
n dξ

= −nω
1
n
n s

1− 1
n
(
(u∗)+(s) − (u∗)−(s)

)
.

Then we can write
dD

[
H(u∗)

]

dDu∗ = −nω
1
n
n s

1− 1
n . (3.4)

Therefore, by means of (3.3), (3.4), we have

u∗(s) = −
∫ +∞

s
d(Du∗)(τ ) =

∫ +∞

s

dD
[
H(u∗)

]
(τ )

nω
1
n
n τ 1− 1

n

≤
∫ +∞

s

dσ(τ)

nω
1
n
n τ 1− 1

n

= v(s).

Now we are in position to prove the main theorem.

Proof of Theorem 1.2 First of all, let us emphasize that the decreasing rearrangement
of u�, defined in (1.3), is

(u�)∗(s) =
∫ +∞

s

|∇au|∗(t)
nω

1
n
n t

1− 1
n

dt + 1

Per(��)

∣∣Dsu
∣∣(Rn) χ[0,|�|](s) ∀s ∈ [0,+∞).

Now, let us integrate (3.2) between 0 and +∞ and let us use Fubini’s Theorem to
obtain

∫ +∞

0
u∗(s) ds ≤

∫ +∞

0
v(s) ds

= 1

nω
1
n
n

∫ +∞

0

(∫ +∞

s

dσ(t)

t1− 1
n

)
ds

= 1

nω
1
n
n

∫ +∞

0

(∫ t

0

ds

t1− 1
n

)
dσ(t)
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= 1

nω
1
n
n

∫ +∞

0
t
1
n dσ(t)

= 1

nω
1
n
n

[∫ +∞

0
t
1
n F1(t) dt +

∫ +∞

0
t
1
n dσ2(t)

]
.

By (2.9) applied to F1 and the Hardy-Littlewood inequality (2.2), we have

∫ +∞

0
t
1
n F1(t) dt =

∫ |�|

0
t
1
n F1(t) dt = lim

k

∫ |�|

0
t
1
n (F1)k(t) dt

≤
∫ |�|

0
t
1
n |∇au|∗(t) dt =

∫ +∞

0
t
1
n |∇au|∗(t) dt,

then

∫ +∞

0
u∗(s) ds ≤ 1

nω
1
n
n

[∫ +∞

0
t
1
n |∇au|∗(t) dt +

∫ +∞

0
t
1
n dσ2(t)

]

≤ 1

nω
1
n
n

[∫ +∞

0
t
1
n |∇au|∗(t) dt + |�| 1n

∫ +∞

0
dσ2(t)

]
,

(3.5)

since F2(A) = 0 for all A ⊂ (|�|,+∞).
Using again Fubini’s Theorem, we can compute

∫ +∞

0
|∇au|∗(t)t 1

n dt =
∫ +∞

0

|∇au|∗(t)
t1− 1

n

∫ t

0
ds =

∫ +∞

0

(∫ +∞

s

|∇au|∗(t)
t1− 1

n

dt

)
ds,

and

|�| 1n
nω

1
n
n

∫ +∞

0
dF2(t) = |�| 1

Per(��)

∣∣Dsu
∣∣(Rn)

=
∫ +∞

0

1

Per(��)

∣∣Dsu
∣∣(Rn)χ[0,|�|](s) ds.

Hence, (3.5) can be written as

‖u‖L1(�) ≤
∫ +∞

0

[∫ +∞

s

|∇au|∗(t)
nω

1
n
n t

1− 1
n

dt + 1

Per(��)

∣∣Dsu
∣∣(Rn)χ[0,|�|](s)

]
ds

= ∥∥u�
∥∥
L1(��)

.

Remark 3.1 We stress the following facts:

∣∣Dau
∣∣(Rn) =

∫

Rn

∣∣∇au
∣∣ dx =

∫

��

∣∣∇au�
∣∣ dx and

∣∣Dsu
∣∣(Rn) = ∣∣Dsu�

∣∣(Rn),
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and then
|Du|(Rn) = ∣∣Du�

∣∣(Rn).

4 Two versions of the torsional rigidity

For a given � > 0 we consider

F�(ψ) := 1

2

∫

�

|∇ψ |2 dx −
∫

�

ψ dx + �|{|∇ψ | 
= 0}| ψ ∈ H1
0 (�), (4.1)

and the associated minimum problem:

TF (�,�) := − inf
ψ∈H1

0 (�)

F�(ψ). (4.2)

First of all, let us observe that the minimum can be found among non-negative func-
tions. Indeed, passing from ψ to |ψ | it holds F(ψ) ≥ F(|ψ |).

Assuming that problem (4.2) admits a minimum u ∈ H1
0 (�), then it is also a

maximum for the torsional rigidity defined by Diaz, Polya and Weinstein in [12, 22]
of a multiply-connected cross-section with fixed measure of the holes, that is

T (�) = max
ψ∈C0(D)∩C1(�)

ψ constant
in every Ai

(∫

D
ψ dx

)2

∫

D
|∇ψ |2 dx

,

where Ai are the connected component of {|∇u| = 0} and D = � ∪ ⋃
i Ai .

Functionals with penalizing terms are very common in the mathematical modelling
of physical problems. The bibliography is very wide and some cornerstones are [1,
11].

However, in the literature, penalizing terms of the form |{|∇ψ | 
= 0}| are quite
unusual. Themain difficulty in the studyof (4.2) is to prove the existence of aminimizer
because of the lack of the lower semicontinuity of the functional.

For this reason, we prove the existence of a minimizer in the case when � is a ball.

Proposition 4.1 Let �, R > 0 and let BR be the centered ball with radius R. Then
the functional F� defined in (4.1) admits a minimizer v belonging to H1

0 (�). Such a
minimizer is unique up to a sign, it is radially symmetric and |∇v| is radially increasing.

Proof We divide the proof in 3 steps.

1. Boundness from below.
First of all, let us prove that the functional F� is bounded from below for every
choice of � and for every R > 0. For all ψ ∈ H1

0 (BR), sing Young and Poincaré

123



On the gradient rearrangement...

inequalities, we get

F�(ψ) = 1

2

∫

BR

|∇ψ |2 dx −
∫

BR

ψ dx + �|{∇ψ 
= 0}|

≥ 1

2

∫

BR

|∇ψ |2 dx − ε

∫

BR

ψ2

2
− |BR |

2ε

≥ 1

2

∫

BR

|∇ψ |2 dx − εC(n, BR)

2

∫

BR

|∇ψ |2 dx − |BR |
2ε

= (1 − εC(n, BR))

2

∫

BR

|∇ψ |2 dx − |BR |
2ε

.

Chosing ε sufficiently small such that

0 < ε ≤ 1

C(n, BR)

then

F�(ψ) ≥ − |BR |
2C(n, Br )

≥ −C(n, BR) > −∞

so
T (BR,�) = − inf

ψ∈H1
0 (BR)

F�(ψ) < ∞.

2. Compactness and semicontinuity.
Now we consider a minimizing sequence {ψk} for TF (BR,�) and we prove that
it is bounded in H1

0 (BR). We can assume that F�(ψk) ≤ −TF (BR,�) + 1 and
by Proposition 2.3 we can assume that ψk are radial function with |∇ψk | radially
symmetric increasing.
Using Young and Poincaré inequalities, we obtain

F�(ψk) = 1

2

∫

BR

|∇ψk |2 dx −
∫

BR

ψk dx + �|{∇ψk 
= 0}|

≥ 1

2

∫

BR

|∇ψk |2 dx −
∫

BR

ψk dx

≥ 1

2

∫

BR

|∇ψk |2 dx − ε

∫

BR

ψ2
k

2
− |BR |

2ε

≥ 1

2

∫

BR

|∇ψk |2 dx − εC(n, Br )

2

∫

BR

|∇ψk |2 dx − |BR |
2ε

= 1 − εC(n, BR)

2

∫

BR

|∇ψk |2 dx − |BR |
2ε

.
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Choosing ε <
1

C(n, BR)
we have

−TF (BR,�) + 1 ≥ F�(ψk) ≥ 1

4

∫

BR

|∇ψk |2 dx − C(BR)

then by Poincaré inequality, the sequence {ψk} is bounded in H1
0 (BR).

This implies that there exists a subsequence (still denoted by ψk) and a function
v ∈ H1

0 (BR) such thatψk → v strongly in L2(�), a.e. in� and∇ψk⇀∇v weakly
in L2. Let us show that v is a minimum for F�.
The lower semicontinuity of the norms gives

lim inf
k

[
1

2

∫

BR

|∇ψk |2 dx −
∫

BR

ψk dx

]
≥ 1

2

∫

BR

|∇v|2 dx −
∫

BR

v dx .

(4.3)

Let us deal with the last term of F� and let us prove that

lim inf
k

|{|∇uk | 
= 0}| ≥ |{|∇u| 
= 0}|.

Denoting by rk the radius of the ball where |∇ψk | = 0, we can assume that rk
converges to some r ≥ 0. Therefore

lim inf
k

|{|∇ψk | 
= 0}| = lim
k

[ωn(R
n − rnk )] = ωn(R

n − rn).

So we have just to prove that |∇v| = 0 in Br . Since {ψk} are radial functions,
obviously v is radial too.
If r = 0 there is nothing to prove.
If r > 0, assume by contradiction that there exists A ⊂ Br with |A| > 0 and that
|∇v| 
= 0 in A. Clearly there exists ε > 0 such that |A ∩ Br−ε| > 0.

Since rk → r if we choose a function g ∈ C∞
C (BR,Rn) with support included in

A ∩ Br−ε we have

∫

BR

〈∇v, g〉 dx = lim
k

∫

BR

〈∇ψk, g〉 dx = 0.

Since this must be true for every g ∈ C∞
C (A ∩ Br−ε,R

n), we get a contradiction.

Then in any case
lim inf

k
|{|∇ψk | 
= 0}| ≥ |{|∇v| 
= 0}|. (4.4)
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By (4.3) and(4.4), we get

−TF (BR,�) = lim inf
k

F�(ψk) ≥ F�(v) ≥ −TF (BR,�)

so v is a minimum of F� in BR .
3. Uniqueness.

Let us suppose that v is a minimum of F�(ψ). By Theorem 2.3, it exists v ∈
H1
0 (BR) such that

F�(v) ≥ F�(v)

and since v is minimum, it holds

F�(v) = F�(v).

Since |∇v| is equally distributed with |∇v|, the previous equality implies

‖v‖L1 = ‖v‖L1

so Theorem 2.4 gives that |v| = v.

Remark 4.1 We highlight that Theorem 2.3 ensures us that the minimum when � is a
ball has gradient equal to zero only in a ball Br centered at the origin with 0 ≤ r ≤ R.

Now, as already mention in the introduction, we prove a Saint-Venant type inequal-
ity for TF (�,�).

Corollary 4.2 Let � ⊂ R
n be a bounded open set with finite perimeter and let �� be

the centered ball. If � > 0, then

TF (�,�) ≤ TF (��,�).

Proof For every functionψ ∈ H1
0 (�), byTheorem2.3 or 1.2, there existsψ ∈ H1

0 (��)

that satisfies
F�(ψ) ≥ F�(ψ) ≥ −TF (��,�)

and then
TF (�,�) ≤ TF (��,�).

Now we deal with the functional

G(ψ) :=

∫

�

|∇ψ |2 dx + 1

m

(∫

∂�

|ψ | dHn−1
)2

(∫

�

|ψ | dx
)2 ψ ∈ H1(�).

with m > 0.
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The interest in this type of functional is related to the problem of optimal insulation
in a given domain. Indeed, the minimum of G gives the long-time distribution of
temperature of the domain� and the displacement around� of a thin layer of insulator
with total mass equal to m. We refer to [8] for more details.

If� is a Lipschitz domain,G(ψ) achieves itsminimum among all H1(�) functions.
So we define

1

TG(�,m)
:= min

ψ∈H1(�)
G(ψ).

It is easy to check that the Euler-Lagrange equation of this functional is

⎧
⎨

⎩

−�u = 1 in �
∂u

∂ν
+ 1

m

∫

∂�

|u| dHn−1 = 0 on ∂�.

So Theorem 1.2 gives us the following Saint-Venant type inequality for TG(�).

Corollary 4.3 Let � ⊂ R
n be a bounded open set with finite perimeter and let �� be

the centered ball. If m > 0, then

TG(�,m) ≤ TG(��,m).

Proof For every function ψ ∈ H1(�), by 1.2, there exists ψ ∈ H1(��) that satisfies

G(ψ) ≥ G(ψ) ≥ 1

TG(��,m)

and then
TG(�,m) ≤ TG(��,m).
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