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Abstract
Let n ≥ 2 be a given integer. In this paper, we assert that an n-dimensional traveling
front converges to an (n − 1)-dimensional entire solution as the speed goes to infinity
in a balanced bistable reaction–diffusion equation. As the speed of an n-dimensional
axially symmetric or asymmetric traveling front goes to infinity, it converges to an (n−
1)-dimensional radially symmetric or asymmetric entire solution in a balanced bistable
reaction–diffusion equation, respectively. We conjecture that the radially asymmetric
entire solutions obtained in this paper are associated with the ancient solutions called
the Angenent ovals in the mean curvature flows.

Mathematics Subject Classification 35C07 · 35B08 · 35K57

1 Introduction

In this paper we study a reaction–diffusion equation

∂u

∂t
= �u − W ′(u), x ∈ R

n, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R
n, (1.2)

where n ≥ 2 is a given integer, and u0 is a given bounded and uniformly continuous
function from R

n to R. The following is the standing assumptions of W ∈ C3[−1, 1]
in this paper

W ′(1) = 0, W ′(−1) = 0, W ′′(1) > 0, W ′′(−1) > 0, (1.3)
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W (1) = 0, W (−1) = 0, (1.4)

W (s) > 0 if − 1 < s < 1. (1.5)

Here W ′ and W ′′ are the first and second derivatives of W , respectively. Equation
(1.1) is called the Allen–Cahn equation, the scalar Ginzburg–Landau equation or the
Nagumo equation if

W (u) = (s + 1)2(s − 1)2

4
, −W ′(u) = u − u3.

A nonlinear term −W ′(u) with (1.3) is called a bistable one. It is called balanced
if W (−1) = W (1), and is called imbalanced if W (−1) �= W (1). In this paper we
assume that −W ′(u) is balanced. We write the solution of (1.1)–(1.2) as u(x, t; u0).
Under the assumption of W stated above, there exists � that satisfies

�′′(x1) − W ′(�(x1)) = 0, x1 ∈ R,

− �′(x1) > 0, x1 ∈ R,

�(−∞) = 1, �(0) = 0, �(∞) = −1.

This � is called the one-dimensional standing front, and is explicitly given by

−x1 =
∫ �

0

ds√
2W (s)

, −1 < � < 1.

Under assumptions (1.4) and (1.3), there exists � if and only if (1.5) holds true. Let

x′ = (x1, . . . , xn−1) ∈ R
n−1, x = (x′, xn) ∈ R

n .

Now we write r = |x′|. Let c ∈ (k,∞) be arbitrarily given. We put z = xn − ct and
w(x′, z, t) = u(x′, xn, t) for (x′, z) ∈ R

n and t > 0. Then we have

∂w

∂t
−
⎛
⎝n−1∑

j=1

∂2

∂x2j
+ ∂2

∂z2

⎞
⎠w − c

∂w

∂z
+ W ′(w) = 0, (x′, z) ∈ R

n, t > 0,

w(x′, z, 0) = u0(x′, z), (x′, z) ∈ R
n .

We write z simply as xn . Then we have

∂w

∂t
−

n∑
j=1

∂2w

∂x2j
− c

∂w

∂xn
+ W ′(w) = 0, (x′, xn) ∈ R

n, t > 0, (1.6)

w(x′, xn, 0) = u0(x′, xn), (x′, xn) ∈ R
n . (1.7)

We write the solution of (1.6)–(1.7) as w(x, t; u0).
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If v ∈ C2(Rn) satisfies

n∑
j=1

∂2v

∂x2j
+ c

∂v

∂xn
− W ′(v) = 0, (x′, xn) ∈ R

n (1.8)

for c ∈ R, v(x′, xn − ct) becomes a traveling wave or a traveling front of (1.1). We
call (1.8) the profile equation of v(x). We call v a traveling profile and call c its speed.
Sometimes we denote a traveling front v(x′, xn − ct) simply by (c, v). Now xn is
the traveling direction of (c, v). For a multidimensional traveling front, a traveling
direction of (c, v) might not be uniquely determined. We say that a traveling front is
axisymmetric if we can choose a traveling direction such that v is axisymmetric with
respect to the traveling direction. We say that a traveling front is axially asymmetric
if v is axially asymmetric with respect to every traveling direction.

If a function U (x′, t) satisfies

∂U

∂t
= �′U − W ′(U ), (x′, t) ∈ R

n, (1.9)

U (x′, t) is called an entire solution in R
n−1, where

�′ =
n−1∑
j=1

∂2

∂x2j
. (1.10)

A traveling front solution to (1.9) is itself an entire solution to (1.9). Now we say that
U (x′, t) is radially symmetric or spherically symmetric with respect to a′ ∈ R

n−1

if U is a function of |x′ − a′| and t ∈ R. If U (x′, t) is not radially symmetric with
respect to any a′ ∈ R

n−1, we say that U (x′, t) is radially asymmetric.
Traveling fronts to (1.1) have been studied by [6, 10, 11, 31–34] in R

n for n ≥ 2.
Axisymmetric traveling fronts have been studied by [6, 32], and axially asymmetric
traveling fronts have been studied by [31]. A one-dimensional entire solution is studied
by Chen, Guo and Ninomiya [7] and del Pino and Gkikas [9]. It is an interesting
question whether there exists a relation between traveling fronts in R

n and entire
solutions inRn−1. In this paperwe show that a traveling profile of (1.8) inRn converges
to an entire solution of (1.9) in R

n−1 as the speed c goes to infinity. Then, using this
fact, we show the existence of a radially symmetric entire solution and a radially
asymmetric entire solution of (1.9) as the limits of an axisymmetric traveling front
and an axially asymmetric traveling front of (1.8), respectively.

Now we define s∗ ∈ (−1, 1) by

s∗ = min
{
s0 ∈ (−1, 1) | − W ′(s) > 0 if s0 < s < 1

}

and fix θ0 ∈ (s∗, 1) with −W ′(θ0) > 0. Now we assert the existence of a radially
symmetric entire solution as follows.
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Theorem 1 (Radially symmetric entire solution) Let R0 ∈ (0,∞) be arbitrarily given.
One has Usym(|x′|, t) = U (x′, t) for x′ ∈ R

n−1 such that one has (1.9) with

− 1 < Usym(r , t) < 1, (r , t) ∈ (0,∞) × R,

Usym(R0, 0) = θ0,

∂Usym

∂t
(r , t) > 0, (r , t) ∈ (0,∞) × R,

∂Usym

∂r
(r , t) > 0, (r , t) ∈ (0,∞) × R.

Here r = |x′|. One has

lim
t→∞ inf

r∈[0,∞)
Usym(r , t) = 1.

As t → −∞, Usym(r , t) converges to −1 on every compact set in [0,∞). For any
fixed t ∈ R, one has

lim
r→∞Usym(r , t) = 1. (1.11)

See Fig. 1 for {x′ ∈ R
n−1 |U (x′, 0) = θ0} for U in Theorem 1. Now we assert the

existence of radially asymmetric entire solution.

Theorem 2 (Radially asymmetric entire solution) Let

0 < R1 ≤ R2 ≤ · · · ≤ Rn−1 < ∞

be arbitrarily given. Then there exists U that satisfies

∂U

∂t
(x′, t) = �′U (x′, t) − W ′(U (x′, t)), (x′, t) ∈ R

n

with

− 1 < U (x′, t) < 1, (x′, t) ∈ R
n,

U (0, . . . , 0,
j

�

R j , 0, . . . , 0, 0) = θ0, 1 ≤ j ≤ n − 1,

∂U

∂t
(x′, t) > 0, x′ ∈ R

n−1, t ∈ R,

∂U

∂x j
(x′, t) > 0, x′ ∈ R

n−1, t ∈ R, 1 ≤ j ≤ n − 1,

U (x1, . . . ,
j

�−x j , . . . , xn−1, t) = U (x1, . . . ,
j

�
x j , . . . , xn−1, t),

(x′, t) ∈ R
n, 1 ≤ j ≤ n − 1
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Fig. 1 The evolution of {x′ ∈ R
n−1 |U (x′, t) = θ0} for t = 0, 1, where U is a radially symmetric entire

solution in Theorem 1. Here 2 ≤ j ≤ n

One has

lim
t→∞ inf

x′∈Rn−1
U (x′, t) = 1.

As t → −∞, U (x′, t) converges to −1 on every compact set in R
n−1. For any fixed

t ∈ R, one has

lim
|x′|→∞

U (x′, t) = 1. (1.12)

See Fig. 2 for {x′ ∈ R
n−1 |U (x′, 0) = θ0} for U in Theorem 2. For a reaction–

diffusion equation with an imbalanced bistable reaction term, traveling fronts have
been studied by [16–18, 23, 24, 27–30, 34] and so on, and and entire solutions have
been studied by [3, 5, 13–15, 21, 22, 37] and so on. See [25] for a relation between
traveling fronts in Rn and entire solutions in Rn−1 for n ≥ 2.

This paper and [25] suggest that an n-dimensional traveling fronts converges to an
(n − 1)-dimensional entire solution as the speed goes to infinity in various kind of
reaction–diffusion equations.

This paper is organized as follow. In Sect. 3, we summarize the properties of
n-dimensional traveling fronts with a speed c ∈ (0,∞). In Sect. 4, we study n-
dimensional traveling fronts as the speed c ∈ (0,∞) goes to infinity and obtain entire
solutions as the limits. We prove the existence of radially symmetric entire solutions
and radially asymmetric entire solutions to (1.1).
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Fig. 2 The evolution of {x′ ∈ R
n−1 |U (x′, t) = θ0} for t = 0, 1. Here U is a radially asymmetric entire

solution in Theorem 2, where 2 ≤ j ≤ n

2 Discussions

Let U (x′, t) be given by Theorem 1 or Theorem 2. When

W (u) = (u + 1)2(u − 1)2

4ε2
, −W ′(u) = u − u3

ε2
(2.1)

for ε > 0, the motion of a level set {x′ ∈ R
n−1 |U (x′, t) = 0} is approximated by a

mean curvatureflow in the limit of ε → 0. See [4] for instance.Axisymmetric or axially
asymmetric traveling fronts in Theorem 4 or in Theorem 8 are closely related to those
in mean curvature flows studied by Wang [35]. For a mean curvature flow, a curve or
a surface evolves with time. If a curve or a surface is defined for all t ∈ (−∞, t0) with
some t0 ∈ R, it is called an ancient solution. A typical example is ancient solutions
studied by Angenent [1] and Angenent, Daskalopoulos and Sesum [8] for a two-
dimensional plane, and they are called the Angenent ovals or the paper clip solutions.
Ancient solutions have been studied by White [36], Haslhofer and Hershkovits [19]
and Angenent, Daskalopoulos and Sesum [2] for a space whose dimension is three or
more. The author conjectures as follows.

Conjecture 1 Let W be given by (2.1). Let U (x′, t) be an entire solution in Theorem 1
or in Theorem 2. Let T0 ∈ R be uniquely given by U (0′, T0) = 0 in Theorem 1 or in
Theorem 2. Let 0 < γ1 < γ2 < ∞ be arbitrarily given. Then, as ε → 0, a level set
{x′ ∈ R

n−1 |U (x′, t) = 0} converges to an ancient solution of a mean curvature flow
for t ∈ [T0 − γ2, T0 − γ1].

The study on this convergence will give an important insight on entire solutions in
a reaction–diffusion equation and on ancient solutions in a mean curvature flow. Note
that a paper clip solution lies between two parallel lines for all time till it extinguishes.
As t → −∞, an axially asymmetric entire solution U in Theorem 2 converges to −1
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on every given compact set in R
2 for n = 3. Thus {x′ ∈ R

n−1 |U (x′, t) = 0} cannot
lie between two parallel lines as t → −∞. This means that axially asymmetric entire
solutions in Theorem 2 are novel propagation phenomena.

3 Properties of n-dimensional traveling fronts with various speeds

We extend W as a function of class C3 in an open interval that includes [−1, 1]. Let

β = 1

2
min

{
W ′′(1),W ′′(−1)

}
> 0.

Let δ∗ ∈ (0, 1/4) be small enough such that [−1 − 2δ∗, 1 + 2δ∗] is included in the
open interval and one has

min|u+1|≤2δ∗
W ′′(u) > β, min|u−1|≤2δ∗

W ′′(u) > β.

Now we put

M = 1 + max|u|≤1+2δ∗

∣∣W ′′(u)
∣∣ (3.1)

and introduce a positive constant σ by

σ = 1 + β + max|u|≤1+2δ∗ |W ′′(u)|
β min{−�′(x1) | x1 ∈ R, −1 + δ∗ ≤ �(x1) ≤ 1 − δ∗} .

Throughout this paper we assume

− 1 < v(x) < 1, x ∈ R
n (3.2)

and

−1 − δ∗ ≤ u0(x) ≤ 1 + δ∗, x ∈ R
n .

Then u(x, t) = u(x, t; u0) satisfies (1.1) with

−1 − δ∗ ≤ u(x, t) ≤ 1 + δ∗, x ∈ R
n, t > 0.

Now the Schauder estimates [34, Proposition 2.9, Lemma 2.6] give

max
1≤ j≤n

sup
x∈Rn , t≥1

∣∣D j u(x, t)
∣∣ ≤ K∗, (3.3)

max
1≤i≤n,1≤ j≤n

sup
x∈Rn , t≥1

∣∣Di j u(x, t)
∣∣ ≤ K∗, (3.4)

sup
x∈Rn , t≥1

|Dt u(x, t)| ≤ K∗. (3.5)
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max
1≤ j1≤n,1≤ j2≤n,1≤ j3≤n

sup
x∈Rn , t≥1

∣∣D j1D j2D j3u(x, t)
∣∣ ≤ K∗. (3.6)

Here K∗ ∈ (0,∞) is a constant depending only on (W , δ∗, n) and is independent of
u0. We use

Dt = ∂

∂t
, D j = ∂

∂x j
, D2

j = ∂2

∂x2j
, Di j = ∂2

∂xi∂x j
, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Lemma 3 Assume c ∈ R and v ∈ C2(Rn) satisfy (1.8) and (3.2). Then one has

max
1≤ j≤n

sup
x∈Rn

∣∣D jv(x)
∣∣ ≤ K∗, max

1≤i≤n, 1≤ j≤n
sup
x∈Rn

∣∣Di jv(x)
∣∣ ≤ K∗, (3.7)

max
1≤ j1≤n, 1≤ j2≤n, 1≤ j3≤n

sup
x∈Rn

∣∣D j1D j2D j3v(x)
∣∣ ≤ K∗. (3.8)

Here K∗ is a constant in (3.3)–(3.5), and is independent of (c, v) ∈ R × C2(Rn).

Proof By putting u(x′, xn, t) = v(x′, xn − ct), u satisfies (1.1) with

u(x′, xn, 0) = v(x′, xn), (x′, xn) ∈ R
n .

Then (3.3), (3.4) and (3.6) give

max
1≤ j≤n

sup
(x′, xn)∈Rn , 1≤t

∣∣D jv(x′, xn − ct)
∣∣ ≤ K∗,

max
1≤i≤n, 1≤ j≤n

sup
(x′, xn)∈Rn , 1≤t

∣∣Di jv(x′, xn − ct)
∣∣ ≤ K∗,

max
1≤ j1≤n, 1≤ j2≤n, 1≤ j3≤n

sup
(x′, xn)∈Rn , 1≤t

∣∣D j1D j2D j3v(x′, xn − ct)
∣∣ ≤ K∗,

which give

max
1≤ j≤n

sup
(x′, xn)∈Rn

∣∣D jv(x′, xn − c)
∣∣

≤ K∗, max
1≤i≤n, 1≤ j≤n

sup
(x′, xn)∈Rn

∣∣Di jv(x′, xn − c)
∣∣ ≤ K∗,

max
1≤ j1≤n, 1≤ j2≤n, 1≤ j3≤n

sup
(x′, xn)∈Rn

∣∣D j1D j2D j3v(x′, xn − c)
∣∣ ≤ K∗.

Thus we obtain (3.7) and (3.8). This completes the proof. ��
Now we state properties of axisymmetric traveling fronts as follows.

Theorem 4 (Axisymmetric traveling fronts [6, 32]) Let c ∈ (0,∞) be arbitrarily
given. There exists Vc(x′, xn) = Vsym(|x′|, xn) such that (c, Vc) satisfies the profile
equation (1.8), Vsym(0, 0) = θ0 and

−1 < Vsym(r , xn) < 1, r ≥ 0, xn ∈ R,
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∂Vsym
∂xn

(r , xn) < 0 if r ≥ 0, xn ∈ R,

∂Vsym
∂r

(r , xn) > 0 if r > 0, xn ∈ R. (3.9)

For every θ ∈ (−1, 1), one has

inf
r≥0,xn∈R

⎧⎨
⎩
√(

∂Vsym
∂r

(r , xn)

)2

+
(

∂Vsym
∂xn

(r , xn)

)2
∣∣∣∣∣∣ Vsym(r , xn) = θ

⎫⎬
⎭ > 0.

(3.10)

Here r = |x′|.
Remark 1 As far as the author knows, the uniqueness of Vsym in Theorem 4 is yet to be
studied. Here we denote a traveling front that satisfies Theorem 4 by Vsym. It depends
on c ∈ (0,∞).

Now we state properties of axially asymmetric traveling fronts in [31] as follows.

Theorem 5 [31] Let

1 ≤ α2 ≤ · · · ≤ αn−1 < ∞ (3.11)

be arbitrarily given and let

α′ = (1, 00α2, . . . , αn−1) ∈ R
n−1. (3.12)

Let c ∈ (0,∞) and ζ ∈ (0,∞) be arbitrarily given. There exists V (x) = V (x;α′, c)
that satisfies (1.8) with V (0) = θ0 and

− 1 < V (x) < 1, x ∈ R
n,

DnV (x′, xn) < 0, (x′, xn) ∈ R
n, (3.13)

V (x1, . . . ,
j

�−x j , . . . , xn) = V (x1, . . . ,
j

�
x j , . . . , xn), (x′, xn) ∈ R

n, 1 ≤ j ≤ n − 1,
(3.14)

D j V (x′, xn) > 0 if x j > 0, 1 ≤ j ≤ n − 1,

V (0, . . . , 0,
j

�
r j , 0, . . . , 0, ζ ) = θ0, (3.15)

where a positive number r j (1 ≤ j ≤ n − 1) satisfies

r j
r1

= α j , 2 ≤ j ≤ n − 1.
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For every θ ∈ (−1, 1) one has

inf
(x′,xn)∈Rn

{|∇V (x′, xn)| | V (x′, xn) = θ
}

> 0. (3.16)

Let c ∈ (0,∞) be given and let Vc ∈ C2(Rn) satisfy (1.8). Under some condition,
we assert that a level set {(x′, xn) | Vc(x′, xn) = θ0} is a graph on the whole space
R
n−1 in the following proposition.

Proposition 6 Fix θ0 ∈ (s∗, 1) with −W ′(θ0) > 0 arbitrarily. For any fixed c ∈
(0,∞), let Vc ∈ C2(Rn) satisfy Vc(0′, 0) = θ0, (1.8), (3.2), (3.14) and

DnVc(x′, xn) ≤ 0, (x′, xn) ∈ R
n,

D j Vc(x′, xn) ≥ 0 if x j > 0, 1 ≤ j ≤ n − 1.

Then, for arbitrarily given μ0 ∈ (0,∞), one has

lim
xn→∞ Vc(μ0, . . . , μ0, xn) < θ0.

Now we will make preparation to prove this proposition. For μ0 ∈ (0,∞), we
define

�n−1(μ0) =
{
(x1, . . . , xn−1) ∈ R

n−1
∣∣∣∣ min
1≤ j≤n−1

|x j | ≥ μ0

}
. (3.17)

Hereafter we simply write �n−1(μ0) as �n−1. Let c ∈ (0,∞) be arbitrarily given.
Taking an initial function

w0(x′, xn) =
{

θ0 if x′ ∈ �n−1, xn ∈ R,

−1 if x′ ∈ R
n−1\�n−1, xn ∈ R,

(3.18)

we consider w(x′, xn, t;w0) as a solution of (1.6). Since w(x′, xn, t;w0) is indepen-
dent of xn , we simply write w(x′, t;w0). Now w(x′, t;w0) satisfies

∂w

∂t
−

n−1∑
j=1

∂2w

∂x2j
+ W ′(w) = 0, x′ ∈ R

n−1, t > 0,

w(x′, 0) = w0(x′), x′ ∈ R
n−1.

Note that w(x′, t;w0) is independent of c ∈ (0,∞).

Lemma 7 Let w0 be given by (3.18). Then w(x′, t;w0) satisfies

lim
t→∞ inf

x′∈Rn−1
w(x′, t;w0) = 1.
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Proof First we prove this lemma for n = 2. Let n = 2. Let δ ∈ (0, δ∗] be given. There
exists T1 ∈ (0,∞) such that we have

1 − δ

4
< w(x, t; θ0), x ∈ R, t ≥ T1.

Note that w(x, t; θ0) depends only on t and is independent of x. By applying [34,
Theorem 5.8], there exists r1 ∈ (0,∞) with

sup
|x1|≥r1

|w(x1, T1; θ0) − w(x1, T1;w0)| <
δ

4
.

Combining these inequalities together, we have

1 − δ

2
< inf|x1|≥r1

w(x1, T1;w0). (3.19)

Taking S1 ∈ (0,∞) large enough, we have

w(x1, T1, w0) ≥ �(x1 − S1) − δ, x1 ∈ R,

which yields

w(x1, t + T1;w0) ≥ �(x1 − S1 − σδ(1 − e−βt )) − δe−β, x1 ∈ R, t ≥ 0.

Since w0 is symmetric in x1, we have

max{�(x1 − S1 − σδ(1 − e−βt )) − δe−β,�(−x1 + S1 + σδ(1 − e−βt )) − δe−β}
≤ w(x1, t + T1;w0)

for x1 ∈ R and t ≥ 0. Because the left-hand side of the above inequality is a subsolu-
tion, it is monotone increasing in t ≥ 0 and we can define

v∞(x1) = lim
t→∞max{�(x1 − S1 − σδ(1 − e−βt )) − δe−β,

�(−x1 + S1 + σδ(1 − e−βt )) − δe−β}

for x1 ∈ R. Now v∞ satisfies

v∞(x1) − W ′(v∞(x1)) = 0, x1 ∈ R,

− 1 ≤ v∞(x1) ≤ 1, x1 ∈ R

due to [26, 34]. Now we will show v∞ ≡ 1. For this purpose, we begin with

max{�(x1 − S1 − σδ),�(−x1 + S1 + σδ)} ≤ v∞(x1) ≤ 1, x1 ∈ R. (3.20)
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We define

� = inf{λ ∈ R | �(x1 − λ) ≤ v∞(x1), x1 ∈ R}

and will show � = −∞. We will get a contradiction assuming � ∈ (−∞, S1 + σδ].
Then we have

�(x1 − �) ≤ v∞(x1), x1 ∈ R.

Using (3.20) and the strong maximum principle, we have

�(x1 − �) < v∞(x1), x1 ∈ R.

Now we take R′ ∈ (1 + |�|,∞) large enough such that we have

sup
|x1|≥R′−1−|�|

|�′(x1)| <
1

4σ
.

Then, we take h ∈ (0, 1/(2σ)) small enough such that we have

�(x1 − � + 2σh) < v∞(x1) if |x1| ≤ R′.

If |x1| ≥ R′, we have

�(x1 − � + 2σh) − �(x1 − �) = 2σh
∫ 1

0
�′(x1 − � + 2θσh) dθ.

Using

|x1 − � + 2θσh| ≥ |x1| − |� − 2θσh| ≥ R′ − 1 − |�|,

we have

0 < 2σh
∫ 1

0

(−�′(x1 − � + 2θσh)
)
dθ < h if |x1| ≥ R′.

Then, using

|�(x1 − � + 2σh) − �(x1 − �)| ≤ h if |x1| ≥ R′,

we find

�(x1 − �) ≥ �(x1 − � + 2σh) − h if |x1| ≥ R′.

Thus we get

�(x1 − � + 2σh) − h ≤ �(x1 − �) < v∞(x1) if |x1| ≥ R′.
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Combining the two estimates stated above together, we obtain

�(x1 − � + 2σh) − h < v∞(x1), x1 ∈ R.

Then we have

�(x1 − � + 2σh − σhe−βt ) − he−βt < v∞(x1), x1 ∈ R, t > 0.

Sending t → ∞, we obtain

�(x1 − � + σh) ≤ v∞(x1), x1 ∈ R.

This contradicts the definition of �. Thus we obtain � = −∞ and v∞ ≡ 1.
We will prove the lemma by induction. Let N be any integer with N ≥ 3. We prove

this lemma for n = N assuming that it holds true for all n with n < N . We have
x′ = (x1, . . . , xN−1). Recall

w0(x′) =
{

θ0 if x′ ∈ �N−1,

−1 if x′ ∈ R
N−1\�N−1.

Now w(x′, t;w0) satisfies

∂w

∂t
−

N−1∑
j=1

∂2w

∂x2j
+ W ′(w) = 0, x′ ∈ R

N−1, t > 0,

w(x′, 0;w0) = w0(x′), x′ ∈ R
N−1,

where

�N−1 =
{
(x1, . . . , xN−1) ∈ R

N−1
∣∣∣∣ min
1≤ j≤N−1

|x j | ≥ μ0

}
.

Now we have x′′ = (x1, . . . , xN−2) ∈ R
N−2 and

�N−2 =
{
(x1, . . . , xN−2) ∈ R

N−2
∣∣∣∣ min
1≤ j≤N−2

|x j | ≥ μ0

}
.

If |xN−1| ≥ μ0, we have

w(x′′, xN−1, 0) =
{

θ0 if x′′ ∈ �N−2,

−1 if x′′ ∈ R
N−2\�N−2.

Using

χ�N−2(x
′′) =

{
1 if x′′ ∈ �N−2,

0 if x′′ ∈ R
N−2\�N−2,
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we have

w(x′′, xN−1, 0) = −1 + (1 + θ0)χ�N−2(x
′′).

By the assumption of the induction, Lemma 7 holds true for n = 2, . . . , N − 1. Let
δ ∈ (0, δ∗] be given. There exists T2 ∈ (0,∞) such that we have

1 − δ

4
< w(x, t;−1 + (1 + θ0)χ�N−2), x ∈ R

N−1, t ≥ T2.

By applying [34, Theorem 5.8] again, we have

inf|xN−1|≥r2

∣∣w(x′′, xN−1, T2;w0) − w(x, t;−1 + (1 + θ0)χ�N−2)
∣∣ < δ

2
.

by taking r2 ∈ (0,∞) large enough. Thus we obtain

1 − δ

2
< inf|xN−1|≥r2

w(x′′, xN−1, T2;w0). (3.21)

Then we can start the argument to prove Lemma 7 for n = 2 replacing (3.19) by
(3.21), and we obtain

lim
t→∞ inf

(x′′,xN−1)∈RN−1
w(x′′, xN−1, t;w0) = 1.

Thus Lemma 7 holds true for n = N . Now it holds true for all n ≥ 2. This completes
the proof. ��
Proof of Proposition 6 Assuming the contrary, we have

lim
xn→∞ Vc(μ0, . . . , μ0, xn) ≥ θ0

for some μ0 ∈ (0,∞). Since Vc(x′, xn) is monotone non-increasing in xn , we have

w0(x′, xn) ≤ Vc(x′, xn), (x′, xn) ∈ R
n .

Here w0 is given by (3.18). Taking the both sides as initial functions in (1.6), we have

w(x′, xn, t;w0) ≤ Vc(x′, xn), (x′, xn) ∈ R
n, t > 0.

Letting t → ∞ and applying Lemma 7, we obtain Vc ≡ 1, which contradicts (3.13),
(3.15), and (3.16). Now we complete the proof of Proposition 6. ��

Now we modify Theorem 5 in a form that is more useful for our discussion. Let

0 < R1 ≤ R2 ≤ · · · ≤ Rn−1 < ∞ (3.22)
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be arbitrarily given. In [31], we study an imbalanced reaction–diffusion equation

∂u

∂t
= �u − W ′(u) + k

√
2W (u), x ∈ R

n, t > 0.

Then � is the planar front with its speed k. The profile equation for a profile v with
its speed c ∈ (0,∞) is given by

�v + c
∂v

∂xn
− W ′(v) + k

√
2W (v) = 0, (x′, xn) ∈ R

n . (3.23)

For sufficiently small k > 0, say, k ∈ (0, k0) for k0 ∈ (0, c), we define a pyramidal
traveling front solution vk to (3.23) associated with a pyramid

p(x′) =
√
c2 − k2

k
max {|x1|, |x2| − a2, . . . , |xn−1| − an−1}

for a j ∈ [0,∞) (2 ≤ j ≤ n − 1). For

v0(x′, xn) = �

(
k

c
(xn − p(x′))

)
,

one can define

vk(x′, xn) = lim
t→∞ w(x, t; v0) on every compact set in R

n .

For pyramidal traveling fronts, one can see [34] for instance. Now we have zk ∈ R

with

vk(0′, zk) = θ0.

Hereafter we write vk(x′, xn + zk) simply as vk(x′, xn). Now we have

vk(0′, 0) = θ0

and

− 1 < vk(x′, xn) < 1, (x′, xn) ∈ R
n,

Dnvk(x′, xn) < 0, (x′, xn) ∈ R
n,

vk(x1, . . . ,
j

�−x j , . . . , xn) = vk(x1, . . . ,
j

�
x j , . . . , xn), (x′, xn) ∈ R

n, 1 ≤ j ≤ n − 1,

D jvk(x′, xn) > 0 if x j > 0, 1 ≤ j ≤ n − 1.

For every η ∈ (0,∞), taking

a j = A j (η), 2 ≤ j ≤ n − 1
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given by [31, Lemma 1], we obtain

vk(0, . . . , 0,
j

�

S j (η), 0, . . . , 0, η) = θ0, 1 ≤ j ≤ n − 1

with

0 < S1(η) ≤ S2(η) ≤ · · · ≤ Sn−1(η) < ∞,

S j (η)

S1(η)
= R j

R1
, 2 ≤ j ≤ n − 1.

Using

lim
η→0

S1(η) = 0, lim
η→∞ S1(η) = ∞,

we obtain a positive number ζk with

S1 = R1.

Thus we have

vk(0, . . . , 0,
j

�

R j , 0, . . . , 0, ζk) = θ0, 1 ≤ j ≤ n − 1

with a positive number ζk . Then we define

V (x′, xn) = lim
k→0

vk(x′, xn) (3.24)

for all (x′, xn) in every compact set in Rn . Now we have V (0′, 0) = θ0 and

− 1 < V (x′, xn) < 1, (x′, xn) ∈ R
n,

DnV (x′, xn) ≤ 0, (x′, xn) ∈ R
n,

V (x1, . . . ,
j

�−x j , . . . , xn) = V (x1, . . . ,
j

�
x j , . . . , xn), (x′, xn) ∈ R

n, 1 ≤ j ≤ n − 1,

D j V (x′, xn) ≥ 0 if x j > 0, 1 ≤ j ≤ n − 1. (3.25)

See [31] for detailed arguments.
Now we state axially asymmetric traveling fronts as follows.

Theorem 8 (Axially asymmetric traveling fronts) Let c ∈ (0,∞) be arbitrarily given.
Let {R j }1≤ j≤n−1 satisfy (3.22). There exists V (x) = V (x; c) that satisfies (1.8) with
V (0) = θ0 and

− 1 < V (x) < 1, x ∈ R
n,

DnV (x′, xn) < 0, (x′, xn) ∈ R
n,
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V (x1, . . . ,
j

�−x j , . . . , xn) = V (x1, . . . ,
j

�
x j , . . . , xn), (x′, xn) ∈ R

n, 1 ≤ j ≤ n − 1,

D j V (x′, xn) > 0 if x j > 0, 1 ≤ j ≤ n − 1,

V (0, . . . , 0,
j

�

R j , 0, . . . , 0, ζ ) = θ0

with a positive number ζ . For every θ ∈ (−1, 1) one has

inf
(x′,xn)∈Rn

{|∇V (x′, xn)| | V (x′, xn) = θ
}

> 0. (3.26)

See Fig. 3 for the level set {(x′, xn) | V (x′, xn) = 0} of V in Theorem 8.

Remark 2 The uniqueness of V in Theorem 8 is yet to be studied. It is an open problem
to show V in Theorem 8 equals Vsym in Theorem 4 if R1 = R2 = · · · = Rn−1.

Proof Using (3.25) and Proposition 6, we obtain

DnV (x′, xn) < 0, (x′, xn) ∈ R
n .

It suffices to show

0 < lim inf
k→0

ζk ≤ lim sup
k→0

ζk < ∞.

Assume lim supk→0 ζk = ∞. Then we have ζ = ∞ and

V (R1, 0, . . . , 0, xn) > θ0, xn ∈ R. (3.27)

Using

V (R1, 0, . . . , 0, η) < V (R1, R1, . . . , R1, η), η ∈ R

and applying Proposition 6, we have

lim
η→∞ V (R1, 0, . . . , 0, η) ≤ lim

η→∞ V (R1, R1, . . . , R1, η) < θ0.

This contradicts (3.27). Next we assume lim infk→0 ζk = 0. Then we have

V (0, . . . , 0,
j

�

R j , 0, . . . , 0, 0) = θ0, 1 ≤ j ≤ n − 1.

Then we find

D j V (0, . . . , 0,
j

�

R j/2, 0, . . . , 0, 0) = 0, 1 ≤ j ≤ n − 1.
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Fig. 3 A level set of axially
asymmetric traveling front
V (x; c) in Theorem 8. Here
2 ≤ j ≤ n − 1

Thus the maximum principle gives

D j V (x′, xn) = 0 if x j > 0

for 1 ≤ j ≤ n − 1. Then V is independent of x j for 1 ≤ j ≤ n − 1 and is a function
of xn , that is, V (xn − ct) is a one-dimensional traveling front solution to (1.1). Since a
one-dimensional traveling front solution to (1.1) and its speed is uniquely determined,
we obtain c = 0. This contradicts c ∈ (0,∞).

Then, taking a subsequence if necessary, we can define ζ ∈ (0,∞) with

ζ = lim
k→0

ζk .

Then V given by (3.24) satisfies Theorem 8. See [31] for detailed arguments. ��
Let θ ∈ (−1, 1) be arbitrarily given. We define R = Rθ by

R = 1 + (n − 1)K∗(1 + θ)

W (θ)
(3.28)

and have

(n − 1)K∗(1 + θ) < W (θ)R.
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For any given (ξ1, . . . , ξn−1) ∈ R
n−1, we define D = Dθ by

D = (ξ1 − R, ξ1 + R) × (ξ2 − R, ξ2 + R) × . . .

×(ξn−1 − R, ξn−1 + R) ⊂ R
n−1. (3.29)

We have

D ⊂ B(ξ ′;√
n − 1R),

where

B(ξ ′;√
n − 1R) = {x′ ∈ R

n−1 | |x′ − ξ ′| <
√
n − 1R}.

Let c ∈ (0,∞) be arbitrarily given and let V ∈ C2(Rn) satisfy (1.8), that is,

n∑
j=1

∂2V

∂x2j
+ c

∂V

∂z
− W ′(V ) = 0, (x′, xn) ∈ R

n, (3.30)

with (3.2), (3.13), (3.15), (3.14) and (3.16). Now V in Theorem 8 satisfies these
assumptions. For any θ ∈ (−1, 1), we define qθ (x′) by

V (x′, qθ (x′)) = θ, x′ ∈ R
n−1. (3.31)

Then we have qθ ∈ C1(Rn−1). If z0 ∈ R satisfies qθ (0′) < z0, we can uniquely
determine xθ

n ∈ (0,∞) with

qθ (0, . . . , 0, x
θ
n−1) = z0

and have

xθ
n−1 = max

{
|x′|

∣∣∣ x′ ∈ R
n−1, qθ (x′) = z0

}
.

The following proposition plays an important role when we take the limits of
traveling fronts as c → ∞.

Proposition 9 Let c ∈ (0,∞) be arbitrarily given and let θ ∈ (−1, 1) be arbitrarily
given. Assume V ∈ C2(Rn) satisfies (3.30), (3.2), (3.13), (3.14), (3.15) and (3.16).
Then one has

∫
D

∣∣∇V (x′, qθ (x′))
∣∣2 dx′ ≥ 4(2R)n−2 [W (θ)R − (n − 1)K∗(1 + θ)] > 0.

(3.32)

where R is defined by (3.28). The right-hand side is independent of c ∈ (0,∞).
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We write the right-hand side of (3.32) as A(θ, R)2 |D| with

A(θ, R) =
√

2

R
[W (θ)R − (n − 1)K∗(1 + θ)]. (3.33)

Then (3.32) is written as

∫
D

∣∣∇V (x′, qθ (x′))
∣∣2 dx′ ≥ A(θ, R)2|D| > 0.

Let s1 be arbitrarily given with

−1 < s1 < θ < 1,

0 < W (s1) < W (θ)

The volume of D is given by (2R)n−1, and the surface area of the boundary of D
is given by 2(n − 1)(2R)n−2. Using (3.28), we have

K∗(1 + θ) |∂D| < W (θ) |D|

for every (ξ1, . . . , ξn−1) ∈ R
n−1.

We define

� = {(x′, xn) | x′ ∈ D, s1 < V (x′, xn) < θ}.

Let ν = (ν1, . . . , νn) be the outward normal vector on ∂�. We have

∂� = Γθ ∪ Γ1 ∪ Γf ,

where

Γθ = {(x′, xn) | x′ ∈ D, V (x′, xn) = θ},
Γ1 = {(x′, xn) | x′ ∈ D, V (x′, xn) = s1},
Γf = {(x′, xn) | x′ ∈ ∂D, s1 ≤ V (x′, xn) ≤ θ}.

Now we have

div

(
∂V

∂xn
∇V

)
= ∂V

∂xn
�V + 1

2

∂

∂xn

(
|∇V |2

)
.

Multiplying (3.30) by −DnV , we have

− div

(
∂V

∂xn
∇V

)
+ 1

2

∂

∂xn

(
|∇V |2

)
− c

(
∂V

∂xn

)2

+ W ′(V )
∂V

∂xn
= 0.
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Integrating the both hand sides over � and using the Gauss divergence theorem, we
get

∫
∂�

(
− ∂V

∂xn
(∇V , ν) + 1

2
|∇V |2νn

)
dS − c

∫
�

(
∂V

∂xn

)2

dx +
∫

�

∂

∂xn
(W (V )) dx = 0.

Here dS is the surface element of ∂�. Using

ν = ∇V

|∇V | on Γθ ,

we get

− ∂V

∂xn
(∇V , ν) + 1

2
|∇V |2νn = −1

2
|∇V | ∂V

∂xn
on Γθ .

Similarly, using

ν = − ∇V

|∇V | on Γ1,

we get

− ∂V

∂xn
(∇V , ν) + 1

2
|∇V |2νn = 1

2
|∇V | ∂V

∂xn
on Γ1.

Using νn = 0 on Γf , we have

− ∂V

∂xn
(∇V , ν) + 1

2
|∇V |2νn = − ∂V

∂xn
(∇V , ν) on Γf .

We have

∫
�

Dn (W (V )) dx =
∫
D

(W (s1) − W (θ)) dx = (W (s1) − W (θ)) |D| .

Now we calculate

∣∣∣∣
∫

Γf

(∇V , ν)
∂V

∂xn
dS

∣∣∣∣ ≤
(
max
Rn

|∇V |
)∫

Γf

(
− ∂V

∂xn

)
dS.

Using

∫
Γf

(
− ∂V

∂xn

)
dS =

∫
∂D

(θ − s1) dS ≤ (θ − s1)|∂D|.
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Then we obtain

1

2

∫
Γθ

|∇V |
(

− ∂V

∂xn

)
dS

≥ 1

2

∫
Γ1

|∇V |
(

− ∂V

∂xn

)
dS + c

∫
�

(
∂V

∂xn

)2

dx

+ (W (θ) − W (s1)) |D| − K∗(θ − s1)|∂D|
≥ (W (θ) − W (s1)) |D| − K∗(θ − s1)|∂D|.

Sending s1 → −1, we obtain

1

2

∫
Γθ

|∇V |
(

− ∂V

∂xn

)
dS ≥ W (θ)|D| − K∗(θ + 1)|∂D| > 0. (3.34)

Now we use the following lemma.

Lemma 10 One has

∫
D

|∇V (x′, qθ (x′))|2 dx′ =
∫

Γθ

|∇V (x)|
(

− ∂V

∂xn

)
dS.

Proof Differentiating

V (x′, qθ (x′)) = θ

by x j , we have

D j V (x′, qθ (x′)) = −DnV (x′, qθ (x′))D j qθ (x′), 1 ≤ j ≤ n − 1.

Then we have

∇V (x′, qθ (x′)) =

⎛
⎜⎜⎜⎝

−DnV (x′, qθ (x′))D1qθ (x′)
...

−DnV (x′, qθ (x′))Dn−1qθ (x′)
DnV (x′, qθ (x′))

⎞
⎟⎟⎟⎠

= DnV (x′, qθ (x′))

⎛
⎜⎜⎜⎝

−D1qθ (x′)
...

−Dn−1qθ (x′)
1

⎞
⎟⎟⎟⎠ .

Then we have

∣∣∇V (x′, qθ (x′))
∣∣ = −DnV (x′, qθ (x′))

√
1 + |∇qθ (x′)|2,
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where

∇qθ (x′) =
(

∂qθ

∂x1
(x′), . . . , ∂qθ

∂xn−1
(x′)

)
.

Since ν is the outward normal vector at ∂�, we have

ν = ∇V (x′, qθ (x′))
|∇V (x′, qθ (x′))| = − 1√

1 + |∇qθ (x′)|2
(−∇qθ (x′)

1

)
on Γθ .

Thus we obtain
∫

Γθ

|∇V (x′, qθ (x′))|
(

− ∂V

∂xn
(x′, qθ (x′))

)
dS

=
∫
D

|∇V (x′, qθ (x′))|
(

− ∂V

∂xn
(x′, qθ (x′))

)√
1 + |∇qθ (x′)|2 dx′

=
∫
D

|∇V (x′, qθ (x′))|2 dx′.

Now we complete the proof. ��
Now we give a proof for Proposition 9.

Proof of Proposition 9 Combining (3.34) and Lemma 10, we have

1

2

∫
D

|∇V (x′, qθ (x′))|2 dx′ ≥ W (θ)|D| − K∗(1 + θ)|∂D|
≥ (2R)n−1W (θ) − 2(n − 1)(2R)n−2K∗(1 + θ)

≥ 2(2R)n−2 [W (θ)R − (n − 1)K∗(1 + θ)] > 0.

This completes the proof. ��
Now we show the following assertion.

Lemma 11 Under the same assumption of Proposition 9, one has

lim
ν→∞ inf{V (x′, xn) | (x′, xn) ∈ R

n, V (x′, xn) ≥ θ0, dist((x′, xn), Γ0) ≥ ν} = 1.

Here

Γ0 = {(x′, xn) | V (x′, xn) = θ0}.

Proof Let δ ∈ (0, δ∗] be given. As was mentioned in the proof of Lemma 7, there
exists T1 ∈ (0,∞) such that we have

1 − δ

4
< w(x, T1; θ0), x ∈ R.
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Let (x′
0, z0) belongs to

{(x′, xn) ∈ R
n | V (x′, xn) ≥ θ0, dist((x′, xn), Γ0) ≥ ν}.

Then we have

θ0 ≤ V (x′, xn), if (x′, xn) ∈ B((x′
0, z0); ν)

By applying [34, Theorem 5.7],

w(x, T1; θ0) ≤ w(x, T1; V ) if (x′, xn) ∈ B((x′
0, z0); ν/2)

if ν ∈ (0,∞) is large enough. Then we have

1 − δ

4
< w((x′

0, zn), T1; V ) = V (x′
0, zn)

if ν ∈ (0,∞) is large enough. Since we can take δ ∈ (0, δ∗] arbitrarily small, the
lemma follows from this inequality. ��

The following proposition asserts that Proposition 6 holds true for every θ ∈
(−1, 1). That is, for a traveling front Vc, every level set {(x′, xn) | Vc(x′, xn) = θ}
is a graph on the whole space Rn−1.

Proposition 12 Let c ∈ (0,∞) be arbitrarily fixed. Let Vc(x) satisfy

Vc(0′, 0) = θ,

(1.8), (3.2), (3.13), (3.14) and (3.15). Then, for any given μ0 ∈ (0,∞) and for any
given θ ∈ (−1, 1), one has

lim
xn→∞ Vc(μ0, . . . , μ0, xn) < θ.

Proof Now we define

� =
{

θ ∈ (−1, 1)

∣∣∣∣∣ lim
xn→∞ sup

c ∈(0,∞)

Vc(μ0, . . . , μ0, xn) < θ for every μ0 ∈ (0,∞)

}
.

Proposition 6 implies (s∗, 1) ⊂ �. We define θ∞ = inf �, and will show θ∞ = −1.
To do this, we will get a contradiction assuming θ∞ ∈ (−1, s∗]. Then we choose
{θ j } j≥1 ⊂ � with

θ∞ < θ j < θi if i < j,

lim
j→∞ = θ∞.
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Now we define

R∞ = max
θ∈[θ∞,s∗]

Rθ ∈ (0,∞).

NowVc satisfiesProposition9.Wewrite the right-hand sideof (3.32) as A(θ, Rθ )
2|Dθ |,

that is,

A(θ, Rθ ) =
√

2

Rθ

[W (θ)Rθ − (n − 1)K∗(1 + θ)] > 0. (3.35)

We define

A∞ = min
θ∈[θ∞,s∗ ] A(θ, R∞) ∈ (0,∞).

We set

ξ ′ = (μ0 + 1, . . . , μ0 + 1
) ∈ R

n−1. (3.36)

Using Proposition 9, we have η′
j ∈ Dθ j with

∣∣∣∇Vc(η
′
j )

∣∣∣ ≥ A∞ > 0.

Here Dθ j is given by (3.29) with ξ ′ in (3.36) and R = Rθ j . Using Lemma 3, we can
have ε0 ∈ (0, 1/2) with

∣∣∇Vc(x′)
∣∣ ≥ A∞

2
> 0 if

∣∣∣x′ − η′
j

∣∣∣ ≤ ε0,

where ε0 is independent of j ≥ 1. Then we define x(t) by

dx
dt

(t) = − ∇Vc(x(t))

|∇Vc(x(t))| , 0 < t < ε0,

x(0) = η′
j .

Then, using

d

dt
(Vc(x(t))) =

(
∇Vc(x(t)),

dx
dt

(t)

)
= − |∇Vc(x(t))| ≤ − A∞

2
, t ∈ (0, ε0),

we have

Vc(x(ε0)) < θ j − ε0A∞
2

.
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Now we have

x(ε0) ∈ �n−1,

where �n−1 is given by (3.17). Using an assumption (3.15), we have

Vc(μ0, . . . , μ0, xn) < θ j − ε0A∞
2

with xn ∈ R for j ≥ 1. This contradicts the definition of θ∞. Thuswe obtain θ∞ = −1.
This completes the proof. ��

4 Proof of Theorems 1 and 2, and the limits of traveling fronts as the
speeds go to infinity

Let α′ in (3.12) be arbitrarily fixed with (3.11). Let R1 ∈ (0,∞) be arbitrarily fixed.
Let Vc(x) = V (x;α′, c) be given by Theorem 8 for every c ∈ (0,∞). Now Vc
satisfies

�Vc + cDnVc − W ′(Vc) = 0, x ∈ R
n

with

Vc(0′, 0) = θ0.

Now we take ζc ∈ (0,∞) that depends on c ∈ (0,∞) such that we have

Vc(R1, 0, . . . , 0, ζc) = θ0, 1 ≤ j ≤ n − 1.

When R0 ∈ (0,∞) is arbitrarily given and we consider Vsym given by Theorem 4, we
define ζc ∈ (0,∞) by

Vsym(R0, ζc) = θ0.

We take the limit of Vc as c → ∞. We have

sup
x∈Rn

∣∣W ′(Vc(x))
∣∣ ≤ ‖W ′‖C[−1,1] < ∞,

where

‖W ′‖C[−1,1] = max|s|≤1
|W ′(s)|.

Using Lemma 3, we have

sup
x∈Rn

|�Vc(x)| ≤ nK∗ < ∞.
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Using

0 < −DnVc(x) ≤ �Vc(x) − W ′(Vc(x))

c
≤ nK∗ + ‖W ′‖C[−1,1]

c
, x ∈ R

n,

we obtain

lim
c→∞ sup

x∈Rn
|DnVc(x)| = 0. (4.1)

Using Lemma 3, we have

sup
x∈Rn

∣∣∣D3
nVc(x)

∣∣∣ ≤ K∗, (4.2)

where K∗ ∈ (0,∞) is independent of (c, Vc). Combining (4.1) and (4.2), we obtain

lim
c→∞ sup

x∈Rn

∣∣∣D2
nVc(x)

∣∣∣ = 0. (4.3)

Indeed, we define mc ∈ [0,∞) by

3K∗mc = sup
(x′, xn)∈Rn

∣∣∣D2
nVc(x

′, xn)
∣∣∣ ,

and have
∣∣∣D2

nVc( y
′, yn)

∣∣∣ ≥ 2K∗mc

for some ( y′, yn) ∈ R
n . Using (4.2), we have

∣∣∣D2
nVc( y

′, zn)
∣∣∣ ≥ K∗mc if |zn − yn| ≤ mc,

and have

∣∣DnVc( y′, yn + mc) − DnVc( y′, yn − mc)
∣∣ ≥ 2K∗ (mc)

2 .

Combining this inequality and (4.1), we get limc→∞ mc = 0, that is, (4.3).
Now we introduce

t = − xn − ζc

c
,

that is, xn = ζc − ct . Then we define

uc(x′, t) = Vc(x′, ζc − ct), (x′, t) ∈ R
n .
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Now uc satisfies

− 1 < uc(x′, t) < 1, (x′, t) ∈ R
n,

uc(0, . . . , 0,
j

�

R j , 0, . . . , 0, 0) = θ0, 1 ≤ j ≤ n − 1,

Dt uc(x′, t) > 0, x′ ∈ R
n−1, t ∈ R,

D j uc(x′, t) > 0, x′ ∈ R
n−1, t ∈ R, 1 ≤ j ≤ n − 1,

uc(x1, . . . ,
j

�−x j , . . . , xn−1, t) = uc(x1, . . . ,
j

�
x j , . . . , xn−1, t), x′ ∈ R

n−1,

t ∈ R, 1 ≤ j ≤ n − 1.

Now we have

∂Vc
∂xn

(x′, xn) = −1

c

∂uc
∂t

(x′, t), (x′, t) ∈ R
n .

Then we find

n−1∑
j=1

∂2uc
∂x2j

(x′, t) + ∂2Vc
∂x2n

(x′, ζc − ct) − ∂uc
∂t

(x′, t) − W ′(uc(x′, t)) = 0,

(x′, t) ∈ R
n . (4.4)

Now we introduce

U (x′, t) = lim
c→∞ uc(x′, t) (4.5)

on every compact set in R
n . The heat kernel in Rn−1 is given by

G(x′, t) = 1

(4π t)
n−1
2

exp

(
−|x′|2

4t

)
, x′ ∈ R

n−1, t > 0.

Let tinit ∈ R be arbitrarily given. Using (4.4), we get

uc(x′, t)

=
∫
Rn−1

G(x′ − y′, t − tinit)uc( y′, tinit) d y′

+
∫ t

tinit

(∫
Rn−1

G(x′ − y′, t − s)
(−W ′(uc( y′, s)) + D2

nVc( y
′, ζc − cs)

)
d y′
)

ds
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for t > tinit . Taking the limit of c → ∞ for the both sides, we find

U (x′, t)

=
∫
Rn−1

G(x′ − y′, t − tinit)U ( y′, tinit) d y′

+
∫ t

tinit

(∫
Rn−1

G(x′ − y′, t − s)
(−W ′(uc( y′, s))

)
d y′
)

ds

for t > tinit , which gives

∂U

∂t
(x′, t) =

n−1∑
j=1

∂2U

∂x2j
(x′, t) − W ′(U (x′, t)), (x′, t) ∈ R

n

for t > tinit . Since tinit ∈ R is arbitrary, we obtain

∂U

∂t
(x′, t) =

n−1∑
j=1

∂2U

∂x2j
(x′, t) − W ′(U (x′, t)), (x′, t) ∈ R

n

with

U (0, . . . , 0,
j

�

R j , 0, . . . , 0, 0) = θ0, 1 ≤ j ≤ n − 1.

Thus the limit of an n-dimensional traveling front Vc gives an (n − 1)-dimensional
entire solution U as c → ∞. The gradient in Rn−1 is given by

∇′ = (D1, . . . ,Dn−1).

The properties of U is as follows.

Proposition 13 Let

0 < R1 ≤ R2 ≤ . . . Rn−1 < ∞

be arbitrarily given. Then U given by (4.5) satisfies

∂U

∂t
(x′, t) =

n−1∑
j=1

∂2U

∂x2j
(x′, t) − W ′(U (x′, t)), (x′, t) ∈ R

n

with

− 1 < U (x′, t) < 1, (x′, t) ∈ R
n,

U (0, . . . , 0,
j

�

R j , 0, . . . , 0, 0) = θ0, 1 ≤ j ≤ n − 1, (4.6)
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DtU (x′, t) ≥ 0, x′ ∈ R
n−1, t ∈ R, (4.7)

D jU (x′, t) ≥ 0 if x j > 0, t ∈ R, 1 ≤ j ≤ n − 1, (4.8)
D jU (x′, t) = 0 if x j = 0, t ∈ R, 1 ≤ j ≤ n − 1,

U (x1, . . . ,
j

�−x j , . . . , xn−1, t) = U (x1, . . . ,
j

�
x j , . . . , xn−1, t), (x′, t) ∈ R

n, 1 ≤ j ≤ n − 1.
(4.9)

One has

sup
(x′, t)∈Rn

∣∣DtU (x′, t)
∣∣ ≤ L∗, (4.10)

sup
(x′, t)∈Rn

∣∣D jU (x′, t)
∣∣ ≤ L∗, sup

(x′, t)∈Rn

∣∣∣D2
jU (x′, t)

∣∣∣ ≤ L∗, 1 ≤ j ≤ n − 1.

(4.11)

Here L∗ ∈ (0,∞) is a constant depending only on (W , n).

Proof The proof follows from the argument stated above. For the proof of the Schauder
estimate (4.10) and (4.11), see [34, Proposition 2.9] for instance. ��

Now we introduce the following useful lemma.

Lemma 14 (Parabolic Harnack inequality) Let t1 and t2 satisfy −∞ < t1 < t2 < ∞.
Let a ∈ (0,∞) be arbitrarily given. Let D be given by (3.29). Assume

D ⊂ {x′ ∈ R
n−1 | x j ≥ a}

for some 1 ≤ j ≤ n − 1. Then one has

sup
x′∈D

D jU (x′, t1) ≤ C inf
x′∈D

D jU (x′, t2),

where a constant C depends only on (R, n, a, M, t2 − t1) and is independent of
(ξ1, . . . , ξn−1) ∈ R

n−1 and t1 ∈ R.

Proof For every 1 ≤ j ≤ n − 1, we have

(
Dt − �′ + W ′′(U )

)
D jU = 0, x′ ∈ R

n−1, t > 0,

D jU ≥ 0, if x j > 0, t ∈ R,

D jU = 0, if x j = 0, t ∈ R,

where �′ is defined by (1.10). Then, using (4.8), we obtain

(
Dt − �′ + M

)
D jU ≥ 0, x′ ∈ R

n−1, t > 0,

D jU ≥ 0, if x j > 0, t ∈ R,

D jU = 0, if x j = 0, t ∈ R,
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for every 1 ≤ j ≤ n − 1. Here M is given by (3.1). Then this lemma follows from a
general theory on the parabolic Harnack inequality [12, Chapter 7, Theorem 10]. ��

Now we show that U converges to 1 uniformly in x′ ∈ R
n−1 as t → ∞.

Lemma 15 Under the same assumption of Proposition 13, one has

lim
t→∞ inf

x′∈Rn−1
U (x′, t) = 1.

Proof Using Proposition 13, we have

U (Rn−1, . . . , Rn−1) ≥ θ0.

Let �n−1(Rn−1) be defined by (3.17). Then we have

U (x′) ≥ θ0 if x′ ∈ �n−1(Rn−1).

Now Lemma 7 gives

lim
t→∞ inf

x′∈Rn−1
w(x′, t;U ) = 1.

This completes the proof. ��
Combining Proposition 13 and Lemma 15, we obtain

DtU (x′, t) > 0, (x′, t) ∈ R
n .

Lemma 16 Under the same assumption of Proposition 13, let μ0 ∈ (0,∞) be arbi-
trarily given. Then one has

lim
t→−∞U (μ0, . . . , μ0, t) < θ0

Proof Assume the contrary. Then we have

U (μ0, . . . , μ0, t) ≥ θ0, t ∈ R.

Let �n−1 be given by (3.17). We have

U (x′, t) ≥ θ0, x′ ∈ �n−1, t ∈ R.

Let t0 ∈ R be arbitrarily given. We have

U (x′, t0) ≥ θ0, x′ ∈ �n−1.
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Lemma 7 implies

U (x′, t + t0) ≥ w(x′, t;w0) x′ ∈ �n−1, t > 0.

Thus, for any given δ ∈ (0, 1− θ0), we have T ∈ (0,∞) that depends only on δ such
that we have

inf
x′∈Rn−1

U (x′, T + t0) ≥ 1 − δ.

Since t0 ∈ R can be chosen arbitrarily, we have

U (x′, t) ≥ 1 − δ, x′ ∈ �n−1, t ∈ R.

This contradicts (4.7). Now we complete the proof. ��
Let θ ∈ (−1, 1) be arbitrarily given. For x′ ∈ R

n−1, we define hθ (x′) by

U (x′, hθ (x′)) = θ

if it exists. Lemma 15 and Lemma 16 imply that hθ (x′) exists for every x′ ∈ R
n−1

and every θ ∈ [θ0, 1).
Lemma 17 Under the same assumption of Proposition 13, let R be given by (3.28),
and let D be given by (3.29) for every ξ ′ ∈ R

n−1. Then one has

∫
D

∣∣∇′U (x′, hθ0(x
′))
∣∣2 dx′ ≥ A(θ0, R)|D|2 > 0. (4.12)

Let θ ∈ (−1, θ0) be arbitrarily given. If hθ (x′) is defined for all x′ ∈ D, one has

∫
D

∣∣∇′U (x′, hθ (x′))
∣∣2 dx′ ≥ A(θ, R)|D|2 > 0. (4.13)

Proof Proposition 9 implies

∫
D

∣∣∇Vc(x′, qθ0(x
′))
∣∣2 dx′ ≥ A(θ0, R)|D|2 > 0

for any c ∈ (0,∞). Combining this inequality and (4.3), we obtain (4.12) as c → ∞.
Consequently, Proposition 9 implies

∫
D

∣∣∇Vc(x′, qθ (x′))
∣∣2 dx′ ≥ A(θ, R)|D|2 > 0

for any c ∈ (0,∞). Combining this inequality and (4.3), we obtain (4.13) as c → ∞.
��
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Now we assert

D jU (x′, t) > 0 if x j > 0, t ∈ R (4.14)

for any given 1 ≤ j ≤ n−1. Indeed, in view of (4.8), we have D jU ≡ 0 inRn if D jU
takes zero at some point with x j > 0 by the maximum principle. Then, using (4.6),
we have U (0′, 0) = θ0. Combining this equality and (4.6) for all 1 ≤ j ≤ n − 1, we
have ∇′U ≡ 0 in Rn . This contradicts (4.12) in Lemma 17. Thus (4.14) holds true.

Now we assert the following lemma.

Lemma 18 For every θ ∈ (−1, θ0), one has

lim
t→−∞U (x′, t) < θ

for every x′ ∈ R
n−1. That is, hθ (x′) is defined for every x′ ∈ R

n−1.

Proof For arbitrarily given μ4 ∈ (0,∞), we consider (μ4, . . . , μ4) ∈ R
n−1. We take

ξ ′ ∈ R
n−1 such that D given by (3.29) satisfies

D ⊂ �n−1(μ4).

Here �n−1(μ4) is given by (3.17). Lemma 17 and (4.11) imply that there exists
ε0 ∈ (0, θ0) such that we have x′

0 ∈ D with

lim
t→−∞U (x′

0, t) < θ0 − ε0.

Then, using Proposition 13, we have

lim
t→−∞U (μ4, . . . , μ4, t) < θ0 − ε0.

Since μ4 ∈ (0,∞) can be taken arbitrarily large, we complete the proof. ��
Lemma 18 implies that, as t → −∞, U (x′, t) converges to −1 on every compact

set in Rn−1. Now we state the following assertion.

Lemma 19 Let U be given by (4.5) and let θ ∈ (−1, 1) be arbitrarily given. For any
(ξ1, . . . , ξn−1) ∈ R

n−1, let D be given by (3.29). Then one has

∫
D

∣∣∇′U (x′, hθ (x′))
∣∣2 dx′ ≥ A(θ, R)2|D| > 0, (4.15)

max
x′∈D

|∇′U (x′, hθ (x′))| ≥ A(θ, R) > 0. (4.16)

Let a ∈ (0,∞) be arbitrarily given. One has

inf {|∇′U (x′, t)| ∣∣ (x′, t) ∈ R
n, min

1≤ j≤n−1
|x j | ≥ a, U (x′, t) = θ} > 0. (4.17)
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Proof Equation (4.15) follows from Lemmas 17 and 18. Equation (4.16) follows from
(4.15). It suffices to prove (4.17) in

Q = {(x1, . . . , xn−1) | min
1≤ j≤n−1

x j ≥ a}.

Let R = Rθ be given by (3.28). We define

Rmax = max
ρ∈[(θ−1)/2,(1+θ)/2] Rρ ∈ (0,∞).

Let Dmax be

Dmax = (ξ1 − Rmax, ξ1 + Rmax) × · · · × (ξn−1 − Rmax, ξn−1 + Rmax) ⊂ Q.

Let τ ∈ R satisfy

U (ξ1, . . . , ξn−1, τ ) = θ.

Let L∗ be as in Proposition 13. We have

−1 <
θ − 1

2
≤ U

(
ξ1, . . . , ξn−1, τ − min{1 + θ, 1 − θ}

2L∗

)
≤ 1 + θ

2
< 1.

For some

θ ′ ∈ [(θ − 1)/2, (1 + θ)/2],

we have

U

(
ξ1, . . . , ξn−1, τ − min{1 + θ, 1 − θ}

2L∗

)
= θ ′,

that is,

hθ ′(ξ ′) = τ − min{1 + θ, 1 − θ}
2L∗

.

Here

ξ ′ = (ξ1, . . . , ξn−1).

We find

max
x′∈Dmax

|∇′U (x′, hθ ′(x′))|
≥ A(θ ′, Rθ ′)

≥ min
{
A(ρ, Rρ) | ρ ∈ [(θ − 1)/2, (1 + θ)/2]} > 0.
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Thus, for some 1 ≤ j0 ≤ n − 1, we have

√
n − 1 max

x′∈Dmax

D j0U (x′, hθ ′(x′))

≥ min
{
A(ρ, Rρ) | ρ ∈ [(θ − 1)/2, (1 + θ)/2]} > 0.

Now we have (ξ1, . . . , ξn−1) ∈ Dmax. Using the parabolic Harnack inequality in
Lemma 14, we obtain

0 <
1√
n − 1

min
{
A(ρ, Rρ) | ρ ∈ [(θ − 1)/2, (1 + θ)/2]}

≤ max
x′∈Dmax

D j0U (x′, hθ ′(ξ ′))

= max
x′∈Dmax

D j0U

(
x′, τ − min{1 + θ, 1 − θ}

2L∗

)

≤ C0 min
x′∈Dmax

D j0U (x′, τ )

≤ C0 D j0U (ξ1, . . . , ξn−1, τ )

≤ C0
∣∣∇′U (ξ1, . . . , ξn−1, τ )

∣∣ .
Here C0 ∈ (0,∞) is a constant depending only on (M, n, Rmax, θ, L∗) and is inde-
pendent of (ξ1, . . . , ξn−1, τ ) ∈ R

n . Now we proved (4.17) and this completes the
proof. ��

Proofs of Theorem 1 and Theorem 2 Now we prove (1.11) and (1.12). Let U be given
by (4.5). Let a ∈ (0,∞) be arbitrarily given. Using Lemma 19, we have

lim
μ→∞ inf

{
U (x′, t)

∣∣ |x′| ≥ μ, min
1≤ j≤n−1

|x j | ≥ a

}
≥ θ0

for every t ∈ R. By combining Lemma 7 and [34, Theorem 5.8], there exists Tε ∈
(0,∞) for any given ε ∈ (0, 1) such that we have

lim
μ→∞ inf

{
U (x′, t + Tε)

∣∣ |x′| ≥ μ
} ≥ 1 − ε

for every t ∈ R. Thus we obtain

lim
|x′|→∞

U (x′, t) ≥ 1 − ε

for every t ∈ R. Since ε ∈ (0, 1) can be taken arbitrarily, we obtain (1.11) and (1.12).
The other assertions in these two theorems follow from Proposition 13, Lemmas 15,
18 and 19. ��
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