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Abstract
We introduce and study the Fourier spectrum which is a continuously parametrised
family of dimensions living between the Fourier dimension and the Hausdorff dimen-
sion for both sets and measures. We establish some fundamental theory and motivate
the concept via several applications, especially to sumset type problems. For example,
we study dimensions of convolutions and sumsets, and solve the distance set problem
for sets satisfying certain Fourier analytic conditions.
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1 The Fourier spectrum: definition and basic properties

The Hausdorff dimension (of a set or measure) is a fundamental geometric notion
describing fine scale structure. The Fourier dimension, on the other hand, is an ana-
lytic notion which captures rather different features. Both the Hausdorff and Fourier
dimensions have numerous applications in, for example, ergodic theory, number the-
ory, harmonic analysis and probability theory. The Fourier dimension of a set is
bounded above by its Hausdorff dimension and ismuchmore sensitive to, for example,
arithmetic resonance and curvature. Indeed, the middle third Cantor set has Fourier
dimension 0 because it possesses too much arithmetic structure, and a line segment
embedded in the plane has Fourier dimension 0 because it does not possess enough
curvature. We note that the Hausdorff dimension of both of these sets is strictly posi-
tive. The line segment example also shows that the Fourier dimension is sensitive to
the ambient space in a way that the Hausdorff dimension is not since a line segment
in R has Fourier dimension 1.

The purpose of this paper is to introduce, study, and motivate a continuously
parametrised family of dimensions which vary between the Fourier and Hausdorff
dimensions. The hope is that the resulting ‘Fourier spectrum’ will reveal more ana-
lytic and geometric information than the two notions considered in isolation and thus
be amenable to applications in areas where both notions play a role.

We begin by defining the Fourier spectrum and deriving several fundamental prop-
erties including continuity (Theorems 1.3 and 1.5) and how it depends on the ambient
space (Theorem 2.1) noting that the ‘endpoints’ must behave rather differently. We
go on to put the work in a wider context, especially in relation to average Fourier
dimensions and Strichartz type bounds (Theorems 4.1 and 4.2). During the above
analysis we also derive (or estimate) the Fourier spectrum explicitly for several exam-
ples including Riesz products (Theorem 3.4 and Corollary 3.5), certain self-similar
measures (Corollaries 4.3 and 4.4), and measures on various curves (Corollary 2.2 and
Theorem 5.1).

After establishing some fundamental theory, we move towards applications of the
Fourier spectrum, especially concerning sumsets, convolutions, distance sets and cer-
tain random sets. A rough heuristic which emerges is that when the Fourier spectrum
is not (the restriction of) an affine function, it provides more information than the
Hausdorff and Fourier dimension on their own and this leads to new estimates in
various contexts. For example, the Sobolev dimension of a measure increases under
convolution with itself if and only if the Fourier spectrum is not (the restriction of) a
linear function (Corollary 6.3) and when the Fourier spectrum of a measure is not an
affine function, it provides better estimates for the Hausdorff dimension of the distance
set of its support than the Hausdorff and Fourier dimension provide on their own via
Mattila integrals (Theorem 7.1). As a result we solve the distance set problem for sets
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satisfying certain Fourier analytic conditions. A simple special case shows that if μ is
a finite Borel measure on R

d with
∫ |μ̂|4 < ∞, then the distance set of the support

of μ has positive Lebesgue measure (Corollary 7.4). We note that the exponent 4
is sharp. We also use the Fourier spectrum to give conditions ensuring a measure is
‘Sobolev improving’ (Corollary 6.8), to give estimates for the Hausdorff dimension
of certain random constructions where the Fourier dimension alone provides only
trivial estimates (Corollary 8.3), and to provide a one line proof (and extension) of a
well-known connection between moment analysis and Fourier dimension in random
settings (Lemma 8.1).

The idea to introduce a continuum of dimensions in-between a given pair of ‘fractal
dimensions’ is part of a growing programme sometimes referred to as ‘dimension inter-
polation’. Previous examples include theAssouad spectrumwhich lives in-between the
(upper) box-counting and Assouad dimensions [9] and the intermediate dimensions
[8] which live in-between the Hausdorff and box-counting dimensions. The Fourier
spectrum is of a rather different flavour since the aforementioned notions are defined
via coverings. Despite their recent inception, the Assouad spectrum and intermediate
dimensions are proving useful tools in a growing range of (often unexpected) areas, for
example, in quasi-conformal mapping theory [3] and in analysis of spherical maximal
functions [19]. We believe this will also be the case for the Fourier spectrum.

1.1 Background: energy, Fourier transforms, and dimension

Throughout the paper, we write A � B to mean there exists a constant c > 0 such that
A ≤ cB. The implicit constants c are suppressed to improve exposition. If we wish
to emphasise that these constants depend on another parameter λ, then we will write
A �λ B. We also write A � B if B � A and A ≈ B if A � B and A � B.

Let μ be a finite Borel measure on R
d with support denoted by spt(μ). For s ≥ 0,

the s-energy of μ is given by

Is(μ) =
∫ ∫

dμ(x) dμ(y)

|x − y|s

and can be used to estimate the Hausdorff dimension ofμ and its support (the so-called
‘potential theoretic method’). Indeed, if s ≥ 0 is such that Is(μ) < ∞, then

dimH spt(μ) ≥ dimH μ ≥ s

where dimH denotes Hausdorff dimension. In fact, this is a precise characterisation
of Hausdorff dimension since for all Borel sets X and s < dimH X , there exists a
finite Borel measure μ on X such that Is(μ) < ∞. See [7, 18] for more on Hausdorff
dimension, energy and the potential theoretic method.

There is an elegant connection between energy (and thus Hausdorff dimension) and
the Fourier transform. The Fourier transform of μ is the function μ̂ : R

d → C given
by
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μ̂(z) =
∫

e−2π i z·x dμ(x).

In fact, for 0 < s < d

Is(μ) ≈s,d

∫

Rd
|μ̂(z)|2|z|s−d dz,

see [18, Theorem 3.1]. Therefore, if |μ̂(z)| � |z|−s/2 for some s ∈ (0, d), then
Is(μ) < ∞ and dimH μ ≥ s. This motivates the Fourier dimension, defined by

dimF μ = sup

{

s ≥ 0 : |μ̂(z)| � |z|−s/2
}

for measures and

dimF X = sup{min{dimF μ, d} : spt(μ) ⊆ X}

for sets X ⊆ R
d . Here the supremum is taken over finite Borel measures μ supported

by X . See [5] for some interesting alternative formulations of the Fourier dimension,
including the modified Fourier dimension and the compact Fourier dimension. For
non-empty sets X ⊆ R

d

0 ≤ dimF X ≤ dimH X ≤ d

and X is a Salem set if and only if dimF X = dimH X . See [18] for more on the
Fourier dimension and [10] for background on Fourier analysis more generally. There
are many random constructions giving rise to Salem sets but non-trivial deterministic
examples are much harder to come by and in general it is rather easy for a set to fail
to be Salem. For example, a line segment in R is Salem but in R

2 it is not. Further,
the middle third Cantor set, many self-affine sets, the cone in R

3, and the graph of
Brownian motion all fail to be Salem sets. In this article we are interested in sets which
are not Salem and wish to explore the difference between dimF X and dimH X in a
novel and meaningful way.

1.2 The Fourier spectrum

We exploit the connection between Fourier dimension and Hausdorff dimension via
energy to define a continuum of ‘dimensions’ lying in-between the Fourier and Haus-
dorff dimensions. Let μ be a finite Borel measure on R

d . For θ ∈ [0, 1] and s ≥ 0,
we define energies

Js,θ (μ) =
(∫

Rd
|μ̂(z)|2/θ |z|s/θ−d dz

)θ

,
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where we adopt the convention that

Js,0(μ) = sup
z∈Rd

|μ̂(z)|2|z|s .

We then define the Fourier spectrum of μ at θ by

dimθ
F μ = sup{s ≥ 0 : Js,θ (μ) < ∞}

where we write sup ø = 0. Note that

Js,1(μ) =
∫

Rd
|μ̂(z)|2|z|s−d dz

is the familiar Sobolev energy and, therefore, dim1
F μ = dimS μ where dimS μ is the

Sobolev dimension of μ, see [18, Section 5.2]. Moreover, dim0
F μ = dimF μ is the

Fourier dimension of μ.
For sets X ⊆ R

d , we define the Fourier spectrum of X at θ by

dimθ
F X = sup{min{dimθ

F μ, d} : spt(μ) ⊆ X}.

Here the supremum is again taken over finite Borel measures μ supported by X . One
immediately sees that dim0

F X = dimF X is the Fourier dimension of X . Moreover,
using Js,1(μ) ≈ Is(μ) for 0 < s < d where Is(μ) is the standard energy (see [18,
Theorem 3.1]), dim1

F X = dimH X returns the Hausdorff dimension for Borel sets
X . The quantity min{dimS μ, d} = min{dim1

F μ, d} is the energy dimension or lower
correlation dimension of μ. It is easy to see (e.g. Theorem 1.1 below) that

dimF μ ≤ dimθ
F μ ≤ dimS μ

and

dimF X ≤ dimθ
F X ≤ dimH X

for all θ ∈ (0, 1).
The Fourier spectrum can be defined in terms of L p spaces in a convenient way.

Define a measure md on R
d by dmd = min{|z|−d , 1} dz and a family of functions

f sμ : R
d → R by f sμ(z) = |μ̂(z)|2|z|s . Then

Js,θ (μ) ≈ ‖ f sμ‖L1/θ (md )

for s > 0 and so

dimθ
F μ = sup

{
s : f sμ ∈ L1/θ (md)

}
.

It could be interesting to consider amodified Fourier spectrum, following the mod-
ified Fourier dimension defined in [5], but we do not pursue this here. We will be more
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Fig. 1 Three examples. Left: the Fourier spectrum of a measure with positive Fourier dimension in the plane
embedded into R

3, see Theorem 2.1. Centre: the Fourier spectrum of a Riesz product from Corollary 3.5
with a = 0.8, λ = 3. Right: the Fourier spectrum of Lebesgue measure lifted onto the graph of x 
→ x4,
see Theorem 5.1

focused on the Fourier spectrum of measures and many of our results for sets would
also hold for the modified or compact variants considered by [5]. We leave details to
the reader.

Finally, we hope that our use of ‘Fourier spectrum’ does not cause confusion with
other uses of the phrase in the literature, for example [2]. In a previous draft of the paper
we opted for the ‘Fourier dimension spectrum’ to avoid this issue, but in practice this
name was too cumbersome and was always shortened. Further, we prefer to align the
Fourier spectrum philosophically with the Assouad spectrum and hence the general
programme of dimension interpolation.

1.3 Analytic properties: continuity, concavity

The first task is to examine fundamental properties of the function θ 
→ dimθ
F μ. The

results we prove in this section will be used throughout the paper as we develop the
theory towards more sophisticated applications.

Theorem 1.1 Let μ be a finite Borel measure and X a non-empty set. Then dimθ
F μ is

a non-decreasing concave function of θ ∈ [0, 1]. In particular, dimθ
F μ is continuous

on (0, 1]. Further, dimθ
F X is non-decreasing on [0, 1] and continuous on (0, 1] but

may not be concave.

Proof The claims for X are clear once the claims for μ are established. We first prove
concavity. Fix 0 ≤ θ0 < θ1 ≤ 1 and let θ ∈ (θ0, θ1). Let s0 < dimθ0

F μ, s1 < dimθ1
F μ

and

s = s0
θ1 − θ

θ1 − θ0
+ s1

θ − θ0

θ1 − θ0

and assume without loss of generality that s > 0. Define md by dmd =
min{|z|−d , 1} dz. Then
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Js,θ (μ)1/θ ≈
∫

Rd
|μ̂(z)|2/θ |z|s/θ dmd(z)

=
∫

Rd

(
|μ̂(z)|2/θ0 |z|s0/θ0

) θ0(θ1−θ)

θ(θ1−θ0)
(
|μ̂(z)|2/θ1 |z|s1/θ1

) θ1(θ−θ0)

θ(θ1−θ0)
dmd(z)

≤
(∫

Rd
|μ̂(z)|2/θ0 |z|s0/θ0 dmd(z)

) θ0(θ1−θ)

θ(θ1−θ0)

(∫

Rd
|μ̂(z)|2/θ1 |z|s1/θ1 dmd(z)

) θ1(θ−θ0)

θ(θ1−θ0)

< ∞

by Hölder’s inequality and choice of s0 and s1. This establishes dimθ
F μ ≥ s, proving

concavity of dimθ
F μ.

Next we prove that dimθ
F μ is non-decreasing. Fix 0 ≤ θ0 < θ1 ≤ 1. Let ε > 0

and define mε
d by dmε

d = cmin{|z|−(d+ε), 1} dz where c is chosen such that mε
d is a

probability measure. Then, using Jensen’s inequality,

Js,θ1(μ)1/θ0 ≈
(∫

Rd
|μ̂(z)|2/θ1 |z|s/θ1 |z|ε dmε

d(z)

)θ1/θ0

≤
∫

Rd
|μ̂(z)|2/θ0 |z|s/θ0 |z|εθ1/θ0 dmε

d(z)

=
∫

Rd
|μ̂(z)|2/θ0 |z|(s+ε(θ1−θ0))/θ0 |z|ε dmε

d(z)

≈ Js+ε(θ1−θ0),θ0(μ)1/θ0

< ∞

provided s < dimθ0
F μ − ε(θ1 − θ0). Letting ε tend to 0 proves dimθ1

F μ ≥ dimθ0
F μ as

required. Finally, a non-decreasing concave function on [0, 1] is immediately seen to
be continuous on (0, 1]. ��

Later wewill show that the Fourier spectrum is not necessarily continuous at θ = 0,
see Proposition 3.6. However, continuity can be established across the whole range
[0, 1] assuming only very mild conditions. In order to prove continuity of the Fourier
spectrum at θ = 0 (and thus over the full range [0, 1]) we need to assume Hölder con-
tinuity of the Fourier transform. First we show that this holds assuming only a mild
decay condition on the measure. For compactly supported measures the Fourier trans-
form is Lipschitz (see [18, (3.19)]) but this is true for many non-compactly supported
measures too.

Lemma 1.2 Let μ be a finite Borel measure on R
d such that |z|α ∈ L1(μ) for some

α ∈ (0, 1]. Then μ̂ is α-Hölder.
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Proof For x, y ∈ R
d with |x−y| ≥ 1, it is immediate that |μ̂(x)−μ̂(y)| ≤ 2 ≤ 2|x−y|

and so we may assume |x − y| ≤ 1. Then,

|μ̂(x) − μ̂(y)| ≤
∫ ∣

∣
∣1 − e−2π i(x−y)·z

∣
∣
∣ dμ(z) �

∫ ∣
∣
∣1 − e−2π i(x−y)·z

∣
∣
∣
α

dμ(z)

�
∫

|x − y|α|z|α dμ(z)

� |x − y|α

as required. ��
Theorem 1.3 Let μ be a finite Borel measure on R

d such that μ̂ is α-Hölder. Then

dimθ
F μ ≤ dimF μ + d

(

1 + dimF μ

2α

)

θ.

In particular, dimθ
F μ is Lipschitz continuous at θ = 0 and therefore Lipschitz contin-

uous on [0, 1].
Proof Let t > dimF μ which guarantees the existence of a sequence zk ∈ R

d with
|zk | ≥ 1 and |zk | → ∞ such that for all k

|μ̂(zk)| ≥ |zk |−t/2.

Since μ is α-Hölder, there exists c = c(μ) ∈ (0, 1) such that

|μ̂(z)| ≥ |zk |−t/2/2

for all z ∈ B(zk, c|zk |−t/(2α)). By passing to a subsequence if necessary we may
assume that the balls B(zk, c|zk |−t/(2α)) are pairwise disjoint. Therefore

Js,θ (μ)1/θ ≥
∑

k

∫

B(zk ,c|zk |−t/(2α))

|μ̂(z)|2/θ |z|s/θ−d dz

�
∑

k

|zk |−td/(2α)|zk |−t/θ |zk |s/θ−d = ∞

whenever s ≥ dθ + t + tdθ/(2α). This proves

dimθ
F μ ≤ dimF μ + d

(

1 + dimF μ

2α

)

θ

as required. The final conclusion that dimθ
F μ is Lipschitz continuous on [0, 1] follows

immediately from Lipschitz continuity at θ = 0 together with the fact that dimθ
F μ is

non-decreasing and concave, see Theorem 1.1. ��
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Later we provide an example showing that the bounds from Theorem 1.3 are sharp
in the case dimF μ = 0 and α = 1, see Corollary 3.3.

Question 1.4 Are the bounds from Theorem 1.3 sharp? Are they sharp when μ is
compactly supported and dimF μ > 0?

One benefit of Theorem 1.3 is the demonstration that positive Fourier dimension of
a measure can always be observed by averaging (in the case when μ̂ is Hölder). That
is, provided μ̂ is Hölder, dimF μ > 0 if and only if dimθ

F μ > dθ for some θ > 0.
This is potentially useful since positive Fourier dimension requires uniform estimates
on |μ̂| which are a priori harder to obtain than estimates on the ‘averages’ Js,θ (μ).

Using Theorem 1.3 we immediately get continuity of the Fourier spectrum for
compact sets. However, using a trick inspired by [5, Lemma 1] we can upgrade this
to continuity of the Fourier spectrum for all sets.

Theorem 1.5 If X ⊆ R
d is a non-empty set, then

dimθ
F X ≤ dimF X + d

(

1 + dimF X

2

)

θ

for all θ ∈ [0, 1]. In particular, dimθ
F X is Lipschitz continuous on the whole range

[0, 1] with dim0
F X = dimF X and, if X is Borel, dim1

F X = dimH X.

Proof Let μ be a finite Borel measure supported by X . Let f : R
d → [0,∞) be

a smooth function with compact support such that the Borel measure ν defined by
dν = f dμ satisfies ν(X) > 0. Then ν is supported on a compact subset of X . We
claim that

dimθ
F ν ≥ dimθ

F μ

for all θ ∈ [0, 1]. Together with Theorem 1.3 and Lemma 1.2, this claim proves the
result. Since f is smooth and has compact support, it holds that for all integers n ≥ 1
| f̂ (t)| �n |t |−n for |t | ≥ 1. In particular, f̂ and f are L1 functions. Therefore, by the
Fourier inversion formula,

ν̂(z) =
∫

Rd
μ̂(z − t) f̂ (t) dt . (1.1)

The claim for θ = 0 is [5, Lemma 1] and so we may assume θ ∈ (0, 1]. Using (1.1)

Js,θ (ν)1/θ =
∫

Rd

∣
∣
∣
∣

∫

Rd
μ̂(z − t) f̂ (t) dt

∣
∣
∣
∣

2/θ

|z|s/θ−d dz

�
∫

Rd

∫

Rd
|μ̂(z − t)|2/θ | f̂ (t)| dt |z|s/θ−d dz (by Jensen’s inequality)

=
∫

Rd
| f̂ (t)|

∫

Rd
|μ̂(z − t)|2/θ |z|s/θ−d dz dt (by Fubini’s theorem)
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=
∫

Rd
| f̂ (t)|

∫

Rd
|μ̂(z)|2/θ |z + t |s/θ−d dz dt

=
∫

Rd
| f̂ (t)|

∫

Rd\B(0,5|t |)
|μ̂(z)|2/θ |z + t |s/θ−d dz dt

+
∫

Rd
| f̂ (t)|

∫

B(0,5|t |)
|μ̂(z)|2/θ |z + t |s/θ−d dz dt

�
∫

Rd
| f̂ (t)| dt

∫

Rd
|μ̂(z)|2/θ |z|s/θ−d dz +

∫

Rd
| f̂ (t)||t |d |t |s/θ−d dt

� Js,θ (μ)1/θ + 1

using the rapid decay of | f̂ (t)|. This proves the claim and the theorem. ��

It is useful to keep the following simple bounds in mind. These are immediate from
Theorems 1.1 and 1.3.

Corollary 1.6 Let μ be a compactly supported finite Borel measure on R
d . Then

dimF μ + θ (dimS μ − dimF μ)

≤ dimθ
F μ ≤ min

{

dimS μ, dimF μ + d

(

1 + dimF μ

2

)

θ

}

.

In certain extremal situations the Fourier spectrum is determined by the Fourier
and Sobolev dimensions.

Corollary 1.7 If μ is a finite Borel measure on R
d such that μ̂ is α-Hölder and

dimS μ =
(

1 + d

2α

)

dimF μ + d,

then

dimθ
F μ = dimF μ + d

(

1 + dimF μ

2α

)

θ

for all θ ∈ [0, 1].

Another simple consequence of Theorem 1.3 is that the Sobolev dimension can be
controlled by the Fourier dimension. We are unaware if the following estimates were
known previously.

Corollary 1.8 Let μ be a finite Borel measure on R
d such that μ̂ is α-Hölder. Then

dimS μ ≤
(

1 + d

2α

)

dimF μ + d.
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In particular, if

dimF μ ≤ d

1 + d/(2α)

then dimS μ ≤ 2d, and if dimF μ = 0, then dimS μ ≤ d. These are relevant thresholds
for Sobolev dimension because if dimS μ > 2d, then μ is a continuous function and
if dimS μ > d, then μ ∈ L2(Rd), see [18, Theorem 5.4].

2 Dependence on ambient space

An elementary but striking observation on the Fourier dimension is that it depends on
the ambient space in a way that Hausdorff dimension, for example, does not. Consider
integers 1 ≤ k < d and let f k,d : R

k → R
d be an isometric embedding defined by

identifying R
k with a k-dimensional affine subset of R

d . Then it is well-known and
easily seen that

dimF f k,d# μ = 0

for all finite Borel measures μ on R
k but, provided dimS μ ≤ k,

dimS f k,d# μ = dimS μ.

Here f k,d# μ is the pushforward ofμ under f k,d . The conclusion for Sobolev dimension
follows by observing that the standard energy Is(μ) does not depend on the ambient
space. Moreover,

dimF f k,d(X) = 0

and

dimH f k,d(X) = dimH X

for all X ⊆ R
k . Since the Fourier spectrum interpolates between the Fourier and

Sobolev/Hausdorff dimensions, it is natural to ask what happens to the Fourier spec-
trum under the embeddings f k,d . In particular, the answer must encapsulate both of
the rather distinct behaviours seen above.

Theorem 2.1 Let 1 ≤ k < d be integers, μ be a finite Borel measure on R
k and

X ⊆ R
k be a non-empty set. Then

dimθ
F f k,d# μ = min{θk, dimθ

F μ}
and

dimθ
F f k,d(X) = min{θk, dimθ

F X}
for all θ ∈ [0, 1].
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Proof The claim for sets follows immediately from the claim for measures and so
we just prove the result for μ. Fix θ ∈ (0, 1), write V = f k,d(Rk) and π for
orthogonal projection from R

d onto V identified with R
k . We may assume with-

out loss of generality that V is a subspace of R
d . We begin with the upper bound.

Since μ̂(0) = μ(Rd) > 0 and μ̂ is continuous, there exists ε = ε(μ) such that
|μ̂(z)| ≥ μ(Rd)/2 > 0 for all z ∈ BV (0, ε), where BV denotes open balls in V . Write
0 = z ∈ R

d in spherical coordinates z = rv where r > 0 and v ∈ Sd−1 with σd−1
the surface measure on Sd−1. Then

Js,θ

(
f k,d# μ

)1/θ =
∫ ∞

0

∫

Sd−1
|μ̂(rπ(v))|2/θrs/θ−d rd−1dσd−1(v)dr

≥
∫ ∞

0
rs/θ−1

∫

v∈Sd−1:
rπ(v)∈BV (0,ε)

|μ̂(rπ(v))|2/θ dσd−1(v)dr

�θ

∫ ∞

0
rs/θ−1σd−1

(
v ∈ Sd−1 : π(v) ∈ BV (0, ε/r)

)
dr

�
∫ ∞

0
rs/θ−1 (ε/r)k dr

= ∞

whenever s ≥ kθ , proving dimθ
F f k,d# μ ≤ kθ .

For the remaining upper bound, we may assume θk > dimθ
F μ and let θk > s >

dimθ
F μ and fix 1 < c < 2 and max{c/2, 1/c} < r < 1. In what follows the implicit

constants may depend on r and c (and other fixed parameters as usual). Then, writing
z = (x, y) for x ∈ V⊥ and y ∈ V ,

∫

Rd
|̂f k,d# μ(z)|2/θ |z|s/θ−d dz

�
∫

x∈V⊥

∫

y∈V :
|x |≤|y|≤2|x |

|μ̂(y)|2/θ |y|s/θ−k |x |k−d dydx

≥
∞∑

n=1

∫

x∈V⊥:
rcn≤|x |≤cn

∫

y∈V :
cn≤|y|≤cn+1

|μ̂(y)|2/θ |y|s/θ−k |x |k−d dydx

�
∞∑

n=1

cn(k−d)

∫

x∈V⊥:
rcn≤|x |≤cn

dx
∫

y∈V :
cn≤|y|≤cn+1

|μ̂(y)|2/θ |y|s/θ−k dy

�
∞∑

n=1

∫

y∈V :
cn≤|y|≤cn+1

|μ̂(y)|2/θ |y|s/θ−k dy

=
∫

y∈V :
c≤|y|

|μ̂(y)|2/θ |y|s/θ−k dy

= ∞

123



The Fourier spectrum and sumset type problems

proving dimθ
F f k,d# μ ≤ dimθ

F μ.

We turn our attention to the lower bound. Let s < min{θk, dimθ
F μ} and ε ∈ (0, 1)

with s + εθ < min{θk, dimθ
F μ}. Then, again writing z = (x, y) for x ∈ V⊥ and

y ∈ V ,

∫

Rd
|̂f k,d# μ(z)|2/θ |z|s/θ−d dz =

∫

Rd
|μ̂(π(z))|2/θ |z|(s+εθ)/θ−k |z|k−d−ε dz

≤
∫

x∈V⊥

∫

y∈V
|μ̂(y)|2/θ |y|(s+εθ)/θ−k |x |k−d−ε dy dx

≤
∫

y∈V
|μ̂(y)|2/θ |y|(s+εθ)/θ−k dy

∫

x∈V⊥
|x |k−d−ε dx

< ∞

proving dimθ
F f k,d# μ ≥ min{θk, dimθ

F μ}, as required. ��

One can see fromTheorem 2.1 together with Theorem 1.3 that the Fourier spectrum
of a measure is preserved upon embedding in a Euclidean space with strictly larger
dimension if and only if the Fourier dimension of the measure is zero to begin with.

Using Theorem 2.1 we get our first examples where the Fourier spectrum can be
derived explicitly.

Corollary 2.2 Let X be an isometric embedding of [0, 1]k inR
d for integers 1 ≤ k < d

and let μ be the restriction of k-dimensional Hausdorff measure to X. Then

dimθ
F X = dimθ

F μ = kθ

for all θ ∈ [0, 1].

3 Fourier coefficients, energy, and Riesz products

There is a convenient representation for the energy in terms of the Fourier coefficients
of a measure, see [18, Theorem 3.21]. Indeed, for μ a finite Borel measure on R

d with
support contained in [0, 1]d

Js,1(μ) ≈ 1 +
∑

z∈Zd\{0}
|μ̂(z)|2|z|s−d (3.1)

for 0 < s < d. Using the convolution formula, (3.1) gives information about Js,θ (μ)

for 0 < s < dθ with θ the reciprocal of an integer. However, we need to sum over the
finer grid θZ

d because the convolution μ∗1/θ is no-longer supported on [0, 1]d (but
on [0, 1/θ ]d ) and so we need to rescale in order to apply (3.1).

123



J. M. Fraser

Proposition 3.1 Let μ be a finite Borel measure on R
d with support contained in

[0, 1]d . For 0 < s < dθ and θ = 1/k for k ∈ N

Js,θ (μ) ≈
⎛

⎝1 +
∑

z∈θZd\{0}
|μ̂(z)|2/θ |z|s/θ−d

⎞

⎠

θ

.

Proof Writing θμ∗1/θ for the pushforward of μ∗1/θ under the dilation x 
→ θx , we
get that θμ∗1/θ is supported on [0, 1]d and that

θ̂μ∗1/θ (z) = μ̂∗1/θ (θ z) (3.2)

for z ∈ R
d . Then

Js,θ (μ)1/θ =
∫

Rd
|μ̂(z)|2/θ |z|s/θ−d dz

=
∫

Rd
|μ̂∗1/θ (z)|2|z|s/θ−d dz (convolution formula)

≈θ

∫

Rd
|θ̂μ∗1/θ (z/θ)|2|z/θ |s/θ−d dz (by (3.2))

≈θ

∫

Rd
|θ̂μ∗1/θ (z)|2|z|s/θ−d dz

= Js/θ,1(θμ∗1/θ )

≈ 1 +
∑

z∈Zd\{0}
|θ̂μ∗1/θ (z)|2|z|s/θ−d (by (3.1))

≈θ 1 +
∑

z∈Zd\{0}
|μ̂∗1/θ (θ z)|2|θ z|s/θ−d (by(3.2))

= 1 +
∑

z∈θZd\{0}
|μ̂(z)|2/θ |z|s/θ−d (convolution formula)

as required. ��
It would be useful to relax the assumptions in Proposition 3.1 but we do not attempt

this here.

Question 3.2 In Proposition 3.1, can the assumption that θ is the reciprocal of an
integer be removed? Can the assumption that 0 < s < dθ be weakened?

Being able to estimate the energy in terms of the Fourier coefficients often simplifies
calculations. To demonstrate this we give an easy example of a measure showing the
upper bound from Theorem 1.3 is sharp in the case dimF μ = 0 and α = 1.
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Corollary 3.3 Define f : [0, 1] → R by

f (x) = 2 +
∞∑

n=1

n−2 sin(2π2nx)

and fd : [0, 1]d → R by fd(x1, . . . , xd) = f (x1) . . . f (xd). Then f and fd are
non-negative and we may define a measure μ supported on [0, 1]d by dμ = fddx.
Then

dimθ
F μ = θd

for all θ ∈ [0, 1].
Proof For integers n ≥ 1

| f̂ (2n)| = n−2

and | f̂ (z)| = 0 for integers z ∈ Z which are not of the form z = 2n for n ≥ 1 an
integer. Moreover, for all z = (z1, . . . , zd) ∈ Z

d

|μ̂(z)| = | f̂d(z)| = | f̂ (z1)| . . . | f̂ (zd)|.

Therefore, if z = (z1, . . . , zd) ∈ Z
d is such that zi = 2ni for integers ni ≥ 1, then

|μ̂(z)| = n−2
1 . . . n−2

d

and |μ̂(z)| = 0, otherwise. In particular, dimF μ = 0. Further, using the Fourier series
representation (3.1) of the energy

Js,1(μ) ≈ 1 +
∞∑

z=−∞
|μ̂(z)|2|z|s−d � 1 +

∞∑

n=1

nd−1n−42n(s−d) < ∞

for s < d and so dimS μ = dim1
F μ = d. Since dimθ

F μ is concave, the result follows
from Theorem 1.3. ��

3.1 Riesz products

Proposition 3.1 gives useful information about the Fourier spectrum for θ which are
the reciprocal of an integer. However, if more information about the Fourier transform
is available sometimes this can be pushed to all θ . This is the case for Riesz products
which we use below to provide explicit examples with a more complicated Fourier
spectrum than the examples we have met thus far. Riesz products are a well-studied
family of measures defined by
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μa,λ =
∞∏

j=1

(1 + a j cos(2πλ j x)) (x ∈ [0, 1])

where a = (a j ) and λ = (λ j ) with a j ∈ [−1, 1] and λ j ∈ N with λ j+1 ≥ 3λ j are
given sequences. Hereμa,λ is the weak limit of the sequence of absolutely continuous
measures associated to the truncated products. It is well-known that μa,λ is absolutely
continuous if and only if

∑
j a

2
j < ∞ and otherwise they are mutually singular with

respect to Lebesgue measure, see [18, Theorem 13.2]. The dimension theory of Riesz
products, especially in the singular case, is well-studied, see [12, 18]. The Fourier
coefficients of μa,λ can be derived easily giving

μ̂a,λ(m) = 	ε j =0(a j/2) (3.3)

for integers m = 0 with (unique) representation

m =
∑

j

ε jλ j (ε j ∈ {−1, 0, 1})

and μ̂a,λ(m) = 0 for integerswithout such a representation. Therefore, for each k ∈ N,

μ̂a,λ(λk) = ak/2

and so

dimF μa,λ ≤ lim inf
k→∞

−2 log |ak |
log λk

.

Therefore, if dimF μa,λ > 0, then
∑

j a
2
j < ∞ and μa,λ is absolutely continuous.

Moreover, if λ j+1/λ j → ∞, then dimH μa,λ = 1 and dimS μa,λ ≥ 1, see [12,
Corollary 3.3].

Theorem 3.4 Suppose λ j+1 ≤ Cλ j for some fixedC ≥ 3 and lim infk→∞ −2 log |ak |
log λk

=
0. Let

Sθ (s) =
∞∑

k=1

λ
s/θ−1
k 	k

j=1(1 + |a j |2/θ21−2/θ ).

Then, for θ ∈ (0, 1],

dimθ
F μa,λ = sup{s ≤ θ : Sθ (s) < ∞}.

Proof Wefirst prove the upper bound. Note that dimF μa,λ = lim infk→∞ −2 log |ak |
log λk

=
0 and so dimθ

F μa,λ ≤ θ by Corollary 1.6. Observe that

|μ̂a,λ(z)| ≥ |μ̂a,λ(m)|/2
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for all z ∈ R with |z − m| ≤ 1/2 and where m = 0 has a (unique) representation

m =
∑

j

ε jλ j (ε j ∈ {−1, 0, 1}). (3.4)

Summing over such m,

Js,θ (μa,λ)
1/θ �

∑

m

|μ̂a,λ(m)|2/θ |m|s/θ−1. (3.5)

Then, by following the proof of [18, Theorem 13.3], one obtains that the right hand
side is finite if and only if Sθ (s) < ∞. For completeness we include the argument.
For m = 0 with unique representation (3.4), let k = km be the largest j for which
ε j = 0 and observe that |m| ≈ λk . Then, summing over such maximal k instead of

m, writing b j = 21/2−1/θa1/θj and applying (3.3),

∑

m

|μ̂a,λ(m)|2/θ |m|s/θ−1 ≈
∞∑

k=1

∑

j1<···< jl=k

2l
(
	l

i=1
a ji

2

)2/θ
λ
s/θ−1
k

=
∞∑

k=1

∑

j1<···< jl=k

(
	l

i=1b ji

)2
λ
s/θ−1
k

=
∞∑

k=1

b2k (1 + b21) . . . (1 + b2k−1)λ
s/θ−1
k

and finiteness of the last sum is easily seen to be equivalent to

∞∑

k=1

λ
s/θ−1
k 	k

j=1(1 + b2j ) = Sθ (s) < ∞.

This proves that

∑

m

|μ̂a,λ(m)|2/θ |m|s/θ−1 < ∞ ⇔ Sθ (s) < ∞ (3.6)

as required. In particular, by (3.5) and (3.6), the upper bound holds. For the lower
bound, observe that

|μ̂a,λ(z)| �
∑

m

|μ̂a,λ(m)|min
{
1, |z − m|−1

}

for z ∈ R where the sum is over integers m = 0 with (unique) representation (3.4).
Fix θ ∈ (0, 1], 0 < s < θ and 0 < ε < (θ − s)/(2 − θ). Note that Sθ (s) = ∞ for
s > θ . By Jensen’s inequality,

123



J. M. Fraser

|μ̂a,λ(z)|2/θ �ε

∑

m

|μ̂a,λ(m)|2/θ min

{

1,
1

|z − m|1−ε(2/θ−1)

}

.

Then, applying Fubini’s theorem,

Js,θ (μa,λ)
1/θ =

∫

R

|μ̂a,λ(z)|2/θ |z|s/θ−1 dz

�ε

∑

m

|μ̂a,λ(m)|2/θ
∫

R

min

{

|z|s/θ−1,
|z|s/θ−1

|z − m|1−ε(2/θ−1)

}

dz

�
∑

m

|μ̂a,λ(m)|2/θ
( ∫

|z−m|≤1
|m|s/θ−1 dz +

∫

1≤|z−m|≤m/2

|m|s/θ−1

|z − m|1−ε(2/θ−1)
dz

+
∫

m/2≤|z−m|≤2m

|z|s/θ−1

|m|1−ε(2/θ−1)
dz +

∫

|z−m|≥2m

1

|z − m|2−s/θ−ε(2/θ−1)
dz

)

�
∑

m

|μ̂a,λ(m)|2/θ
(

|m|s/θ−1 + |m|s/θ−1|m|ε(2/θ−1)

+ |m|−1+ε(2/θ−1)|m|s/θ + |m|−1+s/θ+ε(2/θ−1)
)

�
∑

m

|μ̂a,λ(m)|2/θ |m|s/θ−1+ε(2/θ−1)

< ∞

provided s + ε(2 − θ) < sup{s ≤ θ : Sθ (s) < ∞} using the equivalence (3.6). Since
ε > 0 can be chosen arbitrarily small, the lower bound follows. ��

We note a pleasant explicit formula in the following simple case.

Corollary 3.5 If λ j = λ j ≥ 3 and a j = a ∈ [−1, 1] with a = 0 and λ ≥ 3 constants,
then, for θ ∈ [0, 1],

dimθ
F μa,λ = θ − θ

log(1 + |a|2/θ21−2/θ )

log λ
.

3.2 An example with discontinuity at� = 0

Here we construct a (necessarily unbounded) measure for which the Fourier spectrum
is discontinuous at θ = 0. The construction is similar to those above, but utilises the
unbounded domain to achieve rapid Fourier decay around isolated peaks.

Proposition 3.6 There exists a finite Borel measure on R for which dimθ
F μ is not

continuous at θ = 0.

Proof Define f : R → [0,∞) by

f (x) =
∞∑

n=1

n−2n−n (
2 + sin(2π2nx)

)
1[0,nn ](x)
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where 1[0,nn ] is the indicator function on [0, nn]. Define an (unbounded) measure μ

by μ = f dx noting that

μ(R) ≤
∑

n

3(n−2n−n)nn = 3
∑

n

n−2 < ∞.

For integers n ≥ 1,

|μ̂(2n)| ≈ (n−2n−n)nn = n−2

and so dimF μ = dim0
F μ = 0. Moreover, for all z ∈ R,

|μ̂(z)| � max
n

min

{

n−2,
1

nn |z − 2n |
}

�
{
n−2 nn2n

nn+1 ≤ |z| ≤ nn2n
nn−1 (for some n ≥ 3)

|z|−1 otherwise

Therefore, for θ ∈ (0, 1] and s > 0,

Js,θ (μ)1/θ �
∫

|z|−2/θ |z|s/θ−1 dz +
∑

n

n−4/θ
∫

nn2n
nn+1≤|z|≤ nn2n

nn−1

|z|s/θ−1 dz

�
∫

|z|(s−2)/θ−1 dz +
∑

n

n−4/θ2n(s/θ−1)2nn−n

< ∞

provided s < 2. Therefore, dimθ
F μ ≥ 2 for θ ∈ (0, 1] and dimθ

F μ is not continuous
at θ = 0. ��

It is easy to adapt the above calculation to show that dimθ
F μ = 2 for θ ∈ (0, 1].

Further, this example can be modified easily to obtain different behaviour at the dis-
continuity, including positive Fourier dimension and arbitrarily large jumps.

4 Connection to Strichartz bounds and average Fourier dimensions

Strichartz [25, 26] considered bounds for averages of the Fourier transform of the
form

Rd−βk �
∫

|z|≤R
|μ̂(z)|2k dz � Rd−αk

for integers k ≥ 1 and 0 ≤ αk ≤ βk . Motivated by this, for θ ∈ (0, 1], let

Fμ(θ) = lim sup
R→∞

θ log
(
R−d

∫
|z|≤R |μ̂(z)|2/θ dz

)

− log R
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and

Fμ(θ) = lim inf
R→∞

θ log
(
R−d

∫
|z|≤R |μ̂(z)|2/θ dz

)

− log R
.

Equivalently, Fμ(θ) is the infimum of β ≥ 0 for which

Rd−β/θ �
∫

|z|≤R
|μ̂(z)|2/θ dz

and Fμ(θ) is the supremum of α ≥ 0 for which

∫

|z|≤R
|μ̂(z)|2/θ dz � Rd−α/θ .

One can interpret Fμ(θ) as a ‘θ -averaged Fourier dimension’. Note that

∫

Rd
|μ̂(z)|2/θ dz = lim

R→∞

∫

|z|≤R
|μ̂(z)|2/θ dz

exists and is either a positive finite number or +∞. In the former case Fμ(θ) =
Fμ(θ) = θd and in the latter case 0 ≤ Fμ(θ) ≤ Fμ(θ) ≤ θd. There is a connection
between the Fourier spectrum and these average Fourier dimensions.

Theorem 4.1 Let μ be a finite Borel measure on R
d and θ ∈ (0, 1]. Then

dimθ
F μ ≥ Fμ(θ).

Proof We may assume Fμ(θ) > 0. Let c > 1 and 0 < s < α < Fμ(θ). Then

Js,θ (μ)1/θ =
∫

Rd
|μ̂(z)|2/θ |z|s/θ−d dz � 1 +

∞∑

k=1

∫

ck−1<|z|≤ck
|μ̂(z)|2/θ |z|s/θ−d dz

≈ 1 +
∞∑

k=1

ck(s/θ−d)

∫

ck−1<|z|≤ck
|μ̂(z)|2/θ dz

≤ 1 +
∞∑

k=1

ck(s/θ−d)

∫

|z|≤ck
|μ̂(z)|2/θ dz

� 1 +
∞∑

k=1

ck(s/θ−d)ck(d−α/θ)

< ∞

proving dimθ
F μ ≥ α, which proves the result. ��
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The connection becomes stronger, and in fact dimθ
F μ and Fμ(θ) coincide, in the

following special case.

Theorem 4.2 Let μ be a finite Borel measure on R
d and θ ∈ (0, 1]. If Fμ(θ) < θd,

then

dimθ
F μ = Fμ(θ).

Proof The lower bound dimθ
F μ ≥ Fμ(θ) comes from Theorem 4.1 and so we prove

the upper bound. Choose Fμ(θ) < β < s < θd. Then there exist arbitrarily large
R > 0 satisfying

∫

|z|≤R
|μ̂(z)|2/θ dz � Rd−β/θ

and

Js,θ (μ)1/θ =
∫

Rd
|μ̂(z)|2/θ |z|s/θ−d dz = sup

R>0

∫

|z|≤R
|μ̂(z)|2/θ |z|s/θ−d dz

≥ sup
R>0

Rs/θ−d
∫

|z|≤R
|μ̂(z)|2/θ dz

� sup
R>0

Rs/θ−d Rd−β/θ

= ∞

which proves dimθ
F μ ≤ β, proving the result. ��

4.1 Self-similar measures

Combining [1, Theorem 2] for θ ∈ (0, 1) and [25, Theorem 4.4] for θ = 1 with
Theorem 4.1 we get the following.

Corollary 4.3 For p ∈ (0, 1) with p = 1/2, let μp be the self-similar measure on
[0, 1] given by the distribution of the random series

∞∑

n=0

Xn(1/2)
n

where P(Xn = 0) = p and P(Xn = 1) = (1 − p). Then

dimθ
F μp ≥ Fμp

(θ) ≥ θ − θ log2(1 + |2p − 1|2/θ )

for all θ ∈ (0, 1) and

dimS μp = Fμp
(1) = 1 − log2(1 + |2p − 1|2).
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In particular, dimθ
F μp > θ dimS μp for all θ ∈ (0, 1),

lim
θ→0

dimθ
F μp

θ
≥ 1

and

dimS μp < dimH μp = p log p + (1 − p) log(1 − p)

− log 2
.

In the above, if p = 1/2, then μp is Lebesgue measure restricted to [0, 1] and

dimθ
F μp = dimF μp = dimS μp = 1

for all θ ∈ (0, 1). We can also apply Strichartz’ work [25, 26] to get some partial
information for other self-similar measures. For example, we get some non-trivial
information about the Fourier spectrum of self-similar measures on the middle third
Cantor set. Similar estimates, sometimes for more choices of θ , can also be deduced
from [25, 26] for other self-similar measures but we leave the details to the reader.

Corollary 4.4 For p ∈ (0, 1), let μp be the self-similar measure on the middle third
Cantor set corresponding to Bernoulli weights p, (1 − p). Then

dimF μ = dim0
F μ = 0

dim1/2
F μ = log(p4 + 4p2(1 − p)2 + (1 − p)4)

−2 log 3

and

dimS μ = dim1
F μ = log(p2 + (1 − p)2)

− log 3
< 2 dim1/2

F μ.

In particular, dimθ
F μ is not a linear function.

Proof The formulae for dim1/2
F μ and dim1

F μ come from Theorem 4.1 combined with
[25, Corollary 4.4]. The fact that dimF μ = 0 follows from the well-known and easily
proved fact that the Fourier dimension of the middle third Cantor set is 0. ��

It would be interesting to investigate the Fourier spectrum of self-similar measures
more generally and also for other dynamically invariant. In particular, there is a lot of
interest currently on the Fourier dimension of invariant measures in various contexts,
see for example [15, 21, 24].

Question 4.5 What is dimθ
F μ when μ is a self-similar measure on the middle third

Cantor set? What about more general self-similar measures, self-affine measures and
other dynamically invariant measures?
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5 Another example: measures on curves

To bolster our collection of examples, here we provide a simple family where the
Fourier spectrum can be computed explicitly and exhibits some non-trivial behaviour.
Let p > 1 and let μp be the lift of Lebesgue measure on [0, 1] to the curve {(x, x p) :
x ∈ [0, 1]} ⊆ R

2 via the map x 
→ (x, x p).

Theorem 5.1 For p > 1 and θ ∈ [0, 1],

dimθ
F μp = min{2/p + θ(1 − 1/p), 1}.

Proof Noting

μ̂p(z) =
∫ 1

0
e−2π i z·(x,x p) dx,

using polar coordinates z = reiα

Js,θ (μp)
1/θ =

∫ ∞

r=0
rs/θ−1

∫ 2π

α=0

∣
∣μ̂p(z)

∣
∣2/θ dα dr .

We split this integral up into three regions, which are handled separately. Define
ε(p) ∈ (0, π/2) by tan ε(p) = 1/(2p).

First, for α such that | cosα| ≥ ε(p), it is a simple consequence of van der Corput’s
lemma (see [18, Theorem 14.2]) that

∣
∣μ̂p(z)

∣
∣ � r−1/2 = |z|−1/2

and so
∫ ∞

r=0
rs/θ−1

∫

| cosα|≥ε(p)

∣
∣μ̂p(z)

∣
∣2/θ dα dr < ∞ (5.1)

for s < 1.
Second, for z = reiα such that r ≥ 10 and r−(p−1)/p ≤ | cosα| ≤ ε(p),

∣
∣μ̂p(z)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
e−2π i(r x cosα+r x p sin α) dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ 1

0
e2π ir | cosα|φ(x) dx

∣
∣
∣
∣

for

φ(x) = − cosα

| cosα| x − sin α

| cosα| x
p.

Since

|φ′(x)| ≥ 1 − p tan ε(p) = 1/2,
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van der Corput’s lemma (see [18, Theorem 14.2]) gives

∣
∣μ̂p(z)

∣
∣ � 1

r | cosα| .

Therefore,

∫ ∞

r=10
rs/θ−1

∫

r−(p−1)/p≤| cosα|≤ε(p)

∣
∣μ̂p(z)

∣
∣2/θ dα dr

�
∫ ∞

r=10
rs/θ−1−2/θ

∫ arccos(r−(p−1)/p)

α=0

(
1

| cosα|
)2/θ

dα dr

�
∫ ∞

r=10
rs/θ−1−2/θr

(
2
θ
−1

)(
p−1
p

)

dr

< ∞ (5.2)

provided s < 2/p + θ(1 − 1/p).
Finally, for z = reiα such that r ≥ 10 and 0 ≤ | cosα| ≤ r−(p−1)/p and using the

substitution y = r x cosα + r x p sin α,

∣
∣μ̂p(z)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
e−2π i(r x cosα+r x p sin α) dx

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ r(cosα+sin α)

0

e−2π iy

r cosα + rpx p−1 sin α
dy

∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣

∫ r | cosα|
p

p−1

0

e−2π iy

r cosα
dy

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ r(cosα+sin α)

r | cosα|
p

p−1

e−2π iy

r px p−1 sin α
dy

∣
∣
∣
∣
∣

� r | cosα| p
p−1

r | cosα| + 1

r1/p

∣
∣
∣
∣
∣

∫ r(cosα+sin α)

r | cosα|
p

p−1
e−2π iy y(1−p)/p dy

∣
∣
∣
∣
∣

� | cosα| 1
p−1 + 1

r1/p

� 1

r1/p

Therefore,

∫ ∞

r=10
rs/θ−1

∫

0≤| cosα|≤r−(p−1)/p

∣
∣μ̂p(z)

∣
∣2/θ dα dr

�
∫ ∞

r=10
rs/θ−1

∫ π/2

α=arccos(r−(p−1)/p)

(
1

r1/p

)2/θ

dα dr
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�
∫ ∞

r=10
rs/θ−1− 2

θ p r−(p−1)/p dr

< ∞ (5.3)

provided s < 2/p + θ(1− 1/p). Together, (5.1), (5.2) and (5.3) establish the desired
lower bound noting that the integral over |z| ≤ 10 is trivially finite.

For the upper bound, let 1 > q > (p − 1)/p. Then, similar to above, for z such
that 0 ≤ | cosα| ≤ r−q ,

∣
∣μ̂p(z)

∣
∣ =

∣
∣
∣
∣
∣

∫ r(cosα+sin α)

0

e−2π iy

r cosα + rpx p−1 sin α
dy

∣
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣

∫ r(cosα+sin α)

r | cosα|1/q
e−2π iy

r px p−1 sin α
dy

∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣

∫ r | cosα|1/q

0

e−2π iy

r cosα
dy

∣
∣
∣
∣
∣

≥ 1

r1/p

∣
∣
∣
∣
∣

∫ r(cosα+sin α)

r | cosα|1/q
e−2π iy y(1−p)/p dy

∣
∣
∣
∣
∣

− r | cosα|1/q
r | cosα|

� 1

r1/p
− | cosα|1/q−1

≥ 1

2r1/p

for r ≥ r0 for some constant r0 ≈q 1. Therefore,

∫ ∞

r=0
rs/θ−1

∫

0≤| cosα|≤r−(p−1)/p

∣
∣μ̂p(z)

∣
∣2/θ dα dr

�
∫ ∞

r=r0
rs/θ−1

∫ π/2

α=arccos(r−q )

(
1

r1/p

)2/θ

dα dr

�
∫ ∞

r=r0
rs/θ−1− 2

θ p r−q dr

= ∞

provided s ≥ 2/p+ θq. Combined with the trivial fact that dimθ
F μp ≤ dimS μp ≤ 1,

this proves the desired upper bound by letting q → (p − 1)/p. ��

6 Convolutions and sumsets

Given sets X ,Y ⊆ R
d , the sumset of X and Y is

X + Y = {x + y : x ∈ X , y ∈ Y } ⊆ R
d .

Such sets arise naturally in many contexts and a question of particular interest in
additive combinatorics is to understand, for example, how the ‘size’ of X + X is
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related to the ‘size’ of X . There is interest in determining conditions which ensure
dimH(X+X) > dimH X or perhaps dimH(kX) → d as k → ∞where kX is the k-fold
sumset for integers k ≥ 1, see for example [16]. Convolutions are natural measures
to consider in this context: if μ and ν are measures on X and Y , respectively, the
convolutionμ∗ν is supported on the sumset X+Y . It turns out that theFourier spectrum
precisely characterises when the Sobolev dimension increases under convolution, see
Corollary 6.3, and gives many partial results about the dimensions of sumsets and
convolutions more generally.

6.1 Convolutions

First we give some general lower bounds for the Fourier spectrum of a convolution.
The special case when d = θ = λ = 1, dimS μ = 1 and dimF ν > 0 is essentially
[22, Lemma 2.1 (1)].

Theorem 6.1 Let μ and ν be finite Borel measures on R
d . Then for all s, t ≥ 0

Js+t,θ (μ ∗ ν) � inf
λ∈[0,1]Js,λθ (μ)Jt,(1−λ)θ (ν).

In particular,

dimθ
F(μ ∗ ν) ≥ sup

λ∈[0,1]

(
dimλθ

F μ + dim(1−λ)θ
F ν

)
.

Proof Let λ ∈ [0, 1] and s, t > 0. Let p = 1/λ ∈ [1,∞] and q = 1/(1−λ) ∈ [1,∞]
be Hölder conjugates and write dmd = min{|z|−d , 1} dz. Then

Js+t,θ (μ ∗ ν)1/θ ≈
∫

Rd
|μ̂ ∗ ν(z)|2/θ |z|(s+t)/θ dmd (z)

=
∫

Rd
|μ̂(z)|2/θ |z|s/θ |̂ν(z)|2/θ |z|t/θ dmd (z) (by convolution formula)

≤
(∫

Rd
|μ̂(z)|2p/θ |z|ps/θ dmd (z)

)1/p (∫

Rd
|̂ν(z)|2q/θ |z|qt/θ dmd (z)

)1/q

(by Hölder’s inequality)

≈ Js,λθ (μ)1/θJt,(1−λ)θ (ν)1/θ .

This establishes the first claim. It follows that for λ ∈ [0, 1] and all s < dimλθ
F μ and

t < dim(1−λ)θ
F ν, dimθ

F(μ ∗ ν) ≥ s + t , which proves second claim. ��
One is often interested in how dimension grows (or how smoothness increases)

under iterated convolution. For integers k ≥ 1, we writeμ∗k for the k-fold convolution
of μ and kX for the k-fold sumset. The following is a generalisation of the simple fact
that dimF(μ

∗k) = k dimF μ.
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Lemma 6.2 Let μ be a finite Borel measure on R
d . Then

dimθ
F(μ

∗k) = k dimθ/k
F μ

for all θ ∈ [0, 1] and all integers k ≥ 1. In particular,

dimS(μ
∗k) = k dim1/k

F μ

and, provided dimθ
F μ is continuous at θ = 0,

dimF μ = lim
k→∞

dimS(μ
∗k)

k
.

Proof By the convolution formula

∫

Rd
|μ̂∗k(z)|2/θ |z|s/θ−d dz =

∫

Rd
|μ̂(z)|2/(θ/k)|z|(s/k)/(θ/k)−d dz

which proves the result. ��
It is not possible to express dimθ

F(μ ∗ ν) in terms of the Fourier dimension spectra
of μ and ν in general if μ and ν are distinct. For example, consider μ and ν given by
1-dimensional Hausdorff measure restricted to distinct unit line segments in the plane.
Then, by Corollary 2.2, dimθ

F μ = dimθ
F ν = θ for all θ . However, if the line segments

are not contained in a common line, then the convolution μ ∗ ν is 2-dimensional
Lebesgue measure restricted to a parallelogram and therefore dimθ

F(μ ∗ ν) = 2 for
all θ . On the other hand, if the line segments are contained in a common line, then
dimθ

F(μ ∗ ν) = θ for all θ .
Lemma 6.2 shows that the Fourier dimension of a measure can be expressed in

terms of the Sobolev dimension of convolutions of the measure with itself. This may
be of use in applications since the Fourier dimension is usually harder to compute
than the Sobolev dimension. Recall that continuity of dimθ

F μ at θ = 0 is a very mild
assumption and holds, for example, provided |z|α ∈ L1(μ) for some α > 0, see
Lemma 1.2 and Theorem 1.3.

Lemma 6.2 plus concavity (Theorem 1.1) imply that the Fourier spectrum cannot
decrease under convolution. However, we can say much more and in fact the Fourier
spectrum necessarily increases unless it has a very restricted form. We also get a
precise characterisation of when the Sobolev dimension increases under convolution.

Corollary 6.3 Let μ be a finite Borel measure on R
d and θ ∈ (0, 1]. Then

dimθ
F(μ ∗ μ) > dimθ

F μ

if and only if dimλθ
F μ > λ dimθ

F μ for some λ ∈ [0, 1). In particular,
dimS(μ ∗ μ) > dimS μ

if and only if dimλ
F μ > λ dimS μ for some λ ∈ [0, 1).
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Proof One direction is Lemma 6.2. Indeed, if dimλθ
F μ = λ dimθ

F μ for all λ ∈ [0, 1),
then dimθ

F(μ ∗ μ) = 2 dimθ/2
F μ = dimθ

F μ.
To prove the other direction, let λ ∈ [0, 1) be such that dimλθ

F μ > λ dimθ
F μ. By

Theorem 1.1, dimθ
F μ is concave and therefore dimθ/2

F μ > (dimθ
F μ)/2. Then, by

Lemma 6.2,

dimθ
F(μ ∗ μ) = 2 dimθ/2

F μ > dimθ
F μ.

The special case concerning Sobolev dimension is obtained by setting θ = 1. ��
The previous result characterises when the Sobolev dimension increases under

convolution. In fact, using Lemma 6.2, the Fourier spectrum also characterises the
limiting behaviour of the Sobolev dimension of iterated convolutions.

Corollary 6.4 Let μ be a finite Borel measure on R
d such that μ̂ is α-Hölder. Then

lim
k→∞

(
dimS(μ

∗k) − k dimF μ
)

= ∂+ dimθ
F μ|θ=0

where D = ∂+ dimθ
F μ|θ=0 is the right semi-derivative of dimθ

F μ at 0. Moreover, by
Theorem 1.3

dimS μ − dimF μ ≤ D ≤ d

(

1 + dimF μ

2α

)

.

In particular, if dimF μ > 0, then dimS(μ
∗k) ∼ k dimF μ and if dimF μ = 0, then

dimS(μ
∗k) is a bounded monotonic sequence which converges to the right semi-

derivative of dimθ
F μ at 0.

6.2 Sumsets and iterated sumsets

Next we give sufficient conditions for the Hausdorff dimension of X + Y to exceed
the Hausdorff dimension of Y .

Corollary 6.5 Let X ,Y ⊆ R
d be non-empty sets with Y Borel. If

λ dimH Y < dimλ
F X ≤ d − (1 − λ) dimH Y

for some λ ∈ [0, 1), then

dimH(X + Y ) ≥ dimH Y + (dimλ
F X − λ dimH Y ) > dimH Y .

If

dimλ
F X > d − (1 − λ) dimH Y
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for some λ ∈ [0, 1), then X + Y has positive d-dimensional Lebesgue measure and if
X supports a measure μ with

dimλ
F μ > 2d − (1 − λ) dimH Y

for some λ ∈ [0, 1), then X + Y has non-empty interior.

Proof Let ε > 0. By definition of dimθ
F X , there exists a finite Borel measure μ

supported on a closed set X0 ⊆ X with dimλ
F μ ≥ dimλ

F X−ε. Moreover, there exists a
finite Borelmeasure ν supported on a closed setY0 ⊆ Y with dimS ν ≥ dimH Y−ε and
therefore, by concavity of the Fourier spectrum formeasures, dimθ

F ν ≥ θ(dimH Y−ε)

for all θ ∈ (0, 1). Then μ ∗ ν is supported on X0 + Y0 ⊆ X + Y and, by Theorem 6.1,

dimS(μ ∗ ν) ≥ dimλ
F μ + dim(1−λ)

F ν

≥ dimλ
F X − ε + (1 − λ) (dimH Y − ε)

= dimH Y + (dimλ
F X − λ dimH Y ) − ε(2 − λ)

which proves the first two claims upon letting ε → 0. The final claim (giving non-
empty interior) is proved similarly by establishing that dimS(μ ∗ ν) > 2d. We omit
the details. ��

If X and Y coincide, then the above result simplifies and we get a succinct sufficient
condition for dimension increase under addition.

Corollary 6.6 Let X ⊆ R
d be a Borel set with dimH X < d. If dimλ

F X > λ dimH X
for some λ ∈ [0, 1), then

dimH(X + X) > dimH X .

Wenote that dimθ
F X does not characterise precisely when dimH(X+X) > dimH X

(compare with Corollary 6.3). For example, let X ⊆ R
2 be the union of two unit line

segments. Then dimθ
F X = θ . However, if the two line segments lie in a common line,

then dimH(X+X) = dimH X = 1, but if the two line segments do not lie in a common
line, then X + X has non-empty interior.

Finally, we consider dimension growth of the iterated sumset kX . If dimF X > 0,
then kX will have non-empty interior for finite explicit k. Therefore in the following
we restrict to sets with dimF X = 0. The Fourier spectrum gives a lower bound for
the dimension growth in terms of the right semi-derivative at 0.

Corollary 6.7 Let X ⊆ R
d be a non-empty set with dimF X = 0. Then

lim
k→∞ dimH(kX) ≥ sup

θ∈(0,1)

dimθ
F X

θ
= ∂+ dimθ

F X |θ=0.
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Proof Fix θ ∈ (0, 1), let ε > 0 and let μ be a finite Borel measure on X with
dimθ

F μ > dimθ
F X − θε. Then, for integers k ≥ 1/θ , by Lemma 6.2 and concavity of

dimθ
F μ (Theorem 1.1),

dimH(kX) ≥ dimS(μ
∗k) = k dim1/k

F μ ≥ dimθ
F μ

θ
>

dimθ
F X

θ
− ε.

Since this holds for all ε > 0 and all θ ∈ (0, 1) and all sufficiently large k, the result
follows. ��

6.3 Measures and sets which improve dimension

Motivated by the well-known problem of Stein to classify measures which are L p-
improving, one can ask when a measure μwill increase the dimension of all measures
ν from some class under convolution simultaneously. Theorem 6.1 clearly gives some
information about this. We state one version, leaving further analysis to the reader.
See [20] for a related question. The main interest here is in measures with Fourier
dimension 0 since if μ has positive Fourier dimension then it increases the Sobolev
dimension of all measures.

Corollary 6.8 Let μ be a finite Borel measure on R
d such that

sup
θ∈(0,1)

dimθ
F μ

θ
≥ s.

Then μ is Sobolev improving in the sense that for all finite Borel measures ν on R
d

with dimS ν < s

dimS(μ ∗ ν) > dimS ν.

Proof Let ν be a finite Borel measure with s > t > dimS ν. By assumption there
exists θ ∈ (0, 1) such that

dimθ
F μ ≥ tθ.

Then, by Theorem 6.1, dimS(μ ∗ ν) ≥ dimθ
F μ + dim1−θ

F ν ≥ tθ + (1− θ) dimS ν >

dimS ν. ��
The utility of the previous result is that the Sobolev dimension of μ itself may be

arbitrarily close to 0, that is, much smaller than s. Next we state a version for sumsets,
which follows immediately from Corollary 6.5. Again, the Hausdorff dimension of X
can be arbitrarily close to 0.

Corollary 6.9 Let X ⊆ R
d be a non-empty set such that

sup
θ∈(0,1)

dimθ
F μ

θ
≥ s.
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Then X is Hausdorff improving in the sense that for all non-empty Borel Y ⊆ R
d with

dimH Y < s

dimH(X + Y ) > dimH Y .

7 Distance sets

Given a set X ⊆ R
d , the associated distance set is

D(X) = {|x − y| : x, y ∈ X}.

Following [6], there has been a lot of interest in the so-called ‘distance set problem’,
which is to relate the size of X with the size of D(X). For example, it is conjectured that
(for d ≥ 2 and X Borel) dimH X > d/2 guaranteesL1(D(X)) > 0 and dimH X ≥ d/2
guarantees dimH D(X) = 1. Here L1 is the 1-dimensional Lebesgue measure on R.
Both of these conjectures are open for all d ≥ 2, despite much recent interest and
progress, e.g. [11, 14, 23]. For example, the measure version of the conjecture holds
for Salem sets, that is, when dimF X = dimH X > d/2, see [18, Corollary 15.4],
and the dimension version holds when dimP X = dimH X ≥ d/2 [23]. Here dimP
denotes the packing dimension, which is bounded below by the Hausdorff dimension
in general. We are able to obtain estimates for the size of distance sets in terms of the
Fourier spectrum, including the provision of new families of sets for which the above
conjectures hold. Our main result on distance sets is the following. This result will
follow from the more general Theorem 7.3 given below.

Theorem 7.1 If X ⊆ R
d satisfies

sup
θ∈[0,1]

(
dimθ

F X + dim1−θ
F X

)
> d,

then L1(D(X)) > 0. Otherwise

dimH D(X) ≥ 1 − d + sup
θ∈[0,1]

(
dimθ

F X + dim1−θ
F X

)
.

We note that it is possible for

sup
θ∈[0,1]

(
dimθ

F X + dim1−θ
F X

)
> d,

to hold for sets with dimF X = 0 and dimH X < dimP X , even with dimH X arbitrarily
close to d/2.

If we set θ = 0 in Theorem 7.1 then we find that if X ⊆ R
d is a Borel set with

dimF X + dimH X > d, then L1(D(X)) > 0, with a corresponding dimension bound.
These results were obtained by Mattila in [17, Theorem 5.3]. Note that this implies
the measure (and dimension) version of the original conjecture for Salem sets. Setting
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θ = 1/2 in Theorem 7.1 yields a pleasant corollary which appears more similar to the
original conjecture.

Corollary 7.2 Let X ⊆ R
d . If dim1/2

F X > d/2, then L1(D(X)) > 0 and, otherwise,

dimH D(X) ≥ 1 − d + 2 dim1/2
F X.

Since for θ = 1/2 different values of θ are used simultaneously in Theorem 7.1,
we are led naturally to consider two measures supported on X , one for θ and one for
1− θ . This leads us to consider mixed distance sets. Given sets X ,Y ⊆ R

d , themixed
distance set of X and Y is

D(X ,Y ) = {|x − y| : x ∈ X , y ∈ Y }.

Of course D(X , X) recovers D(X), but D(X ,Y ) is (typically) a strict subset of D(X∪
Y ). Theorem7.1 follows from the followingmore general resultwhich considersmixed
distance sets and directly uses the energies.

Theorem 7.3 Suppose μ and ν are finite Borel measures on R
d with

Js,θ (μ) < ∞

and

Jt,1−θ (ν) < ∞

for some s, t ≥ 0. If s + t ≥ d, then

L1(D(spt(μ), spt(ν))) > 0

and if s + t < d, then

dimH D(spt(μ), spt(ν)) ≥ 1 − d + s + t .

We defer the proof of Theorem 7.3 (as well as the simple deduction of Theorem 7.1)
to the following subsection. Another consequence of Theorem 7.3 (choosing θ = 1/2)
can be stated just in terms of the Fourier transform. Again, the assumption can be
satisfied even when dimF μ = 0.

Corollary 7.4 If μ is a finite Borel measure on R
d with

∫
|μ̂(z)|4 dz < ∞

then L1(D(spt(μ))) > 0.
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Proof Since

Jd/2,1/2(μ)2 =
∫

|μ̂(z)|4 dz

this is an immediate consequence of Theorem 7.3 with ν = μ. ��
The above corollary is sharp in the sense that for all d ≥ 1 and ε ∈ (0, 1) there

exists a finite Borel measure on R
d with

∫
|μ̂(z)|4+ε dz < ∞

but dimH D(spt(μ)) < 1. For example, suppose X ⊆ R
d is a compact Salem set with

dimH D(X) < 1

and dimH X = dimF X = d/2 − ε/11. Such X can be found by randomising the
construction from [6, Theorem 2.4] giving compact sets E with dimH E arbitrarily
close to (but smaller than) d/2 and dimH D(E) < 1. This can be achieved explicitly
by taking the image of one of the sets constructed in [6, Theorem 2.4] under fractional
Brownian motion with Hurst parameter very close to 1. In particular, by choosing the
Hurst parameter large enough, almost surely the Hausdorff dimension of the output
can be made arbitrarily close to the that of the input, but the output will be Salem,
see [13, Corollary, page 267]. Moreover, the Hölder property of fractional Brownian
motion combined with the nested structure of the sets from [6, Theorem 2.4] can be
used to ensure the Hausdorff dimension of the distance set stays below 1. Let μ be a
finite Borel measure on X satisfying dimF μ > d/2 − ε/10. Then

∫
|μ̂(z)|4+ε dz �

∫
|z|−(d/2−ε/10)(4+ε)/2 dz =

∫
|z|−d−dε/4+ε/5+ε2/20 dz < ∞.

7.1 Proof of Theorem 7.3

Wefirst prove the claim in the casewhen s+t ≥ d.Write ν0 for themeasure defined by
ν0(E) = ν(−E) for Borel sets E where−E = {−x : x ∈ E}. Then, by Theorem 6.1,

∫
|μ̂ ∗ ν0(z)|2 dz � Js+t,1(μ ∗ ν0) � Js,θ (μ)Jt,1−θ (ν0) = Js,θ (μ)Jt,1−θ (ν) < ∞.

It follows that μ̂ ∗ ν0 ∈ L2(Rd) and therefore μ ∗ ν0 ∈ L2(Rd) by [18, Theorem
3.3]. Since μ ∗ ν0 is supported by the sumset spt(μ) + spt(ν0) = spt(μ) − spt(ν),
we conclude that the difference set A = spt(μ) − spt(ν) has positive d-dimensional
Lebesgue measure. Therefore

0 <

∫

Rd
1A(z) dz =

∫

Sd−1

∫ ∞

0
1A(rv) rd−1drdσd−1(v)
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where σd−1 is the surface measure on Sd−1. This implies the existence of (many)
v ∈ Sd−1 such that L1({r : rv ∈ A}) > 0. However, for all v ∈ Sd−1, {r : rv ∈ A} ⊂
D(spt(μ), spt(ν)), proving the result.

The proof in the sub-critical case s + t < d is morally similar but rather more
complicated because we cannot disintegrate s-dimensional Hausdorff measureHs for
s < d since it is not a σ -finite measure. Fortunately, we can appeal to a deep result
of Mattila which connects (quadratic) spherical averages and distance sets, see, for
example, [18, Proposition 15.2 (b)] and [17, Theorems 4.16-−4.17]. Following [17],
we need a more general statement than [18, Proposition 15.2 (b)] where we associate
a ‘distance measure’ to two measures rather than a single measure (repeated twice).
Define the mixed quadratic spherical average of μ and ν for r > 0 by

σμ,ν(r) =
∫

Sd−1
μ̂(rv)̂ν(rv) dσd−1(v)

noting that σμ,μ(r) is the usual quadratic spherical average from [18, Section 15.2].
The mutual energy of μ and ν may then be expressed as

Is(μ, ν) :=
∫ ∫

dμ(x) dν(y)

|x − y|s ≈
∫

Rd
μ̂(z)̂ν(z)|z|s−d dz =

∫ ∞

0
σμ,ν(r)r

s−1 dr

for s ∈ (0, d). Define a ‘mixed distance measure’ δμ,ν by

∫
φ(x) dδμ,ν(x) =

∫ ∫
φ(|x − y|) dμx dνy

for continuous functions φ on R. This recovers the distance measure δ(μ) defined in
[18] for μ = ν. Then δμ,ν is a finite Borel measure supported on the mixed distance
set D(spt(μ), spt(ν)). Finally, define the weighted mixed distance measure �μ,ν by

∫
φ(x) d�μ,ν(x) =

∫
u(1−d)/2φ(u) dδμ,ν(u)

for continuous functions φ on R. The following result is from (the proof of) [17,
Theorem 4.17] and is the key technical tool in proving Theorem 7.3. It recovers [18,
Proposition 15.2 (b)] when μ = ν.

Proposition 7.5 [17, (Proof of) Theorem 4.17] Suppose μ and ν are finite Borel
measures on R

d and 0 < α, β < d are such that Iα(μ) < ∞ and Iβ(ν) < ∞. If
γ ∈ (0, 1) is such that γ < α + β − d + 1 and

∫ ∞

1
σμ,ν(r)

2rd+γ−2 dr < ∞,

then Iγ (�μ,ν) < ∞.
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We are ready to prove the sub-critical bound from Theorem 7.3. We aim to apply
Proposition 7.5 with α < s and β < t where s and t are from the statement of
Theorem 7.3. First, note that

Iα(μ) ≈ Jα,1(μ) � Js,θ (μ) < ∞

and

Iβ(μ) ≈ Jβ,1(ν) � Jt,1−θ (μ) < ∞

by assumption and since the Fourier spectrum is non-decreasing, see (proof of) The-
orem 1.1. Choose γ ∈ (0, 1) such that d + γ − 2 < α + β − 1. Then

∫ ∞

1
σμ,ν(r)

2rd+γ−2 dr ≤
∫ ∞

1

(∫

Sd−1
|μ̂(rv)||̂ν(rv)| dσd−1(v)

)2

rα+β−1 dr

�
∫ ∞

1

∫

Sd−1
|μ̂(rv)|2 |̂ν(rv)|2rα+β−1 dσd−1(v) dr (Jensen’s inequality)

=
∫ ∞

1

∫

Sd−1
|μ̂(rv)|2rα−θ |̂ν(rv)|2rβ+θ−1 dσd−1(v) dr

≤
(∫ ∞

1

∫

Sd−1
|μ̂(rv)|2/θrα/θ−1 dσd−1(v) dr

)θ

·
(∫ ∞

1

∫

Sd−1
|̂ν(rv)|2/(1−θ)rβ/(1−θ)−1 dσd−1(v) dr

)1−θ

(Hölder’s inequality)

≤
(∫

Rd
|μ̂(z)|2/θ |z|α/θ−d dz

)θ (∫

Rd
|̂ν(z)|2/(1−θ)|z|β/(1−θ)−d dz

)1−θ

= Jα,θ (μ)Jβ,1−θ (ν)

≤ Js,θ (μ)Jt,1−θ (ν)

< ∞.

Apply Proposition 7.5 to deduce that

dimH D(spt(μ), spt(ν)) = dimH spt(�μ,ν) ≥ γ

and then letting γ → α + β + 1 − d and then α → s and β → t proves the result.
Finally, Theorem 7.1 follows easily from Theorem 7.3. Since dimθ

F X is continuous
in θ ∈ [0, 1] by Theorem 1.5, we may choose θ ∈ [0, 1] such that

dimθ
F X + dim1−θ

F X

attains its supremum. Then, by definition, for all s < dimθ
F X and t < dim1−θ

F X , there
exist finite Borel measures μ and ν with supports contained in X such that

Js,θ (μ) < ∞
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and

Jt,1−θ (ν) < ∞.

The result then follows by applying Theorem 7.3.

8 Random sets andmeasures

There are many interesting connections between Fourier analysis and random pro-
cesses, see [13] especially. In part as an invitation to further investigation along these
lines, we close by presenting two applications of the Fourier spectrum to problems
concerning random sets and measures.

There is a well-known connection between Fourier decay of random measures
and decay of the moments E(|μ̂(z)|k), see [13]. In particular, a method of Kahane
allows one to transfer quantitative information about the moments to an almost sure
lower bound on the Fourier dimension. This technique has been used to show that
many random sets are almost surely Salem, including fractional Brownian images.
Kahane’s approach was formalised in a general setting by Ekström [4, Lemma 6]. We
recover and generalise Ekström’s lemma with a very simple proof.

Lemma 8.1 Supposeμ is a random finite Borel measure onR
d such that for θ ∈ (0, 1]

and all z ∈ R
d

E(|μ̂(z)|2/θ ) � |z|−s/θ .

Then dimθ
F μ ≥ s almost surely. In particular, if μ̂ is Hölder almost surely and for a

sequence of k ∈ N tending to infinity it holds that for all z ∈ R
d

E(|μ̂(z)|2k) � |z|−sk,

then dimF μ ≥ s almost surely. Further, if μ̂ is α-Hölder almost surely and there exists
ε > 0 and θ ∈ (0, 1) such that

E(|μ̂(z)|2/θ ) � |z|−(d+ε)

then

dimF μ ≥ 2αεθ

2α + dθ
> 0

almost surely.

Proof Let t < s. By Fubini’s theorem

E(Jt,θ (μ)1/θ ) ≤
∫

Rd
|z|t/θ−d

E(|μ̂(z)|2/θ ) dz �
∫

Rd
|z|(t−s)/θ−d dz < ∞
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which proves the first claim. The second claim then follows since μ̂ is almost surely
continuous and the third claim follows by combining the first claim with the bounds
from Theorem 1.3. ��

To bound the Fourier dimension from below using Lemma 8.1, we only require
a sufficiently good bound for a single moment, whereas [4, Lemma 6] (and [13,
Lemma 1, page 252] which its proof relies on) requires control of all the moments
simultaneously. Moreover, [4, Lemma 6] requires the measures to be almost surely
supported in a fixed compact set, whereas our random measures can be unbounded as
long as μ̂ is Hölder almost surely (with a random Hölder exponent). For both of these
improvements, our gain comes from continuity of the Fourier spectrum. Among other
things, Ekström uses the above approach to construct random images of compactly
supported measures with large Fourier dimension almost surely [4, Theorem 2]. Using
Lemma 8.1 this can be extended to include non-compactly supported measures. We
leave the details to the reader.

For our second application we consider an explicit random model based on frac-
tional Brownian motion in a setting where the Fourier dimension alone yields only
trivial results. Given α ∈ (0, 1) and integers n, d ≥ 1, let Bα : R

n → R
d be index α

fractional Brownian motion. See [13, Chapter 18] for the construction and a detailed
analysis of this process (Bα is Kahane’s (n, d, γ ) Gaussian process with γ = 2α).
In particular, [13, page 267, Theorem 1] gives that for a compact set Y ⊆ R

n with
dimH Y > s the image Bα(Y ) almost surely supports a measure μ satisfying

dimS μ ≥ dimF μ ≥ s/α. (8.1)

Combining this with Theorem 6.1 immediately gives the following.

Corollary 8.2 Let X ⊆ R
d and Y ⊆ R

n be non-empty Borel sets. If dimH Y > 0 and

α <
dimH Y

d − dimH X
,

then X + Bα(Y ) has positive d-dimensional Lebesgue measure almost surely. Other-
wise,

dimH(X + Bα(Y )) ≥ dimH X + dimH Y

α

almost surely.

Crucial to the above result is that the image Bα(Y ) is a Salem set almost surely.
We are interested in the following variant where this is no longer the case. Let V be a
k-dimensional subspace of R

d for integers 1 ≤ k < d and X ⊆ R
d and Y ⊆ R

n be
non-empty Borel sets. Let Bα : R

n → V be index α fractional Brownian motion with
V identified with R

k . We are interested in almost sure lower bounds for the dimension
of X + Bα(Y ). However, this time Bα(Y ) has Fourier dimension 0 and so non-trivial
estimates are not possible using only the Fourier dimension. If dimH X ≥ k, then
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we cannot improve on the trivial estimate dimH(X + Bα(Y )) ≥ dimH X since, for
example, X could be a subset of V with dimension k. However, if dimH X < k,
then we can use the Fourier spectrum to derive non-trivial bounds. Moreover, no
matter what values of α, dimH X and dimH Y we assume, we can never conclude that
X + Bα(Y ) has positive d-dimensional Lebesgue measure in general. For example,
consider X ⊆ V × F for a set F ⊆ V⊥ with zero (d − k)-dimensional Lebesgue
measure. In this case X+Bα(Y ) ⊆ V ×F has zero d-dimensional Lebesgue measure.

Corollary 8.3 Let V be a k-dimensional subspace of R
d for integers 1 ≤ k < d and

X ⊆ R
d and Y ⊆ R

n be non-empty Borel sets. Let Bα : R
n → V be index α fractional

Brownian motion with V identified with R
k . If dimH X < k, then almost surely

dimH(X + Bα(Y )) ≥ min

{

dimH X + dimH Y

α
− dimH X dimH Y

kα
, k

}

.

Proof By Theorem 6.1, the definition of the Fourier spectrum for sets, (8.1) and The-
orem 2.1,

dimH(X + Bα(Y )) ≥ min

{

sup
θ∈(0,1)

(
dim1−θ

F X + dimθ
F Bα(Y )

)
, d

}

≥ sup
θ∈(0,1)

(

(1 − θ) dimH X + min

{

kθ,
dimH Y

α

})

= min

{

dimH X + dimH Y

α
− dimH X dimH Y

kα
, k

}

as required. ��
In the above proof, we were forced to make the ‘worst case’ estimate dim1−θ

F X ≥
(1 − θ) dimH X since we made no assumptions about X . Clear improvements are
possible if we make assumptions about the Fourier dimension spectrum of X (for
example, if X is Salem) but we leave the details to the reader. We do not know if the
almost sure lower bounds given above are the best possible in general.

Question 8.4 Is the almost sure lower bound from Corollary 8.3 sharp?

The bounds are sharp for α ≤ dimH Y/k as the following example will show. Let
X = E × F where E ⊆ V and F ⊆ V⊥ with dimH F = 0. It is possible to arrange
for dimH X = dimP E and for this to assume any value in the interval [0, k]. Here
dimP is again the packing dimension. Let Y ⊆ R

n satisfy dimH Y = dimP Y . Then
X + Bα(Y ) = (E + Bα(Y )) × F and (for all realisations of Bα)

dimH(X + Bα(Y )) ≤ dimP(E + Bα(Y )) + dimH F = dimP(E + Bα(Y ))

≤ min

{

dimP E + dimP Y

α
, k

}

= min

{

dimH X + dimH Y

α
, k

}
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which coincides with the general almost sure lower bound for α ≤ dimH Y/k.
One might hope that this problem could be reduced to the simpler setting of Corol-

lary 8.2 by decomposing X+Bα(Y ) into slices parallel to V .We have some doubt over
this approach due to the following example. Consider the case where X is a ‘graph’
in the sense that X ⊆ V × F with the property that X ∩ (V + x) is a single point for
all x ∈ F . Despite the minimal fibre structure, there is no restriction on dimH X and it
can take any value in the interval [dimH F, dimH F+k]. Then (X + Bα(Y ))∩(V + x)
is a translation of Bα(Y ) for all x ∈ F and estimating the dimension of X + Bα(Y )

using standard slicing methods, e.g. Marstrand’s slice theorem, see [7, 18], cannot do
better than

dimH(X + Bα(Y )) ≥ min

{
dimH Y

α
, k

}

+ dimH F

almost surely. For α > dimH Y/k this estimate can be much poorer than the estimate
from Corollary 8.3 and can even be worse than the trivial lower bound dimH X .
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