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Abstract
We study the existence of standing waves for the following weakly coupled system of
two Schrödinger equations

⎧
⎨

⎩

i�∂tψ1 = − �
2

2m1
�ψ1 + V1(x)ψ1 − μ1|ψ1|2ψ1 − β|ψ2|2ψ1

i�∂tψ2 = − �
2

2m2
�ψ2 + V2(x)ψ2 − μ2|ψ2|2ψ2 − β|ψ1|2ψ2,

where V1 and V2 are radial potentials bounded from below. We address the case
m1 ∼ �

2 → 0, m2 constant, and prove the existence of a standing wave solution with
both nontrivial components satisfying a prescribed asymptotic profile. In particular,
the second component of such solution exhibits a concentrating behavior, while the
first one keeps a quantum nature.
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1 Introduction

The mathematical analysis of singularly perturbed semilinear elliptic equations and
systems has been the object of a wide range of studies in the last decades. Among the
many motivations, a big role is provided by models in Quantum Mechanics, and in
particular by the semiclassical analysis of Schrödinger-type equations. In this context,
one postulates that the classical Newtonian Mechanics should be recovered from the
Quantum one by letting the Planck constant � vanish. Accordingly, the wave func-
tion of the quantum particle should concentrate and collapse to one or more Dirac’s
deltas, which position should describe the sharp location of classical particles. When
different quantum waves interact, e.g. in the case of weakly coupled NLS systems, the
commonly investigated setting is the one in which all the waves concentrate in point
particles. From the analytical point of view, this study lets different challenges arise.
On the one hand, one may ask what is the limit concentrating profile at specific energy
levels, for instance for ground states; this is typically done exploiting variational meth-
ods and blow-up analysis. On the other hand, solutions concentrating with prescribed
shape and position can be constructed, mainly using the Lyapunov–Schmidt reduction
approach.

A largely studied model is the case of a binary mixture of Bose–Einstein con-
densates, usually described by the Gross-Pitaevskii system, namely a systems of two
weakly coupled nonlinear Schrödinger equations

⎧
⎨

⎩

i�∂tψ1 = − �
2

2m1
�ψ1 + V1(x)ψ1 − μ1|ψ1|2ψ1 − β|ψ2|2ψ1 in R

N

i�∂tψ2 = − �
2

2m2
�ψ2 + V2(x)ψ2 − μ2|ψ2|2ψ2 − β|ψ1|2ψ2 in R

N ,

for N = 1, 2, 3. Here,ψ1 andψ2 are the order parameters of the two components of the
mixture, m1 and m2 the corresponding masses, and Ṽ and W̃ the external potentials,
bounded from below. In general, the (trapping) potentials may be different, opening
interesting possibilities concerning the geometrical configurations of the condensates.
Finally, the interaction parameters μ1, μ2, β depend on the scattering lengths asso-
ciated to the different states. These interaction parameters can be fine-tuned across a
wide rage of values, profiting from the presence of a Feshbach resonance. For more
details on this model we refer to the book by Pitaevskii and Stringari [21], in particular
Chaps. 5 and 21.

Looking for standing waves (ψ1(x, t), ψ2(x, t)) = (ei E1t/�u(x), ei E2t/�v(x)) of
frequencies Ei we have that (u, v) solves

⎧
⎨

⎩

− �
2

2m1
�u + V (x)u = μ1u3 + βv2u in R

N ,

− �
2

2m2
�v + W (x)v = μ2v

3 + βu2v in R
N ,

(1)

with V (x) = E1 + Ṽ (x) and W (x) = E2 + W̃ (x), for Ei such that infRN V > 0 and
infRN W > 0. The usually studied case is the one in which μi , β are both very large,
or � is very small with respect to the other parameters, so that one is lead to consider
the singularly perturbed elliptic system

123



Partially concentrating standing waves...

{
−ε2�u + V1(x)u = μ1u3 + βuv2 in R

N ,

−ε2�v + V2(x)v = μ2v
3 + βu2v in R

N .
(2)

While the autonomous case, namely the case Vi ≡ λi with λi positive constants, has
beenwidely studied in the last two decades, (see the recent paper [25] for an exhaustive
list of references), a few results concerning the non-autonomous situation are known.
The first result seems due to Lin andWei [11] who studied the case of a binary mixture
in a singularly perturbed regime and in presence of trapping potentials. They prove
the existence of ground state solutions, derive their asymptotic behaviors as ε → 0
and show that each component has one maximum point (possibly the same), called
spike, which is trapped at the minimum points of the potentials Vi . The existence of
a concentrating ground state solutions was also established by Montefusco, Pellacci
and Squassina [15], Pomponio [22], Ikoma and Tanaka [7] and Byeon [4]. All the
previous papers are concerned with system (2) where both the equations are affected
by the presence of the small parameter ε, so that every wave (given by the components
of the vector solution) concentrates as ε approaches zero.

Here, we focus on another type of regime, as it may happen that only some of the
waves act in a semiclassical way, while the others persist in a quantum behavior. To
the best of our knowledge, this kind of analysis is not present in the PDEs literature
yet, and this paper is a first contribution in this direction.

More precisely, in our study we consider 2m1 = �
2 and m2 = 1

2 in (1), so that
(u, v) solves the following elliptic weakly coupled system

{
−�u + V (x)u = μ1u3 + βuv2 in R

N ,

−ε2�v + W (x)v = μ2v
3 + βvu2 in R

N ,
(3)

where ε2 := �
2. According to the previous discussion, along this paper we deal with

the system above in the singularly perturbed regime ε → 0. Moreover, our study will
deal with the case of μi > 0 and β < 0, corresponding to positive intraspecies and
to a negative interspecies scattering length, describing a repulsive interaction between
the condensates.

Our analysis will include the class of potentials satisfying the following assump-
tions.

(V1) V (x) = V (|x |) is a radially symmetric function satisfying

V ∈ C0(RN ) and inf
RN

V (x) > 0. (4)

Moreover, V is such that there exists ϒ ∈ C3(RN ) ∩ H2(RN ) unique positive
radial solution to

{
−�ϒ + V (x)ϒ = μ1ϒ

3

ϒ(x) → 0 as |x | → +∞,
(5)
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which is non-degenerate in the space H1
e (RN ) of functions even with respect to

each variables, i.e.

H1
e (RN )

:=
{
u ∈ H1(RN ) : u(x1, . . . , xi , . . . xN)=u(x1, . . . ,−xi , . . . , xN), i = 1, ..., N

}

(6)

that is the only solutions to

{ − �z + V (x)z = 3μ1ϒ
2z in R

N

z ∈ H1
e (RN )

is the trivial one.
(V2) The potential V is such that for every f ∈ Lm(RN ), 2 ≤ m < +∞, there exists

a unique solution u ∈ W 2,m(RN ) of the equation

−�u + V (x)u = f ,

and

‖u‖W 2,m (RN ) � ‖ f ‖Lm (RN ).

(W) W (x) is even with respect to all the variables,

W ∈ C3(RN ) and inf
RN

W (x) > 0. (7)

Our main result is stated as follows.

Theorem 1.1 Let N = 2, 3, and suppose that (V1), (V2) and (W) hold.
Assume β < 0. Let

ω(x) := W (x) − β2ϒ(x), (8)

set ω0 := ω(0) > 0 and assume that

∂2ω

∂x21
(0) < 0. (9)

Then there exists ε0 > 0 such that for every ε ∈ (0, ε0) there exists a solution (uε, vε)

of system (3) even with respect to each variable and having the following asymptotic
profile as ε → 0

uε(x) ∼ ϒ(x), vε(x) ∼
√

ω0

μ2

[

U

(

ω0
x − Pε

ε

)

+U

(

ω0
x + Pε

ε

)]

, (10)
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where ϒ solves (5), U is the positive radial solution of

− �U + ω0U = μ2U
3 in R

N (11)

and the peaks Pε and −Pε collapse to the origin as

± Pε = ρε(±1, 0, . . . , 0), with lim
ε→0+

ρε

ε ln(1/ε)
= 1√

ω0
. (12)

Theorem 1.1 states the existence of a solution whose first component looks like
a genuine solution to (5), in particular it does not concentrate, and whose second
component concentrates at two opposite points which collapse to the origin as ε goes
to 0. As a consequence of the coupling in the equations, the first component of (3)
plays the role of an additional potential in the singularly perturbed second equation,
so that the concentration will be triggered by the modified potential W − βϒ2.
Because of the assumption β < 0, we will obtain a solution in the repulsive regime,
and, when the origin is a maximum point ofW our solution exists for every β negative;
while when ∂211W (0) > 0 we obtain a solution for β < β0 < 0 (see (14)).

Let us make some comments.

Remark 1.2 We point out that, in case ϒ satisfies

�ϒ(0) �= 0, (13)

then assumption (9) is satisfied as long as

β < −
∂2W
∂x1

(0)

2ϒ(0)| ∂2ϒ
∂x1

(0)|
. (14)

On the other hand, assumption (13) is verified in case V is radially non-decresing near
0 and ϒ is radial and has a (local) strict maximum at 0, as one can verify applying
Hopf’s Lemma. Indeed, first we observe that, in such a case, for any i the function
∂iϒ solves

�∂iϒ − V ∂iϒ = −3ϒ2∂iϒ + ϒ∂i V ≥ 0 in �i := {|x | ≤ r0 xi ≥ 0} ,

for r0 small, because ∂iϒ ≤ 0 and ∂i V ≥ 0 in �i . Moreover

0 = ∂iϒ(0) = max
�i

∂iϒ.

By Hopf’s Lemma we deduce ∂i iϒ(0) < 0 and (13) follows.

Remark 1.3 It is useful to recall the classical results concerning the case of constant
potential, i.e.

− �U + λU = μU 3 in R
N , U ∈ H1(RN ). (15)
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It is well known that (15) has an unique positive solution which is radially symmetric
and also that the set of solution of the corresponding linearized equation

−�z + λz = 3μU 2z in R
N , z ∈ H1(RN )

is spanned by the N partial derivatives ∂U
∂xi

which are odd in each variable. In addition,
U is radially decreasing and it satisfies the following exponential decay (see [2, 3, 9])

lim|x |→∞U (x)e
√

λ|x ||x | N−1
2 = C0 > 0, lim|x |→∞

U ′(x)
U (x)

= −1. (16)

Remark 1.4 We observe that a class of potentials V which satisfy hypotheses (V1)

and (V2) includes both the constant potentials and, at least in dimension N = 3, the
trapping ones, like V (x) = λ+|x |m for some λ > 0 andm > 0. Indeed, (V1) follows
from Remarks 1.2, 1.3 and [5, Corollary 1.5 and Appendix A]. On the other hand,
(V2) follows by standard elliptic theory in the case of constant potentials (see e.g.
[24, Thm. 3, p. 135]), while for trapping ones it is a consequence of [16, 17, 23] (as
we mentioned, [23] deals only with dimensions N ≥ 3; we believe that a version of
such results should hold also in lower dimension, but this is far beyond the aim of this
paper).

Remark 1.5 Our result relies on the simmetry of the potentialsV andW which allows to
build symmetric solutions with symmetric peaks Pε and −Pε collapsing to the origin.
We strongly believe that a similar construction could be carried out in a more general
setting in the spirit of Kang and Wei [8], when the radial solution of the first equation
(5) is non-degenerate in the whole space H1(RN ) (i.e. V is a trapping potential as in
[5, 23]). In that case, it should be possible to build a solutions whose first component
resembles the radial solution ϒ of (5) and the second component has two different
peaks collapsing to a maximum point of the modified potential W − βϒ2.

Remark 1.6 We will prove Theorem 1.1 using a classical Lyapunov–Schmidt reduc-
tion. This will allow us to build each component with a prescribed profile: the first
component will look as one bump solution for ε sufficiently small, while the second
will develop two spikes collapsing at the origin and will be exponentially small far
from them. In performing this classical procedure, we faced some new difficulties.
First of all, in view of the square growth of the coupling term, we need to correct the
ansatzs of both the components to detect the suitably reduced problem. Moreover, the
use of the regularity theory will be crucial in order to make suitable expansion of all
the terms involved in the construction.

Our existence result does not cover the case N = 1, as in this case the size of
the error term does not produce the suitable smallness of the reminders terms in the
ansatz despite of the presence of the correction term. We think that this point could be
managed introducing further correction terms, again in both the equations, which at
the prices of heavy technicality should allow to construct a remaining term sufficiently
small.
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Remark 1.7 Our result deals with the case of a binary mixture and it is natural to ask
if our construction can be extended to the case of a larger number of equations, i.e.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�u + V (x)u = μ1u3 + u
k∑

j=1
β jv

2
j in R

N ,

−ε2�v j + Wj (x)v j = μ jv
3
j + v j

(

β j u2 +
k∑

i �= j
βi jv

2
i

)

in R
N , j = 2, . . . , k.

In particular, we wonder if it is possible to build a solution whose components v j

concentrate at different pairs of points (Pε
j ,−Pε

j ) collapsing to the origin as ε goes
to zero.

Remark 1.8 The unperturbed version of system (2) (let us say ε = 1) was firstly
studied by Peng and Wang [19] who (in presence of radial potentials) constructed an
unbounded sequence of non-radial solutions exhibiting an arbitrarily large number
of peaks. Their result has been successively extended to the case of more than two
equations by Pistoia and Vaira [20] and very recently by Li, Wei and Wu [10].
We wonder if it is possible, by combining the ideas used in the above papers, to
produce a solution to system (3) with ε = 1 whose first component looks like the
solution to (5) and second component concentrates at an arbitrary large number of
points approaching infinity as ε goes to zero.

Remark 1.9 Let us finally observe that the existence of solutions to the system (2)
is closely related to the study of the normalized solutions for nonlinear Schrödinger
systems. We refer the reader to the recent papers by Lu [14], Liu and Yang [13], Guo
and Xie [6] and Liu and Tian [12]. In particular, it would be interesting to produce
normalized solutions using as a parameter their L2-norms, in the spirit of the results
obtained by Pellacci, Pistoia, Vaira and Verzini [18].

The paper is organized as follows. In the next section we set the problem, by
introducing the the main blocks of our construction and by reformulating problem
(3) as a system of two equations, one set in an infinite dimensional set, the other,
called the reduced problem, in a finite dimensional one. In Sect. 3 we solve the the
infinite dimensional equation. Finally, in Sect. 4 we study the reduced problem and
we complete the proof of Theorem 1.1.

2 Setting of the problem

Let us introduce the Banach spaces

H2
V :=

{

u ∈ H2(RN ) :
∫

RN
V (x)u2 < +∞

}

,

H2
Wε

:=
{

u ∈ H2(RN ) :
∫

RN
W (εx)u2 < +∞

}

.

(17)
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equipped with the norms

‖u‖V :=
⎛

⎝

∫

RN

∑

|α|=2

|Dαu|2 +
∫

RN
|∇u|2 +

∫

RN
V (x)u2

⎞

⎠

1
2

and

‖u‖ε :=
⎛

⎝

∫

RN

∑

|α|=2

|Dαu|2 +
∫

RN
|∇u|2 +

∫

RN
W (ε)(x)u2

⎞

⎠

1
2

Henceforth, we omit the subscript ε in u, v and we agree that a � b means |a| ≤ c|b|
for some constant c which does not depend on a and b.
Performing a change of variable in the second equation, we are lead to seek a solution
(u, v) of

{
−�u + V (x)u = μ1u3 + βuv2

( x
ε

)
in R

N ,

−�v + W (εx)v = μ2v
3 + βu2(εx)v in R

N .
(18)

in the space

X = {(u, v) ∈ H2
V × H2

Wε
u, v are even functions (see (6))}.

In the next subsection, we introduce the main building blocks in the construction of
our solution.

2.1 The ansatz and the correction terms

In view of assumptions (V1) and (V2), we can consider ϒ the solution of

− �ϒ + V (x)ϒ = μ1ϒ
3 in R

N (19)

and U be the solution of

− �U + ω0U = μ2U
3 in R

N , (20)

where, since β < 0

ω0 := W (0) − βϒ2(0) > 0.

We look for a solution (u, v) of (18) of the form

u(x) = ϒ(x) + βε(x)︸ ︷︷ ︸
=:�ε(x)

+ϕ(x), v(x) = Uε(x) + β�ε(x)︸ ︷︷ ︸
:=�ε(x)

+ψ(x). (21)
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where

Uε(x) := U

(

x − Pε

ε

)

+U

(

x + Pε

ε

)

= U−Pε (x) +UPε (x)

and the concentration points satisfy (see (12))

Pε = ρεP0 = ρε(1, 0, . . . , 0), ρε

= dε ln(1/ε), d ∈
(

1√
ω0

− δ,
1√
ω0

+ δ

)

for some δ > 0. (22)

The functionε and�ε, are suitable correction terms, whose existence and properties
are established in Lemma 2.1, 2.3. The reimander terms ϕ and ψ belong to the space

K⊥ :=
{

(ϕ, ψ) ∈ X
∫

RN
ψ(x)Zε(x)dx = 0

}

,

where K := span{(0, Zε)} ⊂ H2 and

Zε(x) := ∂1U
(
x + Pε

ε

)
− ∂1U

(
x − Pε

ε

)
, (23)

solves the linear equation

− �Zε + ω0Zε = 3μ2

(
U 2

Pε
∂x1UPε −U 2−Pε

∂x1U−Pε

)
. (24)

Moreover, it is worthwhile to point out that all the functions ε, Uε and Zε are even
functions.

In the following we introduce the two correction terms we need in our construction
of the solution. Let us start from the term in the first component.

Lemma 2.1 There exists a unique even ε ∈ H2
V (RN ) solution of the equation

− �ε +
(
V (x) − 3μ1ϒ

2(x)
)

ε = ϒ(x)U 2
ε

( x

ε

)
. (25)

Moreover, ε satisfies ‖ε‖W 2,m (RN ) � ε
N
m and ‖ε‖

C1,1− N
m (RN )

� ε
N
m for any

m ≥ 2.

Proof By exploiting assumptions (V1) − (V2) we deduce that for any even function
f ∈ L2(RN ) the problem

−� +
(
V (x) − 3μ1ϒ

2(x)
)

 = f in R
N

has a unique even solution  such that ‖‖V ≤ c‖ f ‖L2(RN ), for some constant c
which does not depend on f . Now we point that the function f (x) = ϒ(x)U 2

ε

( x
ε

)
is

123



B. Pellacci et al.

an even function with
∥
∥
∥ϒU 2

ε

( ·
ε

)∥
∥
∥
L2(RN )

� ε
N
2 .

Indeed, by scaling x = εy we immediately deduce

∫

RN
ϒ2(x)U 4

ε

( x

ε

)
dx �

∫

RN
ϒ2(x)

(

U 4
(
x − Pε

ε

)

+U 4
(
x + Pε

ε

))

dx � εN .

(26)

As a direct consequence, we infer

‖ε‖H2(RN ) � ε
N
2 .

This implies that ε ∈ C0, 12 (RN ) and ‖ε‖
C0, 12 (RN )

� ε
N
2 .

Now, we write (25) as

−� + V (x) = −3μ1ϒ
2(x)(x)

︸ ︷︷ ︸
= f1(x)

+ϒ(x)Uε

( x

ε

)

︸ ︷︷ ︸
= f2(x)

in R
N

and we observe that, reasoning as in (26), we deduce that

‖ f1‖Lm (RN ) � ε
N
2 and ‖ f2‖Lm (RN ) � ε

N
m , for any m ≥ 2;

then, assumptions (V2) implies,

‖ε‖W 2,m (RN ) � ε
N
m ,

so that, choosing m > N , Sobolev embedding W 2,m(RN ) ↪→ C1,1− N
m (RN ) yields

the claim. ��
Remark 2.2 It is useful to remark that by Lemma (2.1) since ∇ε(0) = 0 we deduce

|ε(y) − ε(0)| � |y|2− N
m ‖ε‖

C1,1− N
m (RN )

� ε
N
m |y|2− N

m (27)

Moreover, since ∇ϒ(0) = 0 we also have

|ϒ(y) − ϒ(0)| � |y|2‖ϒ‖C2(RN ) � |y|2. (28)

Lemma 2.3 There exists a unique �ε ∈ H2(RN ), solution of the equation

− ��ε +
(
ω0 − 3μ2

(
U 2

Pε
(x) +U 2−Pε

(x)
))

�ε = 2βε(0)ϒ(0)Uε(x). (29)
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Moreover, ‖�ε‖H2(RN ) � ε
N
2 and there exist B, γ, R0 > 0 such that

|�ε(x)| � εN/2
(
e−γ |x+ Pε

ε
| + e−γ |x− Pε

ε
|) , ∀ |x | ≥ R0.

Proof As U is radial, there exists a unique � radial solution to

− �� +
(
ω0 − 3μ2U

2(x)
)

� = U (x), (30)

then the function �ε defined as

�ε(x) = 2βε(0)ϒ(0)

[

�

(

x + Pε

ε

)

+ �

(

x − Pε

ε

)]

solves (29). The regularity properties of� are consequence of the regularity properties
ofU , while the bound from above of the H2(RN ) norm follows from the upper bound
on the L∞(RN ) norm of ε.

The exponential decay of �ε will follow from the analogous decay of �. In order
to prove this property, let us first show that there exists R > 1 such that �(r) ≥ 0 for
every r > R.
By contradiction there exists a sequence rn → +∞ of minimum point at a negative
level for �. Then

0 > −�rr (rn) − N − 1

r
�r (rn) = −ω0�(rn) + 3μ2U

2(rn)�(rn) +U (rn)

≥ −�(rn)
(
ω0 − 3μ2U

2(rn)
)

≥ 0

as soon as rn is sufficiently large so that the parenthesis is positive.
Let us now fix A > 0 such that 3μ2U� +1 ≤ A and let v(r) = Be−γ r with γ 2 < ω0.
Then w = v − � solves

−�w + ω0w = v

(

ω0 − γ 2 + N − 1

r
γ

)

−U (3μ2�U + 1)

≥ v

(

ω0 − γ 2 + N − 1

r
γ

)

− AU

≥ Be−γ r
(

ω0 − γ 2 + N − 1

r
γ

)

− Ae−√
ω0r

= e−γ r
[

B

(

ω0 − γ 2 + N − 1

r
γ

)

− Ae−(
√

ω0−γ )r
]

> 0

as γ 2 < ω0 for r > R1 sufficiently large. In addition, we can choose B such that
Be−γ r ≥ max|x |=R1 �, then the maximum principle yields 0 ≤ � ≤ v for |x | > R1.

��
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Remark 2.4 Let us point out that assumptions (V1) and (V2) are satisfied by constant
potentials as well as by potentials of the type V (x) = |x |m with m > 0 as shown in
[5, 23].

Remark 2.5 As a consequence of Sobolev embedding, the bounds from above stated
in Lemma 2.1 hold for �ε as well.

2.2 Rewriting the problem

Let us introduce the orthogonal projections

�̃ : L2(RN ) �→ K̃ , and �̃⊥ : L2(RN ) �→ K̃⊥

where

K̃ := span{(0, Zε)} ⊂ L2,

K̃⊥ :=
{

( f , g) ∈ L2(RN ) × L2(RN ) :
∫

RN
gZεdx = 0

}

.

Plugging the ansatz u = �ε +ϕ and v = �ε +ψ (see (21)) into (18), one obtains the
following equivalent system

{
�̃ {L(ϕ, ψ) − E − N (ϕ, ψ)} = 0

�̃⊥ {L(ϕ, ψ) − E − N (ϕ, ψ)} = 0
(31)

Here the linear operator L = (L1,L2) is defined by

L1(ϕ, ψ) := −�ϕ + V (x)ϕ −
(
3μ1�

2
ε + β�2

ε

( x

ε

))
ϕ − 2β�ε

( x

ε

)
�εψ

( x

ε

)

L2(ϕ, ψ) := −�ψ + W (εx)ψ −
(
3μ2�

2
ε + β�2

ε(εx)
)

ψ − 2β�ε�ε(εx)ϕ(εx).

(32)

The error term E = (E1, E2) is defined by

E1 := 3μ1ϒ(x)β22
ε + μ1β

33
ε + β3ϒ(x)�ε

( x

ε

)
+ 2β2ϒ(x)Uε

( x

ε

)
�ε

( x

ε

)

+β2ε(x)U
2
ε

( x

ε

)
+ β4ε�ε

( x

ε

)
+ 2β2εUε

( x

ε

)
�ε

( x

ε

)
(33)

E2 := (ω0 − ω(εx)) �ε + 2β2Uε (ϒ(εx)ε(εx) − ε(0)ϒ(0))

+μ2(U
3
ε −U 3

Pε
−U 3−Pε

) + 3βμ2

(
U 2

ε −U 2
Pε

−U 2−Pε

)
�ε

+β32
ε(εx)�ε + 2β3�εϒ(εx)ε(εx) + 3μ2β

2Uε�
2
ε + μ2β

3�3
ε (34)

where

ω(x) := W (x) − βϒ2(x) and ω(0) = ω0.
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Finally, the nonlinear term N = (N1,N2) is defined by

N1(ϕ, ψ) :=μ1ϕ
2 (3�ε + ϕ) + βϕψ

( x

ε

) (
2�ε

( x

ε

)
+ ψ

( x

ε

))
+ β�εψ

2
( x

ε

)

N2(ϕ, ψ) :=μ2ψ
2 (3�ε + ψ) + βψϕ(εx) (2�ε(εx) + ϕ(εx)) + β�εϕ

2(εx).

3 The linear theory

Let us start the study of the second equation in (31) by proving the following crucial
result.

Lemma 3.1 There exists c > 0, and ε0 > 0 such that for every ε ∈ (0, ε0) and for
every β < 0 it results

‖�̃⊥L(ϕ, ψ)‖L2(RN )×L2(RN ) ≥ c‖(ϕ, ψ)‖H2
V (RN )×H2

ε (RN ), ∀(ϕ, ψ) ∈ K⊥

Proof We argue by contradiction and suppose that there exist εn → 0 and (ϕn, ψn) ∈
K⊥ with ‖(ϕn, ψn)‖H2(RN )×H2(RN ) = 1 such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�ϕn + V (x)ϕn =
[

3μ1�
2
εn

+ β�2
εn

(
x

εn

)]

ϕn + 2β�εn�εn

(
x

εn

)

ψn

(
x

εn

)

+ fn

−�ψn + W (εnx)ψn = [
3μ2�

2
εn

+ β�2
εn

(εnx)
]
ψn + 2β�εn�εn(εnx)ϕn(εnx) + gn

+ tn Zεn

(35)

where fn, gn → 0 in L2(RN ),
∫

RN fn Zεn = ∫

RN gn Zεn = 0, tn ∈ R and Zεn is given
in (23).

Step 1. Let us first show that ϕn → 0 strongly in H2
V (RN ). Then by Sobolev

embeddings ϕ → 0 in L∞(RN ). As ϕn is bounded in H1, there exists ϕ ∈ H1(RN )

such that, up to a subsequence, ϕn → ϕ weakly in H1(RN ), strongly in L2
loc(R

N ) and
almost everywhere in R

N . Taking into account that

�2
εn

= ϒ2 + βεn (βεn + 2ϒ)

and testing the first equation in (35) by χ ∈ C∞
0 (RN ) we get

∫

RN
∇ϕn∇χ + V (x)ϕnχ =

∫

RN

[

3μ1ϒ
2 + 3μ1βεn (βεn + 2ϒ) + β�2

εn

(
x

εn

)]

ϕnχ

+
∫

RN
2β(ϒ + βεn )�ε

(
x

εn

)

ψn

(
x

εn

)

χ +
∫

RN
fnχ.

By applying Lemma 2.1 one deduces that

∣
∣
∣
∣

∫

RN
ε(βεn + 2ϒ)ϕnχ

∣
∣
∣
∣ → 0.
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Moreover, by applying Lemma 2.3 we obtain

∫

RN
�2

εn

(
x

εn

)

|ϕnχ | � ‖ϕn‖2
∫

RN

[

�4
εn

(
x

εn

)] 1
2

� ε
N
2
n ‖�2

εn
‖L2(RN ).

Arguing analogously on the other terms on the right hand side, it follows that ϕ solves

−�ϕ + V (x)ϕ = 3μ1ϒ
2ϕ in R

N .

Since ϕ is an even function, by the assumtpion (V1) we get ϕ ≡ 0.
In order to show that ϕn → 0 strongly in H2

V (RN ), it is enough to exploit
Lemma 2.1 and 2.3 to verify that the L2(RN )−norm of the right hand side
(R.H.S. for short) of the first equation goes to zero, and then apply hypothe-
sis (V1). Indeed, as ‖(ϕn, ψn)‖H2

V (RN )×H2
W (RN ) = 1, Sobolev embeddings yield

‖ϕn‖L2(RN ), ‖ψn‖L2(RN ) ≤ 1 and ‖ϕn‖L∞(RN ) ≤ 1. Then

‖R.H .S.‖L2(RN ) �‖ϒ2ϕn‖L2(RN ) +
∥
∥
∥
∥

[

εn (βεn + 2ϒ) + β�2
εn

(
x

εn

)]

ϕn

∥
∥
∥
∥
L2(RN )

+
∥
∥
∥
∥(ϒ + βεn )�ε

(
x

εn

)

ψn

(
x

εn

)∥
∥
∥
∥
L2(RN )

+ ‖ fn‖L2(RN )

�‖ϒ2ϕn‖L2(RN ) + ‖εn‖L∞(RN )‖ϕn‖L2(RN ) + ε
N
2 ‖ϕn‖L∞(RN )

+ ε
N
2 ‖ψn‖L2(RN ) + ‖ fn‖L2(RN )

= o(1),

wherewe have also taken into account thatϒ decays exponentially andϕ → 0 strongly
in L2

loc(R
N ), so that we also have

∫

RN
ϒ4ϕ2

n = o(1).

Step 2.We now study the second equation in (35) and we prove that tn → 0. We test
with Zεn and we remind that Zεn solves

−�Zεn + ω0Zεn = 3μ2

(
U 2

Pεn
∂x1UPεn

−U 2−Pεn
∂x1U−Pεn

)
.

Therefore we get

tn

∫

RN
Z2

εn
=
∫

RN

(
W (εnx) − βϒ2(εnx) − ω0

)
Zεnψn

−3μ2

∫

RN

[
U 2

εn
Zεn −

(
U 2−Pεn

∂x1U−Pεn
−U 2

Pεn
∂x1UPεn

)]
ψn

−2β
∫

RN
�εn�(εnx)ϕn(εnx)Zεn − 2β2

∫

RN
ϒ(εnx)εn (εnx)ψn Zεn
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−β3
∫

RN
2(εnx)ψn Zεn − 3μ2β

∫

RN
�εn

(
2Uεn + β�εn

)
ψn Zn

�
∥
∥
∥

(
W (εnx) − βϒ2(εnx) − ω0

)
Zεn

∥
∥
∥
L2(RN )

‖ψn‖L2(RN )

+
∥
∥
∥U 2

εn
Zεn −

(
U 2−Pεn

∂x1U−Pεn
−U 2

Pεn
∂x1UPεn

)∥
∥
∥
L2(RN )

‖ψn‖L2(RN )

+‖ϕn‖L∞(RN ) + ‖εn‖L∞(RN ) + ‖�εn‖L∞(RN )

= o(1). (36)

Indeed, we use the exponential decay of U and of its derivatives. Since ω0 =
W (0) − βϒ2(0) we get

|W (y) − βϒ2(y) − ω0| � |y| if |y| ≤ σ

for some σ > 0 and so

∥
∥
∥

(
W (εnx) − βϒ2(εnx) − ω0

)
Zεn

∥
∥
∥
L2(RN )

= o(1).

Moreover a direct computation and Lemma A.2 shows that

∥
∥
∥U 2

εn
Zεn −

(
U 2−Pεn

∂x1U−Pεn
−U 2

Pεn
∂x1UPεn

)∥
∥
∥
L2(RN )

= o(1).

It is possible to show that all the other integral terms on the left hand side tend to zero
by applying Lemma 2.1 and 2.3, Step 1. and Sobolev embeddings.

Finally, since it is immediate to check that ‖Zεn‖L2(RN ) = C + o(1) for some
C > 0, we deduce that tn = o(1).
Step 3. Let us now introduce the sequences

ψ̃−Pn (x) := ψn

(

x − Pεn

εn

)

, ψ̃+Pn (x) := ψn

(

x + Pεn

εn

)

.

We will show that (up to subsequences) ψ̃±Pn⇀0 weakly in H1(RN ) and strongly in
L2
loc(R

N ).

Both these sequences are bounded in H2
Wεn

(RN ), so that, up to subsequences,

ψ̃±Pn⇀ψ̃± weakly in H1(RN ) and strongly in L2
loc(R

N ). Let us first show that
ψ̃+ ≡ 0, then an analogous argument will yield that ψ̃+ ≡ 0.
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In the following we will use the notation ψ̃+Pn (x) = ψ̃Pn (x). Recalling (35), the
function ψ̃Pn satisfies the equation

−�ψ̃Pn + W (εnx + Pn)ψ̃Pn = 3μ2

(

U (x) +U

(

x + 2
Pn
εn

)

+ β�εn

(

x + Pn
εn

))2

ψ̃Pn

+ βϒ2(εnx + Pn)ψ̃Pn

+ βεn (εnx + Pn)(βεn (εnx + Pn) + 2ϒ(εnx + Pn))ψ̃Pn

+ 2β�εn

(

x + Pn
εn

)

�εn

(

x + Pn
εn

)

ϕn(εnx + Pn)

+ gn

(

x + Pn
εn

)

+ tn Zεn

(

x + Pn
εn

)

.

Arguing as in the first step, applying Lemma 2.1 and Lemma 2.3, and taking into
account that ‖ϕn‖L∞(RN ) → 0, we obtain that the limit function ψ̃+ solves the limit
problem

− �ψ̃+ + ω0ψ̃+ = 3μ2U
2ψ̃+ in R

N . (37)

On the other hand, the function ψ̃+ inherits the symmetry properties of the function
ψ̃±Pn , namely it is even in the last two variables and it satisfies the orthogonality
condition

∫

RN
ψ̃+(y)∂1U (y)dy = 0,

as

0 =
∫

RN
ψn(x)Zεn (x)dx =

∫

RN
ψ̃+Pn (y)

(

∂1U (y) − ∂1U

(

y − 2
Pn
εn

))

dy

=
∫

RN
ψ̃+(y)∂1U (y)dy + o(1).

This, together with (37), yields ψ̃+ ≡ 0.
Step 4.Let us prove that a contradiction arises. First, let us prove that ‖ψn‖L2(RN ) =

o(1). By testing the second equation withψn , and recalling that β < 0 in view of (14),
we deduce that

∫

RN
|∇ψn|2 + W (εnx)ψ

2
n =

∫

RN
3μ2U

2
εn

ψ2
n + β

∫

RN
ϒ2(εnx)ψ

2
n

+
∫

RN
βεn (εnx)(βεn (εnx) + 2ϒ(εnx))ψ

2
n

+
∫

RN
2βUεn�ε(εnx)ϕn(εnx)ψn +

∫

RN
gnψn

�
∫

RN
3μ2U

2
εn

ψ2
n + o(1),
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where we have repeatedly applied Lemma 2.1, 2.3, that ‖φn‖L∞(RN ) = o(1) and that
gn → 0 strongly in L2(RN ). Concerning the last term, we have that

∫

RN
U 2

εn
ψ2
n =

∫

RN
U 2

Pεn
ψ2
n +

∫

RN
U 2−Pεn

ψ2
n + 2

∫

RN
UPεn

U−Pεn
ψ2
n

�
∫

RN
U 2ψ̃2+Pn +

∫

RN
U 2ψ̃2−Pn + ‖ψn‖L∞(RN )

∫

RN
UPεn

U−Pεn
= o(1)

because ψ̃±Pn → 0 strongly in L2
loc(R

N ) (as shown in the previous step) andU decays
exponentially. This implies that ψn → 0 strongly in H1(RN ), thanks to (7).
Finally, let us prove that a contradiction arises by showing that alsoψn → 0 strongly in
H2
Wε

(RN ). In order to show this, it is enough to use hypothesis (V2) and to check that

the L2(RN )−norm of the right hand side of the second equation in (35) goes to zero.
Indeed, by Lemma 2.1, taking into account that ‖ψn‖L2(RN ) → 0 and ‖ϕn‖L∞(RN ) →
0

‖R.H .S.‖L2(RN ) � ‖3μ2U
2
εn

ψn‖L2(RN ) +
∥
∥
∥
(
ϒ(εnx) + βεn (εnx)

)2
ψn

∥
∥
∥
L2(RN )

+ ∥
∥Uεn

(
ϒ(εnx) + βεn (εnx)

)
ϕn (εnx)

∥
∥
L2(RN )

+ ‖gn‖L2(RN )

+ |tn|‖Zεn‖L2(RN )

� ‖ψn‖L2(RN ) + ‖ϕn‖L∞(RN ) + ‖gn‖L2(RN ) + |tn|
= o(1)

��
Remark 3.2 Let us observe that the hypothesisβ < 0 is needed only in the proof of Step
4. Moreover, it is not needed in the case of a constant potential W (x) ≡ W (0) = W0.
Indeed, in this case if β ≥ 0

βϒ2(x) ≤ βϒ2(0) < W (0), as ω0 > 0.

so that the sequence
(
W0 − βϒ2(εnx)

)
ψ2
n ≥ 0 for every x and the final contradiction

can be obtained applying Fatou Lemma. However, even if at this point we can manage
β ≥ 0 (in the case of W constant), the study of the finite dimensional problem will
require β < 0 as shown in hypothesis (14).

3.1 The size of the error term

In this subsection we compute the L2(RN ) of E which will determine the norm of the
remainder term (ϕ, ψ).

Proposition 3.3 There exists ε0 > 0 such that for every ε ∈ (0, ε0) it results

‖E1‖L2(RN ) = O(εN ) and ‖E2‖L2(RN ) = O
(
ε2| ln ε|2

)
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so that,

‖E‖L2(RN )×L2(RN ) = O(ε2| ln ε|2)

Proof Let us start studying E1 given in (33). We have

‖E1‖L2(RN ) � ‖ϒ2
ε‖L2(RN ) + ‖3

ε‖L2(RN ) +
∥
∥
∥εU

2
ε

( ·
ε

)∥
∥
∥
L2(RN )

+
∥
∥
∥ϒ�ε

( ·
ε

)∥
∥
∥
L2(RN )

+
∥
∥
∥ϒUε

( ·
ε

)
�ε

( ·
ε

)∥
∥
∥
L2(RN )

+
∥
∥
∥ε�ε

( ·
ε

)∥
∥
∥
L2(RN )

+
∥
∥
∥εUε

( ·
ε

)
�ε

( ·
ε

)∥
∥
∥
L2(RN )

.

Lemma 2.1 and Sobolev embedding imply that (see Remark 2.2) ‖ε‖∞ � ε
N
2 . Then

we deduce

‖ϒ2
ε‖L2(RN ) � ‖ε‖2∞ � εN , ‖3

ε‖L2(RN ) � ε
3N
2

and

∥
∥
∥εU

2
ε

( ·
ε

)∥
∥
∥
L2(R3)

=
(∫

RN
2

εU
4
ε

( x

ε

)) 1
2

� ε
N
2

(∫

RN
U 4

ε

( x

ε

)) 1
2

� εN .

Moreover by applying Lemma 2.3 we obtain

∥
∥
∥ϒ�ε

( ·
ε

)∥
∥
∥
L2(RN )

� ε
N
2 ‖�ε‖H2(RN ) � εN .

As far as concern the last three terms, similar computations show that

∥
∥
∥ϒUε

( ·
ε

)
�ε

( ·
ε

)∥
∥
∥
L2(RN )

+
∥
∥
∥ε�ε

( ·
ε

)∥
∥
∥
L2(RN )

+
∥
∥
∥εUε

( ·
ε

)
�ε

( ·
ε

)∥
∥
∥
L2(RN )

� εN .

Let us now study the L2(RN ) norm of the terms in (34). In view of (7) and (12),
recalling that x0 = 0 is a critical point of ω by symmetry,

‖(ω0 − ω(εx)Uε‖L2(RN ) �
(∫

RN
ε4|x |4U 2

(

x − Pε

ε

)

dx

) 1
2

�
(∫

RN
ε4
∣
∣
∣
∣x + Pε

ε

∣
∣
∣
∣

4

U 2 (x) dx

) 1
2

� ρ2
ε � ε2| ln ε|2.

(38)

On the other hand Lemma 2.3 allows us to deduce that
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‖(ω0 − ω(εx)�ε‖L2(RN )

�
∫

RN

(

ε4
∣
∣
∣
∣x + Pε

ε

∣
∣
∣
∣

4

�2(x)

) 1
2

� ρ2
ε ‖�‖L2(RN ) � ρ2

ε � ε2| ln ε|2.

By (27) one has

|ε(εx) − ε(0)| ≤ ε
N
m |εx |2− N

m = ε2|x |1− N
m

so that, we obtain

‖Uε (ϒ(εx)ε(εx) − ε(0)ϒ(0)) ‖L2(RN ) �‖Uεϒ(εx)(ε(εx) − ε(0))‖L2(RN )

+ ‖Uε(ϒ(εx) − Y (0))ε(0)‖L2(RN )

�ε2

⎛

⎝

∫

RN

(

U (x)

∣
∣
∣
∣x + Pε

ε

∣
∣
∣
∣

2− N
m
)2

dx

⎞

⎠

1
2

+ ε2‖ε‖L∞(RN )

⎛

⎝

∫

RN

(

U (x)

∣
∣
∣
∣x + Pε

ε

∣
∣
∣
∣

2
)2

dx

⎞

⎠

1
2

�ε2
(ρε

ε

)2− N
m + ε2+

N
2

(ρε

ε

)2

�ε2| ln ε|2− N
m + ε2+

N
2 | ln ε|2 � ε2| ln ε|2− N

m

By Lemma A.2 - (i) one also has

‖U 3
ε −U 3

Pε
−U 3−Pε

‖L2(RN ) � ‖U 2
Pε
U−Pε‖L2(RN ) + ‖U 2−Pε

UPε‖L2(RN )

�
(∫

RN
U 2

(

x − 2
Pε

ε

)

U 4(x) dx

) 1
2

� e−2
√

ω0
ρε
ε

(ρε

ε

)− N−1
2

� ερε � ε2| ln ε|.

Moreover, conclusion (ii) of Lemma A.2 and (12) yield

‖
(
U 2

ε −U 2
Pε

−U 2−Pε

)
�ε‖L2(RN ) � ‖�ε‖∞

(∫

RN
U 2

(

x − 2Pε

ε

)

U 2(x) dx

) 1
2

� ε
N
2

⎧
⎪⎪⎨

⎪⎪⎩

e−2
√

ω0
ρε
ε

(ρε

ε

)− 1
4

if N = 2

e−2
√

ω0
ρε
ε

(ρε

ε

)−1 ∣∣
∣ln

ρε

ε

∣
∣
∣

1
2

if N = 3

= o(ε2| ln ε|2)

as, by using (12) it follows that ρε ∼ 1√
ω0

ε| ln ε| and hence ε
N
2 e−2

√
ω0

ρε
ε

(
ρε

ε

)− N−1
2 =

o(ε2| ln ε|2).
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Let us finally study the last terms in (34)

‖2
ε(εx)�ε‖L2(RN ) � ‖ε‖2∞ � εN ; ‖�εϒ(εx)ε(εx)‖L2(RN ) � εN

and

‖Uε�
2
ε ‖L2(RN ) � εN ; ‖�3

ε ‖L2(RN ) � ε
3N
2 ,

concluding the proof. ��

3.2 Solving the second equation in (31)

Lemma 3.1 and Proposition 3.3 yields the following result

Proposition 3.4 There exists ε > 0 such that for every ε ∈ (0, ε0) there exists a unique
solution (ϕ, ψ) ∈ K⊥ of the equation

�̃⊥ (L(ϕ, ψ) − E − N (ϕ, ψ)) = 0.

Furthermore,

‖(ϕ, ψ)‖X = O
(
ε2| ln ε|2

)
. (39)

Proof Wewill obtain the result by applying the contraction principle to the continuous
map

T : Cε :=
{
(ϕ, ψ) ∈ K⊥, : ‖(ϕ, ψ)‖X ≤ Aτε

}
�→ Cε

T (ϕ, ψ) := L̄
[
�̃⊥ (E + N (ϕ, ψ))

]

where

τε = ε2| ln ε|2, L̄ :=
(
�̃⊥ ◦ L

)−1
,

is well defined thanks to Lemma 3.1, and A is a suitable positive constant to be chosen.
In order to find A, it is sufficient to prove that

‖N (ϕ, ψ)‖L2(RN ) = o(τε), forall (ϕ, ψ) ∈ Cε. (40)

Let us start studying N1, taking into account that ‖�ε‖L∞(RN ) ≤ C , it results

‖N1(ϕ, ψ)‖2L2(RN )
�
∫

RN
ϕ6 + �2

εϕ
4 + ψ2

( x

ε

)
ϕ2�2

ε

( x

ε

)

+ ψ4
( x

ε

)
ϕ2 + �2

εψ
4
( x

ε

)
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�‖ϕ‖6V + ‖ϕ‖4V + ‖ϕ‖24
(∫

RN
ψ4

( x

ε

)
�4

ε

( x

ε

)) 1
2

+
(∫

RN
ψ6

( x

ε

)) 2
3 ‖ϕ‖26

+
∫

RN
ψ4

( x

ε

)

�‖ϕ‖6V + ‖ϕ‖4V + ε
N
2 ‖ϕ‖2V ‖ψ‖2ε + ε

2N
3 ‖ϕ‖2V ‖ψ‖4ε + εN‖ψ‖4ε

�τ 6ε + τ 4ε + ε
N
2 τ 4ε + ε

2N
3 τ 6ε + εN τ 4ε = o(τ 2ε ). (41)

In addition,

‖N2(ϕ, ψ)‖2L2(RN )
�
∫

RN
ψ6 + �2

εψ
4 + ψ2ϕ2(εx)�2

ε(εx) + ψ2ϕ4(εx) + �2
εϕ

4(εx)

�‖ψ‖6ε + ‖ψ‖4ε + ‖ψ‖24
(∫

RN
ϕ4(εx)

) 1
2 + ‖ψ‖26

(∫

RN
ϕ6(εx)

) 2
3

+
(∫

RN
ϕ6(εx)

) 2
3

�‖ψ‖6ε + ‖ψ‖4ε + ε− N
2 ‖ψ‖2ε‖ϕ‖2V

+ ε− 2N
3 ‖ψ‖2ε‖ϕ‖4V + ε− 2N

3 ‖ϕ‖4V = o(τ 2ε ).

this, together with (41), implies (40). Then, the claim follows by the contraction
mapping theorem. ��

Remark 3.5 Note that, by theSobolev embeddings H2(R3) ↪→ C0, 12 (R3), H2(R2) ↪→
C0,α(R2) for any α ∈ (0, 1), we deduce that

• ‖ϕ‖
C0, 12 (R3)

+ ‖ψ‖
C0, 12 (R3)

� ε2| ln ε|2,
• ‖ϕ‖C0,α(R2) + ‖ψ‖C0,α(R2) � ε2| ln ε|2, for every α ∈ (0, 1),

so that

• |ϕ(εx) − ϕ(0)| ≤ ε2| ln ε|2(ε|x |)1/2 = ε
5
2 | ln ε|2|x |1/2 for N = 3.

• |ϕ(εx) − ϕ(0)| ≤ ε2| ln ε|2(ε|x |)α = ε2+α| ln ε|2|x |α for N = 2, for every α ∈
(0, 1),

and analogous estimates hold for ψ .

4 Solving the reduced problem

In this section, we are going to study the first equation in (31). Let (ϕ, ψ) the solution
of the second equation in (31), then

�̃ {L(ϕ, ψ) − E − N (ϕ, ψ)} = c0Zε
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where

c0 := (L2(ϕ, ψ) − E2 − N2(ϕ, ψ), Zε)L2(RN )

‖Zε‖2 . (42)

Our goal will be to prove that c0 = 0. From now on, we fix (ϕ, ψ) given in
Proposition 3.4.

Lemma 4.1 It results

∣
∣(N2(ϕ, ψ) − L2(ϕ, ψ), Zε)L2(RN )

∣
∣ ≤ o(ε2| ln ε|)

Proof Arguing as in the proof of Proposition 3.4 it is easy to obtain that

∫

RN
N2(ϕ, ψ)Zε dx = O(‖(ϕ, ψ)‖2) = o(ε2| ln ε|).

Now by using (24) and (32) we get that

∫

RN
L2(ϕ, ψ)Zε dx =

∫

RN
∇ψ∇Zε + W (εx)ψZε − (

3μ2�
2
ε + β�2(εx)

)
ψZε

− 2β
∫

RN
�ε�(εx)ϕ(εx)Zε

=
∫

RN
(W (εx) − ω0) ψZε + 3μ2

(
U 2

Pε
∂x1UPε −U 2−Pε

∂x1U−Pε

)
ψ

−
∫

RN

(
3μ2�

2
ε + β�2(εx)

)
ψZε − 2β

∫

RN
�ε�(εx)ϕ(εx)Zε

=
∫

RN
(ω(εx) − ω(0))Zεψ dx + 3μ2

∫

RN
U 2

Pε
∂1U−Pεψ dx

− 3μ2

∫

RN
U 2−Pε

∂1UPεψ − 6μ2

∫

RN
UPεU−Pε Zεψ dx

− 3μ2β
2
∫

RN
�2

ε Zεψ dx − 6μ2β

∫

RN
Uε�εZεψ dx

− β3
∫

RN
2

ε(εx)Zεψ dx − 2β2
∫

RN
ϒ(εx)ε(εx)Zεψ dx

− 2β2
∫

RN
�εϒ(εx)ϕ(εx)Zε dx − 2β3

∫

RN
�εε(εx)ϕ(εx)Zε dx

(43)

− 2β
∫

RN
Uεϒ(εx)ϕ(εx)Zε dx − 2β2

∫

RN
Uεε(εx)ϕ(εx)Zε dx .

(44)

Let us study the right hand side. First of all, arguing as in (38) and taking into account
(39), we have
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∫

RN
(ω(εx) − ω(0))Zεψ dx �

(∫

RN
|ω(εx) − ω(0)|2Z2

ε dx

) 1
2 ‖ψ‖L2(RN )

� ρ2
ε ‖ψ‖L2(RN ) = o(ε2| ln ε|).

∫

RN
U 2

Pε
∂1U−Pεψ dx �

(∫

RN
U 4

Pε
U 2−Pε

dx

) 1
2 ‖ψ‖L2(RN )

� e−2
√

ω0
ρε
ε

(ρε

ε

)− N−1
2 ‖ψ‖L2(RN ) = o(ε2| ln ε|),

where we have applied Lemma A.2. Similarly

∫

RN
U 2−Pε

∂1UPεψ = o(ε2| ln ε|),
∫

RN
UPεU−Pε Zεψ dx �

(∫

RN
U 4

Pε
U 2−Pε

dx

) 1
2 ‖ψ‖L2(RN ) = o(ε2| ln ε|).

In addition, (39) and Lemma 2.1, 2.3 yield

∫

RN
�2

ε Zεψ dx � ‖�ε‖2L4(RN )
‖ψ‖L2(RN ) � εN‖ψ‖L2(RN ) = o(ε2| ln ε|).

∫

RN
Uε�εZεψ dx � ‖�ε‖L2(RN )‖ψ‖L2(RN ) � ε

N
2 ‖ψ‖L2(RN )

� ε
N
2 ε2| ln ε|2 = o(ε2| ln ε|)

∫

RN
2

ε(εx)Zεψ dx � ‖ε‖2∞‖ψ‖L2(RN ) � εN‖ψ‖L2(RN ) = o(ε2| ln ε|)
∫

RN
ϒ(εx)ε(εx)Zεψ dx � ‖ε‖∞‖ψ‖L2(RN ) � ε

N
2 ε2| ln ε|2 = o(ε2| ln ε|)

and the terms in (43) can be handled analogously. Let us focus on the terms in (44).
Recalling that

∫

RN
U±Pε ∂1U±Pε dx = 0, (45)

we obtain
∫

RN
Uεϒ(εx)ϕ(εx)Zε dx =

∫

RN
ϒ(εx)(ϕ(εx) − ϕ(0))UεZε dx

+
∫

RN
ϕ(0)(ϒ(εx) − ϒ(0))UεZε dx

+ϒ(0)ϕ(0)
∫

RN
UεZε dx

=
∫

RN
ϒ(εx)(ϕ(εx) − ϕ(0))UεZε dx
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+
∫

RN
ϕ(0)(ϒ(εx) − ϒ(0))UεZε dx

−ϒ(0)ϕ(0)
∫

RN

(
UPε ∂1U−Pε −U−Pε ∂1UPε

)
dx .

(46)

Taking into account Remark 3.5 (choosing α = 1
2 for N = 2), we infer

∫

RN
ϒ(εx)(ϕ(εx) − ϕ(0))UεZε dx � ε

5
2 | ln ε|2

∫

RN
|x | 12U 2

Pε
dx

� ε
5
2 | ln ε|2

∫

RN

∣
∣
∣
∣x + Pε

ε

∣
∣
∣
∣

1
2

U 2 dx

� ε2ρ
1
2
ε | ln ε|2 = o(ε2| ln ε|).

Moreover, (12) and (39) yield

∫

RN
ϕ(0)(ϒ(εx) − ϒ(0))UεZε dx � ε2‖ϕ‖∞

∫

RN
|x |2U 2

Pε
dx � ρ2

ε ‖ϕ‖V = o(ε2| ln ε|).

The last two terms in (46) can be studied similarly, by applying Lemma A.2. It results

ϒ(0)ϕ(0)
∫

RN
UPε ∂1U−Pε dx � ‖ϕ‖∞

∫

RN
UPεU−Pε � ‖ϕ‖V e−2

√
ω0

ρε
ε

(ρε

ε

)− N−1
2

= o(ε2| ln ε|).

The last term in (44) can be easier studied as

∣
∣
∣
∣

∫

RN
Uεε(εx)ϕ(εx)Zε dx

∣
∣
∣
∣ � ‖ε‖∞‖ϕ‖∞ � εN/2‖ϕ‖V = o(ε2| ln ε|)

concluding the proof. ��

We are now in position to study the relevant term in (42).

Lemma 4.2 It results

∫

RN
E2Zε dx =

[

−∂11ω(0)bερε − 2μ2ce
−2

√
ω0

ρε
ε

(ρε

ε

)− N−1
2
]

(1 + o(1))

for some positive constants b and c.
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Proof Recalling the definition of E2 given in (34) we obtain

∫

RN
E2Zε dx =

∫

RN
(ω0 − ω(εx)) �εZε dx + 2β2

∫

RN
Uε (ϒ(εx)ε(εx)

−ε(0)ϒ(0)) Zε dx

+ μ2

∫

RN
(U 3

ε −U 3
Pε

−U 3−Pε
)Zε dx

+ 3βμ2

∫

RN

(
U 2

ε −U 2
Pε

−U 2−Pε

)
�εZε dx

+ β3
∫

RN
2

ε(εx)�εZε dx + 2β3
∫

RN
�εϒ(εx)ε(εx)Zε dx

+ 3μ2β
2
∫

RN
Uε�

2
ε Zε dx + μ2β

3
∫

RN
�3

ε Zε dx .

(47)

Direct computations yield

∫

RN
(ω0 − ω(εx)) �εZε dx =

∫

RN
(ω(0) − ω(εx))Uε(x)Zε dx

+ β

∫

RN
(ω(0) − ω(εx)) �εZε dx

=
∫

RN
(ω0 − ω(εx))UPε ∂1UPε dx

−
∫

RN
(ω0 − ω(εx))UPε ∂1U−Pε dx

+
∫

RN
(ω0 − ω(εx))U−Pε ∂1UPε dx

−
∫

RN
(ω0 − ω(εx))U−Pε ∂1U−Pε dx

+ β

∫

RN
(ω(0) − ω(εx)) �εZε dx .

(48)

Let us start studying the first term on the right hand side. Taking into account (45), we
obtain

∫

RN
(ω0 − ω(εx))UPε ∂1UPε dx = −1

2

∫

RN
〈D2ω(0)εx, εx〉U

(

x + Pε

ε

)

∂1U

(

x + Pε

ε

)

dx

+ O
(∫

RN
ε3
∣
∣
∣
∣x + Pε

ε

∣
∣
∣
∣

3

U 2(y) dx

)

= −1

2

∫

RN
〈D2ω(0)(εy − Pε), εy − Pε〉U (y) ∂1U (y) dy

+ o(ερε)

= 1

2

∫

RN
〈D2ω(0)εy, Pε〉U (y) ∂1U (y) dy
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+ 1

2

∫

RN
〈D2ω(0)Pε, εy〉U (y) ∂1U (y) dy + o(ερε)

= ερε

∫

RN
〈D2ω(0)P0, y〉U (y) ∂1U (y) dy

︸ ︷︷ ︸
:=A

+o(ερε)

= ∂211ω(0)bερε + o(ερε).

Note that, from (12) and from the fact that U is radially decreasing we deduce that

A := ∂211ω(0)
∫

RN
y21U (y)

U ′(y)
|y| dy

︸ ︷︷ ︸
<0

+
N∑

i=2

∂21iω(0)
∫

RN
y1yiU (y)

U ′(y)
|y| dy

︸ ︷︷ ︸
=0

so that

A := −∂211ω(0)b and b := −
∫

RN
y21U (y)

U ′(y)
|y| dy > 0 (49)

since ∂211ω(0) < 0, thanks to (9). In a similar way we get that

−
∫

RN
(ω0 − ω(εx))U−Pε ∂1U−Pε dx = Aερε + o(ερε).

We claim that the other terms on the right hand side of (48) are of higher order with
respect to ερε. Indeed, Lemma A.3 and (12) yield

∫

RN
(ω0 − ω(εx))U−Pε ∂1UPε dx = −1

2

∫

RN
〈D2ω(0)εx, εx〉

U

(

x − Pε

ε

)

∂1U

(

x + Pε

ε

)

dx

+ O
(∫

RN
ε3|x |3U

(

x − Pε

ε

)

U

(

x + Pε

ε

)

dx

)

= −1

2

∫

RN
〈D2ω(0)Pε, Pε〉U

(

y − 2
Pε

ε

)

∂1U (y) dy + o(ερε)

= −1

2
ρ2

ε 〈D2ω(0)P0, P0〉
∫

RN
U

(

y − 2
Pε

ε

)

∂1U (y) dy + o(ερε)

= 1

2
cρ2

ε 〈D2ω(0)P0, P0〉e−2
√

ω0
ρε
ε

(ρε

ε

)−(N−1)+ N+1
2 + o(ερε)

= 1

2
cρ2

ε 〈D2ω(0)P0, P0〉e−2
√

ω0
ρε
ε

(ρε

ε

)− N−1
2 ρε

ε
+ o(ερε)

= o(ερε).
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Similarly

∫

RN
(ω0 − ω(εx))UPε ∂1U−Pε dx = o(ερε).

The last term in (48) can be managed, by applying Lemma 2.3. Indeed, we have

∣
∣
∣
∣

∫

RN
(ω(0) − ω(εx)) �εZε dx

∣
∣
∣
∣

≤ cε2‖�ε‖L2(RN )

(∫

RN
|x |4U 2

Pε
dx

) 1
2 ≤ ε

N
2 ρ2

ε = o(ερε).

Let us now study the second term on the right hand side of (47). It holds

∫

RN
Uε (ϒ(εx)ε(εx) − ε(0)ϒ(0)) Zε dx =

∫

RN
Uεϒ(εx) (ε(εx) − ε(0)) Zε dx

+
∫

RN
Uε (ϒ(εx) − ϒε(0)) ε(0)Zε dx .

In view of Remark 2.2, we obtain

∣
∣
∣
∣

∫

RN
Uεϒ(εx) (ε(εx) − ε(0)) Zε dx

∣
∣
∣
∣ �

∫

RN
|ε(εx) − ε(0)|U 2

Pε
dx

� ε2
∫

RN
|x |2− N

m U 2
Pε
dx

� ε2
(ρε

ε

)2− N
m = o(ερε) if m > N

and
∣
∣
∣
∣

∫

RN
Uε (ϒ(εx) − ϒε(0))ε(0)Zε dx

∣
∣
∣
∣

≤ Cε2‖ε‖∞
∫

RN
|x |2U 2

Pε
dx ≤ ε

N
2 ρ2

ε = o(ερε).

Let us study the cubic and square term in UPε in (47). We have

μ2

∫

RN
(U 3

ε −U 3
Pε

−U 3−Pε
)Zε dx = 3μ2

∫

RN
U 2

Pε
U−Pε Zε dx

+3μ2

∫

RN
UPεU

2−Pε
Zε dx

= 3μ2

∫

RN
U 2

Pε
U−Pε ∂1UPε dx

−3μ2

∫

RN
U 2

Pε
U−Pε ∂1U−Pε dx
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+3μ2

∫

RN
UPεU

2−Pε
∂1UPε dx

−3μ2

∫

RN
UPεU

2−Pε
∂1U−Pε dx

= 3μ2

∫

RN
U

(

y − 2
Pε

ε

)

U 2(y)∂1U (y) dy

−3μ2

∫

RN
U 2

(

y + 2
Pε

ε

)

U (y)∂1U (y) dy

+3μ2

∫

RN
U 2

(

y − 2
Pε

ε

)

U (y)∂1U (y) dy

−3μ2

∫

RN
U

(

y + 2
Pε

ε

)

U 2(y)∂1U (y) dy.

By exploiting Lemma A.3-(i) with s = 1 and t = 3 we deduce

3μ2

∫

RN
U

(

y − 2
Pε

ε

)

U 2(y)∂1U (y) dy = μ2

∫

RN
U

(

y − 2
Pε

ε

)

∂1U
3(y) dy

= −μ2ce
−2

√
ω0

ρε
ε

(ρε

ε

)− N−1
2

(1 + o(1))

and similarly

−3μ2

∫

RN
U

(

y + 2
Pε

ε

)

U 2(y)∂1U (y) dy = −μ2ce
−2

√
ω0

ρε
ε

(ρε

ε

)− N−1
2

(1 + o(1)).

Applying again Lemma A.3-(ii) with s = t = 2 we infer

3μ2

∫

RN
U 2

(

y + 2
Pε

ε

)

U (y)∂1U (y) dy = 3

2
μ2

∫

RN
U 2

(

y + 2
Pε

ε

)

∂1U
2(y) dy

=

⎧
⎪⎪⎨

⎪⎪⎩

c̄e−4
√

ω0
ρε
ε

(ρε

ε

)− 1
2
(1 + o(1)) if N = 2

c̄e−4
√

ω0
ρε
ε

(ρε

ε

)−2
ln

ρε

ε
(1 + o(1)) if N = 3

= o

(

e−2
√

ω0
ρε
ε

(ρε

ε

)− N−1
2
)

and similarly

3μ2

∫

RN
U 2

(

y − 2
Pε

ε

)

U (y)∂1U (y) dy = o

(

e−2
√

ω0
ρε
ε

(ρε

ε

)− N−1
2
)

.

Hence

μ2

∫

RN
(U 3

ε −U 3
Pε

−U 3−Pε
)Zε dx = −2μ2ce

−2
√

ω0
ρε
ε

(ρε

ε

)− N−1
2

(1 + o(1)).
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Again, by using Lemma 2.3 and Lemma A.2, it follows

∣
∣
∣
∣

∫

RN

(
U 2

ε −U 2
Pε

−U 2−Pε

)
�εZε dx

∣
∣
∣
∣ ≤ C

[∫

RN
U 2

Pε
U−Pε |�ε| +

∫

RN
U 2−Pε

UPε |�ε|
]

≤ C‖�ε‖L2(RN )

(∫

RN
U 2

(

y − 2
Pε

ε

)

U 4(y) dy

) 1
2

≤ Cε
N
2 e−2

√
ω0

ρε
ε

(ρε

ε

)− N−1
2

= o

(

e−2
√

ω0
ρε
ε

(ρε

ε

)− N−1
2
)

.

By Lemma 2.1 and Lemma 2.3 we also obtain

∣
∣
∣
∣

∫

RN
2

ε(εx)�εZε dx

∣
∣
∣
∣ ≤ C

∫

RN
|ε(εx)|2U 2

Pε
dx + C

∫

RN
|ε(εx)|2|�ε| dx � εN

= o(ερε)
∣
∣
∣
∣

∫

RN
�εϒ(εx)ε(εx)Zε dx

∣
∣
∣
∣ ≤ C‖ε‖∞‖�ε‖L2(RN ) � εN

= o(ερε),

and the same upper bound holds for the last two terms in (47), concluding the proof.
��

Proof of Theorem 1.1: completed First notice that (u, v) is a solution of (3) iff (u, v) is
a solution of (18). Then, we look for a solution of (18) of the form given in (21). So
that, we are lead to look for (ϕ, ψ) ∈ X satisfying the system (31). Proposition 3.4
yields the existence of (ϕ, ψ) satisfying the second equation in (31). The first equation
is solved as well, if we show that c0 = 0 where c0 is given in (42). Then, Lemma 4.1
and 4.2 imply that we have to find d = dε in (22) such that

[

−∂11ω(0)bερε − 2μ2ce
−2

√
ω0

ρε
ε

(ρε

ε

)− N−1
2
]

(1 + o(1)) = 0,

which is equivalent (taking into account that ρε = dεε ln 1
ε
) to

(1 − √
ω0d) ln ε + o(ln ε) = 0

and this is solvable by dε such that dε → 1√
ω0

as ε → 0. That concludes the proof. ��
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Appendix A. Technical Lemma

Lemma A.2 (Lemma 3.7 in [1]) Let u, v : R
N → R be two positive continuous radial

functions such that

u(x) ∼ |x |ae−b|x |, v(x) ∼ |x |a′
e−b′|x |

as |x | → ∞, where a, a′ ∈ R, and b, b′ > 0. Let ξ ∈ R
N such that |ξ | → ∞. We

denote uξ (x) = u(x − ξ). Then the following asymptotic estimates hold:

(i) If b < b′,
∫

RN
uξ v ∼ e−b|ξ ||ξ |a .

A similar expression holds if b > b′, by replacing a and b with a′ and b′.
(ii) If b = b′, suppose that a ≥ a′. Then:

∫

RN
uξ v ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−b|ξ ||ξ |a+a′+ N+1
2 if a′ > − N+1

2 ,

e−b|ξ ||ξ |a log |ξ | if a′ = − N+1
2 ,

e−b|ξ ||ξ |a if a′ < − N+1
2 .

Lemma A.3 ((Lemma A.2 in [20]) Let Uλ,μ =
√

λ
μ1
U (

√
λx) where U is the solution

of (15). Let s, t ≥ 1 and consider the following integral

�s,t (ζ ) :=
∫

RN
Us

λ,μ(x + ζ )∂x1U
t
λ,μ(x) dx, ζ ∈ R

N .
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(i) If s < t then

�s,t (ζ ) ∼ cs
ζ1

|ζ |e
−s

√
λ|ζ ||ζ |−s N−1

2 as |ζ | → +∞;

(ii) If s = t then

�s,t (ζ ) ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cs
ζ1

|ζ |e
−s

√
λ|ζ ||ζ |−s(N−1)+ N+1

2 if s <
N + 1

N − 1
;

cs
ζ1

|ζ |e
−s

√
λ|ζ ||ζ |−s (N−1)

2 ln |ζ | if s = N + 1

N − 1
;

cs
ζ1

|ζ |e
−s

√
λ|ζ ||ζ |−s (N−1)

2 if s >
N + 1

N − 1
.

as |ζ | → +∞.

Here c denotes a positive constant. In case N = 1 the first option in (ii) holds, namely

�s,s(ζ ) ∼ cs
ζ1

|ζ |e
−s|ζ ||ζ | as |ζ | → +∞.
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