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Abstract
For any � > 0, let Mn,� denote the space containing all locally Lipschitz minimal
graphs of dimension n and of arbitrary codimension m in Euclidean space R

n+m

with uniformly bounded 2-dilation � of their graphic functions. In this paper, we
show that this is a natural class to extend structural results known for codimension
one. In particular, we prove that any tangent cone C of M ∈ Mn,� at infinity has
multiplicity one. This enables us to get a Neumann–Poincaré inequality on stationary
indecomposable components of C . A corollary is a Liouville theorem for M . For
small � > 1 (we can take any � <

√
2), we prove that (i) for n ≤ 7, M is flat; (ii)

for n > 8 and a non-flat M , any tangent cone of M at infinity is a multiplicity one
quasi-cylindrical minimal cone in Rn+m whose singular set has dimension ≤ n − 7.
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1 Introduction

It has been a central aim of the theory of minimal graphs in Euclidean space to derive
conditions under which an entire n-dimensional minimal graph, that is, a graph defined
on all of Rn , of codimension m, that is, sitting in R

n+m , is affine linear. This is the
famous Bernstein problem. Bernstein himself proved it for two-dimensional entire
minimal graphs in R

3. For codimension 1, but in higher dimensions, this holds for
n ≤ 7 through successive efforts of Fleming [28], De Giorgi [17], Almgren [2] and
culminatingwith Simons [48]. However, it is no longer true for n ≥ 8 by an example of
Bombieri, De Giorgi and Giusti [7]. If we assume, however, in addition, that the graph
has a bounded gradient, then this holds for any dimension n by a result of Moser [43].
This is the so-called weak version of the Bernstein Theorem.

Research on the Bernstein theorem was a crucial motivation for the great devel-
opment of geometric measure theory. It is well known that an entire codimension 1
minimal graph � in R

n+1 is area-minimizing, i.e., the current associated with � is a
minimizing current. Fleming [28] proved that any tangent cone C� of � at infinity
is a singular area-minimizing cone in R

n+1, which implies that it is a stable min-
imal hypersurface with multiplicity one. De Giorgi [17] further showed that C� is
cylindrical, i.e, C� isometrically splits off a factor R.

In higher codimension, Almgren [3] derived sharp codimension 2 estimates for
the singular sets of minimizing currents. In [18–20], De Lellis–Spadaro developed a
new approach to the regularity of minimizing currents and could in particular rederive
Almgren’s structure theorem. In general, however, minimal graphs of higher codimen-
sion are not minimizing. Nevertheless, some general structural results about minimal
graphs in higher codimension are available. Utilizing the graph property, it is possible
to study the structure and rigidity of minimal graphs of arbitrary codimension under
some conditions but without a minimizing assumption.

In this paper, we approach this issue via studying tangent cones of minimal graphs
at infinity. First of all, we need some condition on minimal graphs to guarantee that
they have Euclidean volume growth. For that purpose, we now introduce the concept
of bounded k-dilation. As we shall see, this condition provides a natural generalization
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of the bounded slope condition that has been used in many other papers about higher
codimension Bernstein theorems.

Let f : M1 → M2 be a locally Lipschitz map between Riemannian manifolds
M1, M2. For an integer k ≥ 1, f is said to have k-dilation ≤ � for some constant
� ≥ 0 if f maps each k-dimensional submanifold S ⊂ M1 to an image f (S) ⊂ M2
with Hk( f (S)) ≤ �Hk(S) where Hk denotes k-dimensional Hausdorff measure.
We note that this condition is the more restrictive the smaller k (up to the constant
�). For k = 1, it simply means that f is �-Lipschitz. This is, of course, a strong
condition. In this paper, we shall explore the case k = 2, that is, consider maps, or
more precisely locally Lipschitzminimal graphs given by f : Rn → R

m with bounded
2-dilation. But even for n = m = 2, minimal graphs have not necessarily bounded
2-dilation for their graphic functions, as the 2-dimensional minimal graphs given by
(Re ez,−Im ez) : R

2 → R
2. We should note, however, that these examples have zero

k-dilation for k ≥ 3. Therefore, we cannot hope for a good theory on tangent cones
of minimal graphs at infinity when we only restrict some k-dilation for k ≥ 3.

For any constant � ≥ 0, let Mn,� denote the space containing all the locally
Lipschitz minimal graphs over Rn of arbitrary codimension m ≥ 1 with 2-dilation
of their graphic functions ≤ �. Here, the codimension m is bounded by a constant
depending only on n,� using a result of Colding–Minicozzi [14] (which will be
explained later), and this is the reason why the notationMn,� does not contain m. De
Giorgi [16] obtained the regularity of codimension 1 locally Lipschitz minimal graphs
(see alsoMoser [42]), while high codimensional locally Lipschitzminimal graphsmay
really admit singularities. We can already provide the following geometric intuition.

(1) Mn,� contains every codimension one minimal graph in R
n+1.

(2) The product of Euclidean space R
� and any minimal graphical hypersurface in

R
n+1 is contained inMn,�.

(3)
√

�-Lipschitz graphs are inMn,�. In particular, theminimalHopf cones inR2m×
R
m+1 for m = 2, 4, 8 constructed by Lawson–Osserman [37] are in someMn,�.

See [25, 54] for more examples.

However, having a bounded Lipschitz constant is a much stronger condition than
having bounded 2-dilation. For every bounded domain � ⊂ R

n , we have constructed
many examples of n-minimal graphs over � of 2-dilation ≤ 1 with arbitrary large
slope, where they do not live in any (n + 1)-dimensional Euclidean subspace [23].

Having thus sketched the basic setting, we can explain the two main objectives of
this paper. The first objective is the development of the theory of minimal graphs of
arbitrary codimension in Euclidean space with uniformly bounded 2-dilation of their
graphic functions. The principal aim is to understand the geometric structure, including
multiplicity and stability, of suchminimal graphs at infinitywhen the graphic functions
are allowed to grow faster than linearly. Without Euclidean volume growth, geometric
measure theory cannot saymuch about the possible limits ofminimal graphs at infinity.
Therefore, our first crucial issue will be to derive Euclidean volume growth from
bounded 2-dilation. Importantly, their tangent cones at infinity have multiplicity one
(see Theorem 1.1 below), which plays an essential role in establishing the Neumann–
Poincaré inequality on stationary indecomposable components of the tangent cones.
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This general theoryprepares the ground for the secondobjective, to study the rigidity
ofminimal graphs of arbitrary codimension in Euclidean spacewithout the assumption
of the bounded slope. Under the condition of bounded 2-dilation for graphic functions,
we prove a Liouville theorem for minimal graphs (see Theorem 1.2) with Neumann–
Poincaré inequality, which generalizes the classical Liouville theorem obtained by
Bombieri–De Giorgi–Miranda [8]. Concerning the Bernstein theorem, we prove that
there exists a constant � > 1 such that for n ≤ 7 each M ∈ Mn,� is flat, for n ≥ 8
and any non-flat M ∈ Mn,�, any tangent cone of M at infinity is a quasi-cylindrical
minimal cone (see Theorem 1.3). Here, the dimension 7 is sharp by the counter-
examples by Bombieri-De Giorgi–Giusti [7], and a quasi-cylindrical minimal cone is
exactly a cylinder in the codimension one case (see the definition below). Moreover,
the constant � can be arbitrarily chosen <

√
2. The constant

√
2 is not essential for

our whole theory but plays a role in making the volume functional subharmonic (see
Corollary 7.1).

Let us now be more specific. In [12], Cheng–Li–Yau estimated the codimension
for each minimal cone in Euclidean space via its density. Colding–Minicozzi [14]
proved the dimension estimates for coordinate functions on more general minimal
submanifolds of Euclidean volume growth. In Sect. 3, using the result of [14], we
prove that everyM ∈ Mn,� hasEuclidean volumegrowthwith the density bounded by
a constant depending only on n,� (see Lemma 3.2 for details). In particular,M lives in
a Euclidean subspace with the codimension bounded by a constant depending on n,�.
Without the condition of bounded 2-dilation, of course minimal graphs need not have
Euclidean volume growth, like the 2-dimensional minimal graph by (Re ez,−Im ez) :
R
2 → R

2 that we have already mentioned above (see Remark 3.1 for details).
Let v denote the slope of a minimal graph M over Rn defined by

√
detgi j , where

gi j dxi dx j is the metric of M induced from the ambient Euclidean space R
n+m . In

fact, v = ṽ ◦ γ , where ṽ is a natural function in the Grassmannian manifold Gn,m

and γ stands for the Gauss map. The slope describes how far M is from the fixed
n-planeRn . We will explain its geometric meaning later in detail from the perspective
of the Grassmannian manifold. For 0 ≤ � < 1 and M ∈ Mn,� with codimension
m ≥ 1, the corresponding ṽ is convex in Gn,m , and then v = ṽ ◦ γ is subharmonic.
This leads to flatness of M proved by Wang [49] under the bounded slope condition.
When � > 1, the function ṽ in general is not convex. In fact, our classMn,� is much
richer when � > 1 is larger.

If M ∈ Mn,� is minimizing, then it is not difficult to prove the multiplicity one
of the tangent cone of M at infinity. However, the multiplicity one holds without the
minimizing condition. Moreover, we can show the stability of the tangent cone in
some small neighborhood via the slope function v in Sect. 4.

Theorem 1.1 Let M be a locally Lipschitz minimal graph over Rn of codimension
m ≥ 1 with bounded 2-dilation of its graphic function. Then any tangent cone C of
M at infinity has multiplicity one. Moreover, if a tangent cone of C contains a line
perpendicular to the n-plane {(x, 0m) ∈ R

n × R
m | x ∈ R

n}, then it is a cylindrical
stable minimal cone in an (n + 1)-dimensional Euclidean subspace.

123



Minimal graphs of arbitrary codimension in Euclidean…

Remark 1.1 We do not know whether the cylindrical stable minimal cone obtained in
Theorem 1.1 is minimizing. Even we have no a priori dimensional estimates on its
singular set of the cylindrical stable minimal cone.

In fact, we prove a somewhat stronger version than Theorem 1.1, where we do not
need to require that the graphs are entire. The proof of multiplicity one is somewhat
difficult because of the complex interplay between geometry and analysis for subman-
ifolds of high codimensions. Our strategy therefore consists in using the structure of
the minimal surface system to treat the higher codimension case as a perturbation of
the codimension one case with error terms including some quantities from the other
codimensions. The key idea is projecting theminimal graphM to a hypersurfaceM ′ in
a suitable (n+1)-dimensional Euclidean subspace. In general M ′ is no more minimal,
but from M we can get effective estimates up to a set of arbitrary small measure in the
scaling sense.

In 1969, Bombieri–De Giorgi–Miranda [8] showed a Liouville theorem for solu-
tions to the minimal surface equation via interior gradient estimates (see also the
exposition in chapter 16 of [30]). For high codimensions,Wang proved a Liouville type
theorem for minimal graphs with positive graphic functions under the area-decreasing
condition [50]. This condition also means that the graphic functions have 2-dilation
bounded by � < 1.

Let Br denote the ball in R
n+m with the radius r and centered at the origin. Let

Br denote the ball in R
n with the radius r and centered at the origin. Inspired by

Bombieri–Giusti [9], we establish the Neumann–Poincaré inequality on stationary
indecomposable components of tangent cones of minimal graphs at infinity, and get
Harnack’s inequality for positive harmonic functions on the components. Then we can
get the following Liouville theorem without the subharmonic functions in terms of
the gradient functions on minimal graphs in Sect. 6, which generalizes Bombieri–De
Giorgi–Miranda’s result in [8], and improves Wang’s result in [50].

Theorem 1.2 Let M = graphu be a locally Lipschitz minimal graph over Rn of codi-
mension m ≥ 2 with bounded 2-dilation of u = (u1, . . . , um). If

lim sup
r→∞

(

r−1 sup
Br∩M

uα

)

≤ 0 (1.1)

for each α ∈ {2, . . . ,m}, and

lim inf
r→∞

(

r−1 sup
Br

u1
)

< ∞, (1.2)

then M is flat.

Asa result,we immediately have the following corollary by considering theminimal
graphical function (0, u1, . . . , um) in Theorem 1.2.1

1 Thanks to the anonymous referee for pointing this out to us.
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Corollary 1.1 Let M = graphu be a locally Lipschitz minimal graph over R
n of codi-

mension m ≥ 2 with bounded 2-dilation of u = (u1, . . . , um). If

lim sup
r→∞

(

r−1 sup
Br∩M

uα

)

≤ 0 (1.3)

for each α ∈ {1, . . . ,m}, then M is flat.

In the proof of Theorem 1.2, we need to prove a De Giorgi type result, i.e., every
tangent cone ofM at infinity is a cylinder if it lives in an (n+1)-dimensional Euclidean
subspace. Using this, we can reduce the problem to the codimension 1 case with
the Neumann–Poincaré inequality. Then we can finish the proof by the regularity of
codimension 1 Lipschitz minimal graphs from De Giorgi [16].

According to this introduction, people have an essentially complete understanding
of the classical case of codimension 1 Bernstein theorem. The question then naturally
arises what we can say for higher codimension.

We can now briefly review the Bernstein type theorems for minimal graphs of
bounded slope of codimension m ≥ 2. Bounded slope condition is an adequate
generalization of bounded gradient to higher codimension. For m ≥ 2, Chern and
Osserman [13] showed that any 2-dimensional minimal graph of bounded slope in
R
2+m is flat, which was generalized in [32] (for m = 2) and [35] without bounded

slope. Barbosa and Fischer-Colbrie proved this for 3-dimensional minimal graphs of
bounded slope in [6, 27]. Recently, Assimos–Jost [5] proved a Bernstein type the-
orem for minimal graphs of bounded slope in codimension m = 2. For dimension
≥ 4 and codimension ≥ 3, this no longer holds, by an example of Lawson and
Osserman [37]. However, a Bernstein type theorem holds for small slope v such as
Simons [48], Hildebrandt–Jost–Widman [33], Jost–Xin [34], Jost–Xin–Yang [36]. In
particular, any minimal graph of slope ≤ 3 in Euclidean space is flat [36].

Butwemay also askwhether there exist other natural conditions that ensure a higher
codimension Bernstein theorem. We point out that when v = ṽ ◦ γ ≤ 3, ṽ need no
longer be convex on the Grassmannian manifold, the target manifold of the Gauss map
of M . Note that v = 9 in Lawson–Osserman’s example mentioned above. Hence, if
every minimal graph M ∈ Mn,� is flat, then � must be small. Without the conditions
(1.1), (1.2) of Theorem 1.2, we can study the structure of tangent cones of minimal
graphs at infinity for small � > 1 using Theorem 1.1 and the Neumann–Poincaré
inequality.

Now let us introduce the concept ‘quasi-cylindrical’ for studying the unbounded
slope case. For an integer 1 ≤ k ≤ n and a k-varifold V inRn+m , V is said to be high-
codimensional quasi-cylindrical (quasi-cylindrical for short) if there are a countably
(k −1)-rectifiable set E inRn , and there is a countably 1-rectifiable normalized curve
γx : R → R

m for almost all x ∈ E such that the set Eγ � {(x, y) ∈ R
n × R

m | x ∈
E, y ∈ γx } satisfies

Hk ((sptV \Eγ ) ∪ (Eγ \sptV )
) = 0.
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Note that ‘quasi-cylindrical’ is simply ‘cylindrical’ for m = 1. Hence, quasi-
cylindrical varifolds can be seen as a generalization of cylindrical varifolds in the
case of high codimensions in Euclidean space.

Theorem 1.3 There exists a constant � > 1 such that if M is a locally Lipschitz
minimal graph over Rn of codimension m ≥ 1 with 2-dilation of its graphic function
bounded by �, then either M is flat, or M is non-flat with n ≥ 8. Furthermore, for
non-flat M, any tangent cone of M at infinity is a multiplicity one quasi-cylindrical
minimal cone in Rn+m whose singular set has dimension ≤ n − 7.

In the codimension one case, Theorem 1.3 for n ≤ 7 has been proved by
Simons [48], and the dimension 7 is sharp from [7]. So Theorem 1.3 is a general-
ization in high codimension. Actually, our proof is based on Simons’ result that any
stable minimal regular hypercone C in R

k is flat for k ≤ 7, where Simons’ result
holds allowing that C has singularities in some sense, see [51]. For the case n ≥ 8
of Theorem 1.3, the singular set of dimension ≤ n − 7 is obtained through stable
minimal hypercones combining Theorem 1.1. The only purpose of the upper bound
for the constant � in Theorem 1.3 is to ensure that there is a constant δ > 0 (which
may depend on �, n,m) such that there holds

	M log v ≥ δ|BM |2 (1.4)

on the minimal graph M (see Corollary 7.1), where	M , BM denote the Laplacian, the
second fundamental formofM , respectively.Noting that (1.4) always holdswith δ = 1
for n = 2 no matter how large � is (see Proposition 2.2 in [27] for instance). Hence,
Theorem 1.3 immediately implies the following Bernstein theorem for 2-dimensional
entire minimal graphs, which generalizes the results in [13, 32].

Corollary 1.2 Let M be a locally Lipschitz minimal graph over R2 of codimension
m ≥ 1 with bounded 2-dilation of its graphic function, then M is flat.

In general, the constant � in Theorem 1.3 can be arbitrarily chosen <
√
2, and we

do not know whether
√
2 is sharp, though it appears naturally for the subharmonicity

of log v. In fact, we can find a slightly weaker condition for the Bernstein theorem in
all dimensions in the situation of bounded slope (see Theorem 7.1).

2 Preliminaries

Let Rk denote the Euclidean space for each integer k ≥ 1, and 0k denote the origin
of Rk . Let Bk

r (x) be the ball in R
k with the radius r and centered at x ∈ R

k , and
Br (x) = Bn

r (x) for convenience. Let Br (x) be the ball in Rn+m with the radius r and
centered at x ∈ R

n+m . We denote Br = Br (0n), Br = Br (0n+m) for convenience. We
always use D to denote the derivative on Rn . For any subset E in Rn , for any constant
0 ≤ s ≤ n we define Hs(E) to be the s-dimensional Hausdorff measure of E . Let
ωk denote the k-dimensional Hausdorff measure of Bk

1 (0
k). We use the summation
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convention and agree on the ranges of indices:

1 ≤ i, j, l ≤ n, 1 ≤ α, β ≤ m

unless otherwise stated.
Let M be an n-dimensional smooth Riemannian manifold, and M → R

n+m be
an isometric immersion. Let ∇ and ∇̄ be Levi-Civita connections on M and R

m+n ,
respectively. Here, ∇ is induced from ∇̄ naturally. The second fundamental form BM

on the submanifold M is defined by BM (ξ, η) = ∇̄ξ η−∇ξ η = (∇̄ξ η)N for any vector
fields ξ, η along M , where (· · · )N denotes the projection onto the normal bundle
NM (see [55] for instance). Let e1, . . . , en be a local orthonormal frame field near
a considered point in M . Let |BM |2 denote the square norm of BM , i.e., |BM |2 =∑n

i, j=1 |BM (ei , e j )|2 (This notation should not be confused with that of the ball Br ).
Let H denote the mean curvature vector of M in R

n+m defined by the trace of BM ,
i.e., H = ∑n

i=1 BM (ei , ei ). This is a normal vector field. M is said to be minimal if
H ≡ 0 on M . More generally, M has parallel mean curvature if ∇H ≡ 0.

2.1 Grassmannianmanifolds and Gauss maps

Wewill studyminimal submanifolds in ambient Euclidean space. The targetmanifolds
of the Gauss map of minimal submanifolds are Grassmannian manifolds. For conve-
nienceof later application, let us describe the geometry of theGrassmannianmanifolds.
InRn+m all the oriented n-subspaces constitute the Grassmann manifoldGn,m , which
is the Riemannian symmetric space of compact type SO(n + m)/SO(n) × SO(m),
where SO(k) denotes the k-dimensional special orthogonal group for each integer
k. Gn,m can be viewed as a submanifold of some Euclidean space via the Plücker
embedding. The restriction of the Euclidean inner product on M is denoted by
w : Gn,m × Gn,m → R

w(P, Q) = 〈e1 ∧ · · · ∧ en, f1 ∧ · · · ∧ fn〉 = detW , (2.1)

where P is presented by a unit n-vector e1 ∧ · · · ∧ en , Q is presented by another unit
n-vector f1 ∧ · · · ∧ fn , andW = (〈ei , f j 〉

)
is an (n× n)-matrix. It is well-known that

WTW = OT

⎛

⎜
⎝

μ2
1

. . .

μ2
n

⎞

⎟
⎠ O

with O an orthogonal matrix and 0 ≤ μi ≤ 1 for each i . Putting p � min{m, n}, then
at most p elements in {μ2

1, . . . , μ
2
n} are not equal to 1. Without loss of generality, we

can assume μi = 1 whenever i > p.
For a unit vector ξ =∑i ai ei ∈ P , let ξ∗ denote its projection into Q, i.e.,

ξ∗ =
∑

j,l

a j 〈e j , fl〉 fl .

123



Minimal graphs of arbitrary codimension in Euclidean…

Then
〈ξ, ξ∗〉 =

∑

i, j,l

ai a j 〈ei , fl〉〈e j , fl〉.

Certainly, the matrix (
∑

l〈ei , fl〉〈e j , fl〉)i, j has eigenvalues μ2
1, . . . , μ

2
n . Hence, we

can introduce the Jordan angles θ1, . . . , θn between two points P, Q ∈ Gn,m defined
by

θi = arccos(μi ), 1 ≤ i ≤ n,

which are actually critical values of the angle between a nonzero vector ξ in P and
its orthogonal projection ξ∗ in Q as ξ runs through P (see Wong [53] or Xin [55] for
further details).

We also note that the μi can be expressed as

μi = cos θi = 1
√
1 + λ2i

, (2.2)

so that
λi = tan θi , (2.3)

where λi has explicit meaning in studying graphs of high codimensions (We will
explain it later). The distance between P and Q is defined by

d(P, Q) =
√∑

θ2i . (2.4)

Let Eiα be the matrix with 1 in the intersection of row i and column α and 0 other-
wise. Then, sec θi sec θαEiα form an orthonormal basis of TPGn,m with respect to the
canonical Riemannian metric g on Gn,m (compatible to (2.4)). Denote its dual frame
by ω̃iα. Then g can be written as

g =
∑

i,α

ω̃2
iα. (2.5)

Denote ω̃βα = 0 for β ≥ n + 1.
Now we fix P0 ∈ Gn,m . Denote

W0 := {P ∈ Gn,m | w(P, P0) > 0}, (2.6)

where w is defined in (2.1). The Jordan angles between P and P0 are defined by {θi }.
Let T2,� be a 2-bounded subset of W0 defined by

T
2,� = {P ∈ W0| tan θi tan θ j < � for every i �= j}. (2.7)
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In [34], we already have the largest geodesic convex subset BJ X (P0), which is defined
by sum of any two Jordan angles being less than π

2 for any point P ∈ BJ X (P0). It is
easily seen that

T
2,1 = BJ X (P0).

Hence, the distance function from P0 is convex on T
2,1, but is no longer convex on

T
2,� when � > 1.
Our fundamental quantity will be

ṽ(·, P0) := w−1(·, P0) on W0. (2.8)

It is easily seen that

ṽ(P, P0) =
n∏

i=1

sec θi =
n∏

i=1

√
1 + λ2i , (2.9)

where θ1, . . . , θn denote the Jordan angles between P and P0. In this terminology,
from (3.8) in [56], we get

d ṽ(·, P0) =
∑

1≤ j≤p

λ j ṽ(·, P0)ω̃ j j , (2.10)

and

ṽ(·, P0)−1Hess(ṽ(·, P0)) = g +
∑

α,β

λαλβ(ω̃αα ⊗ ω̃ββ + ω̃αβ ⊗ ω̃βα). (2.11)

Combining (2.10), (2.11), it follows that (see (3.9) in [56] for instance)

Hess log ṽ(·, P0) = g +
∑

1≤ j≤p

λ2j ω̃
2
j j +

∑

1≤i, j≤p,i �= j

λiλ j ω̃i j ⊗ ω̃ j i . (2.12)

LetM be ann-dimensional smooth submanifold inRn+m . Around any point p ∈ M ,
we choose an orthonormal frame field ei , . . . , en+m inRn+m, such that {ei } are tangent
to M and {en+α} are normal to M . We let {ω1, . . . , ωn+m} denote its dual frame field
so that the metric on M is

∑
i ω

2
i and the Euclidean metric in Rn+m is

∑

i

ω2
i +
∑

α

ω2
n+α.

The Levi-Civita connection forms ωab of Rn+m are uniquely determined by the equa-
tions

dωa = ωab ∧ ωb,

ωab + ωba = 0,

123



Minimal graphs of arbitrary codimension in Euclidean…

where a, b = 1, . . . , n + m. Moreover, we have the equations

ωi n+α = hα,i jω j , (2.13)

where hα,i j = 〈∇̄ei e j , en+α〉 are the coefficients of the second fundamental form BM

of M in Rn+m . The Gauss map γ : M → Gn,m is defined by

γ (p) = TpM ∈ Gn,m

via the parallel translation in Rn+m for every p ∈ M . We also have

|dγ |2 =
∑

α,i, j

h2α,i j = |BM |2. (2.14)

Up to an isotropic group SO(n) × SO(m) action, we can assume ωi n+α = γ ∗ω̃iα at
p (see section 8.1 in [55] for instance). Combining (2.13), we obtain

γ ∗ω̃iα = hα,i jω j at p. (2.15)

By the Ruh–Vilms theorem [45], the mean curvature of M is parallel if and only if its
Gauss map γ is a harmonic map.

Now we define a function

v � ṽ(·, P0) ◦ γ on M, (2.16)

whichwill play abasic role in this paper.Using the composition formula, in conjunction
with (2.12), (2.14) and (2.15), and the fact that τ(γ ) = 0 (the tension field of the Gauss
map vanishes [45]), we can deduce the following important formula (see also Lemma
1.1 in [27] or Prop. 2.1 in [49]).

Proposition 2.1 Let M beann-dimensional smooth submanifold inRn+m with parallel
mean curvature. Then at any considered point p

	M ln v = |BM |2 +
∑

i, j

λ2i h
2
i,i j +

∑

l,i �= j

λiλ j hi, jl h j,il , (2.17)

where 	M is the Laplacian on M, hα,i j are defined in (2.13). Let ∇M denote the
Levi-Civita connection of M. Combining (2.10) and (2.17), one has

	Mv−1 = 	Me− log v = −v−1	M log v + v−1|∇M log v|2

= −v−1

⎛

⎝
∑

α,i, j

h2α,i j +
∑

l,i �= j

λiλ j hi, jl h j,il −
∑

l,i �= j

λiλ j hi,il h j, jl

⎞

⎠ . (2.18)
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2.2 Varifolds and currents from geometric measure theory

Let us recall Almgren’s notion of varifolds from geometric measure theory (see [39,
47] for more details), which is a generalization of submanifolds. For a set S in Rn+m ,
we call S n-rectifiable if S ⊂ S0 ∪ F1(Rn), where Hn(S0) = 0, and F1 : R

n →
R
n+m is a Lipschitz mapping. More general, we call S countably n-rectifiable if

S ⊂ S0 ∪⋃∞
k=1 Fk(R

n), where Hn(S0) = 0, and Fk : R
n → R

n+m are Lipschitz
mappings for all integers k ≥ 1. By Rademacher’s theorem, a countably n-rectifiable
set has tangent spaces at almost every point. SupposeHn(S) < ∞. Let θ be a positive
locally Hn integrable function on S. Let |S| be the varifold associated with the set
S. The associated varifold V = θ |S| is called a rectifiable n-varifold. θ is called the
multiplicity function of V . In particular, the multiplicity of |S| equal to one on S. If θ

is integer-valued, then V is said to be an integral varifold. Associated to V , there is a
Radon measure μV defined by μV = Hn�θ , namely,

μV (W ) =
∫

W∩S
θ(y)dHn(y) for each open W ⊂ R

n+m .

For an open set U ⊂ R
n+m , V is said to be stationary in U if

∫
divSYdμV = 0 (2.19)

for each Y ∈ C∞
c (U ,Rn+m). Here, divSY is the divergence of Y restricted on S.

When we say an n-dimensional minimal cone C in R
n+m , we mean that C is an

integral stationary varifold with support being a cone. One of the most important
properties of the stationary varifold V is that the function

ρ−nμV (Bρ(x)) (2.20)

is monotone non-decreasing for 0 < ρ < ρ0 with ρ0 ≤ d(x, ∂V ) and x ∈ R
n+m . By

Rademacher’s theorem, we can define the derivative ∇V on V for Lipschitz functions
almost everywhere (see Definition 12.1 in [47] for instance).

Let {Vj } j≥0 be a sequence of integral stationary n-varifoldswith theRadonmeasure
μVj associated to Vj satisfying

sup
j≥1

μVj (W ) < ∞, for each W ⊂⊂ U .

By compactness theorem of varifolds (see Theorem 42.7 and its proof in [47]), there
are a subsequence Vj ′ and an integral stationary n-varifold V∞ such that Vj ′ converges
to V∞ in the varifold (Radon measure) sense.

Let us recall Sobolev inequality on a stationary varifold V in U . Michael–
Simon [41] proved the following Sobolev inequality on V (actually, for general
submanifolds of mean curvature type). There is a constant cn > 0 depending only
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on n such that (∫
| f | n

n−1 dμV

) n−1
n ≤ cn

∫
|∇V f |dμV (2.21)

holds for each Lipschitz function f with compact support inU . Recently, Brendle [10]
obtained the sharp Sobolev constant for minimal submanifolds of codimensions ≤ 2
(see [40] for the relative version).

Let Dn(U ) denote the set including all smooth n-forms on the open U ⊂ R
n+m

with compact supports in U . Denote Dn(U ) be the set of n-currents in U , which are
continuous linear functionals on Dn(U ). For each T ∈ Dn(U ) and each open set W
in U , one defines the mass of T on W by

M(T �W ) = sup
|ω|U≤1,ω∈Dn(U ),sptω⊂W

T (ω)

with |ω|U = supx∈U 〈ω(x), ω(x)〉1/2. Let ∂T be the boundary of T defined by
∂T (ω′) = T (dω′) for any ω′ ∈ Dn−1(U ). For T ∈ Dn(U ), T is said to be an
integer multiplicity current if it can be expressed as

T (ω) =
∫

S
θ〈ω, ξ 〉, for each ω ∈ Dn(U ),

where S is a countably n-rectifiable subset of U , θ is a locally Hn-integrable pos-
itive integer-valued function, and ξ is an orientation on S, i.e., ξ(x) is an n-vector
representing the approximate tangent space Tx S for Hn-a.e. x . Let f : U → R

p

be a C1-mapping with p ≥ n, and f∗ξ denote the push-forward of ξ , which is an
orientation of f (S) in Rp. We define f (T ) ∈ Dn(R

p) by letting

f (T )(ω) =
∫

S
θ〈ω ◦ f , f∗ξ 〉 =

∫

y∈ f (S)

〈

ω(y),
∑

x∈ f −1(y)∩S∗

θ(x)
f∗ξ(x)

| f∗ξ(x)|

〉

(2.22)

for each ω ∈ Dn(Rp), where S∗ = {x ∈ S| | f∗ξ(x)| > 0}. It’s clear that f (T ) is an
integer multiplicity current in R

p.
Let |T | denote the varifold associated with T , i.e., |T | = θ |S|. If both T and ∂T are

integer multiplicity rectifiable currents, then T is called an integral current. Federer
and Fleming [26](see also 27.3 Theorem in [47]) proved a compactness theorem
(or referred to as a closure theorem): a sequence of integral currents Tj ∈ Dn(U )

with M(Tj ) and M(∂Tj ) uniformly bounded admits a subsequence that converges
weakly to an integral current. For an integer k ≥ 1, we recall that an integral current
T ∈ Dk(R

n+m) is decomposable inU (see Bombieri–Giusti [9]) if there exist integral
currents T1, T2 ∈ Dk(U ) with T1�U , T2�U �= 0 such that

M(T �W ) = M(T1�W ) + M(T2�W ), M(∂T �W ) = M(∂T1�W ) + M(∂T2�W )
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for any W ⊂⊂ U . Here, T1, T2 are called components of T �U . On the contrary, T is
said to be indecomposable in U . If T is decomposable (indecomposable) in any open
W ⊂⊂ R

n+m , then we say T decomposable(indecomposable) for simplicity.
All n-dimensional minimal graphs in Rn+1 are area-minimizing, which is not true

for the higher codimension case in general. Bombieri–Giusti [9] proved that every
codimension one area-minimizing current in Euclidean space is indecomposable, and
the following uniform Neumann–Poincaré inequality holds on any area-minimizing
hypersurface � in R

n+1. There is a constant cn > 0 depending only on n such that
for any x ∈ �, r > 0, any Lipschitz function f on Br (x)

min
k∈R

(∫

Br (x)∩�

| f − k| n
n−1

) n−1
n ≤ cn

∫

Bcnr (x)∩�

|∇� f |. (2.23)

The uniform Neumann–Poincaré inequality plays a significant role in the mean value
inequality for superharmonic functions. As applications, they got several impressive
results for minimal graphs of codimension 1. Note that (2.23) does not hold for all
minimal hypersurfaces; for instance, the catenoid is a counterexample.

2.3 Lipschitz graphs of high codimensions

Let f : M1 → M2 be a locally Lipschitz map between Riemannian manifolds M1
and M2. For each point p ∈ M1 and each integer k > 0, let �kd f |p : �kTpM1 →
�kT f (p)M2 be the k-Jacobian map induced by the differential d f |p : TpM1 →
T f (p)M2 at differentiable points of f . Let κ1, . . . , κn denote the singular values of the
Jabobi matrix d f at any considered differentiable point of f . We let |�2d f | be the
2-dilation of f defined by

|�2d f | = sup
i �= j

|κiκ j |, (2.24)

while |�1d f | is the 1-dilation, i.e. the Lipschitz norm Lip f = |�1d f | = supi |κi |. f
is said to have 2-dilation bounded by � for some constant � ≥ 0 if |�2d f | ≤ � a.e.
on M1. Let Lip f = supx∈M1

Lip f (x) denote the Lipschitz constant of f on M1.
In the case f being a locally Lipschitz map from an open� ⊂ R

n intoRm , its graph
defines a locally Lipschitz submanifold M inRn+m . Let �∗ be the largest subset of �

such that f is C1 on �∗, and regM = {(x, f (x))| x ∈ �∗}. regM is called the regular
part of M . Now we have the usual Gauss map from regM . Let {E1, . . . ,En+m} be
the standard orthonormal basis of Rm+n . At each point in regM its image n-plane P
under the Gauss map is spanned by f̃1, . . . , f̃n with

f̃i = Ei +
∑

α

f α
i En+α,
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where f α
i = ∂ f α

∂xi
. Let θ1, . . . , θn be the Jordan angles between E1 ∧ · · · ∧ En and

f̃1 ∧ · · · ∧ f̃n . Let ξ denote an orientation of M defined by

ξ = 1

| f̃1 ∧ · · · ∧ f̃n|
f̃1 ∧ · · · ∧ f̃n (2.25)

on regM with | f̃1∧· · ·∧ f̃n|2 = det(δi j +∑α f α
i f α

j ). In particular, ξ is continuous on
regM , and ξ(x) represents the tangent space TxM as a unit n-vector for each x ∈ regM .
We denote [|M |] ∈ Dn(�×R

m) as the n-current associated with M and its orientation
ξ . Let λi = tan θi as (2.3), then λ1, . . . , λn are the singular values of d f at each point

x ∈ �. Namely, λ2i are eigenvalues of the matrix
(∑

α
∂ f α

∂xi
∂ f α

∂x j

)
. Hence, the Gauss

image of any point in regM is spanned by orthonormal vectors

1
√
1 + λ2i

(Ei + λiEn+i ).

Suppose that the n-plane P0 in (2.6) is spanned by E1, . . . ,En . Recalling (2.7), we
have a conclusion:

Proposition 2.2 For a locally Lipschitz graph M = graph f inR
n+m, the image under

the Gauss map from regM lies in 2-bounded subset T2,� ⊂ W0 ⊂ Gn,m if and only
if the defining map f has bounded 2-dilation by �.

Let u = (u1, . . . , um) be a locally Lipschitz (vector-valued) function on an open
� ⊂ R

n . Let gi j = δi j +∑m
α=1 ∂xi u

α∂x j u
α , and (gi j ) be the inverse matrix of (gi j )

for almost every point in �. Let M be the graph of the function u, which is countably
n-rectifiable. We can define the slope function of M by

v = √det gi j =
√√√√det

(

δi j +
m∑

α=1

∂uα

∂xi

∂uα

∂x j

)

(2.26)

Hn-a.e. on�. Note that we also see u, v as the functions on M by letting u(x, u(x)) =
u(x) and v(x, u(x)) = v(x) for every x ∈ �. If the varifold associated with M is
stationary, then all the coordinate functions are weakly harmonic on M (see [15] for
instance), i.e., all the x1, . . . , xn and u1, . . . , uα are weakly harmonic on M . Namely,
for any Lipschitz function φ on � with compact support on �, there holds

n∑

j=1

∫

�

vgi j
∂φ

∂x j
= 0 for each i = 1, . . . , n, (2.27)

and
n∑

i, j=1

∫

�

vgi j
∂uα

∂xi

∂φ

∂x j
= 0 for each α = 1, . . . ,m. (2.28)
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We call M a minimal graph if and only if the varifold associated with M is stationary.
Unlike minimal graphs of codimension one, minimal graphs of higher codimensions
may be only Lipschitz as in the examples by Lawson–Osserman [37]. For simplicity,
we say that the graph M has 2-dilation bounded by �, if its graphic function u : � →
R
m has 2-dilation bounded almost everywhere by �. Namely, |�2du| ≤ � Hn-a.e.

on �.
From the interior regularity theorem of Morrey, u is smooth at the differentiable

points. Then from (2.28), u satisfies the following minimal surface system

	Muα = 1

v

n∑

i, j=1

∂

∂xi

(
vgi j

∂uα

∂x j

)
= 0 (2.29)

at differentiable points of u. By [44] (or [37]), (2.29) is equivalent to

n∑

i, j=1

gi j
∂2uα

∂xi∂x j
= 0 (2.30)

at differentiable points of u.

3 Volume estimates for minimal graphs

Let M be a locally Lipschitz minimal graph of the graphic function u = (u1, . . . , um)

over BR of codimension m ≥ 1 in R
n+m . Then the induced metric of the graph is

gi j = δi j + ∂uα

∂xi
∂uα

∂x j , and we denote v = (det(gi j )
) 1
2 . Let D denote the derivative on

R
n , and ∇ denote the Levi-Civita connection of the regular part of M .

Lemma 3.1 Suppose that u has 2-dilation bounded by �. Then we have a volume
estimate:

Hn(M ∩ Br (x)) = cn,�

√
mωnr

n (3.1)

for any ball B2r (x) in BR ×R
m, where cn,� is a constant≥ 1 depending only on n,�.

Proof For proving (3.1), we only need to consider the ball Br with B2r ⊂ BR × R
m .

Without loss of generality, we can assume uα(0) = 0 for each α. Let uα
r be a function

on B2r defined by

uα
r =
⎧
⎨

⎩

r if uα ≥ r
uα if |uα| < r
−r if uα ≤ −r

.

For any δ ∈ (0, r ], we define a non-negative Lipschitz function η on R
n given by

η =
⎧
⎨

⎩

1, on Br
(1+δ)r−|x |

δr , on B(1+δ)r\Br
0, on R

n\B(1+δ)r

.
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From (2.28), for each α we have

0 =
∫

Rn
vgi j

∂uα

∂xi

∂(ηuα
r )

∂x j
=
∫

B(1+δ)r\Br
〈∇uα,∇η〉uα

r v +
∫

{|uα |<r}
v|∇uα|2η. (3.2)

We can check
v ≤
∑

α

|∇uα|2v + 1, (3.3)

which is obvious when m = 1. Combining (3.2) and (3.3), one has

Hn(M ∩ Br ) ≤
∫

Br∩{|u|<r}
v ≤
∫

Br∩{|u|<r}

(

1 + v
∑

α

|∇uα|2
)

≤ ωnr
n +
∑

α

∫

{|uα |<r}
v|∇uα|2η

= ωnr
n −
∑

α

∫

B(1+δ)r\Br
〈∇uα,∇η〉uα

r v. (3.4)

For each considered point in B(1+δ)r\Br , we can assume gi j = (sec2 θi )δi j , where

λ2i = tan2 θi are eigenvalues of
(∑

α
∂ f α

∂xi
∂ f α

∂x j

)
. Then v = (det(gi j )

) 1
2 = ∏ sec θi .

Moreover, there is an orthonormal matrix (aαβ) so that ∂uα

∂x j = aα jλ j = aα j tan θ j

(We let aα j = 0 for j ≥ m + 1). Hence, for each α

| 〈∇uα,∇η
〉
uα
r |v ≤ r

∣∣∣∣g
i j ∂η

∂xi
∂uα

∂x j

∣∣∣∣ v = r
∑

i

∣∣∣∣cos
2 θi

∂η

∂xi
aαi tan θi

∣∣∣∣ v

= r
∑

i

∣∣∣∣aαi
∂η

∂xi
sin θi cos θi

∣∣∣∣
∏

j

sec θ j . (3.5)

Under the condition of the 2-dilation bounded by �, namely, tan θi tan θ j ≤ � for
i �= j

∑

i

sin2 θi cos
2 θi
∏

j

sec2 θ j =
∑

i

sin2 θi
∏

j �=i

(1 + tan2 θ j )

≤
∑

i

cos2 θi tan
2 θi
∑

j �=i

(c′ + tan2 θ j ) ≤ c2,
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where c and c′ depend on � and n. Using Cauchy inequality, from (3.5) we get

∑

α

| 〈∇uα,∇η
〉
uα
r |v ≤ r

√√√√
∑

α,i

∣∣∣∣aαi
∂η

∂xi

∣∣∣∣

2√∑

α,i

sin2 θi cos2 θi
∏

j

sec2 θ j

≤ c
√
mr

√√√√
∑

α,i

a2αi

∣∣∣∣
∂η

∂xi

∣∣∣∣

2

= c
√
mr

√√√√
∑

i

∣∣∣∣
∂η

∂xi

∣∣∣∣

2

≤ c
√
m

δ
.

(3.6)

Substituting (3.6) into (3.4) gives

Hn(M ∩ Br ) ≤ ωnr
n + c

√
m

δ

∫

B(1+δ)r\Br
dx ≤ ωnr

n + c
√
m

δ
((1 + δ)n − 1)ωnr

n .

Thus,

Hn(M ∩ Br ) ≤ ωnr
n + lim

δ→0

c
√
m

δ
((1 + δ)n − 1)ωnr

n = (cn
√
m + 1)ωnr

n .

This completes the proof. ��
If M is an entire minimal graph, the estimation in (3.1) of Lemma 3.1 can be

independent of the codimension m.

Lemma 3.2 Let M = graphu be a locally Lipschitz minimal graph over Rn of codi-
mension m ≥ 2with supRn |�2du| ≤ �. Then there is a constant Cn,� ≥ 1 depending
only on n,� such that M is contained in some affine subspace of dimension ≤ Cn,�

and for any ball Br (x) in Rn+m

Hn(M ∩ Br (x)) ≤ Cn,�ωnr
n . (3.7)

Proof From Colding–Minicozzi (Corollary 1.4 in [14]), M must be contained in some
affine subspace V of the dimension

p ≤ cnVM , (3.8)

where cn = 3n
n−12

n+3e8 and

VM = lim
r→∞

1

ωnrn
Hn(M ∩ Br ). (3.9)

In particular, for p = n, M is flat. Let Ṽ be the linear space spanned by vectors in
V and vectors in the n-plane {(x, 0m) ∈ R

n × R
m | x ∈ R

n}. Then Ṽ has dimension
p̃ ≤ p + n. Hence up to an isometric transformation of Rm , M can be written as a
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graph overRn inRp̃ with the graphic functionw satisfying supRn |�2dw| ≤ �. From
Lemma 3.1 and (3.8), we have

p ≤ cncn,�

√
p̃ − n ≤ cncn,�

√
p, (3.10)

which implies p ≤ c2nc
2
n,�. Therefore, from Lemma 3.1 again, we get

VM = lim
r→∞

1

ωnrn
Hn(M ∩ Br ) ≤ cn,� min{√m,

√
p} ≤ cn,� min{√m, cncn,�}.

(3.11)
We complete the proof by the monotonicity of r−nHn(M ∩ Br (x)) on r . ��

The constant cn,� in (3.1) or Cn,� in (3.7) depends on � in general. Even, without
the bounded 2-dilation, minimal graphs have much faster volume growth in view of
the following remark.

Remark 3.1 For a smooth harmonic function φ on R
2, the graph M = {(x, y, Dφ) ∈

R
4| (x, y) ∈ R

2} is a special Lagrangian submanifold in R
4, and in particular, min-

imal. Let φ = Re ez = ex cos y. Then Dφ = (Re ez,−Im ez). By a straightforward
computation,

D2φD2φ =
(

ex cos y −ex sin y
−ex sin y −ex cos y

)2
=
(
e2x 0
0 e2x

)
. (3.12)

For any point (x, y, Dφ) ∈ B4√
3r

⊂ R
4 with r ≥ e, we have

3r2 > x2 + y2 + |Dφ|2 = x2 + y2 + e2x , (3.13)

which implies

{(x, y, Dφ) ∈ R
4| 0 < x < log r , |y| < r} ⊂ M ∩ B4√

3r
. (3.14)

Then with (3.12)

H2(M ∩ B4√
3r

) ≥
∫ log r

0

(∫ r

−r

√
det(I + D2φD2φ)dy

)
dx

≥ 2r
∫ log r

0
e2xdx = r(r2 − 1). (3.15)

In other words, M has volume growth strictly larger than Euclidean.

Let � be an open set in BR ⊂ R
n . For each α = 1, . . . ,m, let Mα be the graph in

� × R defined by
Mα = {(x, uα(x)) ∈ R

n × R| x ∈ �}. (3.16)

123



Q. Ding et al.

By a diagonal argument, it is clear that

|Duα|2 ≤ |∇uα|2v2 (3.17)

for each α. At any C1-point of u, the unit normal vector of Mα can be written as

νMα = 1
√
1 + |Duα|2

⎛

⎝−
n∑

j=1

∂uα

∂x j
E j + En+1

⎞

⎠ ,

where E j is a unit constant vector in Rn+1 with respect to the axis x j . For each fixed
α, let W denote a bounded open set with n-rectifiable ∂W in R

n+1 such that there is
a constant γ > 0 satisfying

Hn(∂W ∩ Br (x)) ≥ γ rn for any x ∈ ∂W , any r ∈ (0, 1). (3.18)

Let Y be a measurable vector field in � defined by

Y = v

n∑

i, j=1

gi j
∂uα

∂xi
E j . (3.19)

By parallel transport, we obtain a Lipschitz vector field in � × R, still denoted by Y .
Let ∇̄ denote the Levi-Civita connection of Rn+1. Then from (2.28) and the co-area
formula,

0 =
∫

R

(∫

W∩{xn+1=t}
〈Y , Dφ〉

)
dt

=
∫

R

(∫

W∩{xn+1=t}
〈Y , ∇̄φ〉

)
dt =

∫

W
〈Y , ∇̄φ〉 (3.20)

for any smooth function φ with compact support in W . For any ε > 0, let Wε =
{x ∈ W | d(x, ∂W ) > ε}, φε = 1 − 1

ε
d(·,Wε) on W and φε = 0 on R

n+1\W . Let
σ ∈ C∞

c (Rn+1) satisfy
∫
Rn+1 σ(z)dz = 1, and σδ(z) = δ−nσ(z/δ) for each z ∈ R

n+1

and each δ ∈ (0, 1]. Let φε,δ be a convolution of φε and σδ defined by

φε,δ(z) = (φε∗σδ)(z) =
∫

Rn+1
φε(y)σδ(z−y)dy =

∫

Rn+1
φε(z−y)σδ(y)dy. (3.21)

Then φε,δ ∈ C∞
c (Rn+1), and ∇̄φε,δ → ∇̄φε at differentiable points of φε as δ → 0.

Substituting φε,δ into (3.20) implies

0 = lim
δ→0

∫

W
〈Y , ∇̄φε,δ〉 =

∫

W
〈Y , ∇̄φε〉. (3.22)

123



Minimal graphs of arbitrary codimension in Euclidean…

Let ν∂W be the outward unit normal vector to the regular part of ∂W . Since 〈Y , En+1〉 =
0 a.e. on�×R, wemay denote 〈Y , En+1〉 = 0 on ∂W . By the definition ofY , 〈Y , ν∂W 〉
is well-defined Hn-a.e. on ∂W . From (3.18) and Ambrosio–Fusco–Pallara (in [4], p.
110), letting ε → 0 in (3.22) implies

0 = lim
ε→0

∫

W
〈Y , ∇̄φε〉 =

∫

∂W
〈Y , ν∂W 〉. (3.23)

Recalling (3.17), we have

∫

∂W∩Mα

|Duα|2
√
1 + |Duα|2v ≤

∫

∂W∩Mα

|∇uα|2v
√
1 + |Duα|2

= −
∫

∂W∩Mα

〈Y , νMα 〉 ≤
∫

∂W\Mα

|〈Y , ν∂W 〉| . (3.24)

4 Cylindrical minimal cones fromminimal graphs

Let Mk be a sequence of n-dimensional locally Lipschitz minimal graphs over BRk

in R
n+m of codimension m ≥ 1 with Rk → ∞, and the graphic functions uk =

(u1k, . . . , u
m
k ) of Mk satisfies uk(0n) = 0m and |�2duk | ≤ � a.e. for some constant

� > 0. We may suppose that |Mk | converges in the varifold sense to a minimal cone
C inRn+m with 0n+m ∈ C . From Lemma 3.1, the multiplicity of C has a upper bound
depending only on n,m,�.

Let {Ei }n+m
i=1 be a standard basis ofRn+m such that each x ∈ Mk can be represented

as
∑

i xiEi +∑α u
α
k (x)En+α with x = (x1, . . . , xn) ∈ BRk . If sptC∩{(0n, y) ∈ R

n×
R
m | y ∈ R

m} = {0n+m}, i.e., uk has uniformly linear growth. Then the minimal cone
C has multiplicity one from Lemma 10.1, which completes the proof of Theorem 1.1.
Now we assume that there is a point y∗ = (0n, y∗) ∈ sptC with 0m �= y∗ ∈ R

m .
Without loss of generality, we assume y∗ = (1, 0, . . . , 0) ∈ R

m , then y∗ = En+1. Let

Ct = C − t y∗ = C − tEn+1

for any t ∈ R. In other words, if we denote C = θC |C |, then Ct = θC (· + tEn+1)|Ct |
with sptCt = {x− tEn+1| x ∈ sptC}. Since C is a cone, then Ct converges as t → ∞
in the varifold sense to a minimal cone Cy∗ in R

n+m , where sptCy∗ splits off a line
{t y∗| t ∈ R} isometrically.

Lemma 4.1 Cy∗ is a cylindrical minimal cone living in an (n + 1)-dimensional sub-
space {(x1, . . . , xn+1, 0, . . . 0) ∈ R

n+m | (x1, . . . , xn+1) ∈ R
n+1} of Rn+m.

Proof For any regular point x ∈ sptCy∗ , the tangent cone of Cy∗ at x is an n-plane
with constant integer multiplicity by constancy theorem (see Theorem 41.1 in [47]).
Let TxCy∗ denote the tangent space of Cy∗ at x, which is an n-plane with constant
multiplicity. We represent the support of TxCy∗ by an n-vector τ1 ∧ · · · ∧ τn with

123



Q. Ding et al.

orthonormal unit vectors τi . Since sptCy∗ splits off a line t y∗ isometrically, then

τ1 ∧ · · · ∧ τn ∧ En+1 = 0. (4.1)

From the construction of Cy∗ , there is a sequence of minimal graphs �k in R
n × R

m

such that |�k | converges to Cy∗ in the varifold sense. Here, �k is a rigid motion of
Mk . Let ξk be an orientation of �k for each k (see (2.25)). Since |�k | converges in the
varifold sense to Cy∗ , then there is a sequence rk → ∞ such that

∣∣∣ 1rk �k ∩ Br2k
(y∗)
∣∣∣

converges to TxCy∗ in the varifold sense. Hence, up to a choice of the subsequence,
there is a sequence of regular points xk = (xk1 , . . . , x

k
n , uk(x

k
1 , . . . , x

k
n )) ∈ Mk with

xk → x such that ξk(xk) → τ1 ∧ · · · ∧ τn .
Let λ1,k, . . . , λn,k be the singular values of the matrix Duk at (xk1 , . . . , x

k
n ) with

λ j,k ≥ 0 for all j = 1, . . . , n, and

e j,k = 1
√
1 + λ2j,k

(
E j + λ j,kEn+ j

)

for each integers 1 ≤ j ≤ n and k ≥ 1. Then {e j,k}nj=1 forms an orthonormal basis
of Txk Mk (up to a permutation of λ1,k, . . . , λn,k and a rotation of Rn), and we can
choose ξk(xk) = e1,k ∧ · · · ∧ en,k . From (4.1), the assumption |�2duk | ≤ � a.e. and
ξk(xk) → τ1 ∧ · · · ∧ τn , we get λ1,k → ∞,

∑n
j=2 λ j,k → 0 as k → ∞, and then

τ1 ∧ · · · ∧ τn = E2 ∧ · · · ∧En+1 represents the orientation of TxCy∗ . Note that sptCy∗
splits off the line {tEn+1| t ∈ R} isometrically. So there is an (n − 1)-dimensional
cone C∗ in Rn such that sptCy∗ can be written as

{(x1, . . . , xn, y1, . . . , ym) ∈ R
n × R

m | (x1, . . . , xn) ∈ C∗, y2 = · · · = ym = 0}.

This completes the proof. ��
Let

gki j = δi j +
m∑

α=1

∂uα
k

∂xi

∂uα
k

∂x j
,

vk =
√
det gki j =

√√√√det

(

δi j +
m∑

α=1

∂uα
k

∂xi

∂uα
k

∂x j

)

, (4.2)

and (gi jk )n×n be the inverse matrix of (gki j )n×n . Let π∗ denote the projection from
R
n+m into Rn by

π∗(x1, . . . , xn+m) = (x1, . . . , xn). (4.3)

For any x = (x1, . . . , xn+m) ∈ R
n+m , let

Cr (x) = Br (π∗(x)) × Br (xn+1, . . . , xn+m)

123



Minimal graphs of arbitrary codimension in Euclidean…

be the cylinder in R
n+m , and Cr = Cr (0n+m).

For studying the multiplicity of the cone C , we only need to prove it at any regular
point of sptC . Hence, it suffices to prove the following lemma.

Lemma 4.2 If sptC ∼= R
n, then C has multiplicity one on sptC.

Proof From the proof of Lemma 4.1, we can assume

sptC = {(x1, . . . , xn, y1, . . . , ym) ∈ R
n × R

m | x1 = 0, y2 = · · · = ym = 0},

or else we have finished the proof by Lemma 10.1 in the Appendix II. For each k, let
xk = (x, uk(x)) ∈ R

n ×R
m be a vector-valued function on BRk , and τ j,k be a tangent

vector field of Mk in Rn+m defined by

τ j,k = ∂xk
∂x j

= E j +
∑

α

(Dju
α
k )En+α a.e., (4.4)

then det
(〈τi,k, τ j,k〉

) = v2k a.e. for each k. Hence, the orientation of Mk can be written
as

ξk = 1

vk
τ1,k ∧ · · · ∧ τn,k a.e.

with |ξk | = 1 a.e.. From Lemma 22.2 in [47], for any compact set K in R
n+m , we

have

lim
k→∞

∫

K∩Mk

(
1 − 〈ξk, ξ0〉2

)
= 0 (4.5)

with ξ0 = E2 ∧ · · · ∧ En+1. Since ξk has the expansion

ξk = 1

vk
E1 ∧ · · · ∧ En +

∑

j,α

(−1)n− j D juα
k

vk
E1 ∧ · · · ∧ Ê j ∧ · · ·En ∧ En+α

+
∑

j1<···< jn , jn−1>n

ak, j1,..., jnE j1 ∧ · · · ∧ E jn a.e. (4.6)

with |ak, j1,..., jn | ≤ 1, then from (4.5) we have

lim
k→∞

∫

K∩Mk

(

1 − |D1u1k |2
v2k

)

= 0. (4.7)

With |�2duk | ≤ � a.e., there are a sequence of positive numbers εk → 0 (as k → ∞)
and a sequence of open sets Wk ⊂ C3 ∩ Mk withHn(Wk) < εk such that

vk ≤ (1 + εk)|D1u
1
k |, |D1u

1
k | ≥ 1

εk
on π∗(C3 ∩ Mk\Wk). (4.8)
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Then for any small constant 0 < ε < 1 we have

Hn (Mk ∩ C1) ≤
∫

(Mk\Wk )∩C1

1+
∫

Wk

1 ≤ (1+ε)

∫

π∗((Mk\Wk )∩C1)

|D1u
1
k |+ε (4.9)

for large k.
Let π∗ denote the projection from R

n+m into Rn+1 by

π∗(x1, . . . , xn+m) = (x1, . . . , xn+1). (4.10)

For x = (x1, . . . , xn+1), let Cr (x) be a cylinder in Rn+1 defined by

Cr (x) = Br ((x1, . . . , xn)) × (xn+1 − r , xn+1 + r).

Let M∗
k = π∗(Mk). For any q ∈ R

n with |q|2 + |uk(q)|2 < r2 and r ∈ (0, 3), we
have |q|2 + |u1k(q)|2 < r2, then it follows that

π∗(Mk ∩ Cr ) ⊂ M∗
k ∩ Cr (0

n+1). (4.11)

From (2.20),we haveHn(Mk∩Br (x)) ≥ ωnrn for any x ∈ Mk andBr (x) ⊂ BRk×R
m .

Since |Mk | converges to the coneC , thenMk∩K converges to sptC∩K in theHausdorff
sense for any compact set K in Rn+m . Thus,

M∗
k ∩ Cr (0

n+1) ⊂ π∗(Mk ∩ Cr+ε) (4.12)

for all the sufficiently large k and r ∈ (0, 2]. In particular, ∂M∗
k ∩ C2(0n+1) = ∅. Let

W ∗
k = π∗(Wk) ∩ M∗

k . With (4.11), we get

π∗((Mk\Wk) ∩ C1) ⊂ C1(0
n+1) ∩ M∗

k \W ∗
k . (4.13)

From (4.9), (4.13), it follows that

Hn (Mk ∩ C1) ≤ (1 + ε)Hn
(
C1(0

n+1) ∩ M∗
k \W ∗

k

)
+ ε (4.14)

for all the sufficiently large k.
We claim that

there is a constant k0 > 0 such that for all k ≥ k0 and all the Cr (z) ⊂ C2(0n+1),
Cr (z)\M∗

k has only two components.

Assume that Cr (z)\M∗
ik
has at least 3 components for a sequence ik → ∞. Without

loss of generality, we assume ∂M∗
ik

∩ C2(0n+1) = ∅ for all k ≥ 1. Put I = {ik}∞k=1.
SinceMk converges locally to sptC in the Hausdorff sense, thenCr (z)∩M∗

k converges
to the n-dimensional ball

Br (z) ∩ {(x1, . . . , xn, y1) ∈ R
n+1| x1 = 0}
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in the Hausdorff sense for any Cr (z) ⊂ C2(0n+1). Hence, for each k ∈ I there is a
component Fk of Cr (z)\M∗

k such that

∂Fk\M∗
k ⊂ (Br (z

′) × {zn+1 − r}) ∪ (Br (z
′) × {zn+1 + r}) ∪ Gk (4.15)

for some closed set Gk in ∂Br (z′) × [zn+1 − r , zn+1 + r ] with limk→∞ Hn(Gk) = 0,
and z = (z′, zn+1). Let Yk be ameasurable vector field defined inπ∗(Mk)×R ⊂ R

n+1

by

Yk = vk
∑

i, j

gi jk
∂u1k
∂xi

E j . (4.16)

It’s clear that π ′(Fk) ⊂ π∗(Mk), where π ′ denotes the projection fromR
n+1 toRn by

π ′(x1, . . . , xn+1) = (x1, . . . , xn).

From the argument of (3.6), there is a constant c� > 0 depending only on n,m,�

such that
|Yk | ≤ c�. (4.17)

From (3.24) for Yk and (4.15), we have

∫

∂Fk∩M∗
k

|Du1k |2√
1 + |Du1k |2vk

≤
∫

∂Fk\M∗
k

|〈Yk, En+1〉| ≤
∫

Gk

|Yk | ≤ c�Hn(Gk).

(4.18)
From (4.8), the above inequality contradicts to limk→∞ Hn(Gk) = 0, and we have
proven the claim.

Set

M∗
k,t = M∗

k ∩ {y1 = t}

for any t ∈ R. From Lemma 22.2 in [47],

lim
k→∞

∫

Mk∩C5/2

(
∣∣∇Mk x1

∣∣2 +
m∑

α=2

∣∣∇Mk yα
∣∣2
)

= 0, (4.19)

where∇Mk denotes the Levi-Civita connection onMk for each k. FromM∗
k = π∗(Mk)

and (4.12), it follows that

lim
k→∞

∫

M∗
k ∩C2(0n+1)

∣∣∣∇M∗
k
x1
∣∣∣
2 = 0, (4.20)

where ∇M∗
k
denotes the Levi-Civita connection on M∗

k for each k.

Let γk,t = C1(0n+1)∩M∗
k ∩{y1 = t} for any t ∈ (−1, 1). SinceC1(0n+1)∩M∗

k is a
graph, then π ′(γk,t1)∩π ′(γk,t2) = ∅ for different t1, t2. As γk,t dividesC1(0n+1)∩M∗

k
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into two parts for each t ∈ (−1, 1), then π ′(γk,t ) also divides π ′(C1(0n+1)∩M∗
k ) into

two parts.Moreover, π ′(C1(0n+1)∩M∗
k ) is a domain that converges to the (n−1)-ball

{(x1, . . . , xn) ∈ R
n| x1 = 0, x22 + · · · + x2n < 1}

in the Hausdorff sense. Note that γk,t is isometric to π ′(γk,t ). Let π1 be a projection
from R

n+1 to R
n defined by π1(x1, . . . , xn+1) = (x2, . . . , xn+1). Then from (4.20),

it follows that

lim
k→∞Hn

(
π1(C2(0

n+1))\π1(M
∗
k ∩ C2(0

n+1))
)

= 0. (4.21)

Combining the co-area formula,Hn(W ∗
k ) = Hn(π∗(Wk)) < εk and (4.20), (4.21), we

can choose a sequence tk ∈ (−1, 1) and a countably (n − 1)-rectifiable set γ ∗
k ⊂ γk,tk

with ∂γ ∗
k ⊂ ∂C1(0n+1) ∩ {y1 = tk} such that

Hn−1(γ ∗
k ) < (1 + ε)ωn−1, (4.22)

and
Hn−1(γ ∗

k ∩ W ∗
k ) < εωn−1, (4.23)

where ε is the small positive constant defined above. Denote �k = γ ∗
k × (−1, 1).

Since C1(0n+1)\M∗
k has only two components and C1(0n+1) ∩ M∗

k converges in the
Hausdorff sense to

{(x1, . . . , xn) ∈ R
n| x1 = 0, x22 + · · · + x2n ≤ 1} × [−1, 1],

then for each k there is an open set �k in C1(0n+1) such that (C1(0n+1) ∩ M∗
k )\�k ⊂

∂�k and

∂�k ⊂ M∗
k ∪ �k ∪ (B1(0

n) × {−1, 1}) ∪ Sk,

where Sk ⊂ ∂B1(0n) × [−1, 1] is a closed set with limk→∞ Hn(Sk) = 0.
From (4.8) and Lemma 9.1 in the Appendix I, we have

|〈Yk, E1〉| = vk

∣∣∣∣∣∣

∑

j

g1 jk D ju
1
k

∣∣∣∣∣∣
≤ 1 + ε (4.24)

on M∗
k,tk

\W ∗
k for the sufficiently large k. From (3.24), we have

∫

C1(0n+1)∩M∗
k

|Du1k |2√
1 + |Du1k |2vk

≤
∫

�k

|〈Yk, E1〉| +
∫

Sk
|Yk |. (4.25)

123



Minimal graphs of arbitrary codimension in Euclidean…

Combining (4.17), (4.22), (4.23), (4.24), one has

∫

C1(0n+1)∩M∗
k

|Du1k |2√
1 + |Du1k |2vk

≤ 2(1 + ε)Hn−1(γ ∗
k \W ∗

k ) + 2c�Hn−1(γ ∗
k ∩ W ∗

k ) + c�Hn(Sk)

≤ 2(1 + ε)2ωn−1 + 2c�εωn−1 + c�Hn(Sk). (4.26)

With (4.8) and limk→∞ Hn(Sk) = 0, letting k → ∞ in (4.26) infers

lim sup
k→∞

Hn
(
C1(0

n+1) ∩ M∗
k \W ∗

k

)
≤ 2(1 + ε)2ωn−1 + 2c�εωn−1. (4.27)

Recalling (4.14), we complete the proof by letting ε → 0 in (4.27). ��
Theorem 4.1 If |Mk | converges to a cylindrical varifold V in R

n+m with

sptV = {(x1, . . . , xn, y1, . . . , ym)| (x1, . . . , xn) ∈ V∗, y2 = · · · = ym = 0}

for a closed set V∗ in Rn, then sptV is stable.

Remark Here, the stable sptV means that sptV is stable outside its singular set.

Proof Let M = regV be the regular part of V . Let νM denote the unit normal vector of
M in Rn+1. Since M is open in regV by Allard’s regularity Theorem [1], then for any
pointq ∈ M , there is a constant r = rq such thatB2r (q)∩sptV ⊂ M . Letqk ∈ Mk with
qk → q. Let λ1,k, . . . , λn,k be the singular values of Duk with λ1,k ≥ · · · ≥ λn,k ≥ 0.
From Allard’s regularity Theorem [1] and Lemma 4.2, Mk ∩ B 7

4 r
(qk) converges to

M ∩ B 7
4 r

(q) smoothly. Then

lim
k→∞ inf

Mk∩B 3
2 r

(qk )
λ1,k = ∞.

For a point z ∈ Br (q) ∩ M , let zk ∈ Br (q) ∩ Mk be a sequence of points with zk → z
such that Mk is smooth at zk for each k. Let {να

k }mα=1 be a local orthonormal frame of
the normal bundle NMk on Br (qk) ∩ Mk such that

να
k = 1

√
1 + λ2α,k

(−λα,kEα + En+α

)
at zk (4.28)

for each k, α. Then ν1k (zk) → −E1, ν
β
k (zk) → −En+β for each β = 2, . . . ,m.

Let us now choose a local orthonormal tangent frame field {ekj } j=1,...,n on Br (qk)∩
Mk , such that

ekj = 1
√
1 + λ2j,k

(
E j + λ j,kEn+ j

)
at zk (4.29)
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for each k, j . Let hkα,i j denote the components of the second fundamental form of Mk

defined by

hkα,i j =
〈
∇̄eki

ekj , ν
α
k

〉
.

Since Mk ∩ B 7
4 r

(qk) converges to M ∩ B 7
4 r

(q) smoothly, it follows that

lim
k→∞ sup

Br (qk )∩Mk

m∑

α=2

n∑

i, j=1

(hkα,i j )
2 = 0. (4.30)

With the Cauchy inequality and the above limit, we obtain

∑

l,i �= j

|hki, jl hkj,il | +
∑

l,i �= j

|hki,il hkj, jl | ≤ εk |BMk |2 + εk (4.31)

on Br (qk) ∩ Mk for some sequence εk → 0 as k → ∞. Let 	Mk and BMk denote the
Laplacian and the second fundamental form of Mk , respectively. Combining (2.18),
(4.31) and the bounded 2-dilation condition, we have

	Mkv
−1
k = −v−1

k

⎛

⎝
∑

α,i, j

(hkα,i j )
2 +
∑

l,i �= j

λi,kλ j,kh
k
i, jl h

k
j,il −

∑

l,i �= j

λi,kλ j,kh
k
i,il h

k
j, jl

⎞

⎠

≤ −v−1
k

⎛

⎝
∑

α,i, j

(hkα,i j )
2 + �

∑

l,i �= j

|hki, jl hkj,il | + �
∑

l,i �= j

|hki,il hkj, jl |
⎞

⎠

≤ −v−1
k

(
(1 − εk)|BMk |2 − εk

)
(4.32)

at zk . Hence the inequality

	Mkv
−1
k ≤ −v−1

k

(
(1 − εk)|BMk |2 − εk

)
(4.33)

holds on Br (qk) ∩ Mk .
Let φ be a smooth function in M with compact support and sptφ ∩ sptV ⊂ M .

From (4.33) and the covering lemma, we have

	Mkv
−1
k ≤ −v−1

k

(
(1 − ε̃k)|BMk |2 − ε̃k

)
(4.34)
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on sptφ ∩ Mk for some sequence of positive numbers ε̃k with limk→∞ ε̃k = 0. Then
with the Cauchy inequality, we have

∫

Mk

(
(1 − ε̃k)|BMk |2 − ε̃k

)
φ2

≤ −
∫

Mk

φ2vk	Mkv
−1
k = −

∫

Mk

v−2
k 〈∇Mk (φ

2vk),∇Mkvk〉

= −
∫

Mk

φ2v−2
k

∣∣∇Mkvk
∣∣2 − 2

∫

Mk

φv−1
k 〈∇Mkφ,∇Mkvk〉 ≤

∫

Mk

∣∣∇Mkφ
∣∣2 .

(4.35)

Let BM denote the second fundamental form of M in R
n+1. Letting k → ∞ in the

above inequality implies

∫

M
|BM |2φ2 ≤

∫

M
|∇Mφ|2 . (4.36)

We complete the proof. ��
Let M be a locally Lipschitz minimal graph over Rn of codimension m ≥ 1 with

bounded 2-dilation of its graphic function. From Lemma 3.1 and the compactness
theorem for integral varifolds (Theorem 42.7 in [47]), we can suppose that a minimal
cone C is a tangent cone of M at infinity. Namely, there is a sequence rk → ∞ such
that | 1rk M | converges in the varifold sense to C in R

n+m with 0n+m ∈ C . Combining
Lemma 4.2 and Theorem 4.1, we can get Theorem 1.1 immediately.

5 Neumann–Poincaré inequality on stationary indecomposable
currents

For integers n ≥ 2,m ≥ 1, a constant � > 0 and an open set � ⊂ R
n , let Mn,m,�,�

denote the set containing all the locally Lipschitz minimal graphs over � of arbitrary
codimension m ≥ 1 with 2-dilation of their graphic functions ≤ �. Let Mn,m,�,�

be the closure of the currents associated with minimal graphs in Mn,m,�,�. Namely,
for an integral current T in � × R

m , we say T ∈ Mn,m,�,� if and only if there is a
sequence of minimal graphs Mk ∈ Mn,m,�,� such that for any openW ⊂⊂ �×R

m ,
T �W is the (weak) limit of [|Mk ∩ W |] as k → ∞.

Lemma 5.1 For a sequence Mk ∈ Mn,m,�,�, let T be a current in R
n+m and V

be a multiplicity one rectifiable stationary n-varifold in R
n+m so that for any open

W ⊂⊂ � × R
m, [|Mk ∩ W |] converges weakly to T �W and |Mk ∩ W | converges to

V �W in the varifold sense. Then |T | = V in � × R
m.

Proof For any open W ⊂⊂ � × R
m and any ω ∈ Dn−1(W ),

〈∂T , ω〉 = 〈T , dω〉 = lim
k→∞〈[|Mk |], dω〉 = lim

k→∞〈∂[|Mk |], ω〉 = 0, (5.1)
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whichmeans ∂T �W = 0. LetW ′ be an open set inW such that sptV ∩W ′ is contained
in the regular part of sptV . From Allard’s regularity theorem, Mk ∩ W ′ converges to
sptV ∩ W ′ smoothly as V has multiplicity one from Lemma 4.2. Hence, for any
p ∈ sptV ∩ W and any ε ∈ (0, d(p, ∂W )), there is an orientation ξ of sptV ∩ Bε(p)
such that

lim
k→∞

∫

Mk∩Bε(p)
〈ξk, η〉 =

∫

sptV∩Bε(p)
〈ξ, η〉 for any η ∈ Dn(Rn+m), (5.2)

where ξk denotes the orientation of Mk defined by (2.25). For any ε′ > 0, there is a
smooth ξ∗ ∈ Dn(Bε(p)) such that

∫

sptV∩Bε(p)
(1 − |〈ξ, ξ∗〉|) < ε′Hn(sptV ∩ Bε(p)).

Hence

〈T , ξ∗〉 = lim
k→∞〈[|Mk |], ξ∗〉 = lim

k→∞

∫

Mk

〈ξk, ξ∗〉

=
∫

sptV∩Bε(p)
〈ξ, ξ∗〉 > (1 − ε′)Hn(sptV ∩ Bε(p)), (5.3)

which implies sptV ∩ W ⊂ sptT . So we obtain sptT ∩ W = sptV ∩ W . From (5.3),
we getM(T �Bε(p)) = Hn(sptV ∩ Bε(p)), which means that T has multiplicity one
on sptT ∩ W . ��

As a corollary, we immediately have the following corollary.

Corollary 5.1 Any current T ∈ Mn,m,�,� has multiplicity one on sptT ∩ (� × R
m).

Let M be a locally Lipschitz minimal graph over � in R
n+m . From (2.21), there

holds the isoperimetric inequality

(Hn(K )
) n−1

n ≤ cnHn−1(∂K ) (5.4)

for every bounded closed subset K of M with countably rectifiable boundary ∂K ,
where cn > 0 is a constant depending only on n.

In [9], Bombieri–Giusti proved that any codimension one minimizing current in
Euclidean space is indecomposable, and established a Neumann–Poincaré inequality
on such currents. Inspired by their ideas in [9], we introduce a concept ’stationary
indecomposable’ for integral currents associated with stationary varifolds as follows.

Definition 5.1 Let T be an integral current such that |T | is a stationary varifold. We
say T stationary decomposable in an open set W if there are two components T1, T2
of T �W such that |T1|, |T2| are stationary varifolds in W . On the contrary, we say
T stationary indecomposable in W . Furthermore, T1 is said to be a stationary inde-
composable component of T �W if T1 is a component of T �W , and T1 is stationary
indecomposable in W .
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By the above definition, for an integral current S with stationary |S|, if S is inde-
composable, then S is stationary indecomposable.

Remark 5.1 In general, for an integral decomposable current T with |T | stationary,
the indecomposable components of T may be not stationary. For instance, Let U1 =
{(r cos θ, r sin θ) ∈ R

2| r > 0, |θ | < ε}, U2 = {(r cos θ, r sin θ) ∈ R
2| r > 0, |θ −

π/3| < ε}, U3 = {(r cos θ, r sin θ) ∈ R
2| r > 0, |θ − 2π/3| < ε}, and U =

U1 ∪ U2 ∪ U3. Then [|∂U |] is an integral current with |∂U | stationary, and [|∂U1|],
[|∂U2|], [|∂U3|] are 3 components of [|∂U |]. Clearly, for each i = 1, 2, 3, [|∂Ui |]
is not stationary for the suitably small ε > 0. However, for any codimension one
area-minimizing current S in Euclidean space, S is not only indecomposable but also
stationary indecomposable from the proof of Theorem 1 in [9].

Lemma 5.2 Let T be an integral current in Mn,m,�,B3 , and T is a stationary inde-
composable component of T�B2. Then there exists a constant δT > 0 depending on
T such that

Hn−1(sptT ∩ ∂U ∩ B2)

≥ δT
(
min{Hn(sptT ∩U ∩ B1),Hn(sptT ∩ B1\U )}) n−1

n (5.5)

for any open U ⊂ B2 with (n − 1)-rectifiable sptT ∩ ∂U.

Remark 5.2 We do not know yet whether limits of stationary indecomposable currents
are still stationary indecomposable. Hence, the coefficient δT in (5.5) depends on the
current T .

Proof Let us prove (5.5) by contradiction. Suppose that there is a sequence of open
Uk ⊂ B2 with (n − 1)-rectifiable sptT ∩ ∂Uk such that

Hn−1(sptT ∩ ∂Uk ∩ B2)

<
1

k

(
min{Hn(sptT ∩Uk ∩ B1),Hn(sptT ∩ B1\Uk)}

) n−1
n . (5.6)

Let T+
k = T �Uk and T−

k = T �
(
B2\Uk

)
. Then all T±

k are integer multiplicity cur-
rents. Without loss of generality we can assume Hn−1(T ∩ ∂B2) < ∞, or else
from co-area formula we consider a sequence of balls B2−sk for some sequence
0 < sk → 0 with Hn−1(T ∩ ∂B2−sk ) < ∞. Hence with (5.6), M(∂T±

k ) are uni-
formly bounded independent of k. Clearly, M(T+

k �W ) + M(T−
k �W ) = M(T �W ).

By Federer–Fleming compactness theorem, there are two integer multiplicity currents
T+∗ , T−∗ with sptT±∗ ⊂ sptT such that T±

k converges weakly to T±∗ as k → ∞ up to
a choice of a subsequence.

For any open W ⊂ B2, |ω|B2 ≤ 1, ω ∈ Dn(B2), sptω ⊂ W we have

T (ω) = lim
k→∞(T+

k +T−
k )(ω) = T+∗ (ω)+T−∗ (ω) ≤ M(T+∗ �W )+M(T−∗ �W ), (5.7)

which implies
M(T �W ) ≤ M(T+∗ �W ) + M(T−∗ �W ). (5.8)
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Moreover,

M(T+∗ �W ) + M(T−∗ �W ) ≤ lim inf
k→∞ M(T+

k �W ) + lim inf
k→∞ M(T−

k �W ) ≤ M(T �W ).

Hence, we deduce
M(T �W ) = M(T+∗ �W ) + M(T−∗ �W ), (5.9)

and
M(T±∗ �W ) = lim

k→∞M(T±
k �W ). (5.10)

For any |ω′|B2 ≤ 1, ω′ ∈ Dn−1(B2), sptω′ ⊂ W , from (5.6) we have

∂T+∗ (ω′) = T+∗ (dω′) = lim
k→∞ T+

k (dω′) = lim
k→∞(T �∂Uk)(ω

′)

≤ lim sup
k→∞

Hn−1(sptT ∩ ∂Uk ∩ B2) = 0, (5.11)

which implies
M(∂T+∗ �W ) = M(∂T−∗ �W ) = 0. (5.12)

Since T has multiplicity one on sptT ∩ W for any open W ⊂ B2 from Corollary 5.1,
T±∗ has multiplicity one on its support.

From the co-area formula, for almost all 1 < t < 2, we have

∂

∂t
M(T±

k �Bt ) ≥ M(∂(T±
k �Bt )) − M(∂T±

k �Bt ). (5.13)

With (5.4) and (5.6), for almost all 1 < t < 2, we get

∂

∂t
M(T±

k �Bt ) >
1

cn

(
M(T±

k �Bt )
) n−1

n − 1

k

(
M(T±

k �B1)
) n−1

n

≥
(
1

cn
− 1

k

) (
M(T±

k �Bt )
) n−1

n , (5.14)

which impliesM(T±
k �Bt ) > 0 for any t > 1 and any k > cn . Then we solve the above

differential inequality and from (5.10) we get

M(T±∗ �Bt ) = lim
k→∞M(T±∗ �Bt ) ≥

(
t − 1

2ncn

)n
(5.15)

for each t ∈ [1, 2].
For any small fixed ε > 0 and any integer k ≥ 0, there is a collection of balls

{Brl (xl)}Nk,ε
l=1 with rl < ε such that sptT ∩ ∂Uk ∩ B2 ⊂ ∪Nk,ε

l=1 Brl (xl), and

ωn−1

Nk,ε∑

l=1

rn−1
l < Hn−1(sptT ∩ ∂Uk ∩ B2) + ε. (5.16)
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Letηl be aLipschitz function onB3 with 0 ≤ ηl ≤ 1 such thatηl = 0 onBrl (xl),ηl = 1
on B3\B2rl (xl), |∇̄ηl | = r−1

l on B2rl (xk)\Brl (xk), where ∇̄ denotes the Levi-Civita

connection of Rn+m . Set ηk,ε =∏Nk,ε
l=1 ηl ∈ C1. Then ηk,ε = 0 on a neighborhood of

sptT ∩ ∂Uk ∩ B2 and

|∇̄ηk,ε| ≤
Nk,ε∑

l=1

|∇̄ηl | ≤
Nk,ε∑

l=1

r−1
l χB2rl

(xl )
. (5.17)

Let φ be a smooth function with compact support inB2. Let∇T denote the Levi-Civita
connection of the regular part of |T |. Since |T+

k | is a multiplicity one stationary n-
varifold in Uk , then every position function xi is weakly harmonic on sptT+

k for each
i = 1, . . . ,m + n (see [15] for instance). Hence

0 =
∫

sptT+
k

〈∇T xi ,∇T (φηk,ε)〉 =
∫

sptT+
k

ηk,ε〈∇T xi ,∇Tφ〉+
∫

sptT+
k

φ〈∇T xi ,∇T ηk,ε〉.

With (5.17), it follows that

∣∣∣∣∣

∫

sptT+
k

ηk,ε〈∇T xi ,∇Tφ〉
∣∣∣∣∣
≤
∫

sptT+
k

|φ||∇T ηk,ε|

≤ sup
B2

|φ|
Nk,ε∑

l=1

r−1
l Hn (sptT ∩ B2rl (xl)

)
. (5.18)

From Lemma 3.1, there is a constant cn,� ≥ 1 depending only on n,� so that

Hn(sptT ∩ Br (x)) ≤ cn,�

√
mωnr

n (5.19)

for any Br (x) ⊂ B5/2. Combining (5.16), (5.18), (5.19), we have

∣∣∣∣∣

∫

sptT+
k

ηk,ε〈∇T xi ,∇Tφ〉
∣∣∣∣∣
≤ 2ncn,�

√
mωn sup

B2

|φ|
Nk,ε∑

l=1

rn−1
l

≤ 2ncn,�

√
m

ωn

ωn−1
sup
B2

|φ|
(
Hn−1(sptT ∩ ∂Uk ∩ B2) + ε

)
. (5.20)

Letting ε → 0 in the above inequality implies

∣∣∣∣∣

∫

sptT+
k

〈∇T xi ,∇Tφ〉
∣∣∣∣∣
≤ 2ncn,�

√
m

ωn

ωn−1
sup
B2

|φ|Hn−1 (sptT ∩ B2 ∩ ∂Uk) . (5.21)
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Up to a choice of a subsequence, we can assume that |T±
k | converges to |T±∗ | in the

varifold sense as k → ∞. With (5.6), we have

∣∣∣∣

∫

sptT+∗
〈∇T xi ,∇Tφ〉

∣∣∣∣ = lim
k→∞

∣∣∣∣∣

∫

sptT+
k

〈∇T xi ,∇Tφ〉
∣∣∣∣∣
= 0 (5.22)

for each i = 1, . . . , n + m. In other words, T+∗ is stationary, and similarly T−∗ is
also stationary. Combining (5.9), (5.12), (5.15), we conclude that T is stationary
decomposable in B2. It is a contradiction. This completes the proof. ��

Using Lemma 5.2, we can prove a Neumann–Poincaré inequality on stationary
indecomposable components of limits of minimal graphs.

Lemma 5.3 Let T be an integral current in Mn,m,�,B3 , and T be a stationary inde-
composable component of T�B2. Denote S be the singular set of T , then there exists
a constant θT > 0 depending on T such that

∫

sptT∩Br

| f − f̄r | ≤ θT r
∫

sptT∩B2r

|∇T f | (5.23)

for any r ∈ (0, 1] and any bounded C1-function f on B2\S, where ∇T is the Levi-
Civita connection of the regular part of |T |, and f̄r = 1

Hn(sptT∩Br )

∫
sptT∩Br

f .

Proof Without loss of generality, let f be not a constant, then we only need to prove
(5.23) for r = 1. Let M = sptT , and f̄ be the average of f on M ∩ B1, i.e.,

f̄ = 1

Hn(M ∩ B1)

∫

M∩B1

f .

Let U+
s,t = {y ∈ M ∩ Bs\S| f (y) > f̄ + t}, U−

s,t = {y ∈ M ∩ Bs\S| f (y) < f̄ + t}
for all s > 0 and t ∈ R. From Sard’s theorem, for almost all t , ∂U±

s,t is C
1 in Bs

outside S. In particular, ∂U±
s,t is (n − 1)-rectifiable for almost all t .

Without loss of generality, we assume Hn(U+
1,0) ≤ Hn(U−

1,0). Then clearly

Hn(U+
1,t ) ≤ Hn(U−

1,t ) for any t ≥ 0. From Lemma 5.2, we have

Hn−1(∂U+
2,t ∩ B2) ≥ δT

(
Hn(U+

1,t )
) n−1

n ≥ δT
(Hn(M ∩ B1)

)− 1
n Hn(U+

1,t ).

Using now the co-area formula,

∫

U+
1,0

( f − f̄ ) =
∫ ∞

0
Hn(U+

1,t )dt ≤ (Hn(M ∩ B1))
1
n

δT

∫ ∞

0
Hn−1(∂U+

2,t ∩ B2)dt

≤ 1

δT

(Hn(M ∩ B1)
) 1
n

∫

M∩B2

|∇T f |, (5.24)
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and then
∫

M∩B1

| f − f̄ | =
∫

U+
1,0

( f − f̄ ) −
∫

U−
1,0

( f − f̄ )

= 2
∫

U+
1,0

( f − f̄ ) ≤ 2

δT

(Hn(M ∩ B1)
) 1
n

∫

M∩B2

|∇T f |. (5.25)

Using (3.1), we complete the proof. ��
Let T ∈ Mn,m,�,B3 with 0n+m ∈ sptT. Then Hn(sptT ∩ Br ) ≥ ωnrn for every

r ∈ (0, 3). From (3.1), the exterior ball sptT ∩ Br admits volume doubling property.
Namely, there is a constant cn,m,� ≥ 1 depending only on n,m,� such that

Hn(sptT ∩ B2r ) ≤ cn,m,�ωn2
nrn ≤ cn,m,�2

nHn(sptT ∩ Br ) (5.26)

for every r ∈ (0, 1]. From the Sobolev inequality [41], nonnegative subharmonic
functions on stationary varifolds admit the mean value inequality on sptT (see [30]
for instance). Since Neumann–Poincaré inequality (5.23) holds on a stationary inde-
composable component T of T, by De Giorgi–Nash–Moser iteration (see [42, 43],
or [38], or Theorem 3.2 in [21] for instance) there holds the mean value inequality
for superharmonic functions on sptT . Hence, we get Harnack’s inequality for weakly
harmonic functions on sptT as follows.

Proposition 5.1 Let T be an integral current in Mn,m,�,B3 , and T be a stationary
indecomposable component of T�B2 with 0 ∈ sptT . For any f ∈ C1(B2), if f
satisfies 	T f = 0 in the distribution sense, and f ≥ 0 on B2 ∩ sptT , then

sup
sptT∩Br

f ≤ �T inf
sptT∩Br

f for any r ∈ (0, 1], (5.27)

where	T is the Laplacian of the regular part of sptT ,�T > 0 is a constant depending
on n,m,�, T .

6 A Liouville theorem for minimal graphs of bounded 2-dilation

For codimension 1, De Giorgi [17] proved that any limit of non-flat minimal graphs
over Rn in R

n+1 is a cylinder. For arbitrary codimensions, we have the following
splitting.

Lemma 6.1 Let n ≥ 2, m ≥ 1 be integers, and � be a positive constant. For a current
T ∈ Mn,m,�,Rn , if sptT is a non-flat cone living in R

n+1 ⊂ R
n+m, then sptT splits

off a line isometrically perpendicular to the n-plane {(x, 0m) ∈ R
n × R

m | x ∈ R
n}.

Proof Let π∗ be the projection defined in (4.10). From the assumption, we can treat
π∗(sptT ) as a codimension one cone in R

n+1 × {0m−1} = {(x1, . . . , xn+1, 0m−1) ∈
R
n+m | (x1, . . . , xn+1) ∈ R

n+1}. From Lemma 5.1, T has multiplicity one, and |sptT |
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is a minimal cone in R
n+1. If sptT ∩ {(0n, y) ∈ R

n × R| y ∈ R
m} = {0n+m}, then

sptT can be written as an entire minimal graph in R
n+1, which implies flatness of

sptT by the regularity result of De Giorgi [16] since a regular everywhere cone is flat.
Hence, without loss of generality, we assume (0n,−1, 0m−1) ∈ sptT .

Let Mk be a sequence of minimal graphs overRn inRn+m of 2-dilation bounded by
� such that the n-current [|Mk |] ∈ Dn(R

n+m) (associated with Mk) converges weakly
to T . Let ω be a smooth n-form defined by

∑n+1
i=1 fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ xn+1 with

compact support in R
n+1. Let ω̃ be a smooth n-form with compact support in R

n+m

so that

ω̃(x1, . . . , xn+1, 0, . . . , 0) = ω(x1, . . . , xn+1)

for each (x1, . . . , xn+1) ∈ R
n+1. Then from (2.22), it follows that

〈π∗(T ), ω〉 = 〈T , ω̃〉 = lim
k→∞〈[|Mk |], ω̃〉 = lim

k→∞〈[|π∗(Mk)|], ω〉. (6.1)

LetM∗
k = π∗(Mk) ⊂ R

n+1, then the above limit implies that [|M∗
k |] convergesweakly

to π∗(T ). Let uk denote the graphic function of M∗
k , and

Uk = {(x, t) ∈ R
n+1| t < uk(x)}.

From Lemma 3.2 and Federer–Fleming compactness theorem, [|Uk |] converges
weakly to a current [|U |] for some open subset U ⊂ R

n+1. With (6.1), we have

〈[|∂U |], ω〉 = 〈[|U |], dω〉 = lim
k→∞〈[|Uk |], dω〉 = lim

k→∞〈[|∂Uk |], ω〉
= lim

k→∞〈[|M∗
k |], ω〉 = 〈π∗(T ), ω〉, (6.2)

which impliesπ∗(T ) = [|∂U |]. In particular,U is also a cone. Since (0n,−1, 0m−1) ∈
sptT , we consider a family of open sets

U0n ,t = {y + (0n, t) ∈ R
n+1| y ∈ U } = {y + (0n, 1) ∈ R

n+1| y ∈ tU } ⊃ U

for each t > 0. By Federer–Fleming compactness theorem again, there is a sequence
tk → ∞ such that [|U0n ,tk |] converges weakly to a current [|W |] for some open subset
W = {(x, t) ∈ R

n+1| x ∈ W } with some openW ⊂ R
n . It’s clear thatU ⊂ W . Since

∂W = ∂W × R is stable minimal from Theorem 4.1, then |∂W | is a stable minimal
cone in Rn .

Let � = ∂U\∂W . If � = ∅, then ∂U = sptT splits off a line {(0n, t) ∈ R
n+1| t ∈

R} isometrically. Now let us assume � �= ∅, or else we complete the proof. Let us
deduce a contradiction. From Theorem 3.2 in [52] by Wickramasekera, it follows that

Hn−1(∂U ∩ ∂W ∩ Br (y)) > 0 for any y ∈ ∂U ∩ ∂W , r > 0. (6.3)

Let S denote the singular set of ∂W . By the strong maximum principle, ∂U ∩ ∂W is
a closed subset in S.
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For any β ≥ 0, let Hβ∞ be a measure defined by

Hβ∞(W ) = ωβ2
−β inf

{ ∞∑

k=1

(diamUk)
β

∣∣∣∣W ⊂
∞⋃

k=1

Uk ⊂ R
n+1

}

(6.4)

for any set W in R
n+1, where ωβ = πβ/2

�(
β
2 +1)

, and �(r) = ∫∞
0 e−t tr−1dt is the

gamma function for 0 < r < ∞. From Lemma 11.2 in [31], if Hβ(W ) > 0, then
Hβ∞(W ) > 0. From the argument of Proposition 11.3 in [31] and (6.3), there is a point
q ∈ ∂U ∩ ∂W\{0n+1} and a sequence rk → 0 such that

Hn−1∞
(
∂U ∩ ∂W ∩ Bn+1

rk (q)
)

> 2−n−2ωn−1r
n−1
k . (6.5)

Let Uq,k = 1
rk

{x + q| x ∈ U }, Wq,k = 1
rk

{x + q| x ∈ W }, �q,k = ∂Uq,k ∩ ∂Wq,k ,

Sq,k = 1
rk

{x + q| x ∈ S}. Then (6.5) implies

Hn−1∞
(
�q,k ∩ Bn+1

1 (0n+1)
)

> 2−n−2ωn−1. (6.6)

From Federer–Fleming compactness theorem, without loss of generality, there are two
open setsU∗ andW∗ inRn+1 so that [|Uq,k |], [|Wq,k |] converge to [|U∗|], [|W∗|] in the
current sense as k → ∞, respectively. From the constructions of Uq,k,Wq,k , |∂U∗|,
|∂W∗| are minimal cones both splitting off a line l �= {t En+1| t ∈ R} isometrically.
Up to choosing the subsequence, we may assume that �q,k converges to a closed
set �∗ in the Hausdorff sense. Let S∗ be the singular set of ∂W∗. If yk ∈ Sq,k and
yk → y∗ ∈ ∂W∗, then it’s clear that y∗ is a singular point of ∂W∗ byAllard’s regularity
theorem and multiplicity one of ∂W∗, which implies lim supk→∞ Sq,k ⊂ S∗. With
∂U ∩ ∂W ⊂ S, it follows that �∗ ⊂ S∗. Analog to the proof of Lemma 11.5 in [31],
we have

Hn−1∞
(
�∗ ∩ Bn+1

1 (0n+1)
)

≥ 2−n−2ωn−1. (6.7)

Let us continue the above procedure. By dimension reduction argument, there are a
2-dimensional open cone V0 ⊂ R

2 with |∂V0| minimal, an open cone V ⊂ V0 ×R ⊂
R
3 with |∂V | minimal, a sequence of open sets Vi ,Wi (obtained from scalings and

translations of U ,W , respectively) such that ∂V0 has an isolated singularity at the
origin, and [|Wi |] converges to [|V0 ×R

n−1|], [|Vi |] converges to [|V ×R
n−2|] in the

current sense. Since � is a minimal graph over W , then � is smooth stable. From
Theorem 2 of [46] by Schoen–Simon (see also Lemma 11.1), we get ∂V �= ∂V0 ×R.
It’s well-known that a smooth 1-dimensional minimal surface(geodesic) in S

2 is a
collection of circles of radius one, which implies that ∂V is a collection of planes
through 03 ∈ R

3. Hence ∂V = ∂V0 ×R. It’s a contradiction. We complete the proof.
��

Remark 6.1 Cheeger–Naber [11] showed the Minkowski content estimation on the
quantitative singular sets of stationary varifolds. Using it we can simplify the proof of
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Lemma 6.1. Namely, without dimension reduction argument, we immediately have the
following conclusion in Lemma 6.1: there are a point x∗ ∈ ∂U ∩∂W , a 2-dimensional
open cone V0 ⊂ R

2 with |∂V0| minimal, and an open cone V ⊂ V0 × R ⊂ R
3 with

|∂V | minimal such that ∂V0 has an isolated singularity at the origin, and 1
ri

([|W |], x∗)
converges to ([|V0 × R

n−1|], 0n+1), 1
ri

([|U |], x∗) converges to ([|V × R
n−2|], 0n+1)

for some sequence ri → 0.

From Proposition 5.1 and Lemma 6.1, we can obtain a Liouville type theorem for
minimal graphs as follows.

Theorem 6.1 Let M = graphu be a locally Lipschitz minimal graph over Rn of codi-
mension m ≥ 2 with bounded 2-dilation of u = (u1, . . . , um). Suppose

lim sup
r→∞

(

r−1 sup
Br∩M

uα

)

≤ 0 (6.8)

for each α ∈ {2, . . . ,m}. If

lim inf
r→∞

(

r−1 sup
Br

u1
)

< ∞, (6.9)

then M is flat.

Proof Assume that u has bounded 2-dilation by a constant � > 0. From (6.9), there
are a constant � > 0 and a sequence of numbers rk → ∞ such that

sup
Brk

u1 ≤ �rk . (6.10)

Recalling that [|M |] ∈ Dn(R
n+m) is then-current associatedwithM and its orientation

(2.25). From Lemma 5.1, we can assume that [| 1rk M |] converges weakly as k → ∞ to
a multiplicity one current T �= 0 with 0 ∈ sptT and ∂T = 0. Moreover, the varifold
associated with sptT is a minimal cone in R

n+m with the vertex at the origin. Let
x = (x1, . . . , xn+m) be the position vector in Rn+m . From (6.8), we get

sup
sptT∩B1

xn+α ≤ 0 (6.11)

for each α ∈ {2, . . . ,m}.
Suppose that T is stationary decomposable inB1. Let T ′ be a stationary component

of T �B1. Then from ∂T ′ = 0 in B1, we conclude that sptT ′ is a truncated cone. In
particular, 0 ∈ sptT ′. Hence we have

M(sptT ′ ∩ Br ) ≥ ωnr
n for any r ∈ (0, 1]. (6.12)
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From Lemma 3.2, we have

M(sptT ∩ Br ) ≤ Cn,�ωnr
n . (6.13)

If T ′ is stationary decomposable inB1, then we consider a stationary component T ′′ of
T ′�B1. Clearly, sptT ′′ is a truncated cone and 0 ∈ sptT ′′. Combining (6.12), (6.13), the
procedure of decomposition will cease after finite times. Hence, there is a collection
of indecomposable stationary components T1, . . . , Tl of T �B1, where l is a positive
integer ≤ Cn,�. In particular, all sptT1, . . . , sptTl are truncated cones.

From Proposition 5.1 and (6.11), we get xn+α ≡ 0 on the truncated cone sptTk for
each α ∈ {2, . . . ,m} and k ∈ {1, . . . , l} as xn+α is weakly harmonic in sptTk ∩ B1.
In particular, the varifold associated with sptT is a minimal cone contained in an
(n + 1)-dimensional Euclidean space Rn+1. From (6.10), we conclude that

sup
sptT∩(B1×Rm)

xn+1 < ∞. (6.14)

From Lemma 6.1, it follows that

sup
sptT∩(B1×Rm )

|xn+1| < ∞. (6.15)

Note that [| 1rk M |]⇀T and sptT is a cone. Then sptT can be written as an entire graph
over Rn with the graphic function (φ, 0, . . . , 0), where φ is 1-homogeneous on R

n .
Then

graphφ = {(x, φ(x)) ∈ R
n × R| x ∈ R

n} (6.16)

is a (Lipschitz) minimal graph in R
n+1. Therefore, the regularity theorem of De

Giorgi [43] implies that φ is linear, and then sptT is flat. Since T has multiplicity
one on sptT , then Allard’s regularity theorem yields the proof. ��

7 Bernstein theorem for minimal graphs of bounded slope

For a domain � ⊂ R
n , let M = graphu be a smooth minimal graph over � of

codimension m ≥ 2. Let gi j = δi j +∑m
α=1 ∂i uα∂ j uα , and (gi j ) be the inverse matrix

of (gi j ). Let v be the slope function of M defined by

v = √det gi j =
√√√√det

(

δi j +
m∑

α=1

∂uα

∂xi

∂uα

∂x j

)

. (7.1)

Lemma 7.1 Let λ1, . . . , λn be the singular eigenvalues of Du at any point of �. If
λ1 ≥ · · · ≥ λn ≥ 0 and λ21λ

2
i ≤ 2 + λ2i for all i ≥ 2, then

	M log v ≥
∑

α>n,i, j

h2α,i j +
∑

i

(1 + λ2i )h
2
i,i i . (7.2)
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Moreover, when the above inequality becomes an equality, (2 + λ2i )h
2
i,i j + h2j,i i +

2λiλ j hi, j i h j,i i = 0 for all i �= j .

Proof From (2.17), we have (see also the decomposition (4.16) in [24])

	M log v =
∑

α,i, j

h2α,i j +
∑

i, j

λ2i h
2
i,i j +

∑

k,i �= j

λiλ j hi, jkh j,ik

=
∑

α>n,i, j

h2α,i j +
∑

i

(1 + λ2i )h
2
i,i i

+
∑

i �= j

(
(2 + λ2i )h

2
i,i j + h2j,i i + 2λiλ j hi, j i h j,i i

)

+
∑

i, j,k mutually distinct

(
h2k,i j + λiλ j hi, jkh j,ik

)
, (7.3)

where

∑

i, j,k mutually distinct

(
h2k,i j + λiλ j hi, jkh j,ik

)

= 2
∑

i< j<k

(
h2i, jk + h2k,i j + h2j,ki + λiλ j hi, jkh j,ki + λiλkhi,k j hk,i j + λ jλkh j,ki hk, j i

)
.

(7.4)

Without loss of generality, we assume λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let

f (x, y, z) = x2 + y2 + z2 + λiλ j xy + λ jλk yz + λiλk xz (7.5)

for every x, y, z ∈ R with mutually distinct i, j, k. Then

Hess f =
⎛

⎝
2 λiλ j λiλk

λiλ j 2 λ jλk
λiλk λ jλk 2

⎞

⎠ . (7.6)

From a direct computation, we have

detHess f = 8 + 2λ2i λ
2
jλ

2
k − 2λ2i λ

2
j − 2λ2i λ

2
k − 2λ2jλ

2
k .

Then we consider a function

φ(μ1, μ2, μ3) = 4 + μ1μ2μ3 − μ1μ2 − μ1μ3 − μ2μ3 (7.7)

on V = {(μ1, μ2, μ3) ∈ R
3| 0 ≤ μ3 ≤ μ2 ≤ μ1, μ1μ2 ≤ 2 + 2

μ1−1 }. From
Lemma 9.2 in the Appendix I, φ ≥ 0 on V , which implies

detHess f ≥ 0 (7.8)
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combining λ21λ
2
i ≤ 2 + λ2i for all i ≥ 2. We further conclude that all the eigenvalues

of Hess f are non-negative, then it follows that

f ≥ 0 on R
3.

From (7.4), we have

∑

i, j,k mutually distinct

(
h2k,i j + λiλ j hi, jkh j,ik

)
≥ 0. (7.9)

Moreover, by the assumption for i ≥ 2 and λ1 ≥ 1 we have

2 + λ2i − λ2i λ
2
1 = 2 + λ2i λ

2
1(λ

−2
1 − 1) ≥ 2 +

(

2 + 2

λ21 − 1

)

(λ−2
1 − 1) = 0. (7.10)

From the Cauchy inequality, we have

(2 + λ2i )h
2
i,i j + h2j,i i + 2λiλ j hi, j i h j,i i ≥ 0. (7.11)

Substituting (7.9), (7.11) into (7.3), we have

	M log v ≥
∑

α>n,i, j

h2α,i j +
∑

i

(1 + λ2i )h
2
i,i i . (7.12)

When the above inequality becomes an equality, we clearly have

∑

i �= j

(
(2 + λ2i )h

2
i,i j + h2j,i i + 2λiλ j hi, j i h j,i i

)
= 0,

which completes the proof. ��

As a corollary, we have the following result.

Corollary 7.1 Let λ1, . . . , λn be the singular eigenvalues of Du at any point of �. If
λ1 ≥ · · · ≥ λn ≥ 0 and supi≥2 λ1λi ≤ � for some 0 < � ≤ √

2, then

	M log v ≥ 2

3

(
1 − �√

2

)
|BM |2 + 1

n
|∇ log v|2, (7.13)

where BM denotes the second fundamental form of M in Rn+m.
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Proof From (7.5), with the Cauchy inequality we have

f (x, y, z) ≤ x2 + y2 + z2 + �|xy| + �|yz| + �|xz|

≤ x2 + y2 + z2 + �

(
x2

2
+ y2

2
+ y2

2
+ z2

2
+ x2

2
+ z2

2

)

= (1 + �)
(
x2 + y2 + z2

)
. (7.14)

Noting that all the eigenvalues of Hess f are non-negative. Hence, all the eigenvalues
of Hess f ≤ 1 + � ≤ 1 + √

2. From (7.6) and Corollary 9.1 in the Appendix I,

we have detHess f ≥ 4
(
1 − �√

2

)
. So, the smallest eigenvalue of Hess f ≥ 4(1 +

√
2)−2

(
1 − �√

2

)
. This implies

∑

i, j,k mutually distinct

(
h2k,i j + λiλ j hi, jkh j ,ik

)
≥ 2

3

(
1 − �√

2

) ∑

i, j,k mutually distinct
h2k,i j . (7.15)

From the Cauchy inequality, we have

�√
2

(
2h2i,i j + h2j,i i

)
+ 2λiλ j hi, j i h j,i i ≥ �√

2

(
2h2i,i j + h2j,i i

)
− 2�|hi, j i h j,i i | ≥ 0.

(7.16)
Substituting (7.15), (7.16) into (7.3) gets

	M log v ≥
∑

α>n,i, j

h2α,i j +
∑

i

(1 + λ2i )h
2
i,i i +

∑

i �= j

(
1 − �√

2

)(
2h2i,i j + h2j,i i

)

+
∑

i �= j

λ2i h
2
i,i j + 2

3

(
1 − �√

2

) ∑

i, j,k mutually distinct
h2k,i j

≥ 2

3

(
1 − �√

2

)∑

α,i, j

h2α,i j +
∑

i, j

λ2i h
2
i,i j . (7.17)

Combining |∇ log v|2 = ∑ j

(∑
i λi hi,i j

)2 and the Cauchy inequality, we complete
the proof. ��

For any considered point p ∈ �, up to rotations ofRn ,Rm , we assume Dkuα(p) =
δk,αλk . Let ei = (1 +∑m

α=1(Diuα)2
)−1/2 (Ei +∑m

α=1 DiuαEn+α

)
for i = 1, . . . , n,

and να = (
1 + |Duα|2)−1/2

(∑n
j=1 DjuαE j + En+α

)
for α = 1, . . . ,m. Then

{ei }ni=1 ∪ {να}mα=1 forms a local frame field in R
n+m (see also (4.28), (4.29)), which
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is orthonormal at p. Moreover, at p

hα,i j = 〈∇̄e j ei , να〉

=
(

1 +
m∑

α=1

(Diu
α)2

)−1/2 (

1 +
m∑

α=1

(Dju
α)2

)−1/2 (
1 + |Duα|2

)−1/2 ∂2uα

∂xi x j

= 1

(1 + λ2i )(1 + λ2j )(1 + λ2α)
Di ju

α. (7.18)

Lemma 7.2 Suppose that the 2-dilation |�2du|of u satisfies |�2du|2 ≤ 2+
∣∣∣ 2
(Lip u)2−1

∣∣∣
and v is a constant on �. Then 	Rn uα = 0 on � for each α = 1, . . . ,m.

Proof At any point p in �, from Lemma 7.1 we get

∑

α>n,i, j

h2α,i j +
∑

i

h2i,i i =
∑

i �= j

(
(2 + λ2i )h

2
i,i j + h2j,i i + 2λiλ j hi, j i h j,i i

)
= 0,

(7.19)
where λ1 ≥ · · · ≥ λn ≥ 0 are the singular values of Du at p. From the assumption,
we have

2 + λ2i − λ2i λ
2
1 ≥ 0 for each i = 2, . . . , n. (7.20)

• Case 1: λ1 > λ2 at p. For j ≥ 2 and i �= j , we have 2 + λ2i − λ2i λ
2
j > 0 from

(7.20). Then from (7.18), (7.19), we deduce that uα
i i = 0 for all α = 2, . . . , n and

i = 1, . . . , n. In particular, 	Rn uα = 0 for all α ≥ 2 from (7.2) and the constant
v. Suppose λ2 = · · · = λk > λk+1 ≥ · · · ≥ λn for some integer k ≥ 2. From
(7.19) again, there hold u111 = 0 and u1i i = 0 for i ≥ k + 1. From (2.30), we get
∑k

i=2
1

1+λ22
u1i i = 0, which implies 	Rn u1 = 0.

• Case 2: λ1 = λ2 = · · · = λk > λk+1 ≥ · · · ≥ λn at p for some integer k ≥ 2.
From (7.20), λ1 ≤ √

2, and 2+λ2i −λ2i λ
2
j > 0 for all i �= j withmax{i, j} ≥ k+1.

Then from (7.19), uα
i i = 0 for max{α, i} ≥ k + 1 (similar to case 1). In particular,

	Rn uα = 0 for all α ≥ k + 1. Using (2.30), we get
∑k

i=1
1

1+λ21
u j
ii = 0 for

j = 1, . . . , k. Therefore, 	Rn u j = 0 for j = 1, . . . , k.

This completes the proof. ��
Now we consider minimal graphs with bounded slope.

Lemma 7.3 Let Mk = graphuk be a family of Lipschitz minimal graphs over Rn of

codimension m ≥ 1 with supk Lip uk < ∞ and |�2duk |2 ≤ 2(Lip uk )2

|(Lip uk )2−1| a.e. on R
n.

Let V be the limit of |Mk | in the varifold sense. If sptV is a regular cone or there is a
regular l-dimensional cone C with sptV = C × R

n−l , then sptV is flat.

Proof Denote M = sptV , which is a Lipschitz minimal graph over Rn for some
graphic function u = (u1, . . . , um). From Lemma 10.1 in the appendix II and Allard’s
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regularity theorem, uk converges to u in C3-sense at any regular point of u. Hence,

we have |�2du|2 ≤ 2(Lip u)2

|(Lip u)2−1| a.e. on R
n from the assumption of uk .

Nowwe assume l ≥ 2. SinceM = C×R
n−l , thenC lives in an (m+l)-dimensional

Euclidean space. Up to a rotation,C can be represented as a graph of a 1-homogeneous
vector-valued function φ = (φ1, . . . , φm) on R

l . Then up to two rotations of Rn and
R
m , there are a constant matrix (cα

j ) for j = l +1, . . . , n and α = 1, . . . ,m such that

uα(x1, . . . , xn) = φα(x1, . . . , xl) +
n∑

j=l+1

cα
j x j

for each α. After a rotation of Rn−l , we can further assume

uα(x1, . . . , xn) = φα(x1, . . . , xl) + cαxl+α (7.21)

for each α = 1, . . . ,m, where we let cn+ j = 0 for any positive integer j .
Let gi j = δi j +∑α ∂i uα∂ j uα . From (7.21), gi j is a function of x1, . . . , xl , and

v = √det gi j can be seen as a function of x1, . . . , xl . From Lemma 7.1, we have

	M log v ≥ 0 (7.22)

on the regular part of M . Note that log v is smooth on R
l\{0}. Since log v is 0-

homogeneous, it achieves its maximum on Bl
2\Bl

1/2 at a point in ∂Bl
1. From the strong

maximum principle, v is a constant. With Lemma 7.2, uα is harmonic on Rn\({0l} ×
R
n−l) for each α = 1, . . . ,m. Namely, φα = φα(x1, . . . , xl) is harmonic on R

l\{0}.
Note that φα is 1-homogeneous. Then φα is harmonic on R

l for each α, and it must
be affine, i.e., φα − φα(0) is linear. From (7.21), it follows that each uα is affine and
then M is flat.

For l < 2, M is regular, then M is flat from the above argument. This completes
the proof. ��

Let us prove a Bernstein theorem for minimal graphs with bounded slope.

Theorem 7.1 Let M = graphu be a Lipschitz minimal graph over R
n of codimension

m ≥ 2. If |�2du|2 ≤ 2(Lip u)2

|(Lip u)2−1| a.e. on R
n, then M is flat.

Proof Assume that M is not flat. From Lemma 10.1 in the appendix II, there is a
sequence rk → ∞ such that | 1rk M | converges to a minimal cone C of multiplicity one
in the varifold sense, where sptC can be rewritten as a graph over Rn with a Lipschitz
homogeneous graphic function u∞ = (u1∞, . . . , um∞) satisfying

Lip u∞ ≤ Lip u ≤ L

for some constant L > 0. Then fromAllard’s regularity theorem,whenW is a bounded
open set with W ∩ sptC belonging to the regular part of C , W ∩ 1

rk
M converges to
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W ∩ sptC smoothly. Hence we have

|�2du∞|2 ≤ 2(Lip u∞)2

|(Lip u∞)2 − 1| a.e. on R
n .

If sptC is a regular cone, then sptC is flat from Lemma 7.3. Now we assume that
there is a singular point q in sptC\{0n+m}. We blow C up at the point q, and get a
nonflat minimal cone C ′ whose support splits off R isometrically. If u′∞ denotes the
graphic function of sptC ′, then we have

Lip u′∞ ≤ Lip u∞ ≤ Lip u ≤ L,

and |�2du′∞|2 ≤ 2(Lip u′∞)2

|(Lip u′∞)2−1| a.e. on R
n . By dimensional reduction argument, we

get a sequence of minimal graphs Mk (which are scalings and rigid motions of M)
such that |Mk | converges to a nonflat minimal cone C∗, where sptC∗ = C∗ × R

l for
a regular (n − l)-cone C∗. Moreover, the graphic function u∗∞ of sptC∗ satisfies

Lip u∗∞ ≤ Lip u∞ ≤ Lip u ≤ L,

and |�2du∗∞|2 ≤ 2(Lip u∗∞)2

|(Lip u∗∞)2−1| a.e. on R
n . From Lemma 7.3, we get the flatness of

sptC∗, which is a contradiction. Hence, sptC is flat. Since C has multiplicity one, then
Allard’s regularity theorem implies that M is flat. ��
Remark 7.1 Lawson–Osserman [37] constructed the minimal Hopf cones in R

2m ×
R
m+1 for m = 2, 4, 8. For m = 2, the Hopf cone has the Lipschitz graphic function

w = (w1, w2, w3) over R4 given by

w =
√
5

2
|x |η
(

x

|x |
)

,

where η = (|z1|2 − |z2|2, 2z1 z̄2) is the Hopf map from S3 to S2. It is clear that
Lipw ≡ √

5, and |�2dw| ≡ 5 on R
n (see also the appendix in [36]).

By a contradiction argument, we have the following curvature estimate.

Theorem 7.2 For every constant L, there exists a constant �n,m,L > 0 depending on
n,m, L such that if M = graphu is a Lipschitz minimal graph over B2 of codimension

m ≥ 2 with Lip u ≤ L and |�2du|2 ≤ 2(Lip u)2

|(Lip u)2−1| a.e. on B2, then

sup
B1

|D2u| ≤ �n,m,L . (7.23)

In particular, M is smooth.
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Proof Let us prove (7.23) by contradiction. Suppose that there is a sequence of Lip-
schitz minimal graphs graphuk over B2 of codimension m ≥ 2 with Lip uk ≤ L and

|�2duk |2 ≤ 2(Lip uk )2

|(Lip uk )2−1| such that

lim
k→∞ sup

B3/2

(
3

2
− |x |

)
|D2uk |(x) = ∞. (7.24)

If u is not smooth at a point q ∈ B2, then we blow M up at (q, u(q)), and get a
contradiction from Theorem 7.1. Hence M is smooth.

From (7.24), there exists a sequence of points pk ∈ B 3
2
such that

rk �
(
3

2
− |pk |

)
|D2uk(pk)| = sup

B3/2

(
3

2
− |x |

)
|D2uk(x)| → ∞

as k → ∞. Put τk = 3
2 − |pk |, and Rk = 2rk/τk . Let

wk(x) = Rkuk

(
x

Rk
+ pk

)
on Brk .

Then

D2wk(x) = 1

Rk
D2uk

(
x

Rk
+ pk

)
. (7.25)

Note that τk
2 ≤ 3

2 − |x | for all x ∈ B τk
2
(pk). We have

sup
Brk

∣∣∣D2wk

∣∣∣ = 1

Rk
sup

B τk
2

(pk )

∣∣∣D2uk
∣∣∣ ≤ 2

Rkτk
sup

B τk
2

(pk )

(
3

2
− |x |

) ∣∣∣D2uk
∣∣∣ (x) ≤ 1,

(7.26)
and

∣∣∣D2wk

∣∣∣ (0) = 1

Rk

∣∣∣D2uk
∣∣∣ (pk) = 1

Rk

1

τk
sup
B3/2

(
3

2
− |x |

) ∣∣∣D2uk
∣∣∣ (x) = 1

2
. (7.27)

Moreover, from Lip uk ≤ L , |�2duk |2 ≤ 2(Lip uk )2

|(Lip uk )2−1| on B2, we have Lipwk ≤ L

and |�2dwk |2 ≤ 2(Lipwk )
2

|(Lipwk )
2−1| on Brk . With (7.26), after choosing a subsequence,

graphwk converges smoothly to aminimal graphwith the graphic functionw∗ such that
Lipw∗ ≤ L , |�2dw∗|2 ≤ 2(Lipw∗)2

|(Lipw∗)2−1| a.e. and
∣∣D2w∗

∣∣ ≤ 1 on R
n . Moreover, (7.27)

implies
∣∣D2w∗

∣∣ (0) = 1
2 . However, this contradicts to Theorem 7.1. We complete the

proof. ��
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8 Quasi-cylindrical minimal cones fromminimal graphs

Let {Ei }n+m
i=1 denote the standard basis of Rn+m such that Ei corresponds to the axis

xi .

Lemma 8.1 Let Mk ∈ Mn,m,�,B2 for some constant 0 < � <
√
2. Assume that

[|Mk |]�B2 converges to a stationary varifold V in the varifold sense. If S denotes the
singular set of sptV ∩ B1, then S has Hausdorff dimension ≤ n − 3.

Proof We assume that S has Hausdorff dimension > n − 3. Then there is a constant
β > n − 3 so that β-dimensional Hausdorff measure of S satisfiesHβ(S) > 0. From
Lemma 11.2 in [31],Hβ(S) > 0 impliesHβ∞(S) > 0 (see (6.4) for its definition with
R
n+1 there replaced by R

n+m). From the argument of Proposition 11.3 in [31], there
are a point q ∈ S and a sequence rk → 0 (as k → ∞) such that

Hβ∞
(S ∩ Brk (q)

)
> 2−β−1ωβr

β
k . (8.1)

Let Sk = 1
rk

(S ∩ Brk (q)
)
. Then

Hβ∞ (Sk ∩ B1(0)) > 2−β−1ωβ. (8.2)

Without loss of generality, we assume that 1
rk

(V , q) converges to a tangent cone
(V∗, 0n+m) in R

n+m in the varifold sense as k → ∞. By the definition of V , there
is a sequence of minimal graphs M ′

k in R
n+m (rigid motions of Mk) such that |M ′

k |
converges to the minimal cone V∗ in the varifold sense as k → ∞.

Let S∗ be the singular set of V∗. If yk ∈ Sk and yk → y∗ ∈ V∗, then it’s clear that
y∗ is a singular point of V∗ by Allard’s regularity theorem and multiplicity one of V∗,
which implies lim supk→∞ Sk ⊂ S∗. Analog to the proof of Lemma 11.5 in [31], we
have

Hβ∞ (S∗ ∩ B1(0)) ≥ 2−β−1ωβ. (8.3)

Let us continue the above procedure. By dimension reduction argument, there is a
l(l ≤ 2)-dimensional non-flat regular minimal cone C ⊂ R

m+k such that there is a
sequence of minimal graphs �k ∈ Mn,m,�,BRk

(which are scalings and translations
gotten from Mk) with Rk → ∞ so that �k converges to a minimal cone C∗ in the
varifold sense, which is a trivial product of C and R

n−l .
From Lemma 11.1 in the Appendix III, l = 1 is impossible. For l = 2, sptC ∩

∂B1(0m+2) is smooth minimal in ∂B1(0m+2), hence it is a disjoint union of geodesic
circles in a sphere. So sptC∗ ∩ R

n+m is a union of n-planes P1, . . . , Pj0 with j0 ≥ 2
as sptC is non-flat. If there is a unit vector ξ ∈ sptC∗ with 〈ξ,Ei 〉 = 0 for each
i = 1, . . . , n, then Theorem 4.1 contradicts to that sptC splits off Rn−2 isometrically.
Therefore, sptC∗ can be written as a graph over Rn , and then sptC∗ is an n-plane. It
is a contradiction. This completes the proof. ��
Remark The above dimension estimate is not sharp. We will establish a sharp one
through the Bernstein theorem for minimal graphs in Lemma 8.5.
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With Lemma 8.1, we can use De Giorgi–Nash–Moser iteration for nonnegative
superharmonic functions on the regular part of stationary indecomposable currents as
follows.

Proposition 8.1 LetT be an integral current inMn,m,�,B3 for some constant 0 < � <√
2, and T be a stationary indecomposable component of T�B2 with 0 ∈ sptT � M.

Then there exist a constant δ∗ > 0 depending only on n, a constant�T > 0 depending
on n,m,�, T such that if f is a nonnegative smooth bounded function on the regular
part of T satisfying 	M f ≤ 0 on the regular part of T , then

r−n
∫

M∩Br

f δ∗ ≤ �T f δ∗(0) for any 0 < r < 1, (8.4)

where 	M is the Laplacian of M.

Proof For any small ε > 0, let S denote the singular set ofT�B2−ε. From Lemma 8.1,
there is a collection of balls {Brk (xk)}Nε

k=1 with rk < ε/2 such that S ⊂ ∪Nε

k=1Brk (xk),
and

Nε∑

k=1

rn−2
k < ε. (8.5)

By Besicovitch covering lemma, we can further require that there is a constant cn+m >

0 depending only on n + m so that

∫

E
χB2r j

(x j )

∑

k �= j

χB2rk
(xk )

≤ cn+mHn(E ∩ B2r j (x j )) (8.6)

for each j = 1, . . . , Nε and each n-rectifiable set E ⊂ R
n+m . Let ηk be a C2 function

on B2 with 0 ≤ ηk ≤ 1 such that ηk = 0 on Brk (xk), ηk = 1 on B2\B2rk (xk) and

rk |∇̄ηk | + r2k |λ(∇̄2ηk)| ≤ c on B2rk (xk)\Brk (xk),

where ∇̄ denotes theLevi-Civita connection ofRn+m , |λ(∇̄2ηk)|denotes themaximum
of the absolution of eigenvalues of the Hessian of ηk onRn+m , c is an absolute positive
constant. Let e1, . . . , en be a local orthonormal tangent frame field of M . Since M is
minimal, we have (see (5.4) in [22] for instance)

|	Mηk | =
∣∣∣∣∣

n∑

i=1

Hessηk (ei , ei )

∣∣∣∣∣
≤ ncr−2

k χB2rk
(xk )

, (8.7)

where Hessηk denotes the Hessian of ηk on R
n+m . Set ηε = ∏Nε

k=1 ηk ∈ C2. Then
ηε = 0 on a neighborhood of S. Let ∇M be the Levi-Civita connection of M , and
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divM be the divergence of M . From (8.7) and the Cauchy inequality, one has

|	Mηε| ≤
Nε∑

k=1

|	Mηk | +
∑

j �=k

|∇Mη j ||∇Mηk |

≤ nc
Nε∑

k=1

r−2
k χB2rk

(xk )
+ c2

∑

j �=k

r−1
j r−1

k χB2r j
(x j )

χB2rk
(xk )

≤ nc
Nε∑

k=1

r−2
k χB2rk

(xk )
+ c2

∑

j �=k

r−2
j χB2r j

(x j )
χB2rk

(xk )
. (8.8)

Then with (8.6) we deduce

∫

sptT
|	Mηε| ≤ (nc + c2cn+m)

Nε∑

k=1

r−2
k Hn (M ∩ B2rk (xk)

)
. (8.9)

Similarly,

∫

M
|∇Mηε|2 ≤

∫

M

⎛

⎝
Nε∑

k=1

|∇Mηk |2 +
∑

j �=k

|∇Mη j ||∇Mηk |
⎞

⎠

≤ (1 + cn+m)c2
Nε∑

k=1

r−2
k Hn (M ∩ B2rk (xk)

)
. (8.10)

Combining Lemma 3.1 and (8.5), we deduce

lim
ε→0

∫

M

(
|	Mηε| + |∇Mηε|2

)
= 0. (8.11)

Let ϕ be a nonnegative Lipschitz function with compact support in B2. Then the
support of ϕ is in B2−ε for small ε > 0. With integrating by parts, we have

0 ≤ −
∫

M
ϕηε	M f =

∫

M
〈∇M (ϕηε),∇M f 〉

=
∫

M
ηε〈∇Mϕ,∇M f 〉 −

∫

M
f divM (ϕ∇Mηε)

=
∫

M
ηε〈∇Mϕ,∇M f 〉 −

∫

M
f 〈∇Mϕ,∇Mηε〉 −

∫

M
f ϕ	Mηε. (8.12)

Combining (8.11) and Cauchy inequality, we conclude that

0 ≤
∫

M
〈∇Mϕ,∇M f 〉, (8.13)
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which means that f is superharmonic on M in the distribution sense. Now we can
follow the argument of De Giorgi–Nash–Moser iteration (see Theorem 3.2 in [21] for
instance) and finish the proof. Note that the constant δ∗ in (8.4) is obtained from the
dimension n and the exponent of the Sobolev inequality, which implies that δ∗ only
depends on n. ��

Let Mk = graphuk ∈ Mn,m,�,BRk
with Rk → ∞ for some constant 0 < � <

√
2.

Let gki j = δi j +∑m
α=1 ∂i uα

k ∂ j uα
k , and vk =

√
det gki j . We suppose that Mk converges

in the varifold sense to a minimal cone C in R
n+m with the vertex at the origin.

Since the multiplicity function of sptC is one from Theorem 4.2, we denote sptC by
C for simplicity. Without loss of generality, we assume that [|Mk |] converges to an
integral current T in Rn+m . From Lemma 5.1, ∂T = 0 and T has multiplicity one on
sptT = sptC . As before (in Sect. 4), π∗ denotes the projection fromR

n+m intoRn by

π∗(x1, . . . , xn+m) = (x1, . . . , xn),

Cr (x) = Br (π∗(x)) × Br (xn+1, . . . , xn+m) denotes the cylinder in R
n+m for any

x = (x1, . . . , xn+m) ∈ R
n+m , and Cr = Cr (0n+m).

Lemma 8.2 Suppose that for any regular point q ∈ C there is a sequence of points
Mk � qk → q with limk→∞ vk(qk) = ∞. Then C is a quasi-cylinder in R

n+m

with countably (n − 1)-rectifiable π∗(C), and C ∩ (Br (x) × {0m}) is isometric to
π∗(C ∩ (Br (x) × ∂Bs(0m))) for any r , s > 0, x ∈ R

n.

Proof For any x ∈ π∗(C), there is a point x ∈ C such that π∗(x) = x . Then tx ∈ C
implies t x = π∗(tx) ∈ π∗(C). This means that π∗(C) is a cone. It is easy to check
that π∗(C) is closed in R

n . For any point q ∈ regC , from the assumption there is a
unit vector ηq ∈ TqC such that 〈Ei , ηq〉 = 0 for each integer i = 1, . . . , n. There are
a small constant rq > 0 and a local orthonormal tangent frame {ei }ni=1 on Crq (q) ∩C
such that 〈e1(z),Ei 〉 = 0 for any z ∈ Crq (q)∩C and i = 1, . . . , n. In other words, e1
is a C1 tangent vector field onCrq (q)∩C with π∗(e1(z)) = 0 for any z ∈ Crq (q)∩C .
After choosing the constant rq > 0 suitably small, for each y ∈ Crq (q) ∩ �q there is
an integral curve γy in Crq (q) ∩ C with γ̇y = e1 ◦ γy .

We write q = (π∗(q), q ′) ∈ R
n × R

m , and denote �z′ = C ∩ (Rn × {z′}) for each
z′ ∈ R

m . For any z ∈ Crq (q) ∩C , let γz be the integral curve with γz(0) = z. For any
vector ξ spanned by E1, . . . ,En , we have

〈γz(t) − γz(0), ξ 〉 =
∫ t

0
〈γ̇z(s), ξ 〉ds =

∫ t

0
〈e1(γz(s)), ξ 〉ds = 0, (8.14)

which implies π∗(γz(t)) = π∗(z). Hence, we conclude that π∗(Crq (q) ∩ C) =
π∗(Crq (q) ∩ �z′) for any |z′ − q ′| < rq . With the dimensional estimates from
Lemma 8.1, we deduce

π∗(C ∩ (Br (x) × ∂Br1(0
m))) = π∗(C ∩ (Br (x) × ∂Br2(0

m))) (8.15)
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for any r1, r2 > 0 and Br (x) ⊂ B1. Letting r1 → 0 implies

π∗(C ∩ (Br (x) × {0m})) = π∗(C ∩ (Br (x) × ∂Br2(0
m))), (8.16)

which is isometric to C ∩ (Br (x) × {0m}).
From the slicing lemma for T in [47], π∗(C) = π∗(sptT ) is a countably (n − 1)-

rectifiable cone inRn . With Lemma 8.1, for almost all x ∈ π∗(C), there is a countably
1-rectifiable normalized curve γx : R → R

m such that {(x, y) ∈ R
n × R

m | x ∈
π∗(C), y ∈ γx } is the support of C up to a zero Hn-set. ��

With Proposition 5.1, we can weaken the condition in Lemma 8.2 and get the same
conclusion.

Theorem 8.1 If there is a sequence of points qk ∈ Mk with lim sup |qk | < ∞ such that
limk→∞ vk(qk) = ∞, then C is a multiplicity one quasi-cylindrical minimal cone.

Proof Let 	Mk and ∇Mk denote the Laplacian and the Levi-Civita connection of Mk ,
respectively. From Corollary 7.1,

	Mkv
−1/n
k = 	Mk e

− 1
n log vk = −1

n
v

−1/n
k 	Mk log vk + 1

n2
v

−1/n
k |∇Mk log vk |2 ≤ 0

(8.17)
on Mk . Let ξk denote an orientation of Mk , namely, TxMk can be represented by the
unit n-vector ξk(x), such that v

−1
k = 〈ξk,E1 ∧ · · · ∧En〉. For any regular point z ∈ C ,

there is a constant rz > 0 such that B2rz (z) ∩ C is smooth. From Allard’s regularity
theorem, Mk ∩ B3rz/2(z) converges to C ∩ B3rz/2(z) smoothly. Recalling [|Mk |]⇀T .
Let ξ denote the orientation of T , and v−1

T = 〈ξ,E1 ∧ · · · ∧ En〉 on regT (the regular
part of T ). We extend vT to singT (the singular part of T ) by letting

v−1
T (x) = inf

regT�y→x
〈ξ(y),E1 ∧ · · · ∧ En〉 for any x ∈ singT . (8.18)

Then from (8.17) we have

	T v
−1/n
T ≤ 0 on regT , (8.19)

where 	T denotes the Laplacian of T .
From monotonicity of the density and Lemma 3.2, there is a constant cn ≥ ωn

depending only on n such that

ωnr
n ≤ M(T �Br (x)) ≤ cnr

n (8.20)

for any r > 0 and x ∈ sptT . From the proof of Theorem 6.1, we assume that there
exist indecomposable multiplicity one currents T1, . . . , Tl ∈ Dn(R

n+m) for l ≥ 1,
T1, . . . , Tl �= 0 such that

M(T �W ) =
l∑

j=1

M(Tj�W ),

l∑

j=1

M(∂Tj�W ) = 0 (8.21)
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for any open W ⊂⊂ R
n+m . From Proposition 8.1 and (8.19), there are a constant δ∗

depending only on n, and a constant �T depending only on n,m,�, T such that for
any j , q ∈ sptTj , r > 0

r−n
∫

sptTj∩Br (q)

v
−δ∗/n
T ≤ �T v

−δ∗/n
T (q). (8.22)

There is a point q ∈ sptTj for some integer j ∈ {1, . . . , l} so that qk → q up to a
choice of a subsequence. From limk→∞ vk(qk) = ∞, it follows that v−1

T (q) = 0 if q
is a regular point ofC . Now we assume that q is a singular point ofC and v−1

T (q) > 0.
Then we blow C up at q, and get a contradiction from (8.18) and Theorem 7.1. Hence
we always have v−1

T (q) = 0. From (8.22), we conclude that v−1
T = 0 on sptTj .

Similarly, if there is an integer j ′ ∈ {1, . . . , l} such that supsptTj ′ v−1
T > 0, then (8.22)

implies v−1
T > 0 on sptTj ′ . By a blowing up argument and Theorem 7.1, we conclude

that sptTj ′ is an n-plane, which implies sptTj ′ = sptT . Therefore, such j ′ does not
exist, and we get

v−1
T = 〈ξ,E1 ∧ · · · ∧ En〉 = 0 on sptT . (8.23)

From Allard’s regularity theorem, any sequence of points yk ∈ Mk converging to
a regular point y of sptT satisfies limk→∞ vk(yk) = ∞. Recalling Lemma 8.2, we
complete the proof. ��

In Lemma 6.1.1 (p. 42) in [48], J. Simons proved the following well-known result.

Lemma 8.3 Let � be a closed co-dimension 1 minimal variety in S
n. Suppose � is

not the totally geodesic Sn−1. Then if n ≤ 6, the cone C� is not stable.

Using Lemma 8.3, Simons proved the celebrated Bernstein theorem in Theorem
6.2.2 in [48] with the help of Fleming’s and De Giorgi’s arguments. In high codimen-
sions, we have the following Bernstein theorem based on Simons’ work.

Lemma 8.4 If n ≤ 7, then sptC is an n-plane.

Proof If C is an entire graph over Rn , then C is an n-plane from Theorem 7.1. Hence
we can assume that there is a point y∗ = (0n, y∗) ∈ C with 0 �= y∗ ∈ R

m . Without
loss of generality, we assume y∗ = (1, 0, . . . , 0). From Lemma 4.1 and Lemma 4.2,
Ct = C − t y∗ converges as t → ∞ to a minimal cone

{(x1, . . . , xn, y1, . . . , ym) ∈ R
n × R

m | (x1, . . . , xn) ∈ Cy∗ , y2 = · · · = ym = 0},

where Cy∗ is a minimal cone in R
n with multiplicity one. From Theorem 4.1, Cy∗

is stable with the dimension n − 1 ≤ 6. With Lemma 8.1 and dimension reduction
argument, we get the flatness of Cy∗ by Lemma 8.3. In other words, y∗ is a regular
point ofC . DenoteC = sptC . Hence, there is a constant r > 0 such that Mk ∩ B2r (y∗)
converges smoothly to C ∩ B2r (y∗) as k → ∞. Let ξ denote the orientation of regC .
From the argument in the proof of Theorem 8.1, we get

〈ξ,E1 ∧ · · · ∧ En〉 = 0 on regC . (8.24)
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There is a ball Bδy (y∗) with the radius δy > 0 such that Bδy (y∗) ∩ C is regular
everywhere. From Lemma 8.2, π∗(Bδ(y∗)∩C) contains a neighborhood of the origin
in π∗(C) for any δ ∈ (0, δy], and the origin is the regular point of C in particular.
Hence C is flat. We complete the proof. ��

Analogously to the argument in Lemma 8.4, we have the following sharp dimension
estimate.

Lemma 8.5 Let Mk ∈ Mn,m,�,B2 for some constant 0 < � <
√
2. Assume that

|Mk |�B2 converges to a stationary varifold V in the varifold sense. If S denotes the
singular set of sptV ∩ B1, then S has Hausdorff dimension ≤ n − 7.

Proof Let us prove it by following the steps in the proof of Lemma 8.1. We assume
that S has Hausdorff dimension > n− 7. By the dimension reduction argument, there
is a k(k ≤ 6)-dimensional non-flat regular minimal cone C ⊂ R

m+k such that there is
a sequence of minimal graphs �k = Mn,m,�,Brk

(which are scalings and translations
gotten from Mk) with rk → ∞ so that �k converges to a minimal cone C∗ in the
varifold sense, which is a trivial product of C and R

n−k .
From Theorem 7.1, there is a point y∗ = (0n, y∗) ∈ C∗ with 0 �= y∗ ∈ R

m . If
y∗ is a singular point of C∗, then we blow C∗ up at y∗, and get the contradiction by
Theorem 4.1, Lemma 8.1 and Lemma 8.3. If y∗ is a regular point of C∗, then there is
a constant δy > 0 such that Bδy (y∗) ∩ C∗ is regular. From Lemma 8.2, we conclude
that the origin is a regular point of C∗. It’s a contradiction. We complete the proof. ��

We summarize Theorem 8.1, Lemma 8.4 and Lemma 8.5, and complete the proof
of Theorem 1.3.
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9 Appendix I

In this appendix, we will derive several auxiliary algebraic results. Let a be a real
matrix (aαi )m×n , and b be a matrix (bi j )n×n defined by

bi j = δi j +
m∑

α=1

aαi aα j .
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Let (bi j ) be the inverse matrix of (bi j ), and ξ be a matrix (ξα j )m×n defined by

ξα j = √
det b

n∑

i=1

bi j aαi . (9.1)

Lemma 9.1 Let λ1, . . . , λn be the singular values of a satisfying λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0 and λ1λ2 ≤ � for a constant � > 0. If

a11 ≥ (1 − ε)
√
det b (9.2)

for a positive constant ε � 1, then |ξ11| < 1 + ψ(ε|�), where ψ(ε|�) is a positive
function of ε,� with limε→0 ψ(ε|�) = 0.

Proof For the fixed � > 0, we put ψε = ψ(ε|�) for convenience. Since a11 ≤ λ1
and det b =∏n

k=1(1 + λ2k), then from (9.2) we have

∑

k≥2

λk < ψε,
∑

α+i≥3

|aαi | ≤ ψεa11 ≤ ψελ1. (9.3)

There are two real orthonormal matrices p = (pi j )n×n and q = (qαβ)m×m such that

aαi =
n∑

j=1

qα jλ j p ji .

From (9.2), p11q11 ≥ 1 − ψε, which implies

|1 − p11| +
∑

i+ j≥3

|pi j | ≤ ψε. (9.4)

We define an m × n matrix a∗ with the element

a∗
αi = aαi − qα1λ1 p1i =

∑

j≥2

qα jλ j p ji .

Let ci = ∑α qα1a∗
αi and c∗ = (c∗

i j ) be an (n × n)-matrix with the elements c∗
i j =∑

α a
∗
αi a

∗
α j − ci c j . From (9.4), we have

∑

α,i

|a∗
αi | ≤ ψελ2,

∑

i

|ci | ≤ ψελ2,
∑

i, j

|c∗
i j | ≤ ψελ

2
2. (9.5)
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By a direct computation,

bi j = δi j +
m∑

α=1

(a∗
αi + qα1λ1 p1i )(a

∗
α j + qα1λ1 p1 j )

= δi j + λ21 p1i p1 j + λ1 p1i
∑

α

qα1a
∗
α j + λ1 p1 j

∑

α

qα1a
∗
αi +

∑

α

a∗
αi a

∗
α j

= δi j + λ21 p1i p1 j + λ1 p1i c j + λ1 p1 j ci + ci c j + c∗
i j

= δi j + (λ1 p1i + ci )(λ1 p1 j + c j ) + c∗
i j . (9.6)

Let g = (gi j ) be the matrix with the elements

gi j = bi j − c∗
i j = δi j + (λ1 p1i + ci )(λ1 p1 j + c j ),

then its inverse matrix (gi j ) satisfies

gi j = δi j − (λ1 p1i + ci )(λ1 p1 j + c j )

1 +∑k(λ1 p1k + ck)2
. (9.7)

Then

∑

j

gi j (λ1 p1 j + c j ) =
∑

j

(
δi j − (λ1 p1i + ci )(λ1 p1 j + c j )

1 +∑k(λ1 p1k + ck)2

)
(λ1 p1 j + c j )

= λ1 p1i + ci
1 +∑k(λ1 p1k + ck)2

(9.8)

and

∑

j

gi j a1 j =
∑

j

gi j
(
q11λ1 p1 j + a∗

1 j

)

= q11
∑

j

gi j
(
λ1 p1 j + c j

)+
∑

j

gi j
(
a∗
1 j − q11c j

)

= (λ1 p1i + ci )q11
1 +∑k(λ1 p1k + ck)2

+
∑

j

gi j
(
a∗
1 j − q11c j

)
. (9.9)

From (9.4), (9.5), it’s clear that
∑

j≥1 |g1 j | ≤ ψε, then from (9.9) it follows that

λ1

∣∣∣∣∣∣

∑

j≥1

g1 j a1 j

∣∣∣∣∣∣
≤ 1 + ψε. (9.10)

From (9.5), the elements of g−1c∗ satisfy
∑

i, j |(g−1c∗)i j | ≤ ψελ
2
2. Let f be an n×n

matrix f = (I+g−1c∗)−1− I � ( fi j )with the unit matrix I , then
∑

i, j | fi j | ≤ ψελ
2
2.
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Hence

λ1

∣∣∣∣∣∣

∑

j

( f g−1)1 j a1 j

∣∣∣∣∣∣
≤ ψε. (9.11)

Since the inverse matrix of b = g + c∗ satisfies

b−1 = (g + c∗)−1 = (I + g−1c∗)−1g−1 = ( f + I )g−1 = g−1 + f g−1, (9.12)

combining this with (9.10), (9.11), we have

|ξ11| =
√√√√

n∏

k=1

(1 + λ2k)

∣∣∣∣∣∣

∑

j

b1 j a1 j

∣∣∣∣∣∣

≤
√√√√

n∏

k=1

(1 + λ2k)

⎛

⎝

∣∣∣∣∣∣

∑

j

g1 j a1 j

∣∣∣∣∣∣
+
∣∣∣∣∣∣

∑

j

( f g−1)1 j a1 j

∣∣∣∣∣∣

⎞

⎠ ≤ 1 + ψε. (9.13)

This completes the proof. ��
Lemma 9.2 Let φ be a function defined by

φ(μ1, μ2, μ3) = 4 + μ1μ2μ3 − μ1μ2 − μ1μ3 − μ2μ3 (9.14)

on (R+)3 with
∏3

i=1(1+μi ) = v20 for some constant v0 > 1. Ifμiμ j ≤ 2+ 2
maxk μk−1

for all i �= j , then φ ≥ 0, where the equality is attained at (2, 2, 1
9v

2
0 − 1) for

3 ≤ v0 ≤ 3
√
3, or (μ∗, μ∗, 1+ 2/μ∗) with μ∗ ≤ 2 being the unique positive solution

to 2(μ∗ + 1)3 = μ∗v20 .

Remark 9.1 Suppose μ1 ≥ μ2 ≥ μ3 ≥ 0. If μiμ j ≤ 2 + 2
maxk μk−1 for all i �= j , we

have μ1μ2 ≤ 2 + 2
μ1−1 = 2μ1

μ1−1 , and then μ2 ≤ 2
μ1−1 . Hence

μ1μ2 ≤ 2 + μ2 ≤ 2 + √
μ1μ2, (9.15)

which implies μ1μ2 ≤ 4. In other words, μiμ j ≤ 2+ 2
maxk μk−1 for all i �= j implies

μiμ j ≤ 4 for all i �= j .

Proof By the definition of v0, we have

φ(μ1, μ2, μ3) = 4 − μ1μ2 + (μ1μ2 − μ1 − μ2)

(
v20

(1 + μ1)(1 + μ2)
− 1

)

= 4 + μ1μ2 − μ1 − μ2

(1 + μ1)(1 + μ2)
v20 − 2μ1μ2 + μ1 + μ2 � ψ(μ1, μ2)

(9.16)
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with (1+μ1)(1+μ2) ≤ v20. Fromμ1μ2 ≤ 4 inRemark 9.1,ψ(μ1, μ2) = 4−μ1μ2 ≥
0 clearly on the set {μ1 ≥ 0, u2 ≥ 0| (1 + μ1)(1 + μ2) = v20}, where the equality is
attained at (μ1, μ2, μ3) = (2, 2, 0) with v0 = 3. Since

∂μ1ψ =
(

μ2 − 1

1 + μ1
− μ1(μ2 − 1) − μ2

(1 + μ1)2

)
v20

1 + μ2
− 2μ2 + 1

= (2μ2 − 1)
v20

1 + μ2
− 2μ2 + 1 = (2μ2 − 1)

(
v20

1 + μ2
− 1

)

,

and ψ(μ1, μ2) = ψ(μ2, μ1), it follows that

{μ1 ≥ 0, u2 ≥ 0| Dψ(μ1, μ2) = 0} ⊂ {μ1 ≥ 0, u2 ≥ 0| μ1 = μ2}.

Note that

ψ(μ,μ) = 4 + μ2 − 2μ

(1 + μ)2
v20 − 2μ2 + 2μ = μ − 2

(1 + μ)2

(
μv20 − 2(1 + μ)3

)
. (9.17)

We suppose μiμ j ≤ 2 + 2
maxk μk−1 for all i �= j , and μ1 = μ2.

• If μ3 ≤ μ1, then μ1μ2 ≤ 2 + 2
μ1−1 = 2μ1

μ1−1 , which implies μ1 ≤ 2. Note that

v20 ≤ (1 + μ1)
3, then from (9.17)

ψ(μ1, μ1) ≥ μ1 − 2

(1 + μ1)2

(
μ1(1 + μ1)

3 − 2(1 + μ1)
3
)

≥ 0, (9.18)

where the equality is attained at (μ1, μ2, μ3) = (2, 2, 1
9v

2
0−1) for 3 ≤ v0 ≤ 3

√
3.

• If μ3 ≥ μ1, then

μ1μ3 ≤ 2 + 2

μ3 − 1
= 2μ3

μ3 − 1
,

which implies μ3 ≤ 1 + 2/μ1. Note that μ1 ≤ μ3 ≤ 1 + 2/μ1 implies μ1 ≤ 2.
Hence from (9.17),

ψ(μ1, μ1) ≥ μ1 − 2

(1 + μ1)2

(
μ1(1 + μ2)

2(1 + 1 + 2/μ1) − 2(1 + μ1)
3
)

= 0,

(9.19)
where the equality is attained at (μ1, μ2, μ3) = (2, 2, 2) with v0 = 3

√
3, or

(μ∗, μ∗, 1+2/μ∗)withμ∗ ≤ 2 being the unique positive solution to 2(μ∗+1)3 =
μ∗v20.

This completes the proof. ��
Corollary 9.1 Let φ be a function defined by

φ(μ1, μ2, μ3) = 4 + μ1μ2μ3 − μ1μ2 − μ1μ3 − μ2μ3 (9.20)
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on (R+)3. If sup1≤i< j≤3 μiμ j ≤ �2 for some constant 0 < � ≤ √
2, then φ ≥

4(1 − �/
√
2).

Proof Let μ̃i = √
2μi/�, then

φ = 4 + �3

2
√
2
μ̃1μ̃2μ̃3 − �2

2
(μ̃1μ̃2 + μ̃1μ̃3 + μ̃2μ̃3)

= 4 − 2�2 + μ̃1μ̃2μ̃3

(
�3

2
√
2

− �2

2

)

+ �2

2
(4 + μ̃1μ̃2μ̃3 − μ̃1μ̃2 − μ̃1μ̃3 − μ̃2μ̃3) .

(9.21)

From the assumption, sup1≤i< j≤3 μ̃i μ̃ j ≤ 2, and μ̃1μ̃2μ̃3 ≤ 2
√
2. Combining

Lemma 9.2, we get

φ ≥ 4 − 2�2 + 2
√
2

(
�3

2
√
2

− �2

2

)
= 4

(
1 − �√

2

)(
1 + �√

2
− �2

2
√
2

)
. (9.22)

With 0 < � ≤ √
2, we complete the proof. ��

10 Appendix II

Analog to Lemma 4.3 in [21], we have the following multiplicity one convergence for
Lipschitz minimal graphs. Let � be a domain inRn with countably (n−1)-rectifiable
boundary ∂�.

Lemma 10.1 Let Mk = graphuk be a sequence of Lipschitz minimal graphs over �

of codimension m ≥ 1 with supk Lip uk < ∞. Then there are a Lipschitz function
u∞ : � → R

m with Lip u∞ ≤ supk Lip uk, and a multiplicity one n-varifold V in
� ×R

m with sptV = {(x, u∞(x)) ∈ R
n ×R

m | x ∈ �} such that up to a choice of the
subsequence |Mk | converges as k → ∞ to V in � × R

m in the varifold sense.

Remark In Proposition 11.53 of [29], Giaquinta and Martinazzi have already proved
the multiplicity one of V in the above lemma. Here, we give an alternative proof for
completeness.

Proof By Arzela–Ascoli theorem, up to a choice of the subsequence, we assume that
there is a Lipschitz function u∞ on � with Lip u∞ ≤ supk Lip uk . By compactness
of varifolds (see [47]), there is an n-varifold V in � × R

m such that up to a choice
of the subsequence, |Mk | converges to an integer multiplicity stationary varifold V
in � × R

m in the varifold sense. Let μV denote the Radon measure associated to
V . By monotonicity of the density of V , for any x∗ ∈ sptV ∩ (� × R

m) we have
μV (Br (x∗)) ≥ ωnrn for sufficient small r > 0. By the convergence of |Mk |, there is a
sequence xk ∈ Mk with xk → x∗. Denote xk = (xk, uk(xk)). Then xk converges to a
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point x∗ withπ∗(x∗) = x∗, whereπ∗ is defined in (4.3). Therefore, x∗ = limk→∞ xk =
limk→∞(xk, uk(xk)) = (x∗, u∞(x∗)), which implies the support of V

sptV ⊂ {(x, u∞(x)) ∈ � × R
m | x ∈ R

n}. (10.1)

Note that for any z ∈ �, Hn(Br (zk) ∩ Mk) ≥ ωnrn for all suitably small r > 0 with
zk = (z, uk(z)). Since (z, uk(z)) → (z, u∞(z)) as k → ∞, from the convergence of
|Mk | we get μV (Br (z)) ≥ ωnrn for z = (z, u∞(z)). In particular, z ∈ sptV , which
implies

{(x, u∞(x)) ∈ R
n × R

m | x ∈ �} ⊂ sptV . (10.2)

Now it only remains to prove that V has multiplicity one. Let regV denote the
regular part of V in � × R

m . For any y ∈ regV , let TyV denote the tangent plane of
sptV at y. Let ξ1, . . . , ξn be an orthonormal basis of TyV . From Lemma 22.2 in [47],

lim
r→0

(
r−n lim

k→∞

∫

Mk∩Br (y)

∣∣ek,1 ∧ · · · ∧ ek,n − ξ1 ∧ · · · ∧ ξn
∣∣2
)

= 0, (10.3)

where ek,1, . . . , ek,n is a local orthonormal tangent frameofMk for each k.Wealso treat
ek,i as a vector on π∗(Mk) by letting ek,i (x) = ek,i (x, uk(x)) for each i = 1, . . . , n
and k ≥ 1. Let {Ei }n+m

i=1 denote the standard orthonormal basis of Rn+m such that Ei

corresponds to the axis xi for i = 1, . . . , n + m, vk be a function on R
n defined by

v−1
k = ∣∣〈ek,1 ∧ · · · ∧ ek,n,E1 ∧ · · · ∧ En〉

∣∣. From supk Lip uk < ∞ and (10.3), we
get

lim
r→0

(
r−n lim

k→∞

∫

Br (y)

∣∣ek,1 ∧ · · · ∧ ek,n − ξ1 ∧ · · · ∧ ξn
∣∣2 vk

)
= 0 (10.4)

with y = (y, u∞(y)). Let v∞ = |〈ξ1 ∧ · · · ∧ ξn,E1 ∧ · · · ∧ En〉|−1. From (10.4) and

∫

Br (y)

∣∣∣1 − vkv
−1∞
∣∣∣ =
∫

Br (y)

∣∣∣v−1
k − v−1∞

∣∣∣ vk

≤
∫

Br (y)

∣∣〈ek,1 ∧ · · · ∧ ek,n − ξ1 ∧ · · · ∧ ξn,E1 ∧ · · · ∧ En〉
∣∣ vk

≤
∫

Br (y)

∣∣ek,1 ∧ · · · ∧ ek,n − ξ1 ∧ · · · ∧ ξn
∣∣ vk, (10.5)

with the Cauchy inequality we get

lim
r→0

(
r−n lim

k→∞

∫

Br (y)

∣∣∣1 − vkv
−1∞
∣∣∣
)

≤ lim
r→0

(
r−n lim

k→∞

(∫

Br (y)
vk

∫

Br (y)

∣∣ek,1 ∧ · · · ∧ ek,n − ξ1 ∧ · · · ∧ ξn
∣∣2 vk

))
= 0,

(10.6)
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which implies

lim
r→0

(
r−nμV (Br (y) × R

m)
) = lim

r→0

(
r−n lim

k→∞Hn (Mk ∩ (Br (y) × R
m)
))

= lim
r→0

(
r−n lim

k→∞

∫

Br (y)
vk

)
= ωnv∞ = ωn |〈ξ1 ∧ · · · ∧ ξn,E1 ∧ · · · ∧ En〉|−1 .

(10.7)

With (10.1), we conclude that V has multiplicity one everywhere on sptV . This com-
pletes the proof. ��

11 Appendix III

Let � be a positive constant <
√
2, and Mk ∈ Mn,� for each integer k ≥ 1. From

Theorem 7.2, Mk is smooth for each k. From (7.13), integrating by parts infers that
there is a constant cn,� > 0 depending only on n and � such that

∫

Mk∩Bρ(p)
|BMk |2 ≤ cn,�ρn−2 (11.1)

for any p ∈ Mk and any ρ > 0. Here, BMk is the second fundamental form of Mk in
R
n+m .

Lemma 11.1 Suppose that |Mk | converges to a nontrivial stationary varifold V in the
varifold sense. If V splits off Rn−1 isometrically, then sptV is an n-plane.

The proof is similar to the argument in the proof of Theorem 2 of [46] by Schoen–
Simon. For self-containment, we give the proof here.

Proof Let us prove it by contradiction. Suppose that there is a varifold T inRm+1 such
that sptT is not a line in Rm+1, and

sptV = {(x, y) ∈ R
n−1 × R

m+1| y ∈ sptT } = R
n−1 × sptT .

We write

T =
l∑

j=1

n j |R j |, R j = {λp j | λ > 0}, (11.2)

with l ≥ 2, n j positive integers, |p j | = 1 and p1, . . . , pl spanning a space of dimen-
sion≥ 2. Let ξk be the orientation of Mk defined in (2.25). Note that T has multiplicity
one. For any 0 < ρ ≤ 1/2, fromAllard’s regularity theorem there is a constant kρ > 0
such that

Mk ∩
(
{x} × {y ∈ R

m+1| ρ < |y| < 2ρ}
)

=
l ′⋃

j=1

γ k
j (x) (11.3)
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for each k ≥ kρ and each x ∈ R
n−1 with |x | ≤ 1, where l ′ = ∑l

j=1 nl , γ k
j (x)

are smooth properly embedded Jordan arcs having their endpoints in {x} × {y ∈
R
m+1| |y| = ρ or |y| = 2ρ}, and satisfying

lim
k→∞ max

j ′=1,...,l ′
sup

x∈Rn−1, |x |≤1
dist
(
γ k
j ′(x),R

n−1 × T
)

= 0,

lim
k→∞ min

j=1,...,l
sup

x∈γ i
j ′ (x), j ′=1,...,l ′

∣∣∣ξk(x) ∧ (0n−1, p j )

∣∣∣ = 0. (11.4)

Here, 0n−1 denotes the origin of Rn−1.
On the other hand, for each x ∈ Mk , there is a constant rk,x such that for every

0 < r < rk,x, each component of Mk ∩ Br (x) is embedded, and can be written as
a graph over the tangent plane of Mk ∩ Br (x) at x with the graphic function wk,x so
that |Dwk,x| < 1

10r . Covering lemma and Sard’s theorem imply that for almost all
x ∈ R

n−1 with |x | ≤ 1, and for each k ≥ 1 we have

Mk ∩
(
{x} × {y ∈ R

m+1| |y| ≤ ρ}
)

=
⎛

⎝
l1⋃

j=1

�k
j (x)

⎞

⎠ ∪
⎛

⎝
l2⋃

j=1

ϒk
j (x)

⎞

⎠ , (11.5)

where l1 is a positive integer (depending on i, x),�k
j (x) are smooth properly embedded

arcs with endpoints contained in {x} × {y ∈ R
m+1| |y| = ρ}, l2 is a non-negative

integer, and ϒk
j (x) are smooth properly embedded curves (with no endpoints). Hence

for almost all x ∈ R
n−1 with |x | ≤ 1, Mk ∩ ({x} × {y ∈ R

m+1| |y| ≤ 2ρ}) is a
union of several embedded smooth arcs or curves with their endpoints in {x} × {y ∈
R
m+1| |y| = 2ρ}.
Clearly, there are a constantβ > 0 independent ofρ and a large constant k∗

ρ such that
for all k ≥ k∗

ρ and for almost all x ∈ R
n−1 with |x | ≤ 1, there is an embedded smooth

arcs γ k∗,ρ in Mk ∩ ({x} × {y ∈ R
m+1| |y| ≤ 2ρ}) with their endpoints in {x} × {y ∈

R
m+1| |y| = 2ρ} (depending on ρ) so that

sup
x1,x2∈γ k∗,ρ

|ξk(x1) − ξk(x2)| ≥ β. (11.6)

Let ∇γ̇ k∗,ρ
ξk denote the directional derivative of ξk in the direction of the tangent to

γ k∗,ρ . Then from the above inequality one has

β ≤ sup
x1,x2∈γ k∗,ρ

|ξk(x1) − ξk(x2)| ≤
∫

γ k∗,ρ

∣∣∣∇γ̇ k∗,ρ
ξk

∣∣∣ . (11.7)
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Since
∣∣∣∇γ̇ k∗,ρ

ξk

∣∣∣ ≤ cn|BMk | for some constant cn > 0, then

β

cn
≤
∫

γ k∗,ρ

∣∣BMk

∣∣ ≤
∫

Mk∩({x}×{y∈Rm+1| |y|≤2ρ})

∣∣BMk

∣∣ (11.8)

for almost all x ∈ R
n−1 with |x | ≤ 1, and k ≥ k∗

ρ . Denote Mk,ρ = Mk ∩ {(x, y) ∈
R
n−1 × R

m+1| |x | < 1, |y| ≤ 2ρ} for every 0 < ρ ≤ 1/2. Integrating (11.8) over
|x | < 1 and using the co-area formula yield

ωn−1

cn
β ≤

∫

Mk,ρ

∣∣BMk

∣∣ ≤ (Hn(Mk,ρ)
)1/2
(∫

Mk,ρ

∣∣BMk

∣∣2
)1/2

≤ (Hn(Mk,ρ)
)1/2
(∫

Mk∩B√
2

∣∣BMk

∣∣2
)1/2

. (11.9)

There are an integer lρ > 1 and a finite sequence of {x ′
j }lρj=1 ⊂ R

n−1 with |x ′
j | < 1

such that
⋃lρ

j=1 Bρ(x ′
j ) ⊃ B1(0n−1) and lρρn−1 < c′

n for some constant c′
n depending

only on n. Here, Bρ(x ′
j ) denotes the ball in R

n−1 centered at x ′
j with the radius ρ,

B1(0n−1) denotes the unit ball inRn−1 centered at the origin. Denote z j = (x ′
j , 0

m+1).
Then

Bρ(x ′
j ) × {y ∈ R

m+1| |y| ≤ 2ρ} ⊂ B3ρ(z j ),

which implies

B1(0
n−1) × {y ∈ R

m+1| |y| ≤ 2ρ} ⊂
lρ⋃

j=1

B3ρ(z j ).

Combining Lemma 3.2, (11.1), (11.9) and lρρn−1 < c′
n , we have

ω2
n−1β

2c−2
n ≤ cn,�2

n
2−1Hn(Mk,ρ) ≤ cn,�2

n
2−1

lρ∑

j=1

Hn (Mk ∩ B3ρ(z j )
)

≤ cn,�2
n
2−1lρCn,�ωn(3ρ)n ≤ 2

n
2−13nωncn,�Cn,�c

′
nρ. (11.10)

However, the above inequality fails for the sufficiently small ρ > 0. Thus, we get that
sptT is a line in Rm+1, and complete the proof. ��
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