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Abstract

For any A > 0, let M,, A denote the space containing all locally Lipschitz minimal
graphs of dimension n and of arbitrary codimension m in Euclidean space R"*"
with uniformly bounded 2-dilation A of their graphic functions. In this paper, we
show that this is a natural class to extend structural results known for codimension
one. In particular, we prove that any tangent cone C of M € M, A at infinity has
multiplicity one. This enables us to get a Neumann—Poincaré inequality on stationary
indecomposable components of C. A corollary is a Liouville theorem for M. For
small A > 1 (we can take any A < V2), we prove that (i) for n < 7, M is flat; (ii)
for n > 8 and a non-flat M, any tangent cone of M at infinity is a multiplicity one
quasi-cylindrical minimal cone in R” ™ whose singular set has dimension < n — 7.
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1 Introduction

It has been a central aim of the theory of minimal graphs in Euclidean space to derive
conditions under which an entire n-dimensional minimal graph, that is, a graph defined
on all of R, of codimension 1, that is, sitting in R**", is affine linear. This is the
famous Bernstein problem. Bernstein himself proved it for two-dimensional entire
minimal graphs in R3. For codimension 1, but in higher dimensions, this holds for
n < 7 through successive efforts of Fleming [28], De Giorgi [17], Almgren [2] and
culminating with Simons [48]. However, itis no longer true for n > 8 by an example of
Bombieri, De Giorgi and Giusti [7]. If we assume, however, in addition, that the graph
has a bounded gradient, then this holds for any dimension n by a result of Moser [43].
This is the so-called weak version of the Bernstein Theorem.

Research on the Bernstein theorem was a crucial motivation for the great devel-
opment of geometric measure theory. It is well known that an entire codimension 1
minimal graph ¥ in R+ g area-minimizing, i.e., the current associated with X is a
minimizing current. Fleming [28] proved that any tangent cone Cyx of ¥ at infinity
is a singular area-minimizing cone in R"*! which implies that it is a stable min-
imal hypersurface with multiplicity one. De Giorgi [17] further showed that Cy is
cylindrical, i.e, Cy, isometrically splits off a factor R.

In higher codimension, Almgren [3] derived sharp codimension 2 estimates for
the singular sets of minimizing currents. In [18-20], De Lellis—Spadaro developed a
new approach to the regularity of minimizing currents and could in particular rederive
Almgren’s structure theorem. In general, however, minimal graphs of higher codimen-
sion are not minimizing. Nevertheless, some general structural results about minimal
graphs in higher codimension are available. Utilizing the graph property, it is possible
to study the structure and rigidity of minimal graphs of arbitrary codimension under
some conditions but without a minimizing assumption.

In this paper, we approach this issue via studying tangent cones of minimal graphs
at infinity. First of all, we need some condition on minimal graphs to guarantee that
they have Euclidean volume growth. For that purpose, we now introduce the concept
of bounded k-dilation. As we shall see, this condition provides a natural generalization
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Minimal graphs of arbitrary codimension in Euclidean...

of the bounded slope condition that has been used in many other papers about higher
codimension Bernstein theorems.

Let f : My — M> be a locally Lipschitz map between Riemannian manifolds
M, M;. For an integer k > 1, f is said to have k-dilation < A for some constant
A > 0if f maps each k-dimensional submanifold S C M| to an image f(S) C M>
with H¥(f(S)) < AH¥(S) where H* denotes k-dimensional Hausdorff measure.
We note that this condition is the more restrictive the smaller k (up to the constant
A). For k = 1, it simply means that f is A-Lipschitz. This is, of course, a strong
condition. In this paper, we shall explore the case k = 2, that is, consider maps, or
more precisely locally Lipschitz minimal graphs given by f : R” — R™ with bounded
2-dilation. But even for n = m = 2, minimal graphs have not necessarily bounded
2-dilation for their graphic functions, as the 2-dimensional minimal graphs given by
(Ree*, —Ime®) : R? — R2. We should note, however, that these examples have zero
k-dilation for k > 3. Therefore, we cannot hope for a good theory on tangent cones
of minimal graphs at infinity when we only restrict some k-dilation for k > 3.

For any constant A > 0, let M, 5 denote the space containing all the locally
Lipschitz minimal graphs over R" of arbitrary codimension m > 1 with 2-dilation
of their graphic functions < A. Here, the codimension m is bounded by a constant
depending only on n, A using a result of Colding—Minicozzi [14] (which will be
explained later), and this is the reason why the notation M,, o does not contain m. De
Giorgi [16] obtained the regularity of codimension 1 locally Lipschitz minimal graphs
(see also Moser [42]), while high codimensional locally Lipschitz minimal graphs may
really admit singularities. We can already provide the following geometric intuition.

(1) M, A contains every codimension one minimal graph in R

(2) The product of Euclidean space RY and any minimal graphical hypersurface in
R"*! is contained in M, 4.

(3) ~/A-Lipschitz graphs are in M, 5. In particular, the minimal Hopf cones in R?" x
R™*! form = 2, 4, 8 constructed by Lawson—Osserman [37] are in some M, A.
See [25, 54] for more examples.

However, having a bounded Lipschitz constant is a much stronger condition than
having bounded 2-dilation. For every bounded domain 2 C R", we have constructed
many examples of n-minimal graphs over 2 of 2-dilation < 1 with arbitrary large
slope, where they do not live in any (n + 1)-dimensional Euclidean subspace [23].
Having thus sketched the basic setting, we can explain the two main objectives of
this paper. The first objective is the development of the theory of minimal graphs of
arbitrary codimension in Euclidean space with uniformly bounded 2-dilation of their
graphic functions. The principal aim is to understand the geometric structure, including
multiplicity and stability, of such minimal graphs at infinity when the graphic functions
are allowed to grow faster than linearly. Without Euclidean volume growth, geometric
measure theory cannot say much about the possible limits of minimal graphs at infinity.
Therefore, our first crucial issue will be to derive Euclidean volume growth from
bounded 2-dilation. Importantly, their tangent cones at infinity have multiplicity one
(see Theorem 1.1 below), which plays an essential role in establishing the Neumann—
Poincaré inequality on stationary indecomposable components of the tangent cones.
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This general theory prepares the ground for the second objective, to study the rigidity
of minimal graphs of arbitrary codimension in Euclidean space without the assumption
of the bounded slope. Under the condition of bounded 2-dilation for graphic functions,
we prove a Liouville theorem for minimal graphs (see Theorem 1.2) with Neumann—
Poincaré inequality, which generalizes the classical Liouville theorem obtained by
Bombieri—De Giorgi—Miranda [8]. Concerning the Bernstein theorem, we prove that
there exists a constant A > 1 such that forn < 7 each M € M,  is flat, forn > 8
and any non-flat M € M,, 5, any tangent cone of M at infinity is a quasi-cylindrical
minimal cone (see Theorem 1.3). Here, the dimension 7 is sharp by the counter-
examples by Bombieri-De Giorgi—Giusti [7], and a quasi-cylindrical minimal cone is
exactly a cylinder in the codimension one case (see the definition below). Moreover,
the constant A can be arbitrarily chosen < +/2. The constant /2 is not essential for
our whole theory but plays a role in making the volume functional subharmonic (see
Corollary 7.1).

Let us now be more specific. In [12], Cheng—Li—Yau estimated the codimension
for each minimal cone in Euclidean space via its density. Colding—Minicozzi [14]
proved the dimension estimates for coordinate functions on more general minimal
submanifolds of Euclidean volume growth. In Sect. 3, using the result of [14], we
prove thatevery M € M,, A has Euclidean volume growth with the density bounded by
aconstant depending only onn, A (see Lemma 3.2 for details). In particular, M lives in
a Euclidean subspace with the codimension bounded by a constant depending on n, A.
Without the condition of bounded 2-dilation, of course minimal graphs need not have
Euclidean volume growth, like the 2-dimensional minimal graph by (Re e*, —Im ¢?) :
R2 — R? that we have already mentioned above (see Remark 3.1 for details).

Let v denote the slope of a minimal graph M over R" defined by ,/detg;;, where
gijdx;dx; is the metric of M induced from the ambient Euclidean space R*™ _ In
fact, v = v o y, where ¥ is a natural function in the Grassmannian manifold G, ,,
and y stands for the Gauss map. The slope describes how far M is from the fixed
n-plane R". We will explain its geometric meaning later in detail from the perspective
of the Grassmannian manifold. For 0 < A < 1 and M € M, 5 with codimension
m > 1, the corresponding v is convex in G, ,;, and then v = v o y is subharmonic.
This leads to flatness of M proved by Wang [49] under the bounded slope condition.
When A > 1, the function v in general is not convex. In fact, our class M,, A is much
richer when A > 1 is larger.

If M € M, a is minimizing, then it is not difficult to prove the multiplicity one
of the tangent cone of M at infinity. However, the multiplicity one holds without the
minimizing condition. Moreover, we can show the stability of the tangent cone in
some small neighborhood via the slope function v in Sect. 4.

Theorem 1.1 Let M be a locally Lipschitz minimal graph over R" of codimension
m > 1 with bounded 2-dilation of its graphic function. Then any tangent cone C of
M at infinity has multiplicity one. Moreover, if a tangent cone of C contains a line
perpendicular to the n-plane {(x,0") € R" x R™|x € R"}, then it is a cylindrical
stable minimal cone in an (n + 1)-dimensional Euclidean subspace.
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Remark 1.1 We do not know whether the cylindrical stable minimal cone obtained in
Theorem 1.1 is minimizing. Even we have no a priori dimensional estimates on its
singular set of the cylindrical stable minimal cone.

In fact, we prove a somewhat stronger version than Theorem 1.1, where we do not
need to require that the graphs are entire. The proof of multiplicity one is somewhat
difficult because of the complex interplay between geometry and analysis for subman-
ifolds of high codimensions. Our strategy therefore consists in using the structure of
the minimal surface system to treat the higher codimension case as a perturbation of
the codimension one case with error terms including some quantities from the other
codimensions. The key idea is projecting the minimal graph M to a hypersurface M’ in
asuitable (n + 1)-dimensional Euclidean subspace. In general M’ is no more minimal,
but from M we can get effective estimates up to a set of arbitrary small measure in the
scaling sense.

In 1969, Bombieri—-De Giorgi—Miranda [8] showed a Liouville theorem for solu-
tions to the minimal surface equation via interior gradient estimates (see also the
exposition in chapter 16 of [30]). For high codimensions, Wang proved a Liouville type
theorem for minimal graphs with positive graphic functions under the area-decreasing
condition [50]. This condition also means that the graphic functions have 2-dilation
bounded by A < 1.

Let B, denote the ball in R**™" with the radius r and centered at the origin. Let
B, denote the ball in R” with the radius » and centered at the origin. Inspired by
Bombieri—Giusti [9], we establish the Neumann—Poincaré inequality on stationary
indecomposable components of tangent cones of minimal graphs at infinity, and get
Harnack’s inequality for positive harmonic functions on the components. Then we can
get the following Liouville theorem without the subharmonic functions in terms of
the gradient functions on minimal graphs in Sect. 6, which generalizes Bombieri—-De
Giorgi—Miranda’s result in [8], and improves Wang’s result in [50].

Theorem 1.2 Let M = graph,, be a locally Lipschitz minimal graph over R" of codi-

mension m > 2 with bounded 2-dilation of u = (ul, o u™UIf
lim sup (r_l sup u“) <0 (1.1)
r—00 B,NM
foreacho € {2,...,m}, and
lim inf (rl sup u1> < 00, (1.2)
r—00 B,

then M is flat.

Asaresult, we immediately have the following corollary by considering the minimal
graphical function (0, u v u™) in Theorem 1.2.!

! Thanks to the anonymous referee for pointing this out to us.
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Corollary 1.1 Let M = graph,, be a locally Lipschitz minimal graph over R" of codi-

mension m > 2 with bounded 2-dilation of u = (ul, o u™UIf
limsup [ 7~! sup %} <0 (1.3)
r—00 B,.NM

foreach o € {1, ...,m}, then M is flat.

In the proof of Theorem 1.2, we need to prove a De Giorgi type result, i.e., every
tangent cone of M at infinity is a cylinder if it lives in an (n+ 1)-dimensional Euclidean
subspace. Using this, we can reduce the problem to the codimension 1 case with
the Neumann—Poincaré inequality. Then we can finish the proof by the regularity of
codimension 1 Lipschitz minimal graphs from De Giorgi [16].

According to this introduction, people have an essentially complete understanding
of the classical case of codimension 1 Bernstein theorem. The question then naturally
arises what we can say for higher codimension.

We can now briefly review the Bernstein type theorems for minimal graphs of
bounded slope of codimension m > 2. Bounded slope condition is an adequate
generalization of bounded gradient to higher codimension. For m > 2, Chern and
Osserman [13] showed that any 2-dimensional minimal graph of bounded slope in
R2*7 is flat, which was generalized in [32] (for m = 2) and [35] without bounded
slope. Barbosa and Fischer-Colbrie proved this for 3-dimensional minimal graphs of
bounded slope in [6, 27]. Recently, Assimos—Jost [5] proved a Bernstein type the-
orem for minimal graphs of bounded slope in codimension m = 2. For dimension
> 4 and codimension > 3, this no longer holds, by an example of Lawson and
Osserman [37]. However, a Bernstein type theorem holds for small slope v such as
Simons [48], Hildebrandt—Jost—Widman [33], Jost—Xin [34], Jost—Xin—Yang [36]. In
particular, any minimal graph of slope < 3 in Euclidean space is flat [36].

But we may also ask whether there exist other natural conditions that ensure a higher
codimension Bernstein theorem. We point out that when v = v o y < 3, v need no
longer be convex on the Grassmannian manifold, the target manifold of the Gauss map
of M. Note that v = 9 in Lawson—Osserman’s example mentioned above. Hence, if
every minimal graph M € M,, 4 is flat, then A must be small. Without the conditions
(1.1), (1.2) of Theorem 1.2, we can study the structure of tangent cones of minimal
graphs at infinity for small A > 1 using Theorem 1.1 and the Neumann—Poincaré
inequality.

Now let us introduce the concept ‘quasi-cylindrical’ for studying the unbounded
slope case. For an integer 1 < k < n and a k-varifold V in R*™", V is said to be high-
codimensional quasi-cylindrical (quasi-cylindrical for short) if there are a countably
(k — 1)-rectifiable set E in R”, and there is a countably 1-rectifiable normalized curve
vx ¢ R — R™ for almost all x € E such that the set E,, L2 {(x,y) eR" xR"|x €
E, y € y,} satisfies

H* ((ptV\E,) U (E,\sptV)) = 0.
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Note that ‘quasi-cylindrical’ is simply ‘cylindrical’ for m = 1. Hence, quasi-
cylindrical varifolds can be seen as a generalization of cylindrical varifolds in the
case of high codimensions in Euclidean space.

Theorem 1.3 There exists a constant A > 1 such that if M is a locally Lipschitz
minimal graph over R" of codimension m > 1 with 2-dilation of its graphic function
bounded by A, then either M is flat, or M is non-flat with n > 8. Furthermore, for
non-flat M, any tangent cone of M at infinity is a multiplicity one quasi-cylindrical
minimal cone in R"T™ whose singular set has dimension < n — 7.

In the codimension one case, Theorem 1.3 for n < 7 has been proved by
Simons [48], and the dimension 7 is sharp from [7]. So Theorem 1.3 is a general-
ization in high codimension. Actually, our proof is based on Simons’ result that any
stable minimal regular hypercone C in R is flat for k < 7, where Simons’ result
holds allowing that C has singularities in some sense, see [S1]. For the case n > 8
of Theorem 1.3, the singular set of dimension < n — 7 is obtained through stable
minimal hypercones combining Theorem 1.1. The only purpose of the upper bound
for the constant A in Theorem 1.3 is to ensure that there is a constant § > 0 (which
may depend on A, n, m) such that there holds

Ay logv > 8| By (1.4)

on the minimal graph M (see Corollary 7.1), where Ay, By denote the Laplacian, the
second fundamental form of M, respectively. Noting that (1.4) always holds with§ = 1
for n = 2 no matter how large A is (see Proposition 2.2 in [27] for instance). Hence,
Theorem 1.3 immediately implies the following Bernstein theorem for 2-dimensional
entire minimal graphs, which generalizes the results in [13, 32].

Corollary 1.2 Let M be a locally Lipschitz minimal graph over R? of codimension
m > 1 with bounded 2-dilation of its graphic function, then M is flat.

In general, the constant A in Theorem 1.3 can be arbitrarily chosen < /2, and we
do not know whether +/2 is sharp, though it appears naturally for the subharmonicity
of log v. In fact, we can find a slightly weaker condition for the Bernstein theorem in
all dimensions in the situation of bounded slope (see Theorem 7.1).

2 Preliminaries

Let R¥ denote the Euclidean space for each integer k > 1, and 0% denote the origin
of R¥. Let Bf (x) be the ball in R* with the radius » and centered at x € R¥, and
B, (x) = B"(x) for convenience. Let B, (x) be the ball in R"*" with the radius r and
centered at x € R**", We denote B, = B,(0"), B, = B,(0"™") for convenience. We
always use D to denote the derivative on R”. For any subset E in R", for any constant
0 < s < n we define H*(E) to be the s-dimensional Hausdorff measure of E. Let
wy denote the k-dimensional Hausdorff measure of Bf(Ok). We use the summation
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convention and agree on the ranges of indices:
l<i,jl<n l<ap=m

unless otherwise stated.

Let M be an n-dimensional smooth Riemannian manifold, and M — R"™ be
an isometric immersion. Let V and V be Levi-Civita connections on M and R™ 1",
respectively. Here, V is induced from V naturally. The second fundamental form By,
on the submanifold M is defined by By, (§, n) = @5 n—Ven = (@g n" for any vector
fields £, n along M, where (---)" denotes the projection onto the normal bundle
NM (see [55] for instance). Let e, ..., e, be a local orthonormal frame field near
a considered point in M. Let |By|? denote the square norm of By, ie., |By|*> =
Zf j=1 | By (ei,ej) |2 (This notation should not be confused with that of the ball B,).
Let H denote the mean curvature vector of M in R”*™ defined by the trace of By,
ie., H = Z?:l By (e;, ¢;). This is a normal vector field. M is said to be minimal if
H = 0 on M. More generally, M has parallel mean curvature if VH = 0.

2.1 Grassmannian manifolds and Gauss maps

We will study minimal submanifolds in ambient Euclidean space. The target manifolds
of the Gauss map of minimal submanifolds are Grassmannian manifolds. For conve-
nience of later application, let us describe the geometry of the Grassmannian manifolds.
In R"*™ all the oriented n-subspaces constitute the Grassmann manifold Gy, which
is the Riemannian symmetric space of compact type SO (n +m)/SO(n) x SO (m),
where SO (k) denotes the k-dimensional special orthogonal group for each integer
k. Gy can be viewed as a submanifold of some Euclidean space via the Pliicker
embedding. The restriction of the Euclidean inner product on M is denoted by
w:Gym XGum — R

w(P,0)=(e1A---Neu, fin--- A fp) =det W, 2.1

where P is presented by a unit n-vector e; A - -+ A e,, Q is presented by another unit
n-vector fiA---A fp,and W = ((e,-, fj)) is an (n x n)-matrix. It is well-known that

ni
wiw = o" 0
e
with O an orthogonal matrix and 0 < y; < 1 for each i. Putting p £ min{m, n}, then
at most p elements in {M%, ey uﬁ} are not equal to 1. Without loss of generality, we

can assume u; = 1 wheneveri > p.
For a unit vector & = Zi aje; € P, let £* denote its projection into Q, i.e.,

£ =Y ajlej, fi) fi.

il
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Then
(&, 6%) = aiajlei, fi)le), fi).
il
Certainly, the matrix (3_,(e;, fi)(e;, f1))i,j has eigenvalues u%, e ,u%. Hence, we
can introduce the Jordan angles 61, . . ., 6, between two points P, Q € G, defined
by
0; = arccos(p;), 1=<i=<n,

which are actually critical values of the angle between a nonzero vector £ in P and
its orthogonal projection £* in Q as & runs through P (see Wong [53] or Xin [55] for
further details).

We also note that the u; can be expressed as

1
Wi = cos b = ——, (2.2)
J1+ 22
so that
Ai = tané;, 2.3)

where A; has explicit meaning in studying graphs of high codimensions (We will
explain it later). The distance between P and Q is defined by

d(P, Q) = /Z 62. (2.4)

Let E; be the matrix with 1 in the intersection of row i and column « and O other-
wise. Then, sec 6; sec 0, E;o form an orthonormal basis of Tp G, ;, with respect to the
canonical Riemannian metric g on G, , (compatible to (2.4)). Denote its dual frame
by @;q. Then g can be written as

g=Y @ (2.5)
i,
Denote @gy =0 for g > n + 1.
Now we fix Py € Gy ;. Denote
Wo :={P € Gy m| w(P, Py) > 0}, (2.6)

where w is defined in (2.1). The Jordan angles between P and Py are defined by {6;}.
Let T?% be a 2-bounded subset of W defined by

T>A = {P € Woy| tan6; tan0; < A for every i # j}. 2.7
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In [34], we already have the largest geodesic convex subset Bjx (Py), which is defined
by sum of any two Jordan angles being less than % for any point P € Byx(Py). Itis
easily seen that

2! = B x (Py).

Hence, the distance function from Py is convex on T%!, but is no longer convex on
T2A when A > 1.
Our fundamental quantity will be

3¢, Py) i=w ', Pp)  on Wy. (2.8)

It is easily seen that

n n
5(P, P) = [ [secti = [[/1+2% (2.9)
i=1 i=1

where 61, ..., 8, denote the Jordan angles between P and Py. In this terminology,
from (3.8) in [56], we get

di(, Po) = Y 2 5(, P0)@jj, (2.10)
l<j=<p

and

ﬁ(’v PO)_]HGSS(ﬁ(-, Py)) = g+ Z)\akﬂ(d)aa & 67),3;3 + d)aﬂ & Cbﬁa)c (2.11)
a’ﬂ

Combining (2.10), (2.11), it follows that (see (3.9) in [56] for instance)
Hesslog0(, Po) =g+ »_ M@+ Y hhj@j®@dj.  (2.12)
1<j=p 1<i,j=<p,i#]j

Let M be an n-dimensional smooth submanifold in R"*" . Around any point p € M,
we choose an orthonormal frame field e; . . . , €1, in R*™ such that {e; } are tangent
to M and {e; 1o} are normal to M. We let {w1, ..., w,4m} denote its dual frame field
so that the metric on M is ) ; a)l2 and the Euclidean metric in R"*™ is

Zw?+2wﬁ+a.
i o

The Levi-Civita connection forms w,; of R**™ are uniquely determined by the equa-
tions
dwg = wap N wp,

Wap + wpg =0,
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wherea, b = 1, ..., n + m. Moreover, we have the equations
i nta = Naij®j, (2.13)

where Ay ;j = Wei ej, entq) are the coefficients of the second fundamental form By
of M in R"*™_ The Gauss map y : M — G,,_, is defined by

)/(P) = TpM € Gn,m

via the parallel translation in R"*™ for every p € M. We also have

dy > =Y hy i =1Bul’. (2.14)

a,i,j

Up to an isotropic group SO (n) x SO (m) action, we can assume w; ,+q = ¥ *@;q at
p (see section 8.1 in [55] for instance). Combining (2.13), we obtain

Y*®iq = hgijoj  at p. (2.15)
By the Ruh—Vilms theorem [45], the mean curvature of M is parallel if and only if its

Gauss map y is a harmonic map.
Now we define a function

vE3(,P)oy on M, (2.16)
which will play abasic role in this paper. Using the composition formula, in conjunction
with (2.12), (2.14) and (2.15), and the fact that 7 (y) = O (the tension field of the Gauss
map vanishes [45]), we can deduce the following important formula (see also Lemma

1.1 1in [27] or Prop. 2.1 in [49]).

Proposition 2.1 Let M be an n-dimensional smooth submanifold in R" ™™ with parallel
mean curvature. Then at any considered point p

Apinv =Byl + Y Ahi;+ Y dikjhijihji, (2.17)
i,j Li#j

where Ay is the Laplacian on M, hy,;j are defined in (2.13). Let Vy; denote the
Levi-Civita connection of M. Combining (2.10) and (2.17), one has

= —v_lAM logv + v_llvM log v|2

=—p! Z hi,ij + Z Aidjhi jihj i — Z )\i)\jhi,ilhj,jl . (2.18)
aij LiZj LiZj
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2.2 Varifolds and currents from geometric measure theory

Let us recall Almgren’s notion of varifolds from geometric measure theory (see [39,
47] for more details), which is a generalization of submanifolds. For a set S in R,
we call S n-rectifiable if S C Sy U Fi(R"), where H"(Sp) = 0, and F; : R" —
R"*™ is a Lipschitz mapping. More general, we call S countably n-rectifiable if
S C SuU U,fozl Fi(R™), where H"(So) = 0, and F : R" — R*™" are Lipschitz
mappings for all integers kK > 1. By Rademacher’s theorem, a countably n-rectifiable
set has tangent spaces at almost every point. Suppose 1" (S) < oo. Let 6 be a positive
locally ‘H" integrable function on S. Let |S| be the varifold associated with the set
S. The associated varifold V = 6|S] is called a rectifiable n-varifold. 0 is called the
multiplicity function of V. In particular, the multiplicity of |S| equal to one on S. If 6
is integer-valued, then V is said to be an integral varifold. Associated to V, there is a
Radon measure py defined by uy = H"L6, namely,

uwy (W) = f 6(y)dH"(y)  for each open W C R"*™.
wns
For an open set U C R"*™, V is said to be stationary in U if
/divSYdMV =0 (2.19)

for each Y € C°(U, R"*™). Here, divgY is the divergence of Y restricted on S.
When we say an n-dimensional minimal cone C in R**" we mean that C is an
integral stationary varifold with support being a cone. One of the most important
properties of the stationary varifold V is that the function

p "y (By(x)) (2.20)

is monotone non-decreasing for 0 < p < pg with pg < d(x, dV) and x € R"*", By
Rademacher’s theorem, we can define the derivative Vy on V for Lipschitz functions
almost everywhere (see Definition 12.1 in [47] for instance).

Let {V;} j>0 be asequence of integral stationary n-varifolds with the Radon measure
v, associated to V; satisfying

supuv,.(W) < 00, foreach W CcC U.
j=1

By compactness theorem of varifolds (see Theorem 42.7 and its proof in [47]), there
are a subsequence Vs and an integral stationary n-varifold Ve such that V; converges
to Vo in the varifold (Radon measure) sense.

Let us recall Sobolev inequality on a stationary varifold V in U. Michael-
Simon [41] proved the following Sobolev inequality on V (actually, for general
submanifolds of mean curvature type). There is a constant ¢, > 0 depending only
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on n such that

n—1

</|f|n”lduv) ' Scn/Ivald/LV (221)

holds for each Lipschitz function f with compact supportin U. Recently, Brendle [10]
obtained the sharp Sobolev constant for minimal submanifolds of codimensions < 2
(see [40] for the relative version).

Let D*(U) denote the set including all smooth n-forms on the open U C R**™"
with compact supports in U. Denote D,,(U) be the set of n-currents in U, which are
continuous linear functionals on D" (U). For each T € D, (U) and each open set W
in U, one defines the mass of 7 on W by

M(T.W) = sup T(w)
lw|ly <1,weD™(U),sptwoCW

with |o|y = super(a)(x),a)(x))l/z. Let 0T be the boundary of T defined by
AT (') = T(dw') for any o € D" Y(U). For T € D,(U), T is said to be an
integer multiplicity current if it can be expressed as

T (w) = /Q(a),é), for each w € D"(U),
s

where S is a countably n-rectifiable subset of U, 0 is a locally H"-integrable pos-
itive integer-valued function, and £ is an orientation on S, i.e., £(x) is an n-vector
representing the approximate tangent space 7, S for H"-a.e. x. Let f : U — R”?
be a C'-mapping with p > n, and f,& denote the push-forward of &, which is an
orientation of f(S) in R”. We define f(T) € D, (R?) by letting

S ()
T — [ 6o £, f.6) = , ) 222
@ = [ 6o £, 1.6 /yef<s><w(y) 2 (x)lf*é‘(x)l> o2

xef*'(y)ﬂS*

for each w € D" (R?), where S, = {x € S||f:&(x)| > 0}. It’s clear that f(7T) is an
integer multiplicity current in R”.

Let | T'| denote the varifold associated with 7', i.e., || = 0|S|. If both T and 9T are
integer multiplicity rectifiable currents, then T is called an integral current. Federer
and Fleming [26](see also 27.3 Theorem in [47]) proved a compactness theorem
(or referred to as a closure theorem): a sequence of integral currents 7; € D, (U)
with M(7;) and M(07;) uniformly bounded admits a subsequence that converges
weakly to an integral current. For an integer k > 1, we recall that an integral current
T € Dy (R"™) is decomposable in U (see Bombieri-Giusti [9]) if there exist integral
currents 71, Tp € Dy (U) with T1 LU, ToLU # 0 such that

M(T_W) = M(T1LW) + M(To W), M@OT.W) =M@OTiLW) + M@OT,LW)

@ Springer



Q.Ding etal.

forany W CC U. Here, Ty, T are called components of T_U. On the contrary, T is
said to be indecomposable in U.If T is decomposable (indecomposable) in any open
W ccC R"™  then we say T decomposable(indecomposable) for simplicity.

All n-dimensional minimal graphs in R”*! are area-minimizing, which is not true
for the higher codimension case in general. Bombieri—Giusti [9] proved that every
codimension one area-minimizing current in Euclidean space is indecomposable, and
the following uniform Neumann—Poincaré inequality holds on any area-minimizing
hypersurface ¥ in R"*!. There is a constant ¢, > 0 depending only on 7 such that
for any x € X, r > 0, any Lipschitz function f on B, (x)

n—1

min (/ |f—k|n"l> ' Scn/ Vs £1. (2.23)
keR \J B, (x)nz Beyr (0)NE

The uniform Neumann—Poincaré inequality plays a significant role in the mean value
inequality for superharmonic functions. As applications, they got several impressive
results for minimal graphs of codimension 1. Note that (2.23) does not hold for all
minimal hypersurfaces; for instance, the catenoid is a counterexample.

2.3 Lipschitz graphs of high codimensions

Let f : My — M> be a locally Lipschitz map between Riemannian manifolds M
and M». For each point p € M) and each integer k > 0, let Akdf|p : AkTle —
ATt M> be the k-Jacobian map induced by the differential df|, : T,M; —
Ty (py M- at differentiable points of f. Let«1, ..., k, denote the singular values of the
Jabobi matrix df at any considered differentiable point of f. We let |A2df| be the
2-dilation of f defined by

|A2df| = sup |xiK;], (2.24)

i#]

while | A'df| is the 1-dilation, i.e. the Lipschitz norm Lip f = |Aldf| = sup; |«il. f
is said to have 2-dilation bounded by A for some constant A > 0 if |[A%df| < A a.e.
on M. Let Lip f = sup,c, Lip f(x) denote the Lipschitz constant of f on M;.

In the case f being alocally Lipschitz map from an open 2 C R into R™, its graph
defines a locally Lipschitz submanifold M in R**"_ Let Q, be the largest subset of
such that f is C! on Q,, and regM = {(x, f(x))|x € Q.}.regM is called the regular

part of M. Now we have the usual Gauss map from regM. Let {Eq, ... ,E,1,,} be
the standard orthonormal basis of ]R”i“L”. At each point in regM its image n-plane P
under the Gauss map is spanned by fi, ..., f, with

fl" =E; + Z fiaEn+ou
[
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where fi‘" = % Let 61, ..., 6, be the Jordan angles between E; A --- A E; and
fi A+ A fo. Let & denote an orientation of M defined by

1

- — fiA A Sy (2.25)
[fuA A fal

onregM with | fi A+ A fy|2 = det(8;; +_, fl-“f]‘?‘). In particular, £ is continuous on

regM, and & (x) represents the tangent space 7y M as a unitn-vector foreach x € regM.

We denote [|M]] € D, (2 x R™) as the n-current associated with M and its orientation

&. LetA; =tan#; as (2.3), then A1, ..., A, are the singular values of df at each point
x € Q. Namely, kl.z are eigenvalues of the matrix (Za Zﬁ 7 %) . Hence, the Gauss

image of any point in regM is spanned by orthonormal vectors

1
———=E; + LiE, ).
1422
Suppose that the n-plane Py in (2.6) is spanned by E1, ..., E,. Recalling (2.7), we
have a conclusion:

Proposition 2.2 For a locally Lipschitz graph M = graph ¢ in R the image under

the Gauss map from regM lies in 2-bounded subset T>* € Wy C Gy, if and only
if the defining map f has bounded 2-dilation by A.

Letu = (u',...,u™) be a locally Lipschitz (vector-valued) function on an open
Q C R". Let gij = 8ij + Y oy 9y,u®0x;u”, and (g"/) be the inverse matrix of (g;;)
for almost every point in Q2. Let M be the graph of the function u, which is countably
n-rectifiable. We can define the slope function of M by

due Jue
= Jdetg;; = |det (3,,+Z “ L) (2.26)

axi ax]‘

‘H™-a.e. on Q2. Note that we also see u, v as the functions on M by letting u(x, u(x)) =
u(x) and v(x, u(x)) = v(x) for every x € Q. If the varifold associated with M is
stationary, then all the coordinate functions are weakly harmonic on M (see [15] for
instance), i.e., all the x1, ..., x, and ul, ... u® are weakly harmonic on M. Namely,
for any Lipschitz function ¢ on €2 with compact support on €2, there holds

Z/ foreachi =1,...,n, (2.27)
3xj
and
8 d
Z/ “IP _ 0 foreacha=1.....m. (2.28)
ax, ij

i,j=1
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We call M a minimal graph if and only if the varifold associated with M is stationary.
Unlike minimal graphs of codimension one, minimal graphs of higher codimensions
may be only Lipschitz as in the examples by Lawson—Osserman [37]. For simplicity,
we say that the graph M has 2-dilation bounded by A, if its graphic function u : 2 —
R™ has 2-dilation bounded almost everywhere by A. Namely, |A%du| < A H"-a.e.
on 2.

From the interior regularity theorem of Morrey, u is smooth at the differentiable
points. Then from (2.28), u satisfies the following minimal surface system

w 1= @ i du®
Apu =—>" — (vg¥ =0 (2.29)
vij:l 0x; 0x;

at differentiable points of u. By [44] (or [37]), (2.29) is equivalent to

n

B 32 o
Y g =0 (2.30)

0X;0X
ij=1 e

at differentiable points of u.

3 Volume estimates for minimal graphs

Let M be a locally Lipschitz minimal graph of the graphic function u = (u!, ..., u™)

over Bg of codimension m > 1 in R**", Then the induced metric of the graph is
o o l . .

gij =8ij + %%, and we denote v = (det(g;;))? . Let D denote the derivative on

R”, and V denote the Levi-Civita connection of the regular part of M.

Lemma 3.1 Suppose that u has 2-dilation bounded by A. Then we have a volume
estimate:
H" (M N B, (X)) = cp a/mw,r" (3.1)

for any ball By, (x) in Br x R™, where c,, a is a constant > 1 depending only onn, A.

Proof For proving (3.1), we only need to consider the ball B, with By, C Bgr x R™.
Without loss of generality, we can assume u*(0) = O for each «. Let u¥ be a function
on B, defined by

r if u*>r
u={u* if |u* <r .

—r if u®* < —r

For any § € (0, r], we define a non-negative Lipschitz function n on R" given by

1, on B,
148)r—

n= W, on B(its)r\B -
0, on R™\B(i4s)
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From (2.28), for each @ we have

coou® 9(nu¥
0 :/ vgl]%% :/ (Vu®, Vn)u‘r"v—i—f vIVu*n. (3.2)
n Xi Xj B(1+8)r \ Br {lu|<r}

We can check
v VU o+, (3.3)
o

which is obvious when m = 1. Combining (3.2) and (3.3), one has

Hn(MmBr)S/ US/ 1+UZ|VMD‘|2
B, N{|u|<r} BrOflul<r} o
< w,r" + Z/ v Vu >y
o

{Ju®|<r}

= wpr" — Z/ (Vu®, Vipyu®v. (3.4)
B(1+8)r\Br

For each considered point in B(j4s)-\ B, we can assume g;; = (sec? 6;)8; j» where
o o l
A? = tan® 6; are eigenvalues of (Z N Ch ) Then v = (det(g;j))? = []secé;.

o 9xt dxJ
Moreover, there is an orthonormal matrix (aqg) so that g%j = agjrj = aqgjtand;
(We let ayj = 0 for j > m + 1). Hence, for each «

on ou®
g — —

axi axJ
=y,
1

|(Vu°‘, Vn)uﬁ‘h) <r

_rZ

an
Agi —. sin 6; cos 6;
ax?

cos? 9 aa, tan 0;

]_[secej. (3.5)

J

Under the condition of the 2-dilation bounded by A, namely, tan6; tan¢; < A for
L# ]

Zsin2 0; cos? 0; l_[se3020 Zsm 0; 1_[(1 + tan? 0;)
i i

J#

<Zcos 6; tan? 6; Z(c + tan? 9)<c
J#
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where ¢ and ¢’ depend on A and n. Using Cauchy inequality, from (3.5) we get

an
axi

Agi

2
Z sin? 6; cos? 6; l_[ sec? 0
o, j

Substituting (3.6) into (3.4) gives

c/m Vm

H' (M NB,) < opr’ + Y0 dx < o + X1 +8)" = Dayr”.
8 B(145)r\Br 8

Thus,

S

H'(M B, < w,r" + lim %((1 £ 8)" — Dagr" = (cn/m + Dayr™.

This completes the proof. O

If M is an entire minimal graph, the estimation in (3.1) of Lemma 3.1 can be
independent of the codimension m.

Lemma 3.2 Let M = graph, be a locally Lipschitz minimal graph over R" of codi-
mensionm > 2 with suppgn |A2du| < A. Then there is a constant C, p > 1 depending
only on n, A such that M is contained in some affine subspace of dimension < Cy A
and for any ball B, (x) in R

H' (M NB (X)) < Cpawpr”. 3.7)

Proof From Colding—Minicozzi (Corollary 1.4 in [14]), M must be contained in some
affine subspace V of the dimension

p<cuVu, (3.8)
where ¢, = %2"+388 and
. L,
Vi = lim ——H"(M NB,). 3.9)
r—00 Wy, r"

In particular, for p = n, M is flat. Let V be the linear space spanned by vectors in
V and vectors in the n-plane {(x, 0") € R" x R™|x € R"}. Then V has dimension
p < p + n. Hence up to an isometric transformation of R™, M can be written as a
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graph over R” in RP with the graphic function w satisfying supg. |A?dw| < A.From
Lemma 3.1 and (3.8), we have

P < CnCu AVD — 1 = CuCn AP, (3.10)

2

which implies p < ¢; cﬁy A- Therefore, from Lemma 3.1 again, we get

1

Vu = lim H' (M NB,) < Cn,A min{\/E7 \/E} = Cn,A min{ﬂ» CnCn,A}-
r—00 Wy, 1"
(3.11)
We complete the proof by the monotonicity of r ~"H" (M N B,(x)) on r. O

The constant ¢, A in (3.1) or C,, A in (3.7) depends on A in general. Even, without
the bounded 2-dilation, minimal graphs have much faster volume growth in view of
the following remark.

Remark 3.1 For a smooth harmonic function ¢ on R?, the graph M = {(x, y, D¢) €
R*| (x,y) € R?} is a special Lagrangian submanifold in R*, and in particular, min-

imal. Let ¢ = Ree® = e¢* cosy. Then D¢ = (Ree?, —Im ¢°). By a straightforward
computation,

. 2 2
e* cos —e* sin e* 0
D2pD%p = ( Y y) = ( 0 2x>. (3.12)

—e¥siny —e*cosy e
For any point (x, y, D¢) € Bi@r c R* with r > e, we have
3r2 > x> 4+ 92+ |Dp|> = x? + y? + %, (3.13)

which implies

{(x,y, Dp) € R0 < x <logr, |yl <r}CMﬂBi‘/§r. (3.14)
Then with (3.12)
logr r
H>(M N B:‘[ ) > / ( Vdet(I + D2¢D2¢)dy> dx
3r 0 —r
logr
> 2r/ eXdx =r(r* — 1. (3.15)
0
In other words, M has volume growth strictly larger than Euclidean.
Let 2 be an open setin Bg C R". Foreacho =1, ..., m, let M* be the graph in
Q2 x R defined by
M* = {(x,u”(x)) e R" x R| x € Q}. (3.16)
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By a diagonal argument, it is clear that
|Du® > < |Vu®|*v? (3.17)

for each .. At any C'-point of u, the unit normal vector of M® can be written as

1 " ouY
v = e [ =+ B ]

/1 + |Du 2 P 0x;j

where E; is a unit constant vector in R"*+! with respect to the axis x ;. For each fixed
a, let W denote a bounded open set with n-rectifiable W in R"*! such that there is
a constant y > 0 satisfying

H"(OW N B, (x)) > yr" foranyx € aW, any r € (0, 1). (3.18)

Let Y be a measurable vector field in €2 defined by

" u
Y=v) g" - Ei (3.19)
ij=l1 Xi

By parallel transport, we obtain a Lipschitz vector field in €2 x R, still denoted by Y.
Let V denote the Levi-Civita connection of R”*1. Then from (2.28) and the co-area

formula,
o:f (/ (Y,D¢))dt
R \JWN{xpq 1=t}
=/ (/ (v, 6¢>> dt:/ (Y, Vo) (3.20)
R WN{xp41=t} w

for any smooth function ¢ with compact support in W. For any ¢ > 0, let W, =
{x e Wld(x,0W) > ¢&},p. =1 — éd(-, W,) on W and ¢, = 0 on R**1\W. Let
o € CPR") satisty [pay1 0(2)dz = 1,and 05(z) = § "0 (z/8) for each z € R
and each § € (0, 1]. Let ¢ s be a convolution of ¢, and o5 defined by

9e5(2) = (Bex0n)(2) = /R 9003 y)dy = /R 9= ()dy. 3.2D)

Then ¢ 5 € C(R"*!), and V¢, 5 — Ve, at differentiable points of ¢, as § — 0.
Substituting ¢, s into (3.20) implies

0= lim/ (v, Ww>=f (Y, V). (3.22)
§—0 w W
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Let vyw be the outward unit normal vector to the regular part of 9 W. Since (Y, E,+1) =
Oa.e.on Q2 xR, wemay denote (Y, E, 1) = Oon dW. By the definitionof Y, (¥, vyw)
is well-defined H"-a.e. on dW. From (3.18) and Ambrosio—Fusco—Pallara (in [4], p.
110), letting ¢ — 0 in (3.22) implies

0 = lim (Y,W;g:/ (Y, vaw). (3.23)
aw

e—0 Jw

Recalling (3.17), we have

/ | Du®|? - |Vu®|2v
awnme /1 + |Du2v — Jawnme /1 + |Du®|?

_ —/ (¥, vage) 5/ Y. vaw)]. (3.24)
awnme W\ M@

4 Cylindrical minimal cones from minimal graphs

Let My be a sequence of n-dimensional locally Lipschitz minimal graphs over Bg,
in R*™ of codimension m > 1 with Ry — o0, and the graphic functions u; =
(u}(, ..., uy') of My satisfies uy (0") = 0" and |A2dui| < A a.e. for some constant
A > 0. We may suppose that | M| converges in the varifold sense to a minimal cone
C in R"* with 0"*" ¢ C.From Lemma 3.1, the multiplicity of C has a upper bound
depending only on n, m, A.

Let {E;} l:{" be a standard basis of R**" such that each x € M can be represented
as Y xiEi+ ) ut (O)E, o withx = (x1,...,x,) € Bg,. If sptCN{(0", y) € R" x
R™|y € R™} = {0""™}, i.e., u) has uniformly linear growth. Then the minimal cone
C has multiplicity one from Lemma 10.1, which completes the proof of Theorem 1.1.
Now we assume that there is a point y, = (0", y*) € sptC with 0" # y* € R™.
Without loss of generality, we assume y* = (1,0, ...,0) € R™, then y, = E, ;. Let

Ct=C—ty*=C—tEn+1

for any ¢ € R. In other words, if we denote C = 6¢|C|, then C; = 0c (- + tE,4+1)|Ct|
with sptC; = {x — tE,+1| x € sptC}. Since C is a cone, then C; converges as t — 00
in the varifold sense to a minimal cone Cy, in R"*™, where sptC,, splits off a line
{ty«|t € R} isometrically.

Lemma 4.1 C,, is a cylindrical minimal cone living in an (n + 1)-dimensional sub-
space {(x1, ..., Xn11,0,...0) € R™™| (x1, ..., xp41) € R} of RH™,

Proof For any regular point x € sptCy,, the tangent cone of C,, at x is an n-plane
with constant integer multiplicity by constancy theorem (see Theorem 41.1 in [47]).
Let TxCy, denote the tangent space of Cy, at x, which is an n-plane with constant
multiplicity. We represent the support of 7xCy, by an n-vector 71 A --- A T, with
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orthonormal unit vectors 7;. Since sptCy, splits off a line ty, isometrically, then
TIA- ATy AE41 = 0. “4.1)

From the construction of C,,, there is a sequence of minimal graphs X in R" x R"™
such that || converges to C,, in the varifold sense. Here, X is a rigid motion of
M. Let & be an orientation of X for each k (see (2.25)). Since | X | converges in the

varifold sense to Cy,, then there is a sequence ry — 00 such that ‘%Zk N Br,f (y«)
converges to 1xC), in the varifold sense. Hence, up to a choice of the subsequence,

there is a sequence of regular points x; = (xlf, R xln‘, Ui (xll‘, R x,’f)) € M; with
X, — X such that & (X)) — 71 A -+ A Ty
Let A1k, ..., Ay k be the singular values of the matrix Duj at (x{‘, e, xﬁ) with

Ajk=O0forall j=1,...,n,and

1
ej k= —F——
2
J1+22,

for each integers 1 < j < n and k > 1. Then {e j,k};l:] forms an orthonormal basis
of Tx, My (up to a permutation of Ajx, ..., A, and a rotation of R"), and we can
choose & (Xx) = e1x A -+ A en k. From (4.1), the assumption |A2duk| < A ae. and
E(Xk) = TI A+ ATy, We get Aj  —> 00, 27:2)\]-,1( — 0 as k — oo, and then
Ty A~ ATy = Exy A--- AE, 41 represents the orientation of 7xCy, . Note that sptC,
splits off the line {rE, ||t € R} isometrically. So there is an (n — 1)-dimensional
cone Cy in R" such that sptCy, can be written as

(Ej + %) xEn+ )

(oo X, Y ym) € R X R (x1, 00, xp) € Cyy y2 = -+ =y = 0},
This completes the proof. O
Let
m
ou$ ouf
k k OHx
i =0ij + —
gl'/ Y QX_; axi ij

=L dué ul
/ k 2 : k k
Vg = det gl] = det (511 + aXi axj ) (42)
a=1

and (g,i(j )nxn be the inverse matrix of (gl(‘j),,>< »- Let m, denote the projection from
Rt into R" by

(X1 - ooy Xppm) = (X1« 0 Xn)- 4.3)
Forany X = (x1, ..., Xp1m) € R™ let
C,(x) = By (m+(X)) X By (Xp+1, -+ Xntm)
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be the cylinder in R**" and C, = C, (0"™").
For studying the multiplicity of the cone C, we only need to prove it at any regular
point of sptC. Hence, it suffices to prove the following lemma.

Lemma 4.2 [fsptC = R", then C has multiplicity one on sptC.

Proof From the proof of Lemma 4.1, we can assume
SptC = {(X1, ..oy Xy V1o oo V) ER" X R x1 =0, yp =+ = y,, =0},

or else we have finished the proof by Lemma 10.1 in the Appendix II. For each k, let
xp = (x, ug(x)) € R" x R™ be a vector-valued function on Bg,, and 7, ; be a tangent
vector field of My in R"*™"™ defined by

3Xk
Tik=-—=E;+ Z(Djug)Em ae., (4.4)
o

0x;j

then det ((t,-, kT, k)) = v,% a.e. for each k. Hence, the orientation of M} can be written
as

§k=—TIk N NTnk a.e.
Uk
with |&| = 1 a.e.. From Lemma 22.2 in [47], for any compact set K in R"*" we
have
im [ (1- (. 50?) =0 (4.5)
k—o00 KNMy

with &g = Ex A --- A E, 4. Since & has the expansion

Djui‘ —_—
. EixA---ANEjA---Ey AE; 1o

1 .
=—E A AE, + ) (=)'
%'k Vi 1 n ja( )

+ Y. ajiegEp A AE, ae (4.6)

J1<-<jn,jn—1>N

with |ag ... j,| < 1, then from (4.5) we have

. |Dyuy |
lim 1-—=] =0 4.7
k— 00 KNM; vy

With |A2duy| < A a.e., there are a sequence of positive numbers g — 0 (as k — 00)
and a sequence of open sets Wy C C3 N My with H" (W) < g such that

1
vk < (1 + &) Diugl, |Dlu,£|zg on 77,(C3 N M\ Wp). (4.8)
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Then for any small constant 0 < ¢ < 1 we have

H”(Mmcosf 1+f 15(1+s>/ Dyl +e (4.9)
(M \Wr)NCy Wi 7T (M \Wi)NCp)

for large k.
Let 7* denote the projection from R”*” into R**! by

XL e Xnm) = (X155 Xngl)- (4.10)
For x = (x1, ..., Xn41), let C,(x) be a cylinder in R"*! defined by
Cr(x) =By ((x1, ..., X)) X (g1 — 7, Xpg1 + 7).

Let M} = *(My). For any ¢ € R" with |g|*> + ux(¢)|* < r* and r € (0, 3), we
have |¢|* + |u} (¢)|*> < r?, then it follows that

¥ (My N Cy) C M NC(0"Hh, 4.11)
From (2.20), we have H" (M NB, (X)) > w,r" foranyx € My andB,(x) C Bg, xR™.

Since | M} | converges to the cone C, then M;NK converges to sptCNK in the Hausdorff
sense for any compact set K in R"*"_ Thus,

MiNC (0" € 7" (Mg N Crye) (4.12)

for all the sufficiently large k and r € (0, 2]. In particular, 9 M ,2" N C2(0" Ty = @, Let
Wi = n* (W) N M. With (4.11), we get

(M \Wi) N Cy) € C1(0" ) N M\ W (4.13)
From (4.9), (4.13), it follows that
HY (M N Cy) < (1 + e)H" (cl(on“) mM,j\W,;“) te (4.14)

for all the sufficiently large k.
We claim that

there is a constant ko > 0 such that for all k > ko and all the C,(z) C Co(0"*1),
Cr(2)\M; has only two components.

Assume that C, (z)\Ml?; has at least 3 components for a sequence iy — oo. Without

loss of generality, we assume 8Mi’; NCy 0"ty = @ forallk > 1. Put Z = {ix}ee,-
Since My converges locally to sptC in the Hausdorff sense, then C;(z) N M|} converges
to the n-dimensional ball

B (2) N {(x1, -, Xn, 1) € R™Mx) =0}
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in the Hausdorff sense for any C,(z) C C3 (0+1). Hence, for each k € 7 there is a
component Fy of C,(z)\ M}’ such that

IFA\ME C (By(2) X {znp1 — D) U (B (2)) X {zp41 + 1)) U G (4.15)

for some closed set Gy in 8B, (z') X [zu+1 — 1, Znt1 + 1] with limg_ oo H"(Gy) = 0,
and z = (Z/, zu+1). Let Y; be a measurable vector field defined in 7, (M;) x R ¢ R"+!
by

- oul
_ 2%k
Ye = vk ng o E;. (4.16)
i,j
It’s clear that 7' (Fy) C 7. (My), where " denotes the projection from R+ o R by

(X1, X)) = (X1, e, Xp).

From the argument of (3.6), there is a constant c, > 0 depending only on n, m, A
such that
[Yi] <ca. (4.17)

From (3.24) for Y; and (4.15), we have

| Duy |? n
—— < (Y, Eng1)] < [Yk| < cAH"(Gi).
aFRNM; [ 4 |Du,1{|2vk I \M G

(4.18)
From (4.8), the above inequality contradicts to limg_, o H"(Gy) = 0, and we have
proven the claim.
Set

M:’t = M: N{y; =t}

for any # € R. From Lemma 22.2 in [47],

m
lim <|Vka1 P+> |kaya|2> =0, (4.19)
MkﬁC5/2

k— 00
oa=2

where V;, denotes the Levi-Civita connection on My for each k. From M| = 7* (M)
and (4.12), it follows that

2
lim (VM*xl ’ —o, (4.20)
k—o00 MFNCH(07+1) k

where VM; denotes the Levi-Civita connection on M;’ for each k.
Let i, = C1(0"T)NM;N{y; =t} foranyt € (—1, 1). Since C1 (0"t NM} isa
graph, then 7/ (yi 1) N7/ (Vis,) = @ for different 11, tp. As yy; divides C1 (0" TN M
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into two parts for each t € (—1, 1), then 7/ (y ;) also divides 7/ (C1 (0" 1) N M) into
two parts. Moreover, 7' (C othnm +) is a domain that converges to the (n — 1)-ball

(X)) €Rxy =0, x5+ +x; < 1}
in the Hausdorff sense. Note that y ; is isometric to 7’(yk,;). Let 71 be a projection

from R*t! to R" defined by (X1, ..., Xpt1) = (X2, ..., Xp41). Then from (4.20),
it follows that

Jlim 7" (m(cz(o"“))\m(M,j n c2(0”+1))) —0. 4.21)

Combining the co-area formula, H" (W) = H" (*(Wy)) < & and (4.20), (4.21), we
can choose a sequence #; € (—1, 1) and a countably (n — 1)-rectifiable set y,:‘ C Vi
with 9y € 8C1(0"T1) N {y1 =t} such that

H' ) < (1 + &)wn—1, (4.22)

and
H' N yE N W) < ewnt, (4.23)

where ¢ is the small positive constant defined above. Denote I'y = y;* x (-1, 1).
Since C; (0"t \M + has only two components and C othnm © converges in the
Hausdorff sense to

{(x1, .. x) R x; =0, x5+ +x2 < 1} x [—1, 1],

then for each k there is an open set Q in C;(0"™!) such that (C1(0" 1) N M\Ty C
02 and

IQr C M UT, U(B1(0") x {—1,1}) U Sk,

where S C 0B;(0") x [—1, 1] is a closed set with limy_, o, H"(S;) = 0.
From (4.8) and Lemma 9.1 in the Appendix I, we have

.y
(Vi En =i > g’ Djug| <1+ (4.24)
i

on M,f’tk\W,:‘ for the sufficiently large k. From (3.24), we have

|Duk|2
/ (Ye, ED) + | 1Ykl (4.25)
C1(0"+1)0M*

J1+ [Dul |2vk Ik Sk
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Combining (4.17), (4.22), (4.23), (4.24), one has

/ |Du}|?
C1(0n+l)ﬂM;: 1 + |Du]i|2Uk
< 2(1 4 &)H" LI\ W) + 2ea "Ly O W) 4 ea M (S)
<2(1 + &) ’wn_1 + 2cpcwn_1 + caH" (Sp). (4.26)

With (4.8) and limy_, oo H" (Sg) = 0, letting k — oo in (4.26) infers

lim sup H" (C1 0"y N M,j\w,j) <2(1 + &) %wu_y +2cpewn_1. (427
k— 00
Recalling (4.14), we complete the proof by letting ¢ — 0 in (4.27). O

Theorem 4.1 If | My | converges to a cylindrical varifold V in R*™" with

Sptv = {(x17-~-,xn,y1,~-~,)’m)| (xlv"‘rxn) € V*7y2 =" =Ym =O}
for a closed set V, in R", then sptV is stable.
Remark Here, the stable sptV means that sptV is stable outside its singular set.

Proof Let M = regV be the regular part of V. Let vy; denote the unit normal vector of
M in R"+!, Since M is open in regV by Allard’s regularity Theorem [1], then for any
pointg € M,thereisaconstantr = r, suchthatBy,(g)NsptV C M.Letg, € M with
qk — q.LetAyk, ..., Ay k be the singular values of Duy with Ay g > -+ > A, > 0.
From Allard’s regularity Theorem [1] and Lemma 4.2, M; N B 1 (qr) converges to

MNB 7 (g) smoothly. Then

lim inf A1k = 00.
k— 00 MkﬂB%r(qk)

For a point z € B, (q) N M, let zx € B, (g) N My, be a sequence of points with zz — z
such that My, is smooth at z; for each k. Let {v}'}""_, be a local orthonormal frame of
the normal bundle N M, on B, (gx) N M} such that

o 1
Vi = —=——=(~PatBo + Erta) atzm (4.28)
JUH2,
for each k, . Then v} (zx) = —E1, v (z4) = —E,qp foreach f =2, ..., m.
Let us now choose a local orthonormal tangent frame field {e’j‘. }i=1,...n0onB.(gr)N
My, such that
1
= ———=(Ej +2j4Enrj) atzm (4.29)

2
1432,
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for each k, j. Let hk denote the components of the second fundamental form of My
defined by

hk <vke >

a,ij

Since My N B% .(qi) convergesto M NB 1 ,(g) smoothly, it follows that

lim  sup k. H*=o0. (4.30)
k*“Br(quko;”X:l @l

With the Cauchy inequality and the above limit, we obtain

D URE K+ DT RS, | < el Bag | + e 4.31)
iy oy

on B, (gx) N My for some sequence g — 0 as k — oo. Let Ay, and By, denote the
Laplacian and the second fundamental form of M, respectively. Combining (2.18),
(4.31) and the bounded 2-dilation condition, we have

k 2 k k k k
Ao =—v ! Z(ha i)+ Z Aighj kb g g — Z AikAjkhi ihy i
a,i,j Li#j Li#j
S_Uk1 Z(hf;”)2+AZ|hf ]11|+Az|httlh ]ll
a,i,j Li#j Li#j
= = (1= e Bag 2 — o) (4.32)

at zx. Hence the inequality

Amog! = v (0= e Bu P — ) (433)

holds on B, (gx) N M.
Let ¢ be a smooth function in M with compact support and spt¢p N sptV C M.
From (4.33) and the covering lemma, we have

Mmoo = —o (0= 801Bu P - &) (4.34)
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on spt¢p N M for some sequence of positive numbers & with limg_ o & = 0. Then
with the Cauchy inequality, we have

ka (= &01Bu 2 — &) 9

<- ¢2vaM,(vk_l = —/ Uk_2<VMk (@2 ve), Vg, vi)
My, My

=—f ¢2v,:2|kavk|2—2/ ¢v;1<ka¢,kavk>s/ Vo]
M, My, M
(4.35)

Let By denote the second fundamental form of M in R"*!. Letting k — oo in the
above inequality implies

/ 1By ¢ < / Vol (4.36)
M M

We complete the proof. O

Let M be a locally Lipschitz minimal graph over R” of codimension m > 1 with
bounded 2-dilation of its graphic function. From Lemma 3.1 and the compactness
theorem for integral varifolds (Theorem 42.7 in [47]), we can suppose that a minimal
cone C is a tangent cone of M at infinity. Namely, there is a sequence ry — oo such
that |#M | converges in the varifold sense to C in R"*" with 0"*" ¢ C. Combining
Lemma 4.2 and Theorem 4.1, we can get Theorem 1.1 immediately.

5 Neumann-Poincaré inequality on stationary indecomposable
currents

For integers n > 2, m > 1, a constant A > 0 and an open set 2 C R”", let M,, . A,
denote the set containing all the locally Lipschitz minimal graphs over €2 of arbitrary
codimension m > 1 with 2-dilation of their graphic functions < A. Let ﬂn,m, AQ
be the closure of the currents associated with minimal graphs in M, ,, A q. Namely,
for an integral current 7 in 2 x R™, wesay T € ./V,,,m, A, if and only if there is a
sequence of minimal graphs My € M, m a o such that for any open W CC Q x R™,
T W is the (weak) limit of [|M; N W|] as k — o0.

Lemma5.1 For a sequence My € My, A, let T be a current in R™™™ and V
be a multiplicity one rectifiable stationary n-varifold in R"*" so that for any open
W ccC Q2 x R™, [|[My N W] converges weakly to T_.W and |My N W| converges to
VLW in the varifold sense. Then |T| =V in Q x R™.

Proof For any open W CC © x R™ and any w € D"~ 1(W),

(0T, w) = (T, dw) = Hm ([|[M]], dw) = lim (3[|M[]. w) = O, (5.1
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which means 7. W = 0.Let W’ be an open set in W such that sptV N W is contained
in the regular part of sptV. From Allard’s regularity theorem, M; N W' converges to
sptV N W’ smoothly as V has multiplicity one from Lemma 4.2. Hence, for any
p €sptV N Wandany ¢ € (0,d(p, dW)), there is an orientation & of sptV N B.(p)
such that

lim (& ) = / (€. foranyne D"®™M),  (52)
M NB¢ (p) sptVNB,(p)

k— 00

where & denotes the orientation of Mj defined by (2.25). For any ¢ > 0, there is a
smooth &, € D"(B.(p)) such that

/ (1 — (€, &)1 < &"H" (sptV N Be(p)).
sptVNB:(p)
Hence

(T &) = lim (IMi[].6.) = lim | (6. &)
k

= / (€, &) > (1= &HYH"(sptV N Be(p)), (5.3)
sptVNBe(p)

which implies sptV N W C sptT. So we obtain spt7 N W = sptV N W. From (5.3),
we get M(TLB:(p)) = H"(sptV N B.(p)), which means that 7 has multiplicity one
onsptT’ N W. O

As a corollary, we immediately have the following corollary.
Corollary 5.1 Any current T € M,,,m,,\,g has multiplicity one on sptT N (2 x R™).

Let M be a locally Lipschitz minimal graph over  in R, From (2.21), there
holds the isoperimetric inequality

n—1

(H"(K)) ™ < caH" ' (3K) (5.4)

for every bounded closed subset K of M with countably rectifiable boundary 0K,
where ¢, > 0 is a constant depending only on 7.

In [9], Bombieri—Giusti proved that any codimension one minimizing current in
Euclidean space is indecomposable, and established a Neumann—Poincaré inequality
on such currents. Inspired by their ideas in [9], we introduce a concept ’stationary
indecomposable’ for integral currents associated with stationary varifolds as follows.

Definition 5.1 Let T be an integral current such that |T'| is a stationary varifold. We
say T stationary decomposable in an open set W if there are two components 77, 7>
of TLW such that |Tq|, |T>| are stationary varifolds in W. On the contrary, we say
T stationary indecomposable in W. Furthermore, T} is said to be a stationary inde-
composable component of T W if T is a component of T W, and 77 is stationary
indecomposable in W.
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By the above definition, for an integral current S with stationary |S|, if S is inde-
composable, then S is stationary indecomposable.

Remark 5.1 In general, for an integral decomposable current 7 with |T'| stationary,
the indecomposable components of 7 may be not stationary. For instance, Let U; =
{(rcos@,rsing) € R2| r > 0, 0] < &}, Uy = {(rcos@, rsinf) € R%| r > 0, |6 —
/3| < €}, Us = {(rcos@,rsinf) € R r > 0,10 —2n/3| < ¢}, and U =
Uy U U, U Us. Then [[0U]] is an integral current with [0U| stationary, and [|dU1|],
[10U2]], [|0U3]|] are 3 components of [|dU]|]. Clearly, for each i = 1,2, 3, [|0U;|]
is not stationary for the suitably small ¢ > 0. However, for any codimension one
area-minimizing current S in Euclidean space, S is not only indecomposable but also
stationary indecomposable from the proof of Theorem 1 in [9].

Lemma5.2 Let T be an integral current in ﬂn,m,,\,&, and T is a stationary inde-
composable component of T_B,. Then there exists a constant 7 > 0 depending on
T such that

H'(sptT N U NBy)
n—1

> 87 (min{H"(sptT N U N By), H" (sptT NB\U)}) (5.5)

for any open U C By with (n — 1)-rectifiable sptT N aU.

Remark 5.2 'We do not know yet whether limits of stationary indecomposable currents
are still stationary indecomposable. Hence, the coefficient 7 in (5.5) depends on the
current 7T'.

Proof Let us prove (5.5) by contradiction. Suppose that there is a sequence of open
Ur C By with (n — 1)-rectifiable sptT N Uy such that

HY(sptT N dUx N By)
n—1

< % (min{H" (sptT N Uy N By), H" (sptT N Bi\Up)}) (5.6)

Let Tk+ =T Upand T, = Tl_(Bz\m. Then all TkjE are integer multiplicity cur-
rents. Without loss of generality we can assume H"~'(T N 9B;) < oo, or else
from co-area formula we consider a sequence of balls B,_;, for some sequence
0 < sx — 0 with H*"(Tn 0B>_;, ) < oo. Hence with (5.6), M(E)Tki) are uni-
formly bounded independent of k. Clearly, M(Tk+\_W) + M(T, W) = M(T_W).
By Federer—Fleming compactness theorem, there are two integer multiplicity currents
T;F, T, with sptT*jE C sptT such that Tki converges weakly to T, f as k — oo up to
a choice of a subsequence.
For any open W C Bo, |o|g, < 1, w € D"(B3), sptw C W we have

T(0) = lim (TF+T)) () = TN (@) + T, (w) < M(T,FCW)+M(T,” W), (5.7)

which implies
M(TLW) < M(T,FLW) + M(T, LW). (5.8)
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Moreover,

M(T;FLW) + M(TLW) < lim inf M(T; W) + lim inf M(T;LW) < M(TLW),
—00 —00

Hence, we deduce

M(TLW) = M(T,"LW) + M(T, W), (5.9)
and
M(TELW) = lim M(TECW). (5.10)
k— 00

For any |o'[p, < 1, € D"~ (By), sptw’ C W, from (5.6) we have

AT (@) = T (do') = lim T, (do') = lim (TLaU)(o)
k—o00 k—o00

< limsup H"~ ! (sptT N dU; N B3) = 0, (5.11)
k—o00
which implies
M@AT, W) = M@OT, W) =0. (5.12)

Since T has multiplicity one on spt7 N W for any open W C B, from Corollary 5.1,
T*i has multiplicity one on its support.
From the co-area formula, for almost all 1 < ¢ < 2, we have

d
EM(TkiLBI) > M()(TELBy)) — M(TECB,). (5.13)

With (5.4) and (5.6), for almost all 1 < ¢ < 2, we get

n—1 n—1
n n

i) 1
E1\/J1(T,jms,) >— (M(TB))) (M(TLBY))

1
k

> (i — %) (M(Tki\_B,))n";l , (5.14)

Cn

which implies M(Tki LB;) > Oforanys > 1 and any k > c,,. Then we solve the above
differential inequality and from (5.10) we get

r—1\"
M(TELB,) = lim M(TELB;) > ( ) (5.15)

2ncy

foreacht € [1, 2].
For any small fixed ¢ > 0 and any integer k > 0, there is a collection of balls

{B,, (x))} %" with ry < & such that sptT N dUx N By C U By, (x;), and

Nk,e
wp—1 Y 7 < HTNSptT NOUL NBy) + 6. (5.16)
=1
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Let n; be aLipschitz functionon B3 withO < »; < 1suchthatn; =0onB,,(x;),n =1
on B3\By,, (x;), Wml = rfl on By, (x¢)\B,, (x¢), where V denotes the Levi-Civita

connection of R"*™ . Set ;. . = ]_[lN:"f m € C'. Then nk,e = 0 on a neighborhood of
sptT N oU; N By and

Nk,s Nk,.e‘

Vel < D 19ml < D Ay, - (5.17)
=1 =1

Let ¢ be a smooth function with compact support in B,. Let Vr denote the Levi-Civita
connection of the regular part of |T|. Since |Tk+| is a multiplicity one stationary n-
varifold in Uy, then every position function x; is weakly harmonic on sptTk+ for each
i=1,...,m++ n (see[15] for instance). Hence

0 =/ (Vrxi, V1 (dnke)) =/ Nk,e{Vrxi, VT¢>)+/ O(Vrxi, Vrike).
sptTk+ sptTk+

sptTk+

With (5.17), it follows that

/ ke (VTxi, VT )| = / [PV el
sptTk+ sptTk"'

Nk,s
< sup|¢| Zr,‘lH" (sptT N Boy, (1)) - (5.18)
B o

From Lemma 3.1, there is a constant ¢, o > 1 depending only on n, A so that
H" (sptT N B, (X)) < ¢y av/mawpr” (5.19)

for any B, (x) C Bs,2. Combining (5.16), (5.18), (5.19), we have

Nk,s
/ ke (Vrxi, V1) | < 2"cp av/mawy sup || Zf”ln_l
sptTk+ B> =1
< 2y an/m -2 sup (6| (H’H (sptT N dUL N Bo) + e) . (5.20)
Wp—1 B,

Letting ¢ — 0 in the above inequality implies

wWn

=< 2fnCn,A\/E

sup |¢p|H" ! (sptT NB, NaUL) . (5.21)
Wp—1 B,

/ (Vrxi, V7o)
sptT,:r
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Up to a choice of a subsequence, we can assume that |Tki| converges to |T*i| in the
varifold sense as k — oo. With (5.6), we have

k— 00

/ +<VTxi,VT¢>‘ = lim
sptT

/ (VTxl-, VT¢)‘ =0 (522)
sptTk"'

foreachi = 1,...,n + m. In other words, T*“' is stationary, and similarly 7, is
also stationary. Combining (5.9), (5.12), (5.15), we conclude that T is stationary
decomposable in By. It is a contradiction. This completes the proof. O

Using Lemma 5.2, we can prove a Neumann—Poincaré inequality on stationary
indecomposable components of limits of minimal graphs.

Lemma5.3 Let T be an integral current in /Vn,nl,A,B3, and T be a stationary inde-
composable component of T_By. Denote S be the singular set of T, then there exists
a constant O > 0 depending on T such that

/ f—Fil = eTr/ V1 f] (523)
sptTNB,

sptTNB,,

for any r € (0, 1] and any bounded C'-function f on Bo\S, where Vr is the Levi-
Civita connection of the regular part of |T|, and f, = m fsptTnB, f.

Proof Without loss of generality, let f be not a constant, then we only need to prove
(5.23)forr = 1. Let M = sptT, and f be the average of f on M N By, i.e.,

- 1
f= H"(M NB1) Jyne, f
LetUS, ={y e MNB\S| f(y) > [ +1}, Us, ={y e MNB\S| f(y) < f +1}
forall s > 0 and t+ € R. From Sard’s theorem, for almost all ¢, 8Uft is C!in B
outside S. In particular, U, f, is (n — 1)-rectifiable for almost all .

Without loss of generality, we assume 7-[”(U1J’r o) = H"(Upy). Then clearly
H"(Uff[) <H"(Uy,) forany ¢ > 0. From Lemma 5.2, we have

n—=1

_1
H'= OUS, N B) = 6r (W) " = br (H'(M NBD) ™" HI WU,

Using now the co-area formula,

00 n % 00
/ f=0h =/ H' (U )dt < w[ H" 1 (BUS, N By)dt
Ut 0 ' dr 0 ’
1 1
= ;(H"(MOBI))’I’/ V7 £, (5.24)
T MNB,
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and then

/MﬂB] == fUlfO(f — - /Uw(f -
_ 2 " %
szw (f=Nn= E(H (M NBy)) /mBz IVr fl.  (5.25)

1,0
Using (3.1), we complete the proof. O

LetT € ﬂn,m,/\,& with 0" ¢ sptT. Then H"(sptT N B,) > w,r" for every
r € (0, 3). From (3.1), the exterior ball sptT N B, admits volume doubling property.
Namely, there is a constant ¢, ;o > 1 depending only on n, m, A such that

H'(sptT NBor) < cnm a@n2"r" < cpm a2"H" (sptT N B,) (5.26)

for every r € (0, 1]. From the Sobolev inequality [41], nonnegative subharmonic
functions on stationary varifolds admit the mean value inequality on sptT (see [30]
for instance). Since Neumann—Poincaré inequality (5.23) holds on a stationary inde-
composable component 7" of T, by De Giorgi-Nash—Moser iteration (see [42, 43],
or [38], or Theorem 3.2 in [21] for instance) there holds the mean value inequality
for superharmonic functions on spt7". Hence, we get Harnack’s inequality for weakly
harmonic functions on spt7 as follows.

Proposition 5.1 Let T be an integral current in ./\_/ln,m,A,B3, and T be a stationary
indecomposable component of T_By with 0 € sptT. For any f € C'(By), if f
satisfies At f = 0 in the distribution sense, and f > 0 on B, N sptT, then

sup f<Or inf [ foranyr e (0,1], (5.27)
sptTNB, sptT'NB,

where At is the Laplacian of the regular part of sptT, O1 > 0is a constant depending
onn,m, A\, T.

6 A Liouville theorem for minimal graphs of bounded 2-dilation

For codimension 1, De Giorgi [17] proved that any limit of non-flat minimal graphs
over R" in R"*! is a cylinder. For arbitrary codimensions, we have the following
splitting.

Lemni 6.1 Letn > 2, m > 1 be integers, and A be a positive constant. For a current
T € My .age, if sptT is a non-flat cone living in R"*1 C R"™™  then sptT splits
off a line isometrically perpendicular to the n-plane {(x,0") € R" x R"|x € R"}.

Proof Let 7* be the projection defined in (4.10). From the assumption, we can treat
7*(sptT) as a codimension one cone in R*1 x {01} = {(x1, ..., x,41, 0" ) €
R | (x1, ..., Xpq1) € R""1}. From Lemma 5.1, T has multiplicity one, and |sptT |
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is a minimal cone in R™!1_ If spt7 N {(0”, y) € R" x R|y € R™} = {0"*"}, then
sptT can be written as an entire minimal graph in R"*!, which implies flatness of
sptT by the regularity result of De Giorgi [16] since a regular everywhere cone is flat.
Hence, without loss of generality, we assume (0", —1, 0" 1) € sptT.

Let M;, be a sequence of minimal graphs over R” in R"*" of 2-dilation bounded by
A such that the n-current [| M|] € D, (R"™") (associated with M) converges weakly
to T. Let w be a smooth n-form defined by Z?;rll fidxt Ao A J;, A+ A Xpy1 With
compact support in R"*!. Let @ be a smooth n-form with compact support in R"*"
so that

o1, .. X041,0,...,0) = w(xy, ..., Xpt1)
for each (x1, ..., x,41) € R"*1. Then from (2.22), it follows that
(7(T), w) = (T, @) = lim ([|[M]], @) = lim ([|7*(M)]], w). (6.1)
k— o0 k—00

Let M} = n*(My) C R™*1, then the above limit implies that [| M + |1 converges weakly
to 7*(T). Let uy, denote the graphic function of M}", and

Up = {(x, 1) e R" 1 < up(x)}.

From Lemma 3.2 and Federer—Fleming compactness theorem, [|U|] converges
weakly to a current [|U|] for some open subset U C R"*+!. With (6.1), we have

{[19U1], @) = {[IU). dw) = Lim ([|U]], dew) = lim ([|dTf]], w)

(1M N, @) = (7*(T), @), (6.2)

= lim
k— 00
which implies 7*(T) = [|0U]|]. In particular, U is also a cone. Since (0", —1, (=
sptT’, we consider a family of open sets

Ups={y+ 0. 0DeRMyeUl={y+ 0. HeR"yetU} DU

for each ¢ > 0. By Federer—Fleming compactness theorem again, there is a sequence
ty — oo such that [|Uy 4, |] converges weakly to a current [|W|] for some open subset
W = {(x,1) € R*| x € #} with some open # C R". It’s clear that U C W. Since
oW = 9% x R is stable minimal from Theorem 4.1, then |d7| is a stable minimal
cone in R”.

Let Y = dU\OW.If £ = @, then dU = sptT splits off a line {(0", 1) € R"*!|r
R} isometrically. Now let us assume ¥ # , or else we complete the proof. Let us
deduce a contradiction. From Theorem 3.2 in [52] by Wickramasekera, it follows that

H'QUNOWNB,(y)) >0 foranyy € U NIW, r >0.  (6.3)

Let S denote the singular set of dW. By the strong maximum principle, dU N W is
a closed subset in S.
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For any 8 > 0, let Hgo be a measure defined by

o0 o0
HE, (W) = wp2 P inf {Z(diamUk)ﬁ‘ W C U U C R"“} (6.4)

k=1 k=1

B2
ré&+1
gamma function for 0 < r < oo. From Lemma 11.2 in [31], if H#(W) > 0, then
HgO(W) > (. From the argument of Proposition 11.3 in [31] and (6.3), there is a point
g € dU Naw\{0"*!} and a sequence ry — O such that

for any set W in R"*!, where wg = ,and I'(r) = fooo e 't"ldr is the

Hi! (oUnow N BT (@) > 27 e, 6.5)

Let Uy = %{x +qlx € U}, Wyy = %{x +qlx € WY Tyx = dUyx N W, 4,
Syk = {x +qlx € S}. Then (6.5) implies

Ha! (Tau N BIH @) > 2720, (6.6)

From Federer—Fleming compactness theorem, without loss of generality, there are two
open sets U, and W, in R 50 that [1Ug k1], [IWg k] converge to [|Uy|], [|Wx|] in the
current sense as k — 00, respectively. From the constructions of Uy x, Wy k, [0Us/,
|0 W, | are minimal cones both splitting off a line [ # {tE, 1| t € R} isometrically.
Up to choosing the subsequence, we may assume that I, ; converges to a closed
set I'y in the Hausdorff sense. Let S, be the singular set of dW,. If y, € S, and
Yk = Y« € 0W,, thenit’s clear that y, is a singular point of d W, by Allard’s regularity
theorem and multiplicity one of d W,,, which implies lim sup;_, ., Sy x C S.. With
oU NaW C &, it follows that I'y, C S,. Analog to the proof of Lemma 11.5 in [31],
we have

H! (r* n B’f“(O”“)) >0 2 | (6.7)

Let us continue the above procedure. By dimension reduction argument, there are a
2-dimensional open cone Vj C R? with |0 Vo| minimal, an opencone V C Vo x R C
R with |dV| minimal, a sequence of open sets V;, W; (obtained from scalings and
translations of U, W, respectively) such that dVj has an isolated singularity at the
origin, and [|W;|] converges to [| Vg x Rr—1 [1, [IVi]] converges to [|V x R”’2|] in the
current sense. Since X is a minimal graph over %/, then X is smooth stable. From
Theorem 2 of [46] by Schoen—Simon (see also Lemma 11.1), we get 0V # 9V x R.
It’s well-known that a smooth 1-dimensional minimal surface(geodesic) in S? is a
collection of circles of radius one, which implies that 9V is a collection of planes
through 0° € R3. Hence 3V = 8V, x R. It’s a contradiction. We complete the proof.

O

Remark 6.1 Cheeger—Naber [11] showed the Minkowski content estimation on the
quantitative singular sets of stationary varifolds. Using it we can simplify the proof of
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Lemma 6.1. Namely, without dimension reduction argument, we immediately have the
following conclusion in Lemma 6.1: there are a point x* € dU Nd W, a 2-dimensional
open cone Vo C R? with |3 Vy| minimal, and an open cone V C Vo x R C R? with
|0 V| minimal such that d V) has an isolated singularity at the origin, and rll_([l W1, x®)
converges to ([|Vo x R*~1|], 0%+1), %([|U|], x*) converges to ([|V x R*2[], 0"+1)
for some sequence r; — 0. '

From Proposition 5.1 and Lemma 6.1, we can obtain a Liouville type theorem for
minimal graphs as follows.

Theorem 6.1 Let M = graph,, be a locally Lipschitz minimal graph over R" of codi-

mension m > 2 with bounded 2-dilation of u = Wl ..., u™). Suppose
limsup (=" sup u®) <0 (6.8)
r—>00 B,.NM

foreacho € {2,...,m}. If

r—00 B
-

lim inf (r_1 supul) < 00, (6.9)

then M is flat.

Proof Assume that u has bounded 2-dilation by a constant A > 0. From (6.9), there
are a constant ® > 0 and a sequence of numbers r; — 0o such that

supu' < Or. (6.10)
B,k

Recalling that [|M|] € D, (R"™"™) is the n-current associated with M and its orientation
(2.25). From Lemma 5.1, we can assume that [| %M |] converges weakly as k — oo to
a multiplicity one current 7 # 0 with O € sptT and d7 = 0. Moreover, the varifold
associated with spt7 is a minimal cone in R with the vertex at the origin. Let

X = (X1, ..., X,1m) be the position vector in R"*™. From (6.8), we get
sup Xp4e <0 (6.11)
sptTNBy
foreacha € {2, ..., m}.

Suppose that T is stationary decomposable in B;. Let 7’ be a stationary component
of T_Bj. Then from 37’ = 0 in B}, we conclude that spt7” is a truncated cone. In
particular, 0 € spt7’. Hence we have

M(sptT’ NB,) > w,r"  foranyr € (0, 1]. (6.12)
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From Lemma 3.2, we have
M(sptT NB,) < Cp awpr". (6.13)

If T is stationary decomposable in By, then we consider a stationary component 7" of
T’ By. Clearly, spt7T” is a truncated cone and 0 € spt7”. Combining (6.12), (6.13), the
procedure of decomposition will cease after finite times. Hence, there is a collection
of indecomposable stationary components 71, ..., T; of T_Bj, where [ is a positive
integer < C, a. In particular, all spt7y, ..., spt7; are truncated cones.

From Proposition 5.1 and (6.11), we get x,4+4 = 0 on the truncated cone spt7} for
eacha € {2,...,m}and k € {1, ...,1} as x, 44 is weakly harmonic in spt7; N B;.
In particular, the varifold associated with spt7 is a minimal cone contained in an
(n + 1)-dimensional Euclidean space R"+!. From (6.10), we conclude that

sup Xpt1 < 0OO. (6.14)
sptTN(B1 xR™)

From Lemma 6.1, it follows that

sup [Xp41] < 00. (6.15)
sptTN(B1 xR™)

Note that [| iM |]—T and sptT is a cone. Then spt7T" can be written as an entire graph
over R” with the graphic function (¢, O, ..., 0), where ¢ is 1-homogeneous on R”".
Then

graph, = {(x, #(x)) € R" x R|x € R"} (6.16)

is a (Lipschitz) minimal graph in R"*!. Therefore, the regularity theorem of De
Giorgi [43] implies that ¢ is linear, and then spt7 is flat. Since 7" has multiplicity
one on spt7T, then Allard’s regularity theorem yields the proof. O

7 Bernstein theorem for minimal graphs of bounded slope

For a domain 2 C R”", let M = graph, be a smooth minimal graph over Q of

codimension m > 2. Let g;; = &;; + Y 0;u®d;u*, and (g'/) be the inverse matrix

of (gij). Let v be the slope function of M defined by

m
ou® ou®
v=,/detg;; = |det (5,’] + Z o g) (7.1)
a=1 J
Lemma7.1 Let A1, ..., A, be the singular eigenvalues of Du at any point of Q. If

M > > Ay > 0and A3A? <2+ A2 foralli > 2, then

Aplogv = Y hZ i+ > (A+rDhi,,. (7.2)
i

a>n,i,j
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Moreover, when the above inequality becomes an equality, (2 + )»%)h%i ;T hi it
zkixjhi’jihj’ii =0foralli # j.

Proof From (2.17), we have (see also the decomposition (4.16) in [24])

ij ki)

2 20,2
= Z ha,ij+2(1+)‘i)hi,ii
i

a>n,i,j

a,i,j

+2 <(2 + AR i+ B 2%’\/’11’,,/1'/1,/,”)
i#]

+ Z (hlz,ij + )‘i)‘jhi,jkhj,ik> , (7.3)
i,j.k mutually distinct

where

Z (h%,,-j + )Li)\jhi,jkhj,ik)
i,j.k mutually distinct

=23 (hiz’jk R + R+ Ak jhi i i + kidchigihej + )»j)»khj,kihk,ji) :
i<j<k
(7.4)
Without loss of generality, we assume A1 > Ay > --- > A, > 0. Let
Oy, 2) =x2 49+ 22+ A jxy 4+ AjAyz + Aikgxz (1.5)
for every x, y, z € R with mutually distinct i, j, k. Then
2 Aihj  AiAg
Hessy = | AiA; 2 Ajh |- (7.6)
AiAk AjAk 2
From a direct computation, we have
detHess; = 8 + 270547 — 20745 — 24747 — 2A54%.

Then we consider a function

O (1, 2, U3) =4+ Wipop3 — (12 — W13 — U243 )

onV = {(u1, 2, 13) € R0 < p3 < po < pi, pupa < 2+ 27} From

n
Lemma 9.2 in the Appendix I, ¢ > 0 on V, which implies

detHessy > 0 (7.8)
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combining k%kl.z <24+ k? for all i > 2. We further conclude that all the eigenvalues
of Hess ; are non-negative, then it follows that

f>0 on R

From (7.4), we have

Z (hlz,ij + )&i)&jhi,jkhj,ik) > 0. (7.9)
i,j,k mutually distinct

Moreover, by the assumption for i > 2 and A; > | we have

2
24—l =2+a030 7 - D =2+ (2 + )\2—1> (* =1 =0. (7.10)
2 _

From the Cauchy inequality, we have

Q+2Dh2, + h?

iij b.ii +2)»i)»jh,',jihj,i,' > 0. (7.11)

Substituting (7.9), (7.11) into (7.3), we have

Aplogv= Y hZ i+ > (A+rDhi,,. (7.12)
i

a>n,i,j

When the above inequality becomes an equality, we clearly have

Z ((2 + )»iz)h%ij + h?,ii + 2)»i)»jhi,jihj,ii> =0,
i%j

which completes the proof. O
As a corollary, we have the following result.

Corollary 7.1 Let Ay, ..., Ay be the singular eigenvalues of Du at any point of Q. If
Al =2 Ay = 0andsup;sp AjAi < A for some O < A < V2, then

m logv MZ—}— Vlogv|-, 7.

where By denotes the second fundamental form of M in R,
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Proof From (7.5), with the Cauchy inequality we have

Fx,y,2) <x>4+ Y2+ 22+ Alxy| + Alyz| + Alxz|
2 2 2 2 2 2
cl2aal2aa(EL Yy oy T
e R N B e

=(1+A) (x2+y2+z2). (7.14)

Noting that all the eigenvalues of Hess s are non-negative. Hence, all the eigenvalues
of Hessy < 1+ A < 1+ V2. From (7.6) and Corollary 9.1 in the Appendix I,

we have det Hess; > 4 (1 — %) So, the smallest eigenvalue of Hessy > 4(1 +
V2)2 (1 — %) This implies

Z <hk ij +)‘ Aj hl ]kh] lk) % (1 - %) Z hl%,ij' (715)

i,j,k mutually distinct i,j,k mutually distinct

From the Cauchy inequality, we have

A 2 2
) +2XiAjhi jihj i > 2hi ..+ h3

2 2
2hi ;i +h; \/—< iij Jhii

«/_( iij R

Substituting (7.15), (7.16) into (7.3) gets

) —2Alh; jihjiil = 0.
(7.16)

Aylogv= 3 hau+Z(1+x)hm Z( f>(2hflj+h§ll)

a>n,i,j i#j

A
sy ei(i-%) Ty

i#]j i,j,k mutually distinct

=3 <1 N _) 2 hais +Z/\z2h12,, (7.17)

a,i,j

Combining |VIogv|> = Y ; (Zl Aihi,ij)z and the Cauchy inequality, we complete
the proof. O

For any considered point p € 2, up to rotations of R”, R”, we assume Dyu®(p) =
Stahi-Lete; = (1 4+ X7 (Dju)2) ™% (B + Y7, DiuE,yq) fori =1,...,n,
and vy = (1+1DueP)™" (S}, DjuE; +Eyia) for @ = 1,....m. Then
{ei}’_, U{vy}y_, forms a local frame field in R (see also (4.28), (4.29)), which
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is orthonormal at p. Moreover, at p

ha,ij = (681.6,', Vo)

m ~1/2 m -1/2
a2 o2 a2 -172 aZua
—(1+> D l+;(D‘,~u ) (1+|Du | ) o

a=1

1
S ADA+23 (1 +22)

D,‘jua. (7.18)

Lemma 7.2 Suppose that the 2-dilation | A*du| of u satisfies | A>du|> < 2+‘ m‘
and v is a constant on Q2. Then Arnu® = 0on Q foreacha =1,...,m

Proof At any point p in €2, from Lemma 7.1 we get

S 2+ Z Wi = D0 (@4ADRE 4B+ 2k jhi jihj i) =0,
a>n,i,j i#]j
(7.19)

where A1 > --- > A, > 0 are the singular values of Du at p. From the assumption,
we have
2422 =53 >0 foreachi=2,...,n. (7.20)

e Case 1: A1 > Apat p.For j > 2andi # j,wehaV62+Al.2—)Li2)\§ > 0 from
(7.20). Then from (7.18), (7.19), we deduce that uf; = O foralla =2, ..., n and
i =1,...,n. In particular, Agnu® = 0 for all « > 2 from (7.2) and the constant
v. Suppose Ay = --- = Ag > Agyl] = -+ > A, for some integer k > 2. From
(7.19) again, there hold u%l = 0 and uili = 0fori > k + 1. From (2.30), we get
Zﬁ'{zz 1;”111 = 0, which implies Agsu! = 0.

+15
e Case 2: Alz— Ay = = Ak > A1 = --- > X, at p for some integer k > 2.
From (7.20), 11 < «/_ and2—i—)»2 A2A2 > Oforalli # j withmax{i, j} > k+1.
Then from (7.19), uf; = 0 for max{a 1} > k + 1 (similar to case 1) In partlcular
Arnu®* = 0 for all o > k 4+ 1. Using (2.30), we get Zl 1 1+/\2u” = 0 for
j =1,..., k. Therefore, Agnu? =0forj=1,...,k.
This completes the proof. O

Now we consider minimal graphs with bounded slope.

Lemma7.3 Let My = graph, be a family of Lipschitz minimal graphs over R" of
2(Lip u/‘)

= |(Lipug)?~1|

Let V be the limit of | My| in the varifold sense. If sptV is a regular cone or there is a

regular I-dimensional cone C with sptV = C x R"™! then sptV is flat.

codimension m > 1 with sup; Lipuy < oo and [A2dug|? < a.e. on R

Proof Denote M = sptV, which is a Lipschitz minimal graph over R" for some
graphic functionu = (', ..., u™). From Lemma 10.1 in the appendix II and Allard’s
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regularity theorem, u; converges to u in C3-sense at any regular point of u. Hence,

2512 ~ _2(Lipu)?
we have |A“dul|” < ip )]

Now we assume/ > 2. Since M = C x R"~/, then C lives in an (m+1)-dimensional
Euclidean space. Up to arotation, C can be represented as a graph of a 1-homogeneous
vector-valued function ¢ = (¢!, ..., $™) on R!. Then up to two rotations of R” and
R™ there are a constant matrix (c‘j.‘) forj=I1+1,...,nanda =1, ..., m such that

a.e. on R"” from the assumption of uy.

n
u(xp, . xn) = ¢%(x1, .., x) + Z cixj
=it

for each . After a rotation of R" !, we can further assume

u®(xy, ..., xp) = *(x1, ..., X1) + CoaXita (7.21)
foreacho =1, ..., m, where we let ¢, ; = O for any positive integer j.
Let gij = &;j + D o;u*d;u®. From (7.21), g;; is a function of x, ..., x;, and
v = ,/det g;; can be seen as a function of x1, ..., x;. From Lemma 7.1, we have
Aplogv >0 (7.22)

on the regular part of M. Note that logv is smooth on R/\{0}. Since logv is 0-
homogeneous, it achieves its maximum on B}\ B! /> ata point in B! . From the strong
maximum principle, v is a constant. With Lemma 7.2, u® is harmonic on R™\ ({0’} x
R* ! foreacha = 1,...,m. Namely, ¢¢ = ¢*(x1, ..., x7) is harmonic on R\ {0}.
Note that ¢® is 1-homogeneous. Then ¢* is harmonic on R! for each «, and it must
be affine, i.e., % — ¢*(0) is linear. From (7.21), it follows that each u* is affine and
then M is flat.

For !l < 2, M is regular, then M is flat from the above argument. This completes
the proof. O

Let us prove a Bernstein theorem for minimal graphs with bounded slope.

Theorem 7.1 Let M = graph,, be a Lipschitz minimal graph over R" of codimension

: 2
m > 2. If|A2du|2 < |(124$+'24)—1| a.e. on R, then M is flat.

Proof Assume that M is not flat. From Lemma 10.1 in the appendix II, there is a
sequence ry — oo such that |%M | converges to a minimal cone C of multiplicity one
in the varifold sense, where sptC can be rewritten as a graph over R” with a Lipschitz
homogeneous graphic function ux = (ul, ..., u) satisfying

Lipuc < Lipu <L

for some constant L > 0. Then from Allard’s regularity theorem, when W is abounded
open set with W N sptC belonging to the regular part of C, W N éM converges to
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W N sptC smoothly. Hence we have

2(Li 2

|A2ah,too|2 < Luzd a.e.on R".

|(Lipuoo)” — 1

If sptC is a regular cone, then sptC is flat from Lemma 7.3. Now we assume that

there is a singular point ¢ in sptC\{0"*"}. We blow C up at the point g, and get a

nonflat minimal cone C’ whose support splits off R isometrically. If u/, denotes the
graphic function of sptC’, then we have

Lipu,, < Lipuo < Lipu <L,

2.0 12 2(Lip up,)*
and |A%duool” = {iipur i
get a sequence of minimal graphs M} (which are scalings and rigid motions of M)
such that | M| converges to a nonflat minimal cone C*, where sptC* = C, x R! for

aregular (n — [)-cone Cy. Moreover, the graphic function u} of sptC* satisfies

a.e. on R”. By dimensional reduction argument, we

Lipu}, < Lipus, <Lipu <L,

2% 12 2(Liput,)®
and |A%dugel” <t i
sptC*, which is a contradiction. Hence, sptC is flat. Since C has multiplicity one, then
Allard’s regularity theorem implies that M is flat. O

a.e. on R". From Lemma 7.3, we get the flatness of

Remark 7.1 Lawson—Osserman [37] constructed the minimal Hopf cones in R2m x
R”*+! for m = 2,4, 8. For m = 2, the Hopf cone has the Lipschitz graphic function
w = (wl, w2, w3) over R* given by

w=§|x|n<li—|>,

where n = (|z1|* — |z21%, 2z12») is the Hopf map from S° to S%. It is clear that
Lipw = V5, and |A%dw| = 5 on R" (see also the appendix in [36]).

By a contradiction argument, we have the following curvature estimate.

Theorem 7.2 For every constant L, there exists a constant ©®,, ,, 1 > 0 depending on
n, m, L such that if M = graph,, is a Lipschitz minimal graph over By of codimension

L
m > 2 with Lipu < L and |A2du|2 < |(124?1;+'24)—1| a.e. on Ba, then
sup [ D*u| < O, L. (7.23)

B

In particular, M is smooth.
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Proof Let us prove (7.23) by contradiction. Suppose that there is a sequence of Lip-
schitz minimal graphs graph,, over B, of codimension m > 2 with Lipuy < L and

2712 2(Lipuy)?
|[A“dui | < ip up)? =] such that

3
lim sup (5 — |x|> |D%ui|(x) = . (7.24)

k—o00 By

If u is not smooth at a point ¢ € Bj, then we blow M up at (¢, u(g)), and get a
contradiction from Theorem 7.1. Hence M is smooth.
From (7.24), there exists a sequence of points py € B 3 such that

a (3 2 3 2
rk = | 5 — |pkl ) ID7ur(pr)| = sup §—|X| D u(x)| — oo

2 B3

ask — oo.Put iy = % — | pkl, and Ry = 2ry /i Let

X
wi (x) = Riuy (— + Pk) on By.
Ry

Then
k Rk k Rk k ’ ’

Note that % < 3 — |x| forall x € By (pr). We have

2 1 2 2 3 2
sup‘D wk‘z— sup |D uk‘f sup | = — |x| ‘D uk‘(x)gl,
By k B%k(Pk) Rity B%k(Pk)

(7.26)
and

2w 0) = Rik D2 (o) = 11 (3 - |x|) D2 () = % (7.27)

Ry By 2
: 2
Moreover, from Lipu; < L, |A2duk|2 < KE?EIMP% on By, we have Lipwy < L
: 2
and |A2dwi|? < I(i?;i—ku))glll on B,,. With (7.26), after choosing a subsequence,

graph,,, converges smoothly to a minimal graph with the graphic function w,, such that

: 2
Lipwy < L, |[A%dw,|? < % a.e. and |D2w*| < 1 on R". Moreover, (7.27)

implies |D2w*| ) = % However, this contradicts to Theorem 7.1. We complete the
proof. O
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8 Quasi-cylindrical minimal cones from minimal graphs

Let {Ei};’ilm denote the standard basis of R"™" such that E; corresponds to the axis
Xi.

Lemma8.1 Let My € M, . a.p, for some constant 0 < A < ~/2. Assume that
[|Mi|1LBa converges to a stationary varifold V in the varifold sense. If S denotes the
singular set of sptV N By, then S has Hausdorff dimension < n — 3.

Proof We assume that S has Hausdorff dimension > n — 3. Then there is a constant
B > n — 3 so that S-dimensional Hausdorff measure of S satisfies H#(S) > 0. From
Lemma 11.2in [31], H#(S) > 0 implies Hgo (S) > 0 (see (6.4) for its definition with
R+ there replaced by R"*"). From the argument of Proposition 11.3 in [31], there
are a point ¢ € S and a sequence ry — 0 (as k — 00) such that

HE (SN B (@) > 2P wpr. (8.1)
Let Sk = ;- (SN By (9)). Then

HE, (S NB1(0)) > 27w, (8.2)

Without loss of generality, we assume that %(V, g) converges to a tangent cone
(Vi, 0"F™) in R**" in the varifold sense as k — o0o. By the definition of V, there
is a sequence of minimal graphs M in R (rigid motions of My) such that |M 2l
converges to the minimal cone V, in the varifold sense as k — oo.

Let S, be the singular set of V,. If y; € S and yy — y, € Vi, then it’s clear that
Y« 18 a singular point of V,, by Allard’s regularity theorem and multiplicity one of Vi,
which implies lim sup;_, ., Sk C S,. Analog to the proof of Lemma 11.5 in [31], we
have

HE (S, NB1(0)) = 27wy (8.3)

Let us continue the above procedure. By dimension reduction argument, there is a
[(I < 2)-dimensional non-flat regular minimal cone C C R™+* such that there is a
sequence of minimal graphs Xy € M, . A.Bg, (which are scalings and translations
gotten from My ) with Ry — oo so that ¥; converges to a minimal cone Cy in the
varifold sense, which is a trivial product of C and R,

From Lemma 11.1 in the Appendix III, / = 1 is impossible. For [ = 2, sptC N
8 B1(0™*2) is smooth minimal in d By (0"+2), hence it is a disjoint union of geodesic
circles in a sphere. So sptC, N R is a union of n-planes Py, ..., Pj, with jo > 2
as sptC is non-flat. If there is a unit vector & € sptC, with (£, E;) = 0 for each
i =1,...,n,then Theorem 4.1 contradicts to that sptC splits off R"—2 isometrically.
Therefore, sptC, can be written as a graph over R”, and then sptC, is an n-plane. It
is a contradiction. This completes the proof. O

Remark The above dimension estimate is not sharp. We will establish a sharp one
through the Bernstein theorem for minimal graphs in Lemma 8.5.
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With Lemma 8.1, we can use De Giorgi—Nash—Moser iteration for nonnegative
superharmonic functions on the regular part of stationary indecomposable currents as
follows.

Proposition 8.1 Let T be an integral current in Hn,m,A,B3 for some constant) < A <
V2, and T be a stationary indecomposable component of TUB with 0 € sptT £ M.
Then there exist a constant §, > 0 depending only onn, a constant ©1 > 0 depending
onn,m, A, T such thatif f is a nonnegative smooth bounded function on the regular
part of T satisfying Ay f < 0 on the regular part of T, then

r" / i <Orf*0) forany0<r <1, (8.4)
MNB,

where Ay is the Laplacian of M.

Proof For any small ¢ > 0, let S denote the singular set of T_B,_,. From Lemma 8.1,
there is a collection of balls {B, (xk)},ivil with ry < ¢/2 such that S C U,ivilBrk Xr),

and
Ne

d o <e (8.5)

k=1

By Besicovitch covering lemma, we can further require that there is a constant ¢, 4, >
0 depending only on n + m so that

[ a3 s = P OBy ) (5.6)
k#]
foreach j =1, ..., N, and each n-rectifiable set E C R"™™ Letn; be a C? function

on B, with 0 < 5 < 1 such that i = 0 on B, (X¢), nx = 1 on B2\By,, (x¢) and
el Vil + rZ MVl < ¢ on Bay (x0)\By, (%),

where V denotes the Levi-Civita connection of R** | | (V21| denotes the maximum
of the absolution of eigenvalues of the Hessian of n; on R" ™™ _ ¢ is an absolute positive
constant. Let eq, . .., e, be a local orthonormal tangent frame field of M. Since M is
minimal, we have (see (5.4) in [22] for instance)

n
Z Hess,, (¢;, e;)

i=1

-2
|AM7)k| = = nery XBZrk xp)? (87)

where Hess,, denotes the Hessian of n; on R"*". Set n, = ]_[,ivil nk € C%. Then
ne = 0 on a neighborhood of S. Let Vj; be the Levi-Civita connection of M, and
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divys be the divergence of M. From (8.7) and the Cauchy inequality, one has

Ne
[Aunel <Y 1AMl + Y IVanj | Varml
k=1 j#k

Ne
§ : -2 2 § : -1 -1
S nc rk XBZrk (Xk) + ¢ rj rk XBZ;‘[ (xj) XBZrk (xk)

k=1 j#k
Ne
-2 2 -2
= ne Z Tk XBZrk &%) e Z T XBer ) XBzrk () (8.8)
k=1 j#k

Then with (8.6) we deduce

Ne
/ |Anrel < (e + Fenn) Y r M (M OBy (x0) . (89)
sptT’ k=1

Similarly,

Ne
[ 19un? = [ |3 190+ 3 1919
M M

k=1

J#k
Ne

< A+ enrm)e® Y P HY (M N Boy, (x0)) - (8.10)
k=1

Combining Lemma 3.1 and (8.5), we deduce

lim/ (|AMng|+|ans|2) —0. (8.11)
e—=>0Jm

Let ¢ be a nonnegative Lipschitz function with compact support in B. Then the
support of ¢ is in Bo_, for small ¢ > 0. With integrating by parts, we have

0< _f (PnsAMfZ/ (Vm(one), Vu f)
M M
- / 1 (Va0 Var f) — / Fdivag (@Vnne)
M M
=/ n:(Vmo, VMf>—/ f{Vuo, VMns>—/ foAmne.. (8.12)
M M M

Combining (8.11) and Cauchy inequality, we conclude that

0< /M<VM¢,va>, (8.13)
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which means that f is superharmonic on M in the distribution sense. Now we can
follow the argument of De Giorgi—Nash—Moser iteration (see Theorem 3.2 in [21] for
instance) and finish the proof. Note that the constant § in (8.4) is obtained from the
dimension n and the exponent of the Sobolev inequality, which implies that §, only
depends on n. O

Let My = graphuk S Mn,m,A,BRk with R; — oo for some constant 0 < A < V2.
Let gfj = &ij + ZZ’ZI 0; ui‘ 8ju%, and vy = ,/det glk] We suppose that My converges
in the varifold sense to a minimal cone C in R"™ with the vertex at the origin.
Since the multiplicity function of sptC is one from Theorem 4.2, we denote sptC by
C for simplicity. Without loss of generality, we assume that [|M}|] converges to an

integral current T in R**", From Lemma 5.1, 37 = 0 and 7 has multiplicity one on
sptT = sptC. As before (in Sect. 4), 7, denotes the projection from R into R” by

n*(-xl’ ] xn—i—m) = (xla LRI xn)a
C,(x) = B, (m4(X)) X By(Xpi1,...,Xnsm) denotes the cylinder in R** for any
X=(X1,..., Xp1m) € R"™" and C, = C,(0"™).

Lemma 8.2 Suppose that for any regular point g € C there is a sequence of points
My > qi — q with limg_, o0 vi(qx) = oo. Then C is a quasi-cylinder in R"t"
with countably (n — 1)-rectifiable w,(C), and C N (B,:(x) x {0™}) is isometric to
7. (C N (By(x) x dBs(0™))) foranyr,s > 0, x € R".

Proof For any x € m,(C), there is a point x € C such that 7, (x) = x. Then tx € C
implies tx = m,(tx) € m.(C). This means that 7, (C) is a cone. It is easy to check
that . (C) is closed in R”. For any point g € regC, from the assumption there is a
unit vector n, € T, C such that (E;, n,) = 0 for each integer i =1, ..., n. There are
a small constant r, > 0 and a local orthonormal tangent frame {e;}?_; on er g@ncC
such that (e (z), E;) = Oforany z € C, (¢)NCandi = 1, ..., n. In other words, ¢;
isaC! tangent vector field on er (g)NC with y(e1(z)) = Oforany z € er (@)NcC.
After choosing the constant r, > 0 suitably small, for each y € C,, (¢) NI, there is
an integral curve yy in C;, (¢) N C with yy = ej o yy.

We write ¢ = (m4(q), q’) € R" x R™, and denote 'y = C N (R" x {z}) for each
7 € R™ Forany z € C;,(g) N C, let y; be the integral curve with y;(0) = z. For any
vector & spanned by Eq, ..., E,, we have

t 1
{ve(t) = v:(0), §) =/0 (v2(s), §)ds =/0 (e1(yz(5)),§)ds =0, (8.14)

which implies m.(y;(t)) = m«(z). Hence, we conclude that n*(er @ nNncC) =
rr*(C,q (@) N Ty) for any |7/ — ¢'| < rq. With the dimensional estimates from
Lemma 8.1, we deduce

7, (C N (Br(x) x 3B, (0™))) = 7, (C N (Br(x) x 3B, (0™))) (8.15)
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for any 1, > 0 and B,(x) C Bj. Letting r; — 0 implies
74(C N (B (x) x {0™})) = m(C N (B, (x) x 9B, (0™))), (8.16)

which is isometric to C N (B, (x) x {0™}).

From the slicing lemma for T in [47], 7. (C) = m.(sptT) is a countably (n — 1)-
rectifiable cone in R”. With Lemma 8.1, for almost all x € ,(C), there is a countably
1-rectifiable normalized curve y, : R — R™ such that {(x,y) € R" x R"|x €
74+(C), y € yy} is the support of C up to a zero H"-set. O

With Proposition 5.1, we can weaken the condition in Lemma 8.2 and get the same
conclusion.

Theorem 8.1 Ifthere is a sequence of points g € My withlim sup |qx| < oo such that
limg— o0 Uk (qr) = 00, then C is a multiplicity one quasi-cylindrical minimal cone.

Proof Let Ay, and V), denote the Laplacian and the Levi-Civita connection of Mj,
respectively. From Corollary 7.1,

AM,(U;I/" _ AMke—%logvk _ _lkal/nAMk log vk + izkal/nWMk log Uk|2 <0
" " (8.17)
on My. Let & denote an orientation of M}, namely, 7y M} can be represented by the
unit n-vector & (x), such that v,:l = (&, E1 A -+ - AEy). For any regular point z € C,

there is a constant 7, > 0 such that By, (z) N C is smooth. From Allard’s regularity
theorem, My N B3, /2(z) converges to C N B3, /2(z) smoothly. Recalling [|M|]—T.
Let & denote the orientation of 7', and v, - (&,E{ A--- AE,) onregT (the regular
part of T'). We extend vr to singT (the singular part of 7') by letting

v;l(x) = inf (§(y),EiA---AE,) foranyx € singT. (8.18)

regl >y—x
Then from (8.17) we have
ATv;l/” <0 onregT, (8.19)

where A7 denotes the Laplacian of 7.
From monotonicity of the density and Lemma 3.2, there is a constant ¢, > w,
depending only on n such that

wpr" < M(TLB, (X)) < ¢,r" (8.20)

for any r > 0 and x € sptT. From the proof of Theorem 6.1, we assume that there
exist indecomposable multiplicity one currents 77, ..., T; € D, (R for I > 1,
T1, ..., T; # 0 such that

l l
M(T W) =Y M(T;uW), Y M@T;.W) =0 (8.21)
Jj=1 j=1
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for any open W CC R"*" . From Proposition 8.1 and (8.19), there are a constant 8,
depending only on n, and a constant ®7 depending only on n, m, A, T such that for
any j,q € sptTj,r >0

P / v < Orv " (g). (8.22)
SptTjﬁBr(q)
There is a point g € sptT; for some integer j € {1,...,/} sothatgy — g uptoa

choice of a subsequence. From limy ., o vk (qx) = 00, it follows that v 1(q) =0ifgqg
is a regular point of C. Now we assume that g is a singular point of C and v, ! (g) > 0.
Then we blow C up at ¢, and get a contradiction from (8.18) and Theorem 7.1. Hence
we always have v;l (g) = 0. From (8.22), we conclude that v;l = 0 on spt7;.
Similarly, if there is an integer j' € {1, ..., [} such that SUPspeT, v;l > 0, then (8.22)

implies vy "'~ 0on sptTj,. By a blowing up argument and Theorem 7.1, we conclude
that spt7: is an n-plane, which implies sptTj; = sptT. Therefore, such ;" does not
exist, and we get

v;' = E A---AE,) =0 onsptT. (8.23)

From Allard’s regularity theorem, any sequence of points yy € M} converging to
a regular point y of spt7 satisfies limy_, oo v (yx) = 00. Recalling Lemma 8.2, we
complete the proof. O

In Lemma 6.1.1 (p. 42) in [48], J. Simons proved the following well-known result.

Lemma 8.3 Let X be a closed co-dimension 1 minimal variety in S". Suppose X is
not the totally geodesic S"~'. Then if n < 6, the cone CX. is not stable.

Using Lemma 8.3, Simons proved the celebrated Bernstein theorem in Theorem
6.2.2 in [48] with the help of Fleming’s and De Giorgi’s arguments. In high codimen-
sions, we have the following Bernstein theorem based on Simons’ work.

Lemma 8.4 Ifn <7, then sptC is an n-plane.

Proof If C is an entire graph over R”, then C is an n-plane from Theorem 7.1. Hence
we can assume that there is a point y, = (0", y*) € C with 0 # y* € R™. Without
loss of generality, we assume y* = (1,0, ..., 0). From Lemma 4.1 and Lemma 4.2,
C; = C — ty, converges as t — 00 to a minimal cone

{(xly-u,xn,)’],--w)’m)eRnXRm|(x1,~-7xn)€Cy*y y2="'=)’m=0},

where Cy, is a minimal cone in R”™ with multiplicity one. From Theorem 4.1, C Vi
is stable with the dimension n — 1 < 6. With Lemma 8.1 and dimension reduction
argument, we get the flatness of Cy, by Lemma 8.3. In other words, y. is a regular
point of C. Denote C = sptC. Hence, there is a constant 7 > 0 such that My N By, (y«)
converges smoothly to C N By, (y,) as k — o0. Let & denote the orientation of regC.
From the argument in the proof of Theorem 8.1, we get

(E,Ern---AE,;)=0 onregC. (8.24)
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There is a ball Bs, (y,) with the radius §, > 0 such that Bs (y«) N C is regular
everywhere. From Lemma 8.2, 7, (Bs(y,) N C) contains a neighborhood of the origin
in 7, (C) for any § € (0, d,], and the origin is the regular point of C in particular.
Hence C is flat. We complete the proof. O

Analogously to the argument in Lemma 8.4, we have the following sharp dimension
estimate.

Lemma8.5 Let My € My m A B, for some constant 0 < A < V2. Assume that
| My |LBy converges to a stationary varifold V in the varifold sense. If S denotes the
singular set of sptV N By, then S has Hausdorff dimension < n — 7.

Proof Let us prove it by following the steps in the proof of Lemma 8.1. We assume
that S has Hausdorff dimension > n — 7. By the dimension reduction argument, there
is a k(k < 6)-dimensional non-flat regular minimal cone C C R™*¥ such that there is
a sequence of minimal graphs Xy = M, ., By, (which are scalings and translations
gotten from My) with rp — oo so that X converges to a minimal cone C, in the
varifold sense, which is a trivial product of C and Rk,

From Theorem 7.1, there is a point y, = (0", y*) € C, with 0 # y* € R™. If
V4 1s a singular point of C,, then we blow C, up at y,, and get the contradiction by
Theorem 4.1, Lemma 8.1 and Lemma 8.3. If y, is a regular point of C,, then there is
a constant 8, > 0 such that Bgy (y+) N Cy is regular. From Lemma 8.2, we conclude
that the origin is a regular point of C. It’s a contradiction. We complete the proof. O

We summarize Theorem 8.1, Lemma 8.4 and Lemma 8.5, and complete the proof
of Theorem 1.3.
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9 Appendix|

In this appendix, we will derive several auxiliary algebraic results. Let a be a real
matrix (@yi)mxn» and b be a matrix (b;;),x, defined by

m
bij = 6ij + Zaaiaaj~

a=1
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Let (b'/) be the inverse matrix of (b;;), and & be a matrix (£ )mx» defined by

n
Eyj = Vdeth Y blay. 9.1)
i=1
Lemma9.1 Let Ay, ..., A, be the singular values of a satisfying A1 > dp > --+ >

Ay = 0and Mry < A for a constant A > 0. If
ayj; > (1 —e)v/deth 9.2)

for a positive constant ¢ K 1, then |&11| < 1 + ¥ (e|A), where W (e|A) is a positive
function of ¢, A with limg_.o ¥ (¢|A) = 0.

Proof For the fixed A > 0, we put ¢, = ¥(¢|A) for convenience. Since a;; < A
and det b = ]_[Z:1 1+ k,%), then from (9.2) we have

D<o Y lawil < Yean < Yk 9.3)

k=2 a+i>3

There are two real orthonormal matrices p = (p;j)nxn and ¢ = (gap)m=m such that

n
Agi = anj)»jpji-
j=1
From (9.2), p11911 > 1 — V¢, which implies

L—pul+ Y Ipijl < Ve 94)

i+j>3
We define an m x n matrix a* with the element

ay; = aai — qai1p1i = Y qajhjpji-

j=2
Letc¢; = ), qa1a,; and ¢* = (c;"j) be an (n x n)-matrix with the elements c;“j =
o a;ia;j — cjcj. From (9.4), we have
2
Dolagl < Veha Y lail S Wera, D lek] < Yer3 ©9.5)
o,i i ij
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By a direct computation,

m
bij =8 + Z(a;k,- +ga1r1p1:)(@y ; + ge1r1p1)

a=1

=8ij + ApUPL AP Y duah; + AP Y Gy + Y anas;
o o o

= 8ij + X1 pup1j + Mpiicj + hpijci + cicj + cij
=38ij + (pu +c)iprj +¢j) + ¢ 9.6)

Let g = (gi;) be the matrix with the elements
gij = bij —¢i; = 8ij + (ipi + c)(hapij +¢j),
then its inverse matrix (gij ) satisfies

A1p1i +ci)(Xp1j+cj)

g =8 — 9.7
Y L+ 3 apik +ck)?
Then
y (Aipii +ci)hapij+cj)
g'aprj+cj) = <5"— (A1p1j+cj)
; JTH XJ: Y L+, apik +c)? S
. rMplitc 9.8)
1+ apu +cr)? '
and
> glay =) g¥ (qu?»lplj +a]’}>
J J
=q11 Zg” (A]p]j +Cj) + Zgi‘i (aikj - ‘IIICJ'>
j J
(Mp1i +ci)gn i ( X )
_ gner). 9.9
TF S G pu + o) +;g apj —4qucj 9.9)

From (9.4), (9.5), it’s clear that ijl Ig'/| < ¥, then from (9.9) it follows that
> gYai| <1+ . (9.10)
j=1

From (9.5), the elements of g~ ' c* satisfy Zi’j |(g_1c*)l~j| < wg)»%. Let fbeann xn
matrix f = (I+g~ ¢ -1 2 (f;j) with the unit matrix 7, then Zi’j [fijl < 1//8)6.
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Hence
Y (fe jar| < v ©.11)
J
Since the inverse matrix of b = g + ¢* satisfies

=@+ ' =U+g ) e =(f+ e =g+ fgh 9.12)

combining this with (9.10), (9.11), we have

Enl= | [T+ (> bYa,
\ k=1 j

< ]"[(1+A> Y eYa |+ Y (fe hya| | <1+ve  (913)
N k= j j

This completes the proof. O

Lemma 9.2 Let ¢ be a function defined by

O, 2, m3) =4 + Uiop3 — 12 — L1143 — U2[43 9.14)

on (RM)3 with ]_[l (4w = voforsome constantvy > 1. If i < 2+W
for alli # j, then ¢ > 0, where the equality is attained at (2,2, 91)0 — 1) for

3<yy < 34/3, or (Msey sy 142/ py) with py < 2 being the unique positive solution
10 2(ps + 1)% = vl

Remark 9.1 Suppose ju1 > po > 3 > 0. If pju; <2+ foralli # j, we

maxj ;Lk 1

have pipy <2+ ﬁ = % and then o < ﬁ Hence

mip2 <2+ p2 <24 /rime, (9.15)
which implies (1112 < 4. In other words, w;p; <2+ W forall i # j implies
iy <4foralli # j.
Proof By the definition of vy, we have

v
d(r1s o, u3) =4 —ppr + (e —p1 —p2) | m—————— — 1
I+ p)(d + u2)

M2 — 1 — 12 2

=212 + 1+ 2 = Y, ko)
(I+p)d+ uz)

(9.16)
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with (14721)(1+42) < v3.From juipy < 4inRemark 9.1, 9 (111, o) = 4—pu1p2 >
0 clearly on the set {it1 > 0, up > 0| (1 + p1)(1 4+ w2) = v%}, where the equality is
attained at (w1, u2, n3) = (2, 2, 0) with vg = 3. Since

2—1 12 — 1) — o v
am‘p=<u _ AR M) O 2up 41

I+ puy (14 p1)? I+ w2

U(% UZ
= Q2uy —1 —2ur+1=Quy—1 —l ,
Cua )1+M2 "2 Qua —1) T

and ¥ (u1, n2) = ¥ (2, p1), it follows that

{1 >0, up > 0] DY (1, u2) =0} C {1 >0, up > 0] 1 = pa}.

Note that
P —a+ e g g, BT (g =20 +w?). ©17)
I+ 2" A+ 02 770 T
We suppose pip; <2+ W foralli # j,and pu; = uo.
o If us < py, then ipup <2+ ;ﬁ = 21’“1, which implies 1 < 2. Note that
v} < (1+ w1)?, then from (9.17)
_2 3 3
Vi) 2 s (e’ =204 ) 20 ©18)

where the equality is attained at (u1, n2, u3) = (2,2, %v%— 1)for3 < vy < 34/3.
o If w3 > uy, then

_ 2p3
us—1  puz—1

mipns <2+

which implies u3 < 1+ 2/u;. Note that u; < u3 < 1+ 2/u implies u; < 2.
Hence from (9.17),

(110 4+ 220+ 142/ = 20+ ) =

(9.19)
where the equality is attained at (w1, o, u3) = (2,2,2) with vyg = 34/3, or
(s, fs, 142/ 105) with s < 2 being the unique positive solution to 2(j5+1)> =
a3,

This completes the proof. O

1—2
K”(Ml» /-’Ll) e (1 )2

Corollary 9.1 Let ¢ be a function defined by
G, o, u3) =4+ (123 — L1H2 — K13 — L243 (9.20)

@ Springer



Q.Ding et al.

on (R1)3. Ifsuplsi<j53 wilkj < A? for some constant 0 < A < V2, then ¢ >
4(1 — A/V2).

Proof Let fi; = ~/2ui /A, then

A3 A?
=4+ [ fiafiz — — (A1ji2 + [L1/i3 + [i2ii3)
¢ Zﬁumzm 5 (i + [t i3 + a3

PEDTC I 3 A2 A2(4~~~ i o)

=4 - + 3l —=——7 )+ ——0@+ — — 3— .

AT+ it W 5 123 — f1fla — @13 — f2f3
9.21)

From the assumption, SUP| < j<3 fiji; < 2, and ftyfiofiz < 2/2. Combining
Lemma 9.2, we get

>4 -2A2+2V2 A A Y 1+A—A—2 . (9.22
¢ 272 2 V2 V2 22 ©22)

With0 < A < \/E, we complete the proof. O

10 Appendix Il

Analog to Lemma 4.3 in [21], we have the following multiplicity one convergence for
Lipschitz minimal graphs. Let 2 be a domain in R” with countably (n — 1)-rectifiable
boundary 9€2.

Lemma 10.1 Ler My = graph,, be a sequence of Lipschitz minimal graphs over Q2
of codimension m > 1 with sup, Lipuy < oo. Then there are a Lipschitz function
Uoo : 2 — R with Lipus, < supy Lip uk, and a multiplicity one n-varifold V in
Q x R™ with sptV = {(x, uso(x)) € R" x R"| x € Q} such that up to a choice of the
subsequence |My| converges as k — oo to V in Q x R™ in the varifold sense.

Remark In Proposition 11.53 of [29], Giaquinta and Martinazzi have already proved
the multiplicity one of V in the above lemma. Here, we give an alternative proof for
completeness.

Proof By Arzela—Ascoli theorem, up to a choice of the subsequence, we assume that
there is a Lipschitz function us, on € with Lip us, < sup; Lip ux. By compactness
of varifolds (see [47]), there is an n-varifold V in © x R such that up to a choice
of the subsequence, |Mj| converges to an integer multiplicity stationary varifold V
in  x R™ in the varifold sense. Let py denote the Radon measure associated to
V. By monotonicity of the density of V, for any x, € sptV N (2 x R™) we have
wy (B (X4)) > wyr" for sufficient small » > 0. By the convergence of | Mg/, there is a
sequence X, € My with x; — X,. Denote x; = (xi, ug(xx)). Then x; converges to a
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point x, with 7w, (X,) = x4, where 7, is defined in (4.3). Therefore, X, = limy_, oo X =
limg— 00 (Xk, Uk (X)) = (Xy, Uso(xx)), Which implies the support of V

sptV C {(x, uoo(x)) € 2 x R™|x € R"}. (10.1)

Note that for any z € 2, H"(B,(zx) N My) > w,r" for all suitably small » > 0 with
7 = (z, ux(z)). Since (z, ux(z)) — (z, uxo(2)) as k — oo, from the convergence of
|My| we get wy (B, (z)) > w,r" for z = (7, uso(z)). In particular, z € sptV, which
implies
{(x, uoo(x)) € R" x R™| x € Q} C sptV. (10.2)
Now it only remains to prove that V has multiplicity one. Let regV denote the
regular part of V in Q@ x R™. For any y € regV/, let Ty V denote the tangent plane of
sptV aty. Let &, ..., &, be an orthonormal basis of 7y V. From Lemma 22.2 in [47],

lim (r_" lim |ek’1 A Negn — & /\'--/\5,1’2) =0, (10.3)
r—0 k— o0 MNB,(y)

whereeg 1, ..., e, isalocal orthonormal tangent frame of My for each k. We also treat
ek.; as a vector on 1, (M) by letting e ; (x) = ek ;(x, ux(x)) foreachi =1,...,n
and k > 1. Let {E; }Z”;le denote the standard orthonormal basis of R”*" such that E;
corresponds to the axis x; fori = 1,...,n + m, v be a function on R” defined by
vk_1 = |(ek,1 AN Nekp, Egy A A E,,)|. From sup; Lipu; < oo and (10.3), we
get

lim <r_" lim le1 A Aern — & /\~~/\é§,,|2vk> =0 (10.4)
r—0 k—00 B, (y)

withy = (v, uso(3)). Let voo = [(E1 A - - A&, Ep A -+ AE,) !, From (10.4) and
[ imwst= ], b2l
B (y) B, (y)
5/ Heki A Aexn —EL A A& EL A AE) |0
By (y)

5/ le i Ao Aekn —EL A AE| vk, (10.5)
B (y)

with the Cauchy inequality we get

lim (7" lim ll—vkvo_ol
r—0 k—o00 B (y)

< lim <r" lim </ vk/ |€k’1/\-../\Ek,n_gl/\-~./\§n}zvk)):0,
r=0 k=00 NJBr ) JBr(y)
(10.6)

@ Springer



Q.Ding et al.

which implies
lim (r_”/LV(B,(y) X R’")) = lim (r_" lim H" (Mk N (B, (y) x Rm)))
F—0 r—0 k— 00

= lim (r_" lim vk> = Voo = [E1 A AELEI A AE)| L.
By (y)

r—0 k— 00
(10.7)

With (10.1), we conclude that V has multiplicity one everywhere on sptV . This com-
pletes the proof. O

11 Appendix IlI

Let A be a positive constant < V2, and My € M, for each integer k > 1. From
Theorem 7.2, My is smooth for each k. From (7.13), integrating by parts infers that
there is a constant ¢, o > 0 depending only on n and A such that

/ |By, |> < cunp" > (11.1)
MMB,(p)

for any p € My and any p > 0. Here, By, is the second fundamental form of M in
Rn+m_

Lemma 11.1 Suppose that | M| converges to a nontrivial stationary varifold V in the
varifold sense. If V splits off R"~" isometrically, then sptV is an n-plane.

The proof is similar to the argument in the proof of Theorem 2 of [46] by Schoen—
Simon. For self-containment, we give the proof here.

Proof Let us prove it by contradiction. Suppose that there is a varifold 7' in R”+! such
that spt7 is not a line in R™*!, and

sptV = {(x,y) e R"' x R™|y e sptT} = R" ™! x sptT.

We write

1
T =) njIRjl,  Rj={ipjl x>0}, (11.2)
j=I

with [ > 2, n; positive integers, |p;| = 1 and p1, ..., p; spanning a space of dimen-
sion > 2. Let & be the orientation of M} defined in (2.25). Note that 7 has multiplicity
one. Forany 0 < p < 1/2, from Allard’s regularity theorem there is a constant k, > 0
such that

l/
M0 (1) x (v e R o < Iyl < 201) = [ v (11.3)
j=1
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for each k > k, and each x € R"~! with |x| < 1, where I = le:lnl, y/].‘(x)
are smooth properly embedded Jordan arcs having their endpoints in {x} x {y €
R™H1| |y| = p or |y| = 2p}, and satisfying

lim max sup  dist (yj’?,(x),R"*‘ x T) —0,

k=00 ji=lonll yeri-1, |x|<1

lim min sup E.(x) A (0" p,»)‘ —0. (11.4)

xeyh (), j'=1..0

Here, 0"~! denotes the origin of R"~!.

On the other hand, for each x € My, there is a constant r x such that for every
0 < r < rx, each component of M; N B,(x) is embedded, and can be written as
a graph over the tangent plane of My N B, (x) at x with the graphic function wy x so
that | Dwy x| < %r. Covering lemma and Sard’s theorem imply that for almost all
x € R" ! with |x| < 1, and for each k > 1 we have

1] 12
M0 (1) x (v € ™ 1y] < p}) = Ulrj%x) U UlTﬁ‘(x) . (1)
J= J=

where /1 is a positive integer (depending oni, x), Ff (x) are smooth properly embedded
arcs with endpoints contained in {x} x {y € R |y = p}, b is a non-negative
integer, and Tj? (x) are smooth properly embedded curves (with no endpoints). Hence
for almost all x € R"~! with x| < 1, My N ({x} x {y e R"!| |y| <2p}) is a
union of several embedded smooth arcs or curves with their endpoints in {x} x {y €
R 1y = 2p}.

Clearly, there are aconstant 8 > O independent of p and a large constant k; such that
forall k > k; and for almost all x € R"~! with |x| < 1, there is an embedded smooth
arcs y¥  in My 0 ({x} x {y € R"!| |y| < 2p}) with their endpoints in {x} x {y €
R |y = 2p) (depending on p) so that

sup 5k (x1) — & (x2)] > B. (11.6)

k
X1,X2€Vx p

Let V),fpék denote the directional derivative of & in the direction of the tangent to

yﬁ - Then from the above inequality one has

px s laon-gol = [ [Vl (1)
Vx

k
X1:X2€Vx,p P
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Since ‘Vj}k Sk) < ¢u| B, | for some constant ¢, > 0, then
*,0

B
—=< | |Bu|= | B, | (11.8)
Cn vk M ({x}x{yeRm+1| |y|<2p})

*.p

for almost all x € R~ with |x] < 1,and k > k;. Denote My , = M N {(x,y) €

R x R™*1 x| < 1, |y| < 2p) for every 0 < p < 1/2. Integrating (11.8) over
|x] < 1 and using the co-area formula yield
172
1/2 2
|BM1<| = (Hn(Mk,p)) / / ‘BMk‘
My p

wnflﬁ S/
Cp M
12
< (H" (M. )" (/ ’BMk’2> . 19)
MkﬁBﬁ

. . ! .
There are an integer [, > 1 and a finite sequence of {x;}/_; C R"~! with lxil <1

P

such that Ulj”: 1 Bp(x}) D By (0" Mandl,p""! < ¢ for some constant ¢/, depending
only on n. Here, B, (x;) denotes the ball in R”~! centered at x;. with the radius p,

B1(0"~1) denotes the unit ball in R”~! centered at the origin. Denote z i= (x;. , oty
Then

B, (x}) x {y € R" 1 |y| <2p} C B3,(z)),
which implies
Lo
Bi(0") x {y e R™ | |y < 2p} € [ By (z)).

j=1

Combining Lemma 3.2, (11.1), (11.9) and lp,o”_1 < ¢}, we have

L
wp_ 1By < en a2 H (M) < enn2271 Y HT (M N B3, (2)
j=1
< enn 28, Conon(3p)" < 25713 w0y AChaChp.  (11.10)

However, the above inequality fails for the sufficiently small p > 0. Thus, we get that
sptT is a line in R”*!, and complete the proof. O

References

1. Allard, W.: On the first variation of a varifold. Ann. Math. 95, 417-491 (1972)

@ Springer



Minimal graphs of arbitrary codimension in Euclidean...

10.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

. Almgren, F.J., Jr.: Some interior regularity theorems for minimal surfaces and an extension of Bern-

stein’s theorem. Ann. Math. (2) 84, 277-292 (1966)

. Almgren, FJ., Jr.: Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics,

vol. 1. World Scientific Publishing Co. Inc., River Edge (2000)

. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems.

Clarendon Press, Oxford (2000)

. Assimos, R., Jost, J.: The Geometry of Maximum Principles and a Bernstein Theorem in Codimension

2, Preprint

. Barbosa, J.L.M.: An extrinsic rigidity theorem for minimal immersion from 52 into $". J. Differ.

Geom. 14(3), 355-368 (1980)

. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7,

243-268 (1969)

. Bombieri, E., De Giorgi, E., Miranda, M.: Una maggiorazione a priori relativa alle ipersuperfici mini-

mali non parametriche. Arch. Rational Mech. Anal. 32, 255-267 (1969)

. Bombieri, E., Giusti, E.: Harnack’s inequality for elliptic differential equations on minimal surfaces.

Invent. Math. 15, 24-46 (1972)
Brendle, S.: The isoperimetric inequality for a minimal submanifold in Euclidean space. J. Am. Math.
Soc. 34, 595-603 (2021)

. Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal

currents. Commun. Pure Appl. Math. 66, 965-990 (2013)

Cheng, S.Y., Li, P, Yau, S.T.: Heat equations on minimal submanifolds and their applications. Am. J.
Math. 106, 1033-1065 (1984)

Chern, S.S., Osserman, R.: Complete minimal surfaces in Euclidean n—space. J. d’Anal. Math. 19,
15-34 (1967)

Colding, T.H., Minicozzi, W.P,, IL.: Liouville theorems for harmonic sections and applications. Com-
mun. Pure Appl. Math. 51(2), 113-138 (1998)

Colding, T.H., Minicozzi, W.P,, IL.: A course in minimal surfaces, Graduate Studies in Mathematics,
vol. 121. American Mathematical Society, Providence (2011)

De Giorgi, E.: Sulla differentiabilitd e I’analiticitd delle estremali degli integrali multipli regolari. Mem.
Accad. Sci. Torino, s. I, parte I, pp 2543 (1957)

De Giorgi, E.: Frontiere orientate di misura minima. Sem. Mat. Scuola Norm. Sup. Pisa, pp. 1-56
(1961)

De Lellis, C., Spadaro, E.: Regularity of area minimizing currents I: gradient L? estimates. Geom.
Funct. Anal. 24(6), 1831-1884 (2014)

. De Lellis, C., Spadaro, E.: Regularity of area minimizing currents II: center manifold. Ann. Math. (2)

183(2), 499-575 (2016)

De Lellis, C., Spadaro, E.: Regularity of area minimizing currents III: blow-up. Ann. Math. (2) 183(2),
577-617 (2016)

Ding, Q.: Liouville type theorems and Hessian estimates for special Lagrangian equations. Math. Ann.
386, 1163-1200 (2023)

Ding, Q.,Jost,J., Xin, Y.L.: Existence and non-existence of area-minimizing hypersurfaces in manifolds
of non-negative Ricci curvature. Am. J. Math. 138(2), 287-327 (2016)

Ding, Q., Jost, J., Xin, Y.L.: Existence and non-existence of minimal graphs. J. Math. Pure Appl. 179,
391-424 (2023)

Ding, Q., Xin, Y.L., Yang, L.: The rigidity theorems of self shrinkers via Gauss maps. Adv. Math.
303(5), 151-174 (2016)

Ding, W., Yuan, Yu.: Resolving the singularities of the minimal Hopf cones (English summary). J.
Partial Differ. Equ. 19(3), 218-231 (2006)

Federer, H., Fleming, W.: Normal and integral currents. Ann. Math. 72, 458-520 (1960)
Fischer-Colbrie, D.: Some rigidity theorems for minimal submanifolds of the sphere. Acta Math. 145,
29-46 (1980)

Fleming, W.H.: On the oriented Plateau problem. Rend. Circ. Mat. Palermo (2) 11, 69-90 (1962)
Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic
maps and minimal graphs. Scu. Norm. Sup. Pisa (2012)

Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin
(1983)

@ Springer



Q.Ding et al.

31.

32.

33.

34.
35.

36.

37.

38.
39.

40.
41.
42.
43.
44.
45.
46.

47.

48.
49.

50.

51

52.

53.
54.

55.
56.

Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhiuser Boston Inc., Boston
(1984)

Hasanis, T., Savas-Halilaj, A., Vlachos, T.: Minimal graphs in R* with bounded Jacobians. Proc. Am.
Math. Soc. 137, 3463-3471 (2009)

Hildebrandt, S., Jost, J., Widman, K.: Harmonic mappings and minimal submanifolds. Invent. Math.
62, 269-298 (1980)

Jost, J., Xin, Y.L.: Bernstein type theorems for higher codimension. Calc. Var. 9, 277-296 (1999)
Jost, J., Xin, Y.L., Yang, L.: Curvature estimates for minimal submanifolds of higher codimension and
small G-rank. Trans. AMS 367(12), 8301-8323 (2015)

Jost, J., Xin, Y.L., Yang, L.: The geometry of Grassmannian manifolds and Bernstein-type theorems
for higher codimension. Ann della Scuola Normale Superiore di Pisa Serie V XVI, 1-39 (2016)
Lawson, H.B., Osserman, R.: Non-existence, non-uniqueness and irregularity of solutions to the min-
imal surface system. Acta Math. 139, 1-17 (1977)

Li, P.: Lecture notes on geometric analysis (1996)

Lin, EH., Yang, X.P.: Geometric Measure Theory: An Introduction. Science Press/International Press,
Beijing/Boston (2002)

Liu, L., Wang, G., Weng, L.: The relative isoperimetric inequality for minimal submanifolds with free
boundary in the Euclidean space. J. Funct. Anal. 285, 109945 (2023)

Michael, J., Simon, L.M.: Sobolev and mean-value inequalities on generalized submanifolds of R”.
Commun. Pure Appl. Math. 26, 361-379 (1973)

Moser, J.: A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential
equations. Commun. Pure Appl. Math. 13, 457-468 (1960)

Moser, J.: On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math. 14,
577-591 (1961)

Osserman, R.: Minimal varieties. Bull. Am. Math. Soc. 75, 1092-1120 (1969)

Ruh, E.A., Vilms, J.: The tension field of Gauss maps. Trans. AMS 149, 569-573 (1970)

Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34,
742-797 (1981)

Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Center for Mathematical
Analysis, vol. 3. Australian National University (1983)

Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88, 62—-105 (1968)

Wang, M.-T.: On graphic Bernstein type results in higher codimension. Trans. AMS 355(1), 265-271
(2003)

Wang, M.-T.: Interior gradient bounds for solutions to the minimal surface system. Am. J. Math. 126(4),
921-934 (2004)

Wickramasekera, N.: A general regularity theory for stable codimension 1 integral varifolds. Ann.
Math. 179(3), 843-1007 (2014)

Wickramasekera, N.: A sharp strong maximum principle and a sharp unique continuation theorem for
singular minimal hypersurfaces. Calc. Var. Partial Differ. Equ. 51(3—4), 799-812 (2014)

Wong, Y.-C.: Differential geometry of Grassmann manifolds. Proc. N.A.S. 57, 589-594 (1967)
Xiaowei, X., Yang, L., Zhang, Y.: Dirichlet boundary values on Euclidean balls with infinitely many
solutions for the minimal surface system. J. Math. Pures Appl. 129, 266-300 (2019)

Xin, Y.: Minimal Submanifolds and Related Topics. World Scientific Publications, Singapore (2018)
Xin, Y.L., Yang, L.: Convex functions on Grassmannian manifolds and Lawson—Osserman Problem.
Adv. Math. 219(4), 1298-1326 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Minimal graphs of arbitrary codimension in Euclidean space with bounded 2-dilation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Grassmannian manifolds and Gauss maps
	2.2 Varifolds and currents from geometric measure theory
	2.3 Lipschitz graphs of high codimensions

	3 Volume estimates for minimal graphs
	4 Cylindrical minimal cones from minimal graphs
	5 Neumann–Poincaré inequality on stationary indecomposable currents
	6 A Liouville theorem for minimal graphs of bounded 2-dilation
	7 Bernstein theorem for minimal graphs of bounded slope
	8 Quasi-cylindrical minimal cones from minimal graphs
	9 Appendix I
	10 Appendix II
	11 Appendix III
	References


