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Abstract

Global well-posedness of the Navier—Stokes equations with a free boundary condition
is considered in the scaling critical homogeneous Besov spaces B;llJr”/ P (R%) with
n—1 < p < 2n — 1. To show the global well-posedness, we establish end-point
maximal L '-regularity for the initial-boundary value problem of the Stokes equations.
Such an estimate is obtained via related estimate for the initial-boundary value problem
of the heat equation with the inhomogeneous Neumann data as well as the pressure
estimate in the critical Besov space framework. The proof heavily depends on the
explicit expression of the fundamental integral kernel of the Lagrange transformed
linearized Stokes equations and the almost orthogonal estimates with the space-time
Littlewood—Paley dyadic decompositions. Our result here improves the initial space
and boundary state than previous results by Danchin—Hieber—Mucha—Tolksdorf (Free
boundary problems via Da Prato—Grisvard theory. arXiv:2011.07918v2) and ourselves
(Ogawa and Shimizu in J Evol Equ 22(30):67, 2022; Ogawa and Shimizu in J] Math
Soc Jpn. arXiv:2211.06952v3).
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1 Introduction
1.1 The free boundary problem of the Navier-Stokes system

We consider the initial boundary value problem of the incompressible Navier—Stokes
equations with free boundary condition. Let €2 () C R” be a domain that is occupied
by the fluid in the n-dimensional Euclidean space R"” with n > 2 and let the initial
domain be described by the upper region of a graph of the unknown function 7(z, y’) :
Ry x R"! - Ras

) = [,y ) € Ry x R x Bs y, > 1)) ],

where R”~! denotes the n — 1-dimensional Euclidean space. The velocity of the fluid
u(t, y) and the pressure p(z, y) for y € Q(¢) satisty the incompressible Navier—Stokes
equations:

it +i-Vi—divT(@@ p)=0, >0, yeQ(),
divu =0, t>0, yeQ(@)),

T, p)v; =0, t>0, yeaQ@),

S E—— t>0, yeaQ), (LD
NIEZE

u(0, y) = up(y), y € £(0),

700, y") = no(y"), y eRL

Here, 0€2(¢) denotes the boundary of 2(¢), v; is the unit outward normal at a point
y € 092(¢) given by

(', ~1)
V= e
VIHIViP

T (u, p) is the stress tensor defined by T'(u, p) = (Vu + (Vi)™ — pI, where I
is the n x n identity matrix, (Vyit); ; = (aﬁj/ayi)(lq..jq), (Vii)" denotes the

(1.2)

transposed matrix of Vi, where V. = V, = (9, dy,, ..., 8yn)T and V' = V; =
(yy, Oyys o vy Oy, )T. ug and 7o are given initial velocity and initial surface, respec-
tively. Our basic assumption of the dynamics of the boundary of the fluid region 2 (¢)
is governed by the kinematic condition (cf. Solonnikov [54]) which is shown from
(1.2) by

Wi+ i - V' = iiy. (1.3)

In our setting (1.1), we do not take into account of the gravity force nor the surface
tension. !

Free boundary problems for incompressible fluids were first considered by Solon-
nikov [54] in the space-time L? setting and he proved the time local well-posedness

1 Practically the natural setting is (0) = R” under the gravity circumstance.
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of the initial boundary value problem (1.1). It was generalized by Tani—Solonnikov
[60], Tani [61, 62], Tani—Tanaka [63], Mucha—Zajaczkowski [33], Shibata—Shimizu
[51, 52] (see also [41, 48, 49, 55-59]). Beale [5, 6] considered the free surface prob-
lem in a semi-infinite domain and Priiss—Simonett [43, 44] proved the local of (1.1)
whose initial state & = €(0) is close to the half-space R’} in the class of Sobolev

space W;’z((O, T) x ) with p > n + 2. There are many other contributions on this
direction, for instance, [1, 7, 8, 16—-18, 25-27, 33, 34, 43-46, 51, 53] and references
therein.

It is well-known that the incompressible Navier—Stokes equations are invariant
under the scaling transform: For any A > 0,

a(t,y) — ip(t, y) = raa(A’t, Ay),
Pt y) = pi(t,y) = A2 p(A2t, Ay).

Subsequently the Cauchy problem of the Navier—Stokes equations can be solved glob-
ally in the Bochner class L” (R+; H,(R"; ]R"))

2 n
—+—=1+4s (1.4)
p D

by Fujita—Kato [23] (see also the relevant regularity criterion (cf., [40, 42, 47]). Setting
p =00,5s =—14n/pin (1.4), and the critical class at s = 0 is given, in particular,
Kato [29] by Cp([0, T); L™ (R™)) and the scaling critical Besov spaces B;}f"/ P(RM),
where 1 < p <ooand 1 <o < oo ([3, 11-13, 30]). Meanwhile, ill-posedness of
the Cauchy problem was shown in [10, 66, 70], namely the continuous dependence
on the initial data in the classes ug € BgO{U(R”), 1 < 0 < oo breaks down. It is then
natural to ask if the free surface problem can also be solvable in such a scaling critical

function class.

When (0) = R’} , the problem (1.1) was considered by Danchin-Hieber—-Mucha—
Tolksdorf [15] in a scaling critical Besov space B;ll+"/p(Ri) forn > 3withn—1 <

p < n via maximal L'-regularity of the linear problem corresponding to (1.8). Their
result is based on the Da Prato—Grisvard theory [19] and applied the result for the
initial boundary value problem by Danchin—Mucha [16]. Independently the authors
consider the free surface problem in [39] for the scaling critical space B;ll+"/ P (R%)
forn < p < 2n — 1 with n > 2 using an explicit form of the Fourier image of the
fundamental solutions to the linearized Stokes equations corresponding to (1.8) which
has been obtained in Shibata—Shimizu [52]. The argument in the both proofs seems
very different from each other and the results are compensated each other whenn > 3.

Under the kinematic boundary condition (1.3), the solution of the Cauchy problem

Z—f —i(t,y@®), 1>0, yO0) =5 (1.5)

induces the problem into a fixed boundary value problem. Namely, the Euler coordi-
nates y = y;(t) € Q(t) are transformed into the Lagrangian coordinates x € 2(0)
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connected by (1.5). If (¢, y) is Lipschitz continuous with respect to y, then (1.5) can
be solved uniquely by

t
y(t) =& +/ ii(s, y(s, ©))ds, (1.6)
0

where X € 2(0) and v denotes the outer normal at the boundary 9€2(0). Setting

ut, x) =u(t, y)),
pt,x)=p,y@), (1.7)
(. %) =i, ()",

and applying the Lagrangian coordinate to the original problem (1.1), the system is
transformed into a fixed domain problem. We first notice that the kinematic condition
(1.3) with (1.6) implies

(e, X) =0,7(t, y) + ' - Vi, y') = in(t, y) = ity (t, %), t>0, Xe0dQ0),
which ensures us that the transformed domain does not move in time ¢ > 0, i.e.,
(t, y(0)) = ya(t) =n0(X) — X, <0
and the fluid region is given by
Q=00 = {()E’,)En) cR"™! xR: %, > no(;/)}.

Hence the dynamics of fluids is governed by the the following intermediate system:

il — Aii + V= Fy(ii) + Fy(ii, p). 1>0, ieQ,
div 1 = Ggiy (1), t>0, xeQ,
(va v — 51) v = H,@) + Hy@ p), 1>0, ean, OO
(0, x) = up(x), X e,

where v denotes the outward normal at a point in €2, divitg = 0 in the sense of
distribution and the nonlinear terms of (1.8) are given by

F, (i) = div (J(Dﬁ)’l (J(Diy ™) 'vii - W), (1.9)
Fyii, p) = — (J(Di)™) = 1) Vjp = —div ((](Dﬁ)_l —1) 15) , (1.10)
Gaw (@) = —u((J(DD™HT = 1)Vt ) = ~div (VD' = 1)), (111
H, (i) = — ((J(Dﬂ)")T Vii + (Vi) (J(Dﬁ)’l))(J(Dﬁ)’l N

~ (i =1 vi+ " (D - 1))y, (1.12)
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H, (i, p) = p(J (D)~ —1)v. (1.13)

.
Here div K denotes [VTK]T = (ZZ=1 x, Kkj (x)) for an n x n matrix valued

function K = [Ky; (X) 1<k, j<n> J (D(i1))~! denotes the inverse of the Jacobi matrix
of the transform. We invoke the divergence-curl structure in (1.10) and (1.11) (see
Solonnikov [56], see also (10.2) of Corollary 10.2 in Appendix). By applying the
Lagrangian transformation, the free surface problem (1.1) is transformed into the
fixed boundary problem and the system is transformed into the quasilinear parabolic
equation (1.8) (see e.g., [S7]).

In this paper, we discuss the time global existence of a solution of the trans-
formed free surface problem (1.8) with non-flat initial surface. We need to discuss
the corresponding maximal L !-regularity for initial-boundary value problems of the
Stokes equations with the associated non-stress boundary condition. We extend for-
mer results in the homogeneous Besov spaces B;,l(Ri) with =1+ 1/p<s < 1/p
and 1 < p < oo (see for the definition of the homogeneous Besov spaces below)
and it naturally extends the well-posedness result to the free boundary problem for
the Navier—Stokes equations in the scaling critical setting including both the results
in [15] and [39]. Furthermore, we generalize the result into a non-flat initial surface
0 = 022(0), where 02 is assumed to be described by the graph of a given small
function y, = no(y’). Such an extension enable us to conclude the range of expo-
nent p for the global well-posedness of the free surface problem of the Navier—Stokes
equations inton — 1 < p < 2n — 1 and hence our result includes former results [15]
and [39].

Let us introduce an extension function of the boundary function no(X’) into the
whole domain 2.

n—1

Definition. Let 1 < g < oo.For ng € B’qng(]R"_l), set
E(x', xp) = (sech(x,|V'no(x") (1.14)
so that

(V'E(', xp), 04, E(xX, x1))
= (sech(x,|V')V'no(x"), sech(x, VDIV [no(x")), x, >0,  (1.15)

where the operator sech(x, |V’'|) is given by the Fourier multiplier

sech(x,|V')) f = Fy, ' [sech(xal€')) F(E)].

and .7-?, ! denotes the Fourier inverse transform from &’ € R"™! — x’ € R"~!, We
introduce the domain deformation (flattening) transform £ : ¥ € Q > x € R: =
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(x = (', x,) e R"; x’ e R*™! x, > 0} given by

~/ /
X =x',

1.16
Xp =Xxu + E(x/’ Xn) ( )

and the Jacobi matrix J(DE) = 9x/dx of (1.16) with its determinant 1 4- 9, E. Since
Ay, E(x', xp) = sech(x,|V')|V'|no(x"), under the smallness condition on |V’|no,
dy, E > —1 everywhere (cf. Lemma 8.1 below) and the deformation & is bijective. If
we set ¢ (x,) = x, + E(, x,), then dy,¢ = 1 + 0y, E and is strictly positive under
the smallness condition for |V’|ng, it means that ¢ (x,) is invertible and monotone
increasing with respect to x,,. Noting that ¢ (0) = E(x’, 0) = no(x’), we know that £
maps the domain {(¥’, ¥,); X, = no(3")} into

{(x Xp); @ (xp) = xp + Ey ()C xn) Uo(x )} = {(x Xn); Xn £ 2 0},

(cf. [53]), and the boundary 9Q2 = {(X’, X,,) € R"; X, = no(X’)} is transformed into
a new boundary dR, = {(x, x,) € R"; x, = 0}. The component of the transposed

inverse of the Jacobi matrix is given by using 0j = 8x_,. (j=1,2,...,n) that

hE

10 _1+lanE
HE

0 1 T - 1+28)1E

(J(DE)™HT = ) (1.17)

o E

00---1- 140, E

The covariant derivatives for a function K (x) = K X) (~1 < j,k <mn)ie, VK =
(0K, 0K, ...9,K)" and a vector field F(x',x,) = F(X', %) : RY — R”, are
expressed from (1.17) by

—1 T 8 E
(VEK)j =(VK)j + ((J(DE)™' = 1) VK). = 9;K — 1338 ———3,K, (1.18)

divEFEdiVF+tr<(J(DE)’1— n'v )—dwF Z1+a
ﬂ

(1.19)

We also denote (dgK); and DK the corresponding covariant derivatives and the
Jacobi matrix form for any function K, respectively. If E is sufficiently smooth then
it follows from (1.19) that

(1 + 9, E)diveF = (1 + 8, E)div F — VE - (8, F)
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and

divF =VE - (3,F) — (3, E)div F + (1 + 3, E)divg F
=0,(VE - F) — div ((04E)F) + (1 4+ 9, E)divg F, (1.20)

where the first and the second terms of the right hand side of (1.20) maintain their
divergence form.
Introducing new unknown functions;

u(t,x)=u(,Xx),
p(t, x) = p(t, %),

the Jacobi matrix is denoted by

o E(x)

t
J(Dgu)i=jken = 5-+/ Ot j (5, %) = Tp s
(Dgu)1<j k<n [fk O(kj( ) 14+ 9,E(x)

Ot (s, x))ds]

1<j.k=n

(1.21)

Hence applying the boundary flattening operation £ in (1.16) to the problem (1.8), the
system is transformed into the following problem on the flat boundary region R, :

ou—Au+Vp=fu, E)+ f(p, E)+ Fy(u, E) + Fp(u, p, E), t>0, x eR’jr,

divu =g, E)+ (1+0,E)Ggi (u, E), t >0, xeRf’F,
(w T+ (V)T — pz) Vi (1.22)
=h(u, E) + h(p, E) + H,(u, E) + Hy(u, p, E), >0, X' eR"!,
u(oa )C/, xn) = IZ()(X/, Xn — E()C/, xn)) = uO(x): X € Ri:
where v, = (0, ..., 0, —1) denotes the outward normal at a point in BR’L the linear

variable coefficient terms are given (cf. (1.20)) by y

fu. E) =— ia,(ianu) = Z GE o)
j=I

1+ ,E S E
n
3E 3E
) i), 1.23
+]§1+a,,15 "<1+a,,E "”) (1.23)
VE

Ey=—((J(DEy™ Y = 1\Vp = ———4,p. 1.24
f(p.E) ((J(pE)™") )Vp B (1.24)
gu, E) = 3,(VE -u) — div ((3, E)u), (1.25)

(V'E,-DT
VI+IVER
(VE VI+|VER-1)T
VI+I|VE]?

h(u, E) = — (Veu+ (Vgu)") + (Vu+ (Vu) v,

- (w + (Vu)T>
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1
_ m(wsanun + 9y Edju)
1 V'E,\/1+|VE]?
+—(a Edaux + 0 E, u,) ( + VB~
1+ 0,E VI+I|VE?
(1.26)
(VE,J1+|VE2=-DT
h(p,E) = p (1.27)

VIt IVER

The nonlinear terms of (1.22) are given by (1.9)—(1.13) and divergence-curl structure
by

Fu(u,E) = divE(J(DEu)—1 (J(DEM)_])TVEM - VEu>, (1.28)
Fylw p. B) = = (JDE) ™)'V ((J(Dg)™ = 1)" p) = ~dive (J(Dpw)™ = 1)p),

(1.29)

Gaw (. B) = —u(J(DE™) V(I (Dp) ™" = DTu ) = —dive (J(Dp) ™" = 1)u),

(1.30)

Hu(u, B) = = (D) ™) Veu+ (Ve (J(Den) ™)) (J(Dpwy ™ = 1) ve
~ (e = 1) Veu+ (Vew" (J(Dpw ™ = 1))ve, (1.31)

H,(u, p, E) = p(J(Dpw)™ = 1) vg. (1.32)

Here v = (V'E, —1)T/\/1 + |V’E|2. The initial data u satisfies the natural condi-
tion divug = g(u, E) | =0 in the sense of distributions. The notations Vg, div g (and
hence D) are defined by (1.18) and (1.19), respectively and J(Dgu)~! denotes the
inverse of the Jacobi matrix and J(DE)~! is given by (1.17). Hereafter, we denote
IT7"(A) as a polynomial of A of order at most m = n — 1 or 2n — 2 with * being either
u, p,div or bu or bp which indicates the nonlinear terms (1.28)—(1.32). At the above
stage, the problem (1.1) is transformed into the fixed and the flat boundary domain
with the quasilinear variable coefficient problem.

2 Main results

Before stating our results, we define the Besov space and the Lizorkin—Triebel space
in the half-space and on the half-line, respectively (see for details Peetre [42], Triebel
[65]).

Definition (The Besov spaces). Let s € R, 1 < p,o < oo. Leti¢j}jez be the
Littlewood-Paley dyadic decomposition of unity for x € R”, i.e., ¢ is the Fourier
transform of a smooth/\radial fuﬂction ¢ satisfyiﬂg ¢(&) > 0,suppp C {§ € R" |
27" < |5 < 2}, and ¢j(§) = d(2776), 3 ez ¢j(§) = 1forany § € R"\ {0} for
j € Z,and d)*(é) + Z/>1 ¢j(§) = 1 for any £ € R", where ¢'~(E) = §(|§|) with a
low frequency cut-off g“(r) =1for0<r < 1and g‘(r) = 0 for 2 < r (see [9]). For
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seRand1 < p,o < o0, let B;,U(R”) be the homogeneous Besov space with the
norm

. - 1/o
(o2l F15) " 1=0 <o,

Ifllgy, = 7<%
sup2¥ip; * flp., 0 =00
JEZ

and By, ;(R") be the inhomogeneous Besov space with the norm

~ . ~ 1/o
) (N 1, + D265 % 7). 1=0 <00,
1 Fllsy, = e
195 % Fllp + 5up 2716, % o = oo
JE

We introduce the homogeneous Besov space on the half-Euclidean space R
={x e Rx = (x',x0), %, > 0,x' € R'"1}): B}, ;(R"}) as the set of all mea-
surable functions f in R} satisfying

z_ F&'s xn) (xn > 0)
. ~ a proper extension (x, < 0) ’
1y ey = inf {11y ey < 003 ) o :
’ ' f=c"Y ¢jxfinS®"
JEZ
2.1

where ¢, U= (27)"/2. The inhomogeneous version Bz, - (R'}) is analogously defined.

Definition (The Bochner-Lizorkin-Triebel spaces). Let s € R and X (R”} ) be a Banach
space on R with the norm || - ||x. Let {t/x}rez be the Littlewood—Paley dyadic
decomposition of unity for # € R. For a Banach space X, let F | (R; X) be the
Bochner-Lizorkin—Triebel space ( [31, 64]) with the norm

171 o = | D22 e Fa. x|

LIR,)’
ez (Ry)

Analogously as above, we define the Bochner-Lizorkin—Triebel spaces F 1‘"1 I; X)
for an interval I = (0, T) (T < o0) as the set of all measurable functions f on X
satisfying

£(t, %) (tel) ”

s or.oyy = Inf Fllis e < 00; f =
”f”F'vl(I’X) {”f”FH(R’X) f {aproperextension (teR\I)

We should like to notice that F f 1 (Ry; X) is equivalent to Bf’ 1 (Ry; X) from its defi-
nition.
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Let D’ (2) denote the distributions over €2 and let Cj, (I'; X) be a set of all bounded
continuous functions from an interval / to a Banach space X. We also use C, (R’} ) (or
C,(R"1)) as a set of all continuous functions vanishing at |x| — oo.

Theorem 2.1 (Global well-posedness of the transformed problem) Letn > 2, n—1 <
p<2n—landl <g<pmn—-1/n—p (m—1<p<nandl <qg < pn —
)/(p—n) (n < p <2n—1). Ifthe initial data ug € B 1+"/‘"(R ) with the condition

divug = g(u, E)|z in D'(R}) and the initial boundary no € Bl+(" D/a (R
satisfy for some small go > 0 that

luoll  —1en  +1V'n0ll 2zt =< ¢o, (2.2
pa - RY) B,{ ®1)

then the initial boundary value problem (1.22) admits a unique global solution

@), AuVpe LRy B, ®RY),

J— . +ﬂ
ueCyRy; B, "R)NWH (R B,
Plomo € iy 7 Res By ) T @) N LRy B R

with the estimate

2
o ”L‘GR B H”(R’D)Jr |p u”L'<R+ B, ”(R1)>+ va”L'(R B ””(Rb)(z.%
+ ||P|x,,_o|| 52 18 + [ ple,=o n=l <en, )
F P ResB, P @®RTY) LIRy:B,} (R~

where D*u = 0;0ju(i,j=1,...n)and g1 = &1(n, p, &) is a constant.

Remark Since our regularity class is the scaling invariant, the Fujita—Kato principle
(cf. [23]) implies that the local well-posedness for the problem (1.22) also holds for
the condition (2.2) being assumed only for the surface function 9. We also note that
our result above includes the case n = 2 that does not seem to be included in the
earlier result [15] on the free surface problem in an unbounded domain.

For the regularity of the initial surface ng € B;j(nfl)/ 4(R"=1), the exponent g
can be taken independently of the regularity exponent p for the velocity field and
the pressure and restricted by the limitation of the boundary bilinear estimate (see
Proposition 10.3 (3) in Appendix). Under the restriction of ng, its mean value over
R~ of 5 is vanishing if it is integrable and V'nq € B(n D/a RN c Cc,(R"
(cf. [15]).

Accordingly the original problem is considered to be solvable in the corresponding
critical space if we introduce the space of a pull back of functions by observing
the ordinary differential equation (1.5) is uniquely solvable. Let £ be defined from
Q — R’ by (1.16).
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Corollary 2.2 (Global well-posedness of the non-flat fixed boundary problem) Let
n>2andn—1 < p < 2n — 1. For the same &g in Theorem 2.1 and g o £~ =
ug € Bp In/p (R) with div itg = 0 in D' (Q) satisfying (2.2), let (u, p) be the global
solution of (1.22) obtained in Theorem 2.1. Then the pull-back (i, p) of (u, p) via the
transformation (1.16) with the estimate (2.3) satisfies (1.8).

Corollary 2.3 (Global well-posedness of the free boundary problem (1.1)) Let n > 2
andn—1 < p < 2n—1. For the same & in Theorem 2.1 andiigoE~" € B 1+n/p(]R )
with div g = 0 in D' (Q) satisfying (2.2), let (i1, p, 7j) be the global solunon of (1.8)
obtained in Corollary 2.2. Then the pull-back (i, p, 1) of (i, p, n) given in (1.7) via
the transformation (1.6) uniquely solves the original problem (1.1).

2.1 Maximal L-regularity for the linearized Stokes equations

In order to show the global well-posedness of the Navier—Stokes equations by the
Lagrange coordinate form (1.22), maximal L!-regularity for the heat equation with
the Neumann boundary condition plays a crucial role. We consider a corresponding
regularity estimate to the initial-boundary value problem of the Stokes equations with
free stress boundary condition:

oou—Au+Vp=7f, t>0, xeR},

. _ n

divu = g, . t >0, xeR+,l 2.4)
(Vu+(Vu) —pI) v, =h, t>0, xeR",

u(0, x) = up(x), x eRY,

where ug, f, g and h are given initial, external and boundary data, respectively and v,
denotes the outer normal on dR’} . The following theorem improves the former result
on maximal L'-regularity with a free boundary value problem in Ogawa—Shimizu
[39].

Theorem 2.4 (Maximal L'-regularity for the Stokes system) Let 1 < p < oo and
—14+1/p < s < 1/p. The problem (2.4) admits a unique solution (u, p) with

ue Cp®y: By (RD)NWHIRy; B | (RY), Au, Vp e L'(Ry: B | (R)),
1

s i _ L5411 _
€ FY TRy B (R NLI R B, T(R)

p

X, =0
if and only if the data in (2.4) satisfy

wo € B ((RY), feL'(Ry; B |(RY)),
divu0:g|t in D'(R),
Vg e L'Ry: B ((RY), V(=2)7'g e WM Ry By | (R))),

g . Ls+1—1
he By TRy By RT)NLIR By R,
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where (—A) ™! denotes the inverse operator of the Laplacian with 0-Dirichlet bound-
ary condition on dR'}. Besides the solution (u, p) satisfies the following estimate for
some constant Cy; > 0 depending only on p, s and n

H 8’“”L1(R+;B;J(R§_)) + ”D2””L1(R+'B;,,(R1)) + HVP”U(R*_;BIS,VI(R’_L))

lpbmol 1o okl

. s+l
Fl,1 "Ry B, (R L'Ry:B,, " ®Y)

N\

<cM(||u0||BS @ I I, @)
—+ ||Vg||L1(R+;B;,1(R1)) + ”8tv(_A)_ g“Ll(RJr;B;,l(Ri))

+ll ) + ] o)

s+1

B Ry B (R L'Ry:B,, @)
(2.5)

The above theorem is that the range of the differentiability exponent s is enlarged
than our previous results [38] and [39]. Namely Theorem 2.4 includes the case 0 <
s < 1/p. Such an extension is established by reconsidering the detailed estimate
for the linear heat equations. Indeed, there is no limitation for the upper bound of
s from our explicit analysis in the subsequent theorems (Theorems 2.5, 4.1). The
limitation is posed in order to make clear the condition of the homogeneous Besov
setting (see Proposition 3.2 below). After establishing maximal L'-regularity in the
range —1 4+ 1/p < s < 1/p, the proof of the global well-posedness Theorem 2.1
follows by areasonable structure of the Besov space that BZ/ f’ (R’ ) is a Banach algebra
and all the nonlinear terms can be estimated by such a structure, which can be seen
in [15] and [39]. Note that the upper range of p < 2n — 1 is caused by the worst
nonlinear estimate which arose from the boundary nonlinearity.

To establish maximal regularity on the half-space problem (2.4), we decompose the
problem (2.4) into several partial components of the data and reduce the problem into
the inhomogeneous problem with only boundary data being provided as we presented
in the previous works [38, 39]. First we remove the divergence data g as in the proof
of Theorem 2.1 in [39]. Introducing properly extended data f = (f°, f2 ye fn
with f being the divergence term correction and f[ fn €=12,...n—-1) denote
the odd and even extension to R”, respectively, and g into R” in the similar manner,
we consider the Cauchy problem of the Stokes flow:

Wi— Ai+Vp=Ff, >0, xeR",
divu =0, t>0, xeR", (2.6)
(0, x) = up(x), x e R™.

Thanks to extension of f and iy we notice that F(x’, 0) = 0 by the setting of the
problem (2.6) (cf. [50, (4.21)]). Then by subtracting the solution of (2.6) from the the
original problem (2.4), one can reduce the problem to the following initial boundary
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value problem for (v, g) with inhomogeneous boundary data:

ov—Av+Vgqg =0, t>0, xeR},
divv =0, . t>0, xeR}, 1 @7
((Vv)—i—(Vv) —qI)v,,:H, t>0, xX’ eR",
v(0,x) =0, x eRY,
where we set
H=h— (Vi + (Vi) ) vy |x,o0- (2.8)

In order to prove Theorem 2.4, it is essential to show maximal L !-regularity for (2.7).
The following estimate is obtained partially in [15] and [39].

Theorem 2.5 Let 1 < p < ooand —1+ 1/p < s < 1/p. The problem (2.7) admits
a unique solution

veCy[Re; B (RY) N W (Ry: B | (RY)), Av, Vg € L'(Ry; B}, |(R})),

1oL . Ls+1-1
qlo=o € F' 7 R By @) NLIRy: B, " ®R™Y)

p,1
if and only if the data in (2.7) satisfy

1_ 1

. .5+
He B Ry BY R NL' Ry B,

_1
o TETY. @)

Besides the solution (v, q) satisfies the following estimate for some constant Cpy > 0
depending only on p, s and n:

| 3tv||L1<R+;B;,1(R1)> +| Dzv”Ll(RJr;B;’l(Ri)) +[va ”LI(RJr;B;Yl(Rf’F))

+labs=ol -y, ool |y
FP 7P RyB  (Ri-1)) LI®E), P @) (2.10)
<CIHN 4-p HIHL ).
Fry p(RJr;B;YI(R”*I)) LI(R+;BP‘1 P (Rn-1y)

The function class connected to the x-variable in Theorem 2.5 is restricted in
B;l RY) € WP (R") and such a restriction is necessary for maximal L'-regularity;
maximal L'-regularity fails for the Lebesgue spaces L” even over the whole space
R” in general (see [35]. See also a possible estimate Giga—Saal [24]). On the other
hand, the condition (2.9) is sufficient to conclude the estimate (2.10) in Theorem 2.5
even for the end-point spatial exponent p = 1. This end-point is excluded because the
trace estimate fails when p = 1.

The rest of this paper is organized as follows. After preparing basic relations in the
Besov space in the half-space R’} in the next section, we present a basic formulation
for the proof in particular the reduction to the boundary value problems of the heat
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equations with the Neumann boundary condition and the Stokes equations with the
non-stress boundary condition in Sect. 4. We construct an explicit solution formula of
the fundamental solutions in Sect. 5. In Sect. 6, we recall the linear boundary estimate
of inhomogeneous Neumann type and in Sect. 7 maximal L' regularity for the Stokes
system is shown. Section 8 is devoted to the linear and nonlinear perturbation estimates
and Sect. 9 shows the proof of the global well-posedness for the transformed Navier—
Stokes equations. The final section Appendix includes various bilinear estimates.

Throughout this paper, we use the following notations. For x € R”", (x) =
(1 + [x/»HY2. The boundary dR'| is denoted by R"~! for the variables x’ =
(x1,x2, ..., x,—1). The transpose of a matrix A is denoted by AT. The Fourier and the
inverse Fourier transforms of f € S(R") are defined with ¢, = (27)™"/? by

F©) = FLAE) = cn /R e fwdr, FAI0 = e /R e fede.

For any functions f = f(¢t,x’, x,) and g = g(t, x', x,,), f (*)g, f( * )g and f (* 8
t t,x

Xn
stand for the convolution between f and g with respect to the variable indicated
under , respectively. If both f and g are vector field functions, f -* g denotes the

(7.x")

convolution in x” as well as the inner product of f and g, i.e.,

n—1
fox g= Z/ Jet —s,x" = yNge(s, y)dy'ds. (2.11)
(t,x") =1 R JRr-1

In the summation ), _,, the parameter k runs for all integers k € Z and for ), _ i k

runs for all integers less than or equal to j € Z. We denote the norm of L? (R"~!) with
x’ € R*"! variable by | - |l LP- Let LP(I; X) denotes the p-th powered Lebesgue—

Bochner space upon a Banach space X. The norm for the Bochner—Lizorkin-Triebel
spaces on Fl‘;p(l; X@®R"1)) we use

||f||Fﬁ,p(1;X) = ||f||Fg‘p([;x(Rnfl))

unless it may cause any confusion. For the Besov spaces, we abbreviate R” for stw =
B; o (R") and its norm || - || 35 . For a € R", we denote Br(a) as the open ball
: .

centered at a with its radius R > 0. We also denote the complement of Bg(0) by Bj.
I'(-) denotes the Gamma function. Various constants are simply denoted by C unless
otherwise stated.
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3 The homogeneous Besov space in the half-space
3.1 The homogeneous Besov spaces on the half-space
We recall the summary for the Besov spaces over a domain €2 near the half-Euclidean

Space Rr_:_. Let Z() = {{ak}k;k € Z, ar € R, lim|k|_>oo |ak| = 0, ||{ak}k||(0 =
maxy |ag|} € £oo- It is well known that (£9)* =~ £;.

Definition Letoc =0or 1 <o < oo withs € R. Let
BS, . (R" )
LR = CSO(R )

‘ B o(R" ,
B;O,O(hacgwm) O where 1 £l = 2k # ool

DefinitionLet ] < p <ooand 1 <o < oo withs € R.

) = @D

by the Besov norm B - (R}) (see Bahouri-Chemin-Danchin [4] and Bergh-Lofstrom

[9]). It is shown that the above defined space coincides the space BS o (R%) defined
by the restriction in (2.1). Namely, the following proposition is shown by Triebel [65]
and Danchin—Mucha [16] (see also [28, 38]).

Proposition 3.1 [16,65] Let1 < p <oo. (1) For0 <s,1 <0 < 00,
BHR)N( L ®D),
B j(RY) ~ ( 0(]R ))

(2) For —oco < s < 1/pandforl <o < oo,

SR~ By, (RY).

(3) For —co <s < 1/pando =1,

1(R )~ B, (RY).

We consider the restriction operator Ry by multiplying a cut-off function yg» (x) =1
over R} and otherwise 0, i.e., for f € B;’G(R”) with setting Ry f = XRY (x) f(x) in
B;,, -@®R") if s > 0 and it is understood in a distributional sense. Let Eq be the zero

extension operator from B’ +R})to BY - (R™). Using Proposition 3.1, the following
statement is a variant introduced by Tr1ebe1 [65, p. 228].
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Proposition3.2 Let1 < p <00, 1 <o <ooand -1+ 1/p < s < 1/p. It holds
that

RO:BS (R”)—>B » (R, "
Eo: B} ,(R}) > Bj ,(R"), ©1)

are linear bounded operators. Besides it holds that
RoEg=1d: B) ,(R}) — B ,(R}),

where 1d denotes the identity operator. Namely Eo and Ry are a retraction and a
co-retraction, respectively.

The proof of Proposition 3.2 is along the same line of the proof in [65] (cf. [38]). Note
that the spaces are homogeneous Besov spaces and then the arrangement appears in
Proposition 3 in Danchin—Mucha [16] is required. Furthermore, Triebel [65, Theorem
2.9.1] states that

Proposition3 3 (cf.[15,65]) Let1 < p <oocands €R, f € BSH(R )then V f €

1(]R ) and hence V f € BY A RY) if's < 1/p. Conversely if V f € B‘ 1 (R} then
feB;f‘ )lf—l—i—l/p<s§—1+n/p.

In what follows, we restrict ourselves to the regularity range of the Besov spaces
+RY)in -1+ 1/p < s < 1/pforl < p < oo unless otherwise stated.

Accordlng to Proposition 3.2, we may regard that any distribution in B - (R}) under
such restriction on s and p can be extended into a distribution over whole space R”
and conversely.

3.2 The L-P decomposition with a separation of variables

In order to split the variables x’ € R*~! and x,, € R, we introduce an x’-parallel
decomposition and an x,,-parallel decomposition by Littlewood—Paley type. We intro-
duce {®,,}mez as a Littlewood—Paley dyadic frequency decomposition of unity in
separated variables (¢/, &,) € R"~! x R.

Definition (The Littlewood—Paley decomposition of separated variables). For m € Z,
let

R 1, 0 < |&,| <2, R - N
Cn(En) = { smooth, 2™ < [&,| <2"FL £, (&) = Luo1(En) + m(Er) (3.2)
0, 2l < g,
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Fig.1 The support of gn A
Littlewood—Paley
decomposition {®;; },,7 2mAt
7
9m- 1
0 27)7,—1 om §m+1 ‘é’”

(one can choose 5;1(;’) = Z€<m71 @(r) 4+ ¢_oo(r) with a correction distribution

$—_oo(r) at r = 0) and set

B (€) = B () @ L1 (En) + En (E') ® B (En)- (3.3)

Then it is obvious from Fig. 1 (restricted on the upper half region in R") that

S D) =1, &= &) R\ (0}, (3.4)

mez

Definition (Various kinds of the Littlewood—Paley dyadic decompositions).

Let (1,&',&,) € R x R"! x R be Fourier adjoint variables corresponding to
(t,x', x,) € Ry x Rl x R4.Let {®,, (x)},ecz be the standard (supported in annulus)
Littlewood—Paley dyadic decomposition by
x =, x,) e RY.

o {®,,(x)}mez: the Littlewood—Paley dyadic decomposition over x = (x’, x,,) € R%
given by (3.3).

{¥x(f)}xez: the Littlewood—Paley dyadic decompositions in 7 € R.

{¢pj(x)}jez and {¢;(X,)}jez: the standard (annulus type) Littlewood—Paley
dyadic decompositions in x’ € R"~! and %, € R, respectively.

{2 (XN ymez and {&, (X)) }mez: the lower frequency smooth cut-off given by (3.2),
respectively.

e For the Littlewood—Paley decompositions {¢; (x")} jez and {Yr () }rez, we set

i =bj—1+¢;+dji1,

= (3.5)
Vi = Yr—1 + Y + Y1

that stands for the j-neighborhood of ¢; (x") and the k-neighborhood of ¥ (¢),
respectively.

Since all the above defined decompositions are even functions, we identify 7 € R and
X, € Rwith |[f| = ¢ > 0 and |X,| = x, > 0, respectively. Then it is easy to see that
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the norm of the Besov spaces on R’} defined by {®),},, is equivalent to the one from
the Littlewood—Paley decomposition of direct sum type {®,, },.

4 The initial boundary value problem for the Stokes equations

In this section, we study the solution formula for the initial boundary value problem of
the heat equation with the Neumann boundary value problem. The formula is a basis
to consider the solution formula to the initial boundary value problem of the Stokes
equations.

4.1 The initial Neumann boundary value problem for the heat equation

For I = (0,T) with 0 < T < oo, let u be a solution of the initial-boundary value
problem of the second-order parabolic equation with variable coefficients and the inho-
mogeneous Neumann boundary condition in the half-space R" = {x = (x/, x,); x’ €
R x, > 0}:

ou — Au = f, tel, xeRY,
Oni] o = & rel, x'eR “.1)
u(z‘,)c)|t=O = up(x), x eRY,

where d; and 9; = 9y, are partial derivatives with respect to ¢ and x;, u = u(z, x)
denotes the unknown function, ug = ug(x), f = f(¢,x) and g = g(¢, x’) are given
initial, external force and boundary data, respectively.

In this context, Weidemaier [69] and Denk—Hieber—Priiss [20, 21] obtained maximal
regularity in general settings. Let I = (0,7) for T < oo, 1 < p,p < oo and
1/2 —1/(2p) # 1/p. The initial-boundary value problem (4.1) has a unique solution
win Whe(Ry; LP(R)) N LP(Ry; WHP(R™)) with the compatibility condition

11 1
(0p10) (X", Xp) =0 = &(t, x")|—0, under = — — > —. (4.2)
2 2p p

and the solution fulfills the estimate:
19s2ell Loqr:Lo@nyy + 1Dl Lo Lo @ty

< CT(Iluollng—uzm(RD T ler ey 18I g1 212 g pp 1y + Hg||Lp(,;B]l;pl/p(Rnfl>))y

where Bi;,l/ P(Rr=1yand F ; ;,1/ 2p (I; X) denote the interpolation spaces of the Besov
and Lizorkin-Triebel type, respectively. The end-point case p = 1 is considered in
Ogawa—Shimizu [38] both with Dirichlet and Neumann boundary value problems in
—14+1/p<s<0O.
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Theorem 4.1 (The Neumann boundary condition) Let 1 < p < oo, =1+ 1/p <5 <
1/p. Then the problem (4.1) admits a unique solution

u € Cy(10, T); By {(R})) N W Ry: By, | (RY), Au e L'(Ry; By, 1 (RY)),
if and only if the external, initial and boundary data in (4.1) satisfy

feL'®Ry; B ((RY), uo € B} (R},
1_ 1

. Ls+1—1L _
ge Bl TRy By (R NL Ry B, "R,

respectively. Moreover end-point maximal L'-regularity holds:
2 .
N0l s ey +ID Ul @y e

2

< Cu(lluolzs ey + 1Ly ooy + 80 3 +ligl :
.1 4+ P p 1 W Fl.l 2p (R B‘ ](IR” 1)) LI(R+ p] p (Rr=1Y)

where Cyy is depending only on p, s and n.

Remarks. (i) The linear evolution generated by the Laplacian generates Co-semigroup
in BY l(R ) for I < p < oo and the estimate of maximal L '-regularity ensures that
the absolute continuity of the solution in #-variable.

(i1) Since 1/2—1/(2p) < lforall 1 < p < oo, the pointwise compatibility condition
(4.2) is not required.

(iii) If p = oo, the corresponding result holds for the homogeneous Besov space

RS R
B, (RY) = Co@®ny =1

instead of the Besov space B 1 (R%). Note that BO (RY) € Cpo®Y) = {f €
C@R’); supp f C R |f(x)| 0, as |x| — o0, x € R" "'} for the endpoint case
(s, p) = (0, 00).

We only show the estimate for the full time interval R but a similar estimate for
the finite time interval I = (0, T) with T < oo is also available. In such a case, the
restriction on the initial data u( can be relaxed into the inhomogeneous Besov space
Bé 1(R ) D BA I(R ) and the constant appeared in the estimate can be estimated as
C ~ O(logT) as T — oo.

For the proof of Theorem 4.1, the principal arugment is reduced into the following
problem:

8tu—Au—0 tel, x eRY,
u(t, x' xp)|, _g=h@t,x), tel, x eR", (4.3)
u(t, x)|,_, =0, x e R,

Then the following result yields our main result for the Neumann problem Theorem 4.1.
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Theorem 4.2 (Maximal L'-regularity by the Neumann boundary data) Let 1 < p <
ooand —1 4+ 1/p < s < 1/p. There exists a unique solution

ue W Ry B ((RY), Aue L'(Ry; B |(R)))

to (4.3) if and only if

1

Lo L . Ls+1-1
he Bl 7 (R B ®RH)NLYR B, "®"TH).

Besides it holds the estimate:

2
”at“”Ll(RJr;B;,l(Ri)) + D u”Ll(RJr;B;’I(R’i))
<C(llhl -1 + Al

. . .erlfl ’
B Ry B R) L'Ry;B,, T (®1)

where C is depending only on p, s and n.
When p = oo, the analogous result holds under arranging the function class as in
the remark after Theorem 4.1.

To show Theorem 4.2, we extend the boundary data h(z, x") into < O by the
zero extension and apply the Laplace transform with respect to ¢, the partial Fourier
transform with respect to x” and we obtain the solution formula of (4.3) as

qu(t,x', x,) = /R f Wyt —s,x' — y’, xp)h(s, y’)dy/ds “4.4)
+ n

by using the boundary potential term:

Wy (t,x', xn) = — p.vepad / / eittHix' g 1T N P d&'dr,
R JRA-1 Vit + €2
4.5)

where c,4+1 = (27)~"*+D/2 and T is a pass parallel to the imaginary axis.

4.2 The solution formula for the Stokes equations

We construct the solution formula of (2.7) following the method by Shibata—Shimizu
[50] and [52].

Let H = H(t,x') = (H'(t, x'), H,(t, x")) be the boundary data extended into
t < 0 by the zero extension. Besides we assume that they are smooth and decay
sufficiently fast at |x’| — oo. The solution formula for the ¢-th component of the
velocity and the pressure is obtained by Shibata—Shimizu [52, (5.19)] as follows:
Letting

B(r,£) = Vit + &2, (4.6)
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D(t,&") = B(r,&) +|€'|B(r, £ + 318" *B(r, ) — &P, (4.7)

For any smooth rapidly decreasing boundary data (FI\’, H, ) in both (z, &’) variables,
we consider that

v, (2, x/s Xn)

N €]
_ itt+ix"-E ) 1S 1
- C"“p'v'/R/Rn—l ‘ { ic 48t e D E)

/ / / 0 673(1’5/)"” [S/ ﬁ, /
x (217 —(B2(x, &) + & |2))(e_s<r,s/m 0 )('E P )]dsdr, 4.8)

q(t,x', x,)

[ B(z, &) + ]
ztr+1x -£
“”“pV//Rn | [ D(z, &)

NE |~ e~ 1E 1xn &0
X (2|5/|2 —(Bz(f, i_—/) + |§/|2)) <B(T’$ )|§-0| e e—|(2;‘)’\x,,) (S ﬁH) }dg/d‘[,

(4.9)

where we take a limit of the integral pass avoiding the singularity at (z, &) = (0, 0).
All the other components of the velocity fields vy (¢, x) (¢ = 1,2, ..., n— 1) are given
by the above two components (v,, ¢) and the boundary data H = (H’, H,) from the
Eq. (2.7) (see [52] for the detail of their derivation).

Our main task is to prove maximal L' -regularity of the velocity v, and the pressure
term ¢ of (2.7) which is directly obtained from the inhomogeneous boundary data. We
also set symbols of the singular integral operator by the following Fourier multipliers:
my(t,€) 'R x R*1 — R” as

my(t, &) = (my (v, &), my (7, 8")
_ B@@#) (B(z, £)+18'D

(22 &) +1g'Pig’, 2'7).

it D(z, &)
(4.10)
mﬂ(r7 é,-:/) = (m;-[ (Ta E/)7 Man (Ty é/))
_B(va;:/)—i_'é:/' el ’ 2 1 12
= e GEBEE), ~BEEH+IED). @

Using the potential expression (4.8), we obtain a desired pressure estimate by the
boundary data H. For any smooth data (H’, H H ) in both (, £") variables, we see the
explicit expression of Vg and the n-th component 9d;v, can be expressed as

O (t, X/, Xn)

= Cp+1Pp.V. // eitt+ix,'s/{ - 3715(7, 'i:, -xn)
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+ #}/)e—”ff’m (my(z, &) - H(z, g’))}drds’, (4.12)
Vaq(t,x', xp)
— c,,+1p.v.// ei”—‘rix,'s/(iél, _|§/|)T(mn(ra$/) . ﬁ(‘n é/))e_‘s/lx"dfdé/,
Rn
(4.13)

where B = B(t, &’) and D(z, §') are defined by (4.6) and (4.7), respectively. Hence
from (4.10), (4.12), (4.13), the term operated by the Laplacian is given by

Avy (2, x,’ Xp) = Cp41P-V.

//n ei”+iX[.§, B(::E/) e*B(Tf/)xn (m\y(‘[, 5/) ' ﬁ(f, E/))d‘l,'dé:/

(4.14)

For the construction of the explicit expression of the solution of (2.7) in [50,
(4.24), (4.25)] and [52, (5.19)], the other components of the velocity fields v/ =
(v1(t, x), v2(t, x), ..., vp—1(¢, x)) satisfy the initial boundary value problem of the
heat equations as the pressure and the n-th component velocity as the external force
and boundary condition as follows: For £ =1,2...,n — 1,

0rvg — Avg = —0degq, t>0, x € Rﬁ_,
Oy = —Hp — dpv,, t>0, x € BR?‘_, 4.15)
0e(0,%) = 0, x e R

Here we remark that v’ in (4.15) and v, in (4.8) satisfy the divergence free condition
divv = 0. Since Ag(t, x', x,) = 0 by (4.9), we see from the problem (4.15) that

ve(t, x', x,)

itrix £ & He  _peg
— V. ellT-HX &) T, /7x e B(t,&)xp
Cn+1P /‘/R” it q(t, & n)+B(‘E,$’)
i

2B "YE'l B N=Lig(B "2 /2_4/2
+(B(r,g/)—|g’|)D(r,§/)( (. ENIE| B(r, &N E'1(B(r, 8% + 1§'1°) — 4IE'1%)

0 e_B(fvE/)xn g . ﬁ/ ,
x (e_B(T!S,m . ) Javag! e=12 -,

(4.16)

where we use the formulas (4.8)—(4.9) with a view of (4.5). Hence maximal L'-
regularity for the velocity vy can be reduced to the maximal regularity estimate for
the initial Neumann boundary value problem of the heat equation in the half-space
(4.1). We then turn into our attention to the initial boundary value problem of the heat
equation with the Neumann boundary condition (cf. [38] and [37]).
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5 The potential of boundary term and almost orthognality
5.1 The boundary potential

In this subsection, we derive the exact solution formula of (4.3) which is a bases of the
solution formula to the velocity v, (¢). Let h = h(¢, x") be the boundary data extended
into t < 0 by the zero extension. The solution to the problem (4.3) is expressed by

u(t,x) =Gy(t, x) (*/) h(t,x'), 6.D

where G denotes the Green’s function of the initial-boundary value problem (4.3)
identified by

. . ) ’ 1 !
GN(t,x/,xn)z—p.V.c,H_]// QTN o~ BEmgeldr, (5.2)
R JR-1 B(t, &)

where B(t, &') = /it + |€|? (cf. [38]). From (4.5) Wy (¢, X', x,) = 0, G N (L, X, xp),
we regard x, as if it is a spectral parameter like (A, &), we then decompose this
boundary potential (4.5) by a combination of two families of the Littlewood—Paley
dyadic decomposition of unity. Here we notice that from (5.1)—(5.2), the potential Wy
represents the solution operated by the Laplace operator as in (4.4).

5.2 Almost orthogonality of the Neumann boundary potential

In this section we recall the almost orthogonality estimates that are shown in Ogawa—
Shimizu [38] and [39] and are mentioned in Sect. 4.1. The estimate is in between the
boundary potential term W for the Neumann boundary problem of the heat equation
and the time and space Littlewood—Paley decompositions {x}rez and {¢;} jez. For
the symbol of the gradient of the pressure, we introduce the useful notation for a part

of the symbol defined by (4.6); B(t, &) = /it + |&|%.

Lemma 5.1 (Almost orthogonality I [38]) For k, j, £ € 7Z let {Yr(t)}kez and
() x")} jez be the time and the space Littlewood—Paley dyadic decomposition and let
Wy (t, x', x,) be the boundary potential defined in (4.5). Set

Wk, j (1, x' x0) = (Wy (T) Y (*,) ¢;)(t, x, xn), (5.3)
X

where Wy (t, x', x,) is given by (4.5). Then there exists a constant C,, > 0 depending
only on the dimension n satisfying

K K n+2 72%71)6 2t :
C27(1+ (27x,)"?)e "o K=z2
IWN k() < ok (5.4)
X E . _ i—1 .
C’122 (1 + (ZJx,,)"Jrz)e 2 x"w, k < 2]
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For estimating the term involving the grand Littlewood—Paley decomposition, the
proof involves an x,-convolution between the potential ¥y and ¢,, (x,). Concerning
the related estimate, we show the following second orthogonal estimate:

Lemma 5.2 (Almost orthogonality II [38]) Letk, j, m € Z and assume j < m+1. Let
Wy (t, x', x,) be the potential of the solution for the Neumann data defined by (4.5) and
let {Y (1)} kez and {@ (x")} jez be a spatial and time Littlewood—Paley decomposition.
Let Wy 1 (2, x', xy) be defined by (5.3). Then for any N € N, there exists a constant
Cn > 0 such that for {¢m (x1)}mez,

, 2 lieml ok
Cn22 o VR k>2j,
1 Gm #* Uns )b x) 1 < (MG g )N (250) 5.5)
(xn) o X ¢ 2—li-ml ok
CN2i o — = k<2j.

(27 x,)N (2k1)2

The proof of Lemmas 5.1 and 5.2 are very similar to the case for the Dirichlet
boundary condition obtained in [38]. Indeed, the estimate for the Neumann boundary
condition is stated in [38]. The only difference between those two boundary condition
is the factor (4.6) in the formula (4.5) and the difference simply reflects the difference
of regularity. See [38] for the details.

5.3 Almost orthogonality of the pressure potential

We derive almost orthogonality concerning the pressure term which is shown in
Ogawa—Shimizu [39].

Definition (The pressure potentials). For j, k € Z, let {{(¢)}kez. {¢; (x’)}jez be the
Littlewood—Paley decompositions for € R and x’ € R"~! valuables, respectively.
We set for x, = x,, > 0,

7(t, X', xn) = Cuy // T E GE 1 )Ty (1, €)e 1 W drde
RxRr—1
(0, X xn) =Yk % @ x w(t,x',x,)
®) (x")

= (7[121/ (tv x/’ -xn)s nn,k,j(tv X, x)’l))v
(5.6)

where m, : R x R"~! — R” is defined in (4.11). We extend the potential 7 (¢, x’, x;,)
into all x,, € R by the even extension (i.e. exchange x,, into |x,|).

Recalling the notation q>~j, {ﬁ; defined in (3.5) and noting that

Y Y (e E) =1, (1.8 #(0,0),

keZ jel
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we have for x,, > 0 that

Vq(t, x', x,)
Cntl //Rn eitr+i;d,$/(l.";__/7 —|§/|)T(m/(1', g__/) . f_?/ +mn(1’, f/)ﬁn)
= e 1NN ()¢ (E)dTdE’

keZ jeZ

:ZZ(T(/H (wk d?, * H)—i—nnkj (Wk(j‘)¢ % Hn)),

keZ jeZ !

(5.7)

where (71,2’ j Tk, ;) denote the potential for the derivative of the pressure with RA—1
direction and x,, direction given in (5.6), respectively and we use the notion of the
inner product-convolution (2.11) and the data is extended by the zero extension for
t < 0. We show the almost orthogonality and its variation in the following.

Lemma 5.3 (Pressure almost orthogonality I [39]) For k, j € Z, let 7y (2, X', xp)
be the pressure potentials defined by (5.6) and let {yrx (t)}rez and {¢; (x’)}jez be the
Littlewood—Paley decompositions for time and space, respectively.

(1) For the time-dominated region k > 2j, there exists C,, > 0 such that for any
xp € Ryandt e R,

2k

T (5.8)

||7Tk,1(t, . -xn)”Ll/ < an‘/(l + (2jxn)n+2)efz(j*1)xn

where || - ||L1 denotes the L' (R"~) norm in x'-variable.

(2) For the space -dominated region k < 2j, there exists C,, > 0 such that for any
xp € Ryandt e R,

22i
(22/'[)2'

DI SIS N

k<2j

< G20 (14 (2 x,)" )2 (5.9)

The estimates are extended to x,, € R by the even extensions.

We consider the almost orthogonality estimate of second type which will be used
for the triumphal arch type Littlewood—Paley dyadic decomposition.

Lemma 5.4 (Pressure almost orthogonality I1[39]) Letk, j, m € Zand my j(t, x', xp)
be the pressure potential given by (5.6) and let {\;.(t)}rez and {¢;(x")} ez be the
Littlewood—Paley decompositions for time and space, respectively. Assume that j < m,
then for any N € N and for {¢, (x,,)}mez, there exists a constant C, y > 0 depending
onn and N such that the following estimates hold:
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(1) For the time-dominated region k > 2j,

2Jp—(m=j) ok
i, -, <CyN——— —F—- 5.10
||¢m (;:l) nk,]( xn)”L)](, n,N (2]x”>N <2kt>2 ( )
(2) For the space-dominated region k < 2j, it holds that
2Jp—(m=j) 92j
UR <C . —. 5.11
| kgj oy i | =GN e D

See [39] for the proof of Lemmas 5.3 and 5.4.

6 Estimates for the inhomogeneous Neumann boundary condition
6.1 The space-time splitting argument

For k, j € Z let {{it}kez and {¢; (x")} jez be the Littlewood—Paley dyadic decom-
position of time and space variables, respectively and we introduce the decomposed
boundary potential defined by (5.3). Since the support of the Fourier image of ®,,
only survives where m =~ j, we see that

O x (UG ) = B x ) Z Wk, (8, X )
»Xn x,xp <7
= Z Z Cm— 1(|xn|) * ((bm(x) * (\IJNkj(l X, xn))) 6.1)
keZ |j—m|<1
22 dnlw) 2 (6D 5 (e ).
keZ |j—m|<l1

where Wy and Wy i, ; are defined by (4.5) and (5.3), respectively. The L? (IR’ ) norm
of the first term of the right hand side of (6.1) is estimated by the Hausdorff—Young
inequality of x,-variable and the term ¢;,,—1(]x,|) can be treated as the following:

”Cm—l * <¢m(x/) * ‘I’N,k,j(l,x/,xn))’
(xn) (x")

LP(Ry y,: LP(R" 1))

’ ) ’
< |I§m—1 ||L1(R+.xn) ¢m(x ) (;k/) \I’[N,k,j (t, X, xn)HLP(R+YM;L1’(R;71))

/ /
= C”¢m(~x ) (;k/) \IJN,k,j(t’ X ’ xn) ”L’)(RJr.Xn;LP(RZTI)).
The term ¢, (|x’]) in the second term of the right hand side of (6.1) is canceling by the
¢ (x")-convolution in Wy i ; (cf. (5.3)).

Regarding the relation (4.4) and applying the Hausdorff—Young inequality to the
right hand side of (6.1), it follows that
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Fig.2 The space-time splitting ‘1€/| ~ 2j’j c7

_

r~2kkeZ

00
/0 18wl g5 | et
<CHZZSW/ H(pm(x) * Z Z \IJNkj(tx xn) * /’l(l )
) ke 1joml=<1
+CH erm

EHPI ”L[I(R‘F) + HP2 HL’I(R‘F)v

1/p
L.dx; )
Lr R LI(Ry)

1/p
| dxn )
LP(RY Y

d’m(xn) * Z Z \I/Nkj(tx xn) * h( )’)

k €Z|j—m|<1

LI (Ry)

6.2)

where the first term of the right hand side of (6.2) includes ¢, (x’), once the outer
decomposition ), ., is fixed then the inner decomposition {¢; (x)*} je7 is restricted
into only |j —m| < 1 and the summation for j disappears. This is the one of the main
differences from the result shown in [38] and [39].

We separate the estimate of (6.2) into two regions; one is time-dominated area and
the other is space-dominated area. The relation between each variables is illustrated
in Fig. 2.

In order to prove Theorem 4.2, it is enough to prove the following lemma.

Lemma6.1 Let 1 < p < oo and s € R. The terms PlN and P2N defined in (6.2) are
estimated as follows:

1P gy < C(”h” BTV R B i1y T ”h“LI(R+;Bj;ﬁ2*‘/P(R"—1))>’ (6.3)

” P2N ”L,l R4) = C(”h || Fllilﬂp(RJr;B;’l(Rn—l)) + ”h ”LI(R+;B;?§271/F(R’1_I))>' (64)

Remark The above estimates are crucial to extend the regularity range of maximal
regularity into higher range s > 0.

The most of the estimates are very similar to the case of the proof of the Dirichlet
boundary case appeared in Ogawa—Shimizu [38, Lemma 4.3]. However, the detailed
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proof for the Neumann boundary case was not given there. Since the above estimates
are crucial for showing our new result, we give a full proof of the estimates.

Proof of Lemma 6.1 We split the boundary data / into the time-dominated region and
the space-dominated region. Let ¥ and ¢; be defined in (3.5). Since

h(t.x') =372 gt *¢,(x) % . x)

keZ jel

=373 ) *¢,(x) % )

keZ k>2j

+372)° Z U (0 X ¢,(x) % h(t,x'). (6.5)

keZ2j>k

and letting h,, (¢, x') = @n(x’) * h(t,x") (m € 7Z), we proceed
x/

P{Vmsczzmg }|¢m<x>*2 > N (3 )

meZ kEZ\] m|<1,2j<k

1/p
X)) ok e XD 1)ulxn>

e[ o g XX et

meZ @ jEZ |j—m|<1,k<2j

1/p
X Putt) o @) % D7 l)dxn)

1/p
| D W km,x' ) % wkm*h &, )7, dxn>

cep(

mez Ry k>2m
/p
+022“”(/ | D" Unim ¥ ) (zx)H”pdxn> =Li+Lo,
meZ R p<om
(6.6)

where Wy k. (2, X', xp) = 1//k(t)(>|<)¢m (x’)(*)\IJN (t, x', x,). We see that L is the time-
t x/

dominated region and applying the Minkowski and the Hausdorff—Young inequality
with using (5.3), we have

L1§C22‘Y"’</ {2/ “I’Nkm(tfs 2 Xn)
mez

k=>2m

1, Hwk(s) % T (s, )H ds} dxn>l/p. 6.7)

Then by the almost orthogonal estimate between the boundary potential ¥ and the

Littlewood—Paley decomposition ¥ in time, namely we invoke Lemma 5.1. Noting

the restriction k > 2m on the time-dominated region and v (s) (*) Y (s) = Y (s), we
N

apply the first estimate in (5.4) to (6.7) and obtain that
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”Ll ”L‘(ﬂh)

b L ' }p 1/p
= CHZZW /]R+ k; e / 2kt —5))? v & fms: )HLffds dx") ‘L}(RH
K 1/p
_ CHEZW{Z / 2k(z z“‘/'k * (s, )||Lpdv</R exp(—p22 1xn)ﬂlxn) } L @)
53— 75,0k -
< CZZ( ') 2Ym ‘/ 2’<(t—s)>2 ”W ® i s, )HL’ dSHL Ry)
< me
keZ
(-5
< C;ZZ 2 ZZW ||1//k *h (s, )HL" LI(Ry)
7 meZ
< C”hHFI/Z 2 g, B‘ LR 1y
(6.8)

Meanwhile the second term L; is the space-dominated region and letting &, (¢, x") =
¢m(x") * h(t, x"), we apply again the Minkowski inequality, the Hausdorff-Young
inequality and (5.3),

||L2||L‘(1R+)
m— 2k p 1/p
=c| Y f (252" "o fi hn (5. ) ds} dx, )
VE Ry k;;n ) r (2K —9))? o ”Lf, " L{R+)
=c| Sy 2t
meZ k<2m
2k 1/p
s, - d(/ —p2" " xa)dx,)
/Hwk(rfs))z e ug ds( [, o2 odn) L
k
S Y20 Y gt f ﬁ||hm(s,.)|wds )
mez k<2m +
< C|h ; .
=<l HL'<R+;B;,+II’%<R;%7‘>>
(6.9)

From (6.6), (6.8) and (6.9), the estimate (6.3) is shown. 2
We then prove (6.4). Similar way to (6.6) from (6.5), we split P2N into the time-like
region and the space-like region;

P (1) < cZz”"( / [ome) o D0 >0 W)k

meZ JEL|j—m|<1,k<2j
— - T 1/p
(! h(t d
X Yi(®) x 6, % (J)Hmwl) Xn

scy | ¥ %

me7Z k>2m—2|j—m|<l1

[

Ll L @®y)

2 Up to this level there is no restriction on p nor s.
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+C225’"H ooy

mez k<2m+2|j—m|<1
[

=M + M. (6.10)

L? lLr@®3y)

The first term M of the right hand side is the time-dominated part, letting 4 (¢, x N =
¢ j (x")*h(t, x"), we apply the Minkowski inequality and the Hausdorff— Young inequal-
ity with (5.3) as well as the almost orthogonal estimate (5.5) between ¢, and Wy i ;
in Lemma 5.2 with m =~ j. Then setting 2" x, = X,, the first term of the right hand
side of (6.10) can be estimated as follows:

|| M, ”L} (Ry)
S [ X (o
|z ([ 1S )
) r, L N aminGm |, |y ¥
k p 1/p
x 25 7” } d
[N ) e
<cC Zzsm(/ {(szlﬁfmué/ Hw B (s, ) Ly
2 ki k * Np(s, » >~7N
ot r. N (2K (2 L/ {|Xul)
o I/p
x 2~ mm(j,m)din>
LRy
k
< || 3025 3 orlhomip mints ’">2""/ 7“%( % h(s, )
— k p
keZ meZ (2 (Z L[ L}(R+)
X DIFEPAEL (22 =5 22 4 m>2%<§*m>)
keZ m> m<2
Xzsm/ -
<2k(z " b L|<R)
1 1 1
< CZz‘TTnV‘Zz*“*?""”‘zm /72,( ‘ m
keZ meZ (2% Ly L,‘(]Rg)
1 1
< ¢ Y29 gy x his, o, =c|n| 2
kEZZ (s) B;A](IR_’E,_I) L,](]R ) ” ” 2 2p (Ry: B‘ ](]Rn 1))
(6.11)

where the estimate is valid even for p = 1.

On the other hand for the estimate M5, we proceed a similar way to treat M.
Exchanging the order of the summation of j and k and setting & (¢, x') = ¢;(x') *
h(t, x"), it follows by changing m — j — m and (6.10) that
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M2

IA

m 2k 1p
QL (/ { 2"1|an\> / GG — o I )”L"‘“} )

meZ k<2m+2
1 1/p
h d —d
/ 2k<r @ e el SUR @ PN "")

2\m /
R

LI (Ry)

IA

me/é T k<2m+2 LI (Ry)
(changing the variable 2" x,, = X,, nd choosingpN > 1)
DI REDY 27’”’f72k(t | (/ — Ndxn>'/p
meZ. k<2m+2 R’y (%P LI(Ry)
D3OI | IO =cuh>|1
€L k<2m L (R+) LIR:B, 7RG
(6.12)

Here we notice that there is no restriction on p nor s. In the last estimate, we exchange
the order of the integration in time and the summation of m and k and use the Hausdorft-
Young inequality to remove the convolution with the time potential term and then
recovers the time integration out side. From (6.10), (6.11) and (6.12) the estimate
(6.4) is shown. This completes the proof of Lemma 6.1. O

6.2 The boundary trace estimates

We show the optimality for the boundary trace estimate which is required for estab-
lishing maximal regularity. This shows that the condition on the boundary data in those
theorems are not only sufficient but also a necessary condition (see for more detailed
estimates for the boundary trace [28, 32])

Proposition 6.2 (Sharp boundary derivative trace) For1 < p < ocoand—1+1/p < s,
there exists a constant C > 0 such that Sor all function u = u(t,x',x,) €
wl 1(R+,B‘ I(R ), Au € L'(Ry; B S AR with 3y, u(0, x', x,) = 0, it holds
forall £ = 1 2,....n that

sup |0y, u(, x| 1o

L
2p

xn€R4 FooP Ry 5’Y L R1=1y)
< C(||8tu||L1(R+ IO L PR ))) (6.13)
sup |3 u (-, - x)|| - = CllAullpi g, by @y (6.14)

LU(R .BS TP (Rn—1
X,1€R+ ( +> p.1 ( ))

Remark If a frequency projection upon the time-dominated region
Pyj<kd [, X x) =) Y Wi ¥ 90 % On St 5 ) (6.15)

keZ 2j <k

is operated to the left hand side of (6.13), then the spatial end-point exponent p = 1
is included in the above statement, while the estimate (6.14) is valid for p = 1 (cf.
[39]). Hence if we combine the both regularities of the trace side, p = 1 is available.

See for the proof of Proposition 6.2 in [38, Theorem 7.1].
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7 Maximal regularity for the Stokes equations

To show Theorem 2.5, we show maximal L!-regularity for the pressure term.

7.1 The estimate for the pressure

We recall the notations for the potential (5.6) for the pressure Vg that is shown in
Ogawa—Shimizu [39].

Proposition 7.1 [39] Let 1 < p < oo and s € R. For given data

T . sl
He Bl 7 Ry By (R NLI Ry B, " (R,

there exists C > 0 independent of H such that the pressure part q of the problem (2.7)
satisfies the estimate

)

(7.1)

1Vallo1e, 55,y =c(iHn o +1H| »

1
22 ' 5 P —
Fey o0 Ry B (R1) L'R:B,, "R

To show the pressure estimate (7.1), we use the potential expression 7y (t, x', x,) in
(5.6) and the Littlewood—Paley decomposition of unity (3.3);

qu * (T[(tax/?xn))
(x",xn)
= {m—1(xn) (;k)d)m(x/) (*/) E E 7k, j (¢, x', xp)
n X

keZ jel

+fn ) k) DY (X x). (72)

keZ jel

Concerning the first term of the right-hand side of (7.2), we estimate that the convolu-
tion with ¢,,_1(x,) can be treated by the Hausdorff—Young inequality in x,-variable.
Note that the potential 7 (z, x’, x,,) has the even extension in x, € R and hence the
LP?(R’} ) norm of the term is estimated as follows:

/ /
1 % X *n-t,x,x)‘
Hg’" 1<xn)(¢’”( )y € 2 LP Ry LP (R
S ”é‘mfl ||L1(R+,x”) H¢m (-x/) (;k/) T[k,j(t’ xl» xn)|’L"(R+,xn;L”(R"71)) (73)

< C||pm(x" & 7k, (X', xn) ”LP(RJr,xn;LP(Rz,_I))

and we apply Lemma 5.3. Concerning the second term of the right-hand side of (7.2),
the number of overlapping supports of the kernel ¢, (x") * ¢;(x) is limited in finite
(x")
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numbers, i.e., [m — j| < 1 and we apply the almost orthogonality of the second type
stated in Lemma 5.4.

Proof of Proposition 7.1 Let the boundary data H(t,x’) = (H'(t,x'), H,(t.x")) is
extended into ¢ < 0 by the zero extension. From (6.1),

D, * Vqg,x',x,) =, (n’ )
T 2 T

2 keZ jeZ

Z Z (nk](t*/)H),

keZ |j—m|<1

(x xn)

and observing the estimate (7.3) we divide the term into two terms.

IVallL gy @)

< CHZ””([ [onte) % 3= 30 mjxm) x HEX)

kEZ |j—m|<1

e H Ezm <( /1; H (¢m ) o (‘X/D(f')

1/p
P
30N m s xn)) 5 HEX) L’)(Rl;/_])dxn>

keZ |j—m|<1

» A\
Lt’(leT‘)dx">

L} (Ry)

LI (Ry)

=[P ”L,‘(Rg + ”P2||LI](R+)5
(7.4)

where we use the inner product-convolution -* defined by (2.11). Noting that the data
H is divided into the time-dominated region k > 2 j and the space-dominated region
k < 2j, respectively, as

H(t,x)=> " Hej(t.x)+> Y Hij(t.x),

keZ 2j<k keZ 2j>k
where we set

Hy j(t,x)) = Yr(0) % ¢;(x') % H(t,x),
(1) (x")

Hi(t,x') = ¢;(x) & G x'),
xl

@ Springer



T.0Ogawa, S. Shimizu

and we use q’;j =¢j-1+¢j+¢j+1and ¥ with a similar arrangement. Then noticing
o; (*) b =0, Uk (*) Y = Y, and Proposition 3.2, we divide Pj(¢) into L and L,
x/ t

to have the following:

Pi(1) <C ) 2™

meZ

+C szm

=L+ Ly,

) 2 D0 D i) x, i )|

k>2m |j—m|<1

o) 1 30 30 mxm) o H ()

k<2m |j—m|<1

Lr R“, ]) LP(]R+ . )

n—1
LP® O N e Ry )

(7.5)

where {7k, }x mez is defined in (5.6). For the time-dominated part L1, since k > 2m,
we apply the almost orthogonality estimate (5.8) in Lemma 5.3, and the estimate can be
obtained in a very similar way to (6.8) and (6.9). By the change of variable 2" x,, = X,,,
it holds that

, » 1/p
Iy, <e| Z2o([ 12 /Ran.m«*s’x ), ool )

LI (Ry)
—c (T )
k _ m
mez k>2m R <2 (t S)
—lm - 2 2 R
x 277 (/ ((1 it )e_*”/) dxn)
Ry LI (Ry)
<l S asmpa-m /
- Z Z 2k(t L,, 1
meZ k>2m x L,(R+)
<y 210y / Z ”wk % Hu(s, |  ds
k(s — o)\2 2 4
= R (2 (t -0 e, EO AT
k 1 —~
<cY 230y z""j % Hy(s, -
<cy > o2l ORI Y
keZ mez o WL (Ry)
=cla] -y :
FRP Ry:BS  @®1)

(7.6)

On the other hand, when k < 2m, for the space-dominated part L, applying the
almost orthogonality estimate (5.9) in Lemma 5.3 with using the Minkowski inequality,
the Hausdorff—Young inequality, we obtain

IA

Zzsm</ { 2m(1+(2mxn)n+2)ef(2m’1x,,))

meZ R+

22m P
— | H,, (s, - dst d
X/mzm(r—s»z LRI x”) L@

3 smymy—" </ ((1 +’Es+2)f?n/2>hdin
R

meZ +

H Ly ”L,‘ (Ry)

1/p

IA

C
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22m ) p
{/RWHHM& ')||Lf/ds} >

x
LI (Ry)

<C Z s 1=Fom H 2 H | Hn (s, )| r

- meZ @2 @) b Li(R+)

= C|H]| o (7.7)

_1 .
L'Ry:B,, T ®™Y)

In the same way for P;(¢), we decompose P(¢) into the time-dominated region and
the space-dominated region.
» 1/p
LP(]R:_,’I)dxn)

Pyt) <C Z 2sm(/R

{m(lx )] * Z D (xn) *) TTk,m (t.f’) Him (2, X/)‘

meZ k>2
| 1/p
+C22&m</ﬂ~§ H(m |x D) >k Z ¢m(Xn) * JTkm ,* Hy(t, x )) Ll’(]R” 1)dx)
meZ +
=M + M.

(7.8)

For the time-dominated part M, using the Minkowski inequality, the Hausdorff—
Young inequality, and also using (5.10) in Lemma 5.4 (1) (the second almost
orthogonality), we have

(1 “L}(RJr) = CH > 2"
me

" P 1/p
</R+{ Zm (2’”2)(”) / <2k(t2_ )2 Hwk * Hpy (s, )H S} dxn>

k=2

Z osm

mez

1/p
({ Z [ Zk(t 2”‘#1( Hpn (s, )HL” } /R+ <;I;IN2_de,,> !

k>2m
'/ T or t_s) Hwk % Hy s, >HLP

<cy ) 2= pmpsm
22(1 )2 Z 2smH1//k % Hpl(s, )HLP

keZ k>2m
keZ L Ry

=clH| ,

LIRy)

=C

LI Ry)

LI@®y)

<C

(7.9)

1
’T
F 7P Ry By (R '))

N\

The space-dominated part M5 is estimated in the similar way as M. Applying the
Minkowski inequality, the Hausdorff—Young inequality, and using the almost orthog-
onality (5.11) in Lemma 5.4 (2) for k < 2m, we have

Z zsm

meZ

”MZ”LZ1 Ry) =

@ Springer



T.0Ogawa, S. Shimizu

1/p
1 ||Hm(v x)HLp ds} dxn>

(/ /H¢m(xﬂ) * Z 7Tkm(t—YX Xn)

n) i om L} (®4)
om 1/p
C 25m d
. H Z (/R+{<2mxn> / <22'"<r Tl ’"(S)H S} X"> L)
22m 1 1/p
sm m = . .
= H Z 202 22}11([—5)) ‘H’”(A)HL)‘C’/dQ(/R+ (2mx,)PN dx") LR
. _1 22m
<cyomtom| [T g )
XE:Z R (227 (1 — 5))2 | H e
(s+1—=Lym
=C 2 P dm o HO|
n%:Z H (x’) HL.IX, L}(]R+)
= C|H]| 1oL : (7.10)
LI®R4:B,, 7 ®)
Combining all the estimates (7.4)—(7.10), we obtain
19411 e,r @y < Cu (I 4 p FIHL ),
(i (D) B Ry B (R1)) LI®:E), P @)

The restriction on the regularity exponent s stems from the structure of the homoge-
neous Besov space stated in Propositions 3.1-3.3. O

The following estimate is the sharp trace estimate and it is required for showing
maximal regularity for the velocity part of the Stokes equation.

Proposition7.2 Let 1 < p <ococand —(n—1)/p’ < s < (n—1)/p. Given boundary
data

1
H€2

1 .v+1,l
TRy B RTY)NLR B, TR,

p,1

let g be the pressure term defined by (4.9). Then there exists a constant C > 0 such
that the following estimates hold:

lq1s,= OH < CHHH , (7.11)
(R+ B‘ L(R1=1) (R+ BV G R )]
||qlxn=o|| - <C|H| Gl (7.12)
L'Ry:B,, P ®) L'Ry:B,, 7 ®Y)

pl

Proof of Proposition 7.2 Let {{;}rez and {¢;};cz be the Littlewood-Paley dyadic
decomposition of the unity in # € R and x’ € R"~! variables, respectively. For
simplicity, we assume that g € So(R"~1) and show the estimates (7.11) and (7.12).
The results follows by the density So(R" ™) B;,l (R"*~1), where Sp(R"~ 1) denotes
the rapidly decreasing functions with vanishing at the origin of their Fourier images.
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Then the resulting estimates follows from the following bounds.

* p (TRN— k * H )
i 2 67 % alyolliran| ) = €l x 67 5 Bl |,
(7.13)
. - < cligs % Hipe),, . - 7.14
H ¢ o q x,1=0||Lp(]R I)HL,'(]RJr) <C|l¢; & I 2r®e-1) L) (7.14)

Indeed, admitting the above estimate (7.13), the Minkowski inequality yields

lal,—o ||
. B R
< CZZ(TE)]‘ZZW i * ¢ * Hllpoga-1,
keZ jez ® 7« LI(Ry)
=ClH| 4o

Ffl Ry B (R

which implies (7.11). The estimate (7.12) also follows from (7.14) in the similar way
as

s+1=yjy H
Hq |x"=0||L1(]R+;B:—1| 1 ) <C ” 22 Z ||¢] (;",) HHLP(Rnfl) LR
=C|H]|

Ls+1— 1 .
L'®Ry:B,, " @®)

To see (7.13), from (4.9), it follows
Wk(f)% (;’j) q(t,x’, xn)|xn:()

=cCui1 // ei”“x’f/{BJr & |(23(i§’.ﬁ’) - (Ié/|2+32)f7n)} (7.13)

D(z, &)
Vi (T)¢;(ENdTds’,

where symbols B(z, §') and D(z, &) are given in (4.6) and (4.7) and the support of the
symbol on the right hand side is in an annulus domain and hence there is no singular
point in both 7, |&’|-variables and it gives a smooth symbol.

For the symbol of the gradient of the pressure, we recall the symbol B(z, &) =

Vit + |&'|2 defined by (4.6). m]

Lemma7.3 Leto € R, ¢ e R" Y andk, j, € € Zy.
(1) For the time-dominated region k —2j > 0,

1

2573 < |B(2%0,2/")| < (20)!/425 . (7.16)
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(2) For the space-dominated region k —2j < 0, there exist constants 1 < C indepen-
dent of j and k such that

271 < |B(2¥0,27¢")| < C27H4, (7.17)
In particular, there exists a constant ¢ > 0 such that
¢ <Re B(t,&). (7.18)

(3) Let D(t,&’) be given by (4.7) and let k, j € 7Z and 27" < o, |¢'| < 2. Then it
holds that

k_1

2371, k—2j >0,

. 7.19
2/=1 k—2j<0. (7-19)

w@%JQ5+ﬂwuz{

Proofof Lemma 7.3 (1)Inthecase whenk—2j > ¢ > 2,byusing2~! < |o|, [¢'] < 2,
it holds that

BQYo.21t) =2ibr.ta)l _y =28 io + @ ERIp
a=

: k
Ak 4] s ik 4 i 1 2%
=22. o +(2/ 2|§/|) exp (Etan W),

and (7.16) follows immediately.
(2) In the case when 2j — k > £ > 1, it holds that

2712 <2 IO P < B2Re 21
=2 .4\/22(/{72]')02 L < Q22 4oL 9 < 5149

The constants ¢ and C can be takenas ¢ = 1/2 and C = V5.
(3) In particular, the argument of B(z, &’) is less than %, (7.19) follows immediately.
O

In (4.10) and (4.11), we see that the common factor of the both symbols contains

B+ _ B+ ¢ _ (B + €)D"
D (B—g'])’ +4lg/1B2  (T) +4E'|B*(B + [&])°

(7.20)

and the only zero-point of the denominator is T = £’ = 0 and properly away from 0
under the support of Littlewood—Paley cut-off functions (see [50, Lemma 4.4]). Hence
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ink —2j > 0, we see that

‘ B(2k0,2%¢"y + 2717

YT Y k 2j
Do E (-2-2/1K'1B@F 0.2 |c|)|§|)‘

B(o, 22 k¢y 4205/ ' N
- (B P i patio 2 )| = o)
D(0.25¢) €%
Analogously for the space-like region k — 2j < 0, we see from (7.17) that
B, 2M 10"+ 2718 2j 4112
k i . D% ~ . 7.22
‘ D(2%6,2/¢") ((12 otz )> 0w "

Those bounds enable us to treat the operator given by (7.29) is L? (R"~!) bounded in
x’ and L' bound in #-variable. Thus the estimate (7.13) holds forall 1 < p < oo. This
completes the proof of Proposition 7.2. O

7.2 Estimate for the velocity

Once we obtain the estimates for the pressure Vg to (2.7), the required estimates for
the velocity v, of the solution to (2.7) can be obtained by establishing the bounded
estimate for the singular integral part of the fundamental solution in (4.12) and then
applying maximal regularity in Theorem 2.1 for the initial boundary value of the heat
equations (4.1). Then the estimates for the rest of the velocity components v, follow
from the estimate for (4.14) and the pressure with (4.15) (cf. [37-39]). To this end, we
prepare the following estimate.

Proposition7.4 Let1 < p < co and s € R. Let my (1, §') be the symbol defined in
(4.10) and let My be the Fourier multiplier operator defined by

MyH = pv.cugi // TN E gy B dTdE
Rn

forany H € Fl/2 1/(2p)(R BY (R MYNLY(R,; B Y-H l/p(R” YY), Then it sat-
isfies the followmg estimates:

/2 . < 21/ - .
”M\PHH Fll,/lz l/(zl)(R+;B;,11(R"71)) = C”H”Fll,/lz 1/(21)(R+;B;‘](Rn71))7 (7 23)

|MuH|,, < C|H]|| (7.24)

Ry 8@ L' ®y: By 7P @)y

Proof of Proposition 7.4 The proof is shown in an analogous way seen in the proof of
Proposition 7.2. Noting

Vi @k Myl = pcng //R MTHE (1) (Eymy - H)drdE'
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— pV.Cns1 f /R T g€ Gr0)F € Bdeds

where 1; and 5 are defined by (3.5), it suffices to show that

10 (v © )1 | c, (7.25)

=<
LI (Ry)

C, (7.26)

1Myl =
H il w1y L®y)

then immediately by the Hausdorff—Young inequality, we obtain

[0 - (e @5 5 B ooy |, = €I x 85 % Hllooo
(ORI ( (")

LIRy) — ) LIRy)

(7.27)

My - (67 % H)lspgn ‘ §CH|| s Hllp oyt H (7.28)
H (¢ ) Mo LRy i & Hleren] g,

and the estimates (7.23) and (7.24) follow. To see (7.27), it follows from (4.10) that

B (B+E])

my(r.€) = === (=282 + ' ig 20¢) (7.29)

where symbols B = B(t, &) and D = D(z, §') are given by (4.6) and (4.7) and the
support of the symbol on the right hand side is in an annulus domain and hence there
is no singular point in both 7, |§’|-variables and it gives a smooth symbol. For o € R
and ¢’ € R" with 1/2 < |o|, |¢'| < 2.Fora > 0,0 € Rand ¢’ € R"~!, the estimates
(7.16) and (7.17) give the bounds when k > 2j + 4 that

~ 0@ 518l (7.30)

my(t, &

~ 0@, 'af,mw,s’)
for || < 2. Analogously for the space-like region, we see from (7.17) that

~ 0@~ /1Al (7.31)

o mu(t, s/)‘ ~ 0@ M1, ’af/mu,(r, &)
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for || < n. Those bounds enable us to obtain the estimates (7.25) and (7.26) by
integration by parts and (7.30)—(7.31), we see that [x'| > 1 and |z| > 1,

[ (v © )| < / / TE YT (007 @) (m (1, 8) Fr(0)§; (6 )ddE

a=2,|B|=n

// Rlito+2ix' ¢!
0

xR ((0,) @) (mw (0. ¢ (Wro(0)do(E))

C
12 |)C/|"

= 12|x/|"

a=2,|Bl=n
C2k+(n Dj — ~
S ST f / (0)* ()P m (0, Y Fo(@)do(c) | dode’
ZIﬂI n
C2k+(n—1)j
= PRI
(7.32)

Thus the estimates (7.27) hold for all 1 < p < co. A similar argument implies the
estimate and (7.28) also follows. This shows the proof of Proposition 7.4. O

Proof of Theorem 2.5 Let the boundary data satisfy the regularity assumption (2.9).
First we consider the n-th component of the unknown velocity that satisfies the initial
boundary value problem (4.14). The direct application of Proposition 7.1-7.4 and
Theorem 4.1 yields that the solution v, (¢, x) to the problem (4.12) (and hence (4.14))
fulfills the following estimate:

Hatvn”Ll(R+ B‘ (R + ||D vn”Ll(R+ B‘ L(RL))

= C(10na 101y ey + IHI 3oy IEL )
Ry:By, 1 (RL)) Z (R+ B: LR Ll(R%B’:]] P (re-1y) (733)
=c(lH| -4 + HHII i .
B Ry B‘ G @®) L'®Ry;B,, 7R
The other components of the velocity fields v/ = (vi(¢, x), va(t, X), ..., V1 (¢, X))

satisfy the initial boundary value problem (4.15) by the pressure and the n-th com-
ponent velocity as the external force and boundary condition. Similarly to the above
estimate, we have from Proposition 7.1, 6.2, Theorem 4.1 and the estimate (7.33) that
the solution vy (¢, x) to the problem (4.15) has the estimate
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. 2 .
HafW”Ll(R%B;,I(Ri)) + “D U“lLl(R%B;,l(Rﬁr))

<Clegl g, gy + IHel 11 )
e Bl R B R LIEEB,, P @)
+ [ 0¢val o Ao +loeval ool o an
PP (R B 1)) LI®:E), P @)
(”VCIHLI(R BS [(R)) + [ Hell 1_1 + [ Hell s1—L
" BT RaB R LIR:B), T @)

+ ”atvnllLl(R+ Bé L(RL)) + ”v vn”Ll(R+ Bs I(R )))

<C(IIH| 1 + 1H]| 1= d .
Foy P Ry B (R1) L'R4:B,, " @)

N‘__

(7.34)

In fact, one can apply the analogous arugment to obtain the above estimate for the
velocity vy as the way of v, with using the expression (4.16). Combining the estimates
(7.33) and (7.34) forall £ = 1,2, ...,n — 1 as well as the pressure estimate (7.1) in
Proposition 7.1, we conclude that the desired estimate (2.10) holds.

Conversely, if the solution (v, ¢) to the problem (2.7) exists, then it holds by letting
f by v in the trace estimate (6.13) of Proposition 6.2 that

IIHII +I1H]l s1-1
(R+ B, | (R1)) L'®Re:B,, "®)
<ZIIVvll +2(Vo|| t1-d
T s P
" (Ry:B5 (R 1)) LIR4:B,, " @®1)
+Hq|xn o|| b +lato=ol s
PRy B R L'Ry:B,, " ®-1)

(||3f”||L1<R+ gy @y IV, e @y + 1V Ry b @)

+ g L= 0|| + [ Lo il )
(R+ By ((R"1) L'Ry:B,; " @®h)

This shows regularity for the boundary data is necessary. This proves Theorem 2.5.
]

Proof of Theorem 2.4 Applying the maximal L '-regularity result to the initial-boundary
value problem of the Stokes equations with the boundary condition, we obtain end-
point maximal L'-maximal regularity from (7.33), (7.34). Hence by combining the
maximal regularity estimates for the problems (2.6) in [36] (see also [35]), (2.7), (2.8)
and the estimate (2.10) in Theorem 2.5, we obtain (2.5).

Conversely, by using (7.11)—(7.12) in Proposition 7.2, (6.13)—(6.14) in Proposition
6.2, we conclude that regularity for data is necessary for the existence of the solution
(u, p) to the Stokes system (2.4).
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Concerning the uniqueness, we invoke the standard argument (see [52, Theorem
4.3 and 5.7]) for the half-space. Under the assumption —1+1/p < s < 1/p,let (v, q)
be a solution of the Stokes system (2.4) with vanishing data with regularity given in
Theorem 2.4. Let ¢ € C/QOO (R x R ) be supported in (—1, T') x R’ with its extention
5 to R x R” satisfying 5 (t,0) = 0 and let (v, g+«) be a solution of the adjoint Stokes
system except the pressure sign with external force ¢ with the regularity class

€ W”([;B; ")) N LI B SP®RL))
1 1

CCb(I;B (R ) for —14+— <5 < —.
p p

The regularity (7.35) is ensured by our existence proof. Here we note that B (R C

R ~ (B* l(R’jr))*, where —1 + 1/p’ < —s < 1/p’ with the subset of the
dual space

ve € Cy(l; B)* (RY)) C LU B (RY)). (7.35)

Let x (x) be a smooth non-negative cut-off function with supp x (x) C {x = (x/, x;,) €
R, x" € R* 1 1 < x, < 2} and set xg(x) = R 'x(R'x) for R > 0. Let
I=(-1,T)and -1+ 1/p <s < 1/p (e, —1+1/p' < —s < 1/p’). Using the
mean value theorem we see that

‘// Q(fsx)XR(x)U*(t,x)dxdt‘
1 ]Ri
<C(lab=ol | ur
Ll

;pl
X supZZ si

||¢/ * U*([)”Ll, (Rn— 1)

7 @o-1y) +1va ”LI(I:B;_](M))) (7.36)

tel LP' (R,2R)
Jje
and similarly
‘// Q*(I»X)XR(x)v(t,x)dxdt’
1 Jry
=C(lasbmol iy IV @)
LI(I;B,+ 7 (®n-1y) - (7.37)
X Su 281 * t ne .
ZE?Z 167 5 vOlr@n| e
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We then claim that

>

i kU / on—
||¢j ') >|<||Lp (R 1)

= LY (R2R)
< 2‘”” Dy x di % Villr o
= 220 2 ek @k vl @ | g,

JEL [e—jl<1 (7.38)
< =sj oF ’
= CZZ ||CDJ (j) U*“LP (Rn=1y Lp/(R,ZR)

JEL

=<

C“U*”B;/SJ(R'_;_)

and the left hand side of (7.38) vanishes as R — 00, since —s < #, v, can be approxi-
mated by C&"O RY) = { f e CrMY):; fx) = fxX)(xn > 0), properly extended into
xp <0, f(0) = 0} functions {v} in the norm B;,S L (R), pointwisely over /. Maxi-
mal Ll-regularity for the solution v, € Wl*l(l ; B;,S 1 (R%)) gives translation invariant
in f-variable and it provides that v, is uniformly continuous, the approximation and
the convergence can be uniform on /. Hence the right hand side of (7.36)—(7.37) con-

verges to 0 as R — oo which justify the integration by parts (see [39] for the case
—141/p < s <0). Analogously, one can find that

‘(CIIx,,=Oy U*|x,,=0)]R><]Rn*1 §C||Q|x,,=0|| , ..S+17% - ”U*”Cb(I?B:/Sl(R'J'r))’
B, @) .
(7.39)
|@lymo, V0ot < Claslumol s Il @)
LB, 7 @)
(7.40)

for all range of —1 + 1/p < s < 1/p and the dual coupling of the boundary trace is
also justified. The above relations ensure the following argument remains valid: Using
(7.35) —(7.40),

(U, PIrxrr = (V, =0 V% — Avs + V@u)rxrn
= (v, )Rz + (VU + (V)| = ¢, Vo) ryrs
=9V, ve)rxrr + (AV + Vg, vi)rxRrr
+ (T, q) - €nlx,=0: Vilry=0) g, gt
=(0v — Av+ Vg, vy)rxrr =0,

from which and the Hahn—Banach extension theorem, we conclude v = 0 and hence
g =0by Vg =0in R’} and g(-,0) = 0 by (2.7).
This completes the proof of Theorem 2.4. O
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8 The linear and nonlinear perturbation estimates
8.1 Estimate for the extension function of initial surface

First we give an auxiliary estimate for the extension function given by the initial surface

no-
First we show the estimate for the extension function E defined in (1.15).

Lemma8.1 Letl < g <ocoandng € BlHn D/a (R™~1). Then there exists a constant
C > 0 such that

IVE| 2 < ClIVnoll - (8.1)

n—1 .
01 (R Bq,‘f ® 1)

The above estimate is one of maximal regularity estimates for the half Laplacian
heat semi-group in view of (1.15).

Proof of Lemma 8.1 Let us extend no(x”) into the whole space R” by regarding x,, < 0
as

VE(x', xp) = (sech(x,|V')V'no(x"), sech(x,| V')V [no(x"))

where €9 > 0 is chosen properly small, which is one of a proper extension in x,, € R.
Then the above estimate can be proven by the restriction of the estimate for E. To see

n—l
the estimate (8.1), we employ maximal trace regularity. Since V'ng € B 1 R b,
Vo =Y ez @m * V1o holds in S’, where ¢,, denotes the L1ttlew00d—Paley dyadic
decomposition in R”~! and it follows by the relation between the supports of the
Fourier images of ®; and ¢, that

IVE| 2 = =Y 24/

[®) . Gseeh(ul V') 3 g (V7 1V Do,

,1 jez meZ
= 3 28[E; e echul ) 3 dw o (VL1 D0
jez () m—jl<1

61 % sech(lVD@n % @5 % (7 1V Do |,

-y ¥ 2

JEZ|j—m|<1

NI

JEZ|j—m|=<1
=l +11.

0 % (seeh(u[VD@n % &5 5 (V1Y Dno))|

(8.2)

Then for the ¢-th component of the first term of the right hand side of (8.2) can be
seenforall £ =1,2...,n — 1 that

j 1/q
e =2 320 g5y, e DsechCual VDB % 9o goor o)
JEZL
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n; ~ 1/q
J / X R q
<cyoos ( fR I(sechCnl VD)) % 5 % T
JEZ
n; ~ l/q
< C ZZ‘IJ(‘/I\g ||Sech(xn|v/|)¢j”Z](Rn—])”(ﬁj (;k/) 3@’70||‘£q(Rn—1)an>
JEZ

n ; 1/q
<C qul(/ 672/(1|Xn‘dxn) ||¢j (>|</) 313770||L61(R"*1)
X R *
JEZ

n; 1
<CY 24727l ||g; &, demollzagnny = Cldenoll acs
jez *) B, i ®"
where we set q;; =¢j—1+ ¢; + ¢;+1. The estimate for the second term /7 is along

the similar way.
Finally, we confirm that

VEX', xp) = cn_l quj x VEX . x,) inS,
X', xp)

JEL

which is justified by the argument found in [35, Proposition 2.1]. Indeed, noticing
Flsechax](&) = a‘lsecha_lé fora > 0 and secha‘lé is bounded and converging
to 0 around a =~ 0, by making a coupling with ¢ € S that

-1 . (!
sl Xor x VEC w0, o)

»Xn

JjEZ
= —s( Y d(€ (D sech(enlg1THREN, e F F ! [Vo))
JEZ
= —s (gD sechlg' I THRE). ' Y€ e F o),

J€Z

= s Fo [sechCulg DDED |, Vo) =s (VEW 00, )

8.2 Estimates for the linear perturbation

We now consider the estimates for the linear variable coefficient terms defined in
(1.24)—(1.27). All the estimate is based on the bilinear estimate in the homogeneous
Besov space Proposition 10.3. See Appendix below.

To show the estimates for the linear variable coefficient terms, we prepare the
following basic lemma.
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Lemma8.2 Forl < g < oo, let E(x, xp,) is given by (1.15) and assume that for some
small g9 > 0

Vol » < &.

Bq‘{ (Rr=1)

Then there exists a constant C > 0 such that

e P o= P =
1+3nE ey | T VER 88, @’ T+ IVER 58

< ClIV'noll (8.3)
B, i’ ®

where V' = (81, 92, ..., 0u—1)".

Proof of Lemma 8.2 To see (8.3), we use the Taylor expansion of

k=1

n

and noticing that B ;’1 (R%) is the Banach algebra, it follows from Lemma 8.1 that

o
H H s < SIVEL, < CIVnoll
1+8 Elg! ®) kzz; B (RL) Bql ®r-1)

The second and third estimates follow in a similar way. O

Proposition 8.3 (Estimates for linear variable coefficient terms) Letn >2and 1 <
p < 2n Foru € C(Ry: B, ™ ®Y)), du, D?u, Vp € L'(Ry: B _1+"/”(R )
and E defined in (1.15), let f(u,p,E) = fu,E) + f(p, E), g(u E) and
h(u, p, E) = h(u, E) + h(p, E) be the terms defined in (1.23), (1.24), (1.25), (1.26)

and (1.27) respectively. Under the assumption IIV’nOIIB(nq)/q ®"1) is small enough,
q.1
the following estimates hold: For 1 < g < pn/|p — n|,
If (. p. B)] h
L'Ry:B,, " (RL)
< ch’nou N (2T e | 7 TP |
B,7 @) L\Ri;B,, P @) L\Ry;B, | P ®RL)
(8.4)
IVe@.E)I i
L'(Ry;B,, T (RL)
<CIV'noll wr D%l n (8.5)
B, 1 ®=1) L'R+;B, (R+>)
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[, V(=A)" g(u, E)|
1 P
L'Ry:B,, " ®RL)

| D?ul|

< CIVl ot (Nl s - )
i] (Rr—1) L (RJr, pl (RY) L (RJr’ Pl (R

& (8.6)

Forl <g <pm—-1)/n-p (1 =p<nadl <qg < pn-1/(p—n)
(n < p < 00),

Bl gy
Fl,, "®Ry:B,, 7 n-1y)
=CIV'moll s (ol | 1 (P2
‘11 (R—1) L (RJr, (R)) L'(Ry:B Pl RY))
+ ”p'xn*()” i_.L —14+24 + ”p'xn:()” 1l )’
F12,1 2p (R-%—»B,, ll+p( l)) LI(RJr;Bp,]l) (R”_l))
8.7
|nu, p, )|
L'R4:B), " ®Y)
=CIVnoll et (113 o 12071
B, 1 ®=1 L'Ry:B, " ([RY) L'(Ry:B, R)
ool gog g el ).
i Ry, S ey L'(Ry: B, (R1-1))
(8.8)

Proof of Proposition 8.3 Recalling the definition of f(u, E) and f(p, E), and the
covariant derivative (1.18), we show (8.4) by

I f(u, p, EDI +,,
LIRy:B, 7 (RY)

. VE
< Jan (57 0)| g W)
1+, E L'(Ry:B, "(R ) 1+8n L'(Ry:B, "GR )
+azorl
1+0,E P Ll(]R+B ”(R D)
=l | g (1001,
L+ 0, ENBT Ry L'(Ry:B l(IR )

LI(R+~B% @) + “ a”p”L‘(]]h 1+ b (]R'i)))

e

2
HHBHEHBq(Ru 190173

2
+ H 1 +8 E HB" (R I u||L1(R+;B;_l,+?(R1)) + ”a"p”Ll(R B, P(]R”))>

2
<AVl (1% 8 e, >|vP||LI(R+;B;+F(M))),
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where we apply Lemma 8.1 and notice that BZ/ r (R is the Banach algebra and no
restriction on the exponents p nor ¢g. The estimates (8.5) and (8.6) follow in a similar
way.

To see the boundary terms, we recall the term into the velocity part and the pressure
part such as (1.26) and (1.27).

For those terms, we prepare the boundary bilinear estimate of space-time type. We
introduce auxiliary norms of the Chemin-Lerner type (cf. [14]).

Definition. For 1 < p, p < ooandr,s € R, the Besov space and the Bochner space

of Chemin-Lerner type B;,l (Rys B;,l (R"~1)) and L* (R4 B;’l (R"~1)) are defined
by the following norms:

= 2% 2| h ¢J o F@ ) Lr R’

B (RysBy D) = ez 59)
T e )
O

Lemma 8.4 (Multiple estimates for boundary terms) Letn > 2,1 < p < 2n — 1,
l<qg<po—D/a—-p)(1<p<nadl <q < pn—1/(p—n)
(n < p < 2n — 1) and assume that functions F and G over Ry x R sar-
isfy F e FNPPRy; B*””/P(R"—l)) N LY (R, ;B(”*”/”(R"—l)) and G €

B;O/’zl_l/Zp(R B_1+n/p(R" MHn L"Q(RJr (" 1)/‘](R” Y). Then the following

estimate holds:

IIFGII
”(R+B P(Rn—l))
F n + F n—
(n ||F T L A, 1))) 510
(o oy el )
Bozo,lzp(RJr;Bp,l P (®rr=1y) Lo®:B,p ®7)

The proof of Lemma 8.4 directly follows from Proposition 10.5 shown in Appendix
below (cf. [39]).

Since VE is independent of ¢ (using the fact that the average of v vanishes) we
notice that

” 2 _) A
V1I+ [V E]? =0 (R+;Bl)_ll+p(Rn—1))
H\/l—l—IV/EP—l

JIF|VE]?

1
o

x:OH 2 21 —14+2
B PRy, T R
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and hence applying the bilinear estimate (8.10), we obtain the following estimates:
Since 0, E |x _o = 0 at the boundary oR”",

h(u, E)|| 1_1
” || 2 21 (]R B,,] ”(R" l))
(H ez bl | RN
—1 n—=1
1+|V’ ‘2 x, =0 L®(R.:B ‘]T(R“_]) ]+|V’E|2 x,=0 L®(R.:B ‘]/ (Rr=1)
. st
(1+0,E) 1+|V’E\2 w=0lro® ;8,1 ®-1)
c(19eutanoll gy A Vel e )
L ®RGB,, T @) LY®Ry:B, ] R1)
<C|Vv n— (3 e + D2 n )
H no”Bq,lT](lR"“) ” ’u||L1<R+:B,,.]f”<R1>) H u”Ll(R+ D)
(8.11)
In very much similar way, we find that
hip, E)| 1_1 Ciyn
” ”Fﬁl ¥ Ry @iy
<C|VE| _ P | p ,,L
192l ol 5t g (Pl b0t 002
+ 1P|, _ n—1 )
Il e

The estimates (8.11) and (8.12) yield the resulting estimate (8.7).
The other estimate (8.8) can be shown in much straightforward way: Because
B;”f D/a (R"~1) is the Banach algebra, it follows directly that

B
L'(R:B, ] (R
< C|V n— \4 =
< C|[V'no x,,=o||Bqu(RH)|| £, =o| LR BTI(RH»
<clvml o (Lol e #1050 e )
B,T @) L'Ry:B,, 7 ®Y) L'Ry:B,, 7 (RY)

The case for h(p, E) also follows in a similar way. This shows the proof of Proposi-
tion 8.3. O

8.3 The nonlinear estimates

The perturbation terms for the Navier—Stokes equations in the Lagrangian coordinate,
it holds that the following multilinear estimates.
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Proposition 8.5 (Nonlinear estimates for F),(u, p, E) and Ggayy (u, E)) Letn > 2,
L<p<2nandl=q<np/lp—nlForue CRy: B _1+”/”(R )), d:u, D2u,
Vp e L (R+; B ol 1+”/p(R" )) and E definedin (1.15), let F,(u, p, E) and Ggiy (u, E)

be the nonlinear terms defined in (1.10) and (1.11), respectlvely Then the following

estimates hold provided ||V ng|| B/ a1 is small enough,
q,1

| Fp(u, p, E)| ign
g L'(RJr;B,,,ll P (®1))
<CA+IVnoll nx )
B, (R
< S UD%l* . VPl s L (813)
Z LR, P@yy  LM®B,, @)

p,1

V(1 + 0, E)Gaiy (u, E))|| 1t
L'R4:B, ! (]R’j_))

C(1+1V'noll = Z||D2u||k+l Cen (8.14)

B,{ ®" L'R:B,, " (RY)

and
[9: V(=27 (1 + 3. E)Gaiy (u, E))||
L'(Ry;B,, 7 (RY)
<C(1+ Vol na )

B, ®1) (8.15)

x Y | D*ull* . Bl ,

Z L'(Ry; B HP(R" » ' LY(Ry:B 1Jr”(R'Jr))

p.1

Proof of Proposition 8.5 To show the estimate (8.13), we see the form (1.29) that for
any 1 < p < o0,

| Fpu, p, E)|l

=1+
L'(Ry:B

o | (RL)

v(m;7(J] penis)o)

+IVE H/ Dyuds H
( I ”B‘f [(RY) Z E L®(Ry; Bﬂ(R ”p”L‘<R+;B"1(R )

||

B, @R @B TP @)
+ p.1 +

<CU+ Vol na ZMDEunk . vl _
B, 1 ®" L'(Ry:BY (RL)) L'(Ry;B (R} )

(8.16)
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Here we estimate Dgu term by its definition and it follows that

VE
HDE””L‘(R%B,?I(R’L» = ||DMHL1<R+;BF’E,’1(R"+>) * Hm "MHLWR%B,?AMD
<Ioul,, ot gt g 127
- L@ @y T+ 0E 59 @y L@, @)
Vol = 2 i
EC(I =+l 7]0||3qu (Rn—]))”D M||L‘(R+;Bp,ll+;(ﬂ¥’i))
(8.17)

Thus we conclude from (8.16) and (8.17) that

”F (H, pr E)” —1+
! L@, T @L)

\v _ D? v
( +|| 770” T Rn— Z” u”Ll(R B +I)(Ri))” p||L1(R+, pll P(R ))

provided ||V'noll n-1 is small enough.
1 @Y
Secondly, we proceed in a similar manner for (8.14) by observing (1.30), we have
forall 1 < p < oo that

”V((l + 0 E)Gaiv(u, E))” . 1+
L'Ry;B,, 7 (RY)

t
(ngw' (VE,/ DEuds> Du)
0

n—1
n v
SCO+IEL; o0 Zam\ Elyh o) DD HLI(IR Sy

<C(1+”3”E”'%<R ) |t

n
o1 (R

L'Ry; B‘ﬂ(Rw

| Du]

L'(Ry;B ” @®Y)

(8.18)

where oy (|[VE || /g 91 ) denotes a term involving |VE || n/q ®") of order at most 1.
Using Lemmas 8. 1 8.2 and (8.17), we conclude from (8. 18)

IV ((1 + 8, E)Gaiv(u, E))|| L +1,
LR+, " (RY)

=c(1+ 19l )
B ‘11 (Rr—1)

n—1
Z ||D2 k+1
k=1

L‘<R+ BT @Ry

The proof of (8.15) can be done by a quite analogous way. O

Proposition86 (Nonlinear estimate for F,(u, E)) Letn > 2,1 < p < oo. For
D e L'(Ry: B, """ (RY)), let F,(u, E) be defined by (1.9). Then the following
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estimate holds:

2n—2
| Fy(u, E)| <C ||Dzu||k+1 . (8.19)
! LI®R:E, | T ®)) ,; LRy B, RL)

The proof of Proposition 8.6 is very similar to the proof of Proposition 8.5 (cf. [39,
Proposition 5.6]). Since

F,(u, E)=

div (4D (I Dpn ™t = )T (I DE) ) V) + div (((Dgw ™ = 1) (J(DE) ) V)

VE _ _ _

~raE (10 (e~ = DT (I DET) Vu)
VE _ _

- rar (Vg0 = 1) (I DB V),

those terms are divergence form and the estimates are reduced into the multilinear

estimate over the Banach algebra Bn/ p (R%).
We finally treat the boundary nonhnearltles as follows.

Proposition 8.7 (Multiple estimates for boundary nonlinearity) Letn > 2,1 < p <
n—Ll=sg=pn—-1/n—-p)(A<p<nandl <q<phn-1/(p—n)

(n < p < 00), and assume that functions u and p satisfy u € C(R+, ;11+"/p (R%)),

du, Du Vp € L'\(R,: B *””/P(R )) and V'no € By, DiaRe=1y pl. o e
FVP Ry B*”"/P(R" NN L (R+,B(" ”/P(R" 1)) Let H,(u,E) and
H (u p, E) be the boundary terms defined by (1 31) and (1.32), respectively. Then

the following estimates hold provided ||V'no|| BO=D/4 ga-1) is small enough:
q.1

Hu (e, ED 11
7 Ry Bm 7 go-1y)
2n—1 &
CU+IV"nollams (ol + D%l )
( qu? @ n—l)) 1; L'(Ry; Bp] 5 (R")) LY(Ry; B 5 ®R"))
(8.20)
| Hy (u, Dl =1
LRy B,,’{ ®=1))
2n—1
<C(1+Vv n0|| =t Z 1 D%ul* ) (8.21)
L' (Ry: Bl,, G (R’;))
1Hp (. p. E)II 1 it
E T RyB,, 7 -1y
sCtvml s H(Ipbsoll g g el e )
B, ®! fl % (R%B,}ff” (R1=1)) L'(Ry; B,,'{ R=1))
n—1 r
x Y (1ol T L ISP (8.22)
L'Ry:B,, 7 (®L) LB ®L)
k=1 P, P,
| Hp(u, p, E)Il =1

L](R+:BI)_’[’ (Rr=1))
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CL+1"noll uor Y| ple,=o a1
B, 1 (rr-1) L'R4;B, T (Rr=1)

4.1

n—1 r
3 it +1D? s . 8.23

x ; { S L I (M))) (8.23)

In order to prove of Proposition 8.7, we prepare some lemmas. First we introduce
auxiliary norms of the Chemin—Lerner type (cf. [14]) for the proof Proposition 8.7.

Lemma 8.8 Forany 1l < p < oo,

H I
7

7 Ry Bp | 7 i1y
(8.24)

n=

t
H/o Dru(s)ds .

< C||Dguly,=o| 1_1
|| £l " O“ Fl?l 2lp (R+;B;~ll+%(Rn—l))

nfl

H ) < C||Dguls,—o|
=01l [o®, ;B If (R=1)) LI(Ry; B bo®- '))
(8.25)

” / Dgru(s)ds

Proof of Lemma 8.8 The estimates are shown in [39, Lern~ma 5.9]. We give an outlined
i = Yr—1(0) + ¥ (1) +

proof here. The first estimate (8.24) follows by using v (¢)
Yi+1(f) and noticing ||a;11pk lLory) < 1Yk ||L1(R+)’ where 0, Y is defined as

O Yl — 5) = fo Vit — rydr,

that

1 1 n
7-3> L1+ 2
B2, ®RyB, T @)

S
[ w0 » G 2 05 % a(/0 Deu(s) |x, =0 ds )

xp=0 ‘

H/ Dru(s)ds
< 22(7 5k

LPED ey

JEZ
< § I Y gk H D
% l Z P |19 3 9 3, Pet o], L&)
=Cl|Pruls=ol 4
i "<R+ ,,. ”(R" n

The second inequality (8.25) follows from the following estimate

t
H/ Dru(s)ds

0
< 22"5

< Zz 7o x Delsolloy
JEL

— o=l
xp=0 HLOO(RJHBP.I]’ (Rr—1y)

L t
[ R e .

L (Ry)
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=27 ’||¢J % Dt L=oll Lo - |

—petcol
JjEZ Li(

LI(R+) R, B? Rn—l)).

O

Proof of Proposition 8.7 From (1.12) and (1.13) and from the regularity assumptions;
we notice that the sharp trace estimate implies

1

. s—ot —142 el
Duly,=0, ply=0 € F; "R B, | "R NL' R B, R, (8.26)

We first prove the estimate (8.22) holds. Setting

t
Ft,x") = p(t,x", xn)lx,=0. Gt x) = Hﬁgl(f DEu(s,x’,xn)dS)
0

Xp =l
in Lemma 8.4 with regarding (8.26), we find that
I Hp.p EMI 4o
Fu ”(R+;B,,,l 7 (Re=1)
<C< Plo=0f 1_+ — _i» + | Plx=0 5 )
” RY HFI?I 2p (RJr;prll#»p(R"_l)) ” X HLI R . [f (R~ l))
e (8.27)
<(JwesonT=n] | = .,
BT Ry, TR

+ (@ T = 1)

I
x":OHLOO(R+;B 7 (Rn—1Y)

P,

The polynomial terms can be estimated as the following way: First the space
L°°(R+;Bgfl_l)/p(R”’])) is the Banach algebra (see (10.9) in Lemma 10.6 below)
and by the estimate (8.25), we have for Dul|,,—o € L' (Ry; B;’Tl_l)/p(R”’l)) that

-1

[CICEE DL N P
Lo B, T @)

n—1
= ZH/ Dguts)ds ;c,t—oHLwURJr B ’1’ (=5 )]
k=1 P
(8.28)
<C D -
< ZH EU |y, = 0” D] = )
=C

, 2
(1+]V'no] . T] o Z”D |‘L1(R+;g P @y’
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Secondly by Proposition 10.5 in Appendix, Lemma 8.8 and the boundary bilinear
estimate (10.3) in Proposition 10.3, we see that

[(@ @7 =1)

11
.r,,:O‘ .7 2

21T @y, T @)
n—1 t k
<C (H/ Dgu(s)ds . 0| fn s + H/ DEgu(s)ds oHLoc — B )
k=1 "B T Ry, T R 0 "= eibpa TR
n—1 k
< o3 (Ipeutul oy Ipeutacol, )
= P Ry R,;l 5 ®r-1) L'(R4 B (Rr=1))

n—1

k
c(l \4 e )§ (a Cipn D? Cien )
v H& 7 @5 ” ‘u”L'<R+;Bp_',+” (R1=1)) *1 u|‘L'(R+:BI7_‘l+’) (R=1))

IA

(8.29)
by the sharp trace estimate Proposition 6.2. Combining the estimates (8.27)—(8.29),

we obtain (8.22). The estimate (8.23) can also be done in a very similar way. This
completes the proof of Proposition 8.7. O

9 The global well-posedness
In this section, we show an outlined proof of Theorem 2.1 (cf. [39]).

Proof of Theorem 2.1 We define the complete metric space

weC®e B, 7 ®L)), a,u,Dzu,VpeU(ﬂh; B f”(R ).

X =
— :
Ploo € FIETVPP @y BT @) AL Ry B G ®TY), @ p)llx < M
where
I, p)llx =
N8| o 4| D%l in |V e
L®4iB,, P ®Y) L®4iB,, P ®Y) L'(R4:B,, 7 ®])
+||p|xn_0|| 77# 71+7 +||Px,,:0|| 1 n—l .
Bl (RysB, TR LI®R:B,T @)

The constant M > 0 is chosen to be small enough depending on the norm of the initial
data. Given (i, p) € X, we consider the liner inhomogeneous initial boundary value
problem:

i — Au+Vp = f(,E)+ f(p, E) + Fu(i, E) + Fpii, p, E), 1>0, xeR,

div u = g(ii, E) + (1 + 8, E)Gay (ii, E), 1>0, xeR",
(w T (V) - p]) Vi 9.1)
=h(@, E)+h(p, E) + H,(u, E) + Hy(, p, E), >0, x €dRY,
M(O, -x/1 xn) = u()(x)v X € Rﬁ_,
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where uo(x) = io(x’, x, — E(x’, x,)), the linear variable coefficient terms are given
by (1.24)—(1.27) and the nonlinear terms are (1.28)—(1.32).

We define the map ® : X — X by (&, p) — (u, p) = CID[IZ, 15] and prove that ®
is contraction on X.

First we show that a priori estimate of ®[u, p]in L' (R.; B;ll+n/ P(RM). Let (u, p)
solve (9.1). Applying Theorem 2.4 to the Eq. (9.1), we have by (2.5), Propositions
8.5-8.7 to the nonlinear terms that

2n—1
o , JU— k+1
|ota. 51, < C1<||u0||31+g( gy IVl o [l Al + ; M >

p.1 + .1

(9.2)

Therefore if we choose the initial data small enough

1 2n—1 1 .
— k -z . 1
1 < > 2C Z M < > 2C, ||uo||B;11+n/p(R,D < 2M’

CilIV'noll nt
B q
4.1 k=1

(R"
then we obtain from (9.2) that
®[u, plilx < M.
Moreover, for all (u1, p1), (42, p2) € X, we know that the difference
w=uy—uz, q=p1— P2
satisfy the same estimate (9.2) without ||u0||B;i+n/p(Ri), ie.,
2n—1

L)

n—1
q
01 k=1

[otw. q1], < cz(nvnou |
B
Therefore if we choose

C2<||V/770|| n=l
qu? (R”_])

then it holds that
1
[®[w, glllx < Ell(w,q)llx,

which shows the map

P:X—> X
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is contraction. By the fixed point theorem of Banach—Caccioppoli, there exists a unique
fixed point (u, p) of the map ® in X.

Then the unique fixed point (u, p) satisfies (9.1) with the all right members changed
into (u, p) and it is a time global strong solution of (1.22). This completes the proof
of Theorem 2.1. O
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10 Appendix
10.1 Null-Lagrangian structure

According to Evans [22, section 8.1], we recall the null Lagrangian structure for the
Jacobi of a Lipschitz continuous function u.

Forn € N, let A be a n x n matrix whose components are denoted by {a;} and
consider its £ x £ sub-matrix AlY given by

ao'|‘r] aU]T@
Al — Do, , (10.1)
Aoyt * " Aopry
where oy, 7; € {1,2,...,n}withl <01 <oy <---<og<nandl <11 <173 <

< Ty = n.

Lemma 10.1 [22] Let 1 < £ < n and let u : R* — R" be a Lipschitz continuous
function and J (Du)[z] denotes the £ x £ sub-matrix of the Jacobi matrix J(Du)
defined by (10.1), cof (J(Du)!)y; denotes the (k, j)- cofactor and cof (J (Du)l*))
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be the cofactor matrix. Then for any x € R"™ with det(J (Du)(x) # 0 it holds that
div j (cof (J (Dw)!)), . =0
Naturally the divergence-curl structure leads to the following corollary.
Corollary10.2 Let 1 < p < ocoand 1 < q < oo, For Dii, p € L'(Ry; B” 1(R2)),

let F, (1), Fp(u, p), Gaiv (), H, (1) and J(Du) be given by (1.10)—(1.13). Then the
following zdentmes hold:

Fylii, p) = = div (/D)™ = 1) ), (10.2)
Gaw (@) = = div (/DD = 1) 7). (103)
Proof of Corollary 10.2 Sincediv u(t, y) = 0, the Liouville theoremimplies det J (Dut) =

I and hence (J(D&)~")" = ((det J(D&))~'cof J(D@)")" = cof J(Dii). From
Lemma 10.1,

Fy(@i, p) = = (/D)™ = 1) V) = ~div (/D™ — 1)

ST
~—

The other terms follow in a similar observation. O

10.2 Bilinear estimates

The following bilinear estimates over the whole space R” are obtained by Abidi—Paicu
[2] (cf. [39]).

Proposition 10.3 [2] Let 1 < p, p1, p2, 0, A1, A2 < 00, 1/p < 1/p1 + 1/po,
p1 < Ay, p2 < A1 and

<1

ands1+sy+ninf(0, 1 —1/p1—1/p2) > Owiths1+n/ o <n/p1,s2+n/A1 <n/pa
(and hencer = s1 + s2 —n(l/p1 +1/p2 — l/p) > —n+n/p).

(1) There exists C > 0 such that for any f € B;ll’ and g € Bp | the following
estimate holds

y < Clflge Nglgen -
I8z, < ClIFlzn Nglge .

(2) Ifl<p<ooand1<q<pn/(n—p)(l<p<n)and1<q<pn/(p—n)
—1+
(n§p<oo),thenf0ranyfeB l(R )andgeB p(R ),

If gl st <CIIfII no gl e (10.4)

B, 7 ®Y B @) B, ®Y)

@ Springer



T.0Ogawa, S. Shimizu

VAN 1 )

2n—1n n—1

=)
Y
D=

Fig.3 The possible range of exponents (p, ¢) in the bilinear estimate (10.4) (the green area)

.o -4
In particular, for any f € B;l(Ri) and g € B, | r
following estimate holds

(R%) with 1 < p < 2n, the

gl —1xn . (10.5)

P @®e)

I f g||.71+% <CIlfl.
B R™)

p.1 + Bp?il(R’%l») p.l
(3) For the boundary case, n > 2,1 < p <oocand1 < g < pn—1)/(n — p)
(I<p<n)yandl <qg < pn—1)/(p—n) (n < p < 00). Then it holds that

-1
B, ®-1) By, P (re=1y

If gl 14 =CIfl a1 gl —1+n : (10.6)
Bp.l (Rn—l) —1

See the possible range of exponents (p, ¢) to the estimate (10.4) in Fig. 4 below.
Hence regarding the region of possible choice of 1/g, we see that

v

S| =

1<p<n,

)

S|

1 1
> —— 4+ —

> e n<p<oo.

Q| =R =

On the other hand, the restriction of the exponent (p, ¢) for the boundary estimate
is given by
n

1
- = l=p<n,

Q[
VAR
SIESTES

n—1 —
n 1 .
n—1 +n—l’ n=p<oo

The red lined area in both Figs. 3 and 4 are the possible range of the exponents
with boundary and inner nonlinear estimates. If p = ¢ then the possible range for g

is limited p = ¢ < 2n — 1 as is seen in the Fig. 4.
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=
i
—

1 l\ 1 1 1
2n—1n n—1 p

Fig.4 The possible range of exponents (p, ¢) at the boundary (the green area)

Since Danchin—Mucha [17] treats the equations depending on the density, the
restriction on the exponent p in the solution space Bp 1n/p (R") stems from the
restriction on 1 < p < 2n for the above bilinear estimate (10.5). One may improve
the restriction by using the divergence-curl free structure of nonlinear terms.

The bilinear estimates as above hold for the case when the two functions f : R” —
R" and g : R” — R" has the divergence structure condition:

f - Dxg=Dx(f 9,

where D, denotes any combination of partial derivatives by x = (x1, x2, ..., x,) of
the first order. A typical case is given by the form when f and g satisfies divergence
free-rotation free structure as div f = 0 and rotg = 0.

Proposition 10.4 (Bilinear estimate under divergence structure) Let 1 < p < oo and
fe B 1+"/p and g € B"/p

(1) Ifthere exists F = F(x) such that f - g = Dx(F - g) with f = Dy F(x) in the
sense of distribution, where D, is any combination of the first differentiation in x.
Then

If- gIIBfm =CIAl —enligl, (10.7)

n o,
BP
p.1 p.1 p

1

(2) In particular, with additional conditions div f = 0, rotg = 0 in the distribution
sense, it holds

If- gIIBan =CIAl —enligl, i (10.8)

p.1 p.1 p 1

See for the proof, [36, 39].

Proposition 10.5 (The space-time bilinear estimate) Let 1 < p < ocoand 1 < p <
2n—land1 < g < pm—1)/n—p) (A < p <nyandl < q < pln —
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D/(p—n) (n < p <2n—1).Thenfor F € B/} 1/(2”)(R B PR N

Lr@® . BYTVP ®Y)) and

G e BTV @B, TP @) N LR BT/ R Y), it holds that
lFel —— +|7|

(nFu
(uan

pn

1 P (Rr-1y)

1 )
LP(Ry;B, T (Rr!
@) Ry:B,7 ®"1)

N\H
é"\—
2’\—

(Ry;B

?’ xu\_.

n
By, Py »

#10] s )
L”C(]R B (R“ )

e

(Ry;B,, 7 (R

M_
2’\—

where we recall the definition of the function class defined in (8.9).

The proof of Proposition 10.5 can be shown in a very similar way to the proof of
the related boundary bilinear estimate shown in [39, Proposition 7.6] with an aid of
the estimate (10.3) above.

Lemma 10.6 L%; B(n_l)/p (R"=1)) is the Banach algebra, namely for any
f.ge L°°(R+,B("_l)/”(R”*1)) it holds

n— C
”fg”Loo( +, TI(R"*I)) E ”f“L%, ~T1(Rn l))

H

(10.9)

. n=l .
LoR:B, T ®)
See for the proof of above Proposition 10.5 and Lemma 10.6,[39].
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