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Abstract
Recently, Debruyne and Tenenbaum proved asymptotic formulas for the number of
partitions with parts in � ⊂ N (gcd(�) = 1) and good analytic properties of the
corresponding zeta function, generalizing work ofMeinardus. In this paper, we extend
their work to prove asymptotic formulas if � is a multiset of integers and the zeta
function has multiple poles. In particular, our results imply an asymptotic formula
for the number of irreducible representations of degree n of so(5). We also study the
Witten zeta function ζso(5), which is of independent interest.

Mathematics Subject Classification 11E45 · 11M41 · 11P82

1 Introduction and statement of results

1.1 The circle method

In analytic number theory and combinatorics, one uses complex analysis to better
understand properties of sequences. Suppose that a sequence (c(n))n∈N0 has moderate
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growth and the generating function

F(q) :=
∑

n≥0

c(n)qn,

is holomorphic in the unit disk with radius of convergence 1. Via Cauchy’s integral
formula one can then recover the coefficients from the generating function

c(n) = 1

2π i

∫

C
F(q)

qn+1 dq, (1.1)

for any simple closed curve C contained in the unit disk orientated counterclockwise.
The so-called circlemethod uses the analytic behavior of F(q) near the boundary of the
unit circle to obtain asymptotic information about c(n). In fact for “nice” examples this
method is automatic and there is a long history for example with the prime number
theorem. For instance, if the c(n) are positive and monotonically increasing, it is
expected that the part close to q = 1 provides the dominant contribution to (1.1)
(Tauberian Theorems then show this). This part of the curve is the major arc and
the complement is the minor arc. To obtain an asymptotic expansion for c(n), one
then evaluates the major arc to some degree of accuracy and bounds the minor arc.
Depending on the function F(q), both of these tasks present a variety of difficulties.

In the present paper, we are interested in infinite product generating functions of
the form

F(q) =
∏

n≥1

1

(1 − qn) f (n)
.

Such generating functions are important in the theory of partitions, but also arise, for
example, in representation theory. If the Dirichlet series for f (n) has a single simple
pole on thepositive real axis and F is “bounded” away fromq = 1, thenMeinardus [30]
proved an asymptotic expression for c(n). Debruyne and Tenenbaum [17] eliminated
the technical growth conditions on F by adding a few more assumptions on the f (n),
which made their result more applicable. Our main results, Theorems 1.4 and 4.4,
yield asymptotic expansions given mild assumptions on f (n) and have a variety of
new applications.

1.2 The classical partition function

Let n ∈ N. A weakly decreasing sequence of positive integers that sum to n is called a
partitionofn. The number of partitions is denoted by p(n). Ifλ1+· · ·+λr = n, then the
λ j are called the parts of the partition. The partition function has no elementary closed
formula, nor does it satisfy any finite order recurrence. However, setting p(0) := 1,
its generating function has the following product expansion

∑

n≥0

p(n)qn =
∏

n≥1

1

1 − qn
, (1.2)
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where |q| < 1. In [23], Hardy and Ramanujan used (1.2) to show the asymptotic
formula

p(n) ∼ 1

4
√
3n

eπ

√
2n
3 , n → ∞,

which gave birth of the Circle Method. Using modular transformations one can
describe with high precision the analytic behavior of the product if q is near a root
of unity. One further sees directly from the infinite product that dominant singular-
ities occur at such roots of unity with small denominator. These ideas culminate in
Rademacher’s exact formula for p(n) [33].

With Theorem 1.4 we find, for certain constants B j and arbitrary N ∈ N,

p(n) = eπ

√
2n
3

4
√
3n

⎛

⎝1 +
N∑

j=1

B j

n
j
2

+ ON

(
n− N+1

2

)
⎞

⎠ . (1.3)

Similarly, one can treat the cases for k-th powers (in arithmetic progressions), see [17].

1.3 Plane partitions

Another application is an asymptotic formula for plane partitions. A plane partition of
size n is a two-dimensional array of non-negative integers π j,k for which

∑
j,k π j,k =

n, such that π j,k ≥ π j,k+1 and π j,k ≥ π j+1,k for all j, k ∈ N. We denote the number
of plane partitions of n by pp(n). MacMahon [25] proved that

∑

n≥0

pp(n)qn =
∏

n≥1

1

(1 − qn)n .

Using Theorem 1.4, we recover Wright’s asymptotic formula1 [38]

pp(n) = C

n
25
36

eA1n
2
3

⎛

⎝1 +
N+1∑

j=2

B j

n
2( j−1)

3

+ ON

(
n− 2(N+1)

3

)
⎞

⎠ ,

where the constants B j are explicitly computable,

C := ζ(3)
7
36 eζ ′(−1)

2
11
36

√
3π

, A1 := 3ζ(3)
1
3

2
2
3

with ζ the Riemann zeta function.

1 Note the well-known typographic error in Wrights asymptotic, he is off by a factor
√
3.
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1.4 Partitions into polygonal numbers

The n-th k-gonal number is given by2 (k ∈ N≥3)

Pk(n) := 1

2

(
(k − 2)n2 + (4 − k)n

)
. (1.4)

The study of representations of integers as sums of polygonal numbers has a long
history. Fermat conjectured in 1638 that every n ∈ N may be written as the sum of at
most k k-gonal numbers which was finally proved by Cauchy. Let pk(n) denotes the
number of partitions of n into k-gonal numbers. We have the generating function

∑

n≥0

pk(n)qn =
∏

n≥1

1

1 − q Pk (n)
.

The pk(n) have the following asymptotics.3

Theorem 1.1 We have, for all4 N ∈ N,

pk(n) = C(k)eA(k)n
1
3

n
5k−6
6(k−2)

⎛

⎝1 +
N∑

j=1

B j,k

n
j
3

+ ON

(
n− N+1

3

)
⎞

⎠ ,

where the B j,k can be computed explicitly and

C(k) :=
(k − 2)

6−k
6(k−2) �

(
2

k−2

)
ζ
( 3
2

) k
3(k−2)

2
3k−2
2(k−2)

√
3π

4k−9
3(k−2)

, A(k) := 3

2

(√
π

k − 2
ζ

(
3

2

)) 2
3

.

Remark Theorem 1.1 strengthens an asymptotic formula of Brigham for log(pk(n))

(see page 191 of [7] part D).

1.5 Numbers of finite-dimensional representations of Lie algebras

The special unitary group su(2) has (up to equivalence) one irreducible representa-
tion Vk of each dimension k ∈ N. Each n-dimensional representation

⊕∞
k=1 rk Vk

corresponds to a unique partition

n = λ1 + λ2 + · · · + λr , λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1 (1.5)

such that rk counts the number of k in (1.5). As a result, the number of representations
equals p(n). It is natural to ask whether this can be generalized. The next case is

2 Note that these count points in polygons.
3 Note that asymptotics for polynomial partitions were investigated in a more general setting by Dunn–
Robles [19].
4 Explicit asymptotic formulas for p3(n), p4(n), and p5(n) are given in Corollary 5.4.
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the unitary group su(3), whose irreducible representations W j,k indexed by pairs of
positive integers. Note that (see Chapter 5 of [22]) dim(W j,k) = 1

2 jk( j + k). Like
in the case of su(2), a general n-dimensional representation decomposes into a sum
of these W j,k , again each with some multiplicity. So analogous to (1.2), the numbers
rsu(3)(n) of n-dimensional representations, have the generating function

∑

n≥0

rsu(3)(n)qn =
∏

j,k≥1

1

1 − q
jk( j+k)

2

,

again with rsu(3)(0) := 1. In [34], Romik proved that, as n → ∞,

rsu(3)(n) ∼ C0

n
3
5

exp
(

A1n
2
5 + A2n

3
10 + A3n

1
5 + A4n

1
10

)
,

with explicit constants5 C0, A1, . . . , A4 expressible in termsof zeta andgammavalues.
Two of the authors [8] improved this to an analogue of formula (1.3), namely, for any
N ∈ N0, we have

rsu(3)(n) = C0

n
3
5

exp
(

A1n
2
5 + A2n

3
10 + A3n

1
5 + A4n

1
10

)

×
⎛

⎝1 +
N∑

j=1

C j

n
j
10

+ ON

(
n− N+1

10

)
⎞

⎠ , (1.6)

as n → ∞, where the constants C j do not depend on N and n and can be calculated
explicitly. The expansion (1.6) with explicit values for A j (1 ≤ j ≤ 4) and C0, can
also be obtained using Theorem 4.4.

This framework generalizes to other groups. For example, one can investigate the
Witten zeta function for so(5), which is (for more background to this function, see [27,
28])

ζso(5)(s) :=
∑

ϕ

1

dim(ϕ)s
= 6s

∑

n,m≥1

1

msns(m + n)s(m + 2n)s
, (1.7)

where the ϕ are running through the finite-dimensional irreducible representations of
so(5). We prove the following; for the more precise statement see Theorem 5.14.

Theorem 1.2 The function ζso(5) has a meromorphic continuation toC whose positive
poles are simple and occur for s ∈ { 12 , 1

3 }.
It is well-known that the finite-dimensional representations of so(5) can be doubly

indexed as (ϕ j,k) j,k∈N with dim(ϕ j,k) = 1
6 jk( j + k)( j + 2k), which explains the

5 Note that Romik used different signs for the constants in the exponential.
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last equality in (1.7). A general n-dimensional representation decomposes as a sum of
these ϕ j,k , each with some multiplicity. Therefore, as in the case su(3), we find that

∑

n≥0

rso(5)(n)qn =
∏

j,k≥1

1

1 − q
jk( j+k)( j+2k)

6

.

We prove the following.

Theorem 1.3 As n → ∞, we have, for any N ∈ N,

rso(5)(n) = C

n
7
12

exp
(

A1n
1
3 + A2n

2
9 + A3n

1
9 + A4

)
⎛

⎝1 +
N+1∑

j=2

B j

n
j−1
9

+ ON

(
n− N+1

9

)
⎞

⎠ ,

where C, A1, A2, A3, and A4 are given in (5.17)–(5.19) and the B j can be calculated
explicitly.

1.6 Statement of results

The main goal of this paper is to prove asymptotic formulas for a general class of
partition functions. To state it, let f : N → N0, set � := N \ f −1({0}), and for
q = e−z (z ∈ C with Re(z) > 0), define

G f (z) :=
∑

n≥0

p f (n)qn =
∏

n≥1

1

(1 − qn) f (n)
, L f (s) :=

∑

n≥1

f (n)

ns
. (1.8)

We require the following key properties of these objects:

(P1) All poles of L f are real. Let α > 0 be the largest pole of L f . There exists L ∈ N,
such that for all primes p, we have |� \ (pN ∩ �)| ≥ L > α

2 .
(P2) Condition (P2) is attached to R ∈ R

+. The series L f (s) converges for some
s ∈ C, has a meromorphic continuation to {s ∈ C : Re(s) ≥ −R}, and is
holomorphic on the line {s ∈ C : Re(s) = −R}. The function L∗

f (s) :=
�(s)ζ(s + 1)L f (s) has only real poles 0 < α := γ1 > γ2 > . . . that are all
simple, except the possible pole at s = 0, that may be double.

(P3) For some a < π
2 , in every strip σ1 ≤ σ ≤ σ2 in the domain of holomorphicity,

we uniformly have, for s = σ + i t ,

L f (s) = Oσ1,σ2

(
ea|t |) , |t | → ∞.

Note that (P1) implies that |� \ (bN ∩ �)| ≥ L > α
2 for all b ≥ 2. The analytic

properties of L f are a major ingredient needed to prove the following theorem, as
analytic continuation in (P2) gives rise to asymptotic expansions of 6 Log(G f (z))
and (P3) assists with vertical integration.

6 Throughout we use t he principal branch of the logarithm.
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Theorem 1.4 Assume (P1) for L ∈ N, (P2) for R > 0, and (P3). Then, for some
M, N ∈ N,

p f (n) = C

nb
exp

⎛

⎝A1n
α

α+1 +
M∑

j=2

A j n
α j

⎞

⎠

⎛

⎝1 +
N∑

j=2

B j

nβ j
+ OL,R

(
n

−min
{

2L−α
2(α+1) ,

R
α+1

})⎞

⎠ ,

where 0 ≤ αM < αM−1 < · · ·α2 < α1 = α
α+1 are given by7 L (defined in (1.9)),

and 0 < β2 < β3 < . . . are given by M+N , where M and N are defined in (1.10)
and (1.11), respectively. The coefficients A j and B j can be calculated explicitly; the
constants A1, C, and b are provided in (1.12) and (1.13). Moreover, if α is the only
positive pole of L f , then we have M = 1.

Remarks (1) Debruyne and Tenenbaum [17] proved Theorem 1.4 in the special case
that f is the indicator function of a subset � of N. They also assumed that the
associated L-function can be analytically continued except for one pole in 0 < α ≤
1. In (P1), the assumption that |�\ (pN∩�)| ≥ L is used in Lemma 3.1 to bound
minor arcs, whereas the additional assumption L > α

2 , that was automatically
satisfied in [17], ensures that the bounds for the minor arcs are sufficient.

(2) The complexity of the exponential term depends on the number and positions of
the positive poles of L f . Theorem 4.4 is more explicit and covers the case of
exactly two positive poles. This case has importance for representation numbers
of su(3) and so(5).

In Sect. 2, we collect some analytic tools, properties of special functions and useful
properties of asymptotic expansions that are heavily used throughout the paper. In
Sect. 3, we apply the CircleMethod and calculate asymptotic expansions for the saddle
point ρn and the value of the generating function G f (ρn). In Sect. 4, we complete
the proof of Theorem 1.4, and we also state and prove a more explicit version of
Theorem 1.4 in the case that L f has two positive poles (Theorem 4.4). The proofs of
Theorems 1.1, 1.2, and 1.3 are given in Sect. 5; this includes a detailed study of the
Witten zeta function ζso(5) which is of independent interest.

Notation

For β ∈ R, we denote by {β} := β − β� the fractional part of β. As usual, we set
H := {τ ∈ C : Im(τ ) > 0} and E := {z ∈ C : |z| < 1}. For δ > 0, we define

Cδ := {
z ∈ C : |Arg(z)| ≤ π

2 − δ
}
,

where Arg uses the principal branch of the complex argument. For r > 0 and z ∈ C,
we set

Br (z) := {w ∈ C : |w − z| < r}.
7 We can enlarge the discrete exponent sets at will, since we can always add trivial powers with vanishing
coefficients to an expansion. Therefore, from now on we always use this expression, even if the set increases
tacitly.
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For a, b ∈ R, we letRa,b;K be the rectanglewith vertices a±i K and b±i K , andwe let
∂Ra,b;K be the path along the boundary ofRa,b;K , surrounded once counterclockwise.
For −∞ ≤ a < b ≤ ∞, we denote Sa,b := {z ∈ C : a < Re(z) < b}. We also set,
for real σ1 ≤ σ2 and δ > 0,

Sσ1,σ2,δ := {s ∈ C : σ1 ≤ Re(s) ≤ σ2}
∖⎛

⎝Bδ

(
1

2

)
∪

1⋃

j=−∞
Bδ

(
j

3

)⎞

⎠ .

For k ∈ N and s ∈ C, the falling factorial is (s)k := s(s − 1) . . . (s − k + 1). For
f : N → N0, we let P be the set of poles of L∗

f , and for R > 0 we denote by PR the
union of the poles of L∗

f greater than −R with {0}. We define

L := 1

α + 1
PR +

∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0, (1.9)

M := α

α + 1
N0 +

⎛

⎝−
∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0

⎞

⎠ ∩
[
0,

R + α

α + 1

)
, (1.10)

N :=
⎧
⎨

⎩

K∑

j=1

b jθ j : b j , K ∈ N0, θ j ∈ (−L) ∩
(
0,

R

α + 1

)⎫⎬

⎭ . (1.11)

We set, with ωα := Ress=α L f (s),

A1 :=
(
1 + 1

α

)
(ωα�(α + 1)ζ(α + 1))

1
α+1 ,

C := eL ′
f (0)(ωα�(α + 1)ζ(α + 1))

1
2−L f (0)

α+1√
2π(α + 1)

, (1.12)

b := 1 − L f (0) + α
2

α + 1
. (1.13)

2 Preliminaries

In this section, we collect and prove some tools used in this paper.

2.1 Tools from complex analysis

We require the following results from complex analysis. The first theorem describes
Taylor coefficients of the inverse of a biholomorphic function; for a proof, seeCorollary
11.2 on p. 437 of [11].
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Proposition 2.1 Let φ : Br (0) → D be a holomorphic function such that φ(0) = 0
and φ′(0) �= 0, with φ(z) =: ∑

n≥1 anzn. Then φ is locally biholomorphic and its
local inverse of φ has a power series expansion φ−1(w) =: ∑k≥1 bkw

k , where

bk = 1

kak
1

∑

�1,�2,�3...≥0
�1+2�2+3�3+···=k−1

(−1)�1+�2+�3+··· k . . . (k − 1 + �1 + �2 + · · · )
�1!�2!�3! . . .

(
a2
a1

)�1
(

a3
a1

)�2

. . . .

To deal with certain zeros of holomorphic functions, we require the following result
from complex analysis, the proof of which is quickly obtained from Exercise 7.29 (i)
in [10].

Proposition 2.2 Let r > 0 and let φn : Br (0) → C be a sequence of holomorphic
functions that converges uniformly on compact sets to a holomorphic function φ :
Br (0) → C, with φ′(0) �= 0. Then there exist r > κ1 > 0 and κ2 > 0 such that,
for all n sufficiently large, the restrictions φn|Bκ1 (0) : Bκ1(0) → φn(Bκ1(0)) are

biholomorphic and Bκ2(0) ⊂ φn(Bκ1(0)). In particular, the restrictions φ−1
n |Bκ2 (0) :

Bκ2(0) → φ−1
n (Bκ2(0)) are biholomorphic functions.

2.2 Asymptotic expansions

We require two classes of asymptotic expansions.

Definition Let R ∈ R.

(1) Let g : R
+ → C be a function. Then g ∈ K(R) if there exist real numbers

νg,1 < νg,2 < νg,3 < · · · < νg,N < R and complex numbers ag, j such that

g(x) =
Ng∑

j=1

ag, j

xνg, j
+ OR

(
x−R

)
, (x → ∞).

(2) Let φ be holomorphic on the right half-plane. Then φ ∈ H(R) if there are real
numbers νφ,1 < νφ,2 < νφ,3 < · · · < νφ,N < R and aφ, j ∈ C such that, for all
k ∈ N0 and 0 < δ < π

2 ,

φ(k)(z) =
Nφ∑

j=1

(νφ, j )kaφ, j z
νφ, j −k + Oδ,R,k

(
|z|R−k

)
, (z → 0, z ∈ Cδ). (2.1)

If there is no risk of confusion, then we write N , ν j , and a j in the above. The R-
dependence of the error only matters if R varies, for instance, if we can choose it to
be arbitrarily large.

Note that any sequence g(n) with

g(n) =
N∑

j=1

a j

nν j
+ OR

(
n−R

)
, (n → ∞), (2.2)
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can be extended to a function g in K(R). Conversely, each function in K(R) can be
restricted to a sequence {g(n)}n∈N satisfying (2.2). In addition, we include functions
in K(R) that have asymptotic expansion as in (1), but are initially defined only on
intervals (r ,∞) for some large r > 0. The reason for this is that it does not matter
how the function is defined up to r , and therefore it can always be continued to (0,∞).
If g ∈ K(R) for all R > 0, then we write

g(x) =
∑

j≥1

a j

xν j
, (x → ∞). (2.3)

We use the same abbreviation if φ ∈ H(R) for all R > 0. In this case we write
g ∈ K(∞) and φ ∈ H(∞), respectively. In some situations, wewrite for R ∈ R∪{∞}

g(x) =
N∑

j=1

ag, j

xνg, j
+ OR

(
x−R

)
,

where R might depend on the choice of the function g. If R = ∞, then onemay ignore
the error OR(x−R) and use the notation (2.3) instead. We have the following useful
lemmas, that can be obtained by a straightforward calculation.

Lemma 2.3 Let R1, R2 ∈ R, λ ∈ C, g ∈ K(R1), and h ∈ K(R2). Then we have the
following:

(1) We have λg ∈ K(R1) and g + h ∈ K(min{R1, R2}). The exponents νg+h, j run
through

({νg, j : 1 ≤ j ≤ Ng} ∪ {νh, j : 1 ≤ j ≤ Nh}) ∩ (−∞,min{R1, R2}).

(2) We have gh ∈ K(min{R1 + νh,1, R2 + νg,1}). The exponents νgh, j run through

({νg, j : 1 ≤ j ≤ Ng} + {νh, j : 1 ≤ j ≤ Nh}) ∩ (−∞,min{R1 + νh,1, R2 + νg,1}).

We next deal with compositions of asymptotic expansions with holomorphic func-
tions.

Lemma 2.4 Let 0 < R ≤ ∞, g ∈ K(R) with νg,1 = 0 and h holomorphic at ag,1.
Then (h ◦ g)(x) is defined for all x > 0 sufficiently large, and we have h ◦ g ∈ K(R)

with

{νh◦g, j : 1 ≤ j ≤ Nh◦g} =
⎛

⎝
Ng∑

j=1

νg, jN0

⎞

⎠ ∩ [0, R).

We need a similar result for general asymptotic expansions.
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Lemma 2.5 Let 0 < R1, R2 ≤ ∞, φ ∈ H(R1), g ∈ K(R2), and R := min{R2 −
νg,1, νg,1R1}. Assume νg,1 > 0 and g(x) > 0 for x sufficiently large. Then φ ◦ g ∈
K(R), aφ◦g,1 = aφ,1a

νφ,1
g,1 , and

{νφ◦g, j : 1 ≤ j ≤ Nφ◦g} =
⎛

⎝νg,1{νφ,1, ..., νφ,Nφ } +
Ng∑

j=2

(νg, j − νg,1)N0

⎞

⎠ ∩ (−∞, R).

2.3 Special functions

The following theorem collects some facts about the Gamma function.

Proposition 2.6 (See [1, 35]) Let γ denote the Euler–Mascheroni constant.

(1) The gamma function � is holomorphic on C \ (−N0) with simple poles in −N0.
For n ∈ N0 we have Ress=−n �(s) = (−1)n

n! .
(2) For s = σ + i t ∈ C with σ ∈ I for a compact interval I ⊂ [ 12 ,∞), we uniformly

have

max
{
1, |t |σ− 1

2

}
e− π |t |

2 �I |�(s)| �I max
{
1, |t |σ− 1

2

}
e− π |t |

2 .

The bound also holds for compact intervals I ⊂ R if |t | ≥ 1.
(3) Near s = 0, we have the Laurent series expansion �(s) = 1

s − γ + O(s).
(4) For all s ∈ C \ Z, we have �(s)�(1 − s) = π

sin(πs) .

For s, z ∈ C with s /∈ −N, the generalized Binomial coefficient is defined by

(
s

z

)
:= �(s + 1)

�(z + 1)�(s − z + 1)
.

We require the following properties of the Riemann zeta function.

Proposition 2.7 (See [2, 9, 35])

(1) The ζ -function has a meromorphic continuation to C with only a simple pole at
s = 1 with residue 1. For s ∈ C we have (as identity between meromorphic
functions)

ζ(s) = 2sπ s−1 sin
(πs

2

)
�(1 − s)ζ(1 − s).

(2) For I := [σ0, σ1] and s = σ + i t ∈ C, there exists m I ∈ Z, such that for σ ∈ I

ζ(s) � (1 + |t |)m I , (|t | → ∞).

(3) Near s = 1, we have the Laurent series expansion ζ(s) = 1
s−1 + γ + O(s − 1).

For the Saddle Point Method we need the following estimate.

123



W. Bridges, B. Brindle, K. Bringmann, J. Franke

Lemma 2.8 Let μn be an increasing unbounded sequence of positive real numbers,
B > 0, and P a polynomial of degree m ∈ N0. Then we have

∫ μn

−μn

P(x)e−Bx2dx =
∫ ∞

−∞
P(x)e−Bx2dx + OB,P

(
μ

m−1
2

n e−Bμ2
n

)
.

Finally, we require the following in our study of the Witten zeta function ζso(5).

Lemma 2.9 Let n ∈ N0. The function g : R → R defined as g(u) :=
e|u| ∫ ∞

−∞ |v|ne−|v|−|v+u|dv satisfies g(u) = On(un+1) as |u| → ∞.

Proof Let u ≥ 0. Then we have

g(u) = n!
2n+1

n∑

j=0

2 j

j ! u j + un+1

n + 1
+ n!

2n+1 = On

(
un+1

)
.

The lemma follows, since g is an even function. ��

3 Minor andmajor arcs

3.1 Theminor arcs

For z ∈ C with Re(z) > 0, we define, with G f given in (1.8),

� f (z) := Log(G f (z)).

Note that we assume throughout, that the function f grows polynomially, which is
implicitly part of (P2). We apply Cauchy’s Theorem, writing

p f (n) = 1

2π

∫ π

−π

exp
(
n(�n + i t) + � f (�n + i t)

)
dt,

where �n → 0+ is determined in Sect. 3.3. We split the integral into two parts, the
major and minor arcs, for any β ≥ 1

p f (n) = e�nn

2π

∫

|t |≤�
β
n

exp
(
int + � f (�n + i t)

)
dt

+ e�nn

2π

∫

�β≤|t |≤π

exp
(
int + � f (�n + i t)

)
dt . (3.1)

The first integral provides the main terms in the asymptotic expansion for p f (n), the
second integral is negligible, as the following lemma shows.
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Lemma 3.1 Let 1 < β < 1 + α
2 and assume that f satisfies the conditions of Theo-

rem 1.4. Then
∫

�
β
n

2π ≤|t |≤ 1
2

e2π int G f (�n + 2π i t)dt �L �L+1
n G f (�n).

Sketch of proof The proof may be adapted from [17, Lemma 3.1]. That is, we estimate
the quotient,

|G f (ρn + 2π i t)|
G f (ρn)

≤
∏

m≥1

(
1 + 16||mt ||2

emρn m2ρ2
n

)− f (m)
2

,

where ||x || is the distance from x to the nearest integer. We then throw away m-th

factors depending on the location of t ∈ [ ρ
β
n

2π , 1
2 ]. The proof follows [17, Lemma 3.1]

mutatis mutandis; key facts are hypotheses (P1) and (P3) of Theorem 1.4 and that
(which follows from [35, Theorem 7.28 (1)])

∑

1≤m≤x

f (m) ∼ Ress=α L f

α
xα.

��

3.2 Inverse Mellin transforms for generating functions

We start this subsection with a lemma on the asymptotic behavior of the function � f

near z = 0.

Lemma 3.2 Let f : N → N0 satisfy (P2) with R > 0 and (P3). Fix some 0 < δ <
π
2 − a. Then we have, as z → 0 in Cδ ,

� f (z) =
∑

ν∈−PR\{0}
Ress=−ν L∗

f (s)z
ν − L f (0)Log(z) + L ′

f (0) + OR

(
|z|R

)
.

For the k-th derivative (k ∈ N), we have

�
(k)
f (z) =

∑

ν∈−PR\{0}
(ν)k Ress=−ν L∗

f (s)z
ν−k + (−1)k(k − 1)!L f (0)

zk
+ OR,k

(
|z|R−k

)
.

Proof With J f (s; z) := L∗
f (s)z

−s , we obtain, for κ ∈ N0,

2π i�(κ)
f (z)

= dκ

dzκ

(∫ −R+i∞

−R−i∞
+ lim

K→∞

(∫

∂R−R,α+1;K

+
∫ −R−i K

α+1−i K
+

∫ α+1+i K

−R+i K

))
J f (s; z)ds. (3.2)
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Here we use (P2), giving that there are no poles of J f (s; z) on the path of integration.
By Proposition 2.7 (2), [8, Theorem. 2.1 (3)], and (P3), we find a constant c(R, κ)

such that, as |v| → ∞,

∣∣∣L∗
f (−R + iv)

∣∣∣ �R (1 + |v|)c(R,κ)e−( π
2 −a)|v|.

This yields, with Leibniz’s integral rule and 0 < δ < π
2 − a,

∣∣∣∣
dκ

dzκ

∫ −R+i∞

−R−i∞
J f (s; z)ds

∣∣∣∣ �R,κ |z|R−κ .

For the second integral in (3.2), applying the Residue Theorem gives

dκ

dzκ
lim

K→∞
1

2π i

∫

∂R−R,α+1;K

J f (s; z)ds

=
∑

ν∈−PR\{0}
(ν)κ Ress=−ν L∗

f (s)z
ν−κ + dκ

dzκ

(
−L f (0)Log(z) + L ′

f (0)
)

,

since s = 0 is a double pole of J f (s; z). For the last two integrals in (3.2) we have,
for some m(I ) ∈ N0, depending on I := [−R, α + 1],

∣∣∣∣
∫ α+1±i K

−R±i K
J f (s; z)ds

∣∣∣∣ �I (1 + |K |)m(I ) max
{
|z|α+1, |z|−R

}
e−(δ−a)|K |,

which vanishes as K → ∞ and thus the claim follows by distinguishing κ = 0 and
κ ∈ N. ��

3.3 Approximation of saddle points

We now approximately solve the saddle point equations

−�′
f (�) = n = −�′

f (�n). (3.3)

The following proposition provides an asymptotic formula for certain functions.

Proposition 3.3 Let φ ∈ H(R) with R > 0, νφ,1 < 0, and aφ,1 > 0. Assume that
φ(R+) ⊂ R.

Then we have the following:

(1) There exists a positive sequence (ρn)n∈N, such that for all n sufficiently large,
φ(ρn) = n holds.
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(2) We have8 ρ ∈ K(1 − R+1
νφ,1

), aρ,1 = a
− 1

νφ,1
φ,1 , and the corresponding exponent set

{νρ, j : 1 ≤ j ≤ Nρ} =
⎛

⎝− 1

νφ,1
+

Nφ∑

j=1

(
1 − νφ, j

νφ,1

)
N0

⎞

⎠ ∩
(

−∞, 1 − R + 1

νφ,1

)
.

In particular, we have ρn → 0+.

Proof In the proof we abbreviate νn := νφ,n and an := aφ,n .
(1) For n ∈ N, set

ψn(w) := −1 + 1

n
φ

((
n

a1

) 1
ν1

w

)
.

As φ is holomorphic on the right-half plane by assumption, so are theψn . Using (2.1),
write

ψn(w) = wν1 − 1 + En(w), (3.4)

where the error satisfies

En(w) = 1

n

Nφ∑

j=2

a j

(
n

a1

) ν j
ν1

wν j + OR

(
n

R
ν1

−1|w|R
)

.

We next show that, for all n sufficiently large, the ψn only have one zero near w = 1.
We argue with Rouché’s Theorem. First, we find that, for n sufficiently large, the
inequality

|En(w)| <
∣∣1 − wν1

∣∣ + ∣∣wν1 − 1 + En(w)
∣∣ = ∣∣1 − wν1

∣∣ + |ψn(w)| (3.5)

holds on the entire boundary of Bκ(ν1)(1), with 0 < κ(ν1) < 1
2 sufficiently small such

that w �→ 1 − wν1 only has one zero in Bκ(ν1)(1). By Rouché’s Theorem and (3.5),
for n sufficiently large ψn also has exactly one zero in Bκ(ν1)(1). We denote this zero
of ψn by wn . It is real as φ is real-valued on the positive real line and a holomorphic

function. One can show that ρn = ( n
a1

)
1
ν1 wn > 0 satisfies φ(ρn) = n.

(2) We first give an expansion for wn . By Proposition 2.2, there exists κ > 0, such
that for all n sufficiently large and all z ∈ Bκ(0), the inverse functions ψ−1

n of ψn

are defined and holomorphic in Bκ(1). Using this, we can calculate wn , satisfying
ψn(wn) = 0. For this, let

hn(w) := ψn(w + 1) − ψn(1).

8 Recall that we can consider the sequence ρn as a function on R
+.
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We have hn(0) = 0, and we find, with Proposition 2.1,

wn − 1 = h−1
n (−ψn(1)) =

∑

m≥1

(−1)mbm(n)ψn(1)m,

where the bm can be explicitly calculated. First, ψn(1)m (m ∈ N0) have expansions in
n by (3.4) and Lemma 2.4. They have exponent set

∑
2≤ j≤Nφ

(1− ν j
ν1

)N0∩[0, 1− R
ν1

).
We find, for k ∈ N,

ψ(k)
n (1) = 1

n

Nφ∑

j=1

(ν j )ka j

(
n

a1

) ν j
ν1 + OR

(
n

R
ν1

−1
)

. (3.6)

Again by Lemma 2.4, and (3.6), ψ(k)
n (1) (k ∈ N0) has expansions in n, with exponent

set (
∑

2≤ j≤Nφ
(1− ν j

ν1
)N0)∩[0, 1− R

ν1
). ByLemma2.4wehave the following expansion

in n

ψ ′
n(1)−m =

⎛

⎝ν1 + 1

n

Nφ∑

j=2

ν j a j

(
n

a1

) ν j
ν1 + OR

(
n

R
ν1

−1
)⎞

⎠
−m

with exponent set (
∑

2≤ j≤Nφ
(1 − ν j

ν1
)N0) ∩ [0, 1 − R

ν1
). By the formula in Propo-

sition 2.1, the bm(n) are essentially sums and products of terms ψ ′
n(1)−1 and

ψ
(k)
n (1), where k ≥ 2. Hence, bm(n) has an expansion in n, with exponent set

(
∑

2≤ j≤Nφ
(1 − ν j

ν1
)N0) ∩ [0, 1 − R

ν1
), and according to Lemma 2.3, the same holds

for finite linear combinations
∑

1≤m≤M (−1)mbm(n)ψn(1)m . As ψn(1) = O(n
ν2
ν1

−1
)

for n → ∞, one has, for M sufficiently large and not depending on n,

∑

m≥M+1

(−1)mbm(n)ψn(1)m = OR

(
n

R
ν1

−1
)

.

Now, as wn ∼ 1, we conclude the theorem recalling that ρn = ( n
a1

)
1
ν1 wn . ��

We next apply Proposition 3.3 to−�′
f . For the proof one may use Lemma 3.2 with

k = 1.

Corollary 3.4 Let ρn solve (3.3). Assume that f : N → N0 satisfies the conditions of

Theorem 1.4. Then ρ ∈ K( R
α+1 +1) with aρ,1 = a

1
α+1
−�′

f ,1
= (ωα�(α +1)ζ(α +1))

1
α+1

and we have

{νρ, j : 1 ≤ j ≤ Nρ} =
⎛

⎝ 1

α + 1
−

∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0

⎞

⎠ ∩
[

1

α + 1
,

R

α + 1
+ 1

)
.
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3.4 Themajor arcs

In this subsection, we approximate, for some 1 + α
3 < β < 1 + α

2 ,

In :=
∫

|t |≤ρ
β
n

exp(� f (ρn + i t) + int)dt,

where α is the largest positive pole of L f . The following lemma can be shown using
[17, §4].

Lemma 3.5 Let f : N → N0 satisfy the conditions of Theorem 1.4, ρn solve (3.3),
and N ∈ N. Then we have

In = √
2πG f (�n)

⎛

⎜⎝
1√

�′′
f (�n)

+
∑

2≤k≤ 3H(N+α)
2α

(2k)!λ2k(�n)

2kk!�′′
f (�n)

k+ 1
2

+ ON

(
�N

n

)
⎞

⎟⎠ ,

where H := � N
3(β−1− α

3 )
� + 1 and

λ2k(�) := (−1)k
H∑

h=1

1

h!
∑

3≤m1,...,mh≤ 3(N+α)
α

m1+···+mh=2k

h∏

j=1

�
(m j )

f (�)

m j ! .

The following lemma shows that the first term in Lemma 3.5 dominates the oth-
ers; its proof follows with Lemmas 2.5, 3.2, and Corollary 3.4 by a straightforward
calculation.

Lemma 3.6 Let k ≥ 2 and assume the conditions as in Lemma 3.5. Then we have

λ2k(ρn)

�′′
f (ρn)k+ 1

2

=
M∑

j=1

b j

nη j
+ OR

(
n

−R+1+
(

k−
⌊
2k
3

⌋
+ 3

2

)
α

α+1

)
,

where the η j run through

α + 2

2(α + 1)
+ α

α + 1
N0 +

⎛

⎝−
∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0

⎞

⎠ ∩
[
0,

R + α

α + 1

)
.

We next use Lemma 2.5 and Corollary 3.4 to give an asymptotic expansion for
G f (ρn).
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Lemma 3.7 Assume that f : N → N0 satisfies the conditions of Theorem 1.4. Then,
we have

G f (�n) = eL ′
f (0)n

L f (0)
α+1

a
L f (0)
α+1

−�′
f ,1

exp

⎛

⎝ 1

α
(ωα�(α + 1)ζ(α + 1))

1
α+1 n

α
α+1 +

M∑

j=2

C j n
β j

⎞

⎠

×
⎛

⎝1 +
N∑

j=1

B j

nδ j
+ OR

(
n− R

α+1

)
⎞

⎠ ,

where 0 ≤ βM < · · · < β2 < α
α+1 run through L and 0 < δ1 < δ2 < · · · < δN

through M + N .

Proof Let φ(z) := � f (z)+L f (0)Log(z) and F := φ◦ρ. By Lemma 3.2, Proposition
3.3, and Lemma 2.5 we find that

� f (�n) + L f (0) log(�n) = L ′
f (0) +

NF∑

j=1

aF, j

nνF, j
+ OR

(
n− R

α+1

)
, (3.7)

where νF, j run through (the inclusion follows by Corollary 3.4)

⎛

⎝− 1

α + 1
PR +

Nρ∑

j=2

(
νρ, j − 1

α + 1

)
N0

⎞

⎠ ∩
(

−∞,
R

α + 1

)

⊂
⎛

⎝− 1

α + 1
PR −

∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0

⎞

⎠ ∩
(

−∞,
R

α + 1

)
. (3.8)

Note that, again by Lemmas 2.5 and 3.2, we obtain

aF,1 = aφ,1a
νφ,1
ρ,1 = 1

α
(ωα�(α + 1)ζ(α + 1))

1
α+1 .

We split the sum in (3.7) into two parts: one with nonpositive νF,1, . . . , νF,M , say,
and the one with positive νF, j < R

α+1 . Note that M is bounded and independent of R.
Exponentiating (3.7) yields

exp(� f (ρn)) = ρ
−L f (0)
n eL ′

f (0) exp

⎛

⎝
NF∑

j=M+1

aF, j

nνF, j
+ OR

(
n− R

α+1

)
⎞

⎠ exp

⎛

⎝
M∑

j=1

aF, j

nνF, j

⎞

⎠ .
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Note that the positive νF, j run through (3.8) with −∞ replaced by 0. By Lemma 2.4,
we have

exp

⎛

⎝
NF∑

j=M+1

aF, j

nνF, j
+ OR

(
n− R

α+1

)
⎞

⎠ = 1 +
K∑

j=1

Hj

nε j
+ OR

(
n− R

α+1

)

for some K ∈ N and with exponents ε j running through N . Recall that, by

Corollary 3.4, we have ρn ∼ aρ,1n− 1
α+1 . Now set h(n) := n− L f (0)

α+1 ρ
−L f (0)
n . A straight-

forward calculation using Corollary 3.4 shows that h ∈ K( R+α
α+1 ) with exponent set

(−∑
μ∈PR

(
μ+1
α+1 − 1)N0) ∩ [0, R+α

α+1 ) ⊂ M and ah,1 = a
− L f (0)

α+1
−�′

f ,1
. By Lemma 2.3 (2),

we obtain, for some N ∈ N, B j ∈ C, and δ j running through M + N ,

h(n)

⎛

⎝1 +
K∑

j=1

Hj

nε j
+ OR

(
n− R

α+1

)
⎞

⎠ = ah,1

⎛

⎝1 +
N∑

j=1

B j

nδ j
+ OR

(
n− R

α+1

)
⎞

⎠ .

Setting C j := aF, j for 1 ≤ j ≤ M , the lemma follows. ��

Another important step for the proof of our main theorem is the following lemma.

Lemma 3.8 Let f : N → N0 satisfy the conditions of Theorem 1.4. Then we have, as
n → ∞,

enρn = exp

⎛

⎝(ωα�(α + 1)ζ(α + 1))
1

α+1 n
α

α+1 +
M∑

j=2

aρ, j n
η j

⎞

⎠

×
⎛

⎝1 +
N∑

j=1

D j

nμ j
+ OR

(
n− R

α+1

)
⎞

⎠

for some 1 ≤ M ≤ Nρ , with α
α+1 > η2 > · · · > ηM ≥ 0 running through L and the

μ j through N .

Proof Let g(n) := nρn . By Corollary 3.4 we have g ∈ K( R
α+1 ) with exponent set

{νg, j : 1 ≤ j ≤ Nρ} =
⎛

⎝−1 + 1

α + 1
−

∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0

⎞

⎠

∩
[
−1 + 1

α + 1
,

R

α + 1

)
.
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Hence, for some 1 ≤ M ≤ Nρ , we obtain

enρn = exp

⎛

⎝a
1

α+1
−�′

f ,1
n

α
α+1 +

M∑

j=2

aρ, j

nνg, j

⎞

⎠ exp

⎛

⎝
Nρ∑

j=M+1

aρ, j

nνg, j
+ OR

(
n− R

α+1

)
⎞

⎠

with − α
α+1 < νg,2 < · · · < νg,M ≤ 0 < νg,M+1 < · · · < νg,Nρ . By Lemma 3.2 we

obtain a
1

α+1
−�′

f ,1
= (ωα�(α + 1)ζ(α + 1))

1
α+1 .

Note that the exponents 0 < νg,M+1 < · · · < νg,Nρ run through

⎛

⎝− α

α + 1
−

∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0

⎞

⎠ ∩
(
0,

R

α + 1

)
.

By Lemma 2.4, exp(
∑Nρ

j=M+1
aρ, j

nνg, j + OR(n− R
α+1 )) is in K( R

α+1 ), with exponent set

⎧
⎨

⎩

K∑

j=1

b jθ j : K , b j ∈ N0, θ j ∈
⎛

⎝− α

α + 1
−

∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0

⎞

⎠ ∩
(
0,

R

α + 1

)⎫⎬

⎭ .

As α ∈ PR , this is a subset ofN , so the above exponents are given byN , proving the
lemma. ��

The following corollary is very helpful to prove our main theorem.

Corollary 3.9 Let f : N → N0 satisfy the conditions of Theorem 1.4. Then we have

enρn G f (ρn) = eL ′
f (0)n

L f (0)
α+1

a
L f (0)
α+1

−�′
f ,1

exp

⎛

⎝A1n
α

α+1 +
M∑

j=2

A j n
α j

⎞

⎠

×
⎛

⎝1 +
N∑

j=1

E j

nη j
+ OR

(
n− R

α+1

)
⎞

⎠ ,

with A1 defined in (1.12), α
α+1 > α2 > · · · > αM ≥ 0 running through L, and η j

through M + N .

4 Proof of Theorem 1.4

4.1 The general case

The following lemma follows by a straightforward calculation, using (3.1) and Lem-
mas 3.1, 3.5, and 3.6.
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Lemma 4.1 Let f : N → N0 satisfy the conditions of Theorem 1.4. Then we have

p f (n) = enρn G f (ρn)√
2π

⎛

⎝
M∑

j=1

d j

nν j
+ OL,R

(
n

−min
{

L+1
α+1 , R+α

α+1 + α+2
2(α+1)

})⎞

⎠

for some M ∈ N, d1 = 1√
α+1

(ωα�(α + 1)ζ(α + 1))
1

2(α+1) , and the ν j run through

α + 2

2(α + 1)
+ α

α + 1
N0 +

⎛

⎝−
∑

μ∈PR

(
μ + 1

α + 1
− 1

)
N0

⎞

⎠ ∩
[
0,

R + α

α + 1

)
.

In particular, we have ν1 = α+2
2(α+1) .

We prove the following lemma.

Lemma 4.2 Assume that f satisfies the conditions of Theorem 1.4 and that L f has
only one positive pole α. Then we have

n�n + � f (�n) = (ωα�(α + 1)ζ(α + 1))
1

α+1
(
1 + 1

α

)
n

α
α+1

− L f (0) log(�n) + L ′
f (0) + o(1).

Proof By Lemma 3.2, we have

� f (�n) = ωα�(α)ζ(α + 1)

�α
n

− L f (0) log(�n) + L ′
f (0) + O

(
�R0

n

)
, (4.1)

where

R0 :=
⎧
⎨

⎩
−max ν

ν∈PR∩(−R,0)
if PR ∩ (−R, 0) �= ∅,

R otherwise.
(4.2)

To show the lemma, we need an expansion for ρn . We have, by (3.3) and again by
Lemma 3.2,

−�′
f (�n) = ωα�(α + 1)ζ(α + 1)

�α+1
n

+ L f (0)

�n
+ O

(
�R0−1

n

)
.

By Corollary 3.4, we have an expansion for ρn with an error o(1). We iteratively find

the first terms. By Corollary 3.4 we have ρn ∼ a
1

α+1
−�′

f ,1
n− 1

α+1 , as n → ∞. We next

determine the second order term in ρn =
a

1
α+1
−�′

f ,1

n
1

α+1
+ K2

nκ2 + o(n−κ2) for some κ2 < 1
α+1
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and K2 ∈ C. We choose κ in

n

⎛

⎜⎜⎝1 + K2

a
1

α+1
−�′

f ,1
nκ2− 1

α+1

⎞

⎟⎟⎠

−α−1

+ L f (0)

a
1

α+1
−�′

f ,1

n
1

α+1

⎛

⎜⎜⎝1 + K2

a
1

α+1
−�′

f ,1
nκ2− 1

α+1

⎞

⎟⎟⎠

−1

= n + O(nκ)

as small as possible. One finds that

(α + 1)K2

a
1

α+1
−�′

f ,1

n1−κ2+ 1
α+1 = L f (0)

a
1

α+1
−�′

f ,1

n
1

α+1 ,

and hence

�n =
a

1
α+1
−�′

f ,1

n
1

α+1

+ L f (0)

(α + 1)n
+ o

(
1

n

)
. (4.3)

Plugging (4.3) into � f leads, by (4.1), to

� f

⎛

⎜⎜⎝
a

1
α+1
−�′

f ,1

n
1

α+1

+ L f (0)

(α + 1)n
+ o

(
1

n

)
⎞

⎟⎟⎠

=
a

1
α+1
−�′

f ,1

α
n

α
α+1 − L f (0)

α + 1
− L f (0) log(ρn) + L ′

f (0) + o(1).

As a result, using (4.3), we conclude the claim. ��
We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4 Corollaries 3.4 and 3.9with Lemmas 4.1 and 4.2 give the asymp-
totic for p f (n). We use Lemma 3.7 to calculate the exponents and (1.12) as well as
(1.13) for the constants. Throughout we use Lemma 2.3 (2) to deal with the expansions
of products of functions. ��

4.2 The case of two positive poles of Lf

If α > 0 is the only positive pole of L f , then we can calculate the single term in the
exponential in the asymptotic of p f (n) explicitly, by Theorem 1.4. In this subsection,
we assume that L f has exactly two positive simple poles, α and β. In this case,
Lemma 3.2 with k = 1 gives

−�′
f (z) = c1

zα+1 + c2
zβ+1 + c3

z
+ OR

(
|z|R0−1

)
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with R0 from (4.2). Above we set c j := a−�′
f , j for 1 ≤ j ≤ 3, i.e., by Lemma 3.2

c1 = ωα�(α + 1)ζ(α + 1), c2 = ωβ�(β + 1)ζ(β + 1), c3 = L f (0). (4.4)

In the next lemma, we approximate the saddle point in this special situation.

Lemma 4.3 Let f satisfy the conditions of Theorem 1.4. Additionally assume that L f

has exactly two positive poles α and β that satisfy �+1
�

β < α ≤ �
�−1β for some � ∈ N,

where we treat the case � = 1 simply as 2β < α. Then there exists 0 < r ≤ R
α+1 such

that

ρn =
�+1∑

j=1

K j

n
( j−1)

(
1− β+1

α+1

)
+ 1

α+1

+ c3
(α + 1)n

+ OR

(
n−r−1

)
(4.5)

for some constants K j independent of n and c3 as in (4.4). In particular, we have

K1 = c
1

α+1
1 , K2 = c2

(α + 1)c
β

α+1
1

, K3 = c22(α − 2β)

2(α + 1)2c
2β+1
α+1
1

,

K4 = c32
(
2α2 − 9αβ − 2α + 9β2 + 3β

)

6(α + 1)3c
3β+2
α+1
1

,

K5 = c42(6α
3 − 44α2β − 15α2 + 96αβ2 + 56αβ + 6α − 64β3 − 48β2 − 8β)

24(α + 1)4c
4β+3
α+1
1

.

Proof By Corollary 3.4, the exponents of ρn that are at most 1 are given by combina-
tions

1

α + 1
+ ( j − 1)

(
1 − β + 1

α + 1

)
+ m

(
1 − 1

α + 1

)
≤ 1,

with j ∈ N and m ∈ N0. A straightforward calculation shows that �+1
�

β < α ≤ �
�−1β

if and only if

0 <
1

α + 1
+ ( j − 1)

(
1 − β + 1

α + 1

)
≤ 1

for all 1 ≤ j ≤ � + 1 but not for j > � + 1. Together with the error term induced
by Corollary 3.4, (4.5) follows. Assuming � ≥ 5, K1–K5 and the term c3

(α+1)n can be
determined iteratively. ��

We are now ready to prove asymptotic formulas if L f has exactly two positive
poles.
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Theorem 4.4 Assume that f : N → N0 satisfies the conditions of Theorem 1.4 and
that L f has exactly two positive poles α > β, such that �+1

�
β < α ≤ �

�−1β for some
� ∈ N. Then we have

p f (n) = C

nb
exp

(
A1n

α
α+1 + A2n

β
α+1 +

�+1∑

k=3

Akn
(k−1)β
α+1 + k−2

α+1+2−k

)

×
⎛

⎝1 +
M1∑

j=2

B j

nν j
+ OL,R

(
n

−min
{

2L−α
2(α+1) ,

R
α+1

})⎞

⎠ , (n → ∞),

with

A1 := (ωα�(α + 1)ζ(α + 1))
1

α+1

(
1 + 1

α

)
,

A2 := ωβ�(β)ζ(β + 1)

(ωα�(α + 1)ζ(α + 1))
β

α+1

, (4.6)

and for all k ≥ 3

Ak := Kk + c
1

α+1
1

α

�∑

m=1

(−α

m

) ∑

0≤ j1,..., j�≤m
j1+···+ j�=m

j1+2 j2+···+� j�=k−1

(
m

j1, j2, . . . , j�

)
K j1
2 . . . K j�

�+1

c
m

a+1
1

+ c2

βc
β

a+1
1

�∑

m=1

(−β

m

) ∑

0≤ j1,..., j�≤m
j1+···+ j�=m

j1+2 j2+···+� j�=k−2

(
m

j1, j2, . . . , j�

)
K j1
2 . . . K j�

�+1

c
m

a+1
1

.

Here, C and b are defined in (1.12) and (1.13), the ν j run through M + N , the K j

are given in Lemma 4.3, and c1, c2, and c3 run through (4.4).

Proof Assume that g : N → C has an asymptotic expansion as n → ∞ and denote
by [g(n)]∗ the part with nonnegative exponents. With Lemmas 3.2 and 4.1 we obtain,
using that L f has exactly two positive poles in α and β,

p f (n) = C

nb
exp

([
n�n + c1

α�α
n

+ c2

β�
β
n

]

∗

)

×
⎛

⎝1 +
M1∑

j=2

a j

nδ j
+ OL,R

(
n

−min
{

2L−α
2(α+1) ,

R
α+1

})⎞

⎠
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with the δ j running throughM. With the Binomial Theorem and Lemma 4.3, we find

c1
αρα

n
= c

1
α+1
1

α
n

α
α+1

⎛

⎝1+
∑

m≥1

(−α

m

)⎛

⎝
�+1∑

j=2

K j c
− 1

α+1
1

n
( j−1)

(
1− β+1

α+1

) + c3c
− 1

α+1
1

(α+1)n
α

α+1
+o

(
n− α

α+1

)
⎞

⎠
m ⎞

⎠ . (4.7)

By definition, [ c1
αρα

n
]∗ is the part of the expansion of c1

αρα
n
involving nonnegative powers

of n, i.e., for m ≥ 2 in the sum on the right of (4.7) we can ignore the term

c3

(α + 1)c
1

α+1
1 n

α
α+1

+ o
(

n− α
α+1

)
.

Applying the Multinomial Theorem to (4.7) gives

c1
αρα

n
= c

1
α+1
1

α
n

α
α+1 − c3

α + 1
+ c

1
α+1
1

α

�∑

m=1

(−α

m

)

×
∑

0≤ j1, j2,..., j�≤m
j1+···+ j�=m

(
m

j1, j2, . . . , j�

)
K j1
2 . . . K j�

�+1

c
m

a+1
1

×n
( j1+2 j2+···+� j�)β

α+1 + j1+2 j2+···+� j�−1
α+1 −( j1+2 j2+···+� j�−1) + o(1). (4.8)

Similarly, we have

c2

βρ
β
n

= c2

βc
β

a+1
1

n
β

α+1 + c2

βc
β

a+1
1

�∑

m=1

(−β

m

)

×
∑

0≤ j1, j2,..., j�≤m
j1+···+ j�=m

(
m

j1, j2, . . . , j�

)
K j1
2 · · · K j�

�+1

c
m

a+1
1

×n
( j1+2 j2+···+� j�+1)β

α+1 + j1+2 j2+···+� j�
α+1 −( j1+2 j2+···+� j�) + o(1). (4.9)

Finally, we obtain, with Lemma 4.3,

[nρn]∗ = K1n
α

α+1 +
�∑

m=1

Km+1n
mβ
α+1+ m−1

α+1 −(m−1) + c3
α + 1

. (4.10)

Combining (4.8), (4.9), and (4.10), we find that

[
nρn + c1

αρα
n

+ c2

βρ
β
n

]

∗
=

(
1 + 1

α

)
c

1
α+1
1 n

α
α+1 + c2

βc
β

α+1
1

n
β

α+1 +
�∑

k=2

Ak+1n
kβ

α+1+ k−1
α+1−(k−1),
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where

Ak = Kk + c
1

α+1
1

α

�∑

m=1

(−α

m

) ∑

0≤ j1, j2,..., j�≤m
j1+···+ j�=m

j1+2 j2+···+� j�=k−1

(
m

j1, j2, . . . , j�

)
K j1
2 . . . K j�

�+1

c
m

a+1
1

+ c2

βc
β

a+1
1

�∑

m=1

(−β

m

) ∑

0≤ j1, j2,..., j�≤m
j1+···+ j�=m

j1+2 j2+···+� j�=k−2

(
m

j1, j2, . . . , j�

)
K j1
2 . . . K j�

�+1

c
m

a+1
1

.

Note that we have by definition of c1, c2 (see (4.4)), K1, and K2 (see Lemma 4.3),

A1 =
(
1 + 1

α

)
c

1
α+1
1 =

(
1 + 1

α

)
(ωα�(α + 1)ζ(α + 1))

1
α+1 ,

A2 = c2

βc
β

a+1
1

= ωβ�(β)ζ(β + 1)

(ωα�(α + 1)ζ(α + 1))
β

α+1

,

which gives (4.6). Hence we indeed obtain, as n → ∞, for suitable M1 ∈ N

p f (n) = C

nb
exp

(
A1n

α
α+1 + A2n

β
α+1 +

�+1∑

k=3

Akn
(k−1)β
α+1 + k−2

α+1−(k−2)

)

×
⎛

⎝1 +
M1∑

j=2

B j

nν j
+ OL,R

(
n

−min
{

2L−α
2(α+1) ,

R
α+1

})⎞

⎠ ,

where the ν j run, as in Theorem 1.4, through M + N . This proves the theorem. ��

5 Proofs of Theorems 1.1, 1.2, and 1.3

We require the zeta function associated to a polynomial P ,

Z P (s) :=
∑

n≥1

1

P(n)s

with P(n) > 0 for n ∈ N. In particular, we consider P = Pk (see (1.4)). The following
lemma ensures that all the Pk satisfy (P1) with L arbitrary large.

Lemma 5.1 Let k ≥ 3 be an integer and let

�[k] := {Pk(n) : n ∈ N} .

For every prime p, we have |�[k] \ (�[k] ∩ pN)| = ∞.
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We next show that (P2) and (P3) hold.

Proposition 5.2 Let k ∈ N with k ≥ 3.

(1) The function Z Pk has a meromorphic continuation to C with at most simple poles
in 1

2 − N0. The positive pole lies in s = 1
2 .

(2) We have Z Pk (s) � Qk(|Im(s)|) as |Im(s)| → ∞ for some polynomial Qk.

Proof (1) The meromorphic continuation of Z Pk to C follows by [29, Theorem B].
By [29, Theorem A (ii)] the only possible poles (of order at most one) are located at
1
2 − 1

2N0. Holomorphicity in−N0 is a direct consequence of [29, Theorem C]. Finally,
note that Pk(n) �k n2. Thus, as x → ∞,

∑

1≤n≤x

1

Pk(n)
1
2

�k

∑

1≤n≤x

1

n
.

This proves the existence of a pole in s = 1
2 , completing the proof.

(2) This result follows directly by [29, Proposition 1 (iii)]. ��
To apply Theorem 1.4, it remains to compute Z Pk (0) and Z ′

Pk
(0), as well as

Ress= 1
2

Z Pk (s).

Proposition 5.3 Let k ∈ N with k ≥ 3.

(1) We have Z Pk (0) = 1
2−k and

Z ′
Pk

(0) = log
( k−2

2

)

k − 2
+ log

(
�

(
2

k − 2

))
− log(2π).

(2) We have Ress= 1
2

Z Pk (s) =
√

1
2(k−2) .

Proof (1) Since the roots of Pk are not in R≥1, we may use [29, Theorem D] to obtain
that Z Pk (0) = 1

2−k . For the derivative, one applies [29, Theorem E] yielding

Z ′
Pk

(0) = log
( k−2

2

)

k − 2
+ log

(
�

(
2

k − 2

))
− log(2π).

(2) Since Z Pk (s) = ( 2
k−2 )

s ∑
n≥1

(n − k−4
k−2 )

−sn−s , the result follows as the sum has

residue 1
2 at s = 1

2 by equation (16) of [29]. ��
The previous three lemmas are used to prove Theorem 1.1.

Proof of Theorem 1.1 We may apply Theorem 1.4 as Lemma 5.1 and Proposition 5.2
ensure that conditions (P1)–(P3) are satisfied. Hence, one obtains an asymptotic for-
mula for pk(n). The constants occurring in Theorem 1.4 are computed using (1.12),

(1.13), and Proposition 5.3. That the exponential consists only of the term A1n
1
3 fol-

lows by Theorem 1.4, since Z Pk (s) has exactly one positive pole, lying in s = 1
2 .

Note that we are allowed to choose L and R arbitrarily large due to Lemma 5.1 and
Proposition 5.2 (1). ��
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We consider some special cases of Theorem 1.1.

Corollary 5.4 For triangular numbers, squares, and pentagonal numbers, respectively,
we have

p3(n) ∼ ζ
( 3
2

)

2
7
2
√
3πn

3
2

exp

(
3

2
π

1
3 ζ

(
3

2

) 2
3

n
1
3

)
,

p4(n) ∼ ζ
( 3
2

) 2
3

2
7
3
√
3π

7
6 n

7
6

exp

(
3

2
4
3

π
1
3 ζ

(
3

2

) 2
3

n
1
3

)
,

p5(n) ∼ �
( 2
3

)
ζ
( 3
2

) 5
9

2
13
6 3

4
9 π

11
9 n

19
18

exp

(
3

2
3

2
π

1
3 ζ

(
3

2

) 2
3

n
1
3

)
.

The next lemma shows that
∏

j,k≥1(1 − q
jk( j+k)( j+2k)

6 )−1 satisfies (P1) for L arbi-
trarily large.

Lemma 5.5 Let f : N → N0 be defined by

f (n) :=
∣∣∣∣

{
( j, k) ∈ N

2 : jk( j + k)( j + 2k)

6
= n

}∣∣∣∣ .

Then, for all primes p, we have |� \ (� ∩ pN)| = ∞.

For investigating the function ζso(5), we need the Mordell–Tornheim zeta function,
defined by

ζMT,2(s1, s2, s3) :=
∑

m,n≥1

m−s1n−s2(m + n)−s3 .

By [27], for Re(s) > 1 and some −Re(s) < c < 0 we get a relation between ζMT,2
and ζso(5) via

ζso(5)(s) = 6s

2π i�(s)

∫ c+i∞

c−i∞
�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz. (5.1)

We have the following theorem.

Theorem 5.6 [26, Theorem 1] The function ζMT,2 has a meromorphic continuation to
C
3 and its singularities satisfy s1 + s3 = 1 − �, s2 + s3 = 1 − �, s1 + s2 + s3 = 2,

with � ∈ N0.

Fix M ∈ N0 and 0 < ε < 1. Let Re(s1),Re(s3) > 1, Re(s2) > 0, and s2 /∈ N.
Then, for Re(s2) < M + 1 − ε, we have (see equation (5.3) in [26])
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ζMT,2(s1, s2, s3) = �(s2 + s3 − 1)�(1 − s2)

�(s3)
ζ(s1 + s2 + s3 − 1)

+
M−1∑

m=0

(−s3
m

)
ζ(s1 + s3 + m)ζ(s2 − m)

+ 1

2π i

∫ M−ε+i∞

M−ε−i∞
�(s3+w)�(−w)

�(s3)
ζ(s1+s3+w)ζ(s2−w)dw. (5.2)

The first two summands on the right-hand side of (5.2) extend meromorphically toC3,
so to show that (5.1) extends meromorphically, we consider (5.2). Note that Re(w) =
M − ε. To avoid poles on the line of integration, we assume that

Re(s3 + w) > 0 ⇔ Re(s3) > ε − M, (5.3)

Re(s1 + s3 + w) > 1 ⇔ Re(s1) + Re(s3) > 1 − M + ε, (5.4)

Re(s2 − w) < 1 ⇔ Re(s2) < 1 + M − ε. (5.5)

Note that the final condition is already assumed above.
By Propostition 2.6 (2), the integral converges compactly and the integrands are

locally holomorphic. Thus, the integral is a holomorphic function in the region defined
by (5.3), (5.4), and (5.5). Recalling (5.1), we are interested in ζMT,2(s, s − z, 2s + z).
By Theorem 5.6, this function is meromorphic in C

2 and holomorphic outside the
hyperplanes defined by 3s + z = 1− �, 3s = 1− �, and 4s = 2, where � ∈ N0. With
(5.2), we obtain

ζMT,2(s, s − z, 2s + z) = �(3s − 1)�(z + 1 − s)

�(2s + z)
ζ(4s − 1)

+
M−1∑

m=0

(−2s−z

m

)
ζ(3s+z+m)ζ(s−z−m)+IM (s; z), (5.6)

where s ∈ C \ { 12 , 1−�
3 }, and

IM (s; z) := 1

2π i

∫ M−ε+i∞

M−ε−i∞
�(2s + z + w)�(−w)

�(2s + z)
ζ(3s + z + w)ζ(s − z − w)dw.

The following lemma shows that IM (s; z) is holomorphic in z. To state it let

μ = μM,σ := max{−1 + σ − M + ε, 1 − 3σ − M + ε,−2σ − M + ε}.

Lemma 5.7 Let s = σ + i t ∈ C, M ∈ N0, and 0 < ε < 1. Then z �→ IM (s; z) is
holomorphic in Sμ,∞.

Proof If z ∈ Sμ,∞, thenRe(2s+z+w) > 0,Re(3s+z+w) > 1, andRe(s−z−w) < 1
forw ∈ C satisfyingRe(w) = M−ε, so�(2s+z+w), ζ(3s+z+w), and ζ(s−z−w)

have no poles on the path of integration. As 0 < ε < 1, we have M − ε /∈ N0, so
w �→ �(−w) has no pole if Re(w) = M − ε. As a result, no pole is located on the
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path of integration, and by Proposition 2.6 (2) and the uniform polynomial growth of
the zeta function along vertical strips we find that the integral converges uniformly on
compact subsets of Sμ,∞. ��

The next lemma shows, that IM is bounded polynomially in certain vertical strips.
A proof is obtained using Propositions 2.6 (2) and 2.7 (2).

Lemma 5.8 Let σ1 < σ2 and σ3 < σ4, such that Sσ3,σ4 ⊂ Sμ,∞ for all s ∈ Sσ1,σ2

and fix 0 < ε < 1 sufficiently small. In Sσ1,σ2 × Sσ3,σ4 the function (s, z) �→ IM (s; z)
is holomorphic and satisfies |IM (s; z)| ≤ Pσ1,σ2,σ3,σ4,M (|Im(s)|, |Im(z)|) for some
polynomial Pσ1,σ2,σ3,σ4,M (X , Y ) ∈ R[X , Y ].

Next we investigate ζMT,2(s, s − z, 2s + z) for fixed s more in detail.

Lemma 5.9 Let s ∈ C\{ 12 , 1
3− 1

3N0}. Then z �→ ζMT,2(s, s−z, 2s+z) is holomorphic
in the entire complex plane except for possibly simple poles in z = 1 − � − 3s with
� ∈ N0.

Proof As holomorphicity is a local property, it suffices to consider arbitrary right half-
planes. By Lemma 5.7, for M sufficiently large, IM is holomorphic in an arbitrary
right half-plane. By (5.2), possible poles of ζMT,2(s, s − z, 2s + z) therefore lie in
z = s − � and in z = −3s − m − �, � ∈ N. A direct calculation shows that the residue
at z = s − � vanishes if � ≤ M − 1. Consequently, for a fixed pole s − �, we can
choose M sufficiently large such that we only have to consider the of (5.2). This gives
the claim. ��

We are now ready to prove growth properties of ζMT,2. As we need to avoid critical
singular points, we focus on incomplete half-planes of the type Sσ1,σ2,δ (with δ > 0
arbitrarily small).

Lemma 5.10 Let σ1 < σ2, σ3 < σ4 with 1−3σ1 < σ3 and δ > 0 arbitrarily small. For
(s, z) ∈ Sσ1,σ2,δ × Sσ3,σ4 , we have, for some polynomial Pσ1,σ2,σ3,σ4,δ only depending
on Sσ1,σ2,δ and Sσ3,σ4 ,

|ζMT,2(s, s − z, 2s + z)| ≤ Pσ1,σ2,σ3,σ4,δ(|Im(s)|, |Im(z)|).

If σ1 < 0, for all s ∈ U with U ⊂ Sσ1,σ2 , a sufficiently small neighborhood of 0, we
have

∣∣∣∣
ζMT,2(s, s − z, 2s + z)

�(s)

∣∣∣∣ ≤ Pσ3,σ4,U (|Im(z)|),

where the polynomial Pσ3,σ4,U only depends on σ3, σ4, and U.

We need another lemma dealing with the poles of the Mordell–Tornheim zeta
function.

Lemma 5.11 Let k ∈ N0. Then the meromorphic function s �→ ζMT,2(s, s −k, 2s +k)

is holomorphic for s = −� with � ∈ N≥ k
2

and has possible simple poles at s = � ∈
N0 with 0 ≤ � < k

2 . In particular, s �→ �(s + k)ζMT,2(s, s − k, 2s + k)�(s)−1 is
holomorphic at s = −� with � ∈ N0.
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Proof Let s lie in a bounded neighborhood of −�. We use (5.6) with s = k. Anal-
ogous to the proof of Lemma 5.7, the function s �→ IM (s; k) is holomorphic in a
neighborhood of s = −�. The analysis of the remaining terms is straightforward, and
the lemma follows. ��

The next lemma states where the integral of (5.1) defining ζso(5) is a meromorphic
function.

Lemma 5.12 Let ε > 0 be sufficiently small and let K ∈ N. Then the function

s �→ 1

2π i�(s)

∫ K−ε+i∞

K−ε−i∞
�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz (5.7)

is meromorphic on the half plane {s ∈ C : Re(s) > 1−K+ε
3 } with at most simple poles

in { 12 , 1
3 − 1

3N0} \ (−N0) (with Re(s) > 1−K+ε
3 ) and grows polynomially on vertical

strips with finite width.

Proof Wefirst showholomorphicity in Sσ1,σ2,δ with
1−K+ε

3 < σ1 < σ2 and 0 < δ < 1.
Since Re(s) > 1−K+ε

3 > −K + ε, there are no poles of �(s + z)�(−z) on the path of
integration Re(z) = K − ε. By Lemma 5.9, z �→ ζMT,2(s, s − z, 2s + z) has no poles
for s ∈ Sσ1,σ2,δ , as Re(z + 3s − 1) = K − ε + 3Re(s) − 1 > 0. By Proposition 2.6
(2), Lemmas 5.10, and 2.9, the integral is holomorphic away from singularities and
grows polynomially on vertical strips of finite width.

We are left to show that (5.7) has at most a simple pole at s = s0, where s0 ∈
{ 12 , 1

3 − 1
3N0} \ (−N0) with s0 ≥ 1−K+ε

3 . Recall the representation of ζMT,2 in (5.6).
By Lemma 5.8

∫ K−ε+i∞

K−ε−i∞
�(s + z)�(−z)IM (s; z)dz

converges absolutely and uniformly on any sufficiently small compact subset C con-
taining s0 for M sufficiently large. Similarly, by Propositions 2.7 (2) and 2.6 (2),

∫ K−ε+i∞

K−ε−i∞
�(s + z)�(−z)

M−1∑

m=0

(−2s − z

m

)
ζ(3s + z + m)ζ(s − z − m)dz

converges absolutely and uniformly in C . In particular, both integrals continue holo-
morphically to s0. As s �→ 1

�(s) is entire, it is sufficient to study

�(3s − 1)ζ(4s − 1)

�(s)

∫ K−ε+i∞

K−ε−i∞
�(s + z)�(−z)�(1 + z − s)

�(2s + z)
dz

around s0. Again, by Proposition 2.6 (2), the integral converges absolutely and uni-
formly in C . As �(3s−1)ζ(4s−1)

�(s) has at most a simple pole in s0 and a removable
singularity if s0 ∈ −N0, the proof of the lemma is complete. ��
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The following lemma is a refinement of Lemma 5.12 for the specific case that z ∈ Z

and follows from Lemma 5.8, by using Propositions 2.6 and 2.7.

Lemma 5.13 Let k ∈ N0 with 0 ≤ k ≤ K − 1. Then, for all σ1 < σ2, there exists a
polynomial PK ,σ1,σ2 , such that, uniformly for all σ1 ≤ Re(s) ≤ σ2 and |Im(s)| ≥ 1,

|ζMT,2(s, s − k, 2s + k)| ≤ PK ,σ1,σ2(|Im(s)|).

The following theorem shows that the function ζso(5) satisfies the conditions of
Theorem 1.4 and gives the more precise statement of Theorem 1.2.

Theorem 5.14 The function ζso(5) extends to a meromorphic function in C and is
holomorphic in N0. For K ∈ N and 0 < ε < 1, we have, on S 1−K+ε

3 ,∞,

ζso(5)(s) = 6s

�(s)

K−1∑

k=0

(−1)k�(s + k)

k! ζMT,2(s, s − k, 2s + k)

+ 6s

2π i�(s)

∫ K−ε+i∞

K−ε−i∞
�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz. (5.8)

All poles of ζso(5) are simple and contained in { 12 , 1
3 ,− 1

3 ,− 2
3 , . . . }. Furthermore, for

all σ0 ≤ σ ≤ σ1 as |Im(s)| → ∞, for some polynomial depending only on σ0 and
σ1,

|ζso(5)(s)| ≤ Pσ0,σ1(|Im(s)|).

Proof Assume Re(s) > 1. By Lemma 5.9, the only poles of the integrand in (5.1) in
S−Re(s),∞ lie at z ∈ N0. By shifting the path to the right of Re(z) = M − ε, we find,
with Lemma 5.10 and the Residue Theorem, that (5.8) holds on S1,∞. By Lemma 5.12
the right-hand side is a meromorphic function on S 1−K+ε

3 ,∞. By Theorem 5.6, the

functions s �→ ζMT,2(s, s − k, 2s + k) only have possible (simple) poles for s1 +
s3 = 3s + k = 1 − �, s2 + s3 = 3s = 1 − �, s1 + s2 + s3 = 4s = 2, with
� ∈ N0, i.e., for s ∈ { 12 , 1

3 , 0,− 1
3 ,− 2

3 ,−1, . . . }. However, by Lemma 5.11 the sum in
(5.8) continues holomorphically to −N0, so the sum only contributes possible poles
s ∈ S := { 12 , 1

3 ,− 1
3 ,− 2

3 ,− 4
3 , . . . }. Note that this argument does not depend on the

choice of K . On the other hand, if we choose K sufficiently large, then the integral in
(5.8) is a holomorphic function around s = −m for fixed but arbitrary m ∈ N0, and
it only contributes poles in S in S 1−K+ε

3 ,∞ by Lemma 5.12, where 0 < ε < 1. So the
statement about the poles follows if K → ∞.

We are left to show the polynomial bound. With Lemma 5.13 we obtain the bound
for the finite sum, as we chose K in terms of σ0 and σ1. Lemma 5.12 implies the
polynomial bound for the integral. ��

To apply Theorem 1.4 we require ζso(5)(0).

Proposition 5.15 We have ζso(5)(0) = 3
8 .
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Proof Since IM (s; z) is holomorphic in s for z ∈ Sμ,∞ by Lemma 5.8 and �(s) has a
pole in s = 0,

lim
s→0

IM (s; z)

�(s)
= 0. (5.9)

Let K ∈ N. For z ∈ C with Re(z) = K − 1
2 and m ∈ N0, we have ±(z + m) �= 1.

Hence, s �→ (−2s−z
m

)
ζ(3s + z +m)ζ(s − z −m) is holomorphic at s = 0. This implies

that for z ∈ C with Re(z) = K − 1
2 , we have

lim
s→0

(−2s − z

m

)
ζ(3s + z + m)ζ(s − z − m)

�(s)
= 0.

Using this, (5.8) with ε = 1
2 , (5.9), Proposition 2.6 (4), and Lebesgue’s dominated

convergence theorem, we obtain, for integers K ≥ 3,

lim
s→0

6s

2π i�(s)

∫ K− 1
2+i∞

K− 1
2−i∞

�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz

= i

72

∫ K− 1
2+i∞

K− 1
2−i∞

1

sin(π z)
dz.

Since sin(π(z + 1)) = − sin(π z) and

lim
L→∞

∫ K+ 1
2−i L

K− 1
2−i L

1

sin(π z)
dz = lim

L→∞

∫ K− 1
2+i L

K+ 1
2+i L

1

sin(π z)
dz = 0,

the Residue Theorem implies that

lim
s→0

6s

2π i�(s)

∫ K− 1
2+i∞

K− 1
2−i∞

�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz

= 1
72 Resz=K

π
sin(π z) = (−1)K

72 . (5.10)

In the following we use that ζ(s) does not have a pole in s = ±m for m ∈ N≥2,
implying that s �→ (−2s−1

m−1

)
ζ(3s + m)ζ(s − m) is holomorphic at s = 0. Moreover

s �→ �(s + k)
(−2s−k

m

)
ζ(3s + k + m)ζ(s − k − m) is holomorphic at s = 0 for

(k, m) ∈ (N × N0)\{(1, 0)}. Thus, using Propositions 2.6 (3) and 2.7 (3) and the fact
that ζ(−1) = − 1

12 and ζ(0) = 1
2 , we obtain, with (5.6),
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lim
s→0

6s

�(s)

K−1∑

k=0

(−1)k�(s + k)

k! ζMT,2(s, s − k, 2s + k)

= 3

8
+ (−1)K+1

72
+ lim

s→0
IM (s; 0) +

K−1∑

k=1

(−1)k

k
lim
s→0

IM (s; k)

�(s)
. (5.11)

Since, by Lemma 5.8, s �→ IM (s; k) is holomorphic at s = 0 for every k ∈ N0 and
1

�(s) vanishes in s = 0, we have

lim
s→0

IM (s; k)

�(s)
= 0.

Applying the Lebesgue dominated convergence theorem gives lim
s→0

IM (s; 0) = 0,

yielding the claim with (5.8), (5.10), and (5.11). ��
Furthermore, we need certain residues of ζso(5).

Proposition 5.16 The poles of ζso(5) are precisely { 12 } ∪ { d
3 /∈ Z : d ≤ 1 odd}. We

have

Ress= 1
2
ζso(5)(s) =

√
3�

( 1
4

)2

8
√

π
.

Moreover for d ∈ Z≤1 \ (−3N0),

Ress= d
3
ζso(5)(s) = 3

d
3 − 3

2 π�
( d
6

)
ζ
( 4d
3 − 1

)

2
d
3 −1(1 − d)!� ( d

3

)2
�
( d
2

)
(

d

3

)(
1 + 2

2d
3 −1

)
. (5.12)

In particular, we have

Ress= 1
3
ζso(5)(s) = 2

1
3 + 1

3
2
3

ζ

(
1

3

)
.

Proof With Lemma 5.12, near s = 1
2 , we can choose K = 1 in (5.8) and obtain

Ress= 1
2

ζso(5)(s)

= lim
s→ 1

2

(
s − 1

2

)(
6sζMT,2(s, s, 2s) + 6s

2π i�(s)

∫ 1
2 +i∞

1
2 −i∞

�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz

)
.

Now, we have

lim
s→ 1

2

(
s − 1

2

)
6sζMT,2(s, s, 2s) =

√
3π

2
√
2

.
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On the other hand, we find

lim
s→ 1

2

(
s − 1

2

)
6s

2π i�(s)

∫ 1
2+i∞

1
2−i∞

�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz

= lim
s→ 1

2

(
s − 1

2

)
6s�(3s − 1)ζ(4s − 1)

2π i�(s)

∫ 1
2+i∞

1
2−i∞

�(s + z)�(−z)�(z + 1 − s)dz,

(5.13)

since s �→ �(s+z)�(−z)ζ(3s+z)ζ(s−z)
�(s) and s �→ �(s+z)�(−z)I1(s;z)

�(s) are holomorphic if

Re(z) = 1
2 . Shifting the path to the left and using [21, 9.113], Proposition 2.6 (1),

15.4.26 of [31], and Proposition 2.6 (4) we obtain that (5.13) equals

√
3π

2
√
2
2F1

(
1

2
,
1

2
; 1;−1

)
−

√
3π

2
√
2

=
√
3�

( 1
4

)2

8
√

π
−

√
3π

2
√
2

.

This proves the first part of the proposition.
Now, let d ∈ Z≤1 \ (−3N0) and choose 0 < ε < 1

3 , and also K , M > 1 − d. We
have, by (5.8),

Ress= d
3

ζso(5)(s) = lim
s→ d

3

(
s − d

3

)
6s

�(s)

K−1∑

k=0

(−1)k�(s + k)

k! ζMT,2(s, s − k, 2s + k)

+ lim
s→ d

3

(
s − d

3

)
6s

2π i�(s)

∫ K−ε+i∞

K−ε−i∞
�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz.

(5.14)

Note that lim
s→ d

3

(s − d
3 )IM (s; k) = 0 because of holomorphicity of IM by Lemma 5.8

and

lim
s→ d

3

(
s − d

3

)
ζ(3s + k + m) = 1

3
δm=1−d−k .

Thus we obtain, by (5.6) and (15.4.26) of [31],

lim
s→ d

3

(
s − d

3

)
6s

�(s)

K−1∑

k=0

(−1)k�(k + s)

k! ζMT,2(s, s − k, k + 2s)

= 6
d
3 ζ

( 4d
3 − 1

)

3(1 − d)!� ( d
3

)
(

K−1∑

k=0

(−1)k+d+1�
(
k + 1 − d

3

)
�
(
k + d

3

)

k!� (
k + 2d

3

)

+
1−d∑

k=0

(−1)k
(
1 − d

k

)
�
(
k + d

3

)
�
(
1 − 2d

3 − k
)

�
( d
3

)
)
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= 6
d
3 ζ

( 4d
3 − 1

)

3(1 − d)!� ( d
3

)
(

K−1∑

k=0

(−1)k+d+1�
(
k + 1 − d

3

)
�
(
k + d

3

)

k!� (
k + 2d

3

)

+�
(
1 − 2d

3

)
2F1

( d
3 , d − 1; 2d

3 ;−1
))

= 6
d
3 ζ

( 4d
3 − 1

)

3(1 − d)!� ( d
3

)
K−1∑

k=0

(−1)k+d+1�
(
k + 1 − d

3

)
�
(
k + d

3

)

k!� (
k + 2d

3

)

+ 3
d
3 −1ζ

( 4d
3 − 1

)
�
(
1 − 2d

3

)
�
( 2d
3

)
�
( d
6

)

2
d
3 (1 − d)!� ( d

3

)2
�
( d
2

) . (5.15)

For the integral in (5.14), we obtain that

lim
s→ d

3

(
s − d

3

)
6s

2π i�(s)

∫ K−ε+i∞

K−ε−i∞
�(s + z)�(−z)ζMT,2(s, s − z, 2s + z)dz

= (−1)d+16
d
3 ζ

( 4d
3 −1

)

3(1−d)!� ( d
3

)
1

2π i

∫ K−ε+i∞

K−ε−i∞
�
(
z+ d

3

)
�
(
z+1− d

3

)
�(−z)

�
(
z+ 2d

3

) dz. (5.16)

By shifting the path of integration to the left such that all poles of �( d
3 + z)�(1 −

d
3 + z)�(−z) except the ones in N0 lie left to the path of integration, we obtain with
formula (9.113) of [21]

1

2π i

∫ K−ε+i∞

K−ε−i∞
�
(
z − d

3

)
�
(
z + 1 − d

3

)
�(−z)

�
(
z + 2d

3

) dz

= �
( d
3

)
�
(
1 − d

3

)

�
( 2d

3

) 2F1

(
d

3
, 1 − d

3
; 2d

3
; −1

)
+

K−1∑

k=0

(−1)k+1�
(
k + d

3

)
�
(
k + 1 − d

3

)

k!� (
k + 2d

3

)

= �
(
1 − d

3

)
�
( d
6

)

2�
( d
2

) −
K−1∑

k=0

(−1)k�
(
k + d

3

)
�
(
k + 1 − d

3

)

k!� (
k + 2d

3

) ,

where the final equality is due to (15.4.26) of [31]. Equation (5.12) follows by this
calculation together with (5.14), (5.15), (5.16), and Proposition 2.6 (4). Finally note
that (5.12) vanishes for even d ≤ 1. ��

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 Note that by Lemma 5.5 and Theorem 5.14 all conditions of
Theorem 1.4 are satisfied (with L and R /∈ 1

3N arbitrary large). As ζso(5) has, by
Proposition 5.16, exactly two positive poles α := 1

2 > 1
3 =: β, Theorem 4.4 applies

with � = 3, and we obtain
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rso(5)(n) = C

nb
exp

(
A1n

1
3 + A2n

2
9 + A3n

1
9 + A4

)

⎛

⎝1 +
N+1∑

j=2

B j

n
j−1
9

+ ON

(
n− N+1

9

)
⎞

⎠ , (n → ∞).

Sowe are left to calculate c, b, A1, A2, A3, and A4. By Proposition 5.15, ζso(5)(0) = 3
8

and by Proposition 5.16, Ress= 1
2
ζso(5)(s), ω 1

2
=

√
3�( 14 )2

8
√

π
and ω 1

3
= 2

1
3 +1

3
2
3

ζ( 13 ).

Hence, by (4.4), we get

c1 =
√
3�

( 1
4

)2
ζ
( 3
2

)

16
, c2 = 3− 5

3

(
2

1
3 + 1

)
�

(
1

3

)
ζ

(
1

3

)
ζ

(
4

3

)
.

Moreover, by Lemma 4.3, we have

K2 = 2c2

3c
2
9
1

, K3 = − c22

27c
10
9
1

.

Now, we compute A1, C , and b by (1.12) and A2, A3, A4 by Theorem 4.4 and obtain

b = 7

12
, C = eζ ′

so(5)(0)�
( 1
4

) 1
6 ζ

( 3
2

) 1
12

2
1
3 3

11
24

√
π

, A1 = 3
4
3 �

( 1
4

) 4
3 ζ

( 3
2

) 2
3

2
8
3

, (5.17)

A2 =
2

8
9

(
2

1
3 +1

)
�
( 1
3

)
ζ
( 1
3

)
ζ
( 4
3

)

3
7
9 �

( 1
4

) 4
9 ζ

( 3
2

) 2
9

, A3=−
2

40
9

(
2

1
3 +1

)2
�
( 1
3

)2
ζ
( 1
3

)2
ζ
( 4
3

)2

3
44
9 �

( 1
4

) 20
9 ζ

( 3
2

) 10
9

, (5.18)

A4 =
28

(
2

1
3 + 1

)3
�
( 1
3

)3
ζ
( 1
3

)3
ζ
( 4
3

)3

38�
( 1
4

)4
ζ
( 3
2

)2 . (5.19)

This proves the theorem. ��

6 Open problems

We are led by our work to the following questions:

(1) Is there a simple expression for ζ ′
so(5)(0)?

(2) Can one weaken the hypothesis that f (n) ≥ 0 for all n in Theorem 1.4? An
important application would be that the r f (n) are eventually positive. There are
many special cases in the literature (see [12–16]), but to the best of our knowledge
no general asymptotic formula has been proved.9

9 The one exception is in Todt’s Ph.D. thesis [36, Theorem 3.2.1]; however, there it is further assumed that
r f (n) is non-decreasing, which precludes the principal application of such an asymptotic.
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(3) In [20], Erdős proved by elementary means that if S ⊂ N has natural density d

and 1S is the indicator function of S, then log(p1S (n)) ∼ π

√
2dn
3 . Referring to

Theorem 1.4, can one prove by elementary means that for any ε > 0

log
(
r f (n)

) = A1n
α

α+1 +
M∑

j=2

A j n
α j + O(nε)?

(4) Can one “twist” the products in Theorem 1.4 by w ∈ C and prove asymptotic
formulas for the (complex) coefficients of

∏

n≥1

1

(1 − wqn) f (n)
?

If f (n) = n or f (n) = 1, then such asymptotics were shown to determine zero
attractors of polynomials (see [3, 4]) and equidistribution of partition statistics see
[5, 6]), and the general case of |w| �= 1 was treated by Parry [32]. Nevertheless,
all of these results require that L f (s) has only a single simple pole with positive
real part.

(5) In Theorem 1.4, can one write down explicit or recursive expressions for the
constants A j in the exponent, say in the case that L f (s) has three positive poles?

(6) Can one prove limit shapes for the partitions generated by (1.8) in the sense of
[18, 37]?
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