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Abstract
In this paper we study perturbations of rational Collet–Eckmann maps for which the
Julia set is the whole sphere, and for which the critical set is allowed to be slowly
recurrent. Generically, if each critical point is simple, we show that each such Collet–
Eckmann map is a Lebesgue point of Collet–Eckmann maps in the space of rational
maps of the same degree d ≥ 2. The same result holds in each subspace, where we
fix the multiplicities of the critical points.

1 Introduction

The Collet–Eckmann condition stems from Eckmann and Collet in the 1980s [10,
11], and was used to show abundance of chaotic behaviour for certain maps on an
interval. Chaotic behaviour of a system is usually associated to the property of sensitive
dependence on initial conditions, meaning that two points x, y sufficiently close to
each other repel each other under iteration up to some large scale. Hence it is natural
that such maps possess some kind of expanding property. Amap satisfying the Collet–
Eckmann condition is expansive along the forward critical orbit(s), and it turned out
to be sufficient for chaotic behaviour in many situations, not only the pioneering case
studied by Eckmann and Collet. Shortly after their works, Jakobson proved in [22]
that the set of parameters a ∈ (0, 2) for which fa(x) = 1− ax2 admits an absolutely
continuous invariant measure (acim) has positive Lebesgue measure. A corresponding
celebrated result for complex rational maps was obtained by Rees [28]. These maps
also exhibit chaotic behaviour. The existence of an acim describes the typical orbits of
a map in a probabilistic way. It does not immediately imply chaotic behaviour, but it is
often very closely related to it and with some additional properties (such as expansion,
ergodicity, positive entropy etc) this is usually the case.
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It was quite early realised that the Collet–Eckmann condition, or even weaker
conditions, are sufficient for the existence of an (ergodic) acim, see e.g. [4–7, 12, 13,
18, 29, 32, 33]. In fact, in [6, 7], it is proven that an acim exists even if the derivative
along the critical orbit is bounded from below by some positive constant (unimodal
case) or tends to ∞ (multimodal case). See also [23] for a closely related result.
The weaker topological CE-condition has been characterized in terms of invariant
measures in [15] by Przytycki and Rivera-Letelier.

In the fundamental papers [4, 5], Benedicks and Carleson showed that the Collet–
Eckmann condition is satisfied for a set of positive Lebesgue measure in the quadratic
family. Despite of the fact that the Collet–Eckmann condition in general is stronger
than the existence of an acim, the two conditions are metrically the same in the real
quadratic family. This was a deep result by Lyubich and Avila and Moreira, see [3,
31]. Conjecturally it holds more generally. In contrast to the chaotic, non-regular
(sometimes called stochastic) parameters stands the regular parameters, for which the
map has an attracting orbit. These maps were proven to be open and dense in the real
case (the famous real Fatou conjecture), [19, 30, 34]. The complex Fatou conjecture
is still open.

In the complex rational setting, not as much is known. A similar result to the
papers [4, 5] was obtained by the author [1], where it was proven that post-critically
finite maps, for which the Julia set is the whole sphere, are density points of Collet–
Eckmannmaps, improving an earlier famous result by Rees [28]. Apart from implying
the existence of an ergodic acim, the Collet–Eckmann condition induces more nice
properties, see e.g. [18, 35]. It has geometric implications, and there are several papers
studying perturbations of Collet–Eckmann maps (or similar expanding maps); see [4,
5, 14, 16, 17, 36] for real maps on an interval and families of Hénon maps, and [28],
[1, 2, 20, 21] in the complex setting.

The result in this paper is related to [36] (see also [16]) in the complex setting. We
study perturbations of complex rational Collet–Eckmann maps which have their Julia
set equal to the whole sphere, and where the starting map is allowed to be critically
slowly recurrent (see [27, 36]).

Let Crit be the set of critical points for f and let J ( f ) and F( f ) be the Julia
set and Fatou set of f respectively. Let Crit ′ be the set of critical points c such that
there are no other critical points in the forward orbit of c. Derivatives are always in
the spherical metric unless otherwise stated. We write D f (z) = f ′(z) as the space
derivative throughout the paper.

Definition 1.1 Let f be a non-hyperbolic rational map without parabolic periodic
points. Then f satisfies the Collet–Eckmann condition (CE), if there exist constants
C > 0 and γ > 0 such that, for each critical point c ∈ Crit ′ ∩ J ( f ), we have

|D f n( f c)| ≥ Ceγ n, for all n ≥ 0.

Let us define the upper and lower Lyapunov exponents for the critical point c
respectively as

γ (c) = lim inf
n→∞

log |D f n( f c)|
n

, and γ (c) = lim sup
n→∞

log |D f n( f c)|
n

.
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Then the CE-condition can be reformulated as the condition that the lower Lyapunov
exponent is strictly positive for all critical points c ∈ Crit ′ ∩ J ( f ). We write γ =
min γ (c)where the minimum is taken over all critical points c ∈ Crit ′ ∩ J ( f ). In this
paper we are going to study perturbations of rational CE maps for which the Julia set
is the whole sphere, but we expect that the techniques can be used in other situations
as well. Let Jri t = Crit ∩ J ( f ). A critical point c ∈ J ( f ) is slowly recurrent, cf.
[27], if for each α > 0 there is some C > 0 such that

dist( f n(Jri t), Jri t) ≥ Ce−αn, for all n ≥ 0. (1.1)

We say that f is critically slowly recurrent if all critical points in the Julia set are slowly
recurrent.Collet–Eckmannmapspossess a (unique) conformalmeasure ν supportedon
the Julia set and a unique ergodic invariant measure μ, which is absolutely continuous
with respect to ν (e.g. [13, 18, 35]). If the map f satisfies J ( f ) = Ĉ, then ν is
the standard Lebesgue measure and hence for such maps there exists an invariant
absolutely continuous measure with respect to Lebesgue measure. We say that the
critical points are typical with respect to this measure if the Birkhoff means converges
for all critical points c ∈ Jri t , i.e.,

1

n

n−1∑

k=0

ϕ
(

f k(c)
)

→
∫

ϕ dμ, as n → ∞,

for ϕ ∈ L1(μ). Setting ϕ(z) = log |D f (z)|, which belongs to L1(μ) by [35], we see
that if the critical points are typical, then γ = γ . It follows that the map is slowly
recurrent. The condition γ = γ implies that f is slowly recurrent but it is not clear
if the converse holds. Conjecturally almost all CE-maps have the slow recurrence
property. At least it is true in the real quadratic family (see [3, 9]).

The space of rational maps of degree d is denoted by Rd . We will explain later
what is meant by a non-degenerate real analytic family in Sect. 4.

Theorem A Let f be a critically slowly recurrent rational Collet–Eckmann map in
Rd , of degree d ≥ 2, such that the Julia set is the whole sphere and let fa, a ∈ (−ε, ε)

be a non-degenerate real analytic family of maps around f = f0 for some ε > 0.
Then f0 is a Lebesgue density point of Collet–Eckmann maps in (−ε, ε).

We use a normalisation of the space of rational maps following G. Levin [24, 25].
We say that two maps f and g are equivalent if they are conjugate by a Möbius trans-
formation. Then we can consider the space �d,p′ ⊂ Rd , (see [25]) up to equivalence,
as the set of rational maps f of degree d ≥ 2 with precisely p′ critical points, i.e.
Crit = {c1, . . . , cp′ }, with corresponding multiplicities p′ = {m1, . . . , m p′ } (in the
same order). Inside such a set, we may state the following theorem as a direct con-
sequence of Theorem A, by Fubini’s Theorem, since the set of degenerate directions
has measure zero (this also follows from the results of Levin, see Sect. 4).

Theorem B Let f be a critically slowly recurrent rational Collet–Eckmann map in
�d,p′ ⊂ Rd of degree d ≥ 2 such that the Julia set is the whole sphere. Then f is a
Lebesgue density point of Collet–Eckmann maps in �d,p′ .
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Generically, all critical points are simple and then f is a Lebesgue density point of
CE-maps in Rd in Theorem B. It is likely that this is true even if the critical points
are not simple, using a suitable re-parameterisation of the parameter space so that all
critical points move analytically if higher order critical points split. However, we will
not consider that case in this paper.

The proof of the main theorem is mainly based on a combination of strong
transversality results by Levin and developed classical Benedicks–Carleson parameter
exclusion techniques. Strong transverslity means roughly the following. Given that the
phase derivative grows exponentially, then the phase and parameter derivatives of the
iterates of f0 are comparable with some constant, and that this comparison persists,
with an arbitrarily small error, for nearby parameters. The other main part of the proof
is bascially a big induction argument, based on classical techniques by Benedicks and
Carleson. The idea is to control expansion of the derivative along orbits of the critical
points for nearby parameters, by using the expansion of the originalmap and induction.
If critical points for some parameters returns too close to the set of critical points, the
derivative drops too much, and those parameters are deleted. One of the key problems
is to control the measure of this set of deleted parameters. The expansion properties
of the parameters kept enables us to transfer information of the phase space to the
parameter space (transversality), so that the parameters that are left inside (−ε, ε) is
a Cantor set of positive measure with arbitrarily high density.

In particular, the paper is a generalisation of [1], which was the (revised) thesis
of the author. Apart from proving Theorem A, the aim of this paper is partially to
make the arguments in the Benedicks–Carleson parameter exclusion techniques more
transparent. The paper is organized as follows. Section 2 is devoted to some basic def-
initions, bound and free periods etc. In Sect. 3 we prove some results on the expansion
away from critical points (the free period) and Sect. 4 is devoted to parameter-phase
comparison (transversality). In Sect. 5 we introduce weak distortion which leads to
parameter independence (i.e. that on a small scale, one can almost forget about the
parameter dependence). Together with some distortion lemmas on the bound period
(Sect. 6), this leads to strong distortion results in Sect. 7. All these results are needed to
deal with the large deviations in Sect. 8, where we control the measure of parameters
that return too often too deep. In Sect. 9 the whole induction proof is finalised.

Remark 1.2 It will be clear from the proof that the slow recurrence condition in The-
orems A and B is a little superfluous; one only needs to have slow recurrence (1.1)
for some sufficiently small α > 0, depending on f = f0. The CE-maps constructed
in [1] have this property close to the starting (Misiurewicz-Thurston) map. It follows
that the set of maps satisfying this weaker assumption has positive Lebesgue measure.

2 Some definitions

Let f = f0 be a slowly recurrent Collet–Eckmann map with J ( f ) = Ĉ, and fa ,
a ∈ (−ε, ε) a real analytic family around f0. We assume that the family is non-
degenerate, which in particular means that every critical point cl(a) of fa moves
analytically with the parameter a. Another condition on the family is given in Sect. 4.
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We put fa(z) = f (z, a) and D fa(z) = f ′
a(z). Let vl(a) = fa(cl(a)) be the critical

value, and suppose that vl = vl(0) does not contain any critical points in its forward
orbit under f0, for all l. Put

ξn,l(a) = f n
a (cl(a)).

We will study the evolution of ξn,l(ω) for a small interval ω = (−ε, ε) around
the starting map f0. In the beginning this curve will grow rapidly from the expansive
properties of the starting map, but later on we have to delete parameters that come
too close to the set of critical points, denoted by Crita , of fa . Now, Crita moves
analytically, but it turns out that ξn,l(ω) and Critω are very different in diameter,
due to the expansion of ξn,l(ω); it will be much bigger than diam(Critω). Let U
be a neighbourhood of the critical points for the unperturbed map. Choose ε > 0
so that U is a neighbourhood around Crita , for all a ∈ (−ε, ε). Moreover, if we
let Ul be a component of U which contains the critical point cl then we impose the
condition dist(cl(ω), ∂Ul) 	 diam(cl(ω)) for all l. To make U more precise, we
choose δ = e−� > 0 so that U = ∪l B(cl , δ). Hence ε depends on δ. We will also
consider larger neighbourhoods U ′

l ⊃ Ul of the critical points, defined in Lemma 3.1,
where U ′ = ∪lU ′

l and U ′
l = B(cl , δ

′), for some δ′ ≥ δ > 0.
The approach rate at which the distance dist(ξn,l(a), Crita) may go to zero is

controlled by the so called basic approach rate assumption which is inherited from
the slow recurrent condition.

Definition 2.1 Let α > 0. We say that the critical point cl(a), (or parameter a with
critical point l) satisfies the basic assumption up to time n with exponent α, if

dist(ξk,l(a), Crita) ≥ Kbe−2αk, for all k ≤ n,

where Kb > 0 is the same constant which appears in the slow recurrent condition.

Obviously the starting map f0 satisfies the basic assumption for all times for any
α > 0. From now on, fix α > 0 to be at most min(γ0, γH )(1 − τ)/(400K 2�), where
γ0 = γ > 0 is the (lower) Lyapunov exponent appearing in the Collet–Eckmann
condition for f0, � = supa∈(−ε,ε),z∈Ĉ log |D fa(z)|, K is the maximal degree of the
critical points, γH is the exponent from Lemma 3.1, and where 0 < τ < 1 is fixed
(this is used in Sect. 8). We assume for the starting map f0, that there is some constant
C0 > 0 such that,

|D f n(vl(0))| ≥ C0eγ0n, for all n ≥ 0.

We will construct a set of parameters around a = 0 which also satisfies both this
basic assumption for this specific α and the Collet–Eckmann condition for possibly
slightly smaller Lyapunov exponents γ . Since we fix α > 0 we only speak of the basic
assumption, without mentioning the exponent in the future.

We will make an induction argument based on the fact that we have some “basic”
Lyapunov exponent γB > 0. This is typically smaller than the original Lyapunov
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exponent γ0 for f0. During the induction arguments we also have to allow the Lya-
punov exponent to decrease down to some certain value, a fraction of γB , a so called
“intermediate exponent” γI < γB , which is required for most lemmas to work. We
will also define the number γB later, but it is slightly smaller than the minimum of γH

in Lemma 3.1 and γ0 from the starting function f0.
We write A ∼κ B, where κ ≥ 1 if

1

κ
A ≤ B ≤ κ A.

We write A ∼ B to say A ∼κ B for some constant κ ≥ 1. In several inequalities
we use C several times for possibly different constants, when it is clear that these
constants do not depend on the dynamics, i.e. the number of iterations.

2.1 Bound and free periods

In this section we define some fundamental concepts which will be used throughout
the paper. Many of them are direct analogues of corresponding definitions in [4, 5],
see also [1]. We speak of a return of the sequence ξn,l(ω) intoU or U ′, when we mean
that ξn,l(ω) ∩ U �= ∅ or ξn,l(ω) ∩ U ′ �= ∅ respectively. We also speak of returns into
U or U ′ of the sequence ξn,l(a) for a single parameter a, and this means simply that
ξn,l(a) ∈ U or ξn,l(a) ∈ U ′ respectively. Returns into the annular neighbourhoods
U ′\U , i.e. when ξn,l(a) ∩ U ′ �= ∅ but ξn,l(ω) ∩ U = ∅, are called pseudo-returns.
Sometimes we drop the index l and write only ξn(a) = ξn,l(a) for some critical point
cl(a). We will also consider so called deep returns, which are returns into a smaller
neighbourhood U 2 = ∪l B(cl , δ

2) ⊂ U of the critical points. These deep returns will
be used only in the end of the paper, in Sect. 8.

The point is that when a return occurs, so that for example ξn(a) ∈ U , then the
orbit follows the original orbit, i.e. ξn+ j (a) stays close to ξ j (a) for the first j . This
is the so called bound period, which can be defined both for points ξn(a) and curves
ξn(ω) (precise definitions below). After the bound period ends, the free period starts
until the next return, and so on. During the bound period, due to the expansion of the
derivative of the original early orbit, we can show expansion of the derivative also
during the bound period (with a certain loss due to the actual return, which is close
to the critical set). Because of this, we will not consider returns during the bound
period (bound returns), but only consider returns after the free period (free returns).
When we speak of a return, we mean a free return unless otherwise stated. This is
very similar to earlier constructions in [1, 4, 5]. During the free period we will show
a uniform expansion of the derivative. The result is the same as in the old traditions
but the techniques stem from quite different sources in this new situation of a more
general CE-map. The number β > 0 below is related to α in the basic approach rate
condition. There is quite a lot of freedom to choose β, but let us set β = α, so that we
can use the same exponent.

Definition 2.2 (Pointwise bound period) Let β > 0. Let ξn,l(a) ∈ U ′
k ⊂ U ′ be a

return. Then we define the bound period for this return as the indices j > 0 for which
the inequality
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|ξn+ j,l(a) − ξ j,k(a)| ≤ e−β j dist
(
ξ j,k(a), Crita

)
,

holds. The largest number p > 0 for which the inequality holds is called the length of
the bound period.

To define the bound period for an interval, we consider a return ξn,l(ω) into U . If

diam(ξn,l(ω)) ≥ 1

2
dist(ξn,l(ω), Critω)/

(
log

(
dist(ξn,l(ω), Critω)

))2
, (2.1)

then we say that the return is essential. Otherwise it is inessential. With r̃ =
− log(dist(ξn,l(ω), Critω)), then the return is essential if diam(ξn,l(ω)) ≥ (1/2)e−r̃/

r̃2, a bit more convenient notation. Actually we will partition the parameter intervals
(explained later) so that they become so called partition elements, defined as follows.

Definition 2.3 For a given S > 0, we call parameter intervalsω satisfying the inequal-
ity

diam(ξk,l(ω)) ≤
{

dist(ξk,l (ω),Critω)

(log(dist(ξk,l (ω),Critω)))2
, if ξk,l(ω) ∩ U �= ∅,

S, if ξk,l(ω) ∩ U = ∅,

for all k ≤ n, partition elements at time n.

We do not speak of essential or inessential returns for pseudo-returns.

Definition 2.4 (Bound period for an interval, essential returns or pseudo-returns) Let
ξn,l(ω)∩U ′

k �= ∅, (U ′
k ⊂ U ′) be an essential return or a pseudo-return. Then we define

the bound period for this return as the indices j > 0 for which the inequality (recall
fa(z) = f (z, a)),

dist
(

f j (z, a), ξ j,k(b)
)

≤ e−β j dist
(
ξ j,k(b), Critb

)
,

holds for all a, b ∈ ω, and all z ∈ ξn,l(ω).

If the return ξn,l(ω) into Uk is inessential we will consider a host-curve as follows.
Draw a straight line segment L ′ through the end points of ξn,l(ω) with length equal to
e−r/r2 where

r = �− log
(
dist(ξn,l(ω), Critω)

) − 1/2�.

To make it well defined, let us say that the line segment L ′ shall be symmetric with
respect to the end points of ω. Let L be the part of L ′ with the central part between
the end points deleted. The host curve for this return is then L ∪ ξn,l(ω).

Definition 2.5 (Bound period for an interval, inessential returns) Let ξn,l(ω)∩Uk �= ∅
be an inessential return. Then we define the bound period for this return as the indices
j > 0 for which the inequality

dist
(

f j (z, a), ξ j,k(b)
)

≤ e−β j dist
(
ξ j,k(b), Critb

)
,
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holds for all a, b ∈ ω, and all z ∈ L ∪ ξn,l(ω).

It will be clear later that the dependence on the parameter in these definitions is
inessential.

3 Expansion during the free period

During the free periodwewant to show that the derivative of f n(z)grows exponentially
as long as f j (z) stays outside U for j = 0, . . . , n − 1. In earlier papers, this was
settled via the orbifold metric for postcritically finite (rational) maps, given that the
postcritical set consists of at least 3 points. Here we have to use different techniques
to build a uniform expansion using the second Collet–Eckmann condition discussed
in [17]. In Proposition 1 of that paper, it is stated that the second Collet–Eckmann
condition is satisfied for all critical points of maximal multiplicity. However, with the
slow recurrence condition, this statement holds for every critical point in the Julia set
[8].

Without going through the whole construction, we refer to [17, 18] for the details.
The main idea is based on three types of iterated preimages of shrinking neighbour-
hoods of a given point z, which in our case is a critical point c in the Julia set (actually
we assume that J ( f ) = Ĉ). This critical point is assumed not to have any critical
points in its backward orbit. The type 2 and type 3 orbit have a uniform expansion
automatically by construction, see Lemmas 3 and 4 in [17]. The type 1 preimages
connects two critical points in the backward orbit in a way that one has a ball B(c, r)

and considers preimages Uk which are sequences of components of f −k(B(c, rk) of
shrinking neighbourhoods B(c, rk), where rk ≤ r is decreasing and lim

k→∞ rk ≥ r/2.

For a type 1 orbit one has a critical point c1 ∈ ∂Un for some n, and no critical points in
Uk for 0 < k < n. The length of this type 1 orbit is n. Due to the difference in multi-
plicity of the critical points, type 1 orbits do not ensure immediate uniform expansion.
This is resolved by looking at preimages of the type . . . 111113, i.e., a sequence of 1s
followed by a type 3 orbit. Such iterated preimages have uniform expansion (see p.
83 in [17]).

What can happen is that the induction starts (from the right) with a sequence of 1s
only. Then it may happen that we do not have the desired expansion. Looking at such a
block of 1s in the beginning of the sequence, we see from the calculations on p. 83 [17]
that at a preimage y = f −k(c)we can estimate the growth of the derivative as follows.
Let μmax be the maximal multiplicity of the critical points and μ the multiplicity of
c. The number d = 0 below because that is the distance from the centre of the ball
B(c, r) to the critical point c. For some Q > 1 we then have, verbatim,

|D f k(y)|μmax ≥ Qk rμmax −1

(r + d)μ−1 = Qkrμmax −μ. (3.1)

So if μ < μmax then this expansion is not uniform. By assumption there is a critical
point c1 on the boundary of the shrinking neighbourhood of f −k(B(c, r)), for some
k, i.e. c1 ∈ ∂U , where U = comp( f −k(B(c, rk)) where r/2 ≤ rk ≤ r . However, by
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the slow recurrence condition, we have dist( f k(c1), c) ≥ e−αk for some small α > 0.
This means that e−kα ≤ r . Since α > 0 can be chosen as small as we like, (3.1)
becomes, for some Q1 > 1 possibly slightly smaller than Q,

|D f k(y)|μmax ≥ Qke−(μmax −μ)αk = Qk
1.

Lemma 3.1 If ε > 0 is sufficiently small, then there exists a neighbourhood U ′ of the
critical points such that the following holds for a ∈ (−ε, ε). Let U ⊂ U ′. There exist
λ > 1, C ′ > 0 and C > 0, where C ′ depends on δ′ but not on δ such that: If f k

a (z) /∈ U
for k = 0, . . . , n − 1, then

|D f n
a (z)| ≥ Cλn .

For each 0 < q ≤ 1 there exists a neighbourhood of the critical points Û ⊂ U ′
such that for any neighbourhood of the critical points U1 ⊂ U ⊂ Û satisfying
diam(U1, j ) ≥ q diam(U j ), where U1, j ⊂ U j are components of U1 and U respec-
tively, we have the following. If z /∈ U1, f k

a (z) /∈ U for k = 1, . . . , n − 1, and
f n
a (z) ∈ U then

|D f n
a (z)| ≥ C ′λn,

(where C ′ only depends on U ′). If q = 1 we can set U1 = U and Û = U ′.

Proof Let us first consider the unperturbedmap f0. By the argument before the lemma,
it follows from [17] that the Collet–Eckmann condition implies the second Collet–
Eckmann condition, for all critical points. Looking at any iterated preimage z =
f −n(c) to a critical point c, the second Collet–Eckmann condition implies

|D f n(z)| ≥ C2λ
n
2,

for some λ2 > 1 and a constantC2 > 0. Let 0 < κ < 1 and N > 0 (we give conditions
on these constants below). We follow partially the idea of [35] (p. 40–41). Let U ′ to
be a union of disks U ′

j around the critical points with radius δ′, so that for any iterated
preimage f −k(U ′

j ) of a component of U ′, we have

diam
(

f −k(U ′
j )

)
≤ κ · dist

(
f −k(U ′

j ), Crit0
)

, for all k ≤ N . (3.2)

This implies that we have distortion inside f −k(U ′
j ), that is, for any choice of z, w in

the same component of f −k(U ′
j ) we have

|D f (z)|
|D f (w)| ≤ C3, (3.3)

where C3 = C3(κ) → 1, as κ → 0.
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If (3.2) is not valid, then we can use another estimate as follows. For any disk D of
radius at most δ′ > 0 there is a constant C4 such that

|D f (z)| diam(D′) ≤ C4 diam(D), for all z ∈ D′,

where D′ is a component of f −1(D). Here C4 only depends on δ′.
Suppose now that N > 0 is the largest time where (3.2) is valid. If we put W ′

k =
f −k(U ′

j ) and zk ∈ W ′
k the corresponding preimage of c j ∈ U ′

j , and if N is large
enough, then

diam(U ′
j ) ≥ C−(N−1)

3 |D f N (zN−1)| diam
(
W ′

N−1

)

≥ C−1
4 C−(N−1)

3 |D f N (zN )| diam(W ′
N ) ≥ λN

1 diam(W ′
N ), (3.4)

for some λ1 > 0. Now let N be so large so that λN
1 ≥ 10/κ . So from now on U ′ and

N are fixed.
Nowsuppose thatU1 ⊂ U ⊂ Û ⊂ U ′, and letU1 = ∪ j B(c j , δ1),U = ∪ j B(c j , δ),

Û = ∪ j B(c j , δ̂) i.e., δ1 ≤ δ ≤ δ̂ ≤ δ′. Suppose that z /∈ U1, f k(z) /∈ U for all
k = 1, . . . , n − 1 and f n(z) ∈ U . Let now n0 > 0 be the first time for which (3.2) is
not valid with U ′

j replaced by U j , the components of U . Let Wk = f −k(U j ) be the
corresponding preimages of c j ∈ U j . By the definition of n0,

dist(Wn0 , Crit) ≤ (1/κ) diam(Wn0) ≤ (1/κ)λ
−n0
1 diam(U j ). (3.5)

Let us now consider the condition

(1/κ)λ
−n0
1 ≤ q

10
≤ diam

(
U1, j

)

10 diam
(
U j

) , (3.6)

where U1, j ⊂ U j is the corresponding component of U1 inside U j and the second
inequality is valid by assumption. We discuss this condition soon. It implies that

dist(Wn0 , Crit) ≤ diam(U1, j )

10 diam(U j )
diam(U j ) = 1

10
diam(U1, j ), and (3.7)

diam(Wn0) ≤ λ
−n0
1 diam(U j ) ≤ κ

10
diam(U1, j ). (3.8)

Clearly, this implies that Wn0 ⊂ U1, j ⊂ U1. If n0 ≤ n, this was not allowed, since
zk /∈ U1, 1 ≤ k ≤ n. Hence (3.2) is valid all the time up until n. Therefore, if
w ∈ f −n

0 (U ), we have, by the distortion estimate (3.3),

|D f n
0 (w)| ≥ |D f n

a (z)|C−n
3 ≥ C2λ

n
1, (3.9)

where z is the preimage of the corresponding critical point and C2 is the constant from
the second Collet–Eckmann condition, and hence does not depend on U .
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Let us now discuss the condition (3.6). Then the condition implies that

n0 log λ1 ≥ log(1/q) − log κ + log 10 ≥ �1 − � − log κ + log 10. (3.10)

Hence this basically forces n0 − 1, the time when (3.2) is valid, to be bounded below
by the difference�1−�. Let now N̂ be the largest integer such that (3.2) is valid with
U ′

j replaced by Û j , the components of Û . Then we can say that Û depends on q in

the following sense. For a fixed q we choose Û so that the corresponding N̂ satisfies
(3.10), with n0 replaced by N̂ . Clearly, if q = 1 we can put Û = U ′.

Nowwe turn to the situationwhen f k
0 (z) /∈ U for k = 0, . . . , n.We can use the same

estimates as before. Choose r1 ≤ δ and put V0 = B( f n
0 (z), r1) and Vk = f −k(V0),

the corresponding component containing f n−k
0 (z). Now let m0 be maximal such that

(3.2) is valid for k ≤ m0 − 1, with U ′
j replaced by V0. Suppose for the moment that

m0 ≤ n. By the Main Theorem in [35] the ExpShrink condition is satsified. Hence,
there is some λ0 > 1 so that

diam(Vk) ≤ λ−k
0

if we choose r1 small enough (smaller than some fixed r from the theorem). We also
may choose r1 so small such that m0 satisfies (1/κ)λ

−m0
0 < δ/10. Since (3.2) is not

valid for k = m0 we have

dist(Vm0 , Crit) ≤ 1

κ
diam(Vm0) ≤ 1

κ
λ

−m0
0 <

δ

10
,

diam(Vm0) ≤ λ
−m0
0 <

δ

10
.

This clearly implies that Vm0 ⊂ U which is impossible. Hence (3.2) is valid all the
time up to n. By possibly diminishing κ , we get bounded distortion inside Vn , and
hence there is some λ3 > 1 (which depends on κ), such that

|D f n
0 (z)| ≥ Cλn

3, (3.11)

for some constant C > 0 that depends on U . We may assume that λ3 > λ1, otherwise
diminish λ1 so that this holds. This proves the first statement of the lemma.

Choose N1 > 0 so that outside U1 the orbits f k
a (z) and f k(z) follow each other

up to N1, i.e. for k ≤ N1, and so that |D f N1
a (z)| ≥ C λ̃

N1
3 ≥ λ̃

N1
1 , for all a ∈ (−ε, ε).

Here λ̃3 > 1 comes from a perturbed version of (3.11). Since also (3.9) is valid for
small perturbations if we bound the number of iterations by N1, we let λ̃1 > 1 be the
corresponding perturbed version of λ1 > 1. Let us write n as n = q N1 + r , where
r < N1. Then, if we assume that z /∈ U1, f k

a (z) /∈ U for k = 1, . . . , n − 1 and
f n
a (z) ∈ U we get

|D f n
a (z)| = |D f r

a

(
f q N1(z)

)
||D f N1

a

(
f (q−1)N1(z)

)
| . . . |D f N1

a (z)| ≥ C2λ̃
n
1,

(3.12)
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where we used (3.9) for |D f r
0 ( f q N1(z))| ≥ C2λ

r
1, so that |D f r

a ( f q N1(z))| ≥ C2λ̃
r
1.

The second statement of the lemma follows with λ = λ̃1. ��
The classical outside expansion lemma is obtained by setting U1 = U in the above

lemma, i.e. q = 1. From [17], it can be seen that the Lyapunov exponent from the
second Collet–Eckmann condition is inherited from the exponent from the ordinary
Collet–Eckmann condition. Hence the uniform “outside exponent” log λ̃1, is close to
the Lyapunov exponent for the starting map f0 (but likely lower than it), depending
on the neighbourhood U ′. Let us set γH = log λ̃1.

4 Parameter-phase distortion

One fundamental result we need is the comparison between space and parameter-
derivatives. This has been proved in [4, 5] and many other papers. But for our purposes
we need a stronger form of this result due to Levin. We use a normalised space,
described in [25], of maps in Rd as follows. We consider the set �d,p′ ⊂ Rd of all
rational maps of degree d with exactly p′ distinct critical points c j with corresponding
multiplicities m j , 1 ≤ j ≤ p′, where p′ = {m1, . . . , m p′ }, normalised to that every
map f ∈ �d,p′ has the form

f (z) = σ z + b + P(z)

Q(z)
,

where σ �= 0, and deg(P) ≤ d − 2, deg(Q) ≤ d − 1 and where P and Q have no
common zeros. By Proposition 8 in [25], every f ∈ Rd is conjugate by a Möbius
transformation to some f̃ ∈ �d,p′ . So we can view Rd as a union of sets of the
type �d,p′ up to equivalence by Möbius transformations. Note that in every such set,
critical points do not split.

We assume that the real analytic family fa ∈ �d,p′ , a ∈ (−ε, ε) around f0 has a

tangent vector u �= 0. Hence fa(z) = f0(z) + au(z) +O(a2) for some u �= 0. Let us
write ξn,l(a) = f n

a (cl(a)), where a = (a1, a2, . . . , ap′) is a parameterisation of the
parameter space �d,p′ around f = f0, where f0 corresponds to (a1, a2, . . . , ap′) =
(0, 0, . . . , 0) and where c j = c j (a1, a2, . . . , ap′). In [25] and [26], it is proven that
the matrix L formed by the numbers

L(cl , ak) = lim
n→∞

∂ξn,l

∂ak
(0)

D f n−1
0 ( f cl)

is non-degenerate. Let u = (u1, u2, . . . , u p′) be a tangent vector of unit length, i.e., a
vector in P(�d,p′), and suppose that this is tangent to the family fa at a = 0. Then for
almost all directions, i.e. tangent vectors, we have that all entries of L ·u are non-zero,
since the set of directions when this is not true is a finite union of sets of co-dimension
1 in P(�d,p′). This means precisely that, for almost all directions, the limits

lim
n→∞

ξ ′
n,l(0)

D f n−1
0 ( f0(cl))

=
∑

k

ak L(cl , ak),
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is non-zero for every l, where we mean ξ ′
n,l(0) = d

da ξn,l(au)
∣∣
a=0. We thus say that

the real analytic family fa around f0 is non-degenerate, if its tangent vector satisfies
this condition, (in addition to the fact that the critical points move analytically).

We summarise this result as a proposition below, which is a direct consequence of
Theorem 1 combined with Corollary 2.1, part (8), in [26]. It is a generalisation of a
corresponding result in [25] Theorem 1.1.

Proposition 4.1 (Levin) Suppose that f is a rational map with summable critical
points without parabolic cycles such that J ( f ) = Ĉ, and suppose that fa is a non-
degenerate real analytic family around f0, a ∈ (−ε, ε). Then for each critical point
cl(a), the limit

lim
n→∞

ξ ′
n,l(0)

D f n−1(vl)
= Ll (4.1)

exists and is different from 0 and ∞.

Indeed, a CE-map has all its critical values summable so the above proposition can
be used. We also note that by [18] any Collet–Eckmann map different from a flexible
Lattés map carries no invariant line field on its Julia set. We now use this result, to
make small perturbations.

Lemma 4.2 Assume that f0 satisfies the CE-condition with exponent γ . For any 0 <

γ1 < γ and 0 < q < 1, there exist N > 0 and ε > 0 such that if fa, a ∈ (−ε, ε)

satisfies the CE-condition up to time m ≥ N with exponent γ1, we have

∣∣∣∣
ξ ′

m,l(a)

D f m−1
a (vl(a))

− Ll

∣∣∣∣ ≤ q|Ll |,

for every l.

Proof According to Theorem 1 in [26], we have for a = 0,

lim
n→∞

ξ ′
n,l(0)

D f n−1(vl(0))
=

∞∑

n=0

∂a f0(ξn,l(0))

D f n
0 (vl(0))

= Ll .

Let us put ξm.l(a) = ξm(a) and Ll = L . The reader may verify that for small pertur-
bations a close to 0,

ξ ′
m(a)

D f m−1
a (vl(a)

=
m−1∑

n=0

∂a fa(ξn(a))

D f n
a (vl(a))

.

We have that |∂a fa | = |∂a f (z, a)| is bounded by some constant B > 0. We choose
N > 0 so that the series

∞∑

n=N+1

B

Ceγ1n
≤ min

l
(q|Ll |/4). (4.2)
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By continuity, there exists some ε > 0 such that if a ∈ (−ε, ε) then

∣∣∣∣
N∑

n=0

∂a fa(ξn,l(a))

D f n
a (vl(a))

− Ll

∣∣∣∣ ≤ q|Ll |/2.

Since fa is assumed to satisfy the CE-condition with exponent γ1, by (4.2) we get that
the tail satisfies

∣∣∣∣
m∑

n=N+1

∂a fa(ξn,l(a))

D f n
a (vl(a))

∣∣∣∣ ≤ q|Ll |/2,

for all a ∈ (−ε, ε) and all m ≥ N . This finishes the lemma.

When we use this lemma we want to choose N and ε so that the above lemma is
valid for γL = (1/(6K ))min(γ0, γH )(1 − τ), where 0 < q < 1 is small, and where
τ is a constant, 0 < τ < 1.

5 Weak parameter dependence and weak distortion

We will later see that the expansion of the space derivative induces a great deal of
parameter independence. This follows a posteriori from the Main Distortion Lemma
7.3 and the Starting Lemma 7.4, but to start we now prove a weaker statement.

Lemma 5.1 Let N be as in Lemma 4.2 and let γ1 ≥ (1/(4K ))min(γH , γ0)(1−τ) > 0.
Suppose that a, b ∈ (−ε, ε), where (−ε, ε) is a parameter interval around f0 for which
fa is the real analytic family we are considering. If ε > 0 is sufficiently small we have
the following. Suppose that we have:

(i) For all n ≤ N, that |D f n
a (vl(a))| ≥ C1eγ1n, and for k ≤ k1 for some k1 ≥ 0, that

|D f k
a (ξN ,l(a))| ≥ C2eγ1k ,

(ii) For all n ≤ N + k1, if ξn,l(a), ξn,l(b) /∈ U, then |ξn,l(a) − ξn,l(b)| ≤ S and, if
ξn,l(a) ∈ U or ξn,l(b) ∈ U (or both), then

|ξn,l(a) − ξn,l(b)| ≤ dist(ξn,l(c), Critc)/(log(dist(ξn,l(c), Critc)))
2,

where c ∈ {a, b} is such that dist(ξn,l(c), Critc) is minimal,

Then there exist Q > 1 (arbitrarily close to 1, if N is large enough and S small
enough), and γ2 > 0 (arbitrarily close to but slightly smaller than γ1), such that

|ξN+k,l(a) − ξN+k,l(b)| ∼Qk |D f k
a (ξN ,l(a))||ξN ,l(a) − ξN ,l(b)| and

|ξN+k,l(a) − ξN+k,l(b)| ≥ |ξN ,l(a) − ξN ,l(b)|C2eγ2k, (5.1)

for any k ≤ k1.

123



Slowly recurrent Collet–Eckmann maps. . .

Proof Since we assume that the critical points cl(a) move analytically in a we have

cl(a) = Kla
kl + O

(
akl+1

)
.

Let us fix l and consider ξn,l(a) = ξn(a). If we consider a sufficiently small param-
eter interval (−ε, ε) centred at a = 0 corresponding to f0, then, by bounded distortion,
we can make ε so small so that we have, for any two points a, b ∈ (−ε, ε),

|ξN (a) − ξN (b) ∼2 |ξ ′
N (c)||a − b|,

for any c ∈ (−ε, ε). From the assumption |D f N
a (vl(a))| ≥ C1eγ1N we see that we

may choose ε > 0 small enough to get |( f N
b )′(vl(b))| ≥ C1eγ2N for b ∈ ω = (−ε, ε)

for some γ2 > 0 slightly smaller than γ1. From Lemma 4.2 we now get, with q ≤ 1/2
and L = |Ll |, for any c ∈ [a, b],

|ξN (a) − ξN (b)| ∼ |ξ ′
N (c)||a − b| ≥ q L|a − b||D f N−1

c (vl(c))|
≥ C ′

1|a − b||D f N−1
c (vl(c))| ≥ C ′

1C1eγ2(N−1)|a − b|, (5.2)

where C ′
1 = q L/2.

During the first N iterates, (5.2) implies that for a and b close to 0 we have

|cl(a) − cl(b)| ≤ 2Klkla
kl−1|a − b| ≤ Cakl−1|ξN ,l(a) − ξN ,l(b)|e−γ2N ,

for some constant C . It follows that

|ξN ,l(a) − ξN ,l(b)| 	 |cl(a) − cl(b)| (5.3)

for all critical points.
Suppose that, for all 0 ≤ j ≤ k ≤ k1 − 1, we have

|ξN+ j (a) − ξN+ j (b)| ∼Q j |D f j
a (ξN (a))||ξN (a) − ξN (b)|

≥ C2eγ2 j |ξN (a) − ξN (b)|, (5.4)

for some Q > 1 close to 1. We may assume that γ2 < γ1 < γ0. Combining (5.4) and
(5.2) we conclude that (5.3) holds for N replaced by N + j .

For the proof, put ξn(a) = ξn,l(a). Since we assume that the orbit of w = ξn(a)

stays close to z = ξn(b), and also using (5.3), we have a distortion estimate

1

C
≤ |D fc(w)|

|D fc′(z)| ≤ C,

for some constant C ≥ 1 for c, c′ ∈ [a, b]. This constant can be arbitrarily close to
1 if |z − w| ≤ S and S is small enough (for z, w /∈ U ) and |z − w| ≤ e−r/r2 (if
dist(z, Critb) ∼ e−r ).
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With B = sup |∂a fa |, using (5.2) and (5.4), there is some Q0 > 1, such that

|ξN+k+1(a) − ξN+k+1(b)|
≥ ∣∣| fa(ξN+k(a)) − fa(ξN+k(b))| − | fa(ξN+k(b)) − fb(ξN+k(b))|∣∣
∼Q0 |D fa(ξN+k(a))||ξN+k(a) − ξN+k(b)| − |∂a fa(ξN+k(a))||a − b|
≥ |D fa(ξN+k(a))||ξN+k(a) − ξN+k(b)| − B Qk

C ′
1|D f N+k

a (vl(a))| |ξN+k(a) − ξN+k(b)|

=
(

|D fa(ξN+k(a))| − B Qk

C ′
1|D f N+k

a (vl(a))|
)

|ξN+k(a) − ξN+k(b)|. (5.5)

It is easy to check that a reverse inequality also holds. Note that Q0 can be chosen
arbitrarily close to 1 if N is large enough and S = δε1 is small enough (i.e. ε1 small
enough). Repeating this k more times we get

|ξN+k+1(a) − ξN+k+1(b)|

∼Qk+1
0

|D f k+1
a (ξN (a))|

k∏

j=0

(
1 − B Q j

C ′
1|D f N+ j+1

a (vl(a))|

)
|ξN (a) − ξN (b)|. (5.6)

Now we use assumption i) again, and conclude that

k∑

j=0

B Q j

C ′
1|D f N+ j+1

a (vl(a))|
≤

∞∑

k=0

B

C ′
1

e−γ2(N+ j+1) < ∞,

where γ2 ≤ γ1 is slightly smaller than γ1. In fact the sum can be made as small as
we like. Hence, the product in (5.6) can be arbitrarily close to 1, say at least 1/Q1 for
some small Q1 > 1. Therefore,

|ξN+k+1(a) − ξN+k+1(b)| ∼Qk+1
0 Q1

|D f k+1
a (ξN (a))||ξN (a) − ξN (b)| (5.7)

Since |D f k+1
a (ξN (a))| ≥ C2eγ1(k+1) wehave Qk+1

0 Q1|D f k+1
a (ξN (a))| ≥ C2eγ2(k+1),

for some γ2 > 0 slightly smaller than γ1, given that Q0 and Q1 are sufficiently close
to 1. Hence we have (5.4) satisfied with k replaced by k + 1 and we can continue the
same argument and obtain (5.4) up until k1. This settles both claims. ��

We can easily get a little more general statement. If fa satisfies the CE-condition
up until time N + k1, we can use the same arguments as above to obtain

|ξn(a) − ξn(b)| ∼Q j |D f j
a (ξn− j (a))||ξn− j (a) − ξn− j (b)|, (5.8)

if n − j ≥ N and n ≤ N + k1. The details are left to the reader.

Remark 5.2 We have seen that the parameter dependence is inessential as long as the
derivative of | f n

a (vl(a))| grows with a certain Lyapunov exponent γ1. We call this the
weak parameter dependence property.
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We will also require that the Lyapunov exponent never goes below a certain “criti-
cal” level, which is related to the “intermediate level” γI = (1/4)min(γH , γ0)(1−τ).
Since γL = (1/(6K ))min(γH , γ0)(1 − τ) < (1/(4K ))min(γH , γ0)(1 − τ), then
γC = (1/(4K ))min(γH , γ0)(1 − τ) (the critical exponent) as a lower bound for γ1
will do.We also let γB = (3/4)min(γH , γ0)(1−τ). This γB is the Lyapunov exponent
that we want to keep at the end.

6 Distortion and expansion during the bound period

We use the following notations. Below ω is assumed to be an interval and a partition
element according to Definition 2.3.

Definition 6.1 We say that a ∈ En,l(γ ) if

|D f k
a (vl(a))| ≥ C0eγ k, for all k ≤ n − 1, and (6.1)

|D f k
a (v j (a))| ≥ C0eγ k, for all k ≤ (6Kα/γI )n, and all j �= l. (6.2)

We say that a ∈ Bn,l if

dist(ξk,l(a), Crita) ≥ Kbe−2αk, for all k ≤ n and (6.3)

dist(ξk, j (a), Crita) ≥ Kbe−2αk, for all k ≤ (6Kα/γI )n and all j �= l. (6.4)

We say that ω ⊂ En,l,�(γ ) if (6.1) holds and (6.2) holds with 6Kα/γI replaced by
12Kα/γI . We say that ω ⊂ Bn,l,� if (6.3) holds and (6.4) holds with 6Kα/γI replaced
by 12Kα/γI .

Note thatω0 ⊂ EN ,l(γ )∩BN ,l for all l for some γ close to γ0. The definitions above
are tailored so that if an interval belongs to En,l(γ ) or Bn,l then we can use the binding
information for the other critical points up until some fraction 6Kα/γI of the time n
(there is some extra space in the estimate to be used in the proofs). The star is added
to be able to use the binding information longer and continue the parameter-exclusion
construction up until 2n.

To prove bounded distortion, we will frequently make use of the following lemma,
which is standard.

Lemma 6.2 Given complex numbers z1, . . . , zn we have

∣∣∣∣
n∏

j=1

z j − 1

∣∣∣∣ ≤ −1 + exp
n∑

j=1

|z j − 1|.

Expanding f in Taylor series near a critical point c gives

fa(z) = fa(c) + A(z − c)k + O
(
(z − c)k+1

)
,

D fa(z) = Ak(z − c)k−1 + O
(
(z − c)k

)
,
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where A is analytic in the parameter a. If z and w are close to c and |z − c| ∼ |w − c|,
we get,

D fa(z) − D fa(w) = Ak(z − w)
(
(z − c)k−2 + (z − c)k−3(w − c) + · · ·

+(w − c)k−2 + O((z − c)k−1)
)

. (6.5)

Hence,

n∑

j=1

|D fa(ξ j (a)) − D fa(ξ j (b))|
|D fa(ξ j (b))| ∼2k

n∑

j=1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Crita)

.

if z and w are sufficiently close to Crita . In Sect. 7 we will allow the parameter to
vary as well, and have to go a bit further.

Lemma 6.3 (Distortion during the bound period) Let ε′ > 0. Then if δ′ = e−�′
is

sufficiently small and N sufficiently large, the following holds. Let z = ξν,l(a) be a
free return into U ′

i , ν ≥ N, where a ∈ Eν,l(γ ) ∩Bν,l for some γ ≥ γI . Then we have,
for all w on the line segment between fa(z) and ξ1,i (a) = vi (a),

∣∣∣∣
D f j

a (w)

D f j
a (vi (a))

− 1

∣∣∣∣ ≤ ε′,

for j ≤ p, where p is the length of the bound period for z.

Proof We first prove the lemma for w = fa(z). Let dist(ξν,l(a), Crita) ∼√
e e−r

where ξν,l(a) = z and put z j = f j
a (z) and ξ j,i (a) = ξ j (a). Following the discussion

preceding the lemma, we estimate, for ν ≥ N , the sum

p∑

j=1

|D fa(z j ) − D fa(ξ j (a))|
|D fa(ξ j (a))| ≤ C

p∑

j=1

|z j − ξ j (a)|
dist(ξ j (a), Crita)

.

The last sum can be divided into two subsums [1, J ] ∪ [J + 1, p] where J =
�dr/(10(2α+�))�,whered the degree of f0 at ck , and� = supa∈(−ε,ε),z∈Ĉ log | f ′

a(z)|.
Assuming that the basic approach rate assumption holds, the first sum can be estimated
as

J∑

j=1

|z1 − ξ1(a)|e�( j−1)

Kbe−2α j
≤

J∑

j=1

C K −1
b e−dr e(�+2α) j ≤

J∑

j=1

Ce−(9/10)dr ≤ Ce−9�′/10.

The second sum can be estimated using the definition of the bound period (remember
β = α),

p∑

j=J+1

|z j − ξ j (a)|
dist(ξ j (a), Crita)

≤ C
p∑

j=J+1

e−α j ≤ Ce−α dr
10(2α+�) .
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We see that both sums can bemade arbitrarily small if�′ is large enough. This finishes
the case w = fa(z).

It is easy to see that the same must hold on the line segment between fa(z) and
vi (a). Let p′ ≤ p be the least bound period for all suchw on this line. That means that
up until j = p′ the distortion estimate holds for all w on the line. But since ε′ may be

chosen very small this means that the image of the line under f p′
a is an almost straight

line too. It follows that the corresponding w for p′ has to be z in fact, so p = p′. ��
Note that the condition on U ′ in the above lemma is only depending on the starting

family of functions fa , a ∈ (−ε, ε). There is also a condition on U ′ in Lemma 3.1.

Lemma 6.4 Suppose that ξν,l(a) is a return into U ′
i and that a ∈ Eν,l(γ ) ∩ Bν,l for

some γ ≥ γI . Then if N is large enough and p is the length of the following bound
period we have,

|D f p
a (ξν,l(a))| ≥ e

γ
2di

p
,

where di is the degree of f at ci .
Moreover, if dist(ξν,l(a), Crita) ∼√

e e−r , then

dir

2�
≤ p ≤ 2dir

γ
.

In particular, p ≤ 4αdiν/γ , where α is the exponent in the basic assumption and
� = sup

a∈(−ε,ε),z∈Ĉ
log |D fa(z)|.

Proof Put D j = |D f j
a (ξν,l(a))| and E j = |D f j

a (ξν+1,l(a))| for some a ∈ ω. We have
D1 ≥ C Kbe−2αKν , since a ∈ Bν,l for some constant C . Moreover, for 1 ≤ j ≤ p−1,
we can use Lemma 6.3 to prove that E j ≥ (C0/2)eγ j since a ∈ Eν,l(γ ). Hence the
derivative

|D f ν+ j
a (vl(a))| ≥ (C0/2)C KbC0e(γ−2αK )(ν+ j) ≥ C0eγ ′(ν+ j), for j ≤ p,

where γ ′ ≥ γ − 4αK ≥ γC , provided N is large enough (recall ν ≥ N ). We can also
use Lemma 6.3 to get the following distortion estimate, for some C > 1 (close to 1),

|ξν+ j,l(a) − ξ j,i (a)| ∼C |D f j
a (ξν,l(a))||ξν,l(a) − ξ0,i (a)|,

for j ≤ p + 1. Suppose that |ξν,l(a) − ξ0,i (a)| ∼2 e−r . We know from the definition
of the bound period and the basic assumption, that

Dp+1e−r ≥ 1

4C
dist(ξp+1,i (a), Crita)e−α(p+1) ≥ 1

4C
Kbe−2α(p+1)−α(p+1). (6.6)

Also we have, for some κ1 ≥ 1,

Dp+1e−r ∼κ1 E pe−rdi ,
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and so

e−r(di −1) ∼κ1

(
Dp+1e−r

) di −1
di

E
− di −1

di
p

≥
(

Kb

4C

) di −1
di

e
−(2α+α)(p+1)

di −1
di E

− di −1
di

p . (6.7)

Now we can use that 2α + α = 3α is very small compared to γ ≥ γI . We get,

Dp+1 ∼κ1 e−r(di −1)E p

≥
(

Kb

4C

) di −1
di

E
1
di
p e

−3α(p+1)
di −1

di

≥
(

C0

2

) 1
di

(
Kb

4C

) di −1
di

e
γ
di

p−3α(p+1) ≥ e
p

2di
γ
, (6.8)

if ν is sufficiently large. Since Dp = Dp+1/|D fa(ξν+p(a))|, withminormodifications
it is easy to see that the same estimate holds for Dp.

To prove the second claim, we note that from (6.6), the slow recurrence condition
and the fact that |D f ν(vl(a))| ≤ eν� we get that, for some very small α > 0 in
comparison to γ ,

e�(p+1)e−di r ≥ E pe−di r ≥ Kb

4C
κ−1
1 e−3α(p+1),

which gives the left inequality if ν ≥ N is large enough. To prove the right inequality,
we note that the spherical distance dist(ξν,l(a), Crita) is bounded from above. By the
definition of the bound period (now we are considering the time p iterates from the
return into U ), and the fact that we also have E p−1e−di r ∼κ1 Dpe−r ,

(C0/2)e
γ (p−1)e−di r ≤ E p−1e−di r ≤ 4Cκ1e−α p dist(ξp,i (a), Crita).

and the right inequality follows. ��

The above lemma gives a quite substantial amount of increase of the derivative
during the bound period, even if there is a loss in the first iterate. We can also see that
under all circumstances,

|ξν+p(a) − ξν+p(b)| ≥ |ξν(a) − ξν(b)|.
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7 Strong distortion

Our aim now is to use weak distortion and prove that we actually have something
stronger, namely, for some small ε′ > 0,

∣∣∣∣
D f n

a (vl(a))

D f n
b (vl(b))

− 1

∣∣∣∣ ≤ ε′, (7.1)

for all a, b ∈ ω where ω is a partition element according to Definition 2.3. We will
also make use of the preliminary discussion in Sect. 6. Let us first see a geometrical
consequence of (7.1). By Lemma 4.2 we have, for some small 0 < q < 1,

∣∣∣∣
ξ ′

n,l(a)

D f n−1
a (vl(a))

− Ll

∣∣∣∣ ≤ q|Ll | (7.2)

for n ≥ N as long as fa satisfies the CE-condition with some exponent at least γL and
where N > 0 is as in Lemma 4.2. So combining (7.1) and (7.2) we get

∣∣∣∣
ξ ′

n,l(a)

ξ ′
n,l(b)

− 1

∣∣∣∣≤ ε̃, for all a, b ∈ ω, (7.3)

where ε̃ > 0 is arbitrarily small given that ε′ and q are small enough. This means that
the curve ξn,l(ω) is almost straight, which will be important when we make partitions
at returns.

From now on, let us fix l and write ξn,l(a) = ξn(a). In the beginning we are going
to follow orbits close to the original orbit ξn(0), and then it is rather easy to see that
nearby orbits also satisfy the CE-condition, but when considering nearby parameters
a close to 0, after a long time we have to keep track of the derivative D f n

a (vl(a)),
since the orbit of ξn(a) and ξn(0) become more or less independent.

Choose some small ε > 0 and suppose that ω ⊂ (−ε, ε). For a, b ∈ ω, consider
(7.1). The distortion during the first N iterates can be made arbitrarily small if the
perturbation ε is small enough. So we only need to consider iterates after N , and
hence focus on proving: ∣∣∣∣

D f n−N
a (ξN (a))

D f n−N
b (ξN (b))

− 1

∣∣∣∣ ≤ ε′. (7.4)

The main task is to prove this stronger form of the space distortion. By Lemma 6.2,
the distortion estimate (7.4) follows if we prove that

n−N−1∑

j=0

∣∣∣∣
D fa(ξN+ j (a)) − D fb(ξN+ j (b))

D fb(ξN+ j (b))

∣∣∣∣ ≤ ε′′, (7.5)

where ε′ → 0 as ε′′ → 0.
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With z = ξ j (a) and w = ξ j (b), we have

|D fa(ξ j (a)) − D fb(ξ j (b))| ≤ |D fa(z) − D fa(w)| + |D fa(w) − D fb(w)|.

We also see that, for some a∗ ∈ [a, b],

|D fa(w) − D fb(w)| ≤ |a − b||∂a D fa∗(w)| ≤ C |ξ j (a) − ξ j (b)|e−γ2 j , (7.6)

for some constant C > 0 since ∂a D f (z) is bounded.
If c is a critical point, using that |z − c| ∼ |w − c|, for z = ξ j (a), w = ξ j (b), we

get, using the Taylor expansion of f near c, see (6.5), that

n∑

j=1

|D fa(ξ j (a)) − D fb(ξ j (b))|
|D fb(ξ j (b))| ∼2k

n∑

j=1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

.

if z and w are sufficiently close to Crita . We will therefore estimate the sum

Ŝ =
n∑

j=N

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

. (7.7)

Lemma 7.1 If N is large enough we have the following. Suppose that νk ≥ N is a
return time and that ξνk ,l(a) is a free return into U ′ (essential or inessential or a
pseudo return), a ∈ (−ε, ε). Moreover, we suppose that a ∈ Eνk ,l(γ ) ∩ Bνk ,l , where
γ ≥ γI . Then until the next free return, we have,

|D f νk+1
a (vl(a))| ≥ eγ1νk+1,

where γ1 ≥ (9/10)min(γ, γH ).

Proof During the bound period pk starting directly after the return νk , we see from
Lemma 6.4 that

|D f νk+pk (vl(a))| ≥ C0eγ νk e
γ
2K pk ,

for each a ∈ ω. Moreover, note that pk ≤ (2Kα/γ )νk from Lemma 6.4. After that
the free period starts, and by the outside expansion Lemma 3.1 we get

|D f νk+1(vl(a))| ≥ C0C ′eγ νk e
γ
2K pk eγH (νk+1−(νk+pk )) ≥ eγ1νk+1 ,

for some γ1 ≥ (9/10)min(γ, γH ) if N is large enough. ��
If we consider a return of ξn(ω), where ω is a partition element, we have seen by

Lemma 5.1, that we may disregard from the parameter dependence inside ω as long
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as the space derivative grows exponentially. The above lemma ensures that γ1 ≥ γC .
So, by the weak parameter dependence property, we have

|ξν′(a) − ξν′(b)| ∼Qν′−ν |D f ν′−ν
a (ξν(a))||ξν(a) − ξν(b)|

for all a, b ∈ ω. Moreover, there is some γ2 ≥ min(γ, γH )/(3K ), such that

|D f ν′−ν
a (ξν(a))|Q−(ν′−ν) ≥ eγ2(ν

′−ν),

if log Q < α � γ1. It follows that two orbits ξn,l(a) and ξn,l(b) repel each other up
to some large scale or until the next return takes place. We get the following lemma.

Lemma 7.2 If N is large enough we have the following. Suppose that ξν,l(ω) is a
return with ν ≥ N (inessential or essential or a pseudo return) and that a, b ∈ ω,
ω ⊂ Eν,l(γ )∩Bν,l is a partition element, and γ ≥ γI . Then if ν′ is the next free return
time.

|ξν′(a) − ξν′(b)| ≥ eγ2(ν
′−ν)|ξν(a) − ξν(b)| ≥ 2|ξν(a) − ξν(b)|,

where γ2 ≥ min(γ, γH )/(3K ).

Next, we prove theMainDistortion Lemma,which is ourmain object in this section.

Lemma 7.3 (Main Distortion Lemma) Let ε′ > 0. Then if N is sufficiently large we
have the following. Let ω ⊂ Eν(γ ) ∩Bν,l be a partition element for some γ ≥ γI and
suppose that ν ≥ N is a return time or does not belong to a bound period. Then we
have, until the next free return ξν′,l(ω), a bound on the distortion if ω is still a partition
element at time n, namely,

∣∣∣∣
D f n

a (vl(a))

D f n
b (vl(b))

− 1

∣∣∣∣≤ ε′, for all a, b ∈ ω

if ν ≤ n ≤ ν′.
Proof By Lemma 7.1 the CE-condition is fulfilled with exponent γ1 ≥ (9/10)
min(γ, γH ) up until the next free return. Now, γ1 ≥ γC so we can repeatedly use
the weak parameter dependence property. Let us assume that ν is a return time. If not,
replace ν with the latest return time before ν.

Put ξn,l(a) = ξn(a). We want to estimate the sum

n∑

j=1

|ξ j (a)) − ξ j (b)|
dist(ξ j (b), Critb)

. (7.8)

First we look at the contribution from the bound periods. We want to estimate the
sum

p∑

j=0

|ξν+ j (a) − ξν+ j (b)|
dist(ξν+ j (b), Critb)

.
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Since |ξν(a) − ξν(b)| ∼2 e−r/r2 and dist(ξν(b), Critb) ∼√
e e−r , the first term

( j = 0) contributes ∼ 1/r2.
To estimate the other terms ( j > 0), we use the weak parameter dependence

property to get

|ξν+ j (a) − ξν+ j (b)| ∼Q j |D f j (ξν(a))||ξν(a) − ξν(b)| ∼2 |D f j (ξν(a))|e−r/r2.

By the definition of the bound period we have, for j > 0, using Lemma 6.3, if
ξν(a) ∈ U ′

i ,

|D f j (ξν(a))|e−r ∼ |ξ j,i (a) − ξν+ j (a)| ≤ e−α j dist(ξ j,i (a), Crita).

So we get

|ξν+ j (a) − ξν+ j (b)| ≤ C Q j e−α j dist(ξ j,i (a), Crita)

r2
,

and therefore, since dist(ξ j,i (a), Crita) is virtually the same for all a ∈ ω,

p∑

j=0

|ξν+ j (a) − ξν+ j (b)|
dist(ξν+ j (b), Critb)

≤ C

r2
+ C

p∑

j=1

Q j e−α j

r2
≤ 2C

r2
,

where the term C/r2 corresponds to j = 0, and log Q < α.
Between each adjacent pair of free returns there is a growth of the interval ξn, j (ω)

as follows. Lemma 7.2 implies

2 diam(ξνk (ω)) ≤ diam(ξνk+1(ω)), for all a, b ∈ ω. (7.9)

Let (r) be those indices k for which dist(ξνk (ω), Critω) ∼√
e e−r , and let k̂(r) be the

largest integer in (r). Hence going backwards in time, inside each (r), the contribution
from the bound periods is a constant times the last contribution, i.e.

∑

k∈(r)

|ξνk (a) − ξνk (b)|
dist(ξνk (b), Critb)

≤ C
|ξνk̂(r)

(a) − ξνk̂(r)
(b)|

dist
(
ξνk̂(r)

(b), Critb
) ≤ C

r2
.

Summing over all such possible returns we get
∞∑

r=�

C

r2
≤ 2C

�
.

Let us now look for the contribution from the free periods. Let us first assume
that νk are the returns up until νs and that ν′ = νs (hence νs−1 = ν) and pk their
bound periods. By Lemma 3.1 we get that, for every a, b ∈ ω, now assuming that
ξ j (ω) ∩ U = ∅ for all νk + pk + 1 ≤ j ≤ νk+1 − 1, and using the weak parameter
dependence property,

|ξνk+1−1(a) − ξνk+1−1(b)| ≥ C ′Q−(νk+1−1− j)λνk+1−1− j |ξ j (a) − ξ j (b)|.
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We can choose Q > 1 such that log Q < (log λ)/10. Hence, possibly diminishing
λ > 1,

νk−1∑

j=νk−1+pk−1+1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

≤ C
∑

j

λ−(νk−1− j) |ξνk−1(a) − ξνk−1(b)|
δ

≤ C
|ξνk−1(a) − ξνk−1(b)|

δ
. (7.10)

We have, for some κ2 ≥ 1,

|ξνk−1(a) − ξνk−1(b)| ∼κ2 |ξνk (a) − ξνk (b)| ∼2 e−rk /r2k ,

if k < s, where we have put dist(ξνk (ω), Critω) ∼√
e e−rk . So for those returns the

contribution to the sum (7.8) is going to be very small. Recalling that |ξ j (a))−ξ j (b)| ≤
S, where S = ε1δ is the large scale, δ = e−�, we get, for the last return,

νs−1∑

j=νs−1+ps−1+1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

≤ C
S

δ
≤ Cε1, (7.11)

where C depends only on C ′ and λ (hence not on δ). So Cε1 can be made
arbitrarily small if ε1 is small enough. We let (r) be those indices k such that
dist(ξνk (ω), Critω) ∼√

e e−r , and k̂(r) the maximum index k for which this hap-
pens. Then using Lemma 7.2, we have (7.9), and therefore we conclude that

∑

k∈(r)

|ξνk (a) − ξνk (b)| ≤ C |ξνk̂(r)
(a) − ξνk̂(r)

(b)|.

Summing up, we get, excluding the last return,

s−1∑

k=1

νk−1∑

j=νk−1+pk−1+1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

=
∑

r≥�

∑

k∈(r)

νk−1∑

j=νk−1+pk−1+1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

≤ C
∑

r≥�

∑

k∈(r)

|ξνk−1(a) − ξνk−1(b)|
δ

≤ C
∑

r≥�

|ξνk̂(r)
−1(a) − ξνk̂(r)

−1(b)|
δ

≤ C
∑

r≥�

e�−r

r2
≤ C

�
. (7.12)
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Including the last we return we get

s∑

k=1

νk−1∑

j=νk−1+pk−1+1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

≤ C

�
+ Cε1. (7.13)

If we now pick some n such that ν + p ≤ n < ν′, then letting q1 < . . . < qt

be consecutive, so called pseudo-returns into some fixed U ′\U so that ν + p ≤ q1,
qt ≤ n, we proceed as follows. The only difference to returns into U is that we can
only say that diam(ξq j (ω)) ≤ S for pseudo-returns. We do not count bound returns as
pseudo-returns but consider only the free pseudo-returns.

The contribution to the sum (7.8) between each pair of pseudo returns is again a
constant times the last term for each pseudo-return. Let (r) be the indices l for which
ξql (ω) is a pseudo return for which dist(ξql (ω), Critω) ∼√

e e−r , and let l̂(r) be the
largest index l for which dist(ξql (ω), Critω) ∼√

e e−r .
Then

qt∑

j=ν+p+1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

=
q1∑

j=ν+p+1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

+
�∑

r=�′

∑

l∈(r),l>1

ql∑

j=ql−1+1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

≤ C
�∑

r=�′

∑

l∈(r)

|ξql (a)) − ξql (b)|
dist(ξql (b), Critb)

≤ C
�∑

r=�′

|ξql̂(r)
(a) − ξql̂(r)

(b)|
dist

(
ξql̂(r)

(b), Critb
) . (7.14)

Moreover, we have the assumption that diam(ξk(ω)) ≤ S = ε1δ, for all k ≤ n. If
ξql (ω) is a pseudo return with dist(ξql (ω), Critω) ∼√

e e−rl , for �′ ≤ rl ≤ �, the
contribution will be simply bounded by ε1e−�/e−rl . We get

C
�∑

r=�′

|ξql̂(r)
(a) − ξql̂(r)

(b)|
dist

(
ξql̂(r)

(b), Critb
) ≤ C

�∑

r=�′
ε1er−� ≤ Cε1. (7.15)

The contribution from the very last iterates from qt < j ≤ n is a constant (depending
on the large scale) by the uniform expansion along the early orbit (the bound period)
and then outside U ′. Summing up,

n∑

j=1

|ξ j (a) − ξ j (b)|
dist(ξ j (b), Critb)

≤ 2C

�
+ C

�
+ 2Cε1,
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which can be made small if ε1 and δ are small enough. This finishes the lemma. ��

We now get a posteriori that ξn is almost affine on each partition element ω. Hence
also |ξn(a) − ξn(b)| expands according to the space derivative for any parameter
c ∈ [a, b] i.e.

|ξn(a) − ξn(b)| ∼C |D f n− j
c (ξ j (c))||ξ j (a) − ξ j (b)|,

for C > 1 close to 1. This is called strong distortion.
Moreover, we see that as long as γ ≥ γI for returns (in general γ ≥ γI − 4αK ),

we have good geometry control, i.e. for a partition element ω, we have (7.3), for all
a, b ∈ ω.

7.1 Initial distortion

As a direct consequence of the Main distortion lemma, we here state that for any
sufficiently small ε we can find an interval ω ⊂ (−ε, ε) such that ξn,l(ω) grows to
some “large scale” (denoted by S) or returns into U as an essential first return.

Lemma 7.4 (Start-lemma) Let f = f0 be as in Theorem A and let ε′ > 0 and N > 0
from Lemma 4.2. There is a neighbourhood U of Crit0 and a number S > 0 (called
the “large scale”), which depends on U such that the following holds. For every
sufficiently small ε > 0 and each critical point cl there is some Nl ≥ N > 0 such that
for every a ∈ ω = (−ε, ε) we have:

(i) For some γl ≥ γ0(1 − ε′), it holds that

|D f k
a ( fa(cl(a)))| ≥ Ceγl k, for all k ≤ Nl ,

(ii) for all k ≤ Nl − 1, it holds that

diam(ξk,l(ω)) ≤
{

dist(ξk,l (ω),Critω)

(log(dist(ξk,l (ω),Critω)))2
, if ξk,l(ω) ∩ U �= ∅,

S, if ξk,l(ω) ∩ U = ∅,

(iii) for k = Nl , it holds that

diam(ξNl ,l(ω)) ≥
{

dist(ξNl ,l (ω),Critω)

(log(dist(ξNl ,l (ω),Critω)))2
, if ξNl ,l(ω) ∩ U �= ∅,

S, if ξNl ,l(ω) ∩ U = ∅,

(iv) and finally, for all a, b ∈ ω it holds that

∣∣∣∣
D f n−N

a (ξN (a))

D f n−N
b (ξN (b))

− 1

∣∣∣∣ ≤ ε′, for all n ≤ Nl .
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Remark 7.5 The Whitney type of condition on the diameter of ξn(ω) and its distance
to the critical points has the following meaning. With dist(ξn,l(ω), Critω) ∼ e−r the
diameter becomes ∼ e−r/r2 and this is sufficient for having control of the distortion
of the derivative. The condition is also used in the main distortion lemma later.

Proof Similar to the proof of Lemma 5.1, we can easily conclude that condition i i)
implies that we have very small distortion for D fc c ∈ (−ε, ε) both in the space and
parameter variable. We see that if ξn(a) and ξn(b) are close in this sense, then for all
a, b ∈ (−ε, ε), in particular for b = 0, the bounded distortion on D fc implies

|D f n
a (vl(a))| ≥ C−n|D f n

0 (vl(0))| ≥ C0eγ1n,

for some γ1 slightly smaller than γ0 (we may assume that γ1 ≥ (1 − ε′)γ0), if C is
close enough to 1 (by choosing S small enough). So fa also satisfies the CE-condition
with exponent slightly smaller than γ0. We now let Nl be the maximal integer such
that i i) holds. We have shown that also i) holds for this Nl . We can hence use the
Main distortion lemma for all following returns until time Nl . Hence iv) holds. ��

7.2 The partition

If J ( f ) = Ĉ then we have 2d − 2 critical points, counting multiplicity. Inside the
subspace �d,p′ each critical point moves analytically. So Lemma 7.4 gives at most
2d − 2 numbers Nl , given an interval ω0 = (−ε, ε), such that ξNl ,l(ω0) has grown to
some large scale S (same for all l), or has reached size e−r/r2 inside U , where e−r

is, more or less, the distance to the critical points, i.e. dist(ξNl ,l(ω0), Critω0) ∼ e−r .
We now assume that, without loss of generality, N1 = min(Nl). Thus we have the
CE-condition satisfied for all critical points up until time N1, on ω0.

If N1 is not a return time, we have diam(ξN1,1(ω0)) ≥ S by Lemma 7.4. As soon as
this happens, we partition the intervalω0 into the least number of smaller sub-intervals
ωi
0 ⊂ ω of equal length such that diam(ξN1,1(ω

i
0)) ≤ S. We call the setsωi

0 of this type
partition elements. We do this partitioning for every critical point at all times outside
U until some parameter returns intoU . In this way we always have diam(ξn,l(ω)) ≤ S
for any partition element ω and study the evolution of each such ω separately. We will
use ω ⊂ ω0 = (−ε, ε) as a standard notion for partition elements in the future.

Let us go back to the critical point c1 (l = 1) and assume that ω ⊂ ω0 is such
partition element and thatm1 is the smallest integerm1 ≥ N1 such that ξm1,1(ω)∩U �=
∅, i.e. ξm1,1(ω) is a return into U . If

1

2

dist(ξm1,1(ω), Critω)

(log(dist(ξm1,l(ω), Critω)))2
≤ diam(ξm1,1(ω)),
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we speak of an essential return.Otherwise the return is inessential. For essential returns
we then partition the interval ω into smaller intervals ωi

m1
⊂ ω such that

1

2

dist
(
ξm1,1(ω

i
m1

), Critωi
m1

)

(
log(dist(ξm1,l(ω

i
m1

), Critωi
m1

))
)2 ≤ diam

(
ξm1,1(ω

i
m1

)
)

≤
dist

(
ξm1,1(ω

i
m1

), Critωi
m1

)

(
log(dist(ξm1,l(ω

i
m1

), Critωi
m1

))
)2 . (7.16)

These smaller intervals ωi
m1

are also called partition elements (at time m1). The con-
dition (7.16) implies that we have control of the distortion:

|D fa(ξm1,1(a))|
|D fb(ξm1,1(b))| ≤ C(r̃), for all a, b ∈ ωi

m1
.

where C(r̃) > 1 and tends to 1 as r̃ = − log(dist(ξm1,1(ω
i
m1

), Critωi
m1

)) tends to

infinity. We let r = �r̃ − 1/2�. For ωi
m1

above, we associate r = r(r̃) to r̃ , and it
follows that

dist
(
ξm1,1(ω

i
m1

), Critωi
m1

)
∼√

e e−r ,

(cf. with the annular neighbourhoods in [1]). Moreover, we see that

diam
(
ξm1,1(ω

i
m1

)
)

∼2 e−r/r2,

if r ≥ �, and � sufficiently large. When we write dist(A, B) ∼√
e e−r , typically

we use it when A = ξn,l(ω) and B = Critω, then we mean the unique r such that
r = �− log dist(A, B) − 1/2�, i.e. dist(A, B) ∈ [e−r−1/2, e−r+1/2).

For each return, and in particular this first return, we partition parameter intervals
according to the above rule. Moreover, we delete parameters not satisfying the basic
assumption and show later that the Lebesgue measure of the set deleted is a small
portion of the total interval returning into U . It is quite easy to see that this is the case
for the first return. Because of the slow recurrence condition, we see that

e−r ≥ e−αm1 	 e−2αm1 .

Hence, the basic assumption possibly forces us to delete a small fraction of parameters
at time m1.

After this return the first bound period starts, and the whole idea is that binding the
old orbit to the early orbit of possibly another critical point, will, via distortion control,
transfer the derivative gain form the early orbit to the old orbit. To do this we need to
be able to use the binding time for all critical points in the induction. We continue like
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this as long as we can use the binding information for all critical points, up until time
N1. This procedure creates a Cantor set (denoted by�l(m)) of “good” parameters, for
each critical point cl , that do satisfy the basic assumption up until some time m, which
turns out to be much larger than N1, because the bound periods for a return ξm,l(ω)

into U are much smaller than m itself (Lemma 6.4).
At this point, we have to delete more parameters such that the binding period can be

used longer. A potential problem here is that different critical points cl may produce
different Cantor sets up until time m, and if we take intersections of these sets, we
may destroy the partition elements. But the idea is that the partition elements at time
from, say N1 until 2N1, are much larger that those partition elements formed around
time m 	 N1. We develop this idea, which is due to Benedicks, later.

In the construction, the growth of the derivative along critical orbits is never allowed
to go below a certain level, in order to have the whole machine working. Recall
that γB = (3/4)min(γ0, γH )(1 − τ), where 0 < τ < 1. This exponent γB should
be thought of the desired Lyapunov exponent, which we will get at the end. It will
also be used as an induction assumption. The number τ can be chosen freely but δ

depends on it (see Sect. 8, Lemma 8.7). The intermediate Lyapunov exponent γI =
(1/4)min(γ0, γH )(1 − τ) < γB/2 will be an assumption in most lemmas.

8 Large deviations

We will make an induction over time intervals of the type [n, 2n] and assume from
now on that we make partitions as described above. Given a good situation at time n
with growth of the derivative, we first delete the parameters not satisfying the basic
assumption up until time 2n. But according to Lemma 7.1, this means that we may
lose some part of the Lyapunov exponent. Therefore we make use of the famous large
deviation argument, developed by Benedicks and Carleson, to restore the Lyapunov
exponent up until time 2n.

This section is very similar to older papers [1, 5] et al.

Lemma 8.1 Suppose that ξν,l(ω) is an essential return into Ui , and that the Lyapunov
exponent γ ≥ γI for all critical points, ω ⊂ Eν,l(γ )∩Bν,l . Then if ν′ is the next return
time, we have that the set ω̂ of parameters in ω that satisfies the basic assumption, has
Lebesgue measure

m(ω̂) ≥ (1 − e−αν)m(ω).

Proof This follows quite easily, since the interval ξν+p(ω) grows rapidly during the
bound period p. By Lemma 6.4, Lemma 6.3 and Lemma 7.3, we get, for any a ∈ ω,

diam(ξν+p+1,l(ω)) ∼ e−rdi

r2
|D f p(ξν+1,l(a))|

∼ |ξν+p+1,l(a) − ξp+1,i (a)|
r2
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≥ Ce−α(p+1)−2 log r dist(ξp+1,i (a), Crita)

≥ C Kbe−2α(p+1)−α(p+1)−2 log r ≥ e−(7/2)α p−2 log r , (8.1)

if p is large. So, by Lemma 3.1,

diam(ξν′,l(ω)) ≥ diam(ξν+p+1,l(ω))C ′eγH (ν′−(ν+p+1)) ≥ C ′e−(7/2)α p−2 log r

≥ e−7αdr/γ−2 log r ≥ e− 8αd
γ

r
. (8.2)

Recalling the distortion control from the Main Distortion Lemma 7.3 together with
Lemma 4.2, we see that the measure of parameters deleted at ν′ is

|ω| − |ω̂|
|ω| ≤ 2

e−2αν′

diam(ξν′(ω))
≤ 2e−α(2− 8αd

γ
)ν ≤ e−αν,

since αK/γ ≤ 1/100, K = max(d) (maximal degree of the critical points). ��

We now define escape time and escape situation. Let U 2 be a neighbourhood of
Crit such that U 2 = ∪ j B(c j , δ

2) ⊂ U . We say that a deep return is characterised by
ξn,l(ω)∩U 2 �= ∅ and a shallow returnmeans that ξn,l(ω)∩U 2 = ∅but ξn,l(ω)∩U �= ∅.
We then speak of deep returns intoU 2 and shallow returns intoU\U 2 even if the actual
curve ξn,l(ω) does not entirely lay inside U 2 or U\U 2 respectively. We also let ωn(a)

be the corresponding partition element following the parameter a, i.e. the unique
ω such that ξn(ω) has diameter bounded by S if ξn(ω) ∩ U = ∅ and bounded by
dist(ξn(ω), Critω)/(log dist(ξn(ω), Critω))2 if ξn(ω) ∩ U �= ∅.

Definition 8.2 We say that ξn(ω), or ω itself, has escaped, or is in escape position, if
diam(ξn(ω)) ≥ S just before partitioning, and the bound period has passed. In other
words, diam(ξn(ωn−1(a))) ≥ S, where ω = ωn−1(a), some a ∈ ω.

The escape time for a parameter a ∈ ω for a deep return ξν,l(ω) into U 2 is defined
as the least number n − ν ≥ 0 such that ξn,l(ωn−1(a)) has reached escape position.
We write El(a, ν) = n − ν for this escape time. We also define the escape time for
shallow returns, i.e. if ξν,l(ω) ⊂ U\U 2, to be equal to zero.

If some parameter a ∈ ω has that ξν′,l(ων′(a)) does not satisfy the basic approach
rate condition, i.e. returns too deep for some ν′ > ν before it escapes, then those
parameters get deleted and we put El(a, ν) = −∞.

Lemma 8.3 Suppose that ξν,l(ω) is an essential return into Ui , ω ∈ Eν,l(γ ) ∩ Bν,l ,
γ ≥ γI and that dist(ξν,l(ω), Critω) ∼√

e e−r . Put h = 8K 2/γI . Then if q = n − ν

where n is the next essential return or the time when ξn,l(ω) is in escape position,
which ever comes first, we have the estimate

q ≤ hr .
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Proof Let us put D j = |D f j (ξν,l(a))|, for a ∈ ω. By the definition of the bound
period, the basic assumption, and Lemma 6.4, for all a ∈ ω,

Dp+1 ≥ Ce−α(p+1) dist
(
ξp+1,i (a), Crita

)
er

≥ e−2α(p+1)−α(p+1)+r ≥ e
r
(
1− 7αK

γ

)

≥ e
r
(
1− 7αK

γI

)

. (8.3)

Let m j be the inessential returns after ν, i.e. ν < m1 < m2 < . . . < ms < n. Let
p j and q j be the bound and free periods respectively following m j . Let p0 and q0
be the bound and free periods following the return ν. It can happen that escape takes
place before a return takes place, and then qs is not a complete free period. It can also
happen that n is a time during the bound period for ms . But then we have ms + ps − ν

as an upper bound for q and we can assume that q > ms + ps .
Suppose that dist(ξm j (ω), Critω) ∼√

e e−r j , and let r = r0. Suppose that n = ν′
is a return. Then, as long as the bound period is bounded by (6Kα/γI )ν, we can use
the same estimate as (8.3), and Lemma 3.1, to obtain

diam(ξn(ω)) ∼ |D f n−ν
a (ξν(a))| diam(ξν(ω))

=
s∏

j=0

|D f
p j

a (ξm j (a))|C ′eγH q j diam(ξν(ω))

≥ e
r
(
1− 7αK

γI

)

C ′eγH q0 diam(ξν(ω))

s∏

j=1

e
r j

(
1− 7αK

γI

) s∏

j=1

C ′eq j γH

≥ e
−r 8αK

γI
+q0γH

s∏

j=1

e
r j

(
1− 8αK

γI

)
+q j γH

. (8.4)

If n was not a return, then let q1 < . . . < qt be the pseudo-returns after ms + ps .
Between each pair of pseudo-returns we have uniform expansion of the derivative
according to Lemma 7.2. Between ms + ps and q1 we also have uniform expansion
according to Lemma 3.1. So we only need to consider the last time period, from qt to
n. Since ξqt (ω) may belong to U ′\U we have |D fa(ξqt (a))| ≥ e−K� for all a ∈ ω.
After time qt we can use the binding information, Lemma 6.3 and the first statement of
Lemma 3.1 withU = U ′, depending on whether n belongs to the bound period or not.
In any case we get uniform expansion; |D f n−qt −1

a (ξqt +1(a))| ≥ Cemin(γ,γH )(n−qt −1).
In other words, with z = ξms+ps (a), for a ∈ ω,

|D f n−(ms+ps )
a (z)| = |D f q1−(ms+ps )

a (z)||D f q2−q1
a

(
f q1−(ms+ps )
a (z)

)
|

· . . . · |D f qt −qt−1
a

(
f qt−1−(ms+ps )
a (z)

)
||D fa

(
f qt −(ms+ps )
a (z)

)
|

· |D f n−qt −1
a

(
f qt −(ms+ps )+1
a (z)

)
|

≥ C ′eγH (q1−(ms+ps ))eγ2(qt −q1)e−K�Cemin(γ,γH )(n−qt −1)

≥ eγC (n−(ms+ps ))e−K�, (8.5)
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since γ2 ≥ min(γ, γH )/(3K ) ≥ γC . Sowemay have to replace qsγH with γC qs −K�

in (8.4), where qs = (n − (ms + ps)) in this case.
Since γC < γH , and diam(ξn(ω)) is assumed to be at most S = ε1δ ≤ 1, we

therefore get

s∑

j=1

r j

(
1 − 8αK

γI

)
+

s∑

j=0

q jγC ≤ r
8αK

γI
+ K�.

Hence, if q = ∑s
j=0 p j + ∑s

j=0 q j , we get

q − p0 =
s∑

j=1

p j +
s∑

j=0

q j ≤
s∑

j=1

2K

γI
r j +

s∑

j=0

q j

≤
s∑

j=1

4K

γI

(
1 − 8αK

γI

)
r j + 1

γC

s∑

j=0

q jγC

≤ max

(
4K

γI
,
1

γC

)( s∑

j=1

r j

(
1 − 8αK

γI

)
+

s∑

j=0

q jγC

)

≤ max

(
4K

γI
,
1

γC

)(
8αK

γI
r + K�

)
≤ 6K 2

γI
r , (8.6)

since 4K/γI > 1/γC , and α ≤ 4γI /(400K 2�). Now, p0 ≤ 2Kr/γI , so

q ≤ 8K 2

γI
r . (8.7)

Since the total time is bounded from above by ν + 8K 2r/γI ≤ (3/2)ν, we can use
the binding information the whole time. ��

Wewill now estimate the measure of the set of parameters having a specific history
for the returns in a timewindowof the form [n, 2n]. For simplicity, suppose that ξν(ω0)

is an essential return with dist(ξν(ω0), Critω0) ∼√
e e−r0 and ν ≥ n (ν should be

though of as the smallest return time after n). Let us study the evolution of ξm(ωm(a))

as m goes through a sequence of essential returns ν1, ν2, . . . , νs ≤ 2n. Let us also
assume thatων j (a) ⊂ Eν j ,l(γI )∩Bν j ,l , for these returns so that we can use the binding
information of all other critical points up to time 2n. This is not a strong assumption, as
we now explain. Suppose a ∈ En,l(γB)∩B2n,l , i.e. we assume that the basic approach
rate condition is fulfilled up until time 2n. The Lyapunov exponent will not drop too
much at each return in the interval [n, 2n], because we can use Lemma 6.4 at each
return and get a trivial lower bound for the expansion, namely 1 during the bound
period. But this means that the actual Lyapunov exponent is bounded from below, and
we get a trivial bound,

|D f 2n(vl(a))| ≥ eγB n ≥ e2nγI ,
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since γI ≤ γB/2. In other words, a ∈ E2n,l(γI ) ∩ B2n,l .
By the Main Distortion Lemma 7.3, which then gives good geometry control, the

diameter of ξν j +p j (ων j +p j (a)) is more or less equal to the length of the curve (which
is then more or less straight), i.e. ∼ e−(7Kα/γ )r j , see inequality (8.3). After the free
period it may expand further, and to get rid of the constant C ′ in Lemma 3.1, we may
say that the curve ξν j+1(ων j+1(a)) has a diameter at least e−(8Kα/γ )r j . We therefore
get, with γ ≥ γI , that the measure of those parameters b ∈ ων j (a) entering into U
with dist(ξν j+1(b), Critb) ∼√

e e−r j+1 is

m(ων j+1(a)) = m
({

b ∈ ων j (a) : ξν j+1(b) ∼√
e e−r j+1

})
≤ C

e−r j+1

e−(8Kα/γ )r j
m(ων j (a)),

(8.8)
(recall that we do not partition ων j (a) until the next return, so ων j (a) = ων j+1−1(a)).
So suppose now that we have a sequence of s essential returns ν1, ν2, . . . , νs ≤ 2n.
Let us also assume that we always have a lower bound, γI , for the Lyapunov exponent,
i.e. a ∈ E2n,l(γI )∪B2n,l for the parameters we are considering. Then the portion from
the starting interval, call it ω0 = ων(a) for some a ∈ ω0, that has this specific history
is, with ω j = ων j (a),

m(ωs)

m(ω0)
=

s−1∏

j=0

m(ω j+1)

m(ω j )
≤ Cs

s−1∏

j=0

e−r j+1

e−(8Kα/γ )r j
. (8.9)

We continue to follow [1, 5] more or less verbatim. Let R = r1 + r2 + . . .+ rs . We
now compute the number of combinations of choosing such r j given that r j ≥ � ≥ 0.
Let us not yet take into account that we are partitioning the intervals into smaller
intervals such that

diam(ξν j (ω)) ∼√
e e−r j /r2j , for each j = 1, . . . , s, (8.10)

where ω = ων j (a). Hence for each such set we have another r2j possibilities.
By the pigeonhole principle, an upper bound for this number of combinations is,

disregarding from these extra r2j s possibilities,

(
R + s − 1

s − 1

)
.

By Stirling’s formula this can be estimated as follows, using that R ≥ s�,

(
R + s − 1

s − 1

)
≤ C

1√
2π

(R + s − 1)R+s−1e−R−s+1

RRe−R(s − 1)s−1e−s

√
R + s − 1

R(s − 1)

≤ RR+ R
�

(
1 + 1

�

)(
1+ 1

�

)
R

RR
( R

�

)R/�
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≤
(

�1/�
(
1 + 1

�

)1+ 1
�
)R

≤ 2(1 + η(�))R (8.11)

if � is large enough, where η(�) = O(1/�).
Taking into account now (8.10), we get that the number of combinations is

2(1 + η(�))R
s∏

j=1

r2j ≤ eR/32(1 + η(�))R .

We can rewrite (8.9) to get, (recall the condition on α),

m(ωs)

m(ω0)
≤ Cser0(8αK/γ )−∑s−1

j=1 r j (1−8αK/γ )−rs ≤ Cser0(8αK/γ )−(15/16)R .

Given an essential return ξν,l(ω), let As,R ⊂ ω be the set of those parameters having
exactly s essential returns as above before escaping at the s + 1:st return, for a fixed
R. Each pair of sequences {ν j }s

j=1, {r j }s
j=1 defines a unique history for a parameter

a ∈ As,R . Letting s and R vary, then ω gets partitioned into a (likely huge) number of
smaller intervals having this specific history. But let us fix s and let ω̂s be the largest
of these partition intervals for this fixed s. Then

|As,R | ≤ |ω̂s |eR/32(1 + η(�))R .

Now we show that the set of those parameters for which ξn(a) returns too fre-
quently and too deep into U has very small Lebesgue measure. This is handled via so
famous large deviation argument, originally developed in [5], which is an idea from a
probabilistic point of view, although the system we are considering is deterministic.

For an essential return ξν,l(ω) intoU 2 where dist(ξν,l(ω), Critω) ∼√
e e−r , suppose

that a ∈ ω has s essential returns before it has escaped. Then according to Lemma
8.3, we have,

El(a, ν) ≤
s∑

j=0

hr j ≤ hr + h R,

where R = r1+ . . .+rs . So the escape time t ≤ hr +h R, i.e. it is bounded in terms of
how deep the returns are. Let us estimate the measure of those parameters that escape
at a certain (long) time t .

Put r = r0. We get, given that � is large enough,

m({a ∈ ω : El(a, ν) = t}) ≤
∑

R≥t/h−r0,s≤R/�

|As,R |

≤
∑

R≥t/h−r0,s≤R/�

|ω̂s |eR/32(1 + η(�))R
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≤ |ω|
∞∑

R=t/h−r0

R/�∑

s=1

eR/32(1 + η(�))RCser0(8αK/γ )−(15/16)R

≤ C ′|ω|
∞∑

R=t/h−r0

C R/�e
−R

(
29
32−η(�)

)
+(8Kα/γ )r0

≤ C ′|ω|e−( t
h −r0) 28

32+(8Kα/γ )r0

≤ C ′|ω|e− t
h
28
32+

(
28
32+ 8Kα

γ

)
r0

. (8.12)

for some constant C ′ > 0.
By the condition on α, if γ ≥ γI , we get an estimate of the measure of parameters

for large escape times. Let us suppose that t > 2hr0. Then

m({a ∈ ω : El(a, ν) = t}) ≤ Ce− t
3h |ω|. (8.13)

We now follow a parameter in a ∈ ω in a time window [n, 2n], and estimate its
total time spent on escaping from essential returns. Recall that given an essential return
ξν(ων(a)), the parameter a has to escape first before we can start counting the next
escape time. Let

Tn(a) = Tn,l(a) =
s(a)∑

j=1

El(a, ν j (a)),

where ν j (a) are essential returns after escape situations, and s = s(a) the total number
of such returns in [n, 2n].We include shallow returns above also but then, by definition,
the escape time is zero, so one needs only consider deep returns in the sum.

Remark 8.4 A note on the last return νs in the expression of Tn,l(a). The escape period
of the last return νs = νs(a), by definition, has to transcend into the next time window
[2n, 4n]. If it is too long it may deteriorate the Lyapunov exponent for that parameter
too much. Here we make the following convention, namely that if E(a, νs) ≥ 6hαn
(where 6hαn � n), then we delete those parameters. They constitute an exponentially
small portion of the parameters inω [put t = 6hαn in equation (8.13)], i.e. hasmeasure
≤ |ω|Ce−qn , where q = 2α. We simply disregard from those parameters in the above
expression for Tn(a). They can easily be taken care of in the final proof in the next
section.

In order to reach the main conclusion that the set of parameters having too many
too deep returns in the time window [n, 2n] has small measure, we want to estimate,
for suitable θ > 0, the integral

1

|ω|
∫

ω

eθTn(a) da.

There is some freedom of how to choose θ , but let us set θ = 1/(6 h).
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Lemma 8.5 Let ξν,l(ω) be a deep essential return with dist(ξν,l(ω), Critω) ∼√
e e−r ,

n ≤ ν ≤ 2n, and ω ⊂ Eν,l,�(γ ) ∩ Bν,l,� for some γ ≥ γI . Suppose also that all
parameters a ∈ ω ∩ B2n,l has that a ∈ E2n,l(γI ). Then

∫

{a∈ω:2hr≤El (a,ν)≤ν−n}
eθ El (a,ν) da ≤ Ce−r/3|ω|, (8.14)

∫

{a∈ω:El (a,ν)≤2hr}
eθ El (a,ν) da ≤ Cer/3|ω|. (8.15)

Proof By (8.13) we have,

∫

{a∈ω:El (a,ν)≥2hr}
eθ El (a,ν) da ≤ C

∑

t≥2hr

e− t
3h eθ t |ω|

≤ Ce− t
6h |ω| ≤ Ce−r/3|ω|. (8.16)

The second inequality follows directly. ��

Lemma 8.6 Let ξν,l(ω) be an essential return with dist(ξν,l(ω), Critω) ∼√
e e−r ,

n ≤ ν ≤ 2n, and ω ⊂ Eν,l,�(γ ) ∩ Bν,l,� for some γ ≥ γI . Suppose also that all
parameters a ∈ ω ∩ B2n,l has that a ∈ E2n,l(γI ). Then for any ε2 > 0 there is a �2
such that if � ≥ �2 (recall δ = e−�), we have

∫

ω

eθTn,l (a) da ≤ eε2n|ω|.

Proof Let ω̂ ⊂ ω be a subset of ω such that every parameter a ∈ ω̂ has s number
of free returns into U after escape situations. So Tn,l(a) consists of s terms of the
form El(a, ν j (a)), j = 1, . . . , s, where ν1 = ν. Recall that El(a, ν j (a)) = 0 if the
return is shallow. Set ξn,l(ω) = ξn(ω). Every parameter a ∈ ω̂ has a nested sequence
of corresponding intervals so that a ∈ ωs ⊂ ωs−1 ⊂ . . . ⊂ ω1 ⊂ ω̂, such that
ξν j+1(a)(ω

j ) is in escape position and ξν j (a)(ω̃
j ) is an essential return, ω j ⊂ ω̃ j . We

have ω̃1 = ω, by assumption.We also see that El(a, ν j (a)) is constant onω j = ω j (a)

but not on ω j−1. We think of ω1 = ω1(a) ⊂ ω̂ as an interval around a which has
escaped at time ν2 = ν2(a) (possibly earlier). Then ω2 is another smaller interval
around a which has escaped at time ν3 (possibly earlier) and so on. In the construction
one should think of ω as contained in some larger interval ω0, ω ⊂ ω0 where ξν1(ω

0)

is in escape position, and where ξν1(ω) is an essential return.
Since Tn,l(a) = ∑s

j=1 El(a, ν j ), and El(a, ν j (a)) is constant on ω j but not on

ω j−1, we get,

∫

ωs−1
eθTn,l (a) da =

s−1∏

j=1

eθ El (a,ν j )

∫

ωs−1
eθ El (a,νs ) da.
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Now, ξνs (ω
s−1) is in escape position and therefore each interval ωs ⊂ ωs−1,r where

diam(ξνs (ω
s−1,r )) ∼ e−r . Also ωs−1 is a union of disjoint intervals ωs−1,r , i.e.

ωs−1 =
∞⋃

r=�

ωs−1,r .

Recall that the escape time El(a, νs(a)) = 0 for a ∈ ωs−1,r if r ≤ 2�. By Lemma
8.5 we have

∫

ωs−1
eθ El (a,νs ) da ≤ |ωs−1| +

∑

r≥2�

∫

ωs−1,r
eθ El (a,νs ) da

≤ |ωs−1| +
∞∑

r=2�

(∫

{a∈ωs−1,r :El (a,νs (a))≥2hr}
eθ El (a,νs ) da

+
∫

{a∈ωs−1,r :El (a,νs (a))≤2hr}
eθ El (a,νs ) da

)

≤ |ωs−1| + C
∞∑

r=2�

(
er/3 + e−r/3

)
|ωs−1,r |. (8.17)

Since ξνs (ω
s−1) is in escape position, by the Main Distortion Lemma the parameters

a that enter into the set where diam(ξνs (ω
s−1,r )) ∼ e−r has measure ∼ e−r

δ
|ωs−1|.

Therefore,

∫

ωs−1
eθ El (a,νs ) da ≤ |ωs−1| + C

∞∑

r=2�

(
er/3 + e−r/3

) e−r

δ
|ωs−1|

= |ωs−1|
(
1 + Ce−�/3

)
= |ωs−1|(1 + η(�)), (8.18)

where η(�) → 0 as � → ∞.
Next, we want to compute the integral over ωs−2: Again ξνs−1(ω

s−2) is in escape
position and thereforeωs−2 is subdivisioned into disjoint intervals of the typeωs−2,r ⊂
ω2 as ωs−1:

ωs−2 =
∞⋃

r=�

ωs−2,r .
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Since El(a, ν j (a)) is constant on ω j , we now compute

∫

ωs−2,r
eθ(El (a,νs )+El (a,νs−1)) da =

∑

ωs−1⊂ωs−2,r

eθ El (a,νs−1)

∫

ωs−2,r ∩ωs−1
eθ El (a,νs ) da

≤
∑

ωs−1⊂ωs−2,r

eθ El (a,νs−1)(1 + η(�))|ωs−1|

= (1 + η(�))

∫

ωs−2,r
eθ El (a,νs−1) da. (8.19)

Thus,
∫

ωs−2
eθ(El (a,νs )+El (a,νs−1)) =

∑

r≥2�

∫

ωs−2,r
eθ(El (a,νs−1)+El (a,νs )) da

≤ (1 + η(�))
∑

r≥2�

∫

ωs−2,r
eθ El (a,νs−1) da

≤ (1 + η(�))

∫

ωs−2
eθ El (a,νs−1) da ≤ (1 + η(�))2|ωs−2|.

(8.20)

Repeating this s times and noting that s ≤ n trivially and that η(�) → 0 as � → ∞,
we get

∫

ω0
eθTn,l (a) da ≤ (1 + η(�))s |ω0| ≤ eε2n|ω0|.

Since this holds for every set of the type ω̂ (and letting s vary) the lemma follows. ��
Finally we can prove the main goal in this section.

Lemma 8.7 Let τ > 0 be such that τθ > ε2 and suppose that ξν,l(ω) is a deep essential
return with dist(ξν,l(ω), Critω) ∼√

e e−r , n ≤ ν ≤ 2n, and ω ⊂ Eν,l,�(γ )∩Bν,l,� for
some γ ≥ γI . Suppose also that all parameters a ∈ ω ∩ B2n,l has that a ∈ E2n,l(γI ).
Then

m({a ∈ ω : Tn(a) ≥ τn}) ≤ en(ε2−θτ)|ω|.

Proof We have by Lemma 8.6,

eθτnm({a ∈ ω : Tn(a) ≥ τn}) ≤
∫

{Tn(a)>τn}
eθTn(a) da ≤

∫

ω

eθTn(a) da ≤ eε2n|ω|,

from which we conclude that

m({a ∈ ω : Tn(a) ≥ τn}) ≤ en(ε2−θτ)|ω|.

��
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9 Conclusion and proof of themain theorem

We make induction over time intervals of the type [n, 2n]. By Lemma 7.4, for a
sufficiently small starting interval ω0 = (−ε, ε) around the starting map f0, there
are numbers Nl such that ξNl ,l(ω0) has grown to the large scale or returned into U
with dist(ξNl ,l(ω0), Critω0)/(log(dist(ξNl ,l(ω0), Critω0)))

2 ≤ diam(ξNl ,l(ω0)), (i.e.
in the case of a return, it has to be essential). Suppose, without loss of generality, that
the first critical point (l = 1) has that N1 = min(Nl). Let ν0 ≥ N1 be the first return
into U . It follows that ξν0,1(ω0) is an essential return.

If ν0 > 2N1 then it means we have no more returns in [N1, 2N1] for l = 1 so we go
on to the next critical point. To start, put n = N1. For each critical point, we consider
the returns ν j ∈ [n, 2n] and delete parameters according to the basic approach rate
condition. If ω̂0 ⊂ ω0 is the set that is left from ω0 when we have deleted parameters
not satisfying this condition up until time 2n, then by Lemma 8.1,

|ω̂0| ≥ (1 − e−αn)|ω0|.

Wemake this construction for each critical point, and thereby get a set�l(2N1), which
corresponds to ω̂0 for each l, and which contains parameters inω0 that satisfy the basic
assumption for the critical point cl . Up until time n = N1 we see that ω0 ⊂ EN1,l(γB),
bymaking ε sufficiently small. Actuallywe have a stronger statement at this early stage
according to the Starting Lemma (the Lyapunov exponents are close to γ0), but we
do not need that. Moreover, by definition we have ω0 ⊂ BN1−1,l for all l. Obviously,
�l(2N1) ⊂ B2N1,l .

If we do not do anything more than keeping the parameters satisfying the basic
approach rate condition, the Lyapunov exponent may drop in the time window [n, 2n],
and over time we may lose too much. Every return in this time window has a bound
period p j ≤ ν j (4Kα/γI ) = α̂ν j ≤ 2n, for the returns ν j ∈ [n, 2n], where we have
set α̂ = 4Kα/γI . Hence we can use the expansion of the early orbits up until time
2n for all such bound periods. We also note that by Lemma 6.4, the bound periods
are bounded from below by Kr j/(2�) ≥ K�/(2�). Let L j be the corresponding
free periods. For every parameter which satisfies the basic approach rate condition,
by Lemmas 3.1 and 6.4, using that a ∈ En,l(γB), we have, if δ = e−� is sufficiently
small,

|D f 2n(vl(a))| ≥ C0eγB n
∏

j

(
ep j (γ /(2K ))C ′eL j γH

)

≥ eγB ne
∑

j p j (γ /(4K ))+γH L j ≥ C0eγB (1/2)2n . (9.1)

Hence up until time 2n = 2N1, wemay have lost some part of the starting Lyapunov
exponent (γB), but at each return it does not go below γB/2 > γI , where γI is a lower
bound for most lemmas in the induction process. However, precisely after a return
the exponent may drop, but not more than 4Kα because of the basic approach rate
assumption (the 2α is replaced by4α to eat up constants), and in general each parameter
a we are considering belongs to En,l(γ ) for some γ ≥ γB/2 − 4Kα ≥ γI .
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Therefore we may have to delete more parameters, that return too often and too
deep, in order to restore the Lyapunov exponent for the remaining parameters. This is
handled in the section about large deviations. The large deviation argument estimates
the set of those parameters that spend a too large portion of the time in [n, 2n] reaching
escape positions. Since the escape period is set to zero for shallow returns, i.e. for
returns into U\U 2, the orbits ξn,l(a) outside U 2 can be considered as free periods.
Using Lemma 3.1 for this neighbourhood U 2 also gives uniform expansion until the
next return (let us use the same exponent γH > 0 for those free periods). Since each
bound period for a deep return into U 2 is contained in an escape period, we now
consider those bound periods p̃ j in [n, 2n] and the corresponding free periods L̃ j

outside U 2. If the parameter a is such that Tn(a) ≤ τn where 0 < τ < 1 then

|D f 2n(vl(a))| ≥ C0eγB ne
∑

j p̃ j (γ /(4K ))e
∑

j γH L̃ j ≥ C0eγB ne(1−τ)nγH . (9.2)

According to the definition, γB = (3/4)(1− τ)min(γH , γ0), and hence the Lyapunov
exponent is restored:

|D f 2n(vl(a))|C0 ≥ eγB2n .

Let us now turn to the general case where we use induction. Assume that we have
constructed �l(n) for every l and that the sets �l(n) are “good” in the following
sense. We assume that each partition element ω ⊂ �l(n) belongs to En,l(γB) ∩ Bn,l ,
i.e. �l(n) ⊂ En,l(γB) ∩ Bn,l . The sets �l(n) have their own structure and should not
be mixed until at the very end, because the partition elements in each such set may
differ, and their intersection therefore can destroy these elements.

For simplicity assume that ν = n is a return time for l. By definition of Eν,l(γ )

and Bν,l , we can use the binding information for all critical point up until time
(4Kα/γI )ν = α̂ν. First let us from �l(n) delete parameters so that we can use
the binding information of all other critical points j �= l for a longer time, in the
next time window [2n, 4n], i.e. we want to consider Eν,l,�(γ ) ∩ Bν,l,�. The point
is now that the partition elements we are deleting, i.e. parameters belonging to
(Eν,l,�(γ ) ∩Bν,l,�)\(Eν,l(γ ) ∩Bν,l), by this procedure are much larger than the parti-
tion elements in �l(n) (this was originally observed by M. Benedicks). Indeed, if we
look at the length of ξm, j (ω1) where ω1 is a partition element that got deleted at some
time (return) m ≤ 2α̂n then, by Lemma 4.2,

diam(ξm, j (ω1)) ∼ |ω1||D f m(v j (a))| ≤ |ω1|e�m .

By the basic assumption, and since ω1 got deleted at time m, we have

diam(ξm, j (ω1)) ∼ dist(ξm, j (ω1), Critω1)/(log(dist(ξm, j (ω1), Critω1)))
2 ≥ e−3αm,

so

e−3αm ≤ C diam(ξm, j (ω1)) ≤ C |ω1|e�m .
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On the other hand, the partition elements at time n or higher, are much smaller. This
can be seen as follows. Letω2 be a partition element at time n. Since diam(ξn, j (ω2)) ≤
S, we have

S ≥ diam(ξn, j (ω2)) ∼ |ω2||D f n(v j (a))| ≥ |ω2|C0eγ n .

Therefore, since m ≤ 2α̂n,

|ω1|
|ω2| ≥ C

e−(3α+�)m

e−γ n
≥ Ce(γ−2α̂(3α+�))n 	 1.

Hence ω2 is much smaller than ω1. This means that when deleting partition elements
in �l(n) that do not satisfy the basic approach rate condition until time 2α̂n for other
critical points j �= l, in the time window [α̂n, 2α̂n], we do not destroy the partition
elements; we only deletewhole partition elements of the typeω2 ∈ �l(n) that intersect
partition elements of the type ω1 that was deleted at the time scale ∼ α̂n.

Starting from the partition elements in �l(n) ⊂ En,l(γ ) ∩ Bn,l and passing to
�l(n, �) ⊂ Eν,l,�(γ ) ∩ Bν,l,� is therefore harmless and the measure deleted is

|�l(n, �)| ≥
(
1 − Ce−αα̂n

)
|�l(n)|. (9.3)

We have now constructed �l(n, �) and want to pass to �l(2n) ⊂ E2n,l(γ ) ∩ B2n,l .
Passing from �l(n, �) to �l(2n), we have to delete parameters that do not satisfy the
basic approach rate condition for critical point cl and also delete those parameters
that have too many too deep returns in [n, 2n]. We have seen by Eq. (9.1), that the
Lyapunov exponent can decrease to (1/2)γB > γI during the period form n to 2n. We
also have to take into account the blind escapes, see Remark 8.4, which constitute a
small portion,≤ Ce−qn , of the original set of parameters. For those parameters whose
escape periods transcend into [2n, 4n] (these are the escape periods for the last return
νs discussed in Remark 8.4), the Lyapunov exponent may drop slightly below γB/2,
but never below γI (if α is sufficiently small, see the condition on p. 5). By Lemmas
8.1 and 8.6 we get the estimate

|�l(2n)| ≥ (1 − e−αn)
(
1 − Ce−(θτ−ε2)n

) (
1 − Ce−qn) |�l(n, �)|.

Together with (9.3), we get, for some β > 0,

|�l(2n)| ≥ (1 − e−αn)
(
1 − Ce−(θτ−ε2)n

)
(1 − Ce−qn)

(
1 − Ce−αα̂n

)
|�l(n)|

≥ (1 − e−βn)|�l(n)|.

It follows that�l(2n) ⊂ E2n,l(γ )∩B2n,l , where γ ≥ γB by the choice of γB (possibly,
if n is just after a return time, γ ≥ γB − 4Kα). We are then back to the same situation
at time 2n as we were for time n and the induction argument goes on forever.
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Let M ≥ 2. Choosing the constants correctly, in this way we construct, for each
critical point, a set �l(n) ⊂ En,l(γB − 4Kα) ∩ Bn,l with measure at least (1 −
1/(2Md))|ω0|, that holds for n > 0, where d is the degree of f . Passing to the limit,
as n → ∞, we get that the measure of parameters that satisfies the CE-condition for
all n > 0 is estimated by

lim
n→∞ m

(
⋂

l

�l(n)

)
≥

(
1 − 1

M

)
|ω0|.

Since M can be chosen arbitrarily large, it follows that f0 is a Lebesgue density point
of CE-maps.
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