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Abstract
The triangulation complexity of a compact 3-manifold M is the minimal number
of tetrahedra in any triangulation of M . We compute the triangulation complexity
of all elliptic 3-manifolds and all sol 3-manifolds, to within a universally bounded
multiplicative error.

1 Introduction

The triangulation complexity�(M)of a compact 3-manifoldM is theminimal number
of tetrahedra in any triangulation of M . (In this paper, we use the definition of a
triangulation that has become standard in low-dimensional topology: it is an expression
of M as a union of 3-simplices with some of their faces identified in pairs via affine
homeomorphisms.) Triangulation complexity is a very natural invariant, with some
attractive properties. However, its precise value is known for only relatively small
examples [17, 20] and for a few infinite families [7, 8, 10–12, 21, 23]. It bears an
obvious resemblance to hyperbolic volume, and in fact the volume of a hyperbolic
3-manifold M forms a lower bound for�(M) via the inequality�(M) ≥ Vol(M)/v3,
due to Gromov and Thurston [26]. Here, v3 � 1.01494 is the volume of a regular
hyperbolic ideal tetrahedron. But non-trivial lower bounds for manifolds with zero
Gromov norm have been difficult to obtain. Jaco, Rubinstein and Tillmann [8, 11]
were able to compute the triangulation complexity of lens spaces of the form L(2n, 1)
and L(4n, 2n ± 1). However, general lens spaces have remained out of reach. In
this paper, we remedy this, by computing the triangulation complexity of all elliptic
3-manifolds and all sol 3-manifolds, to within a universally bounded multiplicative
error. Our result about lens spaces confirms a conjecture of Jaco and Rubinstein [9]
and Matveev [20, 22], up to a bounded multiplicative constant.
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Theorem 1.1 Let L(p, q) be a lens space, where p and q are coprime integers satis-
fying 0 < q < p. Let [a0, . . . , an] be the continued fraction expansion of p/q where
each ai is positive. Then there is a universal constant klens > 0 such that

klens

n∑

i=0

ai ≤ �(L(p, q)) ≤
n∑

i=0

ai .

General elliptic 3-manifolds fall into three categories: lens spaces, prismmanifolds
and a third class that we call Platonic manifolds; for example see Scott [24] for a
discussion of the classification of these manifolds. Recall that the prism manifold
P(p, q) is obtained from the orientable I -bundle over the Klein bottle, by attaching
a solid torus, so that the meridian of the solid torus is identified with the p/q curve
on the boundary torus. Here, a canonical framing of this boundary torus is used, so
that the longitude and meridian are lifts of non-separating simple closed curves on the
Klein bottle that are, respectively, orientation-reversing and orientation-preserving.

Theorem 1.2 Let p and q be positive coprime integers and let [a0, . . . , an] denote
the continued fraction expansion of p/q where ai is positive for each i > 0. Then,
�(P(p, q)) is, to within a universally bounded multiplicative error, equal to

∑n
i=0 ai .

We say that an elliptic 3-manifold is Platonic if it admits a Seifert fibration where
the base orbifold is the quotient of S2 by the orientation-preserving symmetry group
of a Platonic solid. These orbifolds have underlying space the 2-sphere and have three
exceptional points with orders (2, 3, 3), (2, 3, 4) or (2, 3, 5). The Seifert fibration is
specified by the Seifert data, which describes the three singular fibres and includes
the Euler number of the fibration. It turns out that the latter quantity controls the
triangulation complexity.

Theorem 1.3 Let M be a Platonic elliptic 3-manifold, and let e denote the Euler
number of its Seifert fibration. Then, to within a universally bounded multiplicative
error, �(M) is |e|.

We also examine sol 3-manifolds. Recall that these are 3-manifolds of the form
(T 2 ×[0, 1])/(A(x, 1) ∼ (x, 0)) where A is an element of SL(2,Z) with |tr(A)| > 2.
Such amatrix A induces a homeomorphism of the torus that is known as linear Anosov.
Let A be the image of A in PSL(2,Z). Recall that PSL(2,Z) is isomorphic to Z2 ∗Z3
where the factors are generated by

S =
(
0 −1
1 0

)
T =

(
0 −1
1 −1

)
.

Thus any element of PSL(2,Z) can be written uniquely as a word that is an alternating
product of elements S and T or T−1. The word is cyclically reduced if the first letter
is neither the inverse of the final letter nor equal to the final letter. Any element
of PSL(2,Z) is conjugate to a cyclically reduced word that is unique up to cyclic
permutation.Our first theorem about solmanifolds relates the triangulation complexity
of the manifold to the length of this cyclically reduced word.
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Theorem 1.4 Let A be an element of SL(2,Z) with |tr(A)| > 2. Let M be the sol
3-manifold (T 2 × [0, 1])/(A(x, 1) ∼ (x, 0)). Let A be the image of A in PSL(2,Z)

and let �(A) be the length of a cyclically reduced word in the generators S and T±1

that is conjugate to A. Then, there is a universal constant ksol > 0 such that

ksol�(A) ≤ �(M) ≤ (�(A)/2) + 6.

Note that this length �(A) is readily calculable. For we may simplify A using
row operations until it is the identity matrix. This writes A as a product of elementary
matrices. The image of each elementarymatrix in PSL(2,Z) is aword in the generators
S and T . Thus, we obtain A as a word in S and T . If the starting letter is equal to
the inverse of the final letter or equal to the final letter, then we may conjugate by
the inverse of this element to create a shorter word. Thus, eventually, we end with a
cyclically reduced word, and �(A) is its length.

Our second theorem relates the triangulation complexity of the 3-manifoldM to the
continued fraction expansion of

√
tr(A)2 − 4. As tr(A)2 − 4 is not a perfect square,

the continued fraction expansion of
√
tr(A)2 − 4 does not terminate. Denote it by

[a0, a1, . . . ]. As
√
tr(A)2 − 4 is the square root of a positive integer, the continued

fraction expansion is eventually periodic, in the sense that for some non-negative
integer r and even positive integer t , ai+t = ai for every i ≥ r . The periodic part
of the continued fraction expansion is (ar , . . . , ar+t−1), which is well-defined up to
cyclic permutation.

Theorem 1.5 Let A be an element of SL(2,Z) with |tr(A)| > 2. Let A be the image
of A in PSL(2,Z). Suppose that A is Bn for some positive integer n and some B ∈
PSL(2,Z) that cannot be expressed as a proper power. Let M be the sol 3-manifold
(T 2×[0, 1])/(A(x, 1) ∼ (x, 0)). Let [a0, a1, . . . ] be the continued fraction expansion
of

√
tr(A)2 − 4 where ai is positive for each i > 0 and let (ar , . . . , as) denote its

periodic part. Then there is a universal constant k′
sol > 0 such that

k′
soln

s∑

i=r

ai ≤ �(M) ≤ 6 + n
s∑

i=r

ai .

Crucial to our arguments is the analysis of triangulations of T 2 × [0, 1]. This is
because T 2 × [0, 1] arises when we cut a sol manifold along a torus fibre, or when
we remove the core curves of the Heegaard solid tori of a lens space. Our result about
these products is as follows.

Theorem 1.6 Let T0 and T1 be 1-vertex triangulations of the torus T 2. Let �(T0, T1)
denote the minimal number of tetrahedra in any triangulation of T 2 × [0, 1] that
equals T0 on T 2 × {0} and equals T1 on T 2 × {1}. Then there is a universal constant
kprod > 0 such that

kprod dTr(T 2)(T0, T1) ≤ �(T0, T1) ≤ dTr(T 2)(T0, T1) + 6.
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Here, Tr(S)denotes the triangulation graph for a closed orientable surface S, defined
to have a vertex for each isotopy class of 1-vertex triangulation of S, and where two
vertices are joined by an edge if and only if the corresponding triangulations differ by
a 2-2 Pachner move. Each edge is declared to have length 1, and this induces themetric
dTr(S)( · , · ). When S is the torus, this graph is in fact equal to the classical Farey tree
and so distances in the graph can readily be computed using continued fractions.

This paper is a continuation of thework in [15], wherewe analysed the triangulation
complexity of 3-manifolds M that fibre over the circle with fibre a closed orientable
surface S with genus at least 2. We were able to estimate �(M), to within a bounded
factor depending only on the genus of S, in the case where the monodromy φ of the
fibration is pseudo-Anosov. Our theorem related �(M) to the translation length of the
action of φ on various metric spaces.

Recall that if X is a space with metric d, and φ is an isometry of X , its transla-
tion length �X (φ) is inf{d(x, φ(x)) : x ∈ X}. Its stable translation length �X (φ) is
inf{d(φn(x), x)/n : n ∈ Z>0}, where x ∈ X is chosen arbitrarily.

Each homeomorphismφ of S naturally induces an isometry of Tr(S). It also induces
an isometry of the mapping class group MCG(S), where MCG(S) is given a word
metric by making a fixed choice of some finite generating set. The homeomorphism φ

also acts isometrically on Teichmüller space, with its Teichmüller or Weil-Petersson
metrics. The thick part of Teichmüller space consists of those hyperbolic structures
where every geodesic on the surface has length at least some suitably chosen ε > 0.
If ε > 0 is sufficiently small, the thick part is path connected, and so may be given its
path metric. The homeomorphism φ also induces an isometry of these metric spaces.

The following was the main theorem of [15]. The statement below combines the
statement of [15, Theorem 1.3] with Theorems 3.5 and Proposition 2.7 of that paper.

Theorem 1.7 Let S be a closed orientable connected surface with genus at least 2, and
let φ : S → S be a pseudo-Anosov homeomorphism. Then the following quantities are
within bounded ratios of each other, where the bounds depend only on the genus of S
and a choice of finite generating set forMCG(S):

(1) the triangulation complexity of (S × I )/φ;
(2) the translation length (or stable translation length) of φ in the thick part of the

Teichmüller space of S;
(3) the translation length (or stable translation length) ofφ in themapping class group

of S;
(4) the translation length (or stable translation length) of φ in Tr(S).

We also analysed products.

Theorem 1.8 (Theorem 1.4 of [15]) Let S be a closed orientable surface with genus
at least 2 and let T0 and T1 be non-isotopic 1-vertex triangulations of S. Then the
following are within a bounded ratio of each other, the bounds only depending on the
genus of S:

(1) the minimal number of tetrahedra in any triangulation of S × [0, 1] that equals
T0 and T1 on S × {0} and S × {1} respectively;

(2) the minimal number of 2-2 Pachner moves relating T0 and T1.
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Theorems 1.4 and 1.6 are natural generalisations of these results to the case where
S is a torus. For technical reasons, we were unable to deal with this case in [15]. In this
paper, we deduce Theorems 1.4 and 1.6 from Theorem 1.8, by passing to a branched
covering space.

We record here the analogue of Theorem 1.7 for sol manifolds.

Theorem 1.9 Let φ : T 2 → T 2 be a linear Anosov homeomorphism. Then the follow-
ing quantities are within universally bounded ratios of each other:

(1) the triangulation complexity of (T 2 × I )/φ;
(2) the translation length (or stable translation length) of φ in the thick part of the

Teichmüller space of T 2;
(3) the translation length (or stable translation length) ofφ in themapping class group

of T 2;
(4) the translation length (or stable translation length) of φ in Tr(T 2).

In (3), we metriseMCG(T 2) by fixing the finite generating set

(
1 1
0 1

)
,

(
1 0
1 1

)
.

The structure of the paper is as follows. In Sect. 2, we recall some basic facts about
handle structures, including the notion of a parallelity bundle. Section3 contains the
first substantial new result, Theorem 3.2. This asserts that for any triangulation T of
S × I , the product of a closed orientable surface S and an interval, there is an arc
isotopic to ∗ × I , for some point ∗ ∈ S, that is simplicial in T (23), the 23rd iterated
barycentric subdivision. This is technically important, because it allows us to transfer
a triangulation of S × I to a triangulation of a suitable branched cover. This is used
later in Sect. 8, where Theorem 1.6 is proved using Theorem 1.8. A suitable finite
branched cover of the torus T 2 over one point is used, which is a closed orientable
surface S of genus greater than one. In order to compare translation lengths in Tr(S)

and Tr(T 2), we develop some background theory in Sects. 4, 5, 6 and 7. In Sect. 4, we
introduce Sp(S), which is the space of spines for a closed orientable surface S. There
is a quasi-isometry between Tr(S) and Sp(S) that is equivariant under the action of the
mapping class group, but it is useful to consider both spaces. In Sect. 5, we recall the
relationship between Tr(T 2), the Farey graph and continued fractions. In Sect. 6, we
recall results of Masur, Mosher and Schleimer [18], which use train tracks to estimate
distances in Tr(S). In Sect. 7, this is applied specifically in the case of the torus. Finally
in Sects. 9, 10, 11 and 12, we deal with products, sol manifolds, lens spaces, prism
manifolds and Platonic manifolds.

2 Handle structures and parallelity bundles

Although the main results of this paper are on the complexity of triangulations of 3-
manifolds, for our arguments it is oftenmore convenient toworkwith handle structures,
similarly to [15]. This section collects some of the definitions and results on handle
structures that we will use.
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Fig. 1 Far left: tetrahedral, Middle left: semi-tetrahedral, Middle right: product annulus of length 3, Far
right: Parallelity annulus of length 4

Recall that a handle structure on a 3-manifold is a decomposition into i-handles
Di × D3−i , i = 0, 1, 2, 3, where we require:

(1) Each i-handle intersects the handles of lower index in ∂Di × D3−i .
(2) Any two i-handles are disjoint.
(3) The intersection of any 1-handle with any 2-handle is of the form:

• D1 × α in the 1-handle D1 × D2, where α is a collection of arcs in ∂D2,
• β × D1 in the 2-handle D2 × D1, where β is a collection of arcs in ∂D2.

(4) Any 2-handle runs over at least one 1-handle.

For example, given a triangulation of a 3-manifold M , there is an associated handle
structure for M minus an open collar neighbourhood of ∂M , called the dual handle
structure. This has 0-handles obtained by removing a thin regular open neighbourhood
of the boundary of each tetrahedron, 1-handles obtained by taking a neighbourhood
of each face not in ∂M and removing a thin regular open neighbourhood of each edge,
2-handles obtained by taking a neighbourhood of each edge not in ∂M with neighbour-
hoods of endpoints removed, and 3-handles consisting of a regular neighbourhood of
each vertex not in ∂M .

One feature of a handle structure that does not hold for a triangulation is that it
can be sliced along a normal surface to yield a new handle structure, whereas cutting
a tetrahedron along a normal surface does not yield pieces that are tetrahedra, in
general. Slicing along normal surfaces in this manner is important for our arguments;
the definition below will help us investigate the handle structures that arise.

Definition 2.1 A handle structure of a 3-manifold M is pre-tetrahedral if the intersec-
tion between each 0-handle and the union of the 1-handles and 2-handles is one of the
following possibilities:

(1) tetrahedral, as shown in the far left of Fig. 1;
(2) semi-tetrahedral, as shown in the middle left of Fig. 1;
(3) a product annulus of length 3, as shown in the middle right of Fig. 1;
(4) a parallelity annulus of length 4, as shown in the far right of Fig. 1.

In that figure, the shaded regions denote discs that can be components of intersection
between the 0-handle and ∂M , or between the 0-handle and a 3-handle. The hashed
regions denote components of intersection between the 0-handle and ∂M .
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Lemma 2.2 Let T be a triangulation of a compact orientable 3-manifold M. Let S be
a normal surface properly embedded in M. Then M\\S inherits a handle structure.
Moreover when M is closed, the handle structure on M\\S is pre-tetrahedral.

Proof This is explained in [15, Lemma 4.4] and so we just sketch the argument. We
first form the handle structure H dual to T . The normal surface S intersects each
i-handle in discs. When the i-handle is cut along these discs, the result is a collection
of i-handles in the required handle structure for M\\S. 
�

We will measure the size of a triangulation of a 3-manifold using the following
quantity.

Definition 2.3 The complexity of a triangulation T of a compact 3-manifold is the
number of tetrahedra of T and is denoted �(T ).

The corresponding definition for a pre-tetrahedral handle structure is somewhat
more complicated.

Definition 2.4 Let H0 be a 0-handle of a pre-tetrahedral handle structureH. Let α be
the number of components of intersection between H0 and the 3-handles. Define β as
follows:

(1) β = 1/2 if H0 is tetrahedral;
(2) β = 1/4 if H0 is semi-tetrahedral;
(3) β = 0 if H0 is a product or parallelity annulus.

Define the complexity of H0 to be (α/8) + β. Define the complexity �(H) ofH to be
the sum of the complexities of its 0-handles.

The motivation for this definition is from the following result [15, Lemma 4.12].

Lemma 2.5 Let T be a triangulation of a closed orientable 3-manifold M. Let S be a
normal surface embedded in M. Then the handle structure H that M\\S inherits, as
in Lemma 2.2, satisfies �(H) = �(T ).

Lemma 2.6 Let T be a triangulation of a compact orientable 3-manifold M. Suppose
that the intersection between any tetrahedron T of T and ∂M is either empty, a vertex
of T , an edge of T or a face of T . Then dual to T is a pre-tetrahedral handle structure
H of M satisfying �(H) ≤ �(T ).

Proof The dual handle structureH has an i-handle for each (3− i)-simplex of T that
does not lie wholly in ∂M . When the intersection between a tetrahedron and ∂M is
empty or a vertex, the dual 0-handle is tetrahedral. When the intersection between
a tetrahedron and ∂M is an edge, the dual 0-handle is semi-tetrahedral. When the
intersection between a tetrahedron and ∂M is a face, the dual 0-handle is a product
annulus of length 3. Since the number of 0-handles of H is at most the number of
tetrahedra of T , and each 0-handle contributes at most 1 to �(H), we deduce that
�(H) ≤ �(T ). 
�
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Remark 2.7 Given any triangulation T ′ of a compact orientable 3-manifold M , we can
form a triangulation T of M satisfying the hypotheses of Lemma 2.6 with �(T ) ≤
33�(T ′). To do this, we attach a triangulation of ∂M × I to T ′. This triangulation is
formed as follows. For each triangle of T ′ in ∂M , form its product with I , which is
a prism. Subdivide each of its square faces into two triangles. Then triangulate each
prism by coning from a new vertex in its interior. Each prism is triangulated using 8
tetrahedra. Since the number of triangles of T ′ in ∂M is at most 4�(T ′), the resulting
triangulation T satisfies �(T ) ≤ 33�(T ′).

Definition 2.8 Let M be a compact 3-manifold with a handle structure H, and let S
be a subsurface of ∂M . When ∂M meets 0-handles in discs, ∂M inherits a handle
structure from H: an i-handle of ∂M is a component of intersection of ∂M with an
(i + 1)-handle of H. We say that H is a handle structure for the pair (M, S) if the
following all hold:

(1) ∂S intersects each handle of ∂M in a collection of arcs;
(2) ∂S misses the 2-handles of ∂M ;
(3) ∂S respects the product structure of the 1-handles of ∂M .

Definition 2.9 Let H be a handle structure for the pair (M, S). A handle H of H is a
parallelity handle if it has a product structure D2 × I such that

(1) D2 × ∂ I = H ∩ S;
(2) each component of intersection between H and any other handle is of the form

β × I for some subset β of ∂D2.

For example, a product annulus of length 3 meeting S on its top and bottom, and
a parallelity annulus of length 4 are both parallelity 0-handles. There will also be
parallelity 1-handles and 2-handles.

Remark 2.10 The handle structure H in Lemma 2.6 has no parallelity handles when
viewed as a handle structure for the pair (M, ∂M). To see this, note that any parallelity
handle for (M, ∂M) is adjacent to a parallelity 2-handle. However, a parallelity 2-
handle ofH is dual to an edge of T with both endpoints in ∂M but with interior in the
interior of M . However, if there were such an edge of T , then the intersection between
any adjacent tetrahedron and ∂M would violate the hypothesis of Lemma 2.6.

Definition 2.11 The parallelity bundle forH is the union of the parallelity handles.

It was shown in [13, Lemma 3.3] that the I -bundle structures on the parallelity
handles can be chosen to patch together to form an I -bundle structure on the parallelity
bundle. We therefore use the following standard terminology.

Definition 2.12 Let B be an I -bundle over a surface F . Its horizontal boundary ∂h B
is the (∂ I )-bundle over F . Its vertical boundary ∂vB is the I -bundle over ∂F .

It is often very useful to enlarge the parallelity bundle, forming the following struc-
ture.
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Definition 2.13 Let M be a compact orientable 3-manifold and let S be a subsurface
of ∂M . LetH be a handle structure for (M, S). A generalised parallelity bundle B is
a 3-dimensional submanifold of M such that

(1) B is an I -bundle over a compact surface;
(2) the horizontal boundary ∂hB of B is the intersection between B and S;
(3) B is a union of handles of H;
(4) any handle of B that intersects ∂vB is a parallelity handle, where the I -bundle

structure on the parallelity handle agrees with the I -bundle structure of B;
(5) whenever a handle ofH lies in B then so do all incident handles ofH with higher

index;
(6) the intersection between ∂hB and the non-parallelity handles lies in a union of

disjoint discs in the interior of S.

Note that condition (6) is included in the definition given in [15] but is not in some
earlier work [13].

The main reason why this is such a useful notion is the fact that frequently we may
ensure that the horizontal boundary of a generalised parallelity bundle is incompress-
ible.

Definition 2.14 Let M be a compact orientable irreducible 3-manifold and let S be a
subsurface of ∂M . Let H be a handle structure for (M, S). Suppose M contains the
following:

(1) an annulus A′ that is a vertical boundary component of a generalised parallelity
bundle B;

(2) an annulus A contained in S such that ∂A = ∂A′;
(3) a 3-manifold P with ∂P = A∪ A′ such that P either lies in a 3-ball or is a product

region between A and A′.

Suppose also that P is a union of handles of H, that whenever a handle of H lies
in P , so do all incident handles with higher index, and that any parallelity handle
of H that intersects P lies in P . Finally, suppose that apart from the component of
the generalised parallelity bundle incident to A′, all other components of B in P are
I -bundles over discs.

An annular simplification of the 3-manifold M is the manifold obtained by remov-
ing the interiors of P and A from M ; see Fig. 2.

Lemma 2.15 Let M be a compact orientable irreducible 3-manifold and let S be an
incompressible subsurface of ∂M that is not a 2-sphere. Let H be a handle structure
for (M, S). Let B be a generalised parallelity bundle that is maximal, in the sense
that it is not a proper subset of another generalised parallelity bundle. Suppose that
H admits no annular simplification. Then B contains every parallelity handle of H,
and moreover, each component of B:

(1) has incompressible horizontal boundary, and
(2) either has incompressible vertical boundary, or is an I -bundle over a disc.
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Fig. 2 An annular simplification removes P and replaces A with A′. Left: an annular simplification where
P lies within a ball. Right: a cross-section of an annular simplification where P is a product region between
A and A′

Proof This is stated in [13, Corollary 5.7]. However, a slightly different definition of
generalised parallelity bundle is used there that omits Condition 6 in Definition 2.13.
This extra condition does not affect the argument there.

Alternatively, one can argue as follows. In [15, Theorem 6.18], we showed that
B contains every parallelity handle of H, and every component either satisfies the
conclusion of the lemma, or is a special case called boundary-trivial. In the boundary-
trivial case, the component of B lies within a 3-ball; the precise definition is [15,
Definition 6.16]. However, [15, Lemma 6.17] implies that a boundary-trivial com-
ponent admits an annular simplification. Thus we cannot have such components by
hypothesis. 
�

The weight of a surface properly embedded in a manifold M , in general position
with respect to a triangulation T , is defined to be the number of intersections between
S and the edges of T .

The following is [15, Lemma 6.15].

Theorem 2.16 LetT be a triangulation of a compact orientable irreducible 3-manifold
M. Let S be an orientable incompressible normal surface properly embedded in M
that has least weight, up to isotopy supported in the interior of M. Let H be the
handle structure that M ′ = M\\S inherits, as in Lemma 2.2. Let S′ = ∂M ′\\∂M.
Then (M ′, S′) admits no annular simplification. Hence, the parallelity bundle for H
extends to amaximal generalised parallelity bundle that has incompressible horizontal
boundary.

The following is [15, Lemma 8.14].

Lemma 2.17 Let H be a pre-tetrahedral handle structure of a pair (M, S), and let B
be its parallelity bundle. Then the length of ∂vB, which is its number of 2-cells, is at
most 56�(H). Similarly if B′ is a maximal generalised parallelity bundle, then the
length of ∂vB′ is at most 56�(H).

Definition 2.18 LetH be a handle structure of a compact 3-manifold. Then the asso-
ciated cell structure is obtained as follows:

(1) each handle is a 3-cell;
(2) each component of intersection between two handles or between a handle and ∂M

is a 2-cell;
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Fig. 3 Clipping a semi-tetrahedral 0-handle

(3) each component of intersection between three handles or between two handles and
∂M is a 1-cell;

(4) each component of intersection between four handles or between three handles
and ∂M is a 0-cell.

Lemma 2.19 Let H be a pre-tetrahedral handle structure of a compact orientable
3-manifold M. Suppose that H has no parallelity 0-handles. Let C be the associated
cell structure. Let T be the triangulation obtained by placing a vertex in the interior
of each 2-cell and coning off, and then placing a vertex in the interior of each 3-cell
and coning off. Then �(T ) ≤ 2304�(H).

Proof We first estimate how many triangles there are in the 2-skeleton of C. Let H j

denote the union of the j-handles ofH. Thus each 2-cell is a component ofHi ∩ H j

for i �= j ∈ {0, 1, 2} or of H j ∩ (H3 ∪ ∂M) for j < 3.
There are as many triangles inH2 ∩H1 as inH2 ∩H0. Similarly, there are as many

triangles inH2 ∩ (H3 ∪ ∂M) as inH2 ∩H0. There are as many triangles inH1 ∩H2

as inH1 ∩ (H3 ∪ ∂M). There are as many triangles inH1 ∩H0 as inH1 ∩H2. There
are as many triangles inH0 ∩ (H3 ∪∂M) as inH0 ∩H2. Each component ofH2 ∩H0

is triangulated using 4 triangles. Hence, we see that the total number of triangles in
the 2-skeleton of C is 24|H2 ∩ H0|. Since H is pre-tetrahedral, each 0-handle meets
at most six 2-handles. SinceH has no parallelity 0-handles, each 0-handle contributes
at least 1/8 to �(H). Thus 24|H2 ∩H0| is at most 1152�(H). Each tetrahedron of T
has a triangle in C as a face, and each triangle in C is a face of at most two tetrahedra.
Hence, �(T ) ≤ 2304�(H). 
�

In Sect. 9, one of our arguments will replace some semi-tetrahedral 0-handles in a
pre-tetrahedral handle structure by 0-handles modified as follows. The boundary of
a semi-tetrahedral 0-handle has two 1-handles that are bordered by exactly two 2-
handles. We replace the union of one of these 1-handles and the adjacent 2-handles by
a single 2-handle. For any semi-tetrahedral 0-handle, this replacement may be done on
either one or both of its relevant 1-handles.We call the result a clipped semi-tetrahedral
0-handle. One clipped semi-tetrahedral 0-handle is shown in Fig. 3.

We may define the complexity of a handle structure that is pre-tetrahedral aside
from a finite number of clipped semi-tetrahedral 0-handles just as in Definition 2.4
by setting β to be 1/4 for each clipped semi-tetrahedral 0-handle, and leaving the
definition the same otherwise. Then we may modify Lemma 2.19 as follows.

Lemma 2.20 LetH be a handle structure of a compact orientable 3-manifold M. Sup-
pose thatH is pre-tetrahedral, aside from a finite number of clipped semi-tetrahedral
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0-handles. Suppose also that H has no parallelity 0-handles. Let C be the associated
cell structure. Let T be the triangulation obtained by placing a vertex in the interior
of each 2-cell and coning off, and then placing a vertex in the interior of each 3-cell
and coning off. Then �(T ) ≤ 2304�(H).

Proof The proof is identical to that of Lemma 2.19, since a clipped semi-tetrahedral
0-handle still meets at most six 2-handles, and contributes at least 1/4 to �(H). 
�

3 Vertical arcs in products

As discussed in the introduction, a central part of the paper will be an analysis of
triangulations of S × [0, 1], where S is a closed orientable surface. We will want to
transfer results about S × [0, 1] to results about S′ × [0, 1] where S′ is a branched
cover of S. The branching locus will be an arc of the following form.

Definition 3.1 Let S be a closed surface. An arc properly embedded in S × [0, 1] is
vertical if it is ambient isotopic to {∗} × [0, 1] for some point ∗ in S.

The main result of this section is as follows.

Theorem 3.2 Let S be a closed connected orientable surface. Let T be a triangulation
of S × [0, 1]. Then the 23rd iterated barycentric subdivision T (23) contains an arc in
its 1-skeleton that is vertical.

This will be proved using some normal surface theory. The following basic result
in the theory is contained in [19, Proposition 3.3.24, Corollary 3.3.25].

Lemma 3.3 Let M be a compact orientable irreducible 3-manifold with incompress-
ible boundary, and let T be a triangulation of M. Let S be an incompressible
boundary-incompressible surface properly embedded in M, no component of which
is a sphere or disc, and that is in general position with respect to T . Then there is an
ambient isotopy taking S to a normal surface with weight no greater than that of S.
Moreover, if C is any boundary curve of S that is normal and intersects each edge of
T at most once, then the isotopy can be chosen to leave C fixed.

Proposition 3.4 Let T be a triangulation of a compact 3-manifold M. Let S be a 2-
sided normal surface properly embedded in M. Let S′ be the copies of S in M\\S. Let
B be the parallelity bundle for the pair (M\\S, S′). Let α be an arc properly embedded
in M with the following properties.

(1) It lies within a copy of S in M\\S.
(2) It is disjoint from the horizontal boundary of B.
(3) Its intersection with each normal triangle or square of S is either empty or a single

properly embedded arc with endpoints on distinct edges of the triangle or square.

Then α is simplicial in T (23).

Proof Within each tetrahedron of T , the normal discs of S come in at most 5 types.
Let D be the union of the outermost discs of each type. These discs within a single
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tetrahedron intersect each face of T in at most 8 arcs. However, each face of T might
be adjacent to two tetrahedra of T and there is no reason for the 8 arcs coming from
the two adjacent tetrahedra to coincide. So, the intersection between D and any face
of T consists of at most 16 normal arcs. By [16, Lemma 6.7], the union of the arcs
is simplicial in T (6). Within each tetrahedron of T , D consists of at most 10 normal
discs. Hence, by [16, Lemma 6.11], we may use at most 16 further subdivisions to
make these discs simplicial.

We now apply one further subdivision to the triangulation, forming T (23). We may
assume that the intersection between α and the 2-skeleton of T is a union of vertices of
T (23). We may further isotope α so that it is simplicial. This follows from the general
result that an arc in a triangulated polygon may be isotoped to be simplicial in the
barycentric subdivision. Moreover, if the endpoints of the arc are already vertices of
this subdivision, then the isotopy can keep these endpoints fixed. 
�

Proof of Theorem 3.2 Suppose first that S is a 2-sphere. Pick any properly embedded
simplicial arc in T (23) joining S×{0} to S×{1}. By the lightbulb trick, this is ambient
isotopic to an arc of the form {∗} × [0, 1], as required.

Thus, we may assume that S is not a 2-sphere. Hence, S×{0} contains an essential
simple closed curve. Pick one, C , that is transverse to the 1-skeleton of T on S × {0}
and that intersects each edge of that 1-skeleton at most once. Then C is normal. It
is not hard to prove that such a curve must exist; for example, we can take C to be
non-trivial in H1(S;Z/2Z) and with fewest points of intersection with the edges. Let
A be the annulus C × [0, 1]. By Lemma 3.3, this can be isotoped, without moving
C×{0}, to a normal surface.We pick A to have least weight among all annuli with one
boundary component equal to C ×{0} and the other boundary component on S ×{1}.
Let C × {1} be the other boundary component of A, which is then a normal simple
closed curve in S × {1}.

In the case where S is a torus, we need to be more precise about the choice of
annulus A, as follows. Pick an oriented vertical arc in S×[0, 1] disjoint from A. Then
the winding number of an oriented annulus, with boundary curves equal to ∂A, is the
signed intersection number of the annulus with this vertical arc. For each winding
number t , let w(t) be the minimal weight of a normal annulus with boundary equal to
∂A and winding number t . If there is no normal annulus with a given winding number
t , then we define w(t) to be infinite. Note that w(t) tends to infinity as t → ±∞.
Now, A has least weight among all normal annuli with the given boundary curves.
Hence, w(0) is a global minimum. However, there may be other values of t such that
w(t) = w(0). Choose t0 to be maximal with this property. We replace A by a normal
annulus, having the same weight and the same boundary curves, but with winding
number t0. Call this new annulus A.

Let M be the 3-manifold (S×[0, 1])\\A. Let Ã be the two copies of A in ∂M . Let
B be the parallelity bundle for the pair (M, Ã). This consists of the union of the regions
between parallel normal discs of A. By choice of C , the curve C × {0} intersects each
edge of T at most once. Thus no normal disc of A incident to C × {0} is parallel
to another normal disc of A. Hence, B misses S × {0}. By Theorem 2.16, B extends
to a maximal generalised parallelity bundle B+ that has incompressible horizontal
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boundary. Its vertical boundary is a union of vertical boundary components of B, and
hence it also misses S × {0}.

Since ∂hB+ is an incompressible subsurface of the annuli Ã, it is a collection of
annuli and discs. Hence, each component of B+ is an I -bundle over a disc, annulus or
Möbius band.

Claim 1 No component of B+ is an I -bundle over a Möbius band.
The I -bundle over a core curve of this Möbius band would be a Möbius band

embedded in S × [0, 1] with boundary in Ã. We could then attach an annulus to its
boundary, to create a Möbius band embedded in S × [0, 1] with boundary in S × {0}.
We could then double S × [0, 1] along S × {0} to create another copy of S × [0, 1]
containing a Klein bottle. We could then embed this in the 3-sphere, which is well
known to be impossible.

Claim 2 No component of B+ is an I -bundle over an annulus that intersects both
components of Ã.

Let B be such a component. Since ∂h B consists of incompressible annuli, and
because these annuli are disjoint from S × {0}, at least one boundary component of
∂h B is disjoint from ∂ Ã. It is a core curve of a component of Ã. Let V be the vertical
boundary component of B+ incident to this core curve; recall V lies in the parallelity
bundle B. Then V is disjoint from S × {0, 1} and ∂V consists of core curves disjoint
from ∂ Ã. Note that V specifies a free homotopy between the two boundary curves of
S\\C . Hence, we deduce in this case that S is a torus.

Let A1 and A2 be the two components of Ã. Each Ai is divided into smaller annuli
A′
i and A′′

i by ∂V , where A′
i is the component intersecting S × {0}. We can construct

two annuli A′
1 ∪ V ∪ A′′

2 and A′
2 ∪ V ∪ A′′

1. Using a small isotopy supported in the
interior of S × [0, 1], these annuli can be made normal. Both of these have the same
boundary curves as A. One has winding number one less than A, the other has winding
number one more than A. The one with winding number greater than A has, by our
choice of A, weight strictly greater than A. But the sum of the weights of A′

1 ∪V ∪ A′′
2

and A′
2 ∪ V ∪ A′′

1 is twice the weight of A. Hence, the other annulus has weight less
than that of A. But A was chosen to have minimal weight, which is a contradiction.

Claim 3 Each annular component of ∂hB+ is disjoint from ∂ Ã.
Let B be any component of B+ that is an I -bundle over an annulus. By Claim 2, its

two horizontal boundary components both lie in the same component of Ã. Call this
component A1. Note each component of ∂h B contains a core curve of A1, because
∂h B is essential. Suppose that one component of ∂h B is an annulus H intersecting
∂ Ã. Because B misses S × {0}, H must meet S × {1}. Then ∂vB, which lies in the
parallelity bundle, intersects S × {1}. It follows that the other component of ∂h B also
intersects S × {1}. Since H intersects S × {1} by assumption, the other components
of A1\\H are an annulus incident to S × {0} and possibly discs incident to S × {1}.
But the other component of ∂h B also intersects S × {1}, and so it must lie in one of
these discs. But it cannot then contain a core curve of A1, which is a contradiction.

Claim 4 There are no annular components of ∂hB+.
Let B be any component of B+ that is an I -bundle over an annulus. By Claim 3,

∂h B is disjoint from S × {0, 1} and by Claim 2, it lies in a single component of Ã.

123



The triangulation complexity...

Let V be any vertical boundary component of B. Then ∂V cobounds an annulus A′
in A. If we remove A′ from A and replace it by V , the result is an annulus with the
same boundary as A but with smaller weight. By Lemma 3.3, we may isotope this to
a normal annulus without increasing its weight and without moving its intersection
curve with S × {0}. This contradicts our choice of A.

We are now in a position to prove the theorem. Since B+ consists only of I -bundles
over discs, we may find an arc α in Ã running from S × {0} to S × {1} and that avoids
B+. We can choose α with the property that it intersects each triangle or square of Ã
in a single properly embedded arc with endpoints on distinct edges of the triangle or
square. Thus, α satisfies the hypotheses of Proposition 3.4. It therefore is simplicial
in T (23). It is the required vertical arc. 
�

The following will be useful when modifying a given triangulation of S × [0, 1].
Lemma 3.5 Let T be a triangulation of S × [0, 1] and let α be a simplicial arc that
is vertical in S × [0, 1]. Let T ′ be a triangulation obtained from T by attaching a
tetrahedron to S × [0, 1] to realise a Pachner move of the boundary triangulation.
Then α extends to a simplicial arc α′ in T ′ that is also vertical.

Proof The attachment of the tetrahedron realises a Pachner move on the boundary that
has type 1-3, 2-2 or 3-1. In the cases of a 1-3 move and a 2-2 move, the arc α remains
properly embedded and vertical, and so in these cases, we set α′ to be α. In the case
of a 3-1 Pachner move, the new tetrahedron is incident to three triangles that meet at
a vertex. If α does not end at that vertex, then we again set α′ to be α. If α does end at
that vertex, then we form α′ by adding one of the edges that is incident to two of the
triangles. This is vertical. 
�

4 Spines, triangulations andmapping class groups

In this section, we define a graph associated with a closed orientable surface S, the
spine graph Sp(S) on S. We show Sp(S) is quasi-isometric to the triangulation graph
Tr(S) defined in the introduction. We also obtain properties of spines and methods of
modifying them that we will use in future arguments.

Recall the triangulation graph Tr(S) defined in the introduction. Related to the
triangulation graph is the spine graph, defined as follows.

Definition 4.1 A spine for a closed orientable surface S is a graph 	 embedded in S
that has no vertices of degree 1 or 2 and where S\\	 is a disc.

Definition 4.2 In an edge contraction on a spine 	, one collapses an edge that joins
distinct vertices, thereby amalgamating these vertices into a single vertex. An edge
expansion is the reverse of this operation.

Definition 4.3 The spine graph Sp(S) for a closed orientable surface S is a graph
defined as follows. It has a vertex for each spine of S, up to isotopy of S. Two vertices
are joined by an edge if and only if their spines differ by an edge contraction or
expansion.
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Wewish to compare the spine graph and triangulation graph. Dual to each 1-vertex
triangulation is a spine. Each 2-2 Pachner move on a 1-vertex triangulation has the
following effect on the dual spines: contract an edge and then expand. Thus, each
edge in Tr(S) maps to a concatenation of two edges in Sp(S). We therefore get a map
Tr(S) → Sp(S).

It will also be useful to recall the following variant of the triangulation graph [15,
Definition 2.6].

Definition 4.4 Let S be a closed orientable surface and let n be a positive integer. Then
Tr(S; n) denotes the space of triangulations with at most n vertices. This is a graph
with a vertex for each isotopy class of such triangulations, and with an edge for each
2-2, 3-1, or 1-3 Pachner move between them.

There is an obvious inclusion Tr(S) → Tr(S; n) for any positive integer n. Note
also that themapping class group of S acts on Tr(S), Tr(S; n) and Sp(S) by isometries.
Moreover, this action is properly discontinuous and cocompact. Hence, the mapping
class group of S is quasi-isometric to each of Tr(S), Tr(S; n) and Sp(S), via an
application of the Milnor-S̆varc lemma ([2, Proposition 8.19]). In fact, we obtain the
following result.

Lemma 4.5 The maps Tr(S) → Tr(S; n) and Tr(S) → Sp(S) are quasi-isometries.

Proof Pick a 1-vertex triangulation T for S. By the Milnor-S̆varc lemma, the map
MCG(S) → Tr(S) sending g ∈ MCG(S) to gT is a quasi-isometry; see, for example
[2, Proposition 8.19]. A quasi-inverse is given as follows. For T fixed and any point p
in Tr(S), pick a triangulation of the form gT that is closest to p. Then the quasi-inverse
sends p to g. The composition of this quasi-inverse with MCG(S) → Tr(S; n) is a
quasi-isometry Tr(S) → Tr(S; n). There is a uniform upper bound to the distance
between the image of a triangulation under this map Tr(S) → Tr(S; n) and its image
under the inclusionmap. Hence, the inclusionmap is also a quasi-isometry as required.

The argument for Tr(S) → Sp(S) is identical. 
�
A modification that one can make to a spine that is slightly more substantial than

an edge contraction or expansion is as follows.

Definition 4.6 Let 	 be a spine for a closed surface S. Let e1 be an arc properly
embedded in the disc S\\	. Let e2 be an edge of the graph 	 ∪ e1 that has distinct
components of S\\(	 ∪ e1) on either side of it. Then the result of removing e2 from
	 and adding e1 is a new spine 	′ for S. We say that 	 and 	′ are related by an edge
swap.

The following is [15, Lemma 8.3].

Lemma 4.7 Let S be a closed orientable surface. Let 	 be a spine for S. Then an
edge swap can be realised by a sequence of at most 24g(S) edge expansions and
contractions.

Definition 4.8 Let S be a closed orientable surface with a cell structure. A spine for
S is cellular if it is a subcomplex of the 1-skeleton of the cell complex. The length of
this spine is the number of 1-cells that it contains.
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The following is [15, Corollary 8.8].

Lemma 4.9 Let S be a closed orientable surface with a cell structure C, and with a
cellular spine	. Let D1, . . . , Dm becellular subsets of S, eachofwhich is an embedded
disc, and with disjoint interiors. Let � be the sum of the lengths of ∂D1, . . . , ∂Dm.
Then there is a sequence of at most 6mg(S) + 2� edge swaps taking 	 to a cellular
spine 	′ that is disjoint from the interior of D1, . . . , Dm.

Remark 4.10 A slight strengthening of the lemma remains true, with the same proof.
Instead of D1, . . . , Dm being embedded discs, we can allow them to be the images of
immersed discs in S, where the restriction of the immersion to int(D1)∪· · ·∪ int(Dm)

is an embedding. In other words, we allow the boundaries of the discs to self-intersect
and to intersect each other.

The following is a version of Lemma 4.9 dealing with both discs and annuli.

Lemma 4.11 Let S be a closed orientable surface with a cell structure C, and with a
cellular spine 	. Let A1, . . . , Am be cellular subsets of S, each of which is the image
of an immersed disc or annulus, and where the restriction of the immersion to the
interior of these discs and annuli is an embedding. Let � be the sum of the lengths of
∂A1, . . . , ∂Am. Then there is a sequence of at most 6mg(S) + 16 g(S) + 2m + 2�
edge swaps taking 	 to a cellular spine 	′ that is disjoint from the interior of the disc
components of A1, . . . , Am and that intersects the interior of each annular component
in at most one essential embedded arc. Moreover, this arc is a subset of the original
spine 	.

Proof In each essential annular component, theremust be an essential properly embed-
ded arc that is a subset of 	, as otherwise the disc S\\	 would contain a core curve
of this annulus. Pick one such arc in each essential annular component. Let α be the
union of these arcs. If Ai is an essential annulus, then define Di to be Ai\\α. If Ai is
an inessential annulus, then let Di be the disc in S containing Ai that has boundary
equal to a component of ∂Ai . If Ai is a disc, let Di be Ai . Some of these discs may
be nested, in which case discard the smaller disc. Thus, D1, . . . , Dm is a collection of
discs as in Remark 4.10. So, there is a sequence of edge swaps taking 	 to a cellular
spine that is disjoint from the interior of D1, . . . , Dm . It must intersect the interior of
each essential annulus Ai in a single arc.

Unfortunately, the number of these edge swaps is bounded above by a linear function
of the total length of the boundary of D1, . . . , Dm , which depends not just on � but
also on the length of the arcs α. To deal with this, we define a new cell structure C′
on S, as follows. Away from A1 ∪ · · · ∪ Am , this agrees with C, but within each Ai ,
the 2-cells are the components of Ai\\	. Note that 	 is still cellular with respect to
C′. We can now bound the length of ∂D1, . . . , ∂Dm in C′ in terms of �. This length is
at most the length of ∂A1, . . . , ∂Am plus twice the length of α. The length of α with
respect to C′ is at most the number of vertices of	 plus the number of essential annular
components of A1, . . . , Am . By an Euler characteristic argument, using the fact that
each vertex has degree at least three, the number of vertices of 	 is at most 4g(S)− 2.
The number of essential annular components of A1, . . . , Am is at most m. So, the
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length of ∂D1, . . . , ∂Dm in C′ is at most �+8 g(S)+2m. Now apply Lemma 4.9 and
Remark 4.10 to turn 	 into a spine that is cellular in C′ and that intersects the interior
of A1 ∪ · · · ∪ Am in the arcs α. It is then cellular with respect to C. 
�
Lemma 4.12 Let T and T ′ be triangulations of a closed surface S that differ by a
sequence of n Pachner moves. Let 	 be a subcomplex of T that is a spine of S. Then
there is a sequence of at most n edge swaps and some isotopies taking 	 to a spine
that is a subcomplex of T ′.

Proof It suffices to consider the case where n = 1, and so T and T ′ differ by a single
Pachner move. Some terminology: throughout this proof, edges will refer to edges in
a spine, with endpoints on vertices of the spine of valence at least 3. We refer to edges
of the triangulation T , which are not necessarily edges of 	 even when they lie in 	,
by 1-cells.

If the Pachner move is a 1-3 move, then there is nothing to prove as the 1-skeleton
of T is then a subcomplex of T ′.

Suppose it is a 2-2 move, removing a 1-cell e and inserting a new 1-cell e′. If e
is not part of 	, then 	 is a subcomplex of T ′ and so no edge swaps are required.
So suppose that e is contained in 	. Since S\\	 is a disc, there is an arc α running
from the midpoint of e back to the midpoint of e but on the other side of e and that
is otherwise disjoint from 	. We may assume that α is disjoint from the vertices of
T and intersects each 1-cell of T at most once. It must intersect at least one 1-cell
e′′ in the boundary of the square that is the union of the two triangles involved in the
Pachner move. If both endpoints of e′′ lie in 	, let e′′′ = e′′. Otherwise, let e′′′ be the
union of e′′ and the third 1-cell of the triangle formed by e′′ and e. We perform the
edge swap that adds e′′′ to 	 and removes the edge of 	 containing e.

We now consider a 3-1 move. Let e1, e2 and e3 be the three 1-cells of T that are
removed. If none of these are part of 	, then we leave the spine unchanged. There
cannot be just one of these 1-cells in 	, since no vertex of 	 has degree 1. Suppose 	

runs over exactly two 1-cells in {e1, e2, e3}, say e1 and e2. These are two 1-cells of a
triangle of T . The third 1-cell e′ of this triangle cannot lie in 	, as S\\	 is a single
disc. Hence, we may isotope e1 ∪ e2 across the triangle to e′. Suppose finally that all
three of e1, e2 and e3 are part of 	. Let e be the other 1-cell of the triangle formed by
e1 and e2. Adding e to 	 and removing e1 is an edge swap. We then remove e2 and e3
and add the third 1-cell of the triangle that they span. This is realised by an isotopy of
the spine and so no edge swap is required. 
�
Lemma 4.13 Let T be a triangulation of a torus with v vertices. Then there is a
sequence of at most 4v Pachner moves taking T to a 1-vertex triangulation.

Proof This is contained in the proof of [14, Proposition 10.3], and so we only sketch
the argument. Suppose v > 1, as otherwise we are done. The strategy is to apply
at most 4 Pachner moves to the triangulation, after which the number of vertices is
reduced.

If there is an edge of the triangulation with the same triangle on both sides, then
one endpoint of the edge is a vertex with valence 1. It is possible to apply two 2-2
Pachner moves to increase this valence to 3. Then one can apply a 3-1 Pachner move
to remove this vertex.
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So we may suppose that every edge of the triangulation has distinct triangles on
both sides. Using the fact that the Euler characteristic of the torus is zero, there is a
vertex with valence at most 6. Suitably chosen 2-2 Pachner moves then reduce this to
3. A 3-1 Pachner move can then be used to remove the vertex. 
�
Lemma 4.14 Let T be a triangulation of a compact surface S with t triangles. Then
the barycentric subdivision T (1) is obtained from T by 4t Pachner moves and an
isotopy.

Proof First perform a 1-3 Pachner move to each triangle of T . Each original edge of
T is then adjacent to two new triangles. Choose one of the two, and perform a 1-3
Pachner move in that triangle. Then perform the 2-2 move that removes the edge.
The resulting triangulation is isotopic to T (1). In total, we have performed 4t Pachner
moves. 
�
Lemma 4.15 Let T be a torus equipped with a cell structure. Let 	 be a cellular spine
for T . Let C be a cellular essential simple closed curve with length �. Then there exists
a spine for T that is obtained from 	 by at most 24+ 4� edge swaps and that contains
C.

Proof The annulus T \\C has boundary length 2�. Apply Lemma 4.11 to turn 	 into
a spine 	′ that intersects the interior of T \\C in a single arc, using at most 24 + 4�
edge swaps. The spine 	′ must contain all of C , as otherwise S\\	′ would contain an
essential simple closed curve. 
�

5 Triangulations of a torus

In this section, we recall a description of the space Tr(T 2) of all 1-vertex triangulations
of a torus.

The Farey graph is a graph with vertex set Q ∪ {∞}, and where two vertices p/q
and r/s are joined by an edge if and only if |ps − qr | = 1. Here, we assume that the
fractions are in their lowest terms and that ∞ = 1/0. Now, Q ∪ {∞} is a subset of
R∪{∞}, which is the circle at infinity of the upper-half plane.We can realise each edge
of the Farey graph as an infinite geodesic in the hyperbolic plane; see Fig. 4. The edges
of the Farey graph form the edges in a tessellation ofH2 by ideal triangles. We call this
the Farey tesselation. Each triangle has three points on the circle at infinity, and these
correspond to three slopes on the torus, with the property that any two of these slopes
intersect once. Given three such slopes, we can realise them as Euclidean geodesics
in the torus, which we think of asR2/Z2. We can arrange that these geodesics each go
through the image of the origin, and hence all intersect at this point. Thus, this forms a
1-vertex triangulation of the torus. Conversely, given any 1-vertex triangulation of the
torus, we may isotope the vertex to the origin, and then isotope each of the edges to
Euclidean geodesics. Thus, we see that there is a 1-1 correspondence between 1-vertex
triangulations of the torus, up to isotopy, and ideal triangles in the Farey tessellation.

When a 2-2 Pachner move is performed, this removes one of the edges of the
triangulation, forming a square, and then inserts the other diagonal of the square. The
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Fig. 4 The Farey graph and the dual Farey tree

remaining two edges of the triangulation are preserved, and these correspond to an
edge of the Farey graph. Thus we see that two triangulations differ by a 2-2 Pachner
move if and only if their corresponding ideal triangles in the Farey tessellation share
an edge of the Farey graph.

It is natural to form the dual of the Farey tessellation, which is the Farey tree. This
has a vertex for each ideal triangle of the Farey tessellation, and two vertices of the
Farey tree are joined by an edge if and only if the dual triangles share an edge. As
the name suggests, this is a tree. The above discussion has the following immediate
consequence.

Theorem 5.1 The graph Tr(T 2) is isomorphic to the Farey tree. 
�

5.1 A Cayley graph for PSL(2,Z)

Themapping class group of the torus is isomorphic to SL(2,Z). It was shown by Serre
[25] that SL(2,Z) is isomorphic to the amalgamated free product of Z4 and Z6, amal-
gamated over the subgroups of order 2. The non-trivial element in the amalgamating
subgroup is the matrix−I , which is central. If we quotient by this subgroup, the result
is PSL(2,Z), which is isomorphic to Z2 ∗ Z3. The factors are generated by

S =
(
0 −1
1 0

)
T =

(
0 −1
1 −1

)
.

The Farey tree is closely related to theCayley graph for PSL(2,Z)with respect to these
generators. This group acts on upper half space by isometries. It preserves Q ∪ {∞}
in the circle at infinity, and hence it preserves the Farey tesselation and the dual Farey
tree. The Cayley graph for PSL(2,Z)with respect to these generators embeds in upper
half space as follows. We set the vertex v corresponding to the identity element of
PSL(2,Z) to lie at ε + i for some small real ε > 0. The images of this point v under
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Fig. 5 The Cayley graph of PSL(2,Z) with respect to the generators S and T

the action of PSL(2,Z) form the vertices of the Cayley graph. Emanating from the
vertex v there are oriented edges, joining v to Sv and T v. The images of these edges
under the action of PSL(2,Z) form the edges of the Cayley graph. The graph is shown
in Fig. 5. Note that v lies in the triangle with corners 0, 1 and ∞. The stabiliser of this
triangle in PSL(2,Z) is {T i : i = 0, 1, 2}. Hence, there are three vertices of the Cayley
graph in this triangle that are connected by edges labelled by T . The edge joining v to
Sv intersects the geodesic joining 0 and∞ and is disjoint from the remaining edges of
the Farey graph. Hence, each S-labelled edge of the Cayley graph is dual to an edge of
the Farey graph. Each edge of the Farey graph is associated with two such S-labelled
edges, which join the same pair of the vertices.

Thus, in summary, the Cayley graph is obtained from the Farey tree as follows.
Replace each vertex of the Farey tree by a little triangle, with edges labelled by T .
Replace each edge of the Farey tree by two edges of the Cayley graph labelled by S.

5.2 Continued fractions

There is a well-known connection between continued fractions and the Farey tessel-
lation.

A continued fraction for a rational number r is an expression

r = a0 + 1

a1 + 1

a2 + 1

· · · + 1

an

where each ai is an integer. This is written r = [a0, a1, . . . , an].
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One can also consider an irrational number r , which also has a continued fraction
expansion [a0, a1, . . . ]. This means that if rn = [a0, a1, . . . , an], then rn → r as
n → ∞. We will focus on the case where ai is positive for each i > 0. Subject to this
condition, every real number r has a unique continued fraction expansion, which we
shall call the continued fraction expansion for r .

The continued fraction expansion of r is periodic if there is a non-negative integer
k and an even positive integer t such that ai+t = ai for every i ≥ k. The smallest such
t is the length of the periodic part. The following is a well-known result of Lagrange;
see, for example [4].

Lemma 5.2 (Lagrange) The continued fraction expansion of a real number r is peri-
odic exactly when Q(r) is a quadratic extension of Q. This happens exactly when
r = p + q

√
d for some square free integer d > 1 and some rational numbers p and

q where q �= 0. Moreover, for fixed d, two real numbers p+ q
√
d and p′ + q ′√d, for

p, p′ ∈ Q and q, q ′ ∈ Q \ {0} have the same periodic part. That is, if [a0, a1, a2, . . . ]
and [a′

0, a
′
1, a

′
2, . . . ] are their continued fraction expansions, then there are integers l

and m such that a′
i = ai+m for all i ≥ l.

One can read off the continued fraction expansion of a positive real number r from
the Farey tessellation, as follows. Consider any hyperbolic geodesic γ starting in the
hyperbolic plane on the imaginary axis, and ending at r on the circle at infinity. It
intersects each triangle of the Farey tessellation in at most one arc; see Fig. 6. As one
travels along γ and one enters such a triangle, it either goes to the right or the left in
this triangle, except when r is rational and γ lands on r . So, when r is irrational, one
reads off the cutting sequence of γ , which is a sequence of lefts and rights, written as
La0 Ra1La2 . . . . Then the continued fraction expansion of r is [a0, a1, a2, . . . ]. When
r is rational, we also get a cutting sequence, but we must be careful about the final
triangle that γ runs through. Here, γ goes neither left nor right, but instead straight on
towards r . We view this final triangle as giving a final L or R to the cutting sequence,
where L or R is chosen to be the same as the previous letter. Thus, we obtain a sequence
La0 Ra1La2 . . . Lan or La0 Ra1La2 . . . Ran with an ≥ 2. Then [a0, a1, a2, . . . , an] is the
continued fraction expansion of r .

The following lines in the Farey tree will play an important role in our analysis of
lens spaces.

Definition 5.3 For p/q ∈ Q ∪ {∞}, the line L(p/q) in the Farey tree is the union of
edges that are dual to an edge of the Farey graph emanating from p/q (Fig. 7).

Lemma 5.4 When 0 < q < p, the distance in the Farey tree between the lines L(q/p)
and L(∞) is (

∑n
i=0 ai )− 1 where [a0, . . . , an] is the continued fraction of expansion

of p/q with each ai positive.

Proof The line L(∞) runs parallel to the horocycle {(x, y) : y = 1} in upper half-
space. The line L(q/p) forms a loop starting and ending at q/p. Let γ be the vertical
geodesic in the half plane running from∞ to the point q/p. As it comes from infinity, it
hits L(∞), then it intersects various edges in the Farey graph, and then it hits L(q/p).
This determines a path in the Farey tree from L(∞) to L(q/p). There is no shorter
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Fig. 6 The cutting sequence determined by a geodesic starting on the imaginary axis and ending at r

Fig. 7 The line L(0) in the Farey tree

path, because each edge e of the Farey tessellation crossed by γ separates L(∞) from
L(q/p), and so any path in the Farey tree from L(∞) to L(q/p) must run along the
edge dual to e.

A closely related geodesic γ ′ determines the continued fraction expansion for q/p.
This starts on the imaginary axis and ends at q/p. But because 0 < q/p < 1, γ and
γ ′ hit the same edges of the Farey graph (except the edge that forms the imaginary
axis). Note that the continued fraction expansion of q/p is [0, a0, . . . , an]. Hence,
(
∑n

i=0 ai ) − 1 is exactly the length of the path in the Farey tree joining L(∞) to
L(q/p). 
�

6 Train track splitting sequences

We will estimate distances in triangulation graphs using train tracks. We start by
recalling some terminology.

A pre-track is a graph τ smoothly embedded in the interior of a surface S such that
at each vertex v, the following hold:
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Fig. 8 Splits and slide applied to a train track

(1) there are three edges coming into v;
(2) these edges all have non-zero derivative at v, all of which lie in the same tangent

line;
(3) one edge approaches v along this line from one direction, and the other two edges

approach from the other direction.

The vertices of τ are called switches and the edges are called branches.
Each component R of S\\τ is a surface, but its boundary is not necessarily smooth.

Its boundary is composed of a union of arcs, one for each edge of τ . When two of
these arcs cannot be combined into a single smooth arc, their point of intersection is
a cusp. The index of R is equal to χ(R) minus half the number of cusps of ∂R. We
say that τ is a train track if each component of S\\τ has negative index. If we add up
the index of the components of S\\τ , the result is χ(S). Hence, we deduce that the
number of complementary regions of a train track is at most −2χ(S).

A train track is filling if each component of S\\τ is either a disc or an annular
neighbourhood of a component of ∂S. When τ is filling, it is dual to a triangulation
of S, possibly with some ideal vertices.

Two train tracks differ by a split or a slide if one is obtained from the other by one
of the modifications shown in Fig. 8.

Pick a point in the interior of each branch. Cutting the branch at such a point creates
two intervals, which are called half-branches. A half-branch is called small if at the
cusp at its endpoint, there is another half-branch coming in from the same direction.
If a half-branch is not small, it is large.

For any train track τ , its regular neighbourhood N (τ ) is naturally a union of intervals
called fibres, and there is a collapsing map N (τ ) → τ that collapses each fibre to a
point. A curve C is said to carried by τ if C is embedded in N (τ ) and is transverse to
all the fibres.

A train track τ is transversely recurrent if for each branch of τ , there is a simple
closed curve C transverse to τ that intersects this branch and such that τ ∪C does not
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have a complementary region that is a bigon. By a bigon, we mean a component of
S\\(C ∪ τ) that is a disc with boundary consisting of the union of two arcs, one lying
inC , the other lying in τ and having no cusps. The train track τ is recurrent if for each
branch of τ , there is a simple closed curve carried by τ that runs over the branch. It
is birecurrent if it is both recurrent and transversely recurrent. We say that the set of
curves carried by τ fills S if, for every essential simple closed curve C in S, there is
a curve carried by τ that cannot be isotoped off C . The train track is then said to be
filling.

The following is essentially due to Masur, Mosher and Schleimer [18].

Theorem 6.1 Let τ and τ ′ be filling birecurrent train tracks in a closed orientable
surface S of genus at least 2. Suppose that there is a sequence of splits and slides
taking τ to τ ′. Let T and T ′ be the triangulations dual to τ and τ ′. Let n = −2χ(S).
Then, the distance in Tr(S; n) between T and T ′ is, up to a bounded multiplicative
error, equal to the number of splits. This boundonly depends on theEuler characteristic
of S.

Proof In [18, Sect. 6.1], the marking graph M(S) is defined. This is quasi-isometric
to the mapping class group of S. In [18, Sect. 6.1], a map from filling birecurrent
train tracks to M(S) is defined. Composing this with the quasi-isometries M(S) →
MCG(S) → Tr(S; n)we obtain a map from filling birecurrent train tracks to Tr(S; n).
This is a bounded distance from the map that sends each filling birecurrent train track
to its dual triangulation.

We are supposing that there is a sequence of splits and slides taking τ to τ ′. Then
by [18, Theorem 6.1], a sequence of such splits and slides is sent to a quasi-geodesic
in M(S), with quasi-geodesic constants depending only on S. The length of this
quasi-geodesic is the number of splits in the sequence. We compose this with the
quasi-isometries M(S) → MCG(S) → Tr(S; n), and we obtain a quasi-geodesic in
Tr(S; n). Its start and end vertices are a bounded distance from T and T ′, the bound
depending only on S. Hence, the distance in Tr(S; n) between T and T ′ is, up to a
bounded multiplicative error, equal to the number of splits. 
�

Now suppose that the train track τ has a transverse measure μ. (We refer to [6]
for the definition of transverse measures and their relationship with pseudo-Anosov
homeomorphisms.) At any large branch of τ , one may split τ in three possible ways,
but only one of these ways is compatible with μ. The result is a measured train track
(τ ′, μ′).

A maximal split on a measured train track (τ, μ) is obtained by performing a
measured split at each large branch of τ . The following was proved by Agol [1,
Theorem 3.5].

Theorem 6.2 Let S be a compact orientable surface. Let φ : S → S be a pseudo-
Anosov homeomorphism, and let (τ, μ) be a measured train track that carries its
stable measured lamination. Let λ be its dilatation. For each positive integer i , let
(τi , μi ) be the result of performing a sequence of i maximal splits to (τ, μ). Then
there are integers n > 0 and m ≥ 0 such that, for each i ≥ m, τn+i = φ(τi ) and
μn+i = λ−1μi .
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7 Homeomorphisms of the torus

The famous classification of orientation-preserving homeomorphisms of closed ori-
entable surfaces into periodic, reducible and pseudo-Anosov [27] is a generalisation
of the special case of the torus. In this case, the third category is known as linear
Anosov, which we can define to be isotopic to a linear map with determinant 1, and
with irrational real eigenvalues.

An orientation-preserving homeomorphism of the torus induces an action on
the homology of the torus and hence gives an element of SL(2,Z). There is a
homomorphism SL(2,Z) to the isometry group of the hyperbolic plane. Thus, our
homeomorphism of the torus induces an isometry of the hyperbolic plane that pre-
serves the Farey tessellation, and hence is an isometry of the Farey tree. An alternative
way of viewing this action is to note that the Farey tree is Tr(T 2) and any homeomor-
phism of the torus naturally induces an isometry of Tr(T 2).

Recall that any isometry of a tree either has afixedpoint or has an invariant axis. This
is a subset of the tree isometric to the real line, such that the isometry acts as non-trivial
translation upon this line. Any subset of the Farey tree isometric to the real line has two
well-defined endpoints on the circle at infinity, although these endpoints need not be
distinct.We can now see the classification of orientation-preserving homeomorphisms
of the torus in terms of the action on the Farey tree:

(1) A homeomorphism is periodic if and only if its action on the Farey tree has a fixed
point in the interior.

(2) A homeomorphism is reducible and not periodic if and only if its action on the
Farey tree has an invariant axis, but the endpoints of this axis are the same point
on the circle at infinity.

(3) A homeomorphism is linear Anosov if and only if its action on the Farey tree has
an invariant axis, and the endpoints of the axis are distinct points on the circle at
infinity.

The following is well-known (see for example [3, Section 0]).

Lemma 7.1 A matrix A ∈ SL(2,Z) acts on the torus as a linear Anosov homeomor-
phism if and only if its trace tr(A) satisfies | tr(A)| > 2.

Proof The matrix A projects to an element of PSL(2,Z), which is a subgroup of
orientation-preserving isometries of the hyperbolic plane. This isometry induces the
action of A on the Farey tessellation and hence on the Farey tree.

Consider first the case that the action has a fixed point in the interior. If A has
rows (a, b) and (c, d), a fixed point is an element x with positive imaginary part such
that (ax + b)/(cx + d) = x . Solving for x , this gives a quadratic polynomial with
discriminant

√
tr(A)2 − 4 and with highest order term cx2. Thus there is a fixed point

with positive imaginary part if and only if | tr(A)| < 2 and c �= 0. Note however that
if c = 0, then the condition that A has determinant 1 forces tr(A) to be equal to ±2.
Thus there is a fixed point with positive imaginary part if and only if | tr(A)| < 2.

Consider next the eigenvectors of A. Specifically, (u, 1)T is an eigenvector of
A if and only if u/1 is an endpoint of an invariant axis of the action of A on
the Farey tree. Now, the characteristic polynomial for A is x2 − tr(A)x + 1, with
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roots
(
tr(A) ± √

tr(A)2 − 4
)

/2. Thus A has distinct real eigenvalues if and only

if | tr(A)| > 2; this is the case A induces a linear Anosov. The remaining case,
| tr(A)| = 2, corresponds to the case A is reducible and not periodic. 
�

When an isometry φ of a tree has an invariant axis, then this is also the invariant
axis for any non-zero power of φ. Hence, we have the following result.

Lemma 7.2 Let A be a homeomorphism of the torus. Then for any integer n,
�Tr(T 2)(A

n) = n �Tr(T 2)(A). Hence, the stable translation length satisfies �Tr(T 2)(A) =
�Tr(T 2)(A).

7.1 Translation length of a linear Anosov

The following well known proposition gives the length of the translation in the Farey
tree of an Anosov in terms of continued fractions.

Proposition 7.3 Let A ∈ SL(2,Z) act as a linear Anosov homeomorphism on the
torus. Let A be the image of A in PSL(2,Z). Suppose that A is Bn for some positive
integer n and some matrix B ∈ PSL(2,Z) that is not a proper power. Let (ar , . . . , as)
denote the periodic part of the continued fraction expansion of

√
tr(A)2 − 4. Then the

translation distance of A in the Farey tree is n
∑s

i=r ai .

Proof As in the proof of Lemma 7.1, the matrix A corresponds to a linear Anosov
homeomorphism when | tr(A)| > 2, with eigenvalues

tr(A) ± √
tr(A)2 − 4

2
.

Let λ be either of these eigenvalues. Then the determinant of the matrix A − λI is
zero, and hence the two rows are multiples of each other. Let (a, b) be one of its
rows. Suppose (u, 1)T is an eigenvector for A, so u/1 is an endpoint of the invariant
axis γ for A. Then au + b = 0 and so u = −b/a. Thus, we deduce that u lies in
Q(λ) = Q(

√
tr(A)2 − 4). So, the periodic part of the continued fraction of u is equal

to the periodic part of the continued fraction expansion of
√
tr(A)2 − 4 by Lemma 5.2.

Let γ ′ be a geodesic starting at a point in the hyperbolic plane on the imaginary axis
and ending at u on the circle at infinity. The edges of the Farey graph that it crosses
determines the cutting sequence La0 Ra1La2 . . . for γ ′ and hence the continued fraction
expansion [a0, a1, . . . ] for u. This cutting sequence is eventually the same as that of
the invariant axis γ . In particular, they have the same periodic parts. Now, as γ is the
axis of A, its cutting sequence is periodic. However, the length of the corresponding
path in the Farey tree may be a multiple of this period. This happens precisely when A
is Bn for some integer n and some matrix B ∈ PSL(2,Z) that is not a proper power.
Hence, translation distance of A in the Farey tree is n

∑s
i=r ai . 
�
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7.2 Moving between vertices in the Farey tree

Lemma 7.4 Given any two ideal triangles a1b1c1 and a2b2c2 of the Farey tessellation,
there is a homeomorphism φ of the torus such that

φ(a1) = a2, φ(b1) = b2, φ(c1) = c2.

This is unique up to isotopy and composition by the map −id. It is orientation-
preserving if and only if φ preserves the cyclic ordering of the vertices around the
circle at infinity.

Proof Since the slopes a1 and b1 have intersection number 1, we may choose a basis
for the first homology of the torus so that a1 = (1, 0) and b1 = (0, 1), when these
slopes are oriented in some way. The function a1 �→ a2 and b1 �→ b2 may be realised
by an element of GL(2,Z). Note that the determinant of this map is indeed ±1, since
a2 and b2 are Farey neighbours. This linearmap sends c1 to a slope that has intersection
number onewith both a2 and b2. If this slope is not c2, then pre-compose the linearmap
by (1, 0) �→ (−1, 0) and (0, 1) �→ (0, 1). This gives the required homeomorphism φ.

To establish uniqueness, it suffices to check that if φ(a1) = a1, φ(b1) = b1 and
φ(c1) = c1 then φ is isotopic to ±id. But if the linear map φ sends (1, 0) to ±(1, 0),
sends (0, 1) to ±(0, 1) and sends (1, 1) to ±(1, 1), then φ is ±id.

We now show that φ is orientation-preserving if and only if φ preserves the cyclic
ordering of the vertices around the circle at infinity. We established above that φ is
either an element of SL(2,Z) or a composition of an element of SL(2,Z) with a
reflection. In the former case, φ is orientation-preserving and realised by a Möbius
transformation of upper half-space, which therefore preserves the cyclic ordering of
triples in the circle at infinity. In the latter case, φ is orientation-reversing and reverses
the cyclic ordering of the vertices. 
�
Lemma 7.5 Suppose a1b1c1 and a2b2c2 are the vertices of distinct ideal triangles of
the Farey tessellation. Let α be the unique embedded path in the Farey tree joining the
centre of a1b1c1 to the centre of a2b2c2. Let e be the first edge of the Farey graph that
α crosses. Let φ be as in Lemma 7.4. Then φ acts on the Farey tree, and so sends α

to an arc φ(α). Suppose that φ(α) leaves the triangle a2b2c2 by a different edge from
the one α came in through. Suppose also that φ(e) and e do not share a vertex. Then
φ is linear Anosov. Moreover, the axis of φ in the Farey tree runs through the vertices
dual to a1b1c1 and a2b2c2.

Proof The infinite line
⋃∞

n=−∞ φn(α) forms an invariant axis. The endpoints of this
axis on the circle at infinity are distinct, because they are separated by the endpoints
of e and φ(e). Hence, as discussed above, φ is linear Anosov. 
�
Proposition 7.6 Let T1 and T2 be distinct 1-vertex triangulations of the torus that do
not differ by a 2-2 Pachner move. Then there is a linear Anosov homeomorphism φ

such that φ(T1) = T2. Moreover, the axis of φ in the Farey tree runs through the
vertices dual to T1 and T2.
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Proof Let a1, b1, c1 and a2, b2, c2 in Q ∪ {1/0} correspond to the slopes of T1 and
T2 in the Farey tesselation, where the edge b1c1 and b2c2 are closest to each other.
Choose the labelling so that both a1, b1, c1 and a2, b2, c2 appear in a clockwise
fashion around the circle at infinity. Since T1 and T2 do not differ by a 2-2 Pachner
move, b2 �= c1 or c2 �= b1, say b2 �= c1. By Lemma 7.4, there is a homeomorphism φ

such that φ(a1) = c2, φ(b1) = a2 and φ(c1) = b2. It is orientation-preserving, since
it preserves the cyclic ordering of the vertices.

Let α be the arc in the Farey tree joining the centre of a1b1c1 to the centre of a2b2c2.
The first edge e of the Farey graph that it crosses is b1c1. Then φ(e) is a2b2. This is
different from the edge b2c2 that α crosses. Note also that e and φ(e) do not share a
vertex. So by Lemma 7.5, it is linear Anosov, with axis as claimed. 
�

7.3 Splitting sequences between two ideal triangulations

Theorem 7.7 Let T and T ′ be distinct ideal triangulations of the once-punctured
torus. Then there are (filling) train tracks τ and τ ′ dual to T and T ′ and a sequence
of splits taking τ to τ ′ of length dTr(T 2)(T , T ′). These train tracks are birecurrent,
and the set of curves carried by τ fill the once-punctured torus, as do the set of curves
carried by τ ′.

Proof First observe that if T and T ′ differ by a 2-2 Pachner move, then it is straight-
forward to realise their dual trees as train tracks τ and τ ′ in the once-punctured torus
that differ by a single split.

Sowe assume that T and T ′ do not differ by a 2-2 Pachner move. The triangulations
T and T ′ correspond to vertices v and v′ of the Farey tree. By Proposition 7.6, there
is a linear Anosov homeomorphism φ of the torus taking v to v′. Moreover, the axis
of φ goes through v and v′. This has a stable lamination L with a transverse measure.
We may isotope L so that it intersects each triangle of T in normal arcs. The edges
of T then inherit a transverse measure. There are three possible normal arc types in
each triangle, and some triangle must be missing an arc type, as otherwise L would
contain a simple closed curve encircling the puncture. Thus, in that triangle, the three
edges have measures a, b and a + b for some non-negative real numbers a and b. As
this is the torus, these are the three edges of the other triangle of T , and hence this
triangle is also missing an arc type. Now in fact, a and b must both be positive, as
otherwise L would be a thickened simple closed curve. So, the weights on the edges
determine a train track τ = τ0 that is dual to T and that carries L. See Fig. 9. Let μ0
be the transverse measure on τ0.

We can view φ as specifying a pseudo-Anosov homeomorphism of the once punc-
tured torus, where its stable lamination is again L. We now apply Agol’s result,
Theorem 6.2, which provides a splitting sequence, giving a sequence of transversely
measured train tracks (τi , μi ) starting at (τ0, μ0). A split does not increase the number
of complementary regions of a train track. Hence, each train track τi has a single com-
plementary region that is an annular neighbourhood of the puncture. It is therefore dual
to an ideal triangulation Ti . Thus, this sequence of train tracks produces an injective
path in the Farey tree starting at v. Since it is eventually periodic, at some point, this
path must land on the axis of φ and follow this axis from then onwards. However, v is
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Fig. 9 Left: A simple closed curve on a triangulated torus. Right: The associated measured train track

already on the axis of φ. Thus, this path just follows the axis. The axis goes through
v′, and so when the path reaches v′, the result is a train track dual τ ′ to T ′. Thus, the
required splitting sequence has been produced.

We now show that τ and τ ′ are birecurrent. Let τ ′′ be the train track that is dual to
the ideal triangulation with edges having slopes 1/0, 0/1 and 1/1, and where the latter
is dual to the large branch. There is a homeomorphism of the once-punctured torus
taking the ideal triangulation dual to τ to the one with edges 1/0, 0/1 and 1/1, and
taking the edge dual to the large branch of τ to 1/1. Thus, there is a homeomorphism
taking τ to τ ′′. Similarly, there is a homeomorphism taking τ ′ to τ ′′. So it suffices
to show that τ ′′ is birecurrent. But the simple closed curves with slopes 1/0, 0/1
and 1/1 can be arranged to intersect the branches of τ ′′ in the required way, thereby
establishing that τ ′′ is transversely recurrent. Also, τ ′′ is recurrent, since for each of
its three branches, there is an obvious simple closed curve carried by τ ′′ that runs over
this branch. Hence, τ ′′ is birecurrent, as required.

Finally, the curves carried by τ ′′ fill the once-punctured torus, since they include
1/0 and 0/1. Hence, the curves carried by τ also fill the once-punctured torus, as do
the curves carried by τ ′. 
�

8 Branched covers of the torus

We will consider branched covering maps p : S → T , where T is the torus and S is
a closed orientable surface. We will require that there is a single branch point b in T .
Our first result says that any 1-vertex triangulation T of T has a well-defined lift to S.

Lemma 8.1 Let p : S → T be a branched cover of the torus T , branched over a single
point b in T . Let T and T ′ be isotopic 1-vertex triangulations of the torus T , with
their vertices both equal to b. Then their inverse images T̃ and T̃ ′ in S are isotopic.

Proof The triangulations T and T ′ are isotopic, but the isotopy is not assumed to
preserve basepoints. The isotopy is a 1-parameter family of homeomorphisms, the
final one being a homeomorphism h : (T , b) → (T , b). TheBirman exact sequence [5,
Sect. 4.2.3] for the torus gives that the natural map MCG(T , 1 point) → MCG(T ) is
an isomorphism. Here, MCG(T , 1 point) denotes the group of orientation-preserving
homeomorphisms of T that fix a specific point, up to isotopies that fix this point
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throughout. Hence, the homeomorphism h is isotopic to the identity, via an isotopy
that keeps b fixed throughout. This isotopy lifts to an isotopy of S that keeps p−1(b)
fixed throughout. This isotopy takes T̃ to T̃ ′. 
�

As a consequence of the above lemma, it makes sense to compare distances in
Tr(T ) with distances in suitable triangulation graphs for S.

Theorem 8.2 Let p : S → T be a branched cover of the torus, branched over a single
point b in T , with finite degree deg(p). Suppose that the branching index around each
point in p−1(b) is greater than 1. Let T1 and T2 be 1-vertex triangulations of the torus
T with vertex at b, and let T̃1 and T̃2 be their inverse images in S. Then there are
constants k1, k2 > 0, depending only on S, such that

k1 dTr(T )(T1, T2) − k2 ≤ dTr(S;−χ(S))(T̃1, T̃2) ≤ deg(p)dTr(T )(T1, T2).

Proof The upper bound follows immediately from the fact that a 2-2 Pachner move
on a triangulation of T with vertex at b induces deg(p) 2-2 Pachner moves on the
corresponding triangulation of S.

So, we focus on the other inequality. We may assume that T1 and T2 do not differ
by a 2-2 Pachner move, for otherwise dTr(T )(T1, T2) = 1, and the inequality is trivial.

We view T1 and T2 as ideal triangulations of the once-punctured torus. By The-
orem 7.7, they are dual to filling birecurrent train tracks τ1 and τ2, and there is a
splitting sequence taking τ1 to τ2 such that the length of this sequence is dTr(T )(T1, T2).
View these as pre-tracks in the torus disjoint from the branch point b. Their inverse
images τ̃1 and τ̃2 in S are pre-tracks. In fact, they are train tracks, because each
complementary region is a regular neighbourhood of a point of p−1(b). Since the
branching index around this point is greater than 1, the inverse image of the two cusps
around b is at least four cusps. Then the index of the complementary region is at most
χ(disc) − 1

2 (4) ≤ −1. Hence the number of compementary regions of τ̃1 and τ̃2 is at
most −χ(S). So their duals T̃1 and T̃2 each have at most −χ(S) vertices.

The splitting sequence from τ1 to τ2 lifts to a splitting sequence from τ̃1 to τ̃2, of
length deg(p)dTr(T 2)(T1, T2). We wish to use Theorem 6.1 to show that the number of
splits gives a lower bound on dTr(S;−χ(S))(T̃1, T̃2), up tomultiplicative error depending
only on the Euler characteristic of S. We need to check the hypotheses of Theorem 6.1.

Wefirst show that τ̃1 is transversely recurrent.Consider anybranch ẽ of τ̃1. It projects
to a branch e of τ1. Since τ1 is transversely recurrent, there is a simple closed curve C
through e that intersects τ1 transversely and where τ ∪C has no bigon complementary
region. Let C̃ be the inverse image of C in S. The component of C̃ going through ẽ
establishes the transverse recurrence of τ̃1. The same argument establishes that τ̃2 is
transversely recurrent.

We now show that τ̃1 is recurrent. For each branch ẽ of τ̃1, let e be its image branch
in τ1. There is a curve C carried by τ1 running over e. Its inverse image in S is a
collection C̃ of curves carried by τ̃1. One of these runs over ẽ as required.

We now show that the curves carried by τ̃1 fill S. Let C be a finite collection of
curves carried by τ1 that fill the punctured torus. Place the curves of C in minimal
position with respect to each other, in the sense that no two of them have a bigon
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complementary region. Then the complement of these curves in T is a union of discs.
Let C̃ be the inverse image of these curves in S. These are carried by τ̃1. They are in
minimal position. Their complement in S is a union of discs. Hence, C̃ fills S.

Thus, the hypotheses of Theorem 6.1 hold and so dTr(S;−χ(S))(T̃1, T̃2) is at least
the number of splits in a sequence taking τ̃1 to τ̃2, up to bounded multiplicative error
with bound depending only on S. We know from above that this number of splits is
deg(p)dTr(T )(T1, T2). It follows that dTr(S;−χ(S))(T̃1, T̃2) ≥ k1 dTr(T )(T1, T2)− k2, for
some constants k1, k2 > 0 depending only on S. 
�

Suppose p : S → T is a branched cover of the torus, branched over a single point
b with degree deg(p). Suppose 	 is a spine for T disjoint from b. Then observe that
the inverse image of 	 in S might not be a spine, as its complement consists of at most
deg(p) discs. However, a spine can be formed by removing at most deg(p)− 1 edges.

Corollary 8.3 Let p : S → T be a branched cover of the torus, branched over a single
point b, with finite degree deg(p). Suppose that the branching index around each point
in p−1(b) is greater than 1. Let 	1 and 	2 be spines for T that are disjoint from b,
and let 	̃1 and 	̃2 be their inverse images in S. Remove at most deg(p) − 1 edges
from each of 	̃1 and 	̃2 to form spines 	̃′

1 and 	̃′
2 for S. Then there are constants

c1,C1, c2,C2 > 0, depending only on p, such that

c1 dSp(T )(	1, 	2) − c2 ≤ dSp(S)(	̃
′
1, 	̃

′
2) ≤ C1 dSp(T )(	1, 	2) + C2.

Proof Note first that it does not matter which edges of 	̃1 and 	̃2 that we remove. For
suppose that 	̃′′

1 and 	̃′′
2 are other spines also obtained from 	̃1 and 	̃2 by removing at

most deg(p) − 1 edges from each. Then, 	̃′
1 and 	̃′′

1 differ by at most 24(deg(p) − 1)
edge contractions and expansions by Lemma 4.7, and similarly so do 	̃′

2 and 	̃′′
2 . Thus

the difference can be picked up by the constants.
Define a map Tr(T ) → Tr(S;−χ(S)) first on the vertices: This sends a vertex in

Tr(T ), corresponding to a 1-vertex triangulation of T with vertex at b, to the vertex in
Tr(S;−χ(S)) corresponding to the triangulation that is the inverse image of S. Each
edge in T corresponds to a 2-2 Pachner move and this lifts to deg(p) 2-2 Pachner
moves in S. Hence, the map Tr(T ) → Tr(S;−χ(S)) can also be defined on edges and
is continuous. Theorem 8.2 implies that this map is a quasi-isometry. By Lemma 4.5,
the maps Tr(T ) → Sp(T ) and Tr(S) → Sp(S) are quasi-isometries, and the inclusion
Tr(S) → Tr(S; n) is a quasi-isometry for any positive integer n. A quasi-inverse
is given by taking any triangulation with at most n vertices, dualising it to form a
trivalent graph, then removing edges to form a spine, and then dualising to form a 1-
vertex triangulation. This construction can be chosen to be invariant under themapping
class group, and hence forms a quasi-isometry Tr(S; n) → Tr(S). The composition

Sp(T ) → Tr(T ) → Tr(S;−χ(S)) → Tr(S) → Sp(S)

is a quasi-isometry. Thus, we obtain the required inequalities. 
�
Remark 8.4 Theorem 8.2 andCorollary 8.3 require a branched cover of the toruswith a
single branch point b and where each point of p−1(b) has branching index at least two.
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One such branched cover is obtained by the following process. First, take theZ/2×Z/2
cover of T 2 arising from the natural homomorphism π1(T 2) → H1(T 2;Z/2). Then
restrict this to a cover F → T 2 − {b}, where F is a four-times punctured torus. Next
form the cover of F arising from π1(F) → H1(F;Z/2). Finally complete this to form
the required branched cover S of T 2.

9 Triangulations and handle structures of products

Theorem 1.6 Let T0 and T1 be 1-vertex triangulations of the torus T 2. Let �(T0, T1)
denote the minimal number of tetrahedra in any triangulation of T 2 × [0, 1] that
equals T0 on T 2 × {0} and equals T1 on T 2 × {1}. Then there is a universal constant
kprod > 0 such that

kprod dTr(T 2)(T0, T1) ≤ �(T0, T1) ≤ dTr(T 2)(T0, T1) + 6.

Proof The upper bound is straightforward: Let α be a shortest path in Tr(T 2) from T0
to T1. This determines a sequence of 1-vertex triangulations, starting at T0 and ending
at T1. We use this to build a triangulation of T 2×[0, 1], as follows. Start with T 2×{0}
triangulated using T0. Then take the product of this with [0, 1] and triangulate each
of the resulting prisms using 3 tetrahedra. If chosen correctly, these patch together to
form a triangulation of T 2 × [0, 1] with 6 tetrahedra, where T 2 × {0} and T 2 × {1}
are both triangulated using T0. Then layer onto T 2 × {1} a sequence of tetrahedra,
specified by the sequence of Pachner moves, until we reach T1. This gives the upper
bound.

As for the lower bound, let p : S → T 2 be a branched cover, with single branch
point b and where each point of p−1(b) has branching index at least two. For example,
take the branched cover of Remark 8.4.

Now let T be a triangulation of T 2×[0, 1] that equals T0 on T 2×{0} and equals T1
on T 2×{1} and that realises�(T0, T1). By Theorem 3.2, the 23rd iterated barycentric
subdivision T (23) contains an arc in its 1-skeleton that is vertical. Note T (23) consists
of (24)23�(T0, T1) tetrahedra. By Lemma 4.14, there is a sequence of at most

4(1 + 6 + · · · + 622) < 623

Pachner moves taking T0 to T (23)
0 . Perform the reverse of this sequence, and realise

each Pachner move on the boundary of S×[0, 1] by attaching a tetrahedron to S×{0}.
Do the same for S × {1}. Let T+ be the resulting triangulation of S × [0, 1]. It has at
most (24)23�(T0, T1) + 2 · 623 tetrahedra and it equals T0 and T1 on its boundary. By
Lemma 3.5, it also contains an arc in its 1-skeleton that is vertical. Hence, the inverse
image of T+ under the branched covering map is a triangulation of S × [0, 1]. It has
at most (24)23 deg(p)�(T0, T1) + 2 · 623 deg(p) tetrahedra.

Let T̃0 denote the restriction of the triangulation p−1(T+) to S × {0}, and let T̃1
denote the triangulation on S × {1}. By Theorem 8.2, there are constants k1, k2 > 0,

123



M. Lackenby, J. S. Purcell

depending only on p, such that

k1 dTr(T )(T0, T1) − k2 ≤ dTr(S;−χ(S))(T̃0, T̃1). (1)

By Lemma 4.13, there is a sequence of at most 4 deg(p) Pachner moves taking
T̃0 to a 1-vertex triangulation T̃ ′

0 , and a sequence of at most 4 deg(p) Pachner moves
taking T̃1 to a 1-vertex triangulation T̃ ′

1 . Considering the reverse moves, we obtain

dTr(S;−χ(S))(T̃0, T̃1) ≤ dTr(S;−χ(S))(T̃ ′
0 , T̃ ′

1 ) + 8 deg(p). (2)

Each Pachner move corresponds to the addition of a 3-simplex to the triangulation
of S × [0, 1]. So, we obtain a triangulation T ′ of S × [0, 1] that equals T̃ ′

0 on S × {0},
equals T̃ ′

1 on S × {1} and has at most (24)23deg(p)�(T0, T1) + (2 · 623 + 8) deg(p)
tetrahedra.

Let�(T ′) denote theminimal number of tetrahedra in any triangulation of S×[0, 1]
that equals T ′

0 on S × {0} and T ′
1 on S × {1}. By the above observation,

�(T ′) ≤ (24)23 deg(p)�(T0, T1) + (2 · 623 + 8) deg(p). (3)

By Theorem 1.8, there is a constant k3 > 0 depending only on S such that

�(T ′) ≥ k3 dTr(S)(T̃ ′
0 , T̃ ′

1 ). (4)

By Lemma 4.5, there are constants k4, k5 > 0 depending only on S and deg(p)
such that

dTr(S)(T̃ ′
0 , T̃ ′

1 ) ≥ k4 dTr(S;−χ(S))(T̃ ′
0 , T̃ ′

1 ) − k5. (5)

Putting this all together, we obtain

(24)23deg(p)�(T0, T1) + (2 · 623 + 8) deg(p) ≥ �(T ′) by (3)

≥ k3 dTr(S)(T̃ ′
0 , T̃ ′

1 ) by (4)

≥ k3(k4 dTr(S;−χ(S))(T̃ ′
0 , T̃ ′

1 ) − k5) by (5)

≥ k3k4(dTr(S;−χ(S))(T̃0, T̃1) − 8deg(p)) − k3k5 by (2)

≥ k3k4k1dTr(T )(T0, T1) − k3k4k2 − k3k5 − 8k3k4deg(p) by (1)

This gives a linear lower bound on �(T0, T1) in terms of dTr(T )(T0, T1). For all but at
most finitely many positive values of dTr(T )(T0, T1), this lower bound will be positive
and implies that there exists kprod > 0 such that

�(T0, T1) ≥ kprod dTr(T )(T0, T1).

For the remaining values, �(T0, T1) is positive, and so a universal kprod > 0 can be
chosen appropriately. 
�
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In [15], given a pre-tetrahedral handle structure H on S × [0, 1], we considered
the number of edge swaps required to transfer a cellular spine on S × {0} to a cellular
spine on S×{1}. The main technical theorem of that paper, [15, Theorem 9.11], gives
a linear lower bound on the number of edge swaps in terms of�(H) under appropriate
hypotheses. We will prove an analogous theorem for tori.

Theorem 9.1 LetH be a pre-tetrahedral handle structure for T 2 × [0, 1] that admits
no annular simplification. Let 	0 be a cellular spine in T 2 × {0}. Then there is a
sequence of at most khand �(H) edge swaps taking 	0 to a spine 	1 that is cellular
with respect to T 2 × {1}. Here, khand is a universal constant.
Proof For ease of notation, set 	0 = 	(0). In the course of the proof, we will obtain
spines 	(0), 	(1), . . . , 	(n), with each 	( j) obtained from 	( j−1) by at most k( j)�(H)

edge swaps, where k( j) is a universal constant. The number of spines in the sequence
will be universally bounded (by n = 6), so the result follows.

First, let B be a maximal generalised parallelity bundle for H. By Lemma 2.15,
each component of B has incompressible horizontal boundary, and is either an I -
bundle over a disc or has incompressible vertical boundary. Since T 2 × I does not
contain a properly embedded Möbius band or Klein bottle, the only possibilities are
that B consists of a union of I -bundles over discs and annuli, or B is all of T 2 × I .
We also claim that each component of B that is an I -bundle over an annulus has one
horizontal boundary component in T 2 × {0} and one horizontal boundary component
in T 2 × {1}. Suppose that on the contrary, there is an I -bundle over an annulus with
both horizontal boundary components in the same component of T 2 × ∂ I . Then its
two vertical boundary components are boundary-parallel. Pick such a component of
B that is outermost in T 2 × I . Let A′ be its vertical boundary component that is not
outermost. Then ∂A′ bounds an annulus A in T 2 × ∂ I , and A ∪ A′ bounds a product
region P . Hence, H admits an annular simplification, contrary to hypothesis.

Let B′ ⊂ B denote the parallelity bundle forH. Recall fromDefinition 2.13 (6), the
definition of a generalised parallelity bundle, that the intersection between ∂hB′ and
each essential component A′′ of ∂hB contains a component that is equal to A′′ with
some discs D removed from its interior. As a first step, we will adjust 	0 = 	(0) by
sliding it off all such discs, using Lemma 4.9.

By Lemma 2.17, the length of ∂vB′ is at most 56�(H). Hence, the length of ∂D is
at most 112�(H). In particular, the number of components of D is at most 112�(H).
Then Lemma 4.9 implies that after at most 6 · 112�(H) + 2 · 112�(H) = 896�(H)

edge swaps, we obtain a spine 	(1) whose intersection with B lies entirely within the
parallelity bundle B′: 	(1) ∩ B ⊂ B′.

Case 1. B is all of T 2 × [0, 1].
Then some component of the parallelity bundle B′ is of the form (T 2\D) × [0, 1],

where D is a union of disjoint discs in T 2. In particular, 	(1) lies in parallelity handles
that run from T 2×{0} to T 2×{1} and that respect the product structure of T 2×[0, 1].
Transfer 	(1) to T 2 × {1} using the product structure on B′, obtaining a spine 	(2)

in T 2 × {1} without any additional edge swaps. Observe this is cellular in the cell
structure associated withH, so set 	1 = 	(2). The proof is complete in this case.

Case 2. B consists of I -bundles over discs and annuli.
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In this case, we cannot ensure that all of 	(1) lies only in the parallelity bundle,
and so we cannot transfer as simply as in the previous case. Instead, we will obtain a
triangulation from a simplified handle structure and apply Theorem 1.6.

First we adjust 	(1) further. Again Lemma 2.17 implies that the length of ∂vB is
at most 56�(H), and there are at most 112�(H) components of ∂hB. We will now
apply Lemma 4.11. Adjust 	(1) to a new spine 	(2) that is disjoint from the interior
of the disc components of ∂hB, and intersects the interior of each annular component
of ∂hB in at most one arc. Moreover, this arc is a subset of 	(1) and so the arc lies in
the parallelity bundle B′. By Lemma 4.11, 	(2) is obtained from 	(1) from a number
of edge swaps bounded by

6 · 112�(H)+16+2 · 112�(H)+2 · 112�(H)≤10 · 112�(H)+16≤1248�(H).

Here we used that �(H) ≥ 1/8, since otherwise �(H) = 0 and the parallelity bundle
forH is then all of H, which is dealt with in Case 1.

Form a new handle structure H′ as follows. Replace each component of B that is
an I -bundle over a disc by a single 2-handle. Replace each component of B that is
an I -bundle over an annulus by a 1-handle and a 2-handle, arranged such that the
intersection of these two handles contains an arc of 	(2) within the annulus, if there is
one. This is possible because each component of B that is an I -bundle over an annulus
intersects T 2 × {0} in a single component. Then 	(2) remains a cellular spine in this
new handle structure H′. Note H′ has no parallelity 0-handles.

However, note that H′ may no longer be pre-tetrahedral. For each component of
B that is not a 2-handle, its vertical boundary consists of alternating components
of intersection with 1-handles and 2-handles, and these must be adjacent to semi-
tetrahedral 0-handles, attached where a 1-handle is bounded by exactly two 2-handles.
The process of replacing a D2 × I component of B replaces one or both instance of
such a 1-handle and its adjacent 2-handles with a single 2-handle. This gives a clipped
semi-tetrahedral 0-handle as in Fig. 3. Similarly clipped semi-tetrahedral 0-handles
may arise when replacing components that are I -bundles over an annulus, but these
are the only adjustments that need to be made.

Recall that we may still define the complexity of a handle structure that is pre-
tetrahedral aside from a finite number of clipped semi-tetrahedral 0-handles. Since
clipped semi-tetrahedral handles contribute the same as semi-tetrahedral handles to
complexity, we have �(H′) ≤ �(H).

Let T be the triangulation obtained from H′ as in Lemma 2.20. This satisfies
�(T ) ≤ 1152�(H′) ≤ 1152�(H). Let T0 and T1 be the induced triangulations of
T 2 × {0} and T 2 × {1}. Observe that our spine 	(2) is a subcomplex of T0.

By Lemma 4.13, there is a sequence of at most 16�(T ) Pachner moves taking T0
and T1 to 1-vertex triangulations T ′

0 and T ′
1 . By Lemma 4.12, there is a sequence of at

most 16�(T ) ≤ 16 · 1152�(H) edge swaps taking 	(2) to a subcomplex 	(3) of T ′
0 .

Realise the Pachner moves as tetrahedra, to form a triangulation T ′ of T 2 × [0, 1]
with triangulations T ′

0 and T ′
1 on T 2 × {0} and T 2 × {1}, respectively, and with

�(T ′) ≤ 17�(T ).
By Theorem 1.6, dTr(T 2)(T ′

0 , T ′
1 ) is at most kprod �(T ′) for some universal constant

kprod > 0. That is, there is a sequence of at most kprod�(T ′) ≤ 17kprod�(T ) Pachner
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moves taking T ′
0 to T ′

1 . Follow this by at most 16�(T ) Pachner moves taking T ′
1 to T1,

for a total of (17kprod + 16)�(T ) Pachner moves taking T ′
0 to T1. Again Lemma 4.12

implies there is a sequence of at most (17kprod + 16)�(T ′) ≤ k�(H) edge swaps
taking the spine 	(3) to a subcomplex 	(4) of T1, where k > 0 is a universal constant.

The 1-skeleton of the cell structure associated withH′ on T 2 ×{1} is a subcomplex
of T1, so the next step is to adjust 	(4) to lie only in this subcomplex. The 2-cells of the
cell structure are discs. The total length of their boundary is at most the total length of
the 1-skeleton of the tetrahedra of T , which is at most 6�(T ). The number of discs is
at most the number of triangles in T , which is at most 4�(T ). Hence by Lemma 4.9,
we may modify 	(4) to a spine 	(5) that is cellular with respect to H′ using at most
36�(T ) edge swaps.

The cell structure that T 2 × {1} inherits fromH′ agrees with that of H away from
∂hB.Within the interior of each essential annular component of ∂hB, the structure ofH′
consists of two 1-cells and two 2-cells. One of these 1-cells is the arc of intersection
with 	(2), which we arranged to be part of the parallelity bundle. Hence, it is also
cellular in the cell structure that inherits from H. If necessary, a single edge swap
takes 	(5) to a spine intersecting the interior of this annulus just in this arc. As there
are at most 56�(H) annular components of ∂hB in T 2 × {1}, this can be done for all
annuli with at most 56�(H) additional edge swaps, obtaining a spine 	(6). Now 	(6)

is cellular with respect toH, so we set this equal to 	1.
In summary, starting with the spine 	0 = 	(0), we have found a sequence of edge

swaps taking the spine 	(i) to a spine 	(i+1), for i = 0, . . . , 5, where 	(6) = 	1 is the
desired cellular spine on T 2×{1}, such that the number of edge swaps required to take
	(i) to 	(i+1) is bounded by a uniform constant times �(H), for each i = 1, . . . , 5. 
�

10 Triangulations of sol manifolds

In this section, we prove Theorems 1.4, 1.5 and 1.9.

Lemma 10.1 Let φ : T 2 → T 2 be a linear Anosov homeomorphism. Then the trian-
gulation complexity satisfies

�((T 2 × I )/φ) ≤ 6 + �Tr(T 2)(φ).

Proof There is a 1-vertex triangulation t of the torus such that the distance in the Farey
tree between t and φ(t) realises the translation length �Tr(T 2)(φ). As in the proof of
Theorem 1.6, we triangulate T 2×[0, 1] using 6+�Tr(T 2)(φ) tetrahedra, with T 2×{0}
triangulated using t and T 2 × {1} triangulated using φ(t). Then glue top to bottom
using φ. The result is a triangulation of (T 2 × I )/φ with 6+ �Tr(T 2)(φ) tetrahedra. 
�

Lemma 10.2 Let φ : T 2 → T 2 be a linear Anosov homeomorphism. Then there exists
a universal constant k′

sol > 0 such that

k′
sol �Tr(T 2)(φ) ≤ �((T 2 × I )/φ).
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Proof Let M = (T 2 × I )/φ. We will show that �(M) is at least a constant times
the translation distance of φ in the spine graph Sp(T 2). As Sp(T 2) and Tr(T 2) are
quasi-isometric, by Lemma 4.5, this will prove the result.

Consider a triangulation T for M with �(T ) = �(M). Let S be a normal fibre in
M with least weight. This corresponds to a surface, also called S, that intersects each
handle in the dual handle structure in a collection of properly embedded discs. This
surface S inherits a cell structure in which each of these discs is a 2-cell. Pick some
spine 	 for S that is cellular. Let H be the handle structure that results from cutting
M along S. Then by Lemma 2.5, �(H) = �(T ).

Since S has least weight in its isotopy class, H does not admit any annular sim-
plifications, by Theorem 2.16. So, by Theorem 9.1, there is a sequence of at most
khand�(H) edge contractions and expansions taking 	 in T 2 × {0} to a spine 	1 in
T 2 ×{1} that is cellular. Now apply the gluing map φ between T 2 ×{1} and T 2 ×{0}
to get the spine φ(	1) in T 2×{0}. Next apply Theorem 9.1 again, to obtain a sequence
of at most khand�(H) edge contractions and expansions taking φ(	1) in T 2 ×{0} to a
cellular spine 	2 in T 2 ×{1}. Keep repeating this process, giving a sequence of spines
	i that are cellular in T 2 ×{1}. Thus, the distance in Sp(T 2) between φ(	i ) and 	i+1
is at most khand�(H). There are only finitely many cellular spines in T 2 × {1} and so
there are integers r < s such that 	r = 	s . By relabelling, we may assume that r = 0
and s = n, say. Thus, with respect to the metric d on Sp(T 2), we have the following
inequalities:

d(φn	0, 	0) = d(φn	0, 	n)

≤ d(φn	0, φ
n−1	1) + d(φn−1	1, φ

n−2	2) + · · · + d(φ	n−1, 	n)

= d(φ	0, 	1) + d(φ	1, 	2) + · · · + d(φ	n−1, 	n)

≤ khandn�(H).

So, the translation length �Sp(T 2)(φ
n) of φn is at most khandn�(H). But �Sp(T 2)(φ

n)

is n times the translation length �Sp(T 2)(φ), since φ acts on the tree Sp(T 2) by trans-
lation along an axis; see Lemma 7.2. Therefore, the translation length of φ is at most
khand�(H) = khand�(M). 
�

Recall from Sect. 5.1 that PSL(2,Z) is isomorphic to Z2 ∗Z3 where the factors are
generated by

S =
(
0 −1
1 0

)
T =

(
0 −1
1 −1

)
.

Theorem 1.4 Let A be an element of SL(2,Z) with |tr(A)| > 2. Let M be the sol
3-manifold (T 2 × [0, 1])/(A(x, 1) ∼ (x, 0)). Let A be the image of A in PSL(2,Z)

and let �(A) be the length of a cyclically reduced word in the generators S and T±1

that is conjugate to A. Then, there is a universal constant ksol > 0 such that

ksol�(A) ≤ �(M) ≤ (�(A)/2) + 6.
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Proof As explained in Sect. 5.1, the Farey tree is closely related to the Cayley graph
of Z2 ∗ Z3 with respect to the generators S and T . Specifically this Cayley graph is
obtained from the Farey tree as follows: replace each vertex of the tree by a triangle,
with each edge oriented and labelled by T ; replace each edge of the Farey tree by
two edges, both labelled by S and pointing in opposite directions. The element A in
SL(2,Z) acts on this Cayley graph as it does on the Farey tree, and the translation
lengths of these two actions differ by a factor of 2. Indeed, the invariant axis in the
Farey tree can be used to produce an invariant geodesic in the Cayley graph, and the
translation length along this geodesic is twice that of the translation length along the
axis in the Farey tree. As one travels along this geodesic, one reads off a word in S,
T and T−1 which is a cyclically reduced representative for a conjugate of A. Thus
its length �(A) is twice the translation length of the action of A on the Farey tree. By
Lemmas 10.2 and 10.1, this is, up to a bounded multiplicative factor, the triangulation
complexity of M . 
�
Theorem 1.5 Let A be an element of SL(2,Z) with |tr(A)| > 2. Let A be the image
of A in PSL(2,Z). Suppose that A is Bn for some positive integer n and some B ∈
PSL(2,Z) that cannot be expressed as a proper power. Let M be the sol 3-manifold
(T 2×[0, 1])/(A(x, 1) ∼ (x, 0)). Let [a0, a1, . . . ] be the continued fraction expansion
of

√
tr(A)2 − 4 where ai is positive for each i > 0 and let (ar , . . . , as) denote its

periodic part. Then there is a universal constant k′
sol > 0 such that

k′
soln

s∑

i=r

ai ≤ �(M) ≤ 6 + n
s∑

i=r

ai .

Proof Let φ : T 2 → T 2 be the homeomorphism determined by A. By Lemma 7.1, φ
is linear Anosov, so by Lemmas 10.1 and 10.2, we have

k′
sol�Tr(T 2)(φ) ≤ �(M) ≤ 6 + �Tr(T 2)(φ).

Now by Theorem 5.1, �Tr(T 2)(φ) is the translation length of φ in the Farey tree. By
Proposition 7.3, this translation length is n

∑s
i=r ai . 
�

Theorem 1.9 Let φ : T 2 → T 2 be a linear Anosov homeomorphism. Then the follow-
ing quantities are within bounded ratios of each other:

(1) the triangulation complexity of (T 2 × I )/φ;
(2) the translation distance (or stable translation distance) of φ in the thick part of

the Teichmüller space of T 2;
(3) the translation distance (or stable translation distance) of φ in the mapping class

group of T 2;
(4) the translation distance (or stable translation distance) of φ in Tr(T 2).

In (3), we metriseMCG(T 2) by fixing the finite generating set

(
1 1
0 1

)
,

(
1 0
1 1

)
.
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Proof The fact that the quantities (2), (3) and (4) are within a bounded ratio of each
other is a rapid consequence of theMilnor-S̆varc lemma, as explained in [15, Sect. 1.2].
The relationship between (1) and (4) now follows immediately from Lemmas 10.1
and 10.2. 
�

11 Triangulations of lens spaces

The following was one of the main theorems of [16].

Theorem 11.1 Let M be a lens space other than a prism manifold L(4p, 2p ± 1)
or RP3. Let T be any triangulation of M. Then the iterated barycentric subdivision
T (139) contains in its 1-skeleton the union of the two core curves.

We will use this to prove our main result about lens spaces.

Theorem 1.1 Let L(p, q) be a lens space, where p and q are coprime integers satis-
fying 0 < q < p. Let [a0, . . . , an] be the continued fraction expansion of p/q where
each ai is positive. Then there is a universal constant klens > 0 such that

klens

n∑

i=0

ai ≤ �(L(p, q)) ≤
n∑

i=0

ai .

Proof The upper bound on �(L(p, q)) is fairly straightforward. Indeed, Jaco and
Rubinstein [9] provide a triangulation with (

∑n
i=0 ai ) − 3 tetrahedra for p > 3 and

they conjecture that this is equal to �(L(p, q)). For p = 2 or 3, the lens space is RP3

or L(3, 1), which both satisfy �(L(p, q)) = 2. Note
∑n

i=0 ai ≥ 2, so the inequality
holds in these cases.

We now focus on the lower bound for �(L(p, q)). The triangulation complexity
of L(4p′, 2p′ ± 1) was shown by Jaco, Rubinstein and Tillmann [11] to be p′ for
p′ ≥ 2. So we now assume that the lens space is not of this form and also is not RP3

or L(4, 1).
Let T be a triangulation of L(p, q). Our goal is to show that�(T ) ≥ klens

∑n
i=0 ai

for some universal constant klens > 0. The approach that we will take is as follows.
We will drill from (a subdivision of) the triangulation T two core curves C and C ′
for the solid tori making up L(p, q), with meridians μ and μ′. This gives a manifold
homeomorphic to T 2 × [0, 1]. Using the triangulation T , we will obtain spines for
T 2 × {0} and T 2 × {1} containing μ and μ′, respectively; these correspond to points
on L(μ) and L(μ′) in the Farey tree. Theorem 9.1 and Lemma 4.15 then build a path
in the Farey tree from L(μ) to L(μ′), with length bounded by a constant times �(T ).
This must be at least as long as the shortest path from L(μ) to L(μ′), which is

∑
ai .

Thus our constructed path will give a bound of the form
∑

ai ≤ (1/klens)�(T ) for
some constant klens. This completes the outline of the proof of the theorem.

By Theorem 11.1, T (139) contains in its 1-skeleton the union of the two core curves
C and C ′. To build our spines on T 2 × {0} and T 2 × {1}, we not only need C and C ′
to be simplicial, but also a regular neighbourhood of these curves must be simplicial,
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and a meridian of the simplicial neighbourhood must also be simplicial. This can be
obtained by further subdivision.However, aswe subdivide,wewill need a bound on the
length of the simplicial meridian to apply Lemma 4.15. Again this can be obtained by
careful subdivision, as follows. Beginning with T (139), take a further two barycentric
subdivisions, so that a regular neighbourhood N (C ∪ C ′) for C ∪ C ′ is simplicial in
T (141). Observe that ∂N (C ∪ C ′) consists of faces, edges, and vertices that belong to
T (141) but do not lie in faces, edges and vertices (respectively) of T (139). Observe that
barycentric subdivision adds a new central vertex to each tetrahedron of T (140), and
this vertex meets exactly 24 tetrahedra in T (141). Observe also that an edge running
from this central vertex to one of the new vertices on a face will meet 30 tetrahedra:
24 at one endpoint, and an additional six at the other endpoint.

We may find two curves C and C
′
that are simplicial on ∂N (C ∪ C ′), that are

parallel copies of C and C ′, respectively, and that are made up of edges each meeting
at most 30 tetrahedra. We may take a further two barycentric subdivisions, creating
T (143), so that N (C ∪C

′
) is simplicial. Then N (C ∪C

′
) consists of those simplices in

T (143) that have non-empty intersection with C and C
′
. We remove the interior of this

regular neighbourhood from L(p, q), and thereby obtain a triangulation of T 2×[0, 1].
Because each barycentric subdivision increased the number of tetrahedra by a factor
of 24, this triangulation has complexity at most (24)143�(T ).

Consider any vertex v of T (141) lying on C . The union of the simplices in T (143)

incident to this vertex is a simplicial 3-ball B. The intersection between ∂B and C
consists of two points. The union of the simplices in ∂B incident to one of these points
is a disc. The boundary of this disc is a meridian curve μ for N (C). Since at most 30
tetrahedra of T (141) are incident to v, we deduce that there is a universal upper bound
(120 in fact) for the length of μ in T (143). Each vertex of μ lies in the interior of a
3-simplex or 2-simplex of T (141). Hence, it is incident to at most two 3-simplices of
T (141). These 3-simplices contain at most 2× (24)2 tetrahedra of T (143) and hence at
most 12× (24)2 = 6912 edges of T (143). We deduce that each vertex of μ is incident
to at most 6912 edges in ∂N (C). Similarly, on ∂N (C

′
), there is a meridian curve

μ′ with length at most 120 and again with the property that each vertex that it runs
through is incident to at most 6912 edges in ∂N (C

′
).

As in Remark 2.7, we attach a triangulation of ∂N (C ∪ C ′) onto the triangulation
of T 2 × [0, 1], to form a new triangulation T ′ of T 2 × [0, 1]. This satisfies �(T ′) ≤
33(24)143�(T ). By Lemma 2.6, the dual handle structure H is pre-tetrahedral and
satisfies �(H) ≤ 33(24)143�(T ). As explained in Remark 2.10, it has no parallelity
handles. In particular, it admits no annular simplifications.

There is a copy of the meridian curve μ in T ′. This is a sequence of vertices and
edges, and hence it corresponds to a sequence of 2-handles and 1-handles in the handle
structure of T 2 × {0, 1}. The boundary of each of these 2-handles has length at most
6912×2 in the cell structure, and the boundary of each 1-handle has length 4. The union
of these 1-handles and 2-handles is an annulus. Each of the boundary components of
the annulus is cellular and has length at most 120 × ((6912 × 2) + 4) = 1659360
in H. Pick one of these boundary components and extend it to a cellular spine 	 in
T 2 × {0}. Similarly, there is a cellular curve in T 2 × {1} that is parallel to μ′ and that
has length at most 1659360.
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By Theorem 9.1 and Lemma 4.7, there is a universal constant khand > 0 and a
sequence of at most 24khand �(H) edge contractions and expansions taking 	 to a
cellular spine 	′ in T 2 × {1}. By Lemma 4.15, there is a further sequence of at most
24 + 4 · 1659360 = 6637464 edge swaps taking 	′ to a spine 	′′ that contains μ′.
By Lemma 4.7, this is realised by at most 24 · 6637464 < 108 edge contractions and
expansions. Since	 and	′′ containmeridians as subsets, they correspond to vertices in
the Farey tree that lie on the lines L(μ) and L(μ′), as in Definition 5.3. The distance in
the spine graph is exactly twice the distance in the Farey tree, since a 2-2 Pachner move
in a triangulation is realised by an edge contraction then expansion. Hence, the distance
between these lines is at most 24khand �(H) + 108 ≤ 33(24)144khand �(T ) + 108 in
the Farey tree. By Lemma 5.4, this distance is (

∑n
i=0 ai )−1, where [a0, . . . , an] is the

continued fraction expansion of p/q. Hence,�(L(p, q)) is at least a linear function of∑n
i=0 ai . Since

∑n
i=0 ai ≥ 1, the additive part of this linear function can be eliminated,

at the possible cost of changing the multiplicative constant. So, �(L(p, q)) is at least
klens

∑n
i=0 ai for some universal klens > 0. 
�

12 Prismmanifolds and Platonic manifolds

Westart by considering the prismmanifold P(p, q). This is obtainedbygluing together
the solid torus and K 2 ∼× I , the orientable I -bundle over the Klein bottle, via a
homeomorphism between their boundaries. The resulting manifold is determined, up
to homeomorphism, by the slope on the boundary of K 2 ∼× I to which a meridian
disc of the solid torus is attached. Now, the boundary of K 2 ∼× I has a canonical
framing, as follows. There are only two non-separating simple closed curves λ and μ

on the Klein bottle, where λ is orientation-reversing and μ is orientation-preserving.
The inverse images of these in the boundary of K 2 ∼× I are curves with slopes λ̃ and
μ̃. The prism manifold P(p, q) is obtained by attaching the meridian disc of the solid
torus along a curve with slope pλ̃ + qμ̃, when these slopes are given some choice of
orientation.

Theorem 1.2 Let p and q be positive coprime integers and let [a0, . . . , an] denote
the continued fraction expansion of p/q where ai is positive for each i > 0. Then,
�(P(p, q)) is, to within a universally bounded multiplicative error, equal to

∑n
i=0 ai .

Proof As usual, the upper bound on �(P(p, q)) is fairly straightforward. Start with
a 1-vertex triangulation of the Klein bottle in which λ and μ are edges. The inverse
image in K 2 ∼× I of the three edges in K 2 is three squares, which we can triangulate
using two triangles each. If we cut K 2 ∼× I along these three squares, the result is
two prisms, which can be triangulated using eight tetrahedra. Now attach onto the
boundary of K 2 ∼× I some tetrahedra, so that the resulting boundary has a 1-vertex
triangulation, and where two of its edges have slopes λ̃ and μ̃. Now apply 2-2 Pachner
moves taking this triangulation to one that includes p/q as an edge. Then glue on a
triangulation of the solid torus with boundary triangulation containing a meridian as
an edge. Thus the resulting number of tetrahedra in the triangulation of P(p, q) is at
most

∑n
i=0 ai plus a constant.
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For the lower bound, note that P(p, q) is double covered by a lens space L . Hence,
�(P(p, q)) ≥ �(L)/2. The inverse image of K 2 ∼× I in this double cover is a copy of
T 2×[0, 1]. The inverse image of the solid torus is two solid tori, one attached along the
slope p/q and the other attached along the slope−p/q. According to Theorem 1.1 and
Lemma 5.4, �(L) is at least a constant times the distance in the Farey graph between
the lines L(p/q) and L(−p/q). To compute this distance, consider the hyperbolic
geodesic joining p/q to −p/q. This is divided into two half-infinite geodesics by the
imaginary axis.Aswe travel along one of these geodesics, starting at the imaginary axis
and ending at p/q, we recover the splitting sequence for p/q. Hence, this corresponds
to a path in the Farey tree with length

∑n
i=0 ai . The path running from the imaginary

axis to L(−p/q) has the same length. Hence,�(L) is at least a constant times
∑n

i=0 ai .
�
A Platonic manifold is an elliptic manifold M that admits a Seifert fibration with

base space that is the quotient of the 2-sphere by the orientation-preserving symmetry
group of a Platonic solid. In other words, the base space � is a 2-sphere with three
cone points of orders (2, 3, 3), (2, 3, 4) or (2, 3, 5).

If we remove the three singular fibres from M , the result is a circle bundle over the
three-holed sphere. Thus,M is obtained from this circle bundle by attaching three solid
tori. For convenience, we also remove one regular fibre, and the resulting manifold
M ′ is a circle bundle over the four-holed sphere S. Now orientable circle bundles over
orientable surfaces with non-empty boundary are trivial. Thus, M ′ is just a copy of
S × S1. We fix a meridian and longitude for each boundary component of S × S1, by
declaring the longitude to be of the formC ×{∗} for the relevant boundary component
C of S, and declaring the meridian to be {∗} × S1. Thus, the Dehn filling slopes are
given by four fractions p0/q0, p1/q1, p2/q2 and p3/q3, where q0 = 1, q1 = 2, q2 = 3
and q3 = 3, 4 or 5. The Euler number is just the sum p0/q0 + p1/q1+ p2/q2+ p3/q3.
Without changing the manifold or its Seifert fibration, we can adjust these slopes by
adding an integer to one and subtracting an integer from another. In this way, we can
arrange p1/q1, p2/q2 and p3/q3 all to lie strictly between 0 and 1.

Theorem 1.3 Let M be a Platonic elliptic 3-manifold, and let e denote the Euler
number of its Seifert fibration. Then, to within a universally bounded multiplicative
error, �(M) is |e|.
Proof The upper bound is straightforward. We can form a triangulation of S× S1 with
a fixed number of tetrahedra, andwhere the longitudes andmeridians are all simplicial.
We can also arrange that the triangulation of each boundary component has a single
vertex. Since p1/q1, p2/q2 and p3/q3 take only finitely many possible values, we can
attach triangulated solid tori so that the meridian disc is attached to these slopes, using
a universally bounded number of tetrahedra. The final slope p0/1 is integral. Hence,
using at most |p0| many 2-2 Pachner moves, we many arrange that this slope p0/1
is simplicial. We can then attach a triangulated solid torus to form a triangulation of
M . The difference between p0 and the Euler number e is bounded above by 3, since
p1/q1, p2/q2 and p3/q3 all lie between 0 and 1. So, the number of tetrahedra is at
most |e|+ c for some universal constant c. This is at most a multiple of |e| as e cannot
be zero, since M would then contain an embedded non-separating orientable surface,
which is impossible in a rational homology 3-sphere.
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We now establish the lower bound on�(M). The Seifert fibration M → � induces
a surjective homomorphism π1(M) → π1(�), where the latter group is the orbifold
fundamental group of the base space �. The kernel of this homomorphism has index
at most 60. Let M̃ be the corresponding finite cover of M . Then �(M̃) ≤ 60�(M).
The Seifert fibration on M lifts to a Seifert fibration on M̃ . The Euler number ẽ of
M̃ is related to the Euler number of M as follows, using [24, Theorem 3.6]. If d1
is the degree of the covering between the base orbifolds, and d2 is the degree of
the coverings between regular fibres, then ẽ = ed1/d2. In particular, |ẽ| ≥ |e|/60.
The Seifert fibration of M̃ has base space a 2-sphere and has no singular fibres, and
therefore M̃ is the lens space L(ẽ, 1). Therefore, by Theorem 1.1,

�(M) ≥ �(M̃)/60 ≥ (klens/60)|ẽ| ≥ (klens/3600)|e|.


�
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