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Abstract
Let � ⊂ R

n+1, n ≥ 2, be an open set with Ahlfors–David regular boundary satisfy-
ing the corkscrew condition. When � is quantitatively connected (i.e., it satisfies the
Harnack chain condition) it is known that for any real elliptic operator with bounded
coefficients, the quantitative absolute continuity of elliptic measures (i.e., its member-
ship to the class A∞) is equivalent to the fact that all bounded null solutions satisfy
Carleson measure estimates. In turn, in the same setting, it is also known that these
properties are stable under Fefferman–Kenig–Pipher’s perturbations. Nonetheless, it
has been an open problem to show whether, without connectivity, the previous two
conditions remain equivalent or whether there is a Fefferman–Kenig–Pipher pertur-
bation theory. In this paper we settle the question of whether, for general real elliptic
operators in sets without any connectivity assumption, quantitative absolute continuity
of the elliptic measure (expressed via a corona decomposition for the elliptic measure)
and Carleson measure type estimates for bounded null solutions are equivalent. We
show that any of these conditions is also equivalent to the fact that theGreen function is
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comparable, in the corona sense, to the distance to the boundary. Our characterization
has profound consequences. First, we extend Fefferman–Kenig–Pipher’s perturbation
result to sets which are not necessarily connected, and this is the first result in this
general setting. Second, in the case of the Laplacian, andmore generally for L1-Kenig–
Pipher non-symmetric operators with variable coefficients, our conditions characterize
the uniform rectifiability of the boundary. Last, our results generalize previous work
in settings where quantitative connectivity is assumed.

Mathematics Subject Classification 42B37 · 28A75 · 28A78 · 31A15 · 31B05 ·
35J08 · 35J25 · 42B25 · 42B35
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1 Introduction andmain results

The study of the relationship between the geometry of an open set and the absolute
continuity properties of its harmonic measure has attracted considerable interest over
the last century, with remarkable progress over the last two decades. In summary, the
emerging philosophy is that rectifiability along with suitable connectivity hypothesis
is sufficient for absolute continuity of harmonic measure with respect to the surface
measure, and that the rectifiability of the boundary is necessary. The first evidence
comes from F. and M. Riesz [33], who showed that for a simply connected domain
in the complex plane, rectifiability of the boundary implies that harmonic measure is
absolutely continuouswith respect to arclengthmeasure on the boundary. The converse
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was established in [2], where it was proved that, in any dimension and in the absence of
any connectivity condition, every piece of the boundary with finite surface measure is
rectifiable, provided surfacemeasure is absolutely continuouswith respect to harmonic
measure on that piece.

On the other hand, some connectivity property seems to be necessary for absolute
continuity to occur, since Bishop and Jones in [6] constructed a uniformly rectifiable
set E on the plane and some subset of F with zero arc-length which carries positive
harmonic measure relative to the domain R

2\E . Considering this point, a big effort
has been recently made to understand in what open sets � ⊂ R

n+1 and for what
elliptic operators L the elliptic measure ωL is quantitatively absolutely continuous
with respect to surface measure σ := Hn

∣
∣
∂�

on the boundary, which is formulated
as ωL ∈ A∞(σ ) (cf. Sect. 6). One context where this theory has been satisfactorily
developed is that of 1-sided chord-arc domains, that is, open sets which satisfy the
interior corkscrew and Harnack chain conditions (quantitative openness and connect-
edness respectively) with an Ahlfors-David regular boundary. Under such background
hypothesis, for the Laplacian, [3, 11, 22, 23] give a characterization of ω ∈ A∞(σ ) in
terms of uniform rectifiability of the boundary (a quantitative version of rectifiability),
which is also equivalent to the fact that� satisfies an exterior corkscrew condition and
hence� is a chord-arc domain. Recently, in [28] (see also [26] and [29]), these charac-
terizations have been extended to the so-called Kenig-Pipher operators, that is, elliptic
operators with variable coefficients whose gradient satisfies an L2-Carleson measure
condition. On the other hand, in the setting of 1-sided chord-arc domains it has been
established that for general elliptic operators one can characterize ωL ∈ A∞(σ ) in
terms of the fact that all bounded null solutions satisfy Carleson measure estimates
(cf. [9]). Additionally, the papers [8, 9] extend the fundamental work of [15] to the
setting of 1-sided chord-arc domains and establish that the A∞ property is stable
under Carleson perturbations. Finally, the 1-codimensional case of [12] establishes
that uniform rectifiability of the boundary is equivalent to the fact that the associated
Green functions for some class of elliptic operators are well approximated by affine
functions.

However, in the absence of the Harnack chain condition, the quantitative absolute
continuity of the harmonic or elliptic measure becomes delicate as can be seen from
the Bishop-Jones counterexample. In [25] (see also [19, 31]) it was shown that in an
open set with Ahlfors-David regular boundary, if the associated harmonic measure
satisfies the weak-A∞ property (a quantitative version of the absolute continuity)
then the boundary is uniformly rectifiable. This latter property is in turn equivalent
to the fact that all bounded harmonic functions satisfy Carleson measure estimates
or are ε-approximable (see [16, 24] and also [5] for a class of elliptic operators with
variable coefficients). Thus, even without strong connectivity assumptions (like in
the Bishop-Jones counterexample), some estimates on harmonic functions—which
in more topologically benign environments are equivalent to the A∞ property of
harmonic measure—remain valid.

The geometrical characterization of the weak-A∞ property of harmonic measure—
and hence the solvability of the L p-Dirichlet problem for finite p, see for instance
[18]—was obtained in [4]. Assuming that an open set � satisfies natural (and optimal
in a certain sense) background conditions (more precisely, interior corkscrew condition
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and Ahlfors-David regularity of the boundary), it is shown that harmonic measure
belongs to weak-A∞(σ ) if and only if ∂� is uniformly rectifiable and � satisfies the
weak local John condition, a condition that guarantees local non-tangential access to
an ample portion of the boundary. Additionally, any of these properties is equivalent
to the fact that � has “interior big pieces of chord-arc domains”. In this regard we
also mention Azzam [1], who obtained a similar characterization for the stronger A∞
condition.

The main goal of our present work is to consider open sets with no connectivity
assumption and general elliptic operators. As explained above, the weak-A∞ property
is not expected to hold, and we seek to relax it so that the new condition has the
following features. First, it is equivalent to the A∞ property in better settings. Second,
it gives Carleson measure type estimates for bounded solutions. Third, in the case
of the Laplacian or Kenig-Pipher operators, it allows one to characterize the uniform
rectifiability of the boundary. Last but not least, it is stable under Fefferman-Kenig-
Pipher Carleson perturbations, that is, if the disagreement of two matrices satisfies
a Fefferman-Kenig-Pipher Carleson measure condition, then the desired condition
should be transferable from one operator to the other.

The condition thatwe consider here is a corona decomposition adapted to the elliptic
measure that appeared implicit in [25], playing a fundamental role in the proof of its
main result, and was formalized in [16] (see also [5]) in a somehow weaker form. This
corona decomposition is a partition of the collection of the dyadic cubes associated
with the Ahlfors-David regular boundary in good cubes and bad cubes where the
good cubes are organized in trees. The collection of bad cubes and the tops of the
trees satisfy a packing condition. And, in each fixed tree, the averages of the elliptic
measure, with some fixed pole at a scale above the top and normalized appropriately,
is comparable to a constant (see Definition 2.6 below). We show that any of the two
versions of this corona decomposition is equivalent to the fact that the Green function
is comparable to the distance to the boundary (with an appropriate normalization) in
the corona sense (see Definition 2.6) or equivalent to partial/weak Carleson measure
estimates for bounded solutions, that is, Carlesonmeasure estimates that only take into
account one of the components of the associatedWhitney region (see Definition 2.17).
The precise result is as follows:

Theorem 1.1 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary satisfying the corkscrew condition, and let Lu = − div(A∇u) be a real (not
necessarily symmetric) uniformly elliptic operator.WriteωL andGL for the associated
elliptic measure and Green function, respectively. Then the following statements are
equivalent:

(a) ωL admits a strong corona decomposition (cf. Definition 2.6).
(b) ωL admits a corona decomposition (cf. Definition 2.6).
(c) GL is comparable to the distance to the boundary in the corona sense (cf. Defini-

tion 2.6).
(d) L satisfies partial/weak Carleson measure estimates (cf. Definition 2.17).

Theorem 1.1 can be applied to consider Fefferman-Kenig-Pipher perturbations of
elliptic operators extending [9, 15, 30] to sets without any connectivity assumption.
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The result that we state next is, as far as we know, the first Fefferman-Kenig-Pipher
perturbation in open sets which does not assume the Harnack chain condition:

Theorem 1.2 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary satisfying the corkscrew condition. Let L0u = − div(A0∇u) and L1u =
− div(A1∇u) be real (not necessarily symmetric) uniformly elliptic operators so that
L1 is a Fefferman-Kenig-Pipher perturbation of L0, that is, the following Carleson
measure estimate holds:

sup
x∈∂�

0<r<diam(∂�)

1

σ(B(x, r) ∩ ∂�)

¨
B(x,r)∩�

�(A0, A1)(X)2

δ(X)
dX < ∞, (1.3)

where the disagreement between A0 and A1 in � is given by

�(A0, A1)(X) := sup
Y∈B(X ,δ(X)/2)

|A0(Y ) − A1(Y )|, X ∈ �.

Then the following statements are equivalent:

(a) ωL0 admits a (strong) corona decomposition (equivalently, GL0 is comparable
to the distance to the boundary in the corona sense or L0 satisfies partial/weak
Carleson measure estimates).

(b) ωL1 admits a (strong) corona decomposition (equivalently, GL1 is comparable
to the distance to the boundary in the corona sense or L1 satisfies partial/weak
Carleson measure estimates).

Much as in [9] we can see that any of the equivalent conditions in Theorem 1.1
can be transferred from L to its transpose L
 or to its symmetric part Lsym when the
matrix of coefficients are regular and some Carleson measure condition is assumed
on its antisymmetric part:

Theorem 1.4 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary satisfying the corkscrew condition. Let Lu = − div(A∇u) be a real (not
necessarily symmetric) uniformly elliptic operator, let L
 denote the transpose of L,

and let Lsym = L+L

2 be the symmetric part of L. Assume that (A− A
) ∈ Liploc(�)

and that the following Carleson measure estimate holds

sup
x∈∂�

0<r<diam(∂�)

1

σ(B(x, r) ∩ ∂�)

¨
B(x,r)∩�

| divC (A − A
)(X)|2δ(X)dX < ∞,

(1.5)

where

divC (A − A
)(X) =
( n+1

∑

i=1

∂i (ai, j − a j,i )(X)

)

1≤ j≤n+1
, X ∈ �.
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Then the following statements are equivalent:

(a) ωL admits a (strong) corona decomposition (equivalently, GL is comparable to the
distance to the boundary in the corona sense or L satisfies partial/weak Carleson
measure estimates).

(b) ωL
 admits a (strong) corona decomposition (equivalently, GL
 is comparable
to the distance to the boundary in the corona sense or L
 satisfies partial/weak
Carleson measure estimates).

(c) ωLsym admits a (strong) corona decomposition (equivalently, GLsym is comparable
to the distance to the boundary in the corona sense or Lsym satisfies partial/weak
Carleson measure estimates).

Back to the Laplacian, by means of Theorem 1.1, we can characterize the uniform
rectifiability of the boundary of an open set with an Ahlfors-David regular boundary
in terms of any of the preceding equivalent properties. In the case of (full) Carleson
measure estimates, [24, Theorem 1.1] shows that any bounded harmonic function in
R
n+1\E , with E uniformly rectifiable, satisfies (full) Carlesonmeasure estimates. As a

consequence, if� ⊂ R
n+1 with ∂� is uniformly rectifiable then all bounded harmonic

functions in � satisfy (full) Carleson measure estimates. The reciprocal is obtained
in [16, Theorem 1.3] and the proof uses that uniform rectifiability is equivalent to
the boundedness of the Riesz transform in L2 (cf. [32]). Here we show that with the
help of Theorem 1.1 the argument in [25] can be easily adapted to obtain such a
characterization. We would like to highlight that as a consequence of our result, we
do not need full Carleson measure estimates, that is, partial/weak Carleson measure
estimates suffice. Moreover, using some integration by parts argument from [26] and
exploiting the fact that for “good” coefficients we can invoke Theorem 1.4, one can
reduce matters to symmetric matrices and characterize the uniform rectifiability of
the boundary of an open set with an Ahlfors-David regular boundary in terms of any
of the preceding equivalent properties for a natural class of elliptic operators with
variable coefficients. We would like to emphasize that our result extends [26], where
the Harnack chain condition was assumed, and, more notably, improves [5], where
the authors need a control of the oscillation of the matrix in points that might be in
different connected components (in our case the oscillations are always in a connected
component of the set).

Theorem 1.6 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary satisfying the corkscrew condition, and let ω be the associated harmonic
measure. Then ∂� is uniformly rectifiable if and only if ω admits a (strong) corona
decomposition. Moreover any of the previous conditions is equivalent to the fact that
G, the associated Green function, is comparable to the distance to the boundary in
the corona sense and/or all bounded harmonic functions satisfy partial/weak (or full)
Carleson measure estimates.

Furthermore, the same equivalences hold for real (not necessarily symmetric) uni-
formly elliptic operators Lu = − div(A∇u) with A satisfying one of the following
conditions:
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(a) A ∈ Liploc(�),
∥
∥|∇A| δ(·)∥∥L∞(�)

< ∞ where δ(·) = dist(·, ∂�), and

sup
x∈∂�

0<r<diam(∂�)

1

σ(B(x, r) ∩ ∂�)

¨
B(x,r)∩�

|∇A(X)|dX < ∞. (1.7)

(b) A satisfies

sup
x∈∂�

0<r<diam(∂�)

1

σ(B(x, r) ∩ ∂�)

¨
B(x,r)∩�

osc(A, X)

δ(X)
dX < ∞, (1.8)

where osc(A, X) := sup
Y ,Z∈B(X ,δ(X)/2)

|A(Y ) − A(Z)|, for X ∈ �.

(c) A is a Fefferman-Kenig-Pipher perturbation (c.f. (1.3)) of the Laplacian or more
generally any of the operators in (a) or (b).

Let us mention that in the previous result the corkscrew condition cannot be
removed, see Remark 5.17 below.

Our last result studies the relationship between the corona decomposition associated
with ωL and the A∞ or weak-A∞ properties. Under strong connectivity, that is, in
1-sided chord-arc domains (see Sect. 6), these notions turn out to be equivalent and,
in view of [9, Theorem 1.1], we conclude that full and partial/weak Carleson measure
estimates are equivalent properties.

Theorem 1.9 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary satisfying the corkscrew condition and let Lu = − div(A∇u) be a real (not
necessarily symmetric) uniformly elliptic operator.

(i) If ωL ∈ Aweak∞ (σ ) (cf. Sect. 6) then ωL admits a (strong) corona decomposition.
As a result (c) and (d) in Theorem 1.1 hold.

(ii) If � is a 1-sided CAD (cf. Sect. 6), then following are equivalent:

(a) ωL ∈ A∞(σ ) (cf. Sect. 6).
(b) ωL admits a (strong) corona decomposition
(c) GL is comparable to the distance to the boundary in the corona sense.
(d) L satisfies partial/weak Carleson measure estimates.
(e) L satisfies full Carleson measure estimates (cf. Definition 2.17).

(iii) Let � be a 1-sided CAD and let L be the Laplacian; or a Kenig-Pipher operator,
that is, an operator as in Theorem 1.6 part (a) but where (1.7) is relaxed by
replacing |∇A| by |∇A|2δ(·); or an operator as in Theorem 1.6 part (b) but
where (1.8) is relaxed by replacing osc(A, ·) by osc(A, ·)2; or a Fefferman–
Kenig–Pipher perturbation of one of the previous operators. Then any of the
conditions (a)–(e) is equivalent to the fact that � is a CAD or ∂� is uniformly
rectifiable.

Wewould like to observe that in (iii) abovewe show that uniform rectifiability of the
boundary can be expressed in terms of the fact that the Green function is comparable
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to the distance to the boundary. This result should be compared with [12] where the
authors compare the Green function with the distance to an n-dimensional hyperplane.

The paper is organized as follows. In Sect. 2, we present some preliminaries, defi-
nitions, and some background results that will be used throughout the paper. Section3
is devoted to proving our main result, Theorem 1.1. In Sect. 4 we prove Theorems 1.2
and 1.4. These results turn out to be particular cases of a more general result, Theo-
rem 4.1, which is interesting on its own right. The proof of Theorem 1.6 is given in
Sect. 5, where the argument is just sketched because our results allow us to reduce
matters to an argument essentially contained in [25]. Finally, in Sect. 6 we obtain The-
orem 1.9, where for part (ii) the open set satisfies the Harnack chain condition, in
which case “the change of pole formula” is at our disposal.

2 Preliminaries

2.1 Notation and definitions

• Our ambient space is R
n+1, n ≥ 2.

• We use the letters c, C to denote harmless positive constants, not necessarily
the same at each occurrence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems (which we refer to as the “allowable
parameters”). We shall also sometimes write a � b and a ≈ b to mean, respec-
tively, that a ≤ Cb and 0 < c ≤ a/b ≤ C , where the constants c and C are
as above, unless explicitly noted to the contrary. Moreover, if c and C depend on
some given parameter η, which is somehow relevant, we write a �η b and a ≈η b.
At times, we shall designate by M a particular constant whose value will remain
unchanged throughout the proof of a given lemma or proposition, but which may
have a different value during the proof of a different lemma or proposition.

• Given E ⊂ R
n+1 we write diam(E) = supx,y∈E |x − y| to denote its diameter.

• Given an open set� ⊂ R
n+1, we shall use lower case letters x, y, z, etc., to denote

points on ∂�, and capital letters X ,Y , Z , etc., to denote generic points in R
n+1

(especially those in �).
• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on ∂�, or B(X , r) when the center X ∈ R

n+1\∂�. A
“surface ball” is denoted 
(x, r) := B(x, r)∩∂�, and unless otherwise specified
it is implicitly assumed that x ∈ ∂�. Also if ∂� is bounded, we typically assume
that 0 < r � diam(∂�), so that 
 = ∂� if diam(∂�) < r � diam(∂�).

• Given a Euclidean ball B or surface ball 
, its radius will be denoted by rB or r

respectively.

• Given a Euclidean ball B = B(X , r) or a surface ball 
 = 
(x, r), its concentric
dilate by a factor of κ > 0 will be denoted by κB = B(X , κr) or κ
 = 
(x, κr).

• For X ∈ R
n+1, we set δ(X) := dist(X , ∂�).

• We let Hn denote the n-dimensional Hausdorff measure, and let σ := Hn|∂�

denote the surface measure on ∂�.
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• For a Borel set A ⊂ R
n+1, we let int(A) denote the interior of A, and A denote the

closure of A. If A ⊂ ∂�, int(A) will denote the relative interior, i.e., the largest
relatively open set in ∂� contained in A. Thus, for A ⊂ ∂�, the boundary is then
well defined by ∂A := A\ int(A).

• For a Borel set A ⊂ ∂� with 0 < σ(A) < ∞, we write
ffl
A f dσ :=

σ(A)−1
´
A f dσ .

• We shall use the letter I (and sometimes J ) to denote a closed (n+1)-dimensional
Euclidean cube with sides parallel to the coordinate axes, and we let �(I ) denote
the side length of I . We use Q to denote dyadic “cubes” on ∂�. The latter exist,
given that ∂� is Ahlfors-David regular (see [13], [10], and enjoy certain properties
which we enumerate in Lemma 2.19 below).

• We will use the symbol
⊔

to denote a union comprised of pairwise disjoint sets.

Definition 2.1 (Ahlfors–David regular) We say that a closed set E ⊂ R
n+1 is n-

dimensional Ahlfors-David regular (or simply ADR) if there is some uniform constant
C ≥ 1 such that

C−1rn ≤ Hn(E ∩ B(x, r)) ≤ Crn, ∀ x ∈ E, r ∈ (0, 2 diam(E)).

Definition 2.2 (Uniformly Rectifiable) A set E ⊂ R
n+1 is uniformly rectifiable (or

simply UR) if it is ADR and has big pieces of Lipschitz images of R
n (BPLI for

short). The latter means that there exist θ, M > 0 such that for every x ∈ E and
r ∈ (0, diam(E)) there is a Lipschitz mapping ρ = ρx,r : Bn(0, r) ⊂ R

n → R
n+1

with Lip(ρ) ≤ M such that

Hn(E ∩ B(x, r) ∩ ρ(Bn(0, r))) ≥ θrn .

When E = ∂�, we shall sometimes simply say that “� has theUR property" to mean
that ∂� is UR.

Definition 2.3 (Corkscrew condition) We say that an open set � ⊂ R
n+1 satisfies the

corkscrew condition if for some uniform constant c ∈ (0, 1), and for every surface
ball 
 := 
(x, r) with x ∈ ∂� and 0 < r < diam(∂�), there is a ball B(X
, cr) ⊂
B(x, r) ∩ �. The point X
 ∈ � is called a “corkscrew point” relative to 
. We
note that we may allow r < C diam(∂�) for any fixed C , simply by adjusting the
constant c.

We remark that the corkscrew condition is a quantitative, scale-invariant version of
openness.

Once we have stated our main results, we give the precise definitions of all the
previous concepts so to have a rigorous idea of what we are handling. First of all we
proceed to define what we understand by the different corona decompositions present
in Theorems 1.1 and 1.9.

Definition 2.4 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary and let D := D(∂�) denote a dyadic grid on ∂� (cf. Sect. 2.2).

• A subcollection S ⊂ D is semi-coherent if the following properties hold:
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(a) S contains a unique maximal element, denoted by Top(S), which contains all
other elements of S as subsets, that is, if Q ∈ S then Q ⊂ Top(S).

(b) If Q ∈ S and Q ⊂ Q′ ⊂ Top(S), then Q′ ∈ S.

• A subcollection S ⊂ D is coherent if it is semi-coherent and additionally satisfies
that for every Q ∈ S either all of its children belong to S, or else none of them do.

• A semi-coherent (resp. coherent) corona decomposition with constant M0 ≥ 1
is a triple (B, G, F), where B and G are two subsets of D (the “bad cubes” and
the “good cubes”) and F is a family of subsets of G which satisfy the following
conditions:

(a) D = G
⊔

B.
(b) G = ⊔

S∈F
S, where each S is semi-coherent (resp. coherent).

(c) The collection B and the family of top cubes Top(F) := {Top(S) : S ∈ F}
satisfy a Carleson packing condition:

sup
Q∈D

⎛

⎝
1

σ(Q)

∑

Q′∈B:Q′⊂Q

σ(Q′) + 1

σ(Q)

∑

Q′∈Top(F):Q′⊂Q

σ(Q′)

⎞

⎠ ≤ M0.

Let (B0, G0, F0) be a semi-coherent corona decomposition with constant M0 ≥ 1.
As observed in [14, pp. 56–57], there exists a different partition F1 of G0 such that
(B0, G0, F1) is a coherent corona decomposition with constant M1 ≥ 1 depending on
n, Ahlfors-David regularity, and M0; and, additionally, for every S ∈ F1, there exists
S′ ∈ F0 such that S ⊂ S′.

Given N ≥ 0 we say that two cubes Q1, Q2 ∈ D are 2N -close if

2−N �(Q1) ≤ �(Q2) ≤ 2N �(Q1), dist(Q1, Q2) ≤ 2N (�(Q1) + �(Q2)).

With this definition in mind, for every N ≥ 0 we can invoke [14, Lemma 3.26] to find
a new coherent corona decomposition (B, G, F) (depending on N ) so that for every
S ∈ F there exists S′ ∈ F1 such that

S ⊂
⋃

Q∈S

{

Q′ ∈ D : Q and Q′are 2N -close
} ⊂ S′.

Moreover, the associated constant for the new corona decomposition depends on n,
Ahlfors-David regularity, N , and M1. Putting everything together one has the follow-
ing:

Lemma 2.5 Let (B0, G0, F0) be a semi-coherent corona decomposition with constant
M0 ≥ 1. For every N ≥ 0, there exists a coherent corona decomposition (B, G, F)

(depending on N), called the 2N -refinement of (B0, G0, F0), such that the associated
constant depends on n, Ahlfors-David regularity, N , and M0; and, moreover, for every
S ∈ F there exists S′ ∈ F0 such that

S ⊂ S(N ) :=
⋃

Q∈S

{

Q′ ∈ D : Q and Q′ are 2N -close
} ⊂ S′.
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Definition 2.6 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary satisfying the corkscrew condition, and let Lu = − div(A∇u) be a real
(non-necessarily symmetric) uniformly elliptic operator. Denote by ωL and GL the
associated elliptic measure and the Green function respectively. Let D := D(∂�)

denote a dyadic grid on ∂�.

(i) We say that ωL admits a (coherent/semi-coherent) strong corona decomposition
if there exists a (coherent/semi-coherent) corona decomposition (B, G, F) such
that for each S ∈ F there exist QS ∈ D and XS ∈ � with

Top(S) ⊂ QS, δ(XS) ≈ �(QS) ≈ dist(XS, QS), (2.7)

and

ω
XS
L (QS)

σ (QS)
�

ω
XS
L (Q)

σ (Q)
�

(  
Q
(Mω

XS
L )

1
2 dσ

)2

�
ω
XS
L (QS)

σ (QS)
, ∀Q ∈ S.

(2.8)

(ii) We say thatωL admits a (coherent/semi-coherent) corona decomposition if there
exists a (coherent/semi-coherent) corona decomposition (B, G, F) such that for
each S ∈ F there exist QS ∈ D and XS ∈ � with

Top(S) ⊂ QS, δ(XS) ≈ �(QS) ≈ dist(XS, QS), (2.9)

and

ω
XS
L (QS)

σ (QS)
�

ω
XS
L (Q)

σ (Q)
�

ω
XS
L (2
̃Q)

σ (2
̃Q)
�

ω
XS
L (QS)

σ (QS)
, ∀Q ∈ S (2.10)

(see (2.21) for the definition of 
̃Q).
(iii) We say thatGL is comparable to the distance to the boundary in the corona sense

if there exists a (coherent/semi-coherent) corona decomposition (B, G, F) such
that for each S ∈ F there exist �S > 0, QS ∈ D, and XS ∈ � with

Top(S) ⊂ QS, δ(XS) ≥ 4��(QS), dist(XS, QS) � �(QS),

(2.11)

and

sup
X∈2 B̃Q∩�

δ(X)≥c �(Q)

GL(XS, X)

δ(X)
≈ �S, ∀Q ∈ S, (2.12)

for some c ∈ (0, 1
2 ) (see (2.21) for the meaning of B̃Q and the parameter �).

In the previous conditions it is understood that the implicit constants are all uniform,
that is, the same constant in each estimate is valid for all Q ∈ S and for all S ∈ F.
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Remark 2.13 In the previous definitions, we may always assume that the corona
decompositions are formed by coherent subregimes. As a matter of fact, if (B, G, F)

is a semi-coherent corona decomposition with constant M0 as in (i) (the cases (ii) and
(iii) are treated identically) we can invoke [14, pp. 56–57], to see that there is a dif-
ferent partition F

′ of G such that (B, G, F
′) is a coherent corona decomposition with

constant M1 ≥ 1 depending on n, Ahlfors-David regularity, and M0; and, additionally,
for every S ∈ F

′, there exists Ŝ ∈ F such that S ⊂ Ŝ. Then, given S ∈ F
′, we take

Ŝ ∈ F such that S ⊂ Ŝ. Set QS := QŜ and XS := X Ŝ. Since S ⊂ Ŝ we have that
Top(S) ⊂ Top(̂S) ⊂ QŜ = QS and the other two conditions in (2.7) follow automati-
cally by construction. The same occurs with (2.8), which holds for the cubes in Ŝ, thus
for those in S. This shows that ωL admits a coherent strong corona decomposition.

The same can be done with (ii) and (iii) (details are left to the interested reader),
hence from now on in the previous definitions we will drop the adjective “coherent”
or “semi-coherent”, with the understanding that, if needed, the corona decomposition
we start with can be formed by coherent subregimes.

Remark 2.14 One can also refine the corona decompositions in the previous definitions
so that the required conditions not only hold for the cubes in the good sub-regimes but
also in all the nearby cubes.More precisely, let (B0, G0, F0)be a corona decomposition
with constant M0 as in (ii) (the cases (i) and (iii) are treated identically). Taking into
account Lemma 2.5 for every N ≥ 0 we can then find (B, G, F), the 2N -refinement
of (B0, G0, F0), which is a coherent corona decomposition with associated constant
depending on n, Ahlfors-David regularity, M0, and N . Moreover, for every S ∈ F

there exists S′ ∈ F0 such that S ⊂ S(N ) ⊂ S′. Set QS := QS′ and XS := XS′ . Write
Q(N ) for the N -th dyadic ancestor of Q (that is the unique dyadic cube containing
Q and with sidelenth 2N�(Q)). It is clear that Top(S)(N ) and Top(S) are 2N -close.
Hence, Top(S)(N ) ∈ S(N ) ⊂ S′ and Top(S) ⊂ Top(S)(N ) ⊂ Top(S′) ⊂ QS′ = QS.
The other two conditions in (2.9) follow by construction and we have

Top(S) ⊂ Top(S)(N ) ⊂ QS, δ(XS) ≈ �(QS) ≈ dist(XS, QS),

Finally, since S(N ) ⊂ S′ and by construction QS = QS′ and XS = XS′ , we have

ω
XS
L (QS)

σ (QS)
�

ω
XS
L (Q)

σ (Q)
�

ω
XS
L (2
̃Q)

σ (2
̃Q)
�

ω
XS
L (QS)

σ (QS)
, ∀ Q ∈ S(N ).

This means that we can refine the initial corona decomposition so that for every new
good sub-regime S the desired property holds for every Q ∈ S(N ), that is, for all the
cubes that are N -close to the ones in S. Also, �(Top(S)) ≤ 2−N �(QS). Of course the
same can be done with the other two definitions, the precise statements are left to the
interested reader.

Remark 2.15 The readermaywonder whether in (i), (ii), or (iii) it would have been rea-
sonable or convenient to impose Bourgain’s estimate for the family of poles {XS}S∈F,
that is, whether for each S ∈ F one would have needed to assume ω

XS
L (QS) � 1.

As we will show below, see Remark 3.43, at the cost of possibly changing the given
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corona decomposition, we may always assume (in each of the items in the definition)
that ωXS

L (QS) � 1 for every S ∈ F.

Remark 2.16 Wewould like to emphasize that from the proof of Theorem1.1 it follows
that assuming any of the conditions (a)-(d) (hence, all of them), then one gets an
explicit expression for the parameter �S in (iii), indeed the argument reveals that
�S = ω

XS
L (QS)/σ (QS).

Definition 2.17 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary satisfying the corkscrew condition, and let Lu = − div(A∇u) be a real
(non-necessarily symmetric) uniformly elliptic operator. Let D := D(∂�) denote a
dyadic grid on ∂�.

(i) We say that L satisfies full Carleson measure estimates if

sup
x∈∂�

0<r<∞

1

rn

¨
B(x,r)∩�

|∇u(X)|2δ(X) dX � ‖u‖2L∞(�),

for every bounded weak solution u ∈ W 1,2
loc (�) ∩ L∞(�) of Lu = 0 in �.

(ii) We say that L satisfies partial/weak Carleson measure estimates (with parameter
τ ∈ (0, 1

2 ))
1 if for every Q ∈ D there exists PQ ∈ � with δ(PQ) ≈ �(Q) ≈

dist(PQ, Q) such that

sup
Q0∈D

1

σ(Q0)

∑

Q∈DQ0

¨
B(PQ ,(1−τ)δ(PQ))

|∇u(X)|2δ(X) dX �τ ‖u‖2L∞(�),

for every bounded weak solution u ∈ W 1,2
loc (�) ∩ L∞(�) of Lu = 0 in �.

Remark 2.18 Much as in Remark 2.15, at the cost of possibly changing the collection

of points {PQ}Q∈D, we may always assume that ω
PQ
L (Q) � 1 for every Q ∈ D, see

Remark 3.43.

2.2 Dyadic grids and sawtooths

We give a lemma concerning the existence of a “dyadic grid”, which was proved in
[10, 13, 14].

Lemma 2.19 Suppose that E ⊂ R
n+1 is an n-dimensional ADR set. Then there exist

constants C1 ≥ 1 and γ > 0 depending only on n and the ADR constant such that,
for each k ∈ Z, there is a collection of Borel sets (cubes)

Dk = {Qk
j ⊂ E : j ∈ Jk}

1 Regarding Theorem 1.1, in (c) �⇒ (d) we actually show that partial/weak Carleson measure estimates
hold for every τ ∈ (0, 1

2 ), and for (d) �⇒ (a) one just needs some fixed τ , provided it is small enough
depending on n, Ahlfors-David regularity, and ellipticity, namely, 0 < τ < τ0 with τ0 from Lemma 2.38. In
turn, Theorem 1.1 shows a posteriori that partial/weak Carlesonmeasure estimates for some fixed parameter
τ1 implies the same property for all values of τ provided τ1 is sufficiently small depending on the allowable
parameters.
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where Jk denotes some (possibly finite) index set depending on k, satisfying:

(a) E = ⋃

j Q
k
j , for each k ∈ Z.

(b) If m ≤ k, then either Qk
i ⊂ Qm

j or Qk
i ∩ Qm

j = ∅.
(c) For each k ∈ Z, j ∈ Jk , and each m < k, there is a unique i ∈ Jk such that

Qk
j ⊂ Qm

i .

(d) For each k ∈ Z, j ∈ Jk , there is xkj ∈ E such that

B(xkj ,C
−1
1 2−k) ∩ E ⊂ Qk

j ⊂ B(xkj ,C12
−k) ∩ E .

(e) Hn({x ∈ Qk
j : dist(x, E\Qk

j ) ≤ 2−kτ }) ≤ C1τ
γHn(Qk

j ) for all k ∈ Z, j ∈ Jk ,
and τ ∈ (0, 1).

A few remarks are in order concerning this lemma.

• In the setting of a general space of homogeneous type, this lemma has been proved
byChrist [10],with the dyadic parameter 1/2 replaced by some constant δ ∈ (0, 1).
In fact, one may always take δ = 1/2 (cf. [27, Proof of Proposition 2.12]). In the
presence of the Ahlfors-David property, the result already appears in [13, 14].

• Since in the present scenario we have that diam(
(x, r)) ≈ r we clearly have
that if E is bounded and k ∈ Z is such that diam(E) < C1 2−k , then there cannot
be two distinct cubes in Dk . Thus, Dk = {Qk} with Qk = E . Therefore, for our
purposes, we may ignore those k ∈ Z such that 2−k � diam(E), in the case that
the latter is finite. Hence, we shall denote by D(E) the collection of all relevant
Qk

j , i.e.,

D(E) :=
⋃

k∈Z

Dk,

where, if diam(E) is finite, the union runs over k ≥ −k0 with 2k0 ≈ diam(E) and
there exits Q ∈ D−k0 so that E = Q.

• For a dyadic cube Q ∈ Dk , we shall set �(Q) = 2−k , and we shall refer to this
quantity as the “length” of Q. Evidently, �(Q) ≈ diam(Q). We set k(Q) = k to
be the dyadic generation to which Q belongs if Q ∈ Dk ; thus, �(Q) = 2−k(Q).
One can easily see that if Q ∈ Dk and Q′ ∈ Dk′ with Q � Q′ then necessarily
k′ < k. However, it is possible to have two cubes Q ∈ Dk and Q′ ∈ Dk′ , such
that k �= k′ and Q = Q′. In that case the ADR condition implies that k ≈ k′. To
avoid some technicalities whenever we write Q ⊂ Q′ we will understand (unless
otherwise is specified) that matters are organized so that Q ∈ Dk , Q′ ∈ Dk′ , and
k′ < k.

• Write � = 2C2
1 . Property (d) implies that for each cube Q ∈ D, there is a

point xQ ∈ E , a Euclidean ball B(xQ, rQ) and a surface ball 
(xQ, rQ) :=
B(xQ, rQ) ∩ E , with �−1�(Q) ≤ rQ ≤ �(Q) (indeed rQ = (2C1)

−1�(Q)), such
that


(xQ, 2rQ) ⊂ Q ⊂ 
(xQ, �rQ), (2.20)
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We shall write

BQ := B(xQ, rQ), 
Q := 
(xQ, rQ),

B̃Q := B(xQ, �rQ), 
̃Q := 
(xQ, �rQ),
(2.21)

and we shall refer to the point xQ as the “center” of Q.
• Let Q ∈ Dk and consider the family of its dyadic children {Q′ ∈ Dk+1 : Q′ ⊂ Q}.
Note that for any two distinct children Q′, Q′′, one has |xQ′ −xQ′′ | ≥ rQ′ = rQ′′ =
rQ/2, otherwise xQ′′ ∈ Q′′∩
Q′ ⊂ Q′′∩Q′, contradicting the fact that Q′ and Q′′
are disjoint. Also xQ′ , xQ′′ ∈ Q ⊂ 
(xQ, rQ), hence by the geometric doubling
property we have a purely dimensional bound for the number of such xQ′ and
hence the number of dyadic children of a given dyadic cube is uniformly bounded.

We next introduce the notation of “Carleson region” and “discretized sawtooth”
from [22, Section 3]. Given a dyadic cube Q ∈ D(E), the “discretized Carleson
region” DQ relative to Q is defined by

DQ := {Q′ ∈ D(E) : Q′ ⊂ Q}.

LetF = {Q j } ⊂ D(E) be a family of pairwise disjoint cubes. The “global discretized
sawtooth” relative to F is the collection of cubes Q ∈ D(E) that are not contained in
any Q j ∈ F, that is,

DF := D(E)\
⋃

Q j∈F
DQ j .

For a given cube Q ∈ D(E), we define the “local discretized sawtooth” relative to F
as the collection of cubes inDQ that are not contained in any Q j ∈ F or, equivalently,

DF,Q := DQ\
⋃

Q j∈F
DQ j = DF ∩ DQ .

We also introduce the “geometric” Carleson regions and sawtooths. In the sequel,
� ⊂ R

n+1, n ≥ 2, is an open set with ADR boundary and satisfying the corkscrew
condition. Given Q ∈ D := D(∂�), we define the “corkscrew point relative to Q” as
XQ := X
Q . We then note that

δ(XQ) ≈ dist(XQ, Q) ≈ diam(Q).

Our next goal is to define some associated regions which inherit the good properties
of �. Let W = W(�) denote a collection of (closed) dyadic Whitney cubes of �,
so that the cubes in W form a covering of � with non-overlapping interiors, which
satisfy

4 diam(I ) ≤ dist(4I , ∂�) ≤ dist(I , ∂�) ≤ 40 diam(I ), ∀ I ∈ W,
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and also

(1/4) diam(I1) ≤ diam(I2) ≤ 4 diam(I1), whenever I1 and I2 touch.

Let X(I ) be the center of I and �(I ) denote the sidelength of I .
Given 0 < λ < 1 and I ∈ W, we write I ∗ = (1 + λ)I for the “fattening” of I . By

taking λ small enough, we can arrange matters, so that for any I , J ∈ W,

dist(I ∗, J ∗) ≈ dist(I , J ),

int(I ∗) ∩ int(J ∗) �= ∅ ⇐⇒ ∂ I ∩ ∂ J �= ∅.

(The fattening thus ensures overlap of I ∗ and J ∗ for any pair I , J ∈ W whose
boundaries touch, so that the Harnack chain property then holds locally, with constants
depending upon λ, in I ∗ ∩ J ∗.) By choosing λ sufficiently small, say 0 < λ < λ0,
we may also suppose that there is a τ ∈ (1/2, 1) such that for distinct I , J ∈ W,
we have that τ J ∩ I ∗ = ∅. In what follows we will need to work with the dilations
I ∗∗ = (1+ 2λ)I or I ∗∗∗ = (1+ 4λ)I , and in order to ensure that the same properties
hold we further assume that 0 < λ < λ0/4.

Given ϑ ∈ N, for every cube Q ∈ D we set

Wϑ
Q := {

I ∈ W : 2−ϑ�(Q) ≤ �(I ) ≤ 2ϑ�(Q), and dist(I , Q) ≤ 2ϑ�(Q)
}

.

(2.22)

Wewill choose ϑ ≥ ϑ0, with ϑ0 ≥ 6+log2 n large enough depending on the constants
of the corkscrew condition (cf. Definition 2.3) and in the dyadic cube construction (cf.
Lemma 2.19), so that XQ ∈ I for some I ∈ Wϑ

Q , and for each dyadic child Q j of

Q, the respective corkscrew points XQ j ∈ I j for some I j ∈ Wϑ
Q . Given I ∈ W

with �(I ) � diam(∂�) and let Q∗
I be one of the nearest dyadic cubes to I so that

�(I ) = �(Q∗
I ). Clearly, dist(I , Q

∗
I ) ≤ 40

√
n + 1�(I ) = 40

√
n + 1�(Q∗

I ). Hence
I ∈ Wϑ

Q∗
I
since ϑ ≥ ϑ0.

Given Q ∈ Dwe define its associatedWhitney regionsUϑ
Q and Ûϑ

Q (not necessarily
connected) as

Uϑ
Q :=

⋃

I∈Wϑ
Q

I ∗, Uϑ,∗
Q :=

⋃

I∈Wϑ
Q

I ∗∗,

For a given Q ∈ D, the “Carleson boxes” relative to Q are defined by

T ϑ
Q := int

⎛

⎝
⋃

Q′∈DQ

Uϑ
Q′

⎞

⎠ , T ϑ,∗
Q := int

⎛

⎝
⋃

Q′∈DQ

Uϑ,∗
Q′

⎞

⎠ .
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For a given familyF = {Q j } of pairwise disjoint cubes and a given Q ∈ D, we define
the “local sawtooth regions” relative to F by

�ϑ
F,Q := int

⎛

⎝
⋃

Q′∈DF,Q

Uϑ
Q′

⎞

⎠ , �
ϑ,∗
F,Q := int

⎛

⎝
⋃

Q′∈DF,Q

Uϑ,∗
Q′

⎞

⎠ .

Following [22], one can easily see that there exist constants 0 < κ1 < 1 and
κ0 ≥ 16� (with� the constant in (2.20)), depending only on the allowable parameters
and on ϑ , so that

κ1BQ ∩ � ⊂ T ϑ
Q ⊂ T ϑ,∗

Q ⊂ T ϑ,∗∗
Q ⊂ T ϑ,∗∗

Q ⊂ κ0BQ ∩ � =: 1
2
B∗
Q ∩ �, (2.23)

where BQ is defined as in (2.21).
We recall that � is an open set with ADR boundary and this allows us to define

the open set �′ := R
n+1\∂� whose boundary is ∂�′ = ∂�. One can then proceed

as above and define the associated local sawtooth regions (�′)ϑF,Q with respect to �′
(that is, we now have some underlying Whitney decomposition for �′ which agrees
with W(�) when restricted to �). In [24, Proposition A.2] it was shown that all
(�′)ϑF,Q have ADR boundaries and the constants are uniform and depend on n, the

ADR constant of ∂�′ = ∂�, and ϑ . One can easily see that ∂�ϑ
F,Q ⊂ ∂(�′)ϑF,Q since

�ϑ
F,Q = (�′)ϑF,Q ∩�. Thus, it is trivial to obtain that all local sawtooth regions �ϑ

F,Q
have boundary satisfying the upper ADR condition (that is only the upper estimate)
albeit with bounds that are uniform and depend on n, the ADR constant of ∂�, and
ϑ . In short we have the following:

Lemma 2.24 Let � ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular

boundary satisfying the corkscrew condition. For every ϑ ≥ ϑ0, all sawtooth domains
�ϑ

F,Q and �
ϑ,∗
F,Q have upper ADR boundary (that is, they satisfy the upper bound

in Definition 2.1). Moreover, the implicit constants are uniform and depend only on
dimension, the ADR constant of ∂� and the parameter ϑ .

Lemma 2.25 Given c, τ ∈ (0, 1
2 ) there exist ϑ,C � 1 (depending on n, ADR, τ ,

and c) with the following significance: for every Q0 ∈ D, every pairwise disjoint
collection F ⊂ DQ0 , and every sequence {PQ}Q∈DF,Q0

so that PQ ∈ 2 B̃Q ∩ � with
δ(PQ) ≥ c �(Q) there hold

⋃

Q∈DF,Q0

B(PQ, (1 − τ)δ(PQ)) ⊂
⋃

Q∈DF,Q0

⋃

I∈Wϑ
Q

I ⊂ int

(
⋃

Q∈DF,Q0

Uϑ
Q

)

= �ϑ
F,Q0

.

and

∑

Q∈DF,Q0

1B(PQ ,(1−τ)δ(PQ)) ≤ C 1�ϑ
F,Q0

.
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Proof For each Q ∈ DF,Q0 write VQ := B(PQ, (1 − τ)δ(PQ)). Let I ∈ W be such
that I ∩ VQ �= ∅. Taking ZQ ∈ I ∩ VQ we note that

�(I ) ≈ δ(ZQ) ≈τ δ(PQ) ≈c �(Q),

where the implicit constants depend on τ and the parameter c, and the other allowable
parameters. Besides,

dist(I , Q) ≤ |ZQ − PQ | + |PQ − xQ | ≤ (1 − τ)δ(PQ) + 2�rQ � �(Q)

where the implicit constant depends on the allowable parameters. This means that we
can find ϑ � 1 (depending on n, ADR, τ , and c) such that I ∈ Wϑ

Q (cf. (2.22)). As a
consequence,

⋃

Q∈DF,Q0

VQ ⊂
⋃

Q∈DF,Q0

⋃

I∈W:I∩VQ �=∅
I

⊂
⋃

Q∈DF,Q0

⋃

I∈Wϑ
Q

I ⊂ int
( ⋃

Q∈DF,Q0

Uϑ
Q

)

= �ϑ
F,Q0

.

To complete the proof let X ∈ ⋃

Q∈DF,Q0
VQ and pick Q ∈ DF,Q0 so that X ∈ VQ

with Q ∈ DF,Q0 . Note that if X ∈ V ′
Q for Q′ ∈ DF,Q0 , then �(Q) ≈τ δ(X) ≈τ �(Q′)

and

dist(Q, Q′)≤|xQ − PQ |+|PQ − X |+|X − PQ′ | + |PQ′ − xQ′ | �τ �(Q) + �(Q′),

thus Q and Q′ are 2N -close with a uniform constant N depending just on n, ADR, τ ,
and c. As a result,

∑

Q′∈DF,Q0

1VQ′ (X) = #{Q′ ∈DF,Q0 : VQ′ � X} ≤ #{Q′ ∈D : Q′ and Q0 are 2
N -close}

�N1.

This completes the proof. ��
Weneed the following auxiliarywhich adapts [26, Lemma4.44] and [7, Lemma6.4]

to our current setting. The proof is the same as that of [7, Lemma 6.4] and details are
left to the interested reader.

Lemma 2.26 Let� ⊂ R
n+1, n ≥ 2, be an open set with Ahlfors-David regular bound-

ary satisfying the corkscrew condition. Given Q0 ∈ D, a pairwise disjoint collection
F ⊂ DQ0 , and M ≥ 4 let FM be the family of maximal cubes of the collection F
augmented by adding all the cubes Q ∈ DQ0 such that �(Q) ≤ 2−M�(Q0). There
exist �M ∈ C∞

c (Rn+1) and a constant C ≥ 1 depending only on dimension n, the
corkscrew and ADR constants, but independent of M,F, and Q0 such that the follow-
ing hold:
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(i) C−1 1�ϑ
FM ,Q0

≤ �M ≤ 1
�

ϑ,∗
FM ,Q0

.

(ii) supX∈� |∇�M (X)| δ(X) ≤ C.
(iii) Setting Wϑ,�

M := {

I ∈ Wϑ
M : ∃ J ∈ W\Wϑ

M with ∂ I ∩ ∂ J �= ∅}

and

Wϑ
M :=

⋃

Q∈DFM ,Q0

Wϑ
Q,

one has

∇�M ≡ 0 in
⋃

I∈Wϑ
M\Wϑ,�

M

I ∗∗,

and there exists a family {Q̂ I }I∈Wϑ,�
M

so that

C−1 �(I ) ≤ �(Q̂ I ) ≤ C �(I ), dist(I , Q̂ I ) ≤ C �(I ),
∑

I∈Wϑ,�
M

1Q̂ I
≤ C .

2.3 PDE estimates

Now we recall several facts concerning the elliptic measures and the Green functions.
For our first results we will only assume that � ⊂ R

n+1, n ≥ 2, is an open set, not
necessarily connected, with ∂� being ADR. Later we will focus on the case where �

is a 1-sided CAD.
Let Lu = − div(A∇u) be a variable coefficient second order divergence form

operator with A(X) = (ai, j (X))n+1
i, j=1 being a real (not necessarily symmetric) matrix

with ai, j ∈ L∞(�) for 1 ≤ i, j ≤ n+ 1, and A uniformly elliptic, that is, there exists
� ≥ 1 such that

�−1|ξ |2 ≤ A(X)ξ · ξ and |A(X)ξ · η| ≤ �|ξ ||η|,

for all ξ, η ∈ R
n+1 and for almost every X ∈ �.

In what follows we will only be working with this kind of operators, we will refer
to them as “elliptic operators” for the sake of simplicity. We write L
 to denote the
transpose of L , or, in other words, L
u = − div(A
∇u) with A
 being the transpose
matrix of A.

We say that a function u ∈ W 1,2
loc (�) is a weak solution of Lu = 0 in �, or that

Lu = 0 in the weak sense, if

¨
�

A(X)∇u(X) · ∇�(X) = 0, ∀� ∈ C∞
c (�).

Here and elsewhereC∞
c (�) stands for the set of compactly supported smooth functions

with all derivatives of all orders being continuous.
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Associated with the operators L and L
, one can respectively construct the elliptic
measures {ωX

L }X∈� and {ωX
L
}X∈�, and the Green functions GL and GL
 (see [21]

for full details). We next present some definitions and properties that will be used
throughout this paper.

The following lemmas can be found in [21].

Lemma 2.27 Suppose that � ⊂ R
n+1, n ≥ 2, is an open set such that ∂� is ADR.

Given an elliptic operator L, there exist C > 1 (depending only on dimension and on
the ellipticity of L) and cθ > 0 (depending on the above parameters and on θ ∈ (0, 1))
such that GL, the Green function associated with L, satisfies

GL(X ,Y ) ≤ C |X − Y |1−n; (2.28)

cθ |X − Y |1−n ≤ GL(X ,Y ), if |X − Y | ≤ θδ(X), θ ∈ (0, 1); (2.29)

GL(·,Y ) ∈ C(�\{Y }) and GL(·,Y )|∂� ≡ 0,∀Y ∈ �; (2.30)

GL(X ,Y ) ≥ 0, ∀ X ,Y ∈ �, X �= Y ; (2.31)

GL(X ,Y ) = GL
(Y , X), ∀ X ,Y ∈ �, X �= Y . (2.32)

Furthermore, GL(·, Y ) ∈ W 1,2
loc (�\{Y }) for every Y ∈ �, and satisfies LGL(·,Y ) =

δY in the weak sense in �, that is,

¨
�

A(X)∇XGL(X ,Y ) · ∇�(X)dX = �(Y ), ∀� ∈ C∞
c (�). (2.33)

Finally, the following Riesz formula holds

¨
�

A
(Y )∇Y GL
(Y , X) · ∇�(Y )dY = �(X) −
ˆ

∂�

�dωX
L , (2.34)

for a.e. X ∈ � and for every � ∈ C∞
c (Rn+1).

Lemma 2.35 Suppose that � ⊂ R
n+1, n ≥ 2, is an open set with ADR boundary.

Let L be an elliptic operator. There exists a constant C > 1 (depending only on the
dimension, the ADR constant and the ellipticity of L) such that we have the following
properties:

(a) For every x ∈ ∂� and 0 < r < diam(∂�) there holds

ωY
L (
(x, r)) ≥ 1/C, ∀Y ∈ � ∩ B(x,C−1r). (2.36)

(b) Given X ,Y ∈ � such that |X − Y | ≥ δ(Y )/2, then

GL(X ,Y )

δ(Y )
≤ C

ωX
L (
(ŷ, 2δ(Y )))

σ (
(ŷ, 2 δ(Y )))
(2.37)

with ŷ ∈ � such that |Y − ŷ| = δ(Y ).

123



Carleson measure estimates, corona decompositions. . .

(c) If 0 ≤ u ∈ W 1,2
loc (B0 ∩ �) ∩ C (B0 ∩ �) satisfies Lu = 0 in the weak-sense in

B0 ∩ � and u ≡ 0 in 
0 then

u(X) ≤ C

( |X − x0|
r0

)γ

sup
Y∈B0∩�

u(Y ), ∀X ∈ 1

2
B0 ∩ �.

Lemma 2.38 [5, Lemma 3.3] There exists a small enough parameter τ0 ∈ (0, 1
2 )

(depending on n, ADR and ellipticity) such that given 0 < τ < τ0 there exists ετ > 0
small enough (depending on the same parameters and additionally on τ ), so that for
each Q ∈ D, ε ∈ (0, ετ ], YQ ∈ 1

2 BQ ∩ � (cf. (2.21)) with δ(YQ) ≈ ε�(Q), and for
each Borel set EQ ⊂ Q satisfying

ω
YQ
L (EQ) ≥ (1 − ε) ω

YQ
L (Q),

there exists a Borel function 0 ≤ fQ � 1EQ so that

uQ(X) :=
ˆ
EQ

fQ dωX
L , X ∈ �,

satisfies uQ ∈ W 1,2
loc (�), LuQ = 0 in the weak sense in �, and

¨
B(YQ ,(1−τ)δ(YQ))

|∇uQ(X)|2 δ(X) �τ,ε σ (Q),

where the implicit constants depend on n, ADR, ellipticity, τ , and ε.

2.4 Auxiliary results

Much as in Definition 2.4, and fixed Q0 ∈ D a semi-coherent corona decomposition
relative to Q0 with constant M0 ≥ 1 is a triple (BQ0 , GQ0 , FQ0) where DQ0 =
GQ0 �BQ0 , the “good” collectionGQ0 is further subdivided so thatGQ0 = ⊔

S∈FQ0
S,

with each S being semi-coherent, and the “bad” collection BQ0 and the family of top
cubes Top(FQ0) := {Top(S) : S ∈ FQ0} satisfy the Carleson packing condition:

sup
Q∈DQ0

⎛

⎝
1

σ(Q)

∑

Q′∈BQ0∩DQ

σ(Q′) + 1

σ(Q)

∑

Q′∈Top(FQ0 )∩DQ

σ(Q′)

⎞

⎠ ≤ M0.

Proposition 2.39 Suppose that there exists M0 ≥ 1 such that for every Q ∈ D there is
(BQ, GQ, FQ), a (coherent/semi-coherent) corona decomposition relative to Q with
constant M0 ≥ 1. Then, there exists a (coherent/semi-coherent) corona decomposition
(B, G, F)with constant M0+C (whereC depends ondimension and theADRconstant)
so that it is compatible with the given ones, that is, any coherent/semi-coherent sub-
regime S ∈ F belongs to FQ for some Q ∈ D.
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Proof If ∂� is bounded, as observed above we have that D = DQ0 for some Q0 ∈ D

with �(Q0) ≈ diam(∂�). Thus, by hypothesis there exists a (coherent/semi-coherent)
corona decomposition, (BQ0 , GQ0 , FQ0), relative to Q0 and with constant M0 ≥ 1.
Thedesired conclusion follows at onceby settingG := GQ0 ,B := BQ0 , andF := FQ0 .

We are now going to deal with the case ∂� unbounded, which requires a bit more
work. Fix x0 ∈ ∂� and some Q0 ∈ D such that x0 ∈ Q0 and �(Q0) = 1. For
k ≥ 0, call Q(k)

0 ∈ D the k-th dyadic ancestor of Q0, that is Q
(k)
0 is the unique cube

in D−k containing Q0. Recall that there exists N ≥ 1 so that the number of dyadic
children of a given dyadic cube is at most N + 1. For any k ≥ 0, adding the null set if
needed, we can label the dyadic children of Q(k+1)

0 as (Q(k)
0 )0, (Q(k)

0 )1, . . . , (Q(k)
0 )N

with (Q(k)
0 )0 = Q(k)

0 . In particular, (Q(k)
0 )1, . . . , (Q(k)

0 )N are the dyadic “siblings” of

Q(k)
0 , that is, the dyadic children of Q(k+1)

0 which are not Q(k)
0 itself.

To simplify the notation, let {R j }∞j=1 be a enumeration of {(Q(k)
0 )i : k ≥ 0, 1 ≤

i ≤ N } (in this enumeration we drop the null sets that we may have added). Set also
R0 := Q0. By construction it follows easily that we have a disjoint decomposition

∞
⋃

k=0

D
Q(k)
0

=
( ∞

⊔

j=0

DR j

)
⊔

( ∞
⊔

k=1

{Q(k)
0 }

)

.

Using our hypothesis, for each R j we let (BR j , GR j , FR j ) be the associated
(coherent/semi-coherent) corona decomposition. This allows us to define a decom-
position into good and bad cubes for the full family of cubes we are considering.
Indeed, if we define

G
Q0 :=

∞
⊔

j=0

GR j and B
Q0 :=

( ∞
⊔

j=0

BR j

)
⊔

( ∞
⊔

k=1

{Q(k)
0 }

)

, (2.40)

we have

D
Q0 :=

∞
⋃

k=0

D
Q(k)
0

= G
Q0 � B

Q0 .

If we also set

F
Q0 :=

∞
⊔

j=0

FR j

we have by construction,

G
Q0 =

(
⊔

S∈F
Q0

S
)

=
∞
⊔

j=0

(
⊔

S∈FR j

S
)

where each S in the previous unions is coherent/semi-coherent.
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Fix next Q ∈ D
Q0 and note that if Q(k)

0 ⊂ Q for some k ≥ 1 then Q = Q(k0)
0 with

k ≤ k0. Hence,

∑

Q(k)
0 ⊂Q

σ(Q(k)
0 ) =

k0∑

k=1

σ(Q(k)
0 ) ≤ C σ(Q(k0)

0 )

k0∑

k=0

2(k−k0)n ≤ C σ(Q(k0)
0 ) = C σ(Q),

where C depends on n and the ADR constants. As a result, by (2.40), the Carleson
packing condition of BR j and the top cubes in FR j , and the fact that the family {R j } j
is pairwise disjoint we obtain

∑

R∈Top(FQ0 )∩DQ

σ(R) +
∑

R∈B
Q0∩DQ

σ(R)

=
∞
∑

j=0

(
∑

R∈Top(FR j )∩DQ

σ(R) +
∑

R∈BR j ∩DQ

σ(R)

)

+
∑

Q(k)
0 ⊂Q

σ(Q(k)
0 )

≤ M0

∞
∑

j=0

σ(R j ∩ Q) + C σ(Q) ≤ (M0 + C) σ (Q).

We conclude as desired that the bad cubes and the top cubes of the good subregimes
satisfy a packing condition with constant M0 + C .

To complete the proof we are going to proceed inductively. Suppose that we have
already constructed Q0, Q1, . . . , QN ∈ D so that �(Q j ) = 1 for very 1 ≤ j ≤ N ;
{DQ j }Nj=1 is a pairwise disjoint family (of families of dyadic cubes); and if we set

∂� j = ⋃∞
k=0 Q

(k)
j , one has that {∂� j }Nj=1 is a pairwise disjoint family of subsets of

∂�. Let us explain how to take the next step. If D = ⋃N
k=0 D

Qk then we stop the
construction. Otherwise, we can pick Q ∈ D\ ⋃N

k=0 D
Qk .

If �(Q) ≤ 1 let QN+1 ⊃ Q be so that �(QN+1) = 1 and note that clearly
QN+1 /∈ ⋃N

k=0 D
Qk . On the other hand, if �(Q) > 1 we select some QN+1 ⊂ Q

with �(QN+1) = 1. We claim that in this case we also have QN+1 /∈ ⋃N
k=0 D

Qk . Oth-

erwise, QN+1 ⊂ Q(i)
k for some i ≥ 0 and 0 ≤ k ≤ N . In particular, Q ∩ Q(i)

k �= ∅.
Then, either Q ⊂ Q(i)

k , in which case Q ∈ D
Qk and we have reached a contradic-

tion; or Q(i)
k � Q, in which case Q = Q(i ′)

k for some i ′ ≥ 1, and again Q ∈ D
Qk

leading to a contradiction. In either scenario we have found QN+1 /∈ ⋃N
k=0 D

Qk with
�(QN+1) = 1.

We next show that DQ j ∩D
QN+1 = ∅ for every 0 ≤ j ≤ N . Assume otherwise that

there exits Q ∈ D
Q

(k0)

j
∩D

Q
(k1)

N+1
. In particular, Q(k0)

j and Q(k1)
N+1 meet. This implies that

either Q(k0)
j ⊂ Q(k1)

N+1or Q
(k1)
N+1 � Q(k0)

j . In both cases we conclude that QN+1 ∈ D
Q j ,

a contradiction.
Set ∂�N+1 = ⋃∞

k=0 Q
(k)
N+1 and we claim that ∂� j ∩ ∂�N+1 = ∅ for every 0 ≤

j ≤ N . Indeed, if this were not the case, we could pick y ∈ Q(k0)
j ∩ Q(k1)

N+1 for some
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k0, k1 ≥ 0. Take then Q � y with �(Q) = 1. Then, Q ⊂ Q(k0)
j ∩ Q(k1)

N+1 and hence

Q ∈ D
Q j ∩ D

QN+1 , a contradiction.
The previous argument leads then to a (possible infinite) collection dyadic cubes

{Q j } j∈N such that �(Q j ) = 1 for every j ∈ N; DQ j ∩D
Q j ′ = ∅ for every j, j ′ ∈ N;

∂� j ∩ ∂� j ′ = ∅ for every j, j ′ ∈ N; and D = � j∈ND
Q j . For every j ∈ N we can

then repeat the argument above with Q j in place of Q0 to write D
Q j = G

Q j � B
Q j ,

so that G
Q j splits further into coherent/semi-coherent subregimes, and the bad cubes

and the top cubes of the good subregimes satisfy a Carleson packing condition with
constant M0 + C . To complete the proof we set G := ⊔

j∈N G
Q j , B := ⊔

j∈N B
Q j ,

and F := ⊔

j∈N F
Q j , and the reader can easily check that D = G � B, so that G

splits further into the semi-coherent subregimes in F. Observe that for any Q ∈ D

there exists a unique cube Q j with j ∈ N so that DQ ⊂ D
Q j , hence when proving

the Carleson packing we have

sup
Q∈D

(
1

σ(Q)

∑

R∈Top(F)∩DQ

σ(R) + 1

σ(Q)

∑

R∈B∩DQ

σ(R)

)

= sup
j∈N

sup
Q∈D

Q j

(
1

σ(Q)

∑

R∈Top(FQ j )∩DQ

σ(R)+ 1

σ(Q)

∑

R∈B
Q j ∩DQ

σ(R)

)

≤M0+C .

The fact that any (coherent/semi-coherent) subregime S ∈ F belongs to GQ for some
Q ∈ D is clear from the construction and this completes the proof. ��

3 Proof of Theorem 1.1

This section is devoted to showing Theorem 1.1. We will follow the scheme

(a) �⇒ (b) �⇒ (c) �⇒ (d) �⇒ (a).

Since (a) �⇒ (b) is trivial, it suffices to show the other implications.

3.1 Proof of (b) �⇒ (c):!L admits a corona decomposition implies that GL is
comparable to the distance to the boundary in the corona sense

Let (B0, G0, F0) be the assumed corona decomposition associated with ωL . Given
N ≥ 0, large enough to be chosen momentarily, we may proceed as in Remark 2.14
and pick (B, G, F) the 2N -refinement of (B0, G0, F0). Recall that this implies that for
every S ∈ F there exist QS ∈ D and XS ∈ � so that

Top(S) ⊂ Top(S)(N ) ⊂ QS, δ(XS) ≈ �(QS) ≈ dist(XS, QS),
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and

ω
XS
L (QS)

σ (QS)
�

ω
XS
L (Q)

σ (Q)
�

ω
XS
L (2
̃Q)

σ (2
̃Q)
�

ω
XS
L (QS)

σ (QS)
, ∀ Q ∈ S(N ). (3.1)

Fix S ∈ F and write

μ := σ(QS)ω
XS
L and G := σ(QS)GL(XS, ·). (3.2)

Lemma 3.3 There exists N � 1, depending on the allowable parameters and on the
implicit constants in (2.9), such that if Q ∈ S ∈ F, then there is a set EQ ⊂ {Y ∈
2B̃Q ∩ � : δ(Y ) ≥ 2−N�(Q)} with |EQ | > 0 so that

G(Y )

δ(Y )
� μ(Q)

σ (Q)
, for every Y ∈ EQ, and ‖∇G‖L∞(EQ) � μ(Q)

σ (Q)
. (3.4)

Proof We use some ideas from [25, Lemma 4.24]. Let Q ∈ S with and note that since
Q ⊂ Top(S) ⊂ Top(S)(N ) ⊂ QS it follows that �(Q) � 2−N�(QS). Let B̃Q and

̃Q be as in (2.21) so that Q ⊂ 
̃Q . Choose a cut-off function �Q ∈ C∞

c (Rn+1)

satisfying 1B̃Q
≤ �Q ≤ 1 5

4 B̃Q
and ‖∇�Q‖L∞(Rn+1) � �(Q)−1. Let N > 4 be large

enough to be chosen and note that by assumption

2N�(Q) � �(QS) ≈ δ(XS) ≤ |XS − xQ |.

Thus, taking N large enough one can guarantee that XS /∈ 4B̃Q . Then, �Q(XS) = 0,
and by (2.34),

�(Q)μ(Q) ≤ �(Q)

ˆ
∂�

�Q dμ = −�(Q)

¨
�

A
∇G · ∇�Q dX

�
¨

5
4 B̃Q∩�

|∇G|1{X∈�:δ(X)≥2−N+1�(Q)} dX

+
¨

5
4 B̃Q∩�

|∇G| 1{X :δ(X)≤2−N+1�(Q)} dX =: I + II. (3.5)

Let us first estimate II, the term close to the boundary. Picking N big enough, we have

II ≤
∑

I∈W:I⊂ 3
2 B̃Q

�(I )�2−N �(Q)

¨
I
|∇G| dX .

Given a cube I in the summation above, we take x̂ I ∈ ∂� such that |̂xI − X(I )| =
δ(X(I )). Then, assuming that N is large enough,

δ(XS) ≤ |XS − X(I )| + C �(I ) ≤ |XS − X(I )| + C 2−N+1 �(Q)
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≤ |XS − X(I )| + C 2−2 N+1 �(QS) ≤ |XS − X(I )| + 2−1 δ(XS)

and, as a result,

|XS − X(I )| ≥ 2−1δ(XS) ≈ �(QS) � 2N�(Q) � 4N �(I ) ≈ 4N δ(X(I )).

By Caccioppoli’s and Harnack’s inequalities, and Lemma 2.35 we obtain

II ≤
∑

I∈W:I⊂ 3
2 B̃Q

�(I )�2−N �(Q)

|I |
(

−
ˆ
−
ˆ
I
|∇G|2 dX

) 1
2

�
∑

I∈W:I⊂ 3
2 B̃Q

�(I )�2−N �(Q)

�(I )n
(

−
ˆ
−
ˆ
I ∗

|G|2 dX

) 1
2

≈
∑

I∈W:I⊂ 3
2 B̃Q

�(I )�2−N �(Q)

�(I )nG(X(I )) �
∑

I∈W:I⊂ 3
2 B̃Q

�(I )�2−N �(Q)

�(I ) μ(
(̂xI , 2δ(X(I )))).

To proceed, we observe that the family {
(̂xI , 2δ(X(I )))) : I ∈ W, �(I ) = 2−k�(Q)}
has bounded overlap, and that each such surface ball is contained in 2
̃Q provided N
is large enough, I ⊂ 3

2 B̃Q , and k � N . Thus, it follows from the corona for ωL (more
precisely from (3.1) and the fact that S ⊂ S(N )) and the ADR property that

II �
∑

k�N

2−k�(Q)
∑

I∈W:I⊂ 3
2 B̃Q

�(I )=2−k�(Q)

μ(
(̂xI , 2δ(X(I ))))

�
∑

k�N

2−k�(Q) μ

⎛

⎜
⎜
⎜
⎜
⎝

⋃

I∈W:I⊂ 3
2 B̃Q

�(I )=2−k�(Q)


(̂xI , 2δ(X(I ))))

⎞

⎟
⎟
⎟
⎟
⎠

≤
∑

k�N

2−k�(Q) μ(2
̃Q) � 2−N�(Q) μ(2
̃Q) ≤ 1

2
�(Q)μ(Q),

provided N is large enough. As a result, in (3.5) we can hide II to arrive at

1

2
�(Q)μ(Q) ≤ I =

¨
5
4 B̃Q∩{X∈�:δ(X)≥2−N+1�(Q)}

|∇G| dX .

Cover 5
4 B̃Q with a family of balls {Bk}Kk=1 with Bk = B(Xk, 2−N−1 �(Q)), Xk ∈ B̃Q ,

and where K is uniformly bounded and depends on n, ADR, and N . Then,

1

2
�(Q)μ(Q) ≤ I ≤

K
∑

k=1

¨
Bk∩{X∈�:δ(X)≥2−N+1�(Q)}

|∇G| dX
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�N max
1≤k≤K

¨
Bk∩{X∈�:δ(X)≥2−N+1�(Q)}

|∇G| dX .

Take 1 ≤ kQ ≤ K such that the maximum is attained. Set EQ := BkQ ∩ {X ∈ � :
δ(X) ≥ 2−N+1�(Q)} and note that

1

2
�(Q)μ(Q) �N

¨
EQ

|∇G| dX � (2−N �(Q))n+1‖∇G‖L∞(EQ)

� �(Q)σ (Q)‖∇G‖L∞(EQ).

This gives that |EQ | > 0 and the second estimate in (3.4). Moreover, for any Y ∈ EQ

δ(Y ) ≤ |Y − xQ | ≤ |Y − XkQ | + |XkQ − xQ | < 2−N−1�(Q) + 5

4
r(B̃Q)

<
3

4
�rQ + 5

4
r(B̃Q) = 2r(B̃Q).

Consequently, Y ∈ 2B̃Q ∩ � and 2−N+1�(Q) ≤ δ(Y ) � �(Q). Note also that if
X ∈ EQ , then

|X − Y | < 2−N�(Q) ≤ δ(Y )/2.

As a result,

�(Q)μ(Q) �N

¨
EQ

|∇G| dX �N �(Q)
n+1
2

(¨
B(Y ,δ(Y )/2)

|∇G|2 dX
) 1

2

� �(Q)
n−1
2

(¨
B(Y ,3δ(Y )/4)

|G|2 dX
) 1

2 ≈ σ(Q)G(Y ), (3.6)

where we have used Caccioppoli’s and Harnack’s inequalities. This readily leads to
the desired estimate completing the proof. ��

Remark 3.7 We need to make the following observation which will be used below to
obtain Theorem 1.6. In the previous proof the fact that (B, G, F) is the 2N -refinement
of (B0, G0, F0) has been only used at the very beginning to make sure that �(Q) �
2−N�(QS). This means that one can state a version of Lemma 3.3 for the original
corona decomposition (B0, G0, F0) as follows: Fixed S ∈ F0 and defining μ and G
as in (3.2), there exists N � 1, depending on the allowable parameters and on the
implicit constants in (2.9), such that if Q ∈ S ∈ F with �(Q) ≤ 2−N �(Top(S)), then
(3.4) holds. Details are left to the interested reader.

We are now ready to continue with the proof. Apply Lemma 3.3 with N large
enough. For Q ∈ S, we have |EQ | > 0, thus there exists YQ ∈ EQ . On account of the
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normalization introduced in (3.2), we then obtain

sup
X∈2B̃Q∩�

δ(X)≥2−N �(Q)

GL(XS, X)

δ(X)
≥ GL(XS,YQ)

δ(YQ)
= 1

σ(QS)

G(YQ)

δ(YQ)

� 1

σ(QS)

μ(Q)

σ (Q)
= ω

XS
L (Q)

σ (Q)
≈ ω

XS
L (QS)

σ (QS)
,

We next establish the converse inequality. Fix X ∈ 2B̃Q ∩� with δ(X) � �(Q). Note
that by (2.21)

δ(X) ≤ 2� rQ ≤ 2� �(Q) � 2−N � �(QS) ≈ 2−N � δ(XS) < 2−1 δ(XS),

provided N is large enough, and

2δ(X) < δ(XS) ≤ |XS − X | + δ(X).

Hence, |XS − X | > δ(X). Invoking then (2.37),

GL(XS, X)

δ(X)
�

ω
XS
L (
(̂x, 2 δ(X)))

δ(X)n
, (3.8)

where x̂ ∈ ∂� is such that |X − x̂ | = δ(X). For any y ∈ 
(̂x, 2 δ(X)) we observe
that

|y − xQ | ≤ |y − x̂ | + |̂x − X | + |X − xQ | ≤ 3δ(X) + |X − xQ |
≤ 4|X − xQ | ≤ 8�rQ,

hence 
(̂x, 2 δ(X)) ⊂ 8
̃Q . Also, if z ∈ 8
̃Q , recalling that we write Q(N ) for the
N -th dyadic ancestor of Q (that is the unique dyadic cube containing Q and with
sidelength 2N�(Q)), we have

|z − xQ(N ) | ≤ |z − xQ | + |xQ − xQ(N ) | ≤ 8�rQ + � rQ(N ) < 2� rQ(N ) ,

provided N ≥ 3, since rQ = 2−NrQ(N ) . Altogether,


(̂x, 2δ(X)) ⊂ 8
̃Q ⊂ 2
̃Q(N ) . (3.9)

Note that Q ∈ S and Q(N ) are 2N -close, hence Q(N ) ∈ S(N ). Thus, we can invoke
(3.8), (3.9), and (3.1) to conclude that

GL(XS, X)

δ(X)
�

ω
XS
L (2
̃Q(N ) )

δ(X)n
≈ ω

XS
L (2
̃Q(N ) )

σ (2
̃Q(N ) )
�

ω
XS
L (QS)

σ (QS)
.

This completes the proof of the current implication, with �S := ω
XS
L (QS)/σ (QS). ��
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3.2 Proof of (c) �⇒ (d): GL is comparable to the distance to the boundary in the
corona sense implies that L satisfies partial/weak Carlesonmeasure estimates

Let u ∈ L∞(�) be a non-trivial weak solution of Lu = − div(A∇u) = 0 in �. By
homogeneity, we may assume that ‖u‖L∞(�) = 1. Fix also τ ∈ (0, 1

2 ), the parameter
which appears in the partial/weak Carleson measure estimate (see Definition 2.17).
Assume that (B0, G0, F0) is the assumed corona decomposition associated with GL .
Let N ≥ 0 be large enough to be chosen momentarily (depending on τ ). We may
proceed as in Remark 2.14 and pick (B, G, F) the 2N -refinement of (B0, G0, F0).
This implies that for every S ∈ F there exist �S > 0, QS ∈ D, and XS ∈ � so that

Top(S) ⊂ Top(S)(N ) ⊂ QS, δ(XS) ≥ 4��(QS), dist(XS, QS) � �(QS),

(3.10)

and

sup
X∈2 B̃Q∩�

δ(X)≥c0 �(Q)

GL(XS, X)

δ(X)
≈ �S, ∀Q ∈ S(N ), (3.11)

for some c0 ∈ (0, 1
2 ). Write GS := GL(XS, ·). For each Q ∈ S ⊂ S(N ), we can find

PQ ∈ 2 B̃Q ∩ � with δ(PQ) ≥ c0�(Q) such that by (3.11) and Harnack’s inequality
there holds

�S � GS(PQ)

δ(PQ)
≈τ

GS(X)

δ(X)
, ∀X ∈ VQ := B(PQ, (1 − τ)δ(PQ)). (3.12)

This defines PQ for every Q ∈ G = ⊔

S∈F
S. On the other hand, given Q ∈

B = D\G we let PQ := XQ be the corkscrew point relative to Q, in particular,
XQ ∈ BQ ∩ � ⊂ 2 B̃Q ∩ � with δ(PQ) � �(Q). Set next

αQ :=
¨

VQ

|∇u(X)|2δ(X) dX , Q ∈ D,

and note that by Caccioppoli’s inequality

αQ � δ(PQ)

¨
VQ

|∇u(X)|2dX �τ δ(PQ)−1
¨

B(PQ ,(1−τ/2)δ(PQ))

|u(X)|2dX
� δ(PQ)n ≈ �(Q)n ≈ σ(Q). (3.13)

We first claim that

sup
S∈F,Q∈S

1

σ(Q)

∑

Q′∈S∩DQ

αQ′ � 1. (3.14)
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Assuming this momentarily let us continue as follows. Introduce some notation: if
Q0 ∈ G we define SQ0 to be the unique S ∈ F so that Q0 ∈ S, otherwise, if Q0 ∈ B

then we set SQ0 = ∅. We first see that

DQ0 ∩ G =
(

⋃

S∈F:Top(S)�Q0

S
)

⋃ (

SQ0 ∩ DQ0

)

. (3.15)

Indeed, let Q ∈ DQ0 ∩G, then Q ∈ S for some S ∈ F. In particular Q ⊂ Top(S)∩Q0.
If Top(S) � Q0, then Q in the first set of the right hand side of the last expression.
Otherwise, if Q0 ⊂ Top(S), then S � Q ⊂ Q0 ⊂ Top(S) and the semi-coherency of
S implies that Q0 ∈ S ⊂ G, hence, necessarily S = SQ0 and Q ∈ SQ0 ∩ DQ0 . Once
(3.15) has been shown, we see that (3.13) and (3.14) yield

∑

Q∈DQ0

αQ =
∑

Q∈B∩DQ0

αQ +
∑

Q∈G∩DQ0

αQ

≤
∑

Q∈B∩DQ0

αQ +
∑

S∈F:Top(S)�Q0

∑

Q∈S
αQ +

∑

Q∈SQ0∩DQ0

αQ

�
∑

Q∈B∩DQ0

σ(Q) +
∑

S∈F:Top(S)�Q0

σ(Top(S)) + σ(Q0)

≤
∑

Q∈B∩DQ0

σ(Q) +
∑

Q∈Top(F)∩DQ0

σ(Q) + σ(Q0)

� σ(Q0), (3.16)

where in the last estimate we have used that the families B and Top(F) satisfy a
Carleson packing condition. Since Q0 ∈ D is arbitrary this allows us to obtain our
desired estimate modulo our claim (3.14) which we prove next.

To see (3.14) we fix S ∈ F and Q0 ∈ S, in particular S∩DQ0 �= ∅. Set S′ := S∩DQ0

which is clearly semi-coherentwithTop(S′) = Q0. IntroduceF, the family ofmaximal
dyadic cubes (hence, pairwise disjoint) in DQ0\S′. We claim that DF,Q0 = S′. Indeed,
if Q ∈ DF,Q0\S′ then Q ⊂ Q′ for some Q′ ∈ F, a contradiction. On the other hand,
if Q ∈ S′\DF,Q0 , then Q ⊂ Q′ ⊂ Q0 for some Q′ ∈ F. Noting that Q ∈ S′ with S′
being semi-coherent, we conclude that Q′ ∈ S′ which leads again to a contradiction.

To continue we observe that for every Q ∈ S′ ⊂ S we have by (3.12)

δ(X) �τ �−1
S GS(X), ∀ X ∈ VQ .

This and Lemma 2.25 allow us to deduce that

∑

Q∈S′
αQ =

∑

Q∈DF,Q0

αQ =
∑

Q∈DF,Q0

¨
VQ

|∇u|2 δ dX

� �−1
S

∑

Q∈DF,Q0

¨
VQ

|∇u|2 GS dX � �−1
S

¨
�ϑ
F,Q0

|∇u|2 GS dX , (3.17)
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where ϑ depends on the allowable constants but is independent of N . Observe that by
(2.23) and (2.21) one has

�ϑ
F,Q0

⊂ T ϑ,∗∗
Q0

⊂ 1

2
B∗
Q0

∩ � ⊂ {X ∈ � : δ(X) ≤ κ0��(Q0)}.

On the other hand, from (3.10), and the fact that Q0 ∈ S we can readily see that

δ(XS) ≈ �(QS) � 2N�(Q0) � κ0��(Q0),

by choosing N large enough (depending eventually on τ ). This means that XS is far
away from B∗

Q0
and, in what comes after we never get to worry about the position of

the pole of the Green function, XS, since it is always far from where the integrations
take place. We warn the reader that, henceforth, we will make use of this observation
repeatedly without explicitly mentioning it.

To proceed, let I ∈ Wϑ
Q with Q ∈ DF,Q0 = S∩DQ0 . Caccioppoli’s and Harnack’s

inequalities yield

¨
I ∗∗

(|∇GS| + |∇u|GS
)

dX � �(I )
n−1
2

(¨
I ∗∗∗

|GS|2 dX
) 1

2

+�(I )−1
(¨

I ∗∗∗
|u|2 dX

) 1
2
(¨

I ∗∗
|GS|2 dX

) 1
2

� �(I )n GS(X(I )). (3.18)

Let xI ∈ ∂� be such that |X(I )−xI | = δ(X(I )) and pick QI ∈ D satisfying QI � xI
and δ(X(I )) ≤ �(QI ) < 2δ(X(I )). Note that (2.20)–(2.21) give

|X(I ) − xQI | ≤ |X(I ) − xI | + |xI − xQI | < δ(X(I )) + � rQI ≤ 2� rQI ,

hence X(I ) ∈ 2B̃QI . Besides,

�(QI ) ≈ δ(X(I )) ≈ �(I ) ≈ϑ �(Q)

and

dist(Q, QI ) ≤ dist(Q, I ) + diam(I ) + |X(I ) − xI | �ϑ �(Q) + �(QI ).

By choosing (and fixing) N large enough (depending on ϑ) we therefore obtain that
QI and Q ∈ S are 2N -close, hence QI ∈ S(N ). Using that c0 < 1

2 , we can next
invoke (3.11) to obtain that

GS(X(I ))

δ(X(I ))
≤ sup

X∈2 B̃QI ∩�

δ(X)≥ 1
2 �(QI )

GL(XS, X)

δ(X)
≤ sup

X∈2 B̃QI ∩�

δ(X)≥c0 �(QI )

GL(XS, X)

δ(X)
≈ �S. (3.19)
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This together with (3.18) leads to

¨
I ∗∗

(|∇GS| + |∇u|GS
)

dX � �S �(I )n+1, (3.20)

for every I ∈ Wϑ
Q with Q ∈ DF,Q0 .

To continue, for every M ≥ 1, we consider the pairwise disjoint collection FM

given by the family of maximal cubes of the collection F augmented by adding all
the cubes Q ∈ DQ0 such that �(Q) ≤ 2−M�(Q0). In particular, Q ∈ DFM ,Q0 if and
only if Q ∈ DF,Q0 and �(Q) > 2−M�(Q0). Moreover, DFM ,Q0 ⊂ DFM ′ ,Q0 for all
M ≤ M ′, and hence �ϑ

FM ,Q0
⊂ �ϑ

FM ′ ,Q0
⊂ �ϑ

F,Q0
. Then the monotone convergence

theorem implies

¨
�ϑ
F,Q0

|∇u|2 GS dX = lim
M→∞

¨
�ϑ
FM ,Q0

|∇u|2 GS dX =: lim
M→∞KM . (3.21)

We claim that

KM � �S σ(Q0), (3.22)

where the implicit constant is independent of M , S, and Q0. Assuming that (3.22)
holds momentarily, we obtain at once that (3.17), (3.21) and (3.22) give

∑

Q∈S′
αQ � σ(Q0).

This finally justifies (3.14) and, as explained above, the desired partial CME estimates
follow.

The rest of this section is devoted to proving (3.22) and we borrow some ideas from
[9]. Pick �M from Lemma 2.26 and use Leibniz’s rule to arrive at

A∇u · ∇u GS�
2
M = A∇u · ∇(uGS�

2
M ) − 1

2
A∇(u2�2

M ) · ∇GS

+1

2
A∇(�2

M ) · ∇GS u2 − 1

2
A∇(u2) · ∇(�2

M )GS. (3.23)

Note that u ∈ W 1,2
loc (�)∩L∞(�),GS ∈ W 1,2

loc (�\{XS}), and that�ϑ,∗∗
FM ,Q0

is a compact

subset of� away from XS.Hence,u ∈ W 1,2(�
ϑ,∗∗
FM ,Q0

) anduGS�
2
M ∈ W 1,2

0 (�
ϑ,∗∗
FM ,Q0

).
These, together with the fact that Lu = 0 in the weak sense in �, lead to

¨
�

A∇u · ∇(uGS�
2
M )dX =

¨
�

ϑ,∗∗
FM ,Q0

A∇u · ∇(uGS�
2
M )dX = 0. (3.24)
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On the other hand,GS ∈ W 1,2(�
ϑ,∗∗
FM ,Q0

) and L
GS = 0 in the weak sense in�\{XS}.
Thanks to the fact that u2�2

M ∈ W 1,2
0 (�∗∗

FM ,Q0
), we then obtain

¨
�

A∇(u2�2
M ) · ∇GS dX =

¨
�

ϑ,∗∗
FM ,Q0

A
∇GS · ∇(u2�2
M ) dX = 0. (3.25)

By Lemma 2.26, the ellipticity of A, (3.23)–(3.25), the fact that ‖u‖L∞(�) = 1, and
(3.20) we arrive at

KM �
¨

�

A∇u · ∇u GS�
2
M dX �

¨
�

(|∇GS| + |∇u| GS
) |∇�M | dX

�
∑

I∈Wϑ,�
M

�(I )−1
¨

I ∗∗

(|∇GS| + |∇u|GS
)

dX � �S

∑

I∈Wϑ,�
M

�(I )n .

(3.26)

where we have used that if I ∈ Wϑ,�
M then I ∈ Wϑ

Q with Q ∈ DFM ,Q0 ⊂ DF,Q0 . We
use again Lemma 2.26 to observe that

∑

I∈Wϑ,�
M

�(I )n ≈
∑

I∈Wϑ,�
M

σ(Q̂ I ) � σ

⎛

⎜
⎝

⋃

I∈Wϑ,�
M

Q̂ I

⎞

⎟
⎠ ≤ σ(C
Q0) ≈ σ(Q0),

(3.27)

where in the next-to-last inequality we have used that Q̂ I ⊂ C
Q0 for every I ∈
Wϑ,�

M . Indeed by Lemma 2.26 we have that if x ∈ Q̂ I where I ∈ Wϑ,�
M and we let

Q ∈ DFM ,Q0 be so that I ∈ Wϑ
Q , then

|x − xQ0 | ≤ diam(Q̂ I ) + dist(Q̂ I , I ) + diam(I ) + dist(I , Q) + diam(Q0)

� �(I ) + �(Q) + �(Q0) ≈ �(Q) + �(Q0) � �(Q0).

Collecting (3.26) and (3.27) we conclude as desired (3.22), and the proof is then
complete. ��

3.3 Proof of (d) �⇒ (a): L satisfies partial/weak Carlesonmeasure estimates
implies that!L admits a strong corona decomposition

We introduce some notation, given N ≥ 1, for any Q ∈ D, we let Q(N ) ∈ DQ be the
unique dyadic cube such that Q(N ) � xQ and �(Q(N )) = 2−N�(Q).

We begin with some auxiliary result which will be iterated to construct the desired
corona decomposition:

Proposition 3.28 Let 0 < τ < τ0 (cf. Lemma 2.38) be the parameter implicitly
assumed in (d). There exists Nτ (depending on n, ADR, ellipticity, and τ ) such that for
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every Q ∈ D and for each N � Nτ , if we set YQ = PQ(Nτ ) (where PQ(Nτ ) is the point
associated with Q(Nτ ) in (d)), one can then find possibly empty families of pairwise
disjoint cubes FQ = F+

Q �F−
Q ⊂ DQ\{Q}, a Borel function fQ, and uQ ∈ W 1,2

loc (�)

with LuQ = 0 in the weak sense in �, such that the following hold:

δ(YQ) ≈ �(Q) ≈ dist(YQ, Q); ω
YQ
L (Q) ≈ 1; (3.29)

2−N ω
YQ
L (Q)

σ (Q)
�

ω
YQ
L (Q′)
σ (Q′)

≤
(  

Q′
(Mω

YQ
L )

1
2 dσ

)2

� 22N
ω
YQ
L (Q)

σ (Q)
, (3.30)

for all Q′ ∈ DFQ ,Q. Moreover, if we set F±
Q := ⋃

Q′∈F±
Q
Q′, then

σ(F+
Q ) ≤ 2−N σ(Q); (3.31)

0 ≤ fQ � 1Q\F−
Q
, uQ(X) :=

ˆ
Q\F−

Q

fQ dωX
L , X ∈ �, (3.32)

and

σ(Q) �
¨

B(YQ ,(1−τ)δ(YQ))

|∇uQ(X)|2 δ(X). (3.33)

In the previous estimates the implicit constants depend on n, ADR, ellipticity, and τ ,
but they do not depend on N.

Proof Write C0 > 1 for the constant in Bourgain’s estimate (see (2.36)). Let Nτ be
large enough to be chosen momentarily so that 2Nτ � C0. Let YQ := PQ(Nτ ) be the
point associated with Q(Nτ ) in (d). Observe that since xQ ∈ Q(Nτ ) we have

|YQ − xQ | ≤ dist(YQ, Q(Nτ )) + diam(Q(Nτ ))

≈ �(Q(Nτ )) = 2−Nτ �(Q) � �(Q). (3.34)

Hence, by taking Nτ large enough, Bourgain’s estimate (see Lemma 2.35) and (2.20)
imply

C−1
0 ≤ ω

YQ
L (Q) ≤ 1. (3.35)

Note that by (3.34) we have YQ ∈ 1
2 BQ ∩ � (cf. (2.21)) and also δ(YQ) =

δ(PQ(Nτ )) ≈ �(Q(Nτ )) = 2−Nτ �(Q). Hence, in the context of Lemma 2.38, applied
to ε = 2−Nτ � ετ so that we have that δ(YQ) ≈ ε �(Q).

Set ω := σ(Q)ω
YQ
L and note that

C−1
0 ≤ ω(Q)

σ (Q)
≤ ω(∂�)

σ(Q)
≤ 1. (3.36)
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Write M for the Hardy-Littlewood maximal operator on ∂� (with respect to σ ) and
observe that by the Hardy-Littlewood theorem and (3.36) one has

‖Mω‖L1,∞(∂�,σ) � ω(∂�) � σ(Q).

This and Kolmogorov’s inequality imply

(  
Q
(Mω)

1
2 dσ

)2

� σ(Q)−1 ‖Mω‖L1,∞(∂�,σ) � 1. (3.37)

Let N � Nτ be large enough to be chosen. Subdivide dyadically Q and stop the first
time that one of the following two conditions occurs

ω(Q′)
σ (Q′)

< 2−N ,

(  
Q′

(Mω)
1
2 dσ

)2

> 22N . (3.38)

This stopping time family is denoted by FQ and it is pairwise disjoint. Assuming that
N is sufficiently large, (3.36) and (3.37) clearly give that FQ ⊂ DQ\{Q}. Let F−

Q
be the subcollection of cubes in FQ satisfying the first condition in (3.38) and set
F+

Q = FQ\F−
Q , that is, the cubes that satisfy the second condition in (3.38), but not

the first one. By construction FQ := F+
Q � F−

Q and

2−N ≤ ω(Q′)
σ (Q′)

≤
( 

Q′
(Mω)

1
2 dσ

)2

≤ 22N , ∀ Q′ ∈ DFQ ,Q .

This readily implies (3.30) using (3.35) and ω := σ(Q)ω
YQ
L . If F+

Q �= ∅ we use that

the cubes inF+
Q are pairwise disjoint and satisfy the second condition in (3.38), (3.37),

and (3.36), to arrive at (3.31):

σ(F+
Q ) = σ

(
⋃

Q′∈F+
Q

Q′
)

=
∑

Q′∈F+
Q

σ(Q′) ≤ 2−N
∑

Q′∈F+
Q

ˆ
Q′

(Mω)
1
2 dσ

≤ 2−N
ˆ
Q
(Mω)

1
2 dσ � 2−Nσ(Q),

provided N is sufficiently large. This estimate clearly holds if F+
Q = ∅. Hence we

have shown (3.31).
To continue if F−

Q �= ∅, use that the cubes in F−
Q are pairwise disjoint and satisfy

the first condition in (3.38), and (3.36), to see that

ω(F−
Q ) = ω

⎛

⎜
⎝

⋃

Q′∈F−
Q

Q′

⎞

⎟
⎠ =

∑

Q′∈F−
Q

ω(Q′) ≤ 2−N
∑

Q′∈F−
Q

σ(Q′)

123



M. Cao et al.

≤ 2−Nσ(Q) ≤ C02
−Nω(Q).

Again this estimate clearly holds in the case F−
Q = ∅. Thus, in either scenario,

ω
YQ
L (Q\F−

Q ) ≥ (1 − C0 2
−N )ω

YQ
L (Q).

Note that, as observed above, YQ ∈ 1
2 BQ ∩ � and δ(YQ) ≈ ε �(Q). In view of

Lemma 2.38, if one further assumes that N is large enough so that 2−NC0 < ε, we
can find a Borel function fQ and uQ ∈ W 1,2

loc (�), with LuQ = 0 in the weak sense in
�, such that (3.32) and (3.33) holds where the implicit constants depend on n, ADR,
ellipticity, and τ , but they are independent of N . This completes the proof. ��

Having Proposition 3.28 at our disposal, we are going to iterate that construction
to obtain the desired corona decomposition. With this goal in mind we fix an arbitrary
Q0 ∈ D. Set F0 := {Q0}, F+

0 := {Q0}, and F−
0 := ∅. Let F1 := ⊔

Q∈F0
FQ

and F±
1 := ⊔

Q∈F0
F±

Q denote the first generation cubes. In general, we may define
recursively

Fk+1 :=
⊔

Q∈Fk

FQ and F±
k+1 :=

⊔

Q∈Fk

F±
Q, k ≥ 0.

We also set

F :=
∞
⊔

k=0

Fk and F± :=
∞
⊔

k=0

F±
k .

With all these we construct a semi-coherent corona decomposition relative to Q0 as
follows. Observe first that

DQ0 = DFQ0 ,Q0

⊔
(

⊔

Q∈FQ0

DQ

)

=
(

⊔

Q∈F0

DFQ ,Q

)
⊔

(
⊔

Q∈F1

DQ

)

.

In turn,

⊔

Q∈F1

DQ =
⊔

Q∈F1

(

DFQ ,Q

⊔
(

⊔

Q′∈FQ

DQ′
))

=
(

⊔

Q∈F1

DFQ ,Q

)
⊔

(
⊔

Q′∈F2

DQ′
)

.

Iterating this procedure we eventually obtain

DQ0 =
∞
⊔

k=0

(
⊔

Q∈Fk

DFQ ,Q

)

=
⊔

Q∈F
DFQ ,Q . (3.39)

We then set BQ0 := ∅, FQ0 = {DFQ ,Q}Q∈F, and GQ0 = ⊔

S∈FQ0
S. Note that

trees are of the form DFQ ,Q with Q ∈ F, hence they are clearly semi-coherent with
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Top(S) = Q, hence Top(FQ0) = F. Thus, in order to see that (BQ0 , GQ0 , FQ0) is
a semi-coherent corona decomposition relative to Q0 we are left with showing that
the family Top(FQ0) = F satisfies a packing condition. This is the content of the
following result:

Proposition 3.40 Under the previous considerations, assuming (d) and taking N large
enough (depending on n, ADR, ellipticity, and τ ) the family Top(FQ0) = F satisfies
the Carleson condition

sup
Q∈DQ0

1

σ(Q)

∑

Q′∈F∩DQ

σ(Q′) � 1, (3.41)

with an implicit constant which depends on n, ADR, ellipticity, and τ . As a conse-
quence, (BQ0 , GQ0 , FQ0) is a semi-coherent corona decomposition relative to Q0.

Assume this result momentarily and take the corresponding large enough N . Pick
an S ∈ FQ0 , that is, S = DFQ0 ,Q0 for some Q0 ∈ F. Set XS := YQ0 so that by (3.29)

δ(XS) ≈ �(Top(S)) ≈ dist(XS,Top(S)).

Invoking (3.30) and recalling that Top(S) = Q0, we get

2−N ω
XS
L (Top(S))

σ (Top(S))
�

ω
XS
L (Q)

σ (Q)
≤

( 
Q
(Mω

XS
L )

1
2 dσ

)2

� 22N
ω
XS
L (Top(S))

σ (Top(S))
,

(3.42)

for all Q ∈ S. All these, Proposition 3.40, the fact that Q0 is arbitrary, and
Proposition 2.39 give that ωL admits a semi-coherent corona decomposition with
QS = Top(S). Note that with the help of Remark 2.13 we can refine transform this
corona decomposition so that the new corona is coherent. This completes the proof of
the current implication modulo proving Proposition 3.40. ��
Remark 3.43 We would like to observe that in the previous proof we have obtained a
semi-coherent corona decomposition such that QS = Top(S) and with the additional
property that ωXS

L (QS) ≈ 1, see (3.35). Invoking Remark 2.13 we can transform this
into a coherent corona decomposition as in (i) in Definition 2.6 with the additional
property that ω

XS
L (QS) ≈ 1. A careful examination of the proofs of (a) �⇒ (b), (b)

�⇒ (c), and (c) �⇒ (d) reveals that this extra property can be inherited in any of the
implications, that is, both in (ii) and (iii) in Definition 2.6 we obtain the additional
the property ω

XS
L (QS) ≈ 1, and in in the partial/weak Carleson measure estimates the

extra property ω
PQ
L (Q) ≈ 1. All these together mean that in each of the conditions

(a), (b), (c) we may assume that the corona decomposition has the extra property
ω
XS
L (QS) ≈ 1 for every S ∈ F. Analogously, in (d) we may additionally assume

that ω
PQ
L (Q) ≈ 1. We observe however that adding this extra condition requires to

possibly use a different decomposition in (a), (b), (c), or a different collection of points
{PQ}Q∈D in (d).

123



M. Cao et al.

Proof of Proposition 3.40 We borrow some ideas from [5, 16]. We start by arranging
the cubes in F into some trees. To set the stage let Q ∈ F be an arbitrary cube. Write
SQ for the (possible empty) family of maximal cubes in D

∗
Q ∩ F+, where, here and

elsewhere, D
∗
Q := DQ\{Q}. Note that by construction SQ ⊂ D

∗
Q ∩ F+ is a pairwise

disjoint family so that (DSQ ,Q\{Q}) ∩ F ⊂ F−.
We next iterate the previous selection procedure. Write S0 = {Q0} and define

recursively Sk+1 = ⊔

Q∈Sk SQ for k ≥ 0. We then set S = ⊔∞
k=0 Sk . Recalling that

Q0 ∈ F+ it is easy to see that S = F+ ∩ DQ0 . On the other hand,

DQ0 = (

DSQ0 ,Q0
) ⊔

(
⊔

Q∈SQ0

DQ

)

=
( ⊔

Q∈S0
DSQ ,Q

)⊔
(

⊔

Q∈S1
DQ

)

.

In turn,

⊔

Q∈S1
DQ =

⊔

Q∈S1

(

DSQ ,Q

⊔( ⊔

Q′∈SQ

DQ′
))

=
( ⊔

Q∈S1
DSQ ,Q

) ⊔ ( ⊔

Q′∈S2
DQ′

)

.

Iterating this procedure we eventually obtain

DQ0 =
∞
⊔

k=0

(
⊔

Q∈Sk
DSQ ,Q

)

=
⊔

Q∈S
DSQ ,Q . (3.44)

We first show that

sup
Q0∈S

sup
Q′
0∈DSQ0

,Q0∩F
1

σ(Q′
0)

∑

Q∈DSQ0
,Q′

0
∩F

σ(Q) � 1, (3.45)

with a constant that is independent of N . Fix then Q0 ∈ S and Q′
0 ∈ DSQ0 ,Q0 ∩F. For

each Q ∈ F we set VQ = B(YQ, (1− τ)δ(YQ)). Recalling the notation introduced in
Proposition 3.28, we claim that the family {Q\F−

Q }Q∈DSQ0
,Q0∩F is pairwise disjoint.

Suppose otherwise that there are two distinct cubes Q, Q′ ∈ DSQ0 ,Q0 ∩Fwith Q\F−
Q

meeting Q′\F−
Q′ . By relabeling if needed, we may assume that Q′

� Q. Let Q′′ ∈ F
be the maximal cube so that Q′ ⊂ Q′′

� Q, and note that since Q, Q′ ∈ DSQ0 ,Q0

we necessarily have that Q′′ ∈ (DSQ0 ,Q0\{Q0}) ∩ F ⊂ F− and Q′′ ∈ F−
Q . Hence,

Q′ ⊂ Q′′ ⊂ F−
Q and Q′ cannot meet Q\F−

Q , which is a contradiction.

For any given K � 1we take an arbitrary family {Qk}Kk=1 ⊂ DSQ0 ,Q′
0
∩F. Invoking

Proposition 3.28 we can find fQk and uQk for each 1 ≤ k ≤ K so that (3.32) holds.
Write {r j (·)} j∈N for the Rademacher system in [0, 1) and for every t ∈ [0, 1) let us
set

ft :=
K

∑

k=1

rk(t) fQk 1Qk\F−
Qk
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and for every X ∈ �

ut (X) :=
ˆ

∂�

ft dωX
L =

K
∑

k=1

rk(t)
ˆ
Qk\F−

Qk

fQk dωX
L =

K
∑

k=1

rk(t)uQk (X).

Note that ft is Borel measurable and by (3.32) and the fact that the family
{Q\F−

Q }Q∈DSQ0
,Q0∩F is pairwise disjoint we conclude that for every y ∈ ∂�

| ft (y)| ≤
K

∑

k=1

|r j (t)| | fQk (y)| 1Qk\F−
Qk

(y) �
K

∑

k=1

1Qk\F−
Qk

(y) ≤ 1.

Hence, ‖ut‖L∞(�) � 1, uniformly on t . As such, recalling Proposition 3.28 and that
YQ = PQ(Nτ ), we can invoke (d) to obtain

K
∑

k=1

¨
VQk

|∇ut (X)|2 δ(X) dx =
K

∑

k=1

¨
B(PQk (Nτ ),(1−τ)δ(PQk (Nτ )))

|∇ut (X)|2 δ(X) dx

≤
∑

Q∈DQ′
0

¨
B(PQ ,(1−τ)δ(PQ))

|∇ut (X)|2 δ(X) dx

� σ(Q′
0),

with implicit constants that are uniform on t ∈ [0, 1). Thus, by (3.33) and the orthog-
onality of the Rademacher system we arrive at

K
∑

k=1

σ(Qk) �
K

∑

k=1

¨
VQk

|∇uQk (X)|2 δ(X) dX

≤
¨

K⋃

k=1
VQk

K
∑

k=1

|∇uQk (X)|2δ(X) dX

=
n+1
∑

j=1

¨
K⋃

k=1
VQk

K
∑

k=1

|∂ j uQk (X)|2δ(X) dX

=
n+1
∑

j=1

¨
K⋃

k=1
VQk

(ˆ 1

0

∣
∣
∣
∣

K
∑

k=1

rk(t)∂ j uQk (X)

∣
∣
∣
∣

2

dt

)

δ(X) dX

=
ˆ 1

0

(¨
K⋃

k=1
VQk

|∇ut (X)|2 δ(X) dX

)

dt

≤
ˆ 1

0

( K
∑

k=1

¨
VQk

|∇ut (X)|2 δ(X) dX

)

dt � σ(Q′
0).

123



M. Cao et al.

Recalling that K � 1 and the family {Qk}Kk=1 ⊂ DSQ0 ,Q′
0

∩ F is arbitrary we can
easily see that

∑

Q∈DSQ0
,Q′

0
∩F

σ(Q) � σ(Q′
0),

hence (3.45) holds.
To proceed we next show that

sup
Q0∈S

1

σ(Q0)

∑

Q∈S∩DQ0

σ(Q) ≤ 2, (3.46)

provided N is taken large enough.
For starters, fix Q0 ∈ S and let k0 ≥ 0 be such that Q0 ∈ Sk0 . Then,

∑

Q∈S∩DQ0

σ(Q) =
∞
∑

k=k0

∑

Q∈Sk∩DQ0

σ(Q) =:
∞
∑

k=k0

�k,

and we estimate each term in turn. Note first that

�k0 =
∑

Q∈Sk0∩DQ0

σ(Q) = σ(Q0).

Additionally, for each k ≥ k0 + 1 we have

�k =
∑

Q∈Sk∩DQ0

σ(Q) =
∑

Q∈Sk−1

∑

Q′∈SQ∩DQ0

σ(Q′) =
∑

Q∈Sk−1∩DQ0

∑

Q′∈SQ

σ(Q′).

We claim that for any fixed Q ∈ Sk−1 ∩ DQ0 there holds

SQ =
⊔

Q′∈DSQ ,Q∩F
F+

Q′ . (3.47)

That the union is made of pairwise disjoint collections is clear from the iterative
construction of the family F. On the other hand, if Q′ ∈ SQ ⊂ D

∗
Q ∩F+, let Q′′ ∈ F

be so that Q′ ∈ F+
Q′′ ⊂ D

∗
Q′′ . Note that since Q′

� Q ∈ Sk−1 ⊂ F+ we must have
Q′′ ⊂ Q. Hence, Q′′ ∈ DSQ ,Q and this shows the left-to-right inclusion.

Conversely, let Q′ ∈ DSQ ,Q ∩ F and Q′′ ∈ F+
Q′ . Since Q′′

� Q′ ⊂ Q and,

as observed before (DSQ ,Q\{Q}) ∩ F ⊂ F−, we obtain that Q′′ /∈ DSQ ,Q . That is,
Q′′ ⊂ Q′′′ ∈ SQ . Since Q′′ ⊂ Q′ ∩ Q′′′ we must have Q′′′

� Q′—otherwise,
Q′ ⊂ Q′′′ and, as a consequence, Q′ /∈ DSQ ,Q , which is a contradiction. Using that
F+ � Q′′′

� Q′
� Q and that Q′′ ∈ F+

Q′ , we arrive at Q′′′ = Q′′, hence Q′′ ∈ SQ as
desired.
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Using then (3.47), (3.31), and (3.45) (whose implicit constant does not depend on
N ) we obtain

�k =
∑

Q∈Sk−1∩DQ0

∑

Q′∈DSQ ,Q∩F

∑

Q′′∈F+
Q′

σ(Q′′)

=
∑

Q∈Sk−1∩DQ0

∑

Q′∈DSQ ,Q∩F
σ(F+

Q′) ≤ 2−N
∑

Q∈Sk−1∩DQ0

∑

Q′∈DSQ ,Q∩F
σ(Q′)

� 2−N
∑

Q∈Sk−1∩DQ0

σ(Q) = 2−N�k−1 <
1

2
�k−1,

provided N is taken large enough. Iterating this we conclude as desired

∑

Q∈S∩DQ0

σ(Q) =
∞
∑

k=k0

�k ≤ �k0

∞
∑

k=k0

2−(k−k0) = 2�k0 = 2σ(Q0).

With (3.45) and (3.46) we are now ready to obtain (3.41). Fix then Q0 ∈ DQ0 and
assume first that Q0 ∈ F. By (3.44) we can find Q′

0 ∈ S such that Q0 ∈ DSQ′
0
,Q′

0
.

We note that if Q ∈ S with Q′
0 � Q then DQ′

0
∩ DSQ ,Q = ∅, otherwise there is

Q′ ∈ DQ′
0
∩ DSQ ,Q and since Q′ ⊂ Q′

0 � Q we conclude that Q′
0 ∈ DSQ ,Q , and this

contradicts (3.44) and the fact that Q′
0 ∈ DSQ′

0
,Q′

0
. Thus, using again (3.44) we have

∑

Q∈F∩DQ0

σ(Q) =
∑

Q∈S

∑

Q′∈DSQ ,Q∩Q0∩F
σ(Q′)

=
∑

Q∈S∩DQ′
0

∑

Q′∈DSQ ,Q∩Q0∩F
σ(Q′)≤

∑

Q∈S∩DQ′
0
:Q0⊂Q

∑

Q′∈DSQ ,Q0∩F
σ(Q′)

+
∑

Q∈S∩DQ0

∑

Q′∈DSQ ,Q∩F
σ(Q′)

=
∑

Q′∈DSQ′
0

,Q0∩F
σ(Q′) +

∑

Q∈S∩DQ0

∑

Q′∈DSQ ,Q∩F
σ(Q′),

where in the last equality we have used that if Q ∈ S ∩ DQ′
0
with Q0 ⊂ Q and there

is Q′ ∈ DSQ ,Q0 ∩ F we have Q′ ⊂ Q0 ⊂ Q with Q′ ∈ DSQ ,Q0 ⊂ DSQ ,Q , hence
Q0 ∈ DSQ ,Q ∩ F and by (3.44) we conclude that Q = Q′

0. Let SQ0 be the collection
of maximal cubes (hence, pairwise disjoint) in S ∩ DQ0 . Then, invoking (3.45) and
(3.46) we easily see that

∑

Q∈F∩DQ0

σ(Q) � σ(Q0) +
∑

Q∈S∩DQ0

σ(Q) = σ(Q0) +
∑

Q∈SQ0

∑

Q′∈S∩DQ

σ(Q′)
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≤ σ(Q0) + 2
∑

Q∈SQ0

σ(Q) = σ(Q0) + 2 σ

(
⊔

Q∈SQ0

Q

)

≤ 3σ(Q0).

Recalling that Q0 ∈ DQ0 ∩ F is arbitrary we have shown that

sup
Q∈DQ0∩F

1

σ(Q)

∑

Q′∈F∩DQ

σ(Q′) � 1, (3.48)

and we are left with the consider in the sup all cubes Q ∈ DQ0 . To see this we fix
Q0 ∈ DQ0 and let FQ0 be the collection of maximal cubes (hence, pairwise disjoint)
in F ∩ DQ0 . It is straightforward to see that (3.48) yields

∑

Q∈F∩DQ0

σ(Q) =
∑

Q∈FQ0

∑

Q′∈F∩DQ

σ(Q′) �
∑

Q∈FQ0

σ(Q) = σ

(
⊔

Q∈FQ0

Q

)

≤ σ(Q0).

This completes the proof. ��

4 Proof of Theorems 1.2 and 1.4

Theorems 1.2 and 1.4 will follow from the following general result. First we introduce
some notation. Give a matrix D = (di, j )1≤i, j≤n+1 ∈ Liploc(�) we write divC D to
denote its divergence acting on columns, that is,

divC D := (

div(d·, j )
)

1≤ j≤n+1 =
( n+1

∑

i=1

∂i di, j
)

1≤ j≤n+1
.

Theorem 4.1 Let � ⊂ R
n+1, n ≥ 2, be an open set with ADR boundary satisfying

the corkscrew condition. Let L0u = − div(A0∇u) and L1u = − div(A1∇u) be real
(not necessarily symmetric) elliptic operators. Assume that A0 − A1 = A+ D where
A, D ∈ L∞(�) are real matrices verifying the following conditions:

(i) The function a(X) := supY∈B(X ,δ(X)/2) |A(Y )|, X ∈ � satisfies the Carleson
measure estimate

sup
x∈∂�

0<r<diam(∂�)

1

σ(B(x, r) ∩ ∂�)

¨
B(x,r)∩�

a(X)2

δ(X)
dX < ∞. (4.2)

(ii) D ∈ Liploc(�) is antisymmetric and its divergence acting on columns divC D
satisfies the Carleson measure estimate

sup
x∈∂�

0<r<diam(∂�)

1

σ(B(x, r) ∩ ∂�)

¨
B(x,r)∩�

| divC D(X)|2δ(X)dX < ∞. (4.3)

123



Carleson measure estimates, corona decompositions. . .

Then, ωL0 admits a (strong) corona decomposition (equivalently, GL0 is comparable
to the distance to the boundary in the corona sense or L0 satisfies partial/weak Car-
leson measure estimates) if and only if ωL1 admits a (strong) corona decomposition
(equivalently, GL1 is comparable to the distance to the boundary in the corona sense
or L1 satisfies partial/weak Carleson measure estimates).

Proof By symmetry and Theorem 1.1, it suffices to show that if GL0 is comparable
to the distance to the boundary in the corona sense. then L1 satisfies partial/weak
Carleson measure estimates. We are going to use the ideas from Sect. 3.2. We fix
u ∈ W 1,2

loc (�)∩ L∞(�) a non-trivial weak solution of L1u = 0 in�. By homogeneity
we may assume that ‖u‖L∞(�) = 1. Fix also τ ∈ (0, 1

2 ), the parameter which appears
in the partial/weak Carleson measure estimate (see Definition 2.17). Assume that
(B0, G0, F0) is the assumed corona decomposition associatedwithGL0 . Given N ≥ 0,
large enough to be chosen momentarily (depending on τ ), we may proceed as in
Remark 2.14 and pick (B, G, F) the 2N -refinement of (B0, G0, F0). This implies that
for every S ∈ F there exist QS ∈ D and XS ∈ � so that (3.10) and (3.11) hold
with L = L0. Write GS := GL0(XS, ·). For each Q ∈ S ⊂ S(N ), we can find
PQ ∈ 2 B̃Q ∩ � with δ(PQ) ≥ c0�(Q) such that by (3.11) and Harnack’s inequality
there holds

�S � GS(PQ)

δ(PQ)
≈τ

GS(X)

δ(X)
, ∀X ∈ VQ := B(PQ, (1 − τ)δ(PQ)). (4.4)

This defines PQ for every Q ∈ G = ⊔

S∈F
S. On the other hand, given Q ∈

B = D\G we let PQ := XQ be the corkscrew point relative to Q, in particular,
XQ ∈ BQ ∩ � ⊂ 2 B̃Q ∩ � with δ(PQ) � �(Q). Set next

αQ :=
¨

VQ

|∇u(X)|2δ(X) dX , Q ∈ D,

which, much as before, satisfies (3.13). Following the argument in Sect. 3.2 it is then
easy to see that we can reduce matters to proving the following estimate:

JM :=
¨

�ϑ
FM ,Q0

|∇u|2 GS dX � �S σ(Q0). (4.5)

with implicit constant independent of M ≥ 1, S, and Q0. We warn the reader that the
difference of the present case with Sect. 3.2 is that before, u and GS were associated
with the same operator L , while now u is a associated with L1 and GS is associated
with L0.

To show (4.5), we pick �M from Lemma 2.26 and use Leibniz’s rule to get

A1∇u · ∇u GS�
2
M = A1∇u · ∇(uGS�

2
M ) − 1

2
A0∇(u2�2

M ) · ∇GS

+1

2
A0∇(�2

M ) · ∇GS u2 − 1

2
A0∇(u2) · ∇(�2

M )GS + 1

2
E∇(u2) · ∇(GS�

2
M ),

(4.6)
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where E(X) := A0(X) − A1(X). Note that u ∈ W 1,2
loc (�) ∩ L∞(�), GS ∈

W 1,2
loc (�\{XS}), and that �

ϑ,∗∗
FM ,Q0

is a compact subset of � away from XS. Hence,

u ∈ W 1,2(�
ϑ,∗∗
FM ,Q0

) and uGS�
2
M ∈ W 1,2

0 (�
ϑ,∗∗
FM ,Q0

). Since L1u = 0 in the weak sense
in �, these lead to

¨
�

A1∇u · ∇(uGS�
2
M )dX =

¨
�

ϑ,∗∗
FM ,Q0

A1∇u · ∇(uGS�
2
M )dX = 0. (4.7)

On the other hand,GS ∈ W 1,2(�
ϑ,∗∗
FM ,Q0

) and L

0 GS = 0 in the weak sense in�\{XS}.

Thanks to the fact that u2�2
M ∈ W 1,2

0 (�
ϑ,∗∗
FM ,Q0

), we then obtain

¨
�

A0∇(u2�2
M ) · ∇GS dX =

¨
�

ϑ,∗
FM ,Q0

A

0 ∇GS · ∇(u2�2

M ) dX = 0. (4.8)

UsingLemma2.26, the ellipticity of A, (4.6)–(4.8), and the normalization ‖u‖L∞(�) =
1, we then arrive at

J̃M :=
¨

�

|∇u|2GS�
2
M dX �

¨
�

A1∇u · ∇u GS�
2
M dX

�
¨

�

(|∇GS| + |∇u|GS
)|∇�M | dX +

∣
∣
∣
∣

¨
�

E∇(u2) · ∇(GS�
2
M ) dX

∣
∣
∣
∣

� σ(Q0) +
∣
∣
∣
∣

¨
�

E∇(u2) · ∇(GS�
2
M ) dX

∣
∣
∣
∣
, (4.9)

where the last estimate follows as in (3.26) and (3.27) with the help of (3.20), and
where the implicit constant does not depend on M . To bound the last term we use that
E = A0 − A1 = A + D to get

∣
∣
∣
∣

¨
�

E∇(u2) · ∇(GS�
2
M ) dX

∣
∣
∣
∣

≤
∣
∣
∣
∣

¨
�

A∇(u2) · ∇(GS�
2
M ) dX

∣
∣
∣
∣

+
∣
∣
∣
∣

¨
�

D∇(u2) · ∇(GS�
2
M ) dX

∣
∣
∣
∣

=: J̃1
M + J̃2

M . (4.10)

To control J̃1
M , we write

J̃1
M �

¨
�

|A||∇u||∇GS|�2
M dX +

¨
�

|∇u||∇�M |�MGS dX =: J̃1,1
M + J̃1,2

M .

(4.11)

Considering the first term, we observe that supI ∗∗ |A| ≤ inf I ∗ a for any I ∈ W since
I ∗∗ ⊂ {Y ∈ � : |Y −X | < δ(X)/2} for each X ∈ I ∗. By Caccioppoli’s andHarnack’s
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inequalities, we obtain

J̃1,1
M �

∑

I∈Wϑ
M

(

sup
I ∗∗

|A|
)(¨

I ∗∗
|∇u|2�2

M dX

) 1
2
(¨

I ∗∗
|∇GS|2 dX

) 1
2

�
∑

I∈Wϑ
M

�(I )−1
(

sup
I ∗∗

|A|
)(¨

I ∗∗
|∇u|2�2

M dX

) 1
2
(¨

I ∗∗∗
|GS|2 dX

) 1
2

�
∑

I∈Wϑ
M

(

sup
I ∗∗

|A|2�(I )n−1GS(XI )
2
) 1

2
(¨

I ∗∗
|∇u|2�2

M dX

) 1
2

� �
1
2
S

∑

I∈Wϑ
M

(¨
I ∗

a(X)2

δ(X)
dX

) 1
2
(¨

I ∗∗
|∇u|2GS�

2
M dX

) 1
2

� �
1
2
S

(¨
B∗
Q0

∩�

a(X)2

δ(X)
dX

) 1
2
(¨

�

|∇u|2GS�
2
M dX

) 1
2

�
(J̃M �S σ(Q0)

) 1
2 , (4.12)

where we have used (3.19) in the fourth inequality and (4.2) in the last one. On the
other hand, (3.19) and (3.27) imply

J̃1,2
M ≤

(¨
�

|∇�M |2GS dX

) 1
2
(¨

�

|∇u|2GS�
2
M dX

) 1
2

�
(

∑

I∈Wϑ
M

�(I )n−1GS(X(I ))

) 1
2
(¨

�

|∇u|2GS�
2
M dX

) 1
2

� �
1
2
S

(
∑

I∈Wϑ
M

�(I )n
) 1

2
(¨

�

|∇u|2GS�
2
M dX

) 1
2

�
(J̃M �S σ(Q0)

) 1
2 . (4.13)

Moreover, it follows from [9, Lemma 4.1] (whose proof works to the present scenario
with no change, taking into account the antisymmetry of D), (3.19), and (4.3) that

J̃2
M =

∣
∣
∣
∣

¨
�

divC D · ∇(u2)GS�
2
M dX

∣
∣
∣
∣

�
(¨

�

| divC D|2GS�
2
M dX

) 1
2
(¨

�

|∇u|2GS�
2
M dX

) 1
2

� J̃
1
2
M

(
∑

I∈Wϑ
M

GS(X(I ))
¨

I ∗∗
| divC D|2dX

) 1
2
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� �
1
2
S J̃

1
2
M

(¨
B∗
Q0

∩�

| divC D|2δ(X) dX

) 1
2

�
(J̃M �S σ(Q0)

) 1
2 . (4.14)

Now gathering (4.9)–(4.14) and using Young’s inequalities, we obtain

J̃M � �S σ(Q0) + (J̃M �S σ(Q0)
) 1
2 ≤ 1

2
J̃M + C0 �S σ(Q0), (4.15)

where the implicit constant and C0 are independent of M . Observe that J̃M < ∞
since supp�M ⊂ �

ϑ,∗
FM ,Q0

, which is a compact subset of � and u ∈ W 1,2
loc (�). Thus,

we hide the last term in (4.15) and obtain

JM � J̃M � �S σ(Q0).

This shows (4.5) and completes the proof. ��

We next see how Theorems 1.2 and 1.4 are deduced from Theorem 4.1.

Proof of Theorem 1.2 Let L0 and L1 be the elliptic operators given in Theorem 1.2.
Setting A = A0 − A1 and D = 0 in Theorem 4.1, we see that (4.2) coincides with
the Carleson measure condition (1.3) in Theorem 1.2, and (4.3) holds automatically.
Therefore, Theorem 1.2 immediately follows from Theorem 4.1. ��

Proof of Theorem 1.4 Let A be the matrix from Theorem 1.4. If we take A0 = A,
A1 = A
, Ã = 0 and D = A − A
 in Theorem 4.1, then A0 − A1 = Ã + D with
D ∈ Liploc(�) antisymmetric, (4.2) holds trivially and (4.3) agrees with the Carleson
measure estimate (1.5) in Theorem 1.4. Thus, Theorem 4.1 implies that ωL admits a
corona decomposition if and only if so does ωL
 .

Similarly, if we pick A0 = A, A1 = (A + A
)/2, Ã = 0 and D = (A − A
)/2,
then ωL admits a corona decomposition if and only if so does ωLsym . ��

5 Proof of Theorem 1.6

In this section we prove Theorem 1.6. Assume first that ∂� is uniformly rectifiable
(here we do not need to impose the corkscrew condition). Invoking [24, Theorem 1.1]
with E = ∂� we obtain that any bounded harmonic function in R

n+1\E satisfies
(full) Carleson measure estimates. Hence, clearly bounded harmonic functions in �

satisfy (full and hence partial) Carleson measure estimates in �. This together with
Theorem 1.1, implies that the harmonic measure admits a corona decomposition. The
same can be done with the operators in (a), because they are a subclass of the Kenig-
Pipher operators (see [20, Theorem 7.5]), or similarly to those in (b) much as in [28,
Corollary 10.3].
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5.1 Proof of Theorem 1.6 for the Laplacian

The argument to show that UR follows from the corona decomposition associated with
the harmonic measure is somehow implicit in [25, Section 5] and we sketch the main
changes. Throughout the section, we will denote the Laplacian by L = −
, avoiding
the latter notation because it is already used for surface balls. For starters we need
some preliminaries. We first recall [25, Definitions 2.17 and 2.19]:

Definition 5.1 Let E ⊂ R
n+1 be an ADR set.

(i) Given ε > 0, we say that Q ∈ D(E) satisfies the ε-local weak half-space
approximation condition (ε-local WHSA with parameter K0) if there is a half-
space H = H(Q), a hyperplane P = P(Q) = ∂H , and a fixed positive number
K0 satisfying

(a) dist(X , E) ≤ ε�(Q), for every X ∈ P ∩ B∗∗
Q (ε), where B∗∗

Q (ε) =
B(xQ, ε−2�(Q)).

(b) dist(Q, P) ≤ K 3/2
0 �(Q).

(c) H ∩ B∗∗
Q (ε) ∩ E = ∅.

(ii) We say that E satisfies the weak half-space approximation property (WHSA) if
for some pair of positive constants ε0 and K0, and for every 0 < ε < ε0, there
is a constant Cε such that the set B of bad cubes in D(E), for which the ε-local
WHSA condition with parameter K0 fails, satisfies the packing condition

∑

Q⊂Q0:Q∈B
σ(Q) ≤ Cεσ (Q0), ∀Q0 ∈ D(E).

Recall next the definition of theWhitney regionsUϑ
Q where ϑ ≥ ϑ0 is some param-

eter large enough to be chosen momentarily. We observe that these Whitney regions
may have more than one connected component, but that the number of distinct com-
ponents is uniformly bounded, depending only upon ϑ and dimension. We enumerate
the connected components of Uϑ

Q as {Uϑ,i
Q }i . As in [25, Definition 2.26] we enlarge

the Whitney regions as follows. For small enough ε > 0, we write X ≈ε,Q Y if X
may be connected to Y by a chain of at most ε−1 balls of the form B(Yk, δ(Yk)/2),
with ε3�(Q) ≤ δ(Yk) ≤ ε−3�(Q). We then set

Ũϑ,i
Q := {

X ∈ � : X ≈ε,Q Y for some Y ∈ Uϑ,i
Q

}

. (5.2)

Given M � 1 large enough to be chosen and some small enough ε > 0, for Y ∈ �,
we set

BY := B(Y , (1 − ε2M/γ )δ(Y )),
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where γ ∈ (0, 1) is the exponent appearing in Lemma 2.35. We augment Ũϑ,i
Q

(cf. (5.2)) as follows. Set

Wϑ,i,∗
Q :=

{

I ∈ W : I ∗ meets BY for some Y ∈
⋃

X∈Ũϑ,i
Q

BX

}

(5.3)

and

Uϑ,i,∗
Q :=

⋃

I∈Wϑ,i,∗
Q

I ∗∗, U∗
Q :=

⋃

i

Uϑ,i,∗
Q , (5.4)

where we recall that I ∗∗ = (1 + 2λ)I . By construction,

Ũϑ,i
Q ⊂

⋃

X∈Ũϑ,i
Q

BX ⊂
⋃

Y∈ ⋃

X∈Ũϑ,i
Q

BX

BY ⊂ Uϑ,i,∗
Q ,

and for all Y ∈ Uϑ,i,∗
Q , we have that δ(Y ) ≈ �(Q) (depending of course on ε).

Moreover, also by construction, for every I ∈ Wϑ,i,∗
Q

εs �(Q) � �(I ) � ε−3 �(Q), dist(I , Q) � ε−4 �(Q),

where s = s(M, γ ) > 0.
We are now ready to establish that if ωL admits a semi-coherent corona decom-

position, then ∂� is uniformly rectifiable. In view of Theorem 1.1 and Remark 3.43
we may assume that ωL admits a semi-coherent corona decomposition (B, G, F) with
the property that QS = Top(S) and ω

XS
L (QS) ≈ 1 for each S ∈ F. Our goal is then

to obtain that ∂� is uniformly rectifiable, and by [25, Proposition 1.17] it suffices to
see that ∂� it satisfies the WHSA property. Let K0 be large enough to be chosen and
let ε0 � K−6

0 . Fix an arbitrary ε ∈ (0, ε0), and let B be the collection of cubes in
D = D(∂�) for which the ε-local WHSA condition with parameter K0 fails. Then,
we are reduced to showing that B satisfies a Carleson packing condition. With this
goal in mind we take an arbitrary cube Q0 ∈ D and write

∑

Q∈B∩DQ0

σ(Q) =
∑

Q∈B∩B∩DQ0

σ(Q) +
∑

Q∈G∩B∩DQ0

σ(Q).

Since the bad cubes B satisfy a packing condition, we have

∑

Q∈B∩B∩DQ0

σ(Q) ≤
∑

Q∈B∩DQ0

σ(Q) � σ(Q0).
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Much as we did in (3.15)–(3.16), and recalling that QS = Top(S) one can then see
that it suffices to prove

∑

Q∈S∩B∩DQ0

σ(Q) � σ(QS ∩ Q0), ∀S ∈ F. (5.5)

To this end, we take an arbitrary S ∈ F and perform a stopping time argument to extract
FS, a family of dyadic subcubes of QS which are maximal (hence pairwise-disjoint)
with respect to the property Q /∈ S. The semi-coherency of S clearly implies that
S = DFS,QS . Set

μ := σ(QS)ω
XS
L and G := σ(QS)GL(XS, ·), (5.6)

and note that

μ(QS)

σ (QS)
= ω

XS
L (QS) ≈ 1.

Thus, (2.8) becomes

1 � μ(Q)

σ (Q)
�

(  
Q
(Mμ)

1
2 dσ

)2

� 1, ∀Q ∈ DFS,QS . (5.7)

ApplyRemark 3.7, fixing N large enough. Observing that in this case∇G is continuous
(away from XS), we obtain for every Q ∈ DFS,QS with �(Q) ≤ 2−N�(QS), that there
exists YQ ∈ 2B̃Q ∩ � with δ(YQ) ≥ 2−N�(Q) for which

|∇G(YQ)| � 1 and
G(YQ)

δ(YQ)
� 1. (5.8)

Note also that if Q ∈ S is so that �(Q) ≤ 2−N ′
�(QS), with N ′ large enough, we have

δ(XS) ≤ |XS − YQ | + δ(YQ) ≤ |XS − YQ | + C �(Q) ≤ |XS − YQ | + C 2−N ′
�(QS)

≤ |XS − YQ | + C ′ 2−N ′
δ(XS) < |XS − YQ | + 1

2
δ(XS),

thus

|XS − YQ | ≥ 1

2
δ(XS) ≈ �(QS) ≥ 2N

′
�(Q) � 2N

′
δ(YQ) >

1

2
δ(YQ).

We can then invoke (5.6), (2.37) and (5.7) to obtain

G(YQ)

δ(YQ)
� μ(
(xQ,Cδ(YQ)))

δ(YQ)n
� μ(
(xQ,C�(Q)))

σ (
(xQ,C�(Q)))
≤

(  
Q
(Mμ)

1
2 dσ

)2

� 1.

(5.9)
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This, (5.8), the mean value property for harmonic functions, and Caccioppoli’s and
Harnack’s inequalities yield

1 � |∇G(YQ)| � G(YQ)

δ(YQ)
� 1, (5.10)

for each Q ∈ DFS,QS with �(Q) ≤ 2−(N+N ′)�(QS).
Since YQ ∈ �, there exists IQ ∈ W so that YQ ∈ IQ . Note that �(IQ) ≈ δ(YQ) ≈N

�(Q) and dist(IQ, Q) ≤ |YQ − xQ | � �(Q). As a result, by taking ϑ ≥ 10(N + N ′)
large enough we clearly have that IQ ∈ Wϑ

Q , whence YQ ∈ IQ ⊂ Uϑ
Q . From this

point ϑ remains fixed and we set K0 = 2ϑ . To simplify the notation, in what follows
we drop the superindex ϑ and simply write UQ with connected components {Uϑ,i

Q }i .
Since YQ ∈ UQ , then it belongs to some Ui

Q , by relabeling if needed we assume that

YQ ∈ U 0
Q .

Note that by construction (see (5.3) and (5.4)), there is a Harnack path connecting
any pair of points in U 0,∗

Q (depending on ε), thus, by Harnack’s inequality and (5.10),

and recalling that ε � K−6
0

C−1δ(Y ) ≤ G(Y ) ≤ Cδ(Y ), ∀Y ∈ U 0,∗
Q , �(Q) ≤ ε�(QS), (5.11)

with C = C(K0, ε, M) (depending also on the allowable parameters). Moreover,
much as in (5.9),

G(Y ) ≤ Cδ(Y ), ∀Y ∈ U∗
Q, �(Q) ≤ ε�(QS), (5.12)

by (5.6), (2.37), and (5.7), where again C = C(K0, ε, M).
We are now ready to establish (5.5). We may assume that S ∩ DQ0 �= ∅, in which

case the semi-coherency of S gives R0 := QS ∩ Q0 ∈ S and S ∩ DQ0 = DFS,R0 . At
this point we proceed as in [25, Section 5] consider three cases:

• Case 0: Q ∈ DFS,R0 with �(Q) > ε10�(R0).

• Case 1: Q ∈ DFS,R0 with �(Q) ≤ ε10�(R0) and

sup
X∈Ũ i

Q

sup
Y∈BX

|∇G(Y ) − ∇G(YQ)| > ε2M . (5.13)

• Case 2: Q ∈ DFS,R0 with �(Q) ≤ ε10�(R0) and

sup
X∈Ũ i

Q

sup
Y∈BX

|∇G(Y ) − ∇G(YQ)| ≤ ε2M . (5.14)

Note that one trivially has

∑

Q∈DFS,R0
Case 0 holds

σ(Q) ≤
∑

Q∈DR0
ε10�(R0)<�(Q)≤�(R0)

σ (Q) � (log ε−1) σ (R0). (5.15)
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For the cubes in Case 1 we can use (5.11) and (5.12) so that [25, Lemma 5.8] yields

∑

Q∈DFS,R0
Case 1 holds

σ(Q) ≤ C(ε, K0, M) σ (R0). (5.16)

Similarly, [25, Lemma 5.10] implies that if M is large enough then all cubes in Case
2 satisfy the ε-local WHSA with parameter K0. All these together eventually imply
(5.5):

∑

Q∈S∩B∩DQ0

σ(Q) =
∑

Q∈B∩DFS,R0

σ(Q) =
∑

Q∈B∩DFS,R0
Case 0 holds

σ(Q) +
∑

Q∈B∩DFS,R0
Case 1 holds

σ(Q)

� σ(R0).

This completes the proof. ��

Remark 5.17 In Theorem 1.6 the corkscrew condition cannot be removed. Much as in
[4, Example 3, Appendix A], consider � := ⋃

k≥0 �k ⊂ R
2, where for each k ≥ 0,

we let �k be the k-th stage of Garnett’s 4-corners construction (see, e.g., [14, Chapter
1]), positioned inside the unit square whose lower left corner is at the point (2k, 0) on
the x-axis. As observed in [4, Example 3, AppendixA] one can easily see that� fails to
satisfy the interior corkscrew condition and its boundary is ADR but not UR. However,
bounded harmonic functions satisfy (full) Carleson measure estimates. To see this we
fix u harmonic in�with ‖u‖L∞(�) ≤ 1, and let x0 ∈ ∂�, 0 < r0 < ∞. Observing that
� is comprised of a countable number of open squares, we let {R j } j be the collection
of those such cubes meeting B0 = B(x0, r0). One can find y j ∈ B0 ∩ ∂R j ⊂ ∂�.
Setting ρ j := min(r0, diam(∂R j )), we note that B0 ∩ R j ⊂ B(y j , 2ρ j ) ∩ R j and

¨
B0∩�

|∇u|2 δ dX =
∑

j

¨
B0∩R j

|∇u|2 δ dX ≤
∑

j

¨
B(y j ,2ρ j )∩R j

|∇u|2 δ dX .

Recall that u is harmonic in� and bounded by 1, hence it satisfies the same properties
in R j . Additionally, since R j is a square (a Lipschitz domain), bounded harmonic
functions satisfyCarlesonmeasure estimates, with implicit constant that do not depend
on the particular j (the Carleson measure estimates property is scale-invariant and in
that regard the R j ’s are all equivalent to the unit square). Moreover, the R j ’s all have
ADR boundaries with uniform constant (again ADR is a scale-invariant property).
Hence, we can use that B(y j , ρ j ) ⊂ 2B0 to obtain

¨
B0∩�

|∇u|2 δ dX �
∑

j

ρ j �
∑

j

H1(B(y j , ρ j ) ∩ ∂R j )

≤
∑

j

H1(2B0 ∩ ∂R j ) ≤ H1(2B0 ∩ ∂�) � r0,
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where we have employed that sets {∂R j } j are pairwise disjoint and contained in ∂�,
and that ∂� is also ADR. We have then shown that bounded harmonic functions
satisfy Carleson measure estimates in �. One can produce a similar construction in 3
dimensions. Details are left to the interested reader.

5.2 Proof of Theorem 1.6 for the operators in (a)

The argument is very similar to the one for the Laplacian but it requires some changes.
First of all by Theorem 1.4 we can reduce matters to the case on which L is sym-
metric. Writing K := ∥

∥|∇A| δ(·)∥∥L∞(�)
< ∞ we have by [26, Lemma 4.39] that

|∇u(X)|δ(X) �K u(X) for every X ∈ � and for every 0 ≤ u ∈ W 1,2
loc (�) so

that Lu = 0 in � in the weak sense. Additionally, if 0 ≤ u ∈ W 1,2(6I ) is so
that Lu = 0 in 6I , with I being an (n + 1)-dimensional cube with 6I ⊂ � then
‖∇2u‖L2(I ) �K �(I )−1‖∇u‖L2(2I ) ( [26, Lemma 4.39]) and

|∇u(X) − ∇u(Y )| �K

( |X − Y |
�(I )

) 1
2

sup
2I

|∇u|, X ,Y ∈ I . (5.18)

The latter estimate can be derived from [17, Theorem 5.19] applied in the unit cube
and by translation and rescaling much as in [26, Lemma 4.39]. With this estimate
we can proceed as in [25, Section 5] and much as before there are three cases. The
cubes in Case 0 are trivial as before. For Case 2 one has to inspect the proof of [25,
Lemma 5.10] and see that the argument follows mutatis mutandis in account of the
previous estimates. For the cubes in Case 1 we need to make some changes. Rather
than using the argument in [25, Section 5A] we initially follow [25, Section 5B], using
(5.18) in place of [25, (3.38)], up to the [25, (5.35)] with p = 2 and Fγ ≡ 1, that is,

∑

Q∈DFS,R0
Case 1 holds

σ(Q) �
¨

�∗
FS,R0

|∇2G|2 G dX .

From this point we integrate by parts as in [26] (see also Sect. 3.2) using that we have
assumed that L is symmetric. With that one can obtain the desired estimate for the
cubes in Case 1 and the proof is then complete. Further details are left to the reader. ��

5.3 Proof of Theorem 1.6 for the operators in (b)

Much as in [28, Corollary 10.3] one can regularize A so that the new matrix Ã is
one of the operators considered in (a) and, moreover, Ã is a Fefferman-Kenig-Pipher
perturbation of A. Thus, Theorem 1.2 and the fact that we have already taken care of
the operators in (a) give the desired equivalences. ��
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5.4 Proof of Theorem 1.6 for the operators in (c)

This follows at once from Theorem 1.2 and the previous cases. ��

6 Proof of Theorem 1.9

We introduce some notation. Let � ⊂ R
n+1, n ≥ 2, be an open set with ADR

boundary and satisfying the corkscrew condition. We say that ωL ∈ Aweak∞ (σ ), if there
are a positive constant C > 1 and an exponent q > 1, such that for every surface ball

 = 
(x, r), with x ∈ ∂� and 0 < r < diam(∂�), there exists X
 ∈ B(x, r) ∩ �,

with dist(X
, ∂�) ≥ C−1r , satisfying ω
X


L � σ in 2
, and kX


L := dω
X

L

dσ
verifies

ˆ
2


kX


L (y)q dσ(y) ≤ C σ(
)1−q . (6.1)

We say that an open set � satisfies the Harnack chain condition if there is a
uniform constant C such that for every ρ > 0, � ≥ 1, and every pair of points
X , X ′ ∈ � with min{δ(X), δ(X ′)} ≥ ρ and |X − X ′| < �ρ, there is a chain of
open balls B1, . . . , BN ⊂ �, N ≤ C(�), with X ∈ B1, X ′ ∈ BN , Bk ∩ Bk+1 �= ∅,
C−1 diam(Bk) ≤ dist(Bk, ∂�) ≤ C diam(Bk). We observe that the Harnack chain
condition is a scale-invariant version of path connectedness.

We say that � is a 1-sided NTA (non-tangentially accessible) domain if � satisfies
both the corkscrew and Harnack chain conditions. Furthermore, we say that � is
an NTA domain if it is a 1-sided NTA domain and if, in addition, R

n+1\� satisfies
the corkscrew condition. If a 1-sided NTA domain, or an NTA domain, has an ADR
boundary, then it is called a 1-sided CAD (chord-arc domain) or a CAD, respectively.

In 1-sided CAD the elliptic measure is doubling (see e.g. [21]), hence ωL ∈
Aweak∞ (σ ) becomes ωL ∈ A∞(σ ), condition that can be equivalently written as fol-
lows: there exist constants 0 < α, β < 1 such that given an arbitrary surface ball

0 := B0 ∩ ∂�, with B0 := B(x0, r0), x0 ∈ ∂�, 0 < r0 < diam(∂�), and for
every surface ball 
 := B ∩ ∂� centered at ∂� with B ⊂ B0, and for every Borel set
F ⊂ 
, we have that

ω
X
0
L (F)

ω
X
0
L (
)

≤ α �⇒ σ(F)

σ (
)
≤ β.

6.1 Proof of Theorem 1.9, part (i)

As discussed in [25, Section 4], by slightly changing the constant C in the definition
of ωL ∈ Aweak∞ (σ ) we may assume that ω

X


L (
) ≥ C−1
1 for some constants C1 > 1

depending on n, ADR, and ellipticity. In turn, it was also shown that there exist
β, η ∈ (0, 1) so that for every Q ∈ D = D(∂�) one can find XQ ∈ BQ ∩ � with

δ(XQ) � �(Q) for which ω
XQ
L (Q) ≥ C−1

1 and
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σ(A) ≥ (1 − η)σ (Q) �⇒ ω
XQ
L (A) ≥ βω

XQ
L (Q), (6.2)

for any Borel set A ⊂ Q.
We need the following auxiliary result:

Lemma 6.3 [25, Lemma 4.12] Let Q ∈ D and letμ be a Borel measure on ∂�. Assume
that there exist K1 ≥ 1 and β, η ∈ (0, 1) such that

1 ≤ μ(Q)

σ (Q)
≤ μ(∂�)

σ(Q)
≤ K1,

and for any Borel set A ⊂ Q,

σ(A) ≥ (1 − η)σ (Q) �⇒ μ(A) ≥ βμ(Q).

Then there exists a pairwise disjoint family FQ = {Q j } j ⊂ DQ\{Q} such that

σ
(

Q\
⋃

Q j∈FQ

Q j

)

≥ (1 − α)σ(Q), (6.4)

and

β

2
≤ μ(Q′)

σ (Q′)
≤

(  
Q′

(Mμ)
1
2 dσ

)2 ≤ K2, ∀ Q′ ∈ DFQ ,Q, (6.5)

where α ∈ (0, 1) and K2 > 1 depend only on n, β, η, K1, and the ADR constant.

We are now ready to prove that ωL ∈ Aweak∞ (σ ) implies that ωL admits a strong
coronadecomposition.ByProposition2.39, it suffices to obtain a strong coronadecom-
position for ωL on DQ0 any cube Q0 ∈ D(∂�). Fix then Q0 ∈ D(∂�) and we will
construct the corona decomposition by iterating Lemma 6.3. The 0-th generation cubes

are constructed as follows. As observed above ω
XQ0
L (Q0) ≥ C−1

1 for some C1 ≥ 1.

Write μ := C1σ(Q0)ω
XQ0
L so that

1 ≤ C1 ω
XQ0
L (Q0) = μ(Q0)

σ (Q0)
≤ μ(∂�)

σ(Q0)
= C1 ω

XQ0
L (∂�) ≤ C1. (6.6)

Using this and (6.2) we can invoke Lemma 6.3 and find a pairwise family FQ0 ⊂
DQ0\{Q0} such that (6.4) and (6.5) hold with Q = Q0. Let SQ0 := DFQ0 ,Q0 , which is
semi-coherent with Top(SQ0) = Q0. Set QSQ0

:= Top(SQ0) = Q0 and XSQ0
:= XQ0

so that (2.7) holds for SQ0 . Observe that (6.5) and the fact that C
−1
1 ≤ ω

XQ0
L (Q0) ≤ 1

give for every Q ∈ SQ0

β

2C1

ω
XSQ0
L (QSQ0

)

σ (QSQ0
)

≤ β

2C1σ(Q0)
≤ ω

XSQ0
L (Q)

σ (Q)
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≤
(  

Q
(Mω

XSQ0
L )

1
2 dσ

)2 ≤ K2

C1σ(Q0)
≤ K2

ω
XSQ0
L (QSQ0

)

σ (QSQ0
)

,

that is, (2.8) holds for SQ0 . Defining F
0 := {SQ0}, G

0 := SQ0 , and F0 = FQ0 one
can clearly obtain

DQ0 = G
0
⊔ ( ⊔

Q∈F0

DQ

)

and, by (6.4),

σ

(
⊔

Q∈F0

Q

)

≤ ασ(Q0).

We now iterate, repeating this process for any Q′ ∈ F0. We then obtain a pairwise
familyFQ′ ⊂ DQ′ \{Q′}. LetSQ′ := DFQ′ ,Q′ which is semi-coherentwithTop(SQ′) =
Q′. Set QSQ′ := Top(SQ′) = Q′ and XSQ′ = XQ′ so that (2.7) and (2.8) hold for SQ′ .

Defining F
1 := {SQ′ : Q′ ∈ F0}, G

1 := ⊔

S∈F1 S, and F1 := {FQ′ : Q′ ∈ F0} we
easily see that

DQ0 = G
0
⊔ ( ⊔

Q∈F0

DQ

)

= G
0
⊔

G
1
⊔ ( ⊔

Q∈F1

DQ

)

and

σ

(
⊔

Q∈F1

Q

)

=
∑

Q′∈F0

σ

(
⊔

Q∈FQ′
Q

)

≤α
∑

Q′∈F0

σ(Q′)=ασ

(
⊔

Q′∈F0

Q′
)

≤α2σ(Q0).

We now iterate this argument with the cubes of F1 and so forth so on. We then define
F = ⊔∞

j=0 F
j , G = ⊔∞

j=0 G
j , and F = ⊔∞

j=0 F j . Note that by construction G =
⊔

S∈F
S, where each S is semi-coherent. For each S ∈ F we have that QS = Top(S),

XS = XQS , and that (2.7) and (2.8) hold. It is also clear from the construction that
Top(F) = F � {Q0}. We next show that D\G = ∅. Assume otherwise that the exists
Q′ ∈ D\G = ∅. Since 0 < α < 1, we can find k ≥ 0 so that αkσ(Q0) < σ(Q′). Note
that

DQ0 =
( k

⊔

j=0

G
j
) ⊔( ⊔

Q∈Fk

DQ

)

,

hence Q′ ∈ DQ for some Q ∈ Fk . This gives a contradiction:

αkσ(Q0) < σ(Q′) ≤ σ

⎛

⎝
⊔

Q∈Fk

Q

⎞

⎠ ≤ αk+1σ(Q0) < αkσ(Q0).
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We next show that the cubes in Top(F) = F � {Q0} satisfy a Carleson packing
condition. Assuming this momentarily, and if we set B = ∅ we have then shown that
(B, G, F) is a semi-coherent corona decomposition so that (2.7) and (2.8) hold, which
completes the proof.

Let us then show that Top(F) = F � {Q0} satisfy a Carleson packing condition.
Take an arbitrary Q′

0 ∈ Top(F), that is, Q′
0 ∈ F j0 for some j0. Let j ≥ j0 and note

that F j+1 = {FQ′ : Q′ ∈ F j }, hence

� j+1 :=
∑

Q∈F j+1∩DQ′
0

σ(Q) =
∑

Q′∈F j

∑

Q∈FQ′∩DQ′
0

σ(Q)

=
∑

Q′∈F j∩DQ′
0

σ

(
⊔

Q∈FQ′
Q

)

≤ α
∑

Q′∈F j∩DQ′
0

σ(Q′) = α� j .

Iterating this we obtain � j ≤ α j− j0 � j0 = α j− j0 σ(Q′
0), for every j ≥ j0. As a

result,

∑

Q∈Top(F)∩DQ′
0

σ(Q) =
∞
∑

j= j0

� j ≤ σ(Q′
0)

∞
∑

j= j0

α j− j0 = (1 − α)−1 σ(Q′
0), (6.7)

which is the desired estimate for any arbitrary cube Q′
0 ∈ Top(F).

Consider next the general case Q ∈ DQ0 and let {Qk}k be the collection of maximal
cubes (hence pairwise disjoint) in Top(F) contained in Q. Then, using (6.7) with Qk

∑

Q′∈Top(F)∩DQ

σ(Q′) =
∑

k

∑

Q′∈Top(F)∩DQk

σ(Q′) ≤ (1 − α)−1
∑

k

σ(Qk)

= (1 − α)−1 σ

(
⊔

k

Qk

)

≤ (1 − α)−1σ(Q),

and this shows that Top(F) = F � {Q0} satisfy a Carleson packing condition, as
desired. ��

6.2 Proof of Theorem 1.9, part (ii)

We assume that� is a 1-sidedCAD. Part (i) shows that (a)�⇒(b), sinceωL is doubling
in 1-sided CAD. Below we show that (b)�⇒(a). Assuming this momentarily, [9,
Theorem 1.1] gives that (a)⇐⇒ (e) and Theorem 1.1 yields the other equivalences.

We introduce some notation. Let E ⊂ R
n+1 be a an ADR set and let D = D(E)

be its associated family of dyadic cubes. Given sequence of non-negative numbers
{αQ}Q∈D, we define the “measure” m (acting on collection of dyadic cubes) by

m(D′) :=
∑

Q∈D′
αQ, for D

′ ⊂ D. (6.8)
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For a fixed Q0 ∈ D, we say that m is a discrete “Carleson measure” on DQ0 (with
respect to σ ), and write m ∈ C(Q0), if

‖m‖C(Q0) := sup
Q∈DQ0

m(DQ)

σ (Q)
< ∞. (6.9)

We also set

‖m‖C := sup
Q∈D

m(DQ)

σ (Q)
< ∞ (6.10)

to denote the global Carleson norm on D. Given a family F ⊂ D of pairwise disjoint
cubes, we define the restriction of m to the sawtooth DF by

mF(D′) := m(D′ ∩ DF) =
∑

Q∈D′\
(

⋃

Q j∈F
DQ j

)

αQ . (6.11)

For a pairwise disjoint family F = {Q j } ⊂ D and a non-negative Borel measure μ on
∂� we define the projection measure PFμ as

PFμ(A) := μ

(

A\
⋃

Q j∈F
Q j

)

+
∑

Q j∈F

σ(A ∩ Q j )

σ (Q j )
μ(Q j ),

for any Borel set A ⊂ ∂�.

Lemma 6.12 [22, Lemma 8.5] Suppose that E ⊂ R
n+1 is an ADR set. Fix Q0 ∈ D(E),

let σ and ω be a pair of dyadically doubling Borel measures on Q0, and let m be a
discrete Carleson measure with respect to σ with

‖m‖C(Q0) ≤ M0 < ∞. (6.13)

Suppose that there exists γ > 0 such that for every Q0 ∈ DQ0 and every family of
pairwise disjoint dyadic cubes F = {Q j } ⊂ DQ0 verifying

‖mF‖C(Q0) ≤ γ, (6.14)

we have thatPFω satisfies the following property: for all ε ∈ (0, 1) there exists Cε > 1
such that

F ⊂ Q0,
σ (F)

σ (Q0)
≥ ε �⇒ PF ω(F)

PF ω(Q0)
≥ 1

Cε

. (6.15)

Then, there exist α, β ∈ (0, 1) such that for every Q0 ∈ DQ0 ,
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F ⊂ Q0,
σ (F)

σ (Q0)
≥ α �⇒ ω(F)

ω(Q0)
≥ β, (6.16)

that is, ω ∈ Adyadic∞ (Q0, σ ).

We are now ready to prove that (b)�⇒(a). A more restrictive version of this result
appears in [16, Section 4.2] using different methods. Let (B, G, F) be the assumed
corona decomposition associated with ωL . Set for any Q ∈ D

αQ :=
{

σ(Q), Q ∈ B ∪ Top(F),

0, otherwise.
(6.17)

We define the associated discrete measure m as in (6.8). Fix Q0 ∈ D and write

ω := ω
XQ0

L . Note that both ω and σ are dyadically doubling on Q0, since � is a
1-sided CAD (see for instance [21]). In view of the Carleson packing condition for
bad and top cubes, we have

‖m‖C(Q0) ≤ ‖m‖C ≤ M0 < ∞.

Therefore, Lemma 6.12 implies that ω
XQ0

L ∈ Adyadic∞ (Q0) provided we show that
(6.14) for some small γ ∈ (0, 1) to be found implies (6.15). Since Q0 is arbitrary and
the same constants α and β are valid for all Q0, the fact that the elliptic measure is
doubling in the present scenario easily yields that ω ∈ A∞(σ ), details are left to the
interested reader.

To complete the proof, it suffices to show that (6.14) implies (6.15). To this end,
fix Q0 ∈ DQ0 and a family of pairwise disjoint dyadic subcubes F = {Q j } ⊂ DQ0

satisfying (6.14) with γ ∈ (0, 1) to be chosen momentarily. Let F ⊂ Q0 be an
arbitrary Borel set.

The case F = {Q0} is trivial since PF ω(F)
PF ω(Q0)

= σ(F)
σ (Q0)

, and (6.15) clearly holds.
Thus we may assume that F ⊂ DQ0\{Q0}. Write E0 := Q0\(⋃Q j∈F Q j ). We claim
that there exists S0 ∈ G such that Q0 � Top(S0), DF,Q0 ⊂ S0, and

ω(Q)

σ (Q)
≈ ω(Q0 ∩ Top(S0))

σ (Q0 ∩ Top(S0))
=: �0, ∀Q ∈ DF,Q0 . (6.18)

Assuming (6.18) momentarily, we conclude (6.15) as follows. By definition,

PFω(F) = ω(F ∩ E0) +
∑

Q j∈F

ω(Q j )

σ (Q j )
σ (F ∩ Q j ) := I + II. (6.19)

We first deal with the second term. If we write Q̂ j for the dyadic parent of Q j ∈ F,
it is clear than Q̂ j ∈ DF,Q0 . Since both ω and σ are dyadically doubling, it follows
from (6.18) that
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II ≈
∑

Q j∈F

ω(Q̂ j )

σ (Q̂ j )
σ (F ∩ Q j ) ≈ �0

∑

Q j∈F
σ(F ∩ Q j ) = �0 σ(F\E0). (6.20)

To bound the first term, let η > 0 be an arbitrary number. Since ω is a regular Borel
measure, one can find an open set Uη ⊃ F ∩ E0 such that ω(Uη\(F ∩ E0)) < η. Let
x ∈ F ∩ E0 ⊂ Uη. Then 
(x, rx ) ⊂ Uη for some 0 < rx < ∞. Pick Qx ∈ DQ0

containing x such that diam(Qx ) < rx and �(Qx ) < �(Q0). This and the fact x ∈ Q0
give Qx ⊂ 
(x, rx ) ∩ Q0 ⊂ Uη ∩ Q0. Let Qmax

x ∈ DQ0 be the maximal cube with
Qmax

x ⊃ Qx such that Qmax
x ⊂ Uη ∩ Q0. Denote by F̃ the collection of the maximal

cubes Qmax
x for x ∈ F ∩ E0. Note that F̃ is pairwise disjoint,

F ∩ E0 ⊂
⋃

Q∈F̃
Q ⊂ Uη ∩ Q0, and F ∩ E0 ∩ Q �= ∅, ∀Q ∈ F̃. (6.21)

On the other hand,

F̃ ⊂ DF,Q0 . (6.22)

Otherwise, there are Q ∈ F̃ and Q j ∈ F such that Q ⊂ Q j . Then F ∩ E0 ∩ Q ⊂
E0 ∩ Q j = ∅, which contradicts (6.21). Then, we use (6.18), (6.21) and (6.22) to
obtain

�0σ(F ∩ E0) ≤
∑

Q∈F̃
�0σ(Q) ≈

∑

Q∈F̃
ω(Q) ≤ ω(Uη ∩ Q0)

≤ ω(Uη\(F ∩ E0)) + ω(F ∩ E0) ≤ η + ω(F ∩ E0),

where the implicit constant is independent of η. Letting η → 0, we arrive at

I = ω(F ∩ E0) � �0 σ(F ∩ E0). (6.23)

Now collecting (6.19), (6.20), and (6.23) we get

PFω(F) � �0 σ(F).

This and the fact that PFω(Q0) = ω(Q0) ≈ �0σ(Q0) easily yield

PF ω(F)

PF ω(Q0)
� σ(F)

σ (Q0)
, (6.24)

which immediately gives (6.15).
It remains to show (6.18). Note that if Q ∈ DF,Q0 , then

αQ ≤
∑

Q′∈DF,Q

αQ′ ≤ ‖mF‖C(Q0)σ (Q) ≤ γ σ(Q).
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By (6.17), if we simply take γ = 1
2 , we conclude that Q /∈ B ∪ Top(F). That is, our

choice of γ guarantees that DF,Q0 ⊂ D\(B ∪ Top(F)). This and the semi-coherency
of the regimes in F immediately imply that there exists a unique S0 ∈ G such that
DF,Q0 ⊂ S0 and Q0 � Top(S0). Note that Q0 ∩ Top(S0) ∈ S0 since S0 is semi-
coherent and S0 � Q0 ⊂ Q0 ∩ Top(S0) ⊂ Top(S0). Thus, (2.10) implies

ω
XS0
L (Q)

σ (Q)
≈ ω

XS0
L (QS0)

σ (QS0)
≈ ω

XS0
L (Q0 ∩ Top(S0))

σ (Q0 ∩ Top(S0))
, ∀Q ∈ DF,Q0 . (6.25)

Note that Q0 � Top(S0) ∩ Q0 ⊂ QS0 ∩ Q0, hence QS0 ∩ Q0 �= ∅. If Q0 ⊂ QS0 ,
then the change of pole formula gives

dω
XQ0

L

dω
XS0
L

(y) ≈ 1

ω
XS0
L (Q0)

, forω
XS0
L -a.e. y ∈ Q0.

As a result, if Q, Q′ ⊂ Q0 we obtain

ω(Q)

ω(Q′)
= ω

XQ0

L (Q)

ω
XQ0

L (Q′)
≈ ω

XS0
L (Q)

ω
XS0
L (Q′)

.

Analogously, if QS0 ⊂ Q0, then the change of pole formula gives

dω
XS0
L

dω
XQ0

L

(y) ≈ 1

ω
XQ0

L (QS0)

, forω
XQ0

L -a.e. y ∈ QS0 .

Thus, if Q, Q′ ⊂ QS0 , then

ω
XS0
L (Q)

ω
XS0
L (Q′)

≈ ω
XQ0

L (Q)

ω
XQ0

L (Q′)
= ω(Q)

ω(Q′)
.

This means that in either scenario if Q, Q′ ⊂ QS0 ∩ Q0 we obtain

ω(Q)

ω(Q′)
≈ ω

XS0
L (Q)

ω
XS0
L (Q′)

.

Recalling that DF,Q0 ⊂ S0 ∩ DQ0 ⊂ DQS0
∩ DQ0 , the previous estimate and (6.25)

give as desired (6.18):

ω(Q)

ω(Q0 ∩ Top(S0))
≈ ω

XS0
L (Q)

ωXS0 (Q0 ∩ Top(S0))
≈ σ(Q)

σ (Q0 ∩ Top(S0))
,

for all Q ∈ DF,Q0 . The proof is then complete. ��
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6.3 Proof of Theorem 1.9, part (iii)

Assuming that � is a 1-sided CAD, we just need to apply [3, Theorem 1.2] for the
Laplacian, [28, Theorem 1.6] for the Kenig-Pipher operators, [28, Corollary 10.3] for
the analog class using oscillations, and [9, Theorem 1.4] for the perturbations. Details
are left to the interested reader. ��
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