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Abstract
This paper is concerned with the uniqueness of bounded continuous L3,∞-solutions
on the whole time axis R or the half-line (−∞, T ) to the Navier–Stokes equations
in 3-dimensional unbounded domains. When � is an unbounded domain, it is known
that a small solution in BC(R; L3,∞) is unique within the class of solutions which
have sufficiently small L∞(R; L3,∞)-norm; i.e., if two solutions u and v exist for the
same force f , both u and v are small, then the two solutions coincide. There is another
type of uniqueness theorem. Farwig et al. (Commun Partial Differ Equ 40:1884–1904,
2015) showed that if two solutions u and v exist for the same force f , u is small and if v
has a precompact rangeR(v) := {v(t);−∞ < t < T } in L3,∞, then the two solutions
coincide. However, there exist many solutions which do not have precompact range.
In this paper, instead of the precompact range condition, by assuming some decay
property of v(x, t) with respect to the spatial variable x near t = −∞, we show a
modified version of the above-mentioned uniqueness theorem. As a by-product, in
the half-space R3+, we obtain a non-existence result of backward self-similar L3,∞-
solutions sufficiently close to some homogeneous function Q(x/|x |)/|x | in a certain
sense.

Mathematics Subject Classification 35Q30 · 35A02 · 76D05 · 35B10

1 Introduction

Themotion of a viscous incompressible fluid in 3-dimensional domains� is governed
by the Navier–Stokes equations:
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(N-S)

⎧
⎨

⎩

∂t u − �u + u · ∇u + ∇ p = f , t ∈ R, x ∈ �,

div u = 0, t ∈ R, x ∈ �,

u|∂� = 0, t ∈ R,

where u = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the velocity vector
and the pressure, respectively, of the fluid at the point (x, t) ∈ �×R.Here f is a given
external force. In this paper we consider the uniqueness of bounded mild L3

w-solutions
to (N-S) on the whole time axis (−∞,∞) or the half-line (−∞, T ) in unbounded
domains �. Typical examples of such solutions are stationary, periodic-in-time and
almost periodic-in-time solutions.

In case where � ⊂ R
3 is bounded, the existence and uniqueness of time-periodic

solutions were considered by several authors; see e.g. [12] and references therein.
Maremonti [38, 39] was the first to prove the existence of unique time-periodic reg-
ular solutions to (N-S) in unbounded domains, namely for � = R

3 and � = R
3+.

In the case of more general unbounded domains, the existence of time-periodic solu-
tions was proven by e.g. Kozono–Nakao [30], Maremonti–Padula [40], Salvi [47],
Yamazaki [55], Galdi–Sohr [21], Kubo [35], Crispo–Maremonti [6], Kang–Miura–
Tsai [28],Geissert–Hieber–Nguyen [22],Okabe–Tsutsui [46],Galdi–Kyed [20],Galdi
[19], Eiter–Kyed [8] and Eiter–Kyed–Shibata [9]. Some of them constructed solutions
to (N-S) on the whole time axis without any time-periodic condition on the external
force. In particular, Kozono–Nakao [30] introduced a new approach to the study of
time-periodic solutions by using the following integral equation:

u(t) =
∫ t

−∞
e−(t−τ)AP(−u · ∇u + f )(τ ) dτ, (1.1)

where the definitions of P and A will be mentioned later. In [30], they constructed
global L3-solutions on the whole time axis (−∞,∞) to (1.1), which are called mild
solutions to (N-S) on (−∞,∞). More precisely, Kozono–Nakao [30] showed that
if the domain � is Rn,Rn+ (n ≥ 3) or an n-dimensional exterior domain (n ≥ 4)
and if the external force f is small in some function space, then there exists a small
Ln-solution to (1.1) in the class

{

u ∈ BC(R; Ln); sup
t∈R

‖u(t)‖Lr + sup
t∈R

‖∇u(t)‖Lq < δ

} (
2 < r < n,

n

2
< q < n

)
,

(1.2)

where δ is a small number. They also showed that this small solution is unique within
the class (1.2). Furthermore, they proved that this small Ln-solution is a strong solution
to (N-S) and that if f is a small time-periodic function in some function space, then
their small solution u is also time-periodic. In the case where � ⊂ R

n(n ≥ 3) is a
perturbed half space or an aperture domain with ∂� ∈ C∞, Kubo [35] proved the
same uniqueness and existence theorem as Kozono–Nakao [30]. When � = R

3,R3+,

a perturbed half space or an aperture domain with ∂� ∈ C∞, Farwig, Nakatsuka and
the present author [11] showed that if f is small and has a precompact range in some
function space, then the small solution u also has a precompact range in L3.
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On uniqueness of mild L3,∞-solutions…

In the case where � is a 3-dimensional exterior domain with ∂� ∈ C∞, Yamazaki
[55] succeeded in proving the existence of small mild L3,∞-solutions on the whole
time axis, if the external force f is sufficiently small in some sense. More precisely, he
showed the existence of small mild Ln,∞-solutions in the case � is an n-dimensional
exterior domain for n ≥ 3.Here L p,q denotes theLorentz space and L p,∞ is equivalent
to the weak-L p space (L p

w). Yamazaki [55] also proved uniqueness of small solutions
within the class

{

v ∈ BUC(R; Ln,∞
σ (�)); sup

t∈R
‖v(t)‖Ln,∞ < δ

}

,

where δ = δ(�, n) is a small number and Ln,∞
σ will be defined in the next section. See

Lemma 8 below. Furthermore, if n = 3, Kang–Miura–Tsai [28] showed the existence
of mild solutions u on the whole time axis with the spatial uniform decay:

sup
t

sup
|x |>L

|x |α|v(x, t) − V (x)| < ∞ (1.3)

for some α > 1, L > 0 and some function V (x) with sup|x |>L |x ||V (x)| < ∞, if f
satisfies adequate conditions. Note that V ∈ L3,∞(�) and supt ‖v(t) − V ‖Lr ,∞(�) <

∞ for some 1 < r < 3. They also dealt with the inhomogeneous boundary value
problem.

Concerning the uniqueness of solutions on the whole time axis, roughly speak-
ing, it was shown in [30, 35, 55] that a small solution in some function spaces (e.g.
BC(R; L3,∞(�))) is unique within the class of solutions which are sufficiently small;
i.e., if u and v are solutions for the same force f and if both of them are small,
then u = v. It is notable that, concerning time-periodic solutions, Galdi–Sohr [21]
show that a small time-periodic solution is unique within the larger class of all peri-
odic weak solutions v with ∇v ∈ L2(0, Tper ; L2), satisfying the energy inequality
∫ Tper
0 ‖∇v‖2

L2 dτ ≤ − ∫ Tper
0 (F,∇v) dτ and mild integrability conditions on the cor-

responding pressure; here Tper is a period of F and f = ∇ · F .

Another type of uniqueness theorem for solutions on thewhole time axis or the half-
line (−∞, T ) was proven by Farwig, Nakatsuka and the present author [10] without
time-periodic condition, where it was proven that if u and v are solutions for the same
force f , u is small and if v satisfies the precompact range condition (PRC):

(PRC) R(v) := {v(t) ∈ L3,∞; t ∈ (−∞, T )} is precompact in L3,∞,

then u = v on (−∞, T ). Note that the smallness condition is assumed only on one of
solutions. See also [16, 17, 43, 44, 51].

Since almost periodic-in-time solutions satisfy (PRC), this uniqueness theorem is
applicable to almost periodic-in-time solutions. In [10], without (PRC), it was also
shown that a similar uniqueness theorem holds under the smallness condition of u,

(1.3) and the condition: u, v ∈ BC(−∞, T ; L3,∞ ∩ Lq) for some q > 3.On the other
hand, there are many mild L3,∞-solutions to (N-S) that satisfy neither (PRC) nor
(1.3). For example, traveling solutions u(x, t) = u(x −a · t, 0) (a 
= 0, u 
≡ 0) satisfy
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neither (PRC) nor (1.3), when � = R
3. Other examples are backward self-similar

solutions u(x, t) = 1√−t
U ( x√−t

) in R3 × (−∞,−1), when U 
≡ 0 and U ∈ L3.

Very recently the present author showed a similar uniqueness theorem without
(PRC) or (1.3) in [52, Theorem 3], where the Lr (r < 3) and L3 integrabilities of solu-
tions are assumed instead of (PRC). These integrabilities, however, are too restrictive
for solutions to the 3D exterior problem. Indeed, if � is a 3D exterior domain and u
is a stationary weak solution to (N-S), then u cannot belong to L3, excepting in the
case where the net force exerted on ∂� is equal to zero. See e.g. [32]. In the present
paper, we will improve the uniqueness theorems given in [10, 52] in order to deal with
L3,∞-solutions to the 3D exterior problem.

Throughout this paper we impose the following assumption on the domain.

Assumption 1 � ⊂ R
3 is an exterior domain, the half-spaceR3+, the whole spaceR3,

a perturbed half-space, or an aperture domain with ∂� ∈ C2+ν, 0 < ν < 1.

Here, the assumption ∂� ∈ C2+ν means that for each x ∈ ∂� there are an open
ball Bx centered at x and a function gx ∈ C2+ν(G) for some domain G ⊂ R

2 such
that after a rotation of the Cartesian coordinates, if necessary,

y3 > gx (y1, y2) for all y = (y1, y2, y3) ∈ � ∩ Bx , y3 < gx (y1, y2) for all
y ∈ (R3\�̄) ∩ Bx and y3 = gx (y1, y2) for all y ∈ (∂�) ∩ Bx .

The definitions of a perturbed half-space and an aperture domain are as follows
(See e.g. [13–15]). Let R3+ := {x ∈ R

3; x3 > 0} and � ⊂ R
3 be a domain. If there

exists an open ball B ⊂ R
3 such that � ∪ B = R

3+ ∪ B, then � is called a perturbed
half-space. If there exists an open ball B ⊂ R

3 such that � ∪ B = R
3+ ∪ R

3− ∪ B
where d > 0 and R

3− := {x ∈ R
3; x3 < −d}, then � is called an aperture domain.

Since the aperture domain � should be connected, there are some apertures and one
can take two disjoint subdomains �± and a smooth 2-dimensional manifold M such
that � = �− ∪ M ∪ �+, �±\B = R

3±\B and M ∪ ∂M = ∂�− ∩ ∂�+. We do not
need to assume the connectedness of R3\�̄.

Let BC(I ; X) denote the set of all bounded continuous functions on an interval I
with values in a Banach space X . The open ball with center x and radius R > 0 will
be denoted by BR(x). Let μ(A) be the 3-dimensional Lebesgue measure of A ⊂ R

3.

The definition of mild L3,∞-solutions will be written in the next section. Let

L̃3,∞
σ (�) := L3,∞

σ (�) ∩ L∞(�)
‖·‖L3,∞

,

where the definition of L3,∞
σ (�) will be written in the next section. Now our main

results on uniqueness of mild L3,∞-solutions reads as follows.

Theorem 1 Let � satisfy Assumption 1. There exists constants δ(�), c∗(�) > 0 with
the following property: Let T ≤ ∞, u and v be mild L3,∞-solutions to (N-S) on
(−∞, T ) for the same force f ,
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u, v ∈ BC((−∞, T ); L̃3,∞
σ (�)) (1.4)

and

lim sup
t→−∞

‖u(t)‖L3,∞(�) < δ. (1.5)

Assume that there exists a function V = V (x) ∈ L3,∞(�) such that

lim sup
t→−∞

‖v(t) − V ‖L3,∞({|v(t)−V |≤γ0|t |−1/2}) < δ, (1.6)

where γ0 := c∗ ·
(

lim sup
t→−∞

‖v(t)‖L3,∞(�) + ‖V ‖L3,∞(�) + 1 + δ

)7

. (1.7)

Then u ≡ v on (−∞, T ). Here {|v(t) − V | ≤ γ0|t |−1/2} := {x ∈ � ; |v(x, t) −
V (x)| ≤ γ0|t |−1/2}.
Corollary 2 Let � satisfy Assumption 1 and 1 < r < 3. There exist a constant
c∗∗(�, r) > 0 with the following property: Let T ≤ ∞, u and v be mild L3,∞-
solutions to (N-S) on (−∞, T ) for the same force f . Assume that (1.4) and (1.5) hold.
Furthermore assume that there exists a function V ∈ L3,∞(�) such that

lim sup
t→−∞

‖v(t) − V ‖Lr ,∞(�)

|t | 12 ( 3r −1)
< c∗∗ ·

(

lim sup
t→−∞

‖v(t)‖L3,∞(�) + ‖V ‖L3,∞(�) + 1 + δ

)−7( 3r −1)

.

(1.8)

Then u ≡ v on (−∞, T ).

By the interpolation inequality:

‖g(t)‖L3,∞({|g(t)|≤M}) ≤ C‖g(t)‖1−r/3
L∞({|g(t)|≤M})‖g(t)‖r/3Lr ,∞ ≤ CM1−r/3‖g(t)‖r/3Lr ,∞,

we see that (1.8) implies (1.6) if c∗∗ is sufficiently small. Hence, Corollary 2 is a direct
consequence of Theorem 1.

Remark 1 (i) When � is an aperture domain, all mild L3,∞-solutions are assumed
to belong to L3,∞

σ and hence satisfy the vanishing flux condition φ(u(t)) = 0
for all t ∈ (−∞, T ), see the next section.

(ii) Condition (1.8) can be replaced by the following simpler condition:

lim sup
t→−∞

‖v(t) − V ‖Lr ,∞(�) < ∞ (1.9)

for some1 < r < 3 and for someV ∈ L3,∞, since (1.9) implies that theL.H.S. of
(1.8) vanishes.We emphasis that (1.9) does not need any smallness conditions on
v and V themselves. Furthermore, when � = R

3,R3+, 3-dimensional perturbed
half-spaces or aperture domains, letting V ≡ 0, we see that Corollary 2 is
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applicable tomild L3-solutions on (−∞,∞) in the class (1.2) given byKozono–
Nakao [30] and Kubo [35], since L3

σ (�) ⊂ L̃3,∞
σ (�).

(iii) For d(t) := |t |1/2/ log |t |,

‖v(t) − V ‖L3,∞({|v(t)−V |≤γ0|t |−1/2}∩Bd(t)(0)) ≤ C{μ(Bd(t)(0))}1/3γ0|t |−1/2 → 0

as t → −∞. Then Condition (1.6) is equivalent to

lim sup
t→−∞

‖v(t) − V ‖L3,∞({|v(t)−V |≤γ0|t |−1/2}∩{|x |≥d(t)}) < δ.

Hence, roughly speaking, (1.6) requires only that v is close to some function
V ∈ L3,∞ in the L∞L3,∞-topology in the area near |x | = ∞ and t = −∞. In
other words, v is assumed to behave like V (x) as |x | → ∞ near t = −∞.

(iv) In the case � is a 3D exterior domain, Yamazaki [55] proved the existence of
bounded continuous mild L3,∞-solutions u on the whole time axis, if f can be
written in the form f = ∇ · F, F ∈ BUC(R; L3/2,∞) and F is sufficiently
small. We note that, in addition to this smallness condition on F, if we assume
f ∈ BC(R; L3,∞), then standard arguments easily prove that Yamazaki’s small
solution u belongs to L∞(R; L9) ∩ BC(R; L3,∞

σ ) ⊂ BC(R; L̃3,∞
σ ); see [16,

Remark 2]. Moreover, the existence of small mild solutions with (1.3) was also
proven by Kang–Miura–Tsai [28] if f satisfies some conditions. Since (1.3)
implies (1.9) and hence (1.8), Theorem 1 is applicable to their solutions. We also
note that Corollary 2 is an improvement of our previous uniqueness theorem
given in [52, Theorem 3], where the conditions u, v ∈ BC((−∞, T ); L3

σ ), (1.5)
and lim supt→−∞ ‖v(t)‖Lr < ∞ (r < 3) were assumed.

In Theorem 1, the function V = V (x) is assumed to be a function of x and
independent of time-variable t . When V is assumed to be a function of (x, t), we
have:

Theorem 3 Let � satisfy Assumption 1. There exists a constant δ(�) > 0 with the
following property: Let T ≤ ∞ and let u and v be mild L3,∞-solutions to (N-S) on
(−∞, T ) for the same force f . Assume that (1.4) and (1.5) hold. Furthermore assume
that there exists a function V ∈ BC((−∞, T ); L3,∞(�)) such that

lim sup
t→−∞

‖v(t) − V (t)‖L3,∞({|v(t)−V (t)|≤η}) < δ for some constant η > 0

(1.10)

and the range R(V ) := {V (t) ∈ L3,∞(�); t ∈ (−∞, T )} can be covered by finitely
many open balls of radius δ > 0, i.e., there are finitely many functions {Vl}Nl=1 ⊂
L3,∞(�) satisfying

R(V ) ⊂
N⋃

l=1

{
θ ∈ L3,∞(�); ‖θ − Vl‖L3,∞(�) < δ

}
. (1.11)
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Thenu ≡ v on (−∞, T ).Here {|v(t)−V (t)| ≤ η} := {x ∈ �; |v(x, t) − V (x, t)| ≤ η} .

Remark 2 (i) Condition (1.10) is more restricted compared to Condition (1.6) in some
sense, since the constant η does not decay as t → −∞.

(ii) If supt≤t0 ‖v(t) − V (t)‖Lr ,∞(=: A) < ∞ for some 1 < r < 3 and t0 < T , then

sup
t≤t0

‖v(t) − V (t)‖L3,∞({|v(t)−V (t)|≤η} ≤ Cη1−r/3Ar/3 < δ

for all η ∈ (
0,

(
δ/(CAr/3)

)3/(3−r))
. Hence, Condition (1.10) can be replaced by

lim sup
t→−∞

‖v(t) − V (t)‖Lr ,∞(�) < ∞ for some 1 < r < 3.

(iii) If v has a precompact range in L3,∞, then by setting V = v we can see that (1.10)
and (1.11) hold. Hence Theorem 3 is an improvement of the uniqueness theorem
given in [10] with the precompact range condition.

Remark 3 In Theorems 1 and 3 and Corollary 2, Condition (1.4) can be replaced by
the condition:

u, v ∈
{

g = g1 + g2 ∈ BC(I ; L3,∞
σ (�)); g2 ∈ BC(I ; L3,∞ ∩ L∞), sup

t∈I
‖g1(t)‖3,∞ ≤ κ

}

,

where I = (−∞, T ) and κ is a small constant depending only on �. See [10,
Remark 1(iv)].

In the celebrated papers Nečas–Růžička–Šverák [45] and Tsai [53], the non-
existence theorems of backward self-similar solutions in L3(R3) and Lq(R3) for
q ∈ (3,∞] were proven, respectively. More precisely, Nečas–Růžička–Šverák [45]
proved that if 1√

a(T−t)
v( x√

a(T−t)
), a > 0, is a backward self-similar solution to (N-S)

for f = 0 and if v ∈ L3(R3), then v = 0 in R
3. Tsai [53] proved that if v ∈ Lq(R3)

for some 3 < q ≤ ∞, then v is constant in R3 and hence v = 0 if q < ∞. Moreover,
Tsai [53] also proved the non-existence theorem of backward self-similar solutions
satisfying local energy estimate. Their results were proven for the case where the
domain � is the 3D whole space R3. In the case where � is the half-space R3+, as a
by-product of Corollary 2 we have the following non-existence result.

Corollary 4 Let � = R
3+, a > 0, 1 < r < 3 and functions v, V , R ∈ L3,∞(R3+) and

Q ∈ C(S2) satisfy

v = V + R, (1.12)

v ∈ L̃3,∞
σ (R3+), R ∈ Lr ,∞(R3+) ∩ L3,∞(R3+), (1.13)

V (x) = Q(x/|x |)
|x | for all x ∈ R

3+, (1.14)

‖R‖Lr ,∞ < c∗∗ · (‖v‖L3,∞ + ‖V ‖L3,∞ + 1 + δ)−7( 3r −1)a− 1
2 ( 3r −1). (1.15)
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Assume 1√−at
v( x√−at

) is a mild solution of (N-S) on (−∞, 0) in R3+ for f = 0. Then

v ≡ 0. Here c∗∗ = c∗∗(�, r) is the constant given in Corollary 2.

We note that if functions v, V , R, Q satisfy (1.12)–(1.14), then 1√−at
v( x√−at

) ∈
BC((−∞, 0); L̃3,∞(R3+)), see Appendix. Since 1√−at

V ( x√−at
) = V (x), we see that

V (x) − 1√−at
v( x√−at

)(= 1√−at
R( x√−at

)) satisfies Condition (1.8). Thus, by letting
u = 0, we see that Corollary 2 directly yields Corollary 4.

Remark 4 (i) For any given V (x) = Q(x/|x |)/|x | ∈ L3,∞
σ (R3+) with Q ∈ C1(S2)

and 1 < r < 3, we can construct functions v ∈ L̃3,∞
σ (R3+) ∩ W 2,q(R3+) ∩

W 1,q
0 (R3+) (q > 3) and R ∈ L3,∞(R3+)∩ Lr ,∞(R3+) satisfying (1.12)–(1.15), if

we do not assume that 1√−at
v( x√−at

) is a solution to (N-S) for f = 0.

(ii) Corollary 4 also holds for � = R
3. Compared with the results in [45, 53],

Condition (1.15) is very restrictive, since (1.15) means that v is sufficiently
close to the homogeneous function V .

2 Preliminaries

In this section, we introduce some notations, function spaces and key lemmata. Let
C∞
0,σ (�) = C∞

0,σ denote the set of all C∞-real vector fields φ = (φ1, . . . , φn) with
compact support in � such that div φ = 0. Then Lr

σ (�) = Lr
σ , 1 < r < ∞, is

the closure of C∞
0,σ with respect to the Lr -norm ‖ · ‖r . Concerning Sobolev spaces

we use the notations Wk,p(�) and Wk,p
0 (�), k ∈ N, 1 ≤ p ≤ ∞. Note that very

often we will simply write Lr andWk,p instead of Lr (�) andWk,p(�), respectively.
Let L p,q(�), 1 < p < ∞, 1 ≤ q ≤ ∞, denote the Lorentz spaces and ‖ · ‖p,q

the norm (not quasi-norm) of L p,q(�); for the definition and properties of L p,q(�),

see e.g. [1]. The symbol (·, ·) denotes the L2-inner product and the duality pairing
between L p,q and L p′,q ′

, where 1/p + 1/p′ = 1 and 1/q + 1/q ′ = 1. We note
that L p,∞ = L p

w(weak-L p space) and L p,p = L p with equivalent norms. Moreover,
when 1 < p < ∞ and 1 ≤ q < ∞, then the dual space of L p,q is isometrically
isomorphic to L p′,q ′

.

In this paper, we denote by C various constants. In particular, C = C(∗, . . . , ∗)

denotes a constant depending on the quantities appearing in the parentheses.
Let us recall theHelmholtz decomposition: Lr (�) = Lr

σ ⊕Gr (1 < r < ∞),where
Gr = {∇ p ∈ Lr ; p ∈ Lr

loc(�)}, see Miyakawa [42], Simader–Sohr [50], Borchers–
Miyakawa [2], and Farwig–Sohr [13, 15]; Pr denotes the projection operator from
Lr onto Lr

σ along Gr . The Stokes operator Ar on Lr
σ is defined by Ar = −Pr�

with domain D(Ar ) = W 2,r ∩ W 1,r
0 ∩ Lr

σ . It is known that (Lr
σ )∗(the dual space of

Lr
σ ) = Lr ′

σ and A∗
r (the adjoint operator of Ar )= Ar ′ , where 1/r + 1/r ′ = 1. It is

shown by Giga [23], Borchers–Sohr [5], Giga–Sohr [25], Borchers–Miyakawa [2] and
Farwig–Sohr [13, 15] that −Ar generates a holomorphic semigroup {e−t Ar ; t ≥ 0}
of class C0 in Lr

σ . Since Pru = Pqu for all u ∈ Lr ∩ Lq (1 < r , q < ∞) and since
Aru = Aqu for all u ∈ D(Ar ) ∩ D(Aq), for simplicity, we shall abbreviate Pru, Pqu
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as Pu for u ∈ Lr ∩ Lq and Aru, Aqu as Au for u ∈ D(Ar ) ∩ D(Aq), respectively.
By real interpolation, we define L p,q

σ (�) = L p,q
σ by

L p,q
σ := [L p0

σ , L p1
σ ]θ,q

where 1 < p0 < p < p1 < ∞, θ ∈ (0, 1), q ∈ [1,∞] satisfy 1/p = (1 −
θ)/p0 + θ/p1. In the case where � is an aperture domain, since L p

σ = C∞
0,σ (�)

‖·‖p is
characterized as

L p
σ (�) = {u ∈ L p(�); ∇ · u = 0, u · ν|∂� = 0, φ(u) = 0},

see [15], and since L p,q
σ (�) ⊂ L p1

σ +L p2
σ , all u belonging to L p,q

σ satisfy the vanishing
flux condition φ(u) = 0. Here φ(u) = ∫

M N · u dS and N is the unit normal vector
on M directed to �−.

Recall that, for 1 < p < ∞ and for a measurable set D, the weak-L p(D) norm is
defined by

‖ f ‖L p
w(D) := sup

τ>0
τ(μ{x ∈ D; | f (x)| > τ })1/p,

which is equivalent to ‖ f ‖L p,∞(D), as mentioned before. It is known that, for 1 < p <

∞,

‖ f ‖L p
w(D) ≤ sup

E⊂D, 0<μ(E)<∞
μ(E)−1+1/p

∫

E
| f (x)|dx ≤ p

p − 1
‖ f ‖L p

w(D),

(2.1)

where the supremum is taken over all measurable subsets E of the domain D with
0 < μ(E) < ∞, see e.g. [4, 24].

Now,we definemild L3,∞-solutions to (N-S) according to [55]. A similar definition
was introduced in [31] for mild L3-solutions.

Definition 1 Let T ≤ ∞ and f ∈ L1
loc(−∞, T ; D(Ap)

∗ + D(Aq)
∗) for some 1 <

p, q < ∞.

A function v ∈ C((−∞, T ); L3,∞
σ ) is called a mild L3,∞-solution to (N-S) on

(−∞, T ) if v satisfies

(v(t), φ) = (
e−(t−s)Av(s), φ

) +
∫ t

s

((
v(τ) · ∇e−(t−τ)Aφ, v(τ)

)

+( f (τ ), e−(t−τ)Aφ)
)
dτ (2.2)

for all φ ∈ C∞
0,σ and all −∞ < s < t < T .

Mild L3,∞-solutions to the initial-boundary value problem for (N-S) on the interval
[0, T ) are defined similarly, so we do not write its definition here. For a moment let us
consider the case where

∫ t
s ( f (τ ), e−(t−τ)Aφ)dτ converges as s → −∞ for all φ ∈
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C∞
0,σ . E.g., this holds true by (2.8) below when f = ∇ · F with F = (Fi j )i, j=1,2,3 ∈

L∞(−∞, T ; L3/2,∞). Since moreover lims→−∞ e−(t−s)Aφ = 0 in L3/2,1
σ , we con-

clude from Lemma 7 below that in this case (2.2) for v ∈ L∞(−∞, T ; L3,∞
σ ) is

equivalent to

(v(t), φ) =
∫ t

−∞
(
(v · ∇e−(t−τ)Aφ, v)(τ ) + ( f (τ ), e−(t−τ)Aφ)

)
dτ (2.3)

for all φ ∈ C∞
0,σ and all t < T . Note that this holds for all φ ∈ L3/2,1

σ . Furthermore,
we see that (2.3) yields (2.2), if v ∈ L∞(−∞, T ; L3,∞

σ ), f = ∇ · F and if F ∈
L∞(−∞, T ; L3/2,∞). Hence, Definition 1 is equivalent to the definition given in [55,
Definition 1], if we assume v ∈ BUC(R; L3,∞

σ ) and F ∈ BUC(R; L3/2,∞). We also
note that (2.3) is a weak form of (1.1).

In order to prove our main result, we recall properties of the Lorentz spaces, esti-
mates of the Stokes semigroup and several uniqueness theorems for mild solutions.

Lemma 5 (Kozono–Yamazaki [33]) Let p1, p2 ∈ (1,∞) with 1/r := 1/p1 +1/p2 <

1 and let q ∈ [1,∞]. Then, for all f ∈ L p1,∞(�) and g ∈ L p2,q(�), it holds that

‖ f · g‖r ,q ≤ C‖ f ‖p1,∞‖g‖p2,q , (2.4)

where C = C(p1, p2, q).

For u ∈ Ẇ 1,2
0 (�) = C∞

0 (�)
‖∇·‖2 it holds with an absolute constant C > 0 that

‖u‖6,2 ≤ C‖∇u‖2. (2.5)

Lemma 6 (Shibata [48, 49]) For all t > 0 and φ ∈ Lq,s
σ , the following inequalities

are satisfied:

‖e−t Aφ‖p,r ≤ Ct−
3
2 ( 1q − 1

p )‖φ‖q,s when

{
1 < q ≤ p < ∞, r = s ∈ [1,∞],
1 < q < p < ∞, r = 1, s = ∞,

(2.6)

‖∇e−t Aφ‖p,r ≤ Ct−
1
2− 3

2 ( 1q − 1
p )‖φ‖q,s when

{
1 < q ≤ p ≤ 3, r = s ∈ [1,∞],
1 < q < p ≤ 3, r = 1, s = ∞.

(2.7)

In the case where � is an exterior domain, Shibata [48, 49] proved (2.6) and (2.7)
for all r = s. If q < p, his estimates (2.6)–(2.7) with r = s and real interpolation
yield (2.6)–(2.7) even for r = 1, s = ∞. In the restricted case r = 1, Yamazaki [55]
obtained (2.7) also by a method different from [48, 49]. In the case where � is R3,

R
3+, a perturbed halfspace or an aperture domain, the usual Lq -L p estimates for the

Stokes semigroup and real interpolation directly yield (2.6)–(2.7), since in this case
the Lq–L p estimates hold for all 1 < q ≤ p < ∞. For details of Lq–L p estimates
for the Stokes semigroup, see also [2, 3, 25–27, 29, 34, 36, 48, 54].
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Lemma 7 (Yamazaki [55]) The following estimates

∫ t

s

∣
∣
∣(F(τ ),∇e−(t−τ)Aφ)

∣
∣
∣ dτ ≤ C

(

sup
s<τ<t

‖F‖3/2,∞
)

‖φ‖3/2,1, (2.8)

∫ t

s

∣
∣
∣(u · ∇e−(t−τ)Aφ,w)(τ)

∣
∣
∣ dτ ≤ C

(

sup
s<τ<t

‖u‖3,∞
) (

sup
s<τ<t

‖w‖3,∞
)

‖φ‖3/2,1
(2.9)

hold for all F ∈ L∞(s, t; L3/2,∞), u, w ∈ L∞(s, t; L3,∞), φ ∈ L3/2,1
σ (�) and all

−∞ ≤ s < t, where the constant C depends only on �.

In the case where � is an exterior domain, the whole space or halfspace, Yamazaki
[55] proved Lemma 7 by real interpolation. His proof is also valid in the case where
� is a perturbed halfspace or an aperture domain. In the case where � = R

3, Meyer
[41] obtained estimates similar to Lemma 7 by a method different from [55].

The following lemma is direct consequence of Lemma 7 using the duality L3,∞
σ =

(L3/2,1
σ )∗.

Lemma 8 (Yamazaki [55]) There exists a constant ε0 = ε0(�) with the following
property: Let T ≤ ∞, u, v, w ∈ BC((−∞, T ); L3,∞

σ ) and let w satisfy

(w(t), φ) =
∫ t

−∞

((
w · ∇e−(t−τ)Aφ, u

)
(τ ) + (

v · ∇e−(t−τ)Aφ,w
)
(τ )

)
dτ

(2.10)

for all φ ∈ L3/2,1
σ and all −∞ < t < T . Assume that

sup
−∞<t<T

‖u‖3,∞ + sup
−∞<t<T

‖v‖3,∞ < ε0.

Then, w(t) = 0 for all t ∈ (−∞, T ).

Lemma 9 [10, Lemma 2.6] There exists a constant ε1(�) > 0 such that if T ≤ ∞,

u, v are mild L3,∞-solutions to (N-S) on (−∞, T ) for the same force f ,

u, v ∈ BC((−∞, T ); L̃3,∞
σ ),

lim sup
t→−∞

‖u(t)‖3,∞ < ε1 and lim inf
t→−∞ ‖u(t) − v(t)‖3,∞ < ε1,

then

u = v on (−∞, T ).

Lemma 9 can be proven by Lemma 8, the uniqueness of mild solutions in
C([0, T ); L̃3,∞) to IBVP, see [10, Lemma 2.5], and the continuity of w(t) :=
u(t) − v(t) with respect to the time-variable t in L̃3,∞. For the detail, see [10,
Lemma 2.6].
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Finally, we come to the key lemma of the proof of Theorem 1. If u and v are
solutions to the Navier–Stokes equations, then w := u − v satisfies

(U )

⎧
⎨

⎩

∂tw − �w + w · ∇u + v · ∇w + ∇ p′ = 0, t ∈ (−∞, T ), x ∈ �,

div w = 0, t ∈ (−∞, T ), x ∈ �,

w|∂� = 0.

Hence, if � is a bounded domain and if u, v belong to the Leray–Hopf class, under
the hypotheses of Theorem 1, the usual energy method and the Poincaré inequality
yield ‖w(t)‖22 ≤ e−c(t−s)‖w(s)‖22 for t > s. Letting s → −∞, we get w(t) = 0
for all t . Consequently, in the case of bounded domains, Theorem 1 is obvious. In the
case where � is an unbounded domain, u and v do not belong to the energy class in
general and the Poincaré inequality does not hold in general. Hence, since we cannot
use the energy method, we will use the dual equations of the above system. It is
notable that several researchers utilized the dual equation argument to prove several
uniqueness theorems and a-priori estimates for solutions to (N-S). See e.g. Foias [18],
Maremonti [38], Lions–Masmoudi [37]. Very recently, Crispo–Maremonti [7] used
the dual equation argument to prove uniqueness theorems for suitable weak solutions
to (N-S) in the sense of Caffarelli–Kohn–Nirenberg.

Here we will use a similar argument as in Lions–Masmoudi [37]. We recall the dual
equations of the above system (U ), namely,

(D)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∂t� − �� −
3∑

i=1
ui∇� i − v · ∇� + ∇π = h, t ∈ (−∞, 0), x ∈ �,

∇ · � = 0, t ∈ (−∞, 0), x ∈ �,

�|∂� = 0,
�(0) = 0.

Lemma 10 [10] There exists an absolute constant δ0 > 0 with the following property:
Let u, v ∈ BC((−∞, 0]; L̃3,∞

σ ), h ∈ L2
loc((−∞, 0]; L6/5 ∩ L2) and

sup
t≤0

‖u(t)‖3,∞ ≤ δ0.

Then there exists a unique solution� ∈ L2
loc((−∞, 0]; D(A2))∩W 1,2

loc ((−∞, 0]; L2
σ )

to (D) such that

‖�(t)‖22 +
∫ 0

t
‖∇�‖22 dτ ≤ C

∫ 0

t
‖h‖26/5 dτ (2.11)

for all t < 0. Here C is an absolute constant.

Remark 5 In [10, Lemma 2.7], Lemma 10 was proven in the case h ∈ BC((−∞, 0];
L6/5 ∩ L2). In the same way as in [10], we easily see that this lemma holds even for
the case h ∈ L2

loc((−∞, 0]; L6/5 ∩ L2).
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In the rest of this section, we prove some properties of weak Lr -spaces (Lr
w). From

now on, for simplicity, we use the following notations:

{| f | ≤ σ } : = {x ∈ �; | f (x)| ≤ σ },
{| f | > ρ, |g| > σ } : = {x ∈ �; | f (x)| > ρ, |g(x)| > σ },

{|F(t)| > σ } : = {x ∈ �; |F(x, t)| > σ },

etc.

Lemma 11 Let � ⊂ R
3 be a measurable set and 1 < r < ∞. If f ∈ Lr

w(�) and a
constant A > 0 satisfy

‖ f ‖Lrw({| f |≤2− j }) > A for all j ∈ N, (2.12)

then there exists a sequence { jn}∞n=1 of natural numbers such that

jn+1 > jn(≥ n), ‖ f ‖Lrw({2− jn−1<| f |≤2− jn }) > L(r)A for all n ∈ N,

where L = L(r) = 1
4

(
2r−1
2

)1/r
.

Proof We use a proof by contradiction. Assume that there exists n0 ∈ N such that

‖ f ‖Lrw({2− j−1<| f |≤2− j }) ≤ L · A for all natural numbers j ≥ n0. (2.13)

Let

m(s, f ) := μ{| f | > s}.

Since

2− j−1
(
m(2− j−1, f ) − m(2− j , f )

)1/r

= 2− j−1
(
μ{2− j−1 < | f | ≤ 2− j }

)1/r

= 2− j−1
(
μ{x ∈ �; | f (x)| > 2− j−1, 2− j−1 < | f (x)| ≤ 2− j }

)1/r

≤ sup
s>0

s
(
μ{x ∈ �; | f (x)| > s, 2− j−1 < | f (x)| ≤ 2− j }

)1/r

= ‖ f ‖Lrw({2− j+1<| f |≤2− j }) ≤ L · A for all j ≥ n0,

we have

m(2− j−1, f ) − m(2− j , f ) ≤ (2 j+1L · A)r for all j ≥ n0.
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Hence, for N > n0,

m(2−N , f ) = m(2−n0 , f ) +
N−1∑

j=n0

(m(2− j−1, f ) − m(2− j , f ))

≤ m(2−n0 , f ) + (2L · A)r
N−1∑

j=n0

2 jr

= m(2−n0 , f ) + (2L · A)r · 2
r N − 2n0r

2r − 1

≤ 2n0r‖ f ‖rLrw(�) + (2L · A)r · 2r N

2r − 1
,

which implies

2−Nrm(2−N , f ) ≤ 2(n0−N )r‖ f ‖rLrw(�) + (2L · A)r

2r − 1
. (2.14)

Letting N0(≥ n0) be sufficiently large so that

2(n0−N0)r‖ f ‖rLrw(�) ≤ (2L · A)r

2r − 1
,

by (2.14) we have

2−Nrm(2−N , f ) ≤ 2(2L · A)r

2r − 1
for all N ≥ N0. (2.15)

This implies

2−N (μ{| f | > 2−N })1/r ≤
(

2

2r − 1

)1/r

2L · A = A

2
for all N ≥ N0. (2.16)

On the other hand, from (2.12) with j = N0 we obtain

A < sup
s>0

s (μ{| f | > s, | f | ≤ 2−N0})1/r

= sup
0<s<2−N0

s (μ{| f | > s, | f | ≤ 2−N0})1/r

= sup
k≥N0

sup
2−k−1≤s<2−k

s (μ{| f | > s, | f | ≤ 2−N0})1/r

≤ sup
k≥N0

sup
2−k−1≤s<2−k

2−k (μ{| f | > 2−k−1, | f | ≤ 2−N0})1/r

≤ sup
k≥N0

2−k (μ{| f | > 2−k−1})1/r = 2 sup
N≥N0+1

2−N (μ{| f | > 2−N })1/r .
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This contradicts (2.16). Therefore, (2.13) cannot be true and we conclude that for each
natural number n, there is a natural number jn(≥ n) such that

‖ f ‖Lrw({2− jn−1<| f |≤2− jn }) > L · A,

which proves Lemma 11. ��
Lemma 12 Let �(⊂ R

3) be a measurable set and U ∈ L3
w(�). Assume that there

exist a real number ω > 0, p0 ∈ N and a sequence {gn} such that

‖gn‖L3
w({|U |>2−n}) ≤ ω for all n ≥ p0, (2.17)

lim sup
n→∞

2−n−2(μ{2−n−2 < |gn+1 −U | < 2−n+1})1/3 < ω. (2.18)

Then, there exists k0 ∈ N such that

‖U‖L3
w({|U |≤2−k0 }) ≤ C2ω. (2.19)

Here C2 := 21/34/L(3).

Proof We use a proof by contradiction. Assume that

‖U‖L3
w({|U |≤2− j }) > C2ω for all j ∈ N.

Then, from Lemma 11 we observe that there exists a sequence { jn} of natural numbers
such that

jn ↗ ∞ as n → ∞, (2.20)

‖U‖L3
w({2− jn−1<|U |≤2− jn }) > L(3)C2ω for all n ∈ N. (2.21)

From (2.21) we obtain

L(3)C2ω < sup
τ>0

τ μ{|U | > τ, 2− jn−1 < |U | ≤ 2− jn }1/3

= sup
0<τ≤2− jn

τ μ{|U | > τ, 2− jn−1 < |U | ≤ 2− jn }1/3

≤ 2− jnμ{2− jn−1 < |U | ≤ 2− jn }1/3, (2.22)

which yields

23 jn
(
L(3)C2ω

)3
< μ{2− jn−1 < |U | ≤ 2− jn } for all n ∈ N. (2.23)

On the other hand, by using (2.17) with n replaced by k + 1, we have for all τ > 0
and all k ≥ p0 − 1

τ (μ{|gk+1| > τ, 2−k−1 < |U |})1/3 ≤ ω.
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Letting τ = 2−k−2, we obtain

μ{|gk+1| > 2−k−2, 2−k−1 < |U | ≤ 2−k} ≤ 4323kω3 for all k ≥ p0 − 1.

Since jn ≥ p0 for all sufficiently large n, we have

μ{|g jn+1| > 2− jn−2, 2− jn−1 < |U | ≤ 2− jn } ≤ 4323 jnω3 for all large n.

(2.24)

Then from (2.23) and (2.24) we obtain

μ
(
{2− jn−1 < |U | ≤ 2− jn }\{|g jn+1| > 2− jn−2, 2− jn−1 < |U | ≤ 2− jn }

)

≥ 23 jnω3((L(3))3C3
2 − 43) = 23 jnω343 for all large n. (2.25)

Since

{2− jn−1 < |U | ≤ 2− jn }\{|g jn+1| > 2− jn−2, 2− jn−1 < |U | ≤ 2− jn }
= {|g jn+1| ≤ 2− jn−2, 2− jn−1 < |U | ≤ 2− jn }
⊂ {2− jn−2 < |g jn+1 −U | < 2− jn+1},

by (2.25) we see

2− jn−2μ{2− jn−2 < |g jn+1 −U | < 2− jn+1}1/3 ≥ ω for all large n. (2.26)

This and (2.20) yield

lim sup
n→∞

2−n−2(μ{2−n−2 < |gn+1 −U | < 2−n+1})1/3 ≥ ω,

which contradicts (2.18). This proves Lemma 12. ��
Recall that, for any measurable set D, L3

w(D) = L3,∞(D) and

‖ f ‖L3,∞(D) ≤ c‖ f ‖L3
w(D) ≤ c′‖ f ‖L3,∞(D) for f ∈ L3,∞(D),

where c and c′ are absolute constants. Then, since 2−n−2(μ{2−n−2 < |gn+1 − U | <

λ})1/3 ≤ ‖gn+1 − U‖L3
w({|gn+1−U |<λ}) for all λ > 2−n−2, Lemma 12 directly yields

the following lemma with L3
w replaced by L3,∞:

Lemma 13 Let �(⊂ R
3) be a measurable set and U ∈ L3,∞(�). Assume that there

exist a real number ω > 0, p0 ∈ N and a sequence {gn} such that

‖gn‖L3,∞({|U |>2−n}) ≤ ω for all n ≥ p0, (2.27)

lim sup
n→∞

‖gn+1 −U‖L3,∞({|gn+1−U |<2−n+1}) < ω. (2.28)
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Then, there exists k0 ∈ N such that

‖U‖L3,∞({|U |≤2−k0 }) ≤ C3ω, (2.29)

where C3 is an absolute constant.

3 Proof of Theorem 1

In this section, we prove Theorem 1 by using a similar argument given in [10] and
Lemma 13.

Proof of Theorem 1 Let δ := min{ε1,δ0}
6+3C3

, where ε1, δ0 and C3 are the constants given in
Lemmata 9, 10 and 13. By (1.5) and (1.7), there exists s0 ∈ (−∞, T ) such that

sup
t≤s0

‖u(t)‖3,∞ ≤ δ, γ0 ≥ c∗
2

(

sup
t≤s0

‖v(t)‖3,∞ + ‖V ‖3,∞ + 1 + δ

)7

.

Since limt→−∞ |t |1/2
|t−s0|1/2 = 1, by (1.6) we have

lim sup
t→−∞

‖v(t) − V ‖L3,∞({|v(t)−V |≤ γ0
2|t−s0 |1/2 }) ≤ δ.

Without loss of generality, we may assume T > 0 and s0 = 0, i.e.,

sup
t≤0

‖u(t)‖3,∞ ≤ δ, (3.1)

lim sup
t→−∞

‖v(t) − V ‖L3,∞({|v(t)−V |≤ γ0
2|t |1/2 }) ≤ δ, (3.2)

γ0 ≥ c∗
2

(

sup
t≤0

‖v(t)‖3,∞ + ‖V ‖3,∞ + 1 + δ

)7

. (3.3)

Let ε ∈ (0, 1] be an arbitrary fixed number, which will be chosen suitably small
later on,

K := sup
t≤0

‖v(t)‖L3,∞(�) + 1 + δ and let

w := u − v.

Since w = u − v ∈ BC((−∞, 0]; L3,∞), there exists a sequence {tk} such that

0 = t0 > t1 > t2 > · · · , |tk − tk+1| < 1, tk → −∞ as k → ∞,

‖w(t) − w(tk)‖3,∞ < ε for all t ∈ [tk+1, tk] and all k = 0, 1, 2, . . . . (3.4)
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Indeed, since w ∈ BUC([−n − 1,−n]; L3,∞), for each n = 0, 1, 2, . . . there exist a
number m = m(n) and a finite sequence {tni }mi=1 ⊂ [−n − 1,−n] such that

−n = tn0 > tn1 > tn2 > · · · > tnm = −n − 1, |tni − tni+1| < 1,

‖w(t) − w(tni )‖3,∞ < ε for all t ∈ [tni+1, t
n
i ] and all i = 0, 1, 2, . . . ,m − 1.

(3.5)

Then, arranging all members of {tni }n,i in order from the largest, we have the sequence
{tk} satisfying (3.4). Then, letting

w̃(t) := w(tk) for t ∈ (tk+1, tk], k ∈ N ∪ {0},

i .e. w̃(t) :=
∞∑

k=0

w(tk)1(tk+1,tk ](t) for all t ≤ 0,

where 1S denotes the characteristic function of a set S, we have

sup
t≤0

‖w(t) − w̃(t)‖L3,∞(�) ≤ ε and sup
t≤0

‖w̃(t)‖L3,∞(�)) ≤ K . (3.6)

Let {Dk}∞k=0(⊂ �) be an arbitrary sequence of measurable sets with 0 < μ(Dk) <

∞ for k = 0, 1, 2, . . . , which will be suitably defined later on. Using this sequence,
we define D̃(t) ⊂ � for each t ≤ 0 as follows:

D̃(t) := Dk for t ∈ (tk+1, tk], k = 0, 1, 2, . . . . (3.7)

(Step 1) We will first show that

−
∫ 0

− j
‖w(τ)‖2

L3,∞(D̃(τ ))
dτ ≤ C0

{
K 3

j3/4

(∫ 0

− j
μ(D̃(τ ))1/3 dτ

)1/2

+ K ε

}

(3.8)

for all j = 1, 2, . . . , where C0 = C0(�) is a constant depending only on �. Note
that the functions μ(D̃(t)) and ‖w(τ)‖2

L3,∞(D̃(τ ))
are continuous on (tk+1, tk] for each

k ∈ N∪{0} and hence these functions are piecewise continuous on [− j, 0], so that both
sides of (3.8) are well-defined. Also note that, as we will show below, (3.8) holds for
an arbitrary choice of measurable sets {Dk}with 0 < μ(Dk) < ∞ for k = 0, 1, 2 . . . .

By (2.1) and the Hölder inequality, it holds that, for all measurable sets F ⊂ �,

‖w(t)‖2L3,∞(F)
≤ C∗‖w(t)‖2L3

w(F)

≤ C∗
(

sup
E⊂F, 0<μ(E)<∞

μ(E)−2/3
∫

E
|w(x, t)|dx

)2

≤ C∗ sup
E⊂F, 0<μ(E)<∞

μ(E)−1/3
∫

E
|w(x, t)|2dx, (3.9)
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whereC∗ is an absolute constant.Hence, for each k ∈ N∪{0}, there exists ameasurable
set Ek ⊂ D̃(tk)(= Dk) such that

‖w(tk)‖2L3,∞(D̃(tk ))
≤ C∗μ(Ek)

−1/3
∫

Ek

|w(x, tk)|2dx + ε, 0 < μ(Ek) < ∞.

(3.10)

Using the sequence {Ek}, we define a set Ẽ(t) ⊂ � for each t ≤ 0 as follows:

Ẽ(t) := Ek for t ∈ (tk+1, tk], k = 0, 1, 2, . . . .

Then Ẽ(t) ⊂ D̃(t) for each t ≤ 0. Let, for τ ≤ 0,

h(x, τ ) = w̃(x, τ )μ(Ẽ(τ ))−
1
3 1Ẽ(τ )

(x)

i .e. h(x, τ ) =
∞∑

k=0

w(x, tk)μ(Ek)
− 1

3 1Ek (x) · 1(tk+1,tk ](τ ). (3.11)

Note that for tk+1 < t ≤ tk, h(t) = h(tk) = w(tk)μ(Ek)
− 1

3 1Ek . Also note that

μ(Ek)
−1/3

∫

Ek

|w(x, tk)|2dx = (w(tk), h(tk)). (3.12)

By Lemma 5 and (3.6), we have

‖h(t)‖L6/5,1(�) = μ(Ẽ(t))−1/3‖w̃(t)1Ẽ(t)‖6/5,1
≤ Cμ(Ẽ(t))−1/3‖w̃(t)‖3,∞‖1Ẽ(t)‖2,1 ≤ Cμ(Ẽ(t))1/6K ,

(3.13)

where we used the interpolation inequality:

‖1Ẽ(t)‖Lq,r ≤ C‖1Ẽ(t)‖1/qL1 ‖1Ẽ(t)‖1−1/q
L∞ ≤ Cμ(Ẽ(t))1/q

for 1 < q < ∞ and 1 ≤ r ≤ ∞. Similarly, by Lemma 5 we have

‖h(t)‖L2(�) = μ(Ẽ(t))−1/3‖w̃(t)1Ẽ(t)‖2
≤ Cμ(Ẽ(t))−1/3‖w̃(t)‖3,∞‖1Ẽ(t)‖6,2
≤ Cμ(Ẽ(t))−1/6‖w̃(t)‖3,∞ ≤ Cμ(Ẽ(t))−1/6K . (3.14)

Since 0 < μ(Ẽ(t)) = μ(Ek) < ∞ for all tk+1 < t ≤ tk and all k = 0, 1, . . . , by
(3.13) and (3.14) we see h ∈ L∞

loc((−∞, 0]; L2 ∩ L6/5,1).

Furthermore, by the interpolation inequality, (3.13) and (3.14), we have

‖h(t)‖L3/2,1(�) ≤ C‖h(t)‖1/2
L6/5,1(�)

‖h(t)‖1/2
L2(�)

≤ CK . (3.15)
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Since for tk+1 < t ≤ tk it holds that

‖w(t)‖2
L3,∞(D̃(t))

= ‖w(t)‖2
L3,∞(D̃(tk ))

≤
(
‖w(tk)‖L3,∞(D̃(tk ))

+ ‖w(t) − w(tk)‖L3,∞
)2

≤ (‖w(tk)‖L3,∞(D̃(tk ))
+ ε)2

≤ 2‖w(tk)‖2L3,∞(D̃(tk))
+ 2ε2,

from (3.4), (3.10), (3.12), (3.15) and L3,∞ = (L3/2,1)∗, we obtain for tk+1 < t ≤ tk

‖w(t)‖2
L3,∞(D̃(t))

≤ 2C∗μ(Ek)
−1/3

∫

Ek

|w(x, tk)|2dx + 2ε + 2ε2

≤ 2C∗ · (w(tk), h(tk)) + 4ε

= 2C∗ · (w(t), h(tk)) + 2C∗ · (w(tk) − w(t), h(tk)) + 4ε

≤ 2C∗ · (w(t), h(tk)) + C‖w(tk) − w(t)‖3,∞‖h(tk)‖3/2,1 + 4ε

≤ 2C∗ · (w(t), h(tk)) + CK ε + 4ε

= 2C∗ · (w(t), h(t)) + CK ε + 4ε.

Since the above estimate holds for all t ∈ (tk+1, tk] and all k = 0, 1, 2, . . . , we have
for all j ∈ N

−
∫ 0

− j
‖w(τ)‖2

L3,∞(D̃(τ ))
dτ ≤ 2C∗−

∫ 0

− j
(w(τ), h(τ ))dτ + CK ε + 4ε. (3.16)

Hence in order to show (3.8), it suffices to show

−
∫ 0

− j
(w(τ), h(τ ))dτ ≤ CK 3

j3/4

{∫ 0

− j
μ(D̃(τ ))1/3 dτ

}1/2

. (3.17)

Let j ∈ N be fixed. For −3 j < t < 0, let

w0(t) := e−(t+3 j)Aw(−3 j)

w1(t) := w(t) − w0(t). (3.18)

Then, it holds that

(w1(t), φ) =
∫ t

−3 j

(
(w · ∇e−(t−s)Aφ, u) + (v · ∇e−(t−s)Aφ,w)

)
ds

for all φ ∈ C∞
0,σ . Since C∞

0,σ is dense in L3/2,1
σ , from Lemma 7, we see that the above

equality holds for all φ ∈ L3/2,1
σ . By the duality L3/2,∞ = (L3,1)∗, Lemma 5 and

Lemma 6, we have for ϕ ∈ L3/2,1 ∩ L2
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|(w1(t), ϕ)| = |(w1(t), Pϕ)|
≤

∫ t

−3 j

∥
∥∇e−(t−s)APϕ

∥
∥
3,1‖w ⊗ u + v ⊗ w‖3/2,∞ ds

≤ C
∫ t

−3 j
(t − s)−

3
4 ‖ϕ‖2,∞‖w ⊗ u + v ⊗ w‖3/2,∞ ds

≤ C(t + 3 j)
1
4 sup

−∞<s<0
‖w(s)‖3,∞(‖u(s)‖3,∞ + ‖v(s)‖3,∞)‖ϕ‖2,

(3.19)

which implies w1(t) ∈ L2 and

‖w1(t)‖2 ≤ C(�)K 2 (t + 3 j)
1
4 for − 3 j < t < 0. (3.20)

Furthermore we observe that w1 satisfies

∫ 0

− j

(
(w1,−∂tψ − �ψ) − (w · ∇ψ, u) − (v · ∇ψ,w)

)
ds

= (w1(− j), ψ(− j)) − (w1(0), ψ(0)) (3.21)

for allψ ∈ W 1,2(− j, 0; L2
σ )∩L2(− j, 0; D(A2)). For the detail of the proof of (3.21),

see [10, Proof of (3.8)].
In order to show (3.17), since w = w0 + w1, we decompose −

∫ 0
− j (w(τ), h) dτ into

two terms as follows:

−
∫ 0

− j
(w(τ), h(τ )) dτ = −

∫ 0

− j
(w0(τ ), h(τ )) dτ + −

∫ 0

− j
(w1(τ ), h(τ )) dτ =: I0 + I1.

We estimate I0 and I1 separately. By L6,∞ = (L6/5,1)∗, Lemma 6 and (3.13), we
obtain

|I0| ≤ −
∫ 0

− j
‖w0(τ )‖6,∞‖h(τ )‖6/5,1 dτ

≤ C j−1
∫ 0

− j

∥
∥e−(τ+3 j)Aw(−3 j)

∥
∥
6,∞μ(Ẽ(τ ))1/6K dτ

≤ CK j−1
∫ 0

− j
(τ + 3 j)−

1
4 ‖w(−3 j)‖3,∞μ(D̃(τ ))1/6 dτ

≤ CK 2

j5/4

∫ 0

− j
μ(D̃(τ ))1/6 dτ ≤ CK 2

j3/4

{∫ 0

− j
μ(D̃(τ ))1/3 dτ

}1/2

. (3.22)

Let� be the solution to (D)with right-hand sideh(x, τ ) = w̃(x, τ )μ(Ẽ(τ ))− 1
3 1Ẽ(τ )

(x) and initial value�(0) = 0, cf. Lemma10.Note thath ∈ L∞
loc((−∞, 0]; L6/5∩L2).
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Then,

I1 = −
∫ 0

− j
(w1(τ ), h(τ )) dτ

= −
∫ 0

− j

(

w1(τ ),−∂t� − �� −
3∑

i=1

ui∇� i − v · ∇� + ∇π

)

dτ.

Since �(0) = 0 and since w1 ∈ L2(− j, 0; L2
σ ) implies that

∫ 0
− j (w1,∇π)dτ = 0, by

(3.21) we observe that

I1 = 1

j
(w1(− j),�(− j))

+ −
∫ 0

− j

(

(w · ∇�, u) + (v · ∇�,w) −
(

w1,

3∑

i=1

ui∇� i + v · ∇�

))

dτ

= 1

j
(w1(− j),�(− j)) + −

∫ 0

− j
(w0 · ∇�, u) dτ + −

∫ 0

− j
(v · ∇�,w0) dτ

=: J0 + J1 + J2.

By (2.11), (3.13) and (3.20), we have

|J0| = 1

j

∣
∣(w1(− j),�(− j))

∣
∣ ≤ 1

j
‖w1(− j)‖2‖�(− j)‖2

≤ 1

j
· CK 2 j1/4 ·

{∫ 0

− j
‖h‖26/5 dτ

}1/2

≤ 1

j
· CK 2 j1/4 ·

{∫ 0

− j
μ(Ẽ(τ ))1/3K 2 dτ

}1/2

≤ 1

j3/4
· CK 3

{∫ 0

− j
μ(D̃(τ ))1/3 dτ

}1/2

.

Furthermore, by Lemmata 5 and 6, (2.11), (3.13) and the duality L6,2 = (L6/5,2)∗,
we have

|J1| =
∣
∣
∣
∣−
∫ 0

− j
(w0(τ ) · ∇�(τ), u(τ )) dτ

∣
∣
∣
∣ =

∣
∣
∣
∣−
∫ 0

− j

(
e−(τ+3 j)Aw(−3 j) · ∇�, u

)
dτ

∣
∣
∣
∣

≤ −
∫ 0

− j

∥
∥e−(τ+3 j)Aw(−3 j)

∥
∥
6,2

∥
∥|∇�(τ)||u(τ )|∥∥6/5,2 dτ

≤ C−
∫ 0

− j
(τ + 3 j)−

1
4 ‖w(−3 j)‖3,∞‖∇�(τ)‖2‖u(τ )‖3,∞ dτ
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≤ CK 2 j−1
{∫ 0

− j
(τ + 3 j)−1/2dτ

}1/2 {∫ 0

− j
‖∇�‖22 dτ

}1/2

≤ CK 2 j−3/4
{∫ 0

− j
‖h‖26/5 dτ

}1/2

≤ 1

j3/4
· CK 3

{∫ 0

− j
μ(D̃(τ ))1/3 dτ

}1/2

.

Similarly, we observe that

|J2| ≤ 1

j3/4
· CK 3

{∫ 0

− j
μ(D̃(τ ))1/3 dτ

}1/2

.

Hence, we obtain |I1| = |J0 + J1 + J2| ≤ CK 3

j3/4

{ ∫ 0
− j μ(D̃(τ ))1/3 dτ

}1/2
so that by

(3.22)

∣
∣
∣
∣−
∫ 0

− j
(w, h) dτ

∣
∣
∣
∣ = |I0 + I1| ≤ CK 3

j3/4

{∫ 0

− j
μ(D̃(τ ))1/3 dτ

}1/2

,

which is the desired estimate (3.17). Thus from (3.16) and (3.17) we get (3.8).
(Step 2) Here we will show lim inf t→−∞ ‖w(t)‖L3,∞(�) < ε1. Let us define {Dk}.

Let

ak = (K + ‖V ‖3,∞)5

ε2(|tk | + 1)1/2
, (3.23)

y0 ∈ � be a fixed arbitrary point and

D0
k := {x ∈ �; |V (x)| ≥ ak} ,

D1
k := {x ∈ �; |v(x, tk) − V (x)| ≥ ak} ,

D2
k := {x ∈ �; |x − y0| < 1/ak},

Dk := D0
k ∪ D1

k ∪ D2
k for k = 0, 1, 2, . . . . (3.24)

Note that μ(Dk) ≥ μ(D2
k ) > 0. Then, since μ({x ∈ � ; | f (x)| > s}) ≤

Cs−3‖ f ‖33,∞, we have

μ(Dk) ≤ Ca−3
k (‖V ‖33,∞ + ‖v(tk) − V ‖33,∞ + 1)

≤ C

(
ε2(|tk | + 1)1/2

(K + ‖V ‖3,∞)5

)3

(K + ‖V ‖3,∞)3 ≤ C
ε6(|tk | + 1)3/2

K 12 .

Recall D̃(t) = Dk for tk+1 < t ≤ tk . Since |tk | ≤ |t | for tk+1 < t ≤ tk, it holds that

μ(D̃(t)) ≤ Cε6(|t | + 1)3/2

K 12 (3.25)
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for all t ≤ 0. Then, (3.8) implies

−
∫ 0

− j
‖w(τ)‖2

L3,∞(D̃(τ ))
dτ ≤ C̃0K ε for all j ∈ N, (3.26)

where C̃0 is a constant depending only on �.

Now we choose ε such that

ε := δ2

2C̃0K + δ + δ2

(

≤ min

{
δ2

2C̃0K
, δ, 1

})

. (3.27)

Then, by (3.26), for all j ∈ N it holds that

1

j

∫ − j

−2 j
‖w(τ)‖2

L3,∞(D̃(τ ))
dτ ≤ 2 · 1

2 j

∫ 0

−2 j
‖w(τ)‖2

L3,∞(D̃(τ ))
dτ

≤ 2C̃0K ε ≤ δ2. (3.28)

Thus, it is straightforward to see that there exists a sequence {s j } such that

− 2 j ≤ s j ≤ − j, ‖w(s j )‖L3,∞(D̃(s j ))
≤ δ (3.29)

for all j ∈ N.

Next, we will estimate ‖w(s j )‖L3,∞(�\D̃(s j ))
. Since tk > tk+1 → −∞, we can

choose a sequence {k( j)}∞j=1 ⊂ N such that

tk( j)+1 < s j ≤ tk( j)(≤ 0). (3.30)

By (3.7), we see D̃(s j ) = Dk( j). Thus, by sups≤0 ‖u(s)‖3,∞ ≤ δ,

‖w(s j )‖L3,∞(�\D̃(s j ))
≤ ‖w(s j ) − w(tk( j))‖L3,∞(�\Dk( j))

+‖w(tk( j))‖L3(�\Dk( j))

≤ ‖w(s j ) − w(tk( j))‖L3,∞(�\Dk( j))

+‖u(tk( j))‖L3,∞(�\Dk( j))

+‖v(tk( j)) − V ‖L3,∞(�\Dk( j))
+ ‖V ‖L3,∞(�\Dk( j))

≤ ε + δ + ‖v(tk( j)) − V ‖L3,∞(�\Dk( j))
+ ‖V ‖L3,∞(�\Dk( j))

≤ 2δ + ‖v(tk( j)) − V ‖L3,∞({|v(tk( j))−V |<ak( j)}) + ‖V ‖L3,∞(�\Dk( j))
,

(3.31)

since (3.4) and (3.30) imply ‖w(s j ) − w(tk( j))‖L3,∞(�\Dk( j))
≤ ε ≤ δ.

Now let

c∗ := 25(2C̃0 + 1 + δ)2

δ4
. (3.32)
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Note that, since K > δ, we see (2C̃0 + 1 + δ)K > 2C̃0K + δ + δ2 and hence by
(3.27)

c∗ · (K + ‖V ‖3,∞)2 ≥ c∗K 2 >
25(2C̃0K + δ + δ2)2

δ4
= 25

ε2
. (3.33)

Then (3.3),(3.23) and (3.33) imply

1

2
γ0|tk( j)|−1/2 > ak( j) for all j ∈ N.

Thus, by (3.2) and (3.31) yield

lim sup
j→∞

‖w(s j )‖L3,∞(�\D̃(s j ))
≤ 3δ + lim sup

j→∞
‖V ‖L3,∞(�\Dk( j))

. (3.34)

We turn to estimate the last term of (3.34) i.e. lim sup j→∞ ‖V ‖L3,∞(�\Dk( j))
by

using Lemma 13, (3.2) and (3.29). Choose m ∈ N such that

2m−1 <
(K + ‖V ‖3,∞)5

ε2
≤ 2m, i .e., 2m ∼ (K + ‖V ‖3,∞)5

ε2
. (3.35)

Since |tk( j)| + 1 ≥ |tk( j)| + |tk( j)+1 − tk( j)| ≥ |tk( j)+1| ≥ |s j |,

D̃(s j ) = Dk( j) ⊃ D0
k( j) =

{

x ∈ �; |V (x)| ≥ (K + ‖V ‖3,∞)5

ε2(|tk( j)| + 1)1/2

}

⊃
{

x ∈ � ; |V (x)| ≥ (K + ‖V ‖3,∞)5

ε2|s j |1/2
}

⊃
{

x ∈ � ; |V (x)| ≥ 2m

|s j |1/2
}

.

(3.36)

Since j ≤ |s j | ≤ 2 j for all j ∈ N, we have 2i ≤ |s2i | ≤ 2i+1 for all i ∈ N. Let {s̃n}
be the following subsequence of {s j }:

s̃n := s22n+2m for n ∈ N,

then

2n+m ≤ |s̃n|1/2 ≤ √
2 · 2n+m . (3.37)

Thus,

D̃(s̃n) ⊃
{

x ∈ �; |V (x)| >
1

2n

}

. (3.38)
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Set

gn := v(s̃n), U := V and ω := 3δ.

Since (3.29) and (3.38) implies

‖v(s̃n)‖L3,∞({|V |>2−n}) ≤ ‖w(s̃n)‖L3,∞({|V |>2−n}) + ‖u(s̃n)‖L3,∞({|V |>2−n})
≤ ‖w(s̃n)‖L3,∞(D̃(s̃n))

+ δ ≤ 2δ ≤ ω

for all n ∈ N, we see that gn(= v(s̃n)) and ω satisfy (2.27).
Since (3.3), (3.33),(3.35) and (3.37) imply

1

2
γ0|s̃n+1|−1/2 ≥ 2−n+1,

by (3.2) we see that gn(= v(s̃n)) and U (= V ) satisfy (2.28) with ω = 3δ.
Thus, since ak( j) ↘ 0 as j → ∞, from Lemma 13 we observe

lim sup
j→∞

‖V ‖L3,∞(�\Dk( j))
≤ lim sup

j→∞
‖V ‖L3,∞({x∈�; |V (x)|<ak( j)})

≤ lim sup
i→∞

‖V ‖L3,∞({x∈�; |V (x)|≤2−i })

≤ C3ω = 3C3δ. (3.39)

Here C3 is the constant given in Lemma 13.
Therefore, from (3.29), (3.34) and (3.39) we obtain

lim sup
j→∞

‖w(s j )‖L3,∞(�) ≤ lim sup
j→∞

‖w(s j )‖L3,∞(D̃(s j ))

+ lim sup
j→∞

‖w(s j )‖L3,∞(�\D̃(s j ))
≤ 4δ + 3C3δ,

(3.40)

which implies

lim inf
t→−∞ ‖w(t)‖L3,∞(�) ≤ (4 + 3C3)δ. (3.41)

Since δ = min{ε1,δ0}
6+3C3

, we conclude that

lim inf
t→−∞ ‖w(t)‖L3,∞(�) < ε1,

which with the help of Lemma 9 yields

u = v on (−∞, T ].

This proves Theorem 1. ��
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4 Proof of Theorem 3

Proof In this section we will prove Theorem 3, by using the same methods as in the
proof of Theorem 1. Let δ be the same number given in the proof of Theorem 1.
Without loss of generality, we may assume T > 0 and

sup
t≤0

‖u(t)‖3,∞ ≤ δ, (4.1)

sup
t≤0

‖v(t) − V (t)‖L3,∞({|V (t)−v(t)|≤η}) ≤ δ. (4.2)

Let ε ∈ (0, 1] be an arbitrary fixed number, K be the same number given in the proof
of Theorem 1, i.e. K := supt≤0 ‖v(t)‖3,∞ + 1 + δ, and {tk} be a sequence such that

0 = t0 > t1 > t2 > · · · , |tk − tk+1| < 1, tk → −∞ as k → ∞,

sup
tk+1≤t≤tk

‖w(t) − w(tk)‖3,∞ + sup
tk+1≤t≤tk

‖V (t) − V (tk)‖3,∞ < ε

for all k = 0, 1, 2, . . . . (4.3)

Let y0 ∈ � be a fixed arbitrary point and

bk := (K + sups≤0 ‖V (s)‖3,∞ + ∑N
l=1 ‖Vl‖3,∞)5

ε2(|tk | + 1)1/2
.

Then we define a sequence {Dk} of measurable subsets of � as follows.

D0,l
k := {x ∈ �; |Vl(x)| ≥ bk} , l = 1, 2, . . . , N ,

D1
k := {x ∈ �; |v(x, tk) − V (x, tk)| ≥ bk} ,

D2
k := {x ∈ �; |x − y0| < 1/bk},

Dk :=
(

N⋃

l=1

D0,l
k

)

∪ D1
k ∪ D2

k , k = 0, 1, 2, . . . (4.4)

and also define D̃(t) in the same way as in the proof of Theorem 1:

D̃(t) = Dk if t ∈ (tk+1, tk], k = 0, 1, 2 . . . .

Note that, as we have proven in (Step 1) of the proof of Theorem 1, (3.8) holds. In the
same way as in the proofs of (3.25)–(3.26), we see that

μ(D̃(t)) ≤ C(N )ε6(|t | + 1)3/2

K 12 , −
∫ 0

− j
‖w(τ)‖2

L3(D̃(τ ))
dτ ≤ C̃0(N )K ε,
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where the constantsC(N ) and C̃0(N ) are depending only on N and�.Nowwe choose
ε such that

ε := δ2

2C̃0(N )K + δ + δ2

(

≤ min

{
δ2

2C̃0(N )K
, δ, 1

})

. (4.5)

Then, in the same way as in (3.29)–(3.30), there exist sequences {k( j)} ⊂ N and {s j }
such that

− 2 j ≤ s j ≤ − j, tk( j)+1 < s j ≤ tk( j), ‖w(s j )‖L3,∞(D̃(s j ))
≤ δ (4.6)

for all j ∈ N. Since

D̃(s j ) = Dk( j) ⊃ {|Vl | ≥ bk( j)} for all l = 1, 2, . . . , N and all j ∈ N,

bk( j) ↘ 0 as j → ∞, and

R(V ) = {V (t) ∈ L3,∞; t ∈ (−∞, 0]} ⊂
N⋃

l=1

{θ ∈ L3,∞; ‖θ − Vl‖3,∞ < δ},

(4.7)

we can choose subsequences {s j(n)}∞n=1 and {tk( j(n))}∞n=1 of {s j } and {tk( j)} respectively
and find a suitable l0 ∈ {1, 2, . . . , N } such that

‖V (tk( j(n))) − Vl0‖3,∞ < δ,

tk( j(n))+1 < s j(n) ≤ tk( j(n)),

D̃(s j(n)) = Dk( j(n)) ⊃ {|Vl0 | > 2−n}, n = 1, 2, . . . . (4.8)

For simplicity, we denote {k( j(n))} by {k(n)}. Note tk(n)+1 < s j(n) ≤ tk(n), tk(n) →
−∞ and bk(n) → 0 as n → ∞. Since

‖w(s j(n))‖L3,∞(�\D̃(s j(n)))

≤ ‖w(s j(n)) − w(tk(n))‖L3,∞(�\Dk(n))
+ ‖w(tk(n))‖L3(�\Dk(n))

≤ ‖w(s j(n)) − w(tk(n))‖L3,∞(�\Dk(n))

+‖u(tk(n))‖L3,∞(�\Dk(n))
+ ‖v(tk(n)) − V (tk(n))‖L3,∞(�\Dk(n))

+‖V (tk(n)) − Vl0‖L3,∞(�\Dk(n))
+ ‖Vl0‖L3,∞(�\Dk(n))

≤ δ + δ + ‖v(tk(n)) − V (tk(n))‖L3,∞(�\Dk(n))
+ δ + ‖Vl0‖L3,∞(�\Dk(n))

(4.9)

and since

‖v(tk(n)) − V (tk(n))‖L3,∞(�\Dk(n))
≤ ‖v(tk(n)) − V (tk(n))‖L3,∞(�\D1

k(n)
)

≤ ‖v(tk(n)) − V (tk(n))‖L3,∞({|v(tk(n))−V (tk(n))|≤η})
(4.10)
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for sufficiently large n, by (4.2) we have

lim sup
n→∞

‖w(s j(n))‖L3,∞(�\D̃(s j(n)))
≤ 4δ + lim sup

n→∞
‖Vl0‖L3,∞(�\Dk(n))

. (4.11)

Set

gn := v(s j(n)) − V (s j(n)) + Vl0 , U := Vl0 , and ω := 4δ.

Then, by (4.1), (4.3), (4.5), (4.6) and (4.8) we have

‖gn‖L3,∞({|Vl0 |>2−n}) = ‖ − w(s j(n)) + u(s j(n))

−(V (s j(n)) − V (tk(n))) + (Vl0 − V (tk(n)))‖L3,∞({|Vl0 |>2−n})
≤ ‖w(s j(n))‖L3,∞(D̃(s j(n)))

+ ‖u(s j(n))‖L3,∞(D̃(s j(n)))

+‖V (s j(n)) − V (tk(n))‖L3,∞(D̃(s j(n)))

+‖Vl0 − V (tk(n))‖L3,∞(D̃(s j(n)))

≤ 4δ = ω. (4.12)

Since gn − U = v(s j(n)) − V (s j(n)), by (4.2) and (4.12) we see that {gn} and
U (= Vl0) satisfy (2.27) and (2.28). Thus, by Lemma 13 we have

lim sup
n→∞

‖Vl0‖L3,∞(�\Dk(n))
≤ lim sup

n→∞
‖Vl0‖L3,∞({|Vl0 |<bk(n)})

≤ lim sup
i→∞

‖Vl0‖L3,∞({|Vl0 |≤2−i }) ≤ C3ω = 4C3δ. (4.13)

Hence, from (4.6), (4.11) and (4.13) we obtain

lim inf
t→−∞ ‖w(t)‖L3,∞(�) ≤ lim sup

n→∞
‖w(s j(n))‖L3,∞(�) ≤ 5δ + 4C3δ. (4.14)

Therefore, since δ = min{ε1,δ0}
6+4C3

, we conclude that

lim inf
t→−∞ ‖w(t)‖L3,∞(�) < ε1,

which with the help of Lemma 9 proves Theorem 3. ��
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Appendix

Here we will show that (1.12)–(1.14) guarantee 1√−t
v( x√−t

) ∈ BC((−∞, 0); L̃3,∞
σ

(R3+)). Let

St f := 1√−t
f

( ·√−t

)

for t < 0 and let

L̃3,∞(R3+) := L3,∞(R3+) ∩ L∞(R3+)
‖·‖3,∞

. (A.1)

Since ‖Stv‖3,∞ = ‖v‖3,∞ and Stv ∈ L̃3,∞(R3+) for v ∈ L̃3,∞(R3+) and for t < 0, it
suffices to show the following lemma:

Lemma 14 Let functions v, R, V , Q satisfy

v ∈ L̃3,∞(R3+),

R ∈ L3,∞(R3+) ∩ Lr ,∞(R3+) for some r ∈ (1, 3),

V (x) = Q(x/|x |)
|x | for all x ∈ R

3+, Q ∈ C(S2),

v = V + R. (A.2)

Then

Stv ∈ C((−∞, 0); L3,∞(R3+)). (A.3)

Proof (Case 1) We first consider the case v ∈ L3,∞(R3+)∩ L∞(R3+). Since St V = V ,

we have

St1v − St2v = St1R − St2 R for all t1, t2 < 0. (A.4)

Let ε > 0 be an arbitrary fixed number and let r < q < 3. Since R ∈ L3,∞(R3+) ∩
Lr ,∞(R3+), we see that R ∈ Lq(R3+) and hence there exists a function ψε ∈ C∞

0 (R3+)

such that

‖R − ψε‖q < ε.
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It is straightforward to see that Stψε ∈ C((−∞, 0); Lq(R3+)). Then, since

‖St1R − St2 R‖q ≤ ‖St1(R − ψε)‖q + ‖St2(R − ψε)‖q + ‖St1ψε − St2ψε‖q
≤

(
|t1|

1
2 ( 3q −1) + |t2|

1
2 ( 3q −1)

)
ε + ‖St1ψε − St2ψε‖q ,

we have lim supt1→t2 ‖St1R − St2 R‖q ≤ 2|t2|
1
2 ( 3q −1)

ε and, letting ε → 0,

lim sup
t1→t2

‖St1R − St2 R‖q = 0 (A.5)

for all t2 < 0. Since ‖St1v − St2v‖∞ ≤ ( 1
|t1|1/2 + 1

|t2|1/2 )‖v‖∞, by the interpolation,
(A.4) and (A.5), we have

lim sup
t1→t2

‖St1v − St2v‖3,∞

≤ C lim sup
t1→t2

(
‖St1R − St2 R‖q/3

q ‖St1v − St2v‖1−q/3∞
)

= 0 (A.6)

for all t2 < 0. Therefore, (A.3) holds.
(Case 2) Next we consider the case v ∈ L̃3,∞(R3+). In this case, it holds that

lim
n→∞ ‖v1{|v|>n}‖3,∞ = 0. (A.7)

Indeed, by (A.1), there exists a sequence {φk} such that

φk ∈ L3,∞(R3+) ∩ L∞(R3+), ‖v − φk‖3,∞ < 1/k for all k ∈ N.

Then

‖v1{|v|>n}‖3,∞ ≤ ‖(v − φk)1{|v|>n}‖3,∞ + ‖φk1{|v|>n}‖3,∞
≤ 1/k + C‖φk‖∞‖1{|v|>n}‖L3 ≤ 1/k + C‖φk‖∞(μ{|v| > n})1/3

≤ 1/k + C‖φk‖∞
‖v‖3,∞

n
for all k ∈ N, (A.8)

which implies lim supn→∞ ‖v1{|v|>n}‖3,∞ ≤ 1/k for all k ∈ N and hence (A.7). Now
let

vn(x) := v(x)1{|v|≤n}(x) and Rn(x) := R(x) − v(x)1{|v|>n}(x).

Clearly,

vn ∈ L3,∞(R3+) ∩ L∞(R3+) and Rn ∈ L3,∞(R3+). (A.9)

123



Y. Taniuchi

Since

‖v1{|v|>n}‖r ,∞ ≤ C sup
s>0

s (μ{|v| > s, |v| > n})1/3 (μ{|v| > s, |v| > n})1/r−1/3

≤ C sup
s>0

s (μ{|v| > s})1/3
(‖v‖3,∞

n

)3/r−1

≤ C‖v‖3/r3,∞
1

n3/r−1 .

Then,

Rn ∈ Lr ,∞(R3+). (A.10)

Since vn − Rn = v − R = V , we have

vn = V + Rn . (A.11)

Hence, as demonstrated in (Case 1), (A.9), (A.10) and (A.11) imply

Stvn ∈ C((−∞, 0); L3,∞(R3+)).

Thus,

lim sup
t1→t2

‖St1v − St2v‖3,∞ ≤ lim sup
t1→t2

(‖St1(v − vn)‖3,∞
+‖St2(v − vn)‖3,∞ + ‖St1vn − St2vn)‖3,∞

)

= 2‖v − vn‖3,∞ = 2‖v1{|v|>n}‖3,∞ (A.12)

for all t2 < 0.Therefore, letting n → ∞, from (A.7)we conclude that limt1→t2 ‖St1v−
St2v‖3,∞ = 0 and (A.3) holds. ��
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