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Abstract
Let � be a bounded domain in RN with C2 boundary and let K ⊂ ∂� be either a C2

submanifold of the boundary of codimension k < N or a point. In this article we study
various problems related to the Schrödinger operator Lμ = −� − μd−2

K where dK
denotes the distance to K and μ ≤ k2/4. We establish parabolic boundary Harnack
inequalities as well as related two-sided heat kernel and Green function estimates.
We construct the associated Martin kernel and prove existence and uniqueness for
the corresponding boundary value problem with data given by measures. To prove our
results we introduce among other things a suitable notion of boundary trace. This trace
is different from the one used by Marcus and Nguyen (Math Ann 374(1–2):361–394,
2019) thus allowing us to cover the whole range μ ≤ k2/4.
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1 Introduction

The study of linear Schrödinger operators with singular potentials is central in the the-
ory of parabolic and elliptic partial differential equations. In recent years in particular
there has been an intense study of operators with Hardy potentials, see e.g. [2, 4, 6, 9,
10, 15, 20, 22, 23, 31, 40].

Throughout this work we assume that� is a bounded C2 domain; we note however
that some of the results presented in this introduction are valid under weaker regularity
assumptions.

Consider the problem

⎧
⎨

⎩

ut = �u + V (x)u, x ∈ �, t > 0,
u = 0, x ∈ ∂�, t > 0,
u(0, x) = u0(x), x ∈ �,

(1.1)

where V ∈ L1
loc(�) and set

λ∗ = inf
C∞
c (�)

∫

�
|∇w|2dx − ∫

�
Vw2dx

∫

�
w2dx

.
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Cabré and Martel [11] have established that if λ∗ > −∞ then for regular enough
initial data there exists a global in time weak solution of (1.1) which in addition
satisfies an exponential in time bound. Conversely, the existence of a weak solution
which satisfies an exponential bound implies that λ∗ > −∞. In the prototype case
of the Hardy potential V (x) = c|x |−2 this has already been studied by Baras and
Goldstein [3].

Given the existence of a weak solution one natural question is the existence and
asymptotic behaviour of the heat kernel and Green function. If the potential is not too
singular then the asymptotic behaviour of the heat kernel for small time is the same
as that of the Laplacian, namely

C−1
(

d(x)d(y)

(d(x) + √
t)(d(y) + √

t)

)

t−
N
2 exp

(

− C
|x − y|2

t

)

≤ h(t, x, y) ≤ C

(
d(x)d(y)

(d(x) + √
t)(d(y) + √

t)

)

t−
N
2 exp

(

− C−1 |x − y|2
t

)

,

where d(x) = dist(x, ∂�) denotes the distance to the boundary, see e.g. [53].
In the case of a more singular potential such as a Hardy potential, the problem has

been studied in [5, 17, 18, 25, 26, 37, 47–49, 51].
A distinction that plays an important role in this context is whether the singularity

of the Hardy potential occurs in the interior or on the boundary of the domain. For the
potential μ|x |−2, 0 ≤ μ ≤ ( N−2

2 )2, where 0 ∈ �, for small time we have

C−1
(

d(x)d(y)

(d(x) + √
t)(d(y) + √

t)

)( |x | |y|
(|x | + √

t)(|y| + √
t)

)θ+
t− N

2 exp

(

− C
|x − y|2

t

)

≤ h(t, x, y)

≤ C

(
d(x)d(y)

(d(x) + √
t)(d(y) + √

t)

)( |x | |y|
(|x | + √

t)(|y| + √
t)

)θ+
t− N

2

× exp

(

− C−1 |x − y|2
t

)

,

where θ+ is the largest solution to the equation θ2 + (N − 2)θ + μ = 0; see [25].
This estimate was generalized in [29] in case where the distance is taken from a closed
surface � ⊂ � of codimension k, 2 ≤ k ≤ N ; see also [27, 28] for more results
within this framework.

On the other hand, when the distance is taken from the boundary ∂� the following
small time estimate is valid for the heat kernel of the operator −� − μd(x)−2, 0 ≤
μ ≤ 1

4 ,

C−1
(

d(x)d(y)

(d(x) + √
t)(d(y) + √

t)

)1+θ+
t−

N
2 exp

(

− C
|x − y|2

t

)

≤ h(t, x, y) ≤ C

(
d(x)d(y)

(d(x) + √
t)(d(y) + √

t)

)1+θ+
t−

N
2 exp

(

− C−1 |x − y|2
t

)

,
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where θ+ is the largest solution to the equation θ2 + θ + μ = 0, see [25, 26].
Another function that is important in the study of this type of problems is theMartin

kernel [1, 35, 46]. Ancona proved the existence of the Martin kernel Kμ,∂�(x, y) of
L∂�

μ = −� − μ

d2
, μ < 1

4 , with pole at y, which is unique up to a normalization (see

[1, Theorem 3]). He showed that for any positive solution u of L∂�
μ u = 0 there exists

a unique nonnegative Radon measure ν on ∂� such that

u(x) =
∫

∂�

Kμ,∂�(x, y)dν(y). (1.2)

The case μ = 1
4 was treated by Gkikas and Véron in [30]. In particular, they showed

that the representation formula (1.2) holds true provided the bottom of the spectrum
of L∂�

μ is positive.
When K ⊂ � is a closed smooth surface of codimension k ∈ {3, . . . , N }, analogous

results where obtained in [29] for the operator LK
μ = −� − μ

d2K
, μ ≤ (k−2)2

4 , under

the assumption that the bottom of the spectrum of LK
μ is positive.

Our aim in this article is to study such problems in the case where the Hardy
potential involves the distance to a smooth submanifold of the boundary, including
the case of a boundary point. In this direction:

• We establish parabolic boundary Harnack inequalities as well as related two-sided
heat kernel estimates. For small time, our approach is based on the ideas of Grig-
oryan and Saloff-Coste [34] (see also [50]), while for large time, we exploit the
work of Davies in [16, 17] to obtain sharp- two sided heat kernel estimates; see
also [25, 26].

• In the spirit of [12, 35] (see also [29, 30]), we construct the Martin kernel of Lμ

in � and we prove the uniqueness also in the critical case. Using the heat kernel
estimates, we obtain sharp pointwise estimates for the Green function as well as
the Martin kernel. We also show that every nonnegative Lμ-harmonic function
(i.e. solution of Lμu = 0 in � in the sense of distributions) can be represented as
the integral of the Martin kernel with respect to a finite measure on ∂�.

• Using the properties of theGreen function andMartin kernelwe study the boundary
value problem with data given by measures. Following Marcus-Véron [44] we
prove existence, uniqueness as well as a representation formula for any solution
of this problem.

We note that these results are the main tools in the study of semilinear problems for
the operator Lμ involving absorption or source terms. In Appendix B we include such
results for subcritical absorption. For relevant work see also [7, 8, 13, 21, 27, 28, 30,
32, 33, 41–45] and references therein.

2 Main results

Throughout this article we consider a bounded C2 domain � ⊂ R
N , N ≥ 3, and a

C2 compact submanifold without boundary K ⊂ ∂� of codimension k, 1 ≤ k ≤ N .
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For the extreme cases k = N and k = 1 we assume that K = {0} and K = ∂�

respectively. We set dK (x) = dist(x, K ) and define the operator

Lμ = −� − μ

d2K
, in �,

where μ is a parameter; we shall always assume that μ ≤ k2
4 so that Lμ is bounded

frombelow. The study of the parabolic equation ut +Lμu = 0withDirichlet boundary
conditions is strongly related with the minimization problem,

C�,K = inf
u∈H1

0 (�)\{0}

∫

�
|∇u|2dx

∫

�
|u|2
d2K

dx
.

It is well known that 0 < C�,K ≤ k2
4 (see, e.g., [22]).

Let μ ≤ k2
4 and let γ+ (resp. γ−) denote the largest (resp. the smallest) solution of

the equation γ 2 + kγ + μ = 0. The infimum

λμ := inf
u∈H1

0 (�)\{0}

∫

�
|∇u|2dx − μ

∫

�
u2

d2K
dx

∫

�
u2dx

(2.1)

is finite and, moreover, if μ < k2
4 , then there exists a minimizer φμ ∈ H1

0 (�) of
(2.1); see [22] for more details. In addition, by [42, Lemma 2.2] the eigenfunction φμ

satisfies

φμ(x) 
 d(x)dγ+
K (x), in �, (2.2)

providedμ < C�,K .1 On the other hand, ifμ = k2
4 then there is no H1

0 (�)minimizer.
However, there exists a function φμ ∈ H1

loc(�) such that Lμφμ = λμφμ in � in the
sense of distributions. In Proposition A.2 in the Appendix we follow ideas of [10,
19, 20, 26] and extend (2.2) to the full range μ ≤ k2

4 , thus removing the restriction
μ < C�,K .

2.1 Heat kernel and boundary Harnack inequality

Let u ∈ C1((0,∞) : C2(�)), setting u = e−λμtφμv, we can easily see that

ut + Lμu

φμ

= vt − φ−2
μ div

(
φ2

μ∇v
)

=: vt + Lμv. (2.3)

1 Here and below we write f (x) 
 g(x) in � to mean that there exists a constant c > 1 such that
c−1 f (x) ≤ g(x) ≤ c f (x) for all x ∈ �.
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Hence, instead of studying the properties of the operator Lμ, it is more convenient
to study the operator ∂

∂t + Lμ. In this direction, we introduce the weighted Sobolev
space H1(�;φ2

μ).

Definition 2.1 Let D ⊂ � be an open set. We denote by H1(D;φ2
μ) the weighted

Sobolev space

H1(D;φ2
μ) := {u ∈ H1

loc(D) : |u|φμ + |∇u|φμ ∈ L2(D)}
endowed with the norm

‖u‖2H1(D;φ2
μ)

=
∫

D
u2φ2

μdx +
∫

D
|∇u|2φ2

μdx .

We also denote by H1
0 (D;φ2

μ) the closure of C∞
c (D) in the norm ‖·‖H1(D;φ2

μ). It is

worth mentioning here that H1
0 (�;φ2

μ) = H1(�;φ2
μ) (see Theorem 4.5).

Next, we normalize φμ so that
∫

�
φ2

μdx = 1. We define the bilinear form Q :
H1
0 (�;φ2

μ) × H1
0 (�;φ2

μ) → R by

Q(u, v) =
∫

�

∇u · ∇v φ2
μdx .

The associated operator is the operatorLμ defined in (2.3) and generates a contraction
semigroup T (t) : L2(�;φ2

μ) → L2(�;φ2
μ), t ≥ 0, denoted also by e−Lμt . This

semigroup is positivity preserving and by [17, Lemma 1.3.4] we can easily show
that satisfies the conditions of [17, Theorems 1.3.2 and 1.3.3]. Using the logarithmic
Sobolev inequality (Theorem 5.1) and some ideas of Davies [16, 17], we shall show
that e−Lμt is ultracontractive and therefore has a kernel k(t, x, y). More precisely, we
prove the following large time estimates:

Theorem 2.2 Let μ ≤ k2
4 and T > 0. Then there exists c > 1 depending only on �,

K , μ and T such that

c−1 ≤ k(t, x, y) ≤ c

for any t ≥ T and x, y ∈ �.

For small time the two-sided heat kernel estimate is different. A pivotal ingredient
in the proof of this estimate is the boundary Harnack inequality. However, in order to
state the boundary Harnack inequality, we first need to give the following definition
of weak solution.

Definition 2.3 Let D ⊂ � be an open set. We say that v ∈ C1((0, T ) : H1(D;φ2
μ)) is

a weak solution of vt +Lμv = 0 in (0, T )× D if for each � ∈ C1
c ((0, T ) : C∞

c (D)),

we have ∫ T

0

∫

D
(vt� + ∇v · ∇�)φ2

μ dy dt = 0.
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Theorem 2.4 (Boundary Harnack inequality) Let μ ≤ k2/4 and v be a non-negative
solution of vt + Lμv in (0, r2) × B(x, r) ∩ �. There exist β1 > 0 and a positive
constant C = C(�, K , β1, μ) such that for all r < β1 there holds

sup
( r

2
4 , r

2
2 )×B(x, r2 )∩�

v ≤ C inf
( 3r

2
4 ,r2)×B(x, r2 )∩�

v. (2.4)

Here B(x, r) are suitably defined “balls” (see Definition 4.1). Let us briefly explain
the proof of the above theorem. We first prove the doubling property for the “balls”
B(x, r) (Lemma 4.2), the Poincaré inequality (Theorem 4.9) and the Moser inequality
(Theorem 4.21). The last three results along with the density Theorem 4.5 allow us to
apply a Moser iteration argument similar to the one in [34, 50] so that we reach the
desired result. Due to the fact that K ⊂ ∂�, the proof of the above theorem is more
complicated than the one in [25, 26] and new essential difficulties arise which should
be handled in a very delicate way.

Proceeding as in the proof of [50, Theorem 5.4.12], we may deduce that the bound-
aryHarnack inequality (2.4) implies the following sharp two-sided heat kernel estimate
for small time.

Theorem 2.5 Let μ ≤ k2
4 . There exist T = T (�, K , μ) > 0 and C =

C(�, K , μ, T ) > 1 such that

C−1
(
(d(x) + √

t)(d(y) + √
t)
)−1 (

(dK (x) + √
t)(dK (y) + √

t)
)−γ+

t−
N
2

× exp

(

− C
|x − y|2

t

)

≤ k(t, x, y)

≤ C
(
(d(x) + √

t)(d(y) + √
t)
)−1(

(dK (x) + √
t)(dK (y) + √

t)
)−γ+

t−
N
2

× exp

(

− C−1 |x − y|2
t

)

,

for any 0 < t ≤ T and x, y ∈ �.

Let h(t, x, y) denote the Dirichlet heat kernel of Lμ. It is then immediate that
h(t, x, y) = (φμ(x)φμ(y))e−λμt k(t, x, y). Hence, byTheorems2.2 and2.5,weobtain
the following theorem.

Theorem 2.6 Let μ ≤ k2
4 and T > 0. There exist C1 = C1(�, K , μ, T , λμ) > 1 and

C2 = C(�, K , μ, T ) > 1 such that

(i)

C−1
1

(
d(x)

d(x) + √
t

)(
d(y)

d(y) + √
t

)(
dK (x)

dK (x) + √
t

)γ+( dK (y)

dK (y) + √
t

)γ+
t−

N
2

× exp

(

− C1
|x − y|2

t

)
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≤ h(t, x, y)

≤ C1

(
d(x)

d(x) + √
t

)(
d(y)

d(y) + √
t

)(
dK (x)

dK (x) + √
t

)γ+( dK (y)

dK (y) + √
t

)γ+
t−

N
2

× exp

(

− C−1
1

|x − y|2
t

)

,

for any 0 < t < T and x, y ∈ �.

(ii)

C−1
2 φμ(x)φμ(y)e−λμt ≤ h(t, x, y) ≤ C2φμ(x)φμ(y)e−λμt ,

for any t > T and x, y ∈ �.

If λμ > 0, then by the above theorem we can obtain the existence of a minimal Green
function Gμ(x, y) of Lμ as well as precise asymptotic for Gμ(x, y) (see Sect. 5.2 for
more details).

2.2 Martin Kernels and boundary value problems

If μ < C�,K then the operator Lμ = −� − μ

d2K
is coercive in H1

0 (�). Hence,

taking into account the discussion on the first eigenfunction φμ of (2.1), we may apply
Ancona’s results in [1] to deduce that any positive solution u of Lμu = 0 in � can

be represented like (1.2). If μ = C�,K < k2
4 then there exists an H1

0 minimiser of
the Hardy quotient and therefore there is no Green function and the operator is not
coercive. In the remaining case μ = C�,K = k2

4 , the operator Lμ clearly is not
coercive and this case is not covered by Ancona’s results in [1]. One of the main goals
of this work is to prove that the assumption λμ > 0 suffices to have a respective

representation formula, also in the case μ = k2
4 .

In order to state themain results we first need to give some notations and definitions.
For β > 0 we set

Kβ = {x ∈ R
N\K : dK (x) < β}, �β = {x ∈ � : d(x) < β}.

We assume that β is small enough so that for any x ∈ �β there exists a unique
ξx ∈ ∂�, which satisfies d(x) = |x − ξx |. Now set

d̃K (x) =
√

|dist∂�(ξx , K )|2 + |x − ξx |2 , x ∈ Kβ, (2.5)

where dist∂�(ξx , K ) denotes the distance of ξx to K measured on ∂�.
Let β0 > 0 (this will be determined in Lemma 6.1). We consider a smooth cut-off

function 0 ≤ ηβ0 ≤ 1 with compact support in K β0
2
such that ηβ0 = 1 in K β0

4
. We
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define

W (x) =

⎧
⎪⎪⎨

⎪⎪⎩

(d + d̃2K )d̃γ−
K , if μ <

k2

4
,

(d + d̃2K )d̃
− k

2
K (x)| ln d̃K (x)|, if μ = k2

4
,

x ∈ � ∩ Kβ0 ,

and

W̃ (x) := (1 − ηβ0(x)) + ηβ0(x)W (x), x ∈ �.

Let h ∈ C(∂�) and u ∈ H1
loc(�) ∩ C(�). We write t̃r(u) = h whenever

lim
x∈�, x→y∈∂�

u(x)

W̃ (x)
= h(y) uniformly for y ∈ ∂�. (2.6)

In Sect. 6 we prove that for any h ∈ C(∂�) the problem

{
Lμv = 0, in �,

t̃r(v) = h, on ∂�,

has a unique solution v = vh ∈ H1
loc(�) ∩ C(�). From this and the accompanying

estimate follows that for any x0 ∈ � the mapping h �→ vh(x0) is a linear positive
functional on C(∂�). Thus there exists a unique Borel measure on ∂�, called Lμ-
harmonic measure in �, denoted by ωx0 , such that

vh(x0) =
∫

∂�

h(y)dωx0(y).

Thanks to the Harnack inequality the measures ωx and ωx0 , x0, x ∈ �, are mutually
absolutely continuous. Therefore, the Radon–Nikodyn derivative exists and we set

Kμ(x, y) := dwx

dwx0
(y) for ωx0 - almost all y ∈ ∂�.

Definition 2.7 Fix ξ ∈ ∂�. A function K defined in � is called a kernel function for
Lμ with pole at ξ and basis at x0 ∈ � if

(i) K(·, ξ) is Lμ-harmonic in �,

(ii) K(·,ξ)

W̃ (·) ∈ C(�\{ξ}) and for any η ∈ ∂�\{ξ} we have limx∈�, x→η
K(x,ξ)

W̃ (x)
= 0,

(iii) K(x, ξ) > 0 for each x ∈ � and K(x0, ξ) = 1.

Using the ideas in [12], we show the existence and uniqueness of a kernel function
with pole at ξ and basis at x0 (see Proposition 7.3). As a result we obtain the existence
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of the Martin kernel and moreover

Kμ(x, ξ) = lim
y∈�, y→ξ

Gμ(x, y)

Gμ(x0, y)
, ∀ξ ∈ ∂�.

In addition, by the estimates on Green function Gμ(x, y) of Lμ (see Proposition 5.3)
we obtain the following result.

Theorem 2.8 Assume that μ ≤ k2
4 and λμ > 0. We then have:

(i) If μ < k2
4 or μ = k2

4 and k < N then

Kμ(x, ξ) 
 d(x)

|x − ξ |N
(

dK (x)

(dK (x) + |x − ξ |)2
)γ+

, in � × ∂�. (2.7)

(ii) If μ = N2

4 (so k = N), then

Kμ(x, ξ) 
 d(x)

|x − ξ |N
( |x |

(|x | + |x − ξ |)2
)− N

2 + d(x)

|x | N2
∣
∣ ln |x − ξ |∣∣, in � × ∂�.

(2.8)

When K = ∂�, Filippas, Moschini and Tertikas [25] derived sharp two-sided
estimate on the associated heat kernel. These estimates where then used in order to
obtain sharp estimates on Gμ(x, y). Chen and Véron [14] studied the operator Lμ

with K = {0} ⊂ ∂� and they constructed the corresponding Martin kernel. The
case K ⊂ � was thoroughly studied by Gkikas and Nguyen in [29]. Estimates on
the Green kernel of LμV = −� − μV , where V is a singular potential such that
|V (x)| ≤ cd−2(x) in �, have been given by Marcus [38, 39]. Marcus and Nguyen
[42] used Ancona’s result to show that the Martin kernel Kμ(x, y) is well defined and
they applied the results in [39] to the model case Lμ in order to obtain estimates on
the Green kernel Gμ(x, y) and the Martin kernel Kμ(x, y). However, their results do

not cover the critical case μ = k2
4 .

In this work, we follow a different approach which does not use Ancona’s result
[1] and allows us to study the critical case. In particular our work is inspired by the
articles [25, 29, 30]. The main difference here is that K ⊂ ∂�, which has an effect
on the value of the optimal Hardy constant C�,K as well as on the behaviour of the
eigenfunction φμ. As a result, this fact yields substantial difficulties and reveals new
aspects of the study of Lμ.

We are now ready to state the representation formula.

Theorem 2.9 Assume that μ ≤ k2
4 and λμ > 0. Let u be a positive Lμ-harmonic

function in �. Then u ∈ L1(�;φμ) and there exists a unique Radon measure ν on
∂� such that

u(x) =
∫

∂�

Kμ(x, ξ)dν(ξ) =: Kμ[ν].
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In order to study the corresponding boundary value problem, we should first
introduce the notion of the boundary trace. We will define it in a dynamic way.
In this direction, let {�n} be a smooth exhaustion of �, that is an increasing
sequence of bounded open smooth domains such that �n ⊂ �n+1, ∪n�n = � and
HN−1(∂�n) → HN−1(∂�). The operator L�n

μ defined by

L�n
μ u = −�u − μ

d2K
u

is uniformly elliptic and coercive in H1
0 (�n) and its first eigenvalue λ

�n
μ is larger than

λμ. For h ∈ C(∂�n) the problem

{
L�n

μ v = 0, in �n

v = h, on ∂�n,

admits a unique solution which allows to define the L�n
μ -harmonic measure on ∂�n

by

v(x0) =
∫

∂�n

h(y)dω
x0
�n

(y).

Definition 2.10 (Lμ-boundary trace) A function u ∈ W 1,p
loc (�), p > 1, possesses an

Lμ-boundary trace if there exists a measure ν ∈ M(∂�) such that for any smooth
exhaustion {�n} of �, there holds

lim
n→∞

∫

∂�n

φu dω
x0
�n

=
∫

∂�

φ dν, ∀φ ∈ C(�).

The Lμ-boundary trace of u will be denoted by trμ(u).
LetM(∂�) denote the space of bounded Borel measures on ∂� andM(�;φμ) the

space of Borel measures τ on � such that

∫

�

φμd|τ | < ∞.

Arguing as in [45] we obtain in Lemma 8.1 that for any ν ∈ M(∂�) we have
trμ(Kμ[ν]) = ν.

Assume now that τ ∈ M(�;φμ) and let

u = Gμ[τ ] :=
∫

�

Gμ(x, y)dτ(y).

Then u ∈ W 1,p
loc (�) for every 1 < p < N

N−1 and trμ(u) = 0 (see Lemma 8.2).
Next, we give the definition of weak solutions of the following boundary value

problem.
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Definition 2.11 Let τ ∈ M(�;φμ) and ν ∈ M(∂�). We say that u ∈ L1(�;φμ) is a
weak solution of

{
Lμu = τ, in �,

trμ(u) = ν,
(2.9)

if
∫

�

u Lμζ dx =
∫

�

ζ dτ +
∫

�

Kμ[ν]Lμζ dx , ∀ζ ∈ Xμ(�, K ),

where

Xμ(�, K ) =
{

ζ ∈ H1
loc(�) : φ−1

μ ζ ∈ H1(�;φ2
μ), φ−1

μ Lμζ ∈ L∞(�)

}

.

(2.10)

Let us state our main result for problem (2.9).

Theorem 2.12 Let τ ∈ M(�;φμ) and ν ∈ M(∂�). There exists a unique weak
solution u ∈ L1(�;φμ) of (2.9),

u = Gμ[τ ] + Kμ[ν]. (2.11)

Furthermore there exists a positive constant C = C(�, K , μ) such that

‖u‖L1(�;φμ) ≤ 1

λμ

‖τ‖M(�;φμ) + C‖ν‖M(∂�). (2.12)

If in addition dτ = f dx + dρ where f ∈ L1(�;φμ) and ρ ∈ M(�;φμ), then for
any ζ ∈ Xμ(�, K ) with ζ ≥ 0, there hold

∫

�

|u|Lμζ dx ≤
∫

�

sign(u) f ζ dx +
∫

�

ζd|ρ| +
∫

�

Kμ[|ν|]Lμζ dx, (2.13)
∫

�

u+Lμζ dx ≤
∫

�

sign+(u) f ζ dx +
∫

�

ζ dρ+ +
∫

�

Kμ[ν+]Lμζ dx .

(2.14)

It is worth mentioning here that Marcus and Nguyen [42] studied problem (2.9) by
introducing an alternative normalized boundary trace tr∗(u) (see [42, Definition 1.2]).
However this normalized boundary trace iswell defined only ifμ < min(C�,K , 2k−1

4 ).

As a consequence they showed that the boundary value problem

{
Lμu = τ, in �,

tr∗(u) = ν,

admits a unique solution provided μ < min(C�,K , 2k−1
4 ).
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3 Hardy–Sobolev type inequalities

In this section we shall prove various Hardy-Sobolev type inequalities that will be
essential for our analysis. We start by recalling the following result:

Proposition 3.1 [22, Lemma 2.1] There exists β0 = β0(K ,�) small enough such that,
for any x ∈ � ∩ Kβ0 , the following estimates hold:

(a) d̃2K (x) = d2K (x)(1 + g(x))

(b) ∇d(x) · ∇d̃K (x) = d(x)

d̃K (x)

(c) |∇d̃K (x)|2 = 1 + h(x)

(d) d̃K (x)�d̃K (x) = k − 1 + f (x),

where the functions g, h and f satisfy

|g(x)| + |h(x)| + | f (x)| ≤ C1(β0, N )d̃K (x), ∀x ∈ � ∩ Kβ0 . (3.1)

Lemma 3.2 Assume that α �= 0 and γ + α + k − 1 �= 0. There exist β0 > 0 and
C = C(γ, α, k, β0, N ) such that for any open V ⊂ Kβ0 ∩ � and for any u ∈ C∞

c (V )

there holds
∫

V
dα d̃γ−1

K |u|dx +
∫

V
dα−1d̃γ

K |u|dx ≤ C
∫

V
dα d̃γ

K |∇u|dx .

Proof By Proposition 3.1 we have

γ

∫

V
dα d̃γ−1

K |u|dx + γ

∫

V
dα d̃γ−1

K h|u|dx =
∫

V
dα∇d̃γ

K · ∇d̃K |u|dx

= −α

∫

V
dα−1d̃γ

K∇d · ∇d̃K |u|dx −
∫

V
dα d̃γ

K�d̃K |u|dx −
∫

V
dα d̃γ

K∇d̃K · ∇|u|dx

= −α

∫

V
dα d̃γ−1

K |u|dx −
∫

V
dα d̃γ−1

K (k − 1 + f )|u|dx −
∫

V
dα d̃γ

K∇d̃K · ∇|u|dx ,

that is

(γ + α + k − 1)
∫

V
dα d̃γ−1

K |u|dx = −
∫

V
dα d̃γ−1

K ( f + γ h)|u|dx

−
∫

V
dα d̃γ

K∇d̃K · ∇|u|dx .

By the above equality, Proposition 3.1 and (3.1), we can easily prove that

(|γ + α + k − 1| − C(C1, γ )β0
)
∫

V
dα d̃γ−1

K |u|dx ≤ (1 + C1
√

β0)

∫

V
dα d̃γ

K |∇u|dx,
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where C1 = C1(β0, N ) is the constant in inequality (3.1). Choosing β0 small enough,
we obtain

∫

V
dα d̃γ−1

K |u|dx ≤ C
∫

V
dα d̃γ

K |∇u|dx . (3.2)

By (3.2) and Proposition 3.1 we have

∣
∣
∣
∣α

∫

V
dα−1d̃γ

K |u|dx
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

V
(∇dα · ∇d)d̃γ

K |u|dx
∣
∣
∣
∣

≤ C
∫

V
dα d̃γ−1

K |u|dx +
∫

V
dα d̃γ

K |∇u|dx,

provided β0 is small enough. The result now follows. ��
Lemma 3.3 Assume that a �= 0 and c + a + k − 1 �= 0. Let 1 ≤ q ≤ N

N−1 and

b = a − 1 + N q−1
q . If β0 is small enough then there exists C = C(a, c, k, β0, q, N )

such that for any open V ⊂ �∩Kβ0 and for any u ∈ C∞
c (V ) the following inequality

is valid

(∫

V
dqbd̃qcK |u|qdx

) 1
q

≤ C
∫

V
dad̃cK |∇u|dx . (3.3)

Proof Let 0 ≤ θi ≤ 1, i = 1, 2, be such that θ1 + θ2 = 1 and N−1
N θ1 + θ2 = 1

q . By
Hölder inequality we have

∫

V
dqbd̃qcK |u|qdx =

∫

V

(

dqaθ1 d̃qcθ1K |u|θ1q
)(

dq(a−1)θ2 d̃qcθ2K |u|θ2q
)
dx

≤ ‖dad̃cK u‖θ1q

L
N

N−1 (V )

‖da−1d̃cK u‖θ2q
L1(V )

,

and therefore

‖dbd̃cK u‖Lq (V ) ≤ ‖dad̃cK u‖
L

N
N−1 (V )

+ ‖da−1d̃cK u‖L1(V ). (3.4)

By the L1 Sobolev inequality and Lemma 3.2 we have

‖dad̃cK u‖
L

N
N−1 (V )

≤ C

(

|c|
∫

V
dad̃c−1

K |u|dx + |a|
∫

V
da−1d̃cK |u|dx +

∫

V
dad̃cK |∇u|dx

)

≤ C
∫

V
dad̃cK |∇u|dx .

Combining this with Lemma 3.2 and (3.4) concludes the proof. ��
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Lemma 3.4 Assume that a �= 0 and c + a + k − 1 �= 0. Let 2 < Q ≤ 2N
N−2 and

b = a − 1+ N Q−2
2Q . If β0 is small enough then there exists C = C(c, a, k, β0, Q, N )

such that for any open V ⊂ � ∩ Kβ0 and for any v ∈ C∞
c (V ) there holds

(∫

V
(dbd̃cK )

2Q
Q+2 |v|Qdx

) 2
Q ≤ C

∫

V
d2a− 2Qb

Q+2 d̃
4c

Q+2
K |∇v|2dx .

Proof Let s = Q
2 + 1 and write Q = qs. Applying (3.3) to the function u = |v|s we

obtain

(∫

V

(
dbd̃cK

) 2Q
Q+2 |v|Qdx

) Q+2
2Q ≤ C

∫

V
dad̃cK |v| Q2 |∇v|dx . (3.5)

Now, by Schwarz inequality, we have

∫

V
dad̃cK |v| Q2 |∇v|dx =

∫

V
db

Q
Q+2 d̃

c Q
Q+2

K |v| Q2 da−b Q
Q+2 d̃

c(1− Q
Q+2 )

K |∇v|dx

≤
(∫

V

(
dbd̃cK

) 2Q
Q+2 |v|Qdx

) 1
2
(∫

V
d2a− 2Qb

Q+2 d̃
c(2− 2Q

Q+2 )

K |∇v|2dx
) 1

2

.

The result follows by (3.5) and the last inequality. ��
Corollary 3.5 Let α �= 0 and assume that (α + γ ) N−1

N−2 + k − 1 �= 0. There exist β0
small enough and C > 0 such that for any open V ⊂ �∩Kβ0 and for all u ∈ C∞

c (V )

there holds

(∫

V

(
d

α
2 d̃

γ
2
K |u|) 2N

N−2 dx

) N−2
N ≤ C

∫

V
dα d̃γ

K |∇u|2dx .

Proof We apply Lemma 3.4 with Q = 2N
N−2 , a = α N−1

N−2 , c = γ ( N−1
N−2 ). ��

Corollary 3.6 Let α > 0 and γ ≥ 0. There exist β0 > 0 and C > 0 such that for any
open V ⊂ � ∩ Kβ0 and all u ∈ C∞

c (V ), the following inequality is valid

(∫

V
dα d̃γ

K |u| 2(N+α+γ )
N+α+γ−2 dx

) N+α+γ−2
N+α+γ ≤ C

∫

V
dα+ 2γ

N+a+γ d̃
γ− 2γ

N+a+γ

K |∇u|2dx .

Proof This follows by Lemma 3.4 with Q = 2(N+α+γ )
N+α+γ−2 , c = γ

q , b = α
q , where

q = 2Q
Q+2 . ��
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Corollary 3.7 Let α > 0, γ < 0 and assume that α + γ N+α−1
N+α

+ k − 1 �= 0. There
exist β0 > 0 and C > 0 such that for any open V ⊂ � ∩ Kβ0 and all u ∈ C∞

c (V )

there holds

(∫

V
dα d̃γ

K |u| 2(N+α)
N+α−2 dx

) N+α−2
N+α ≤ C

∫

V
dα d̃

γ N+α−2
N+α

K |∇u|2dx .

Proof The proof follows from Lemma 3.4, with Q = 2(N+α)
N+α−2 , c = γ N+α−1

N+α
and

b = α N+α−1
N+α

. ��

4 Heat Kernel estimates for small time

We are now going to introduce some notation and tools that will be useful for our local
analysis near K and ∂�; see e.g. [36].

Let x = (x ′, x ′′) ∈ R
N , x ′ = (x1, . . . , xk) ∈ R

k , x ′′ = (xk+1, . . . , xN ) ∈ R
N−k .

For β > 0, we denote by Bk
β(x ′) the ball in R

k with center x ′ and radius β. For any
ξ ∈ K we also set

VK (ξ, β) =
{
x = (x ′, x ′′) : |x ′′ − ξ ′′| < β, |xi − �

ξ
i,K (x ′′)| < β, ∀i = 1, . . . , k

}
,

for some functions �
ξ
i,K : RN−k → R, i = 1, . . . , k.

Since K is aC2 compact submanifold inRN without boundary, there exists β0 > 0
such that

• For any x ∈ K6β0 , there is a unique ξ ∈ K satisfying |x − ξ | = dK (x).
• dK ∈ C2(K4β0), |∇dK | = 1 in K4β0 and there exists g ∈ L∞(K4β0) such that

�dK (x) = k − 1

dK (x)
+ g(x), in K4β0 .

(See [52, Lemma 2.2] and [21, Lemma 6.2].)
• For any ξ ∈ K , there exist C2 functions �

ξ
i,K ∈ C2(RN−k;R), i = 1, . . . , k, such

that defining

VK (ξ, β) :=
{
x = (x ′, x ′′) : |x ′′ − ξ ′′| < β, |xi − �

ξ
i,K (x ′′)| < β, i = 1, . . . , k

}
,

we have (upon relabelling and reorienting the coordinate axes if necessary)

VK (ξ, β) ∩ K =
{
x = (x ′, x ′′) : |x ′′ − ξ ′′| < β, xi = �

ξ
i,K (x ′′), i = 1, . . . , k

}
.

• There exist ξ j , j = 1, . . . ,m0, (m0 ∈ N) and β1 ∈ (0, β0) such that

K2β1 ⊂
m0⋃

i=1

VK (ξ i , β0). (4.1)

123



Heat and Martin kernel estimates for Schrödinger operators. . .

Now set

δ
ξ
K (x) :=

(
k∑

i=1

|xi − �
ξ
i,K (x ′′)|2

) 1
2

, x = (x ′, x ′′) ∈ VK (ξ, 4β0).

Then there exists a constant C = C(N , K ) such that

dK (x) ≤ δ
ξ
K (x) ≤ C‖K‖C2dK (x), ∀x ∈ VK (ξ, 2β0), (4.2)

where ξ j = ((ξ j )′, (ξ j )′′) ∈ K , j = 1, . . . ,m0, are the points in (4.1) and

‖K‖C2 := sup

{
∥
∥
∥�

ξ j

i,K

∥
∥
∥
C2(BN−k

5β0
((ξ j )′′))

: i = 1, . . . , k, j = 1, . . . ,m0

}

< ∞.

For simplicity we shall write δK instead of δ
ξ
K . Moreover, β1 can be chosen small

enough so that for any x ∈ Kβ1 ,

B(x, β1) ⊂ VK (ξ, β0),

where ξ ∈ K satisfies |x − ξ | = dK (x).
When K = ∂� we assume that

V∂�(ξ, β) ∩ � =
{

x :
N∑

i=2

|xi − ξi |2 < β2, 0 < x1 − �
ξ
1,∂�(x2, . . . , xN ) < β

}

.

Thus, when x ∈ K ⊂ ∂� is a C2 compact submanifold in R
N without boundary, of

co-dimension k, 1 < k ≤ N , we have that

�
ξ
1,K (x ′′) = �

ξ
1,∂�(�

ξ
2,K (x ′′), . . . , �ξ

k,K (x ′′), x ′′). (4.3)

Let ξ ∈ K . For any x ∈ VK (ξ, β0) ∩ �, we define

δ(x) = x1 − �
ξ
1,∂�(x2, . . . , xN ),

and

δ2,K (x) =
(

k∑

i=2

|xi − �
ξ
i,K (x ′′)|2

) 1
2

.

Then by (4.3), there exists a constant A > 1 which depends only on �, K and β0 such
that

1

A
(δ2,K (x) + δ(x)) ≤ δK (x) ≤ A(δ2,K (x) + δ(x)), (4.4)
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Thus by (4.2) and (4.4) there exists a constant C = C(�, K , γ ) > 1 which depends
on k, N , �

ξ
i,K , �

ξ
1,∂�, γ such that

C−1δ2(x)(δ2,K (x) + δ(x))γ ≤ d2(x)dγ

K (x) ≤ Cδ2(x)(δ2,K (x) + δ(x))γ . (4.5)

We set

VK (ξ, β0) = {(x ′, x ′′) : |x ′′ − ξ ′′| < β0, |δ(x)| < β0, |δ2,K (x)| < β0
}
.

We may then assume that

VK (ξ, β0) ∩ � = {(x ′, x ′′) : |x ′′ − ξ ′′| < β0, 0 < δ(x) < β0, |δ2,K (x)| < β0
}
,

VK (ξ, β0) ∩ ∂� = {(x ′, x ′′) : |x ′′ − ξ ′′| < β0, δ(x) = 0, |δ2,K (x)| < β0
}
,

and

VK (ξ, β0) ∩ K = {(x ′, x ′′) : |x ′′ − ξ ′′| < β0, δ(x) = 0, δ2,K = 0
}
.

Let β1 > 0, 1 < b < 2, and 0 < r < β1. For any x ∈ V∂�(ξ,
β0
16 ) with d(x) ≤ br ,

taking β1 small enough we have

D(x, r) :=
{

y :
N∑

i=2

|yi − xi |2 < r2, |δ(y)| < r + d(x)

}

⊂⊂ V∂�

(

ξ,
β0

16

)

.

In addition there exists Cξ = C(�ξ ,�) > 1, such that

D(x, r) ⊂ B(x,Cξr). (4.6)

Also,

D(x, r) ∩ � =
{

y :
N∑

i=2

|yi − xi |2 < r2, 0 < δ(y) < r + d(x)

}

.

Definition 4.1 Let β1 > 0 be small enough, r ∈ (0, β1), b ∈ (1, 2), ξ ∈ K and
x ∈ V (ξ,

β0
16 ). We define

(i) B(x, r) = B(x, r), if d(x) > br
(ii) B(x, r) = D(x, r), if d(x) ≤ br and dK (x) > bCξr
(iii) B(x, r) = {y = (y′, y′′) : |y′′ − x ′′| < r , |δ2,K (y)| < r + dK (x), |δ(y)| <

r + d(x)}, if d(x) ≤ br and dK (x) ≤ bCξr .

Finally we set

Mγ (x, r) =
∫

B(x,r)∩�

d2(y)dγ

K (y)dy.
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4.1 Doubling property

Lemma 4.2 Let γ ≥ −k. Let ξ ∈ ∂� and x ∈ V (ξ,
β0
16 ). Then, there exist β1 > 0 and

C = C(�, K , γ, β0) > 1 such that

1

C
(r + d(x))2(r + dK (x))γ r N ≤ Mγ (x, r) ≤ C(r + d(x))2(r + dK (x))γ r N ,

(4.7)

for any 0 < r < β1.

Proof We will consider three cases.

Case 1. d(x) > br Since dK (x) ≥ d(x), we can easily show that for any y ∈ B(x, r)
we have b−1

b d(x) ≤ d(y) ≤ b+1
b d(x) and b−1

b dK (x) ≤ dK (y) ≤ b+1
b dK (x). Thus

the proof of (4.7) follows easily in this case.

Case 2. d(x) ≤ br and dK (x) > bCξr . By (4.6), we again have that b−1
b dK (x) ≤

dK (y) ≤ b+1
b dK (x). Using the last inequality and proceeding as the proof of [25,

Lemma 2.2], we obtain the desired result.

Case 3. d(x) ≤ br and dK (x) ≤ bCξr .
Let y = (y2, . . . , yk) ∈ R

k−1. By (4.5) and the definition of B(x, r), we have

Mγ (x, r) =
∫

B(x,r)∩�

d2(y)dγ

K (y)dy ≤
∫

B(x,r)∩�

Cδ2(y)(δ2,K (y) + δ(y))γ dy

≤ C
∫

BN−k (x ′′,r)

∫ d(x)+r

0

∫

|y|<dK (x)+r
(|y| + y1)

γ y21dy dy1 dy
′′

= CC(k, N )r N−k
∫ d(x)+r

0

∫ dK (x)+r

0
sk−2(s + y1)

γ y21ds dy1. (4.8)

Now, if γ > 0 then

∫ d(x)+r

0

∫ dK (x)+r

0
sk−2(s + y1)

γ y21ds dy1

≤ 1

k − 1
(2r + d(x) + dK (x))γ (dK (x) + r)k−1(d(x) + r)3

≤ (b + 2)γ (bCξ + 1)k−1(b + 1)

k − 1
(r + dK (x))γ (d(x) + r)2rk .

If −k ≤ γ ≤ 0, then

∫ d(x)+r

0

∫ dK (x)+r

0
sk−2(s + y1)

γ y21ds dy1

≤
∫ d(x)+r

0

∫ dK (x)+r

0
sk−2(s + y1)

γ+2ds dy1
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≤
∫ d(x)+r

0

∫ dK (x)+r

0
(s + y1)

γ+kds dy1

≤ (dK (x) + r)(d(x) + r)(2r + d(x) + dK (x))γ+k

≤ (2Cξ + 2)(d(x) + r)2(dK (x) + r)γ (2r + d(x) + dK (x))k

≤ (2Cξ + 2)(2 + b + bCξ )
k(d(x) + r)2(dK (x) + r)γ rk .

Similarly, for the reverse inequality, we have

∫ d(x)+r

0

∫ dK (x)+r

0
sk−2(s + y1)

γ y21ds dy1

≥
∫ d(x)+r

d(x)+r
2

∫ dK (x)+r

dK (x)+r
2

sk−2(s + y1)
γ y21dsdy1

≥ C(b,Cξ , k, γ )(d(x) + r)2(dK (x) + r)γ rk . (4.9)

The desired result follows by (4.8)–(4.9). ��
From (2.2) and Lemma 4.2, we have the following corollary.

Corollary 4.3 Let x ∈ V (ξ,
β0
16 ) and

M(x, r) =
∫

B(x,r)∩�

φ2
μ(y)dy.

Then, there exist β1 > 0 and C = C(�, K , β0) > 1 such that

1

C
(r + d(x))2(r + dK (x))2γ+r N ≤ M(x, r) ≤ C(r + d(x))2(r + dK (x))2γ+r N ,

for any 0 < r < β1.

We point out that by (2.2) we have

M(x, r) 
 M2γ+(x, r) , in � × (0, β1).

4.2 Density of C∞
c (Ä) functions

Lemma 4.4 Let k ≤ N, γ ≥ −k, x = (x1, x2, . . . , xk, xk+1, . . . , xN ) = (x1, x, x ′′).
Let

O = (0, 1) × BR
k−1

(0, 1) × BR
N−k

(0, 1)

and u ∈ H1(O; x21 (x1 + |x |)γ ). Assume that there exists 0 < ε0 < 1 such that
u(x) = 0 if either x1 > ε0 or |x |2 + |x ′′|2 > ε20 . Then there exists a sequence
{un}∞n=1 ⊂ C∞

c (O) such that

un → u, in H1(O; x21 (x1 + |x |)γ )
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Proof Let m ∈ N. Set

vm(x) =

⎧
⎪⎨

⎪⎩

m, if u(x) > m,

u(x), if − m ≤ u(x) ≤ m,

− m if u(x) < −m.

Then we can easily prove that vm → u in H1(O; x21 (x1 + |x |)γ ).
Let ε > 0. There exists m0 ∈ N, such that

∥
∥vm0 − u

∥
∥
H1(O;x21 (x1+|x |)γ )

=
(∫

O
x21 (x1 + |x |)γ (|vm0 − u|2 + |∇vm0 − ∇u|2)dx

) 1
2

<
ε

3
. (4.10)

For any 0 < h < 1, we consider the function

ηh(x1) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x1 > h,

1 − (ln h)−1 ln
( x1
h

)
if h2 ≤ x1 ≤ h,

0 if x1 < h2,

We will show that zh := ηhvm0 → vm0 in H1(O; x21 (x1 +|x |)γ ), as h → 0+. We can
easily show that zh → vm0 in L2(O; x21 (x1 + |x |)γ ). Also,
∫

O
x21 (x1 + |x |)γ |∇(vm0(1 − ηh))|2dx ≤ 2

∫

O
x21 (x1 + |x |)γ |∇vm0 |2|(1 − ηh)|2dx

+ 2
∫

O
x21 (x1 + |x |)γ |vm0 |2|∇ηh |2dx

≤ 2
∫

O
x21 (x1 + |x |)γ |∇vm0 |2|(1 − ηh)|2dx

+ C(N , k)m2
0(ln h)−2

×
∫ h

h2

∫ 1

0
(x1 + r)γ rk−2drdx1 → 0,

since γ ≥ −k. Thus there exists h0 ∈ (0, 1) such that
∥
∥vm0 − zh0

∥
∥
H1(O;x21 (x1+|x |)γ )

<
ε

3
. (4.11)

Note that zh0 vanishes outside Õσ = (σ, 1) × BR
k−1

(0, 1) × BR
N−k

(0, 1), for some
σ = σ(h0) ∈ (0, 1). Thus zh0 ∈ H1

0 (Õσ ), which implies the existence of a sequence
{un} ⊂ C∞

c (Õσ ) such that un → zh0 in H1
0 (Õσ ). Hence, there exists n0 ∈ N such

that ∥
∥zh0 − un

∥
∥
H1(O;x21 (x1+|x |)γ )

<
ε

3
, ∀n ≥ n0. (4.12)

The desired result follows by (4.10), (4.11) and (4.12). �
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We write a point x ∈ R
N as x = (x1, x2, . . . , xk, xk+1, . . . , xN ) = (x1, x, x ′′).

Given r1, r2, r3 > 0 we denote

Or1,r2,r3 = (0, r1) × BR
k−1

(0, r2) × BR
N−k

(0, r3).

Theorem 4.5 Assume that γ ≥ −k. Then C∞
c (�) is dense in H1(�; d2dγ

K ).

Proof Let u ∈ H1(�; d2dγ

K ) and β0 > 0 be the constant in Lemma 4.2. Let ξ ∈ K

and 0 ≤ φξ ≤ 1 be a smooth function with supp(φξ ) ⊂ VK (ξ,
β0
8 ), and φ = 1 in

VK (ξ,
β0
16 ). Then the function v = uφξ belongs in H1(�; d2dγ

K ).
By (4.5) we have

∫

�

d2(x)dγ

K (x)(|v|2 + |∇v|2)dx


 C(�, K )

∫

VK (ξ,
β0
8 )

δ2(x)(δ2,K (x) + δ(x))γ (|v|2 + |∇v|2)dx


 C(�, K )

∫

O
1,

β0
8 ,

β0
8

y21 (y1 + |y|)γ (|v|2 + |∇yv|2)dy,

where y = (y2, . . . , yk) and

v(y) = v
(
y1 + �

ξ
1,∂�

(
y2 + �

ξ
2,K (y′′), . . . , yk + �

ξ
k,K (y′′), y′′) , y2

+�
ξ
2,K (y′′), . . . , yk + �

ξ
k,K (y′′), y′′) .

The desired result follows by Lemma 4.4 and a partition of unity argument. ��
By Corollaries 3.6 and 3.7, Theorem 4.5 and using a partition of unity argument,

we obtain the following two results.

Corollary 4.6 Let γ ≥ 0. There exists C = C(�, K , γ ) such that

(∫

�

d2dγ

K |u| 2(N+2+γ )
N+γ dx

) N+γ
N+2+γ ≤ C

(∫

�

d2dγ

K |∇u|2dx +
∫

�

d2dγ

K u
2dx

)

,

for any u ∈ H1(�; d2dγ

K ).

Corollary 4.7 Let −k ≤ γ < 0. There exists C = C(�, K , γ ) such that

(∫

�

d2dγ

K |u| 2(N+2)
N dx

) N
N+2 ≤ C

(∫

�

d2d
γ N

N+2
K |∇u|2dx +

∫

�

d2dγ

K u
2dx

)

,

for any u ∈ H1(�; d2dγ

K ).
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4.3 Poincaré inequality

Lemma 4.8 Let 1 ≤ k ≤ N and γ ≥ −k. Assume that 0 < c0r2 < r3 < r1 < r2, for
some constant 0 < c0 < 1. Then there exists a positive constant C = C(c0, N , K , γ )

such that

inf
ζ∈R

∫

Or1,r2,r3

| f (x) − ζ |2x21 (x1 + |x |)γ dx ≤ Cr22

∫

Or1,r2,r3

|∇ f (x)|2x21 (x1 + |x |)γ dx,

for any f ∈ C1(Or1,r2,r3).

Proof Let ζ ∈ R and y1 = x1
2r1

, y = x
2r2

and y′′ = x ′′
2r3

. Set f (y) = f (2r1y1, 2r2y,
2r3y′′). Then

∫

Or1,r2,r3

| f (x) − ζ |2x21 (x1 + |x |)γ dx


 C(c0, N , k, γ )r N+γ+2
2

∫

O 1
2 , 12 , 12

| f (y) − ζ |2y21 (y1 + |y|)γ dy. (4.13)

Let

ζ f =
⎛

⎝

∫

O 1
2 , 12 , 12

y21 (y1 + |y|)γ dy
⎞

⎠

−1 ∫

O 1
2 , 12 , 12

f (y)y21 (y1 + |y|)γ dy.

We assert that there exists a positive constant C > 0 such that

∫

O 1
2 , 12 , 12

| f (y) − ζ f |2y21 (y1 + |y|)γ dy ≤ C
∫

O 1
2 , 12 , 12

|∇ f (y)|2y21 (y1 + |y|)γ dy,

(4.14)

for any f ∈ C1(O 1
2 , 12 , 12

).

We will prove this by contradiction. Let { f n} ⊂ C1(O 1
2 , 12 , 12

) be a sequence such
that
∫

O 1
2 , 12 , 12

| f n(y) − ζ f n
|2y21 (y1 + |y|)γ dy > n

∫

O 1
2 , 12 , 12

|∇ f n(y)|2y21 (y1 + |y|)γ dy.

(4.15)

Setting

gn(y) = ( f n(y) − ζ f n
)

⎛

⎝

∫

O 1
2 , 12 , 12

| f n(y) − ζ f n
|2y21 (y1 + |y|)γ dy

⎞

⎠

−1

,
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(4.15) becomes

1 =
∫

O 1
2 , 12 , 12

|gn(y)|2y21 (y1 + |y|)γ dy > n
∫

O 1
2 , 12 , 12

|∇gn(y)|2y21 (y1 + |y|)γ dy

and we also have ζgn = 0.
Let ε > 0. There exists an extension gn of gn such that gn = gn in O 1

2 , 12 , 12
,

gn ∈ C1(O1,1,1), gn = 0 if y1 > 2
3 or |y| > 2

3 or |y′′| > 2
3 and there exists a positive

constant C1 = C1(N , k, q) such that

∫

O1,1,1

|gn(y)|q y21 (y1 + |y|)γ dy ≤ C1

∫

O 1
2 , 12 , 12

|gn(y)|q y21 (y1 + |y|)γ dy

∫

O1,1,1

|∇gn(y)|q y21 (y1 + |y|)γ dy ≤ C1

⎛

⎝

∫

O 1
2 , 12 , 12

|∇gn(y)|q y21 (y1 + |y|)γ dy

+
∫

O 1
2 , 12 , 12

|gn(y)|q y21 (y1 + |y|)γ dy
⎞

⎠ ,

for any q > 1. Assume first that −k ≤ γ < 0. Given σ ∈ (0, 1/2), by Corollary 3.7
we have that for some C = C(γ, N , k),

∫

O
σ, 12 , 12

|gn(y)|2y21 (y1 + |y|)γ dy

≤ Cσ
6

N+2

⎛

⎝

∫

O 1
2 , 12 , 12

|gn(y)|
2(N+2)

N y21 (y1 + |y|)γ dy
⎞

⎠

N
N+2

≤ Cσ
6

N+2

(∫

O1,1,1

|gn(y)|
2(N+2)

N y21 (y1 + |y|)γ dy
) N

N+2

≤ Cσ
6

N+2

∫

O1,1,1

|∇gn(y)|2y21 (y1 + |y|)γ dy

≤ Cσ
6

N+2

⎛

⎝

∫

O 1
2 , 12 , 12

|∇gn(y)|2y21 (y1 + |y|)γ dy +
∫

O 1
2 , 12 , 12

|gn(y)|2y21 (y1 + |y|)γ dy
⎞

⎠

≤ Cσ
6

N+2

(

1 + 1

n

)

. (4.16)

Similarly in case γ ≥ 0, by Corollary 3.6 we can show that

∫

O
σ, 12 , 12

|gn(y)|2y21 (y1 + |y|)γ dy ≤ C(γ, N , k)σ
2(3+γ )
N+2+γ

(

1 + 1

n

)

. (4.17)
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Since (gn) is bounded in H1((σ, 1
2 ) × BR

k−1
(0, 1

2 ) × BR
N−k

(0, 1
2 )) uniformly in σ ∈

(0, 1
2 ), by (4.16) and (4.17), we can easily show that there exists a subsequence (gnk )

such that gnk → g in L2(O 1
2 , 12 , 12

; y21 (y1 + |y|)γ ).
But

lim
n→∞

∫

O 1
2 , 12 , 12

|∇gn(y)|2y21 (y1 + |y|)γ dy = 0,

which implies that ∇g = 0 a.e. in O 1
2 , 12 , 12

. Hence there exists constant c such that

g = c a.e. in O 1
2 , 12 , 12

. But ζgnk = 0 and gnk → g in L2(O 1
2 , 12 , 12

), thus c = 0, which
is clearly a contradiction since

∫

O 1
2 , 12 , 12

|g(y)|2y21 (y1 + |y|)γ dy = 1.

Since

∫

O 1
2 , 12 , 12

|∇ f (y)|2y21 (y1 + |y|)γ dy


 C(N , k, γ )

∫

Or1,r2,r3

r−N−γ |∇ f (x)|2x21 (x1 + |x |)γ dx, (4.18)

the result follows by (4.13), (4.14) and (4.18). ��
Theorem 4.9 Assume that γ ≥ −k. Let ξ ∈ K, x ∈ V (ξ,

β0
16 ) and letβ1 be the constant

in Lemma 4.2. Then there exists a positive constant C = C(Cξ , �, K , γ, b) > 0 such
that

inf
ζ∈R

∫

B(x,r)∩�

| f (y) − ζ |2d2(y)dγ

K (y)dy ≤ Cr2
∫

B(x,r)∩�

|∇ f (y)|2d2(y)dγ

K (y)dy,

(4.19)

for any 0 < r < β1 and f ∈ C1(B(x, r) ∩ �).

Proof Case 1. d(x) ≥ br . Since dK (x) ≥ d(x), we can easily show that for any
y ∈ B(x, r) b−1

b d(x) ≤ d(y) ≤ b+1
b d(x) and b−1

b dK (x) ≤ dK (y) ≤ b+1
b dK (x).

Thus the proof of (4.19) follows easily in this case.

Case 2. d(x) ≤ br and dK (x) > bCξr . By (4.6), we again have that b−1
b dK (x) ≤

dK (y) ≤ b+1
b dK (x). Using the last inequality and proceeding as the proof of [25,

Theorem 2.5], we obtain the desired result.

Case 3. d(x) ≤ br and dK (x) ≤ bCξr . By (4.5), it is enough to prove the following
inequality
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inf
ζ∈R

∫

B(x,r)∩�

| f − ζ |2δ2(δ2,K + δ)γ dy ≤ Cr2
∫

B(x,r)∩�

|∇ f |2δ2(δ2,K + δ)γ dy.

This is a consequence of Lemma 4.8. ��
By (2.2) and the above theorem, we can easily prove the following result.

Corollary 4.10 Let μ ≤ k2/4 and let β1 be the constant in Lemma 4.2. Then there
exists a constant C = C(�, K , γ, b) > 0 such that for any 0 < r < β1 any f ∈
C1(B(x, r) ∩ �) and all x ∈ � there holds

inf
ζ∈R

∫

B(x,r)∩�

| f (y) − ζ |2φ2
μ(y)dy ≤ Cr2

∫

B(x,r)∩�

|∇ f (y)|2φ2
μ(y)dy .

Proof If dist(x, K ) < β0/16 the result follows fromTheorem4.9. In case dist(x, K ) >

β0/16 the result is well known. ��
In view of the proof of Lemma 4.8, Corollaries 4.6 and 4.7 and (2.2), we can prove

the following Poincaré inequality in �.

Theorem 4.11 Let μ ≤ k2/4. There exists a positive constant C = C(�, K , μ) such
that

inf
ζ∈R

∫

�

| f (y) − ζ |2φ2
μ(y)dy ≤ C

∫

�

|∇ f (y)|2φ2
μ(y)dy, (4.20)

for any f ∈ C1(�).

4.4 Moser inequality

Theorem 4.12 Let ξ ∈ K , γ ≥ −k, x ∈ V (ξ,
β0
16 ) and let β1 be the constant in Lemma

4.2. Then for any ν ≥ N +max{2, 2+ γ }, there exists C = C(�, K , ν, β1) such that

∫

B(x,r)∩�

| f (y)|2(1+ 2
ν
)d2(y)dγ

K (y)dy

≤ Cr2Mγ (x, r)−
2
ν

∫

B(x,r)∩�

|∇ f (y)|2d2(y)dγ

K (y)dy

×
(∫

B(x,r)∩�

| f (y)|2d2(y)dγ

K (y)dy

) 2
ν

, (4.21)

for any 0 < r < β1 and all f ∈ C∞
c (B(x, r) ∩ �).

Proof The cases [d(x) > br ] and [d(x) ≤ br and dK (x) > bCξr ] are proved as
in [26, Theorem 3.5] and [25, Theorem 2.6] respectively, using also the inequalities
already obtained in the proof of Lemma 4.2.
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So, let us assume that d(x) ≤ br and dK (x) ≤ bCξr . We consider first the case
where −k ≤ γ < 0. By Hölder inequality, we have

(∫

B(x,r)∩�

| f (y)|2d2(y)dγ

K (y)dy

) 2(ν−N−2)
ν(N+2)

≤ Mγ (x, r)
4(ν−N−2)

ν(N+2)(N+4)

(∫

B(x,r)∩�

| f (y)|2(1+ 2
N+2 )d2(y)dγ

K (y)dy

) 2(ν−N−2)
ν(N+4)

.

(4.22)

Moreover
∫

B(x,r)∩�

| f (y)|2(1+ 2
ν
)d2(y)dγ

K (y)dy

≤ Mγ (x, r)1−
(ν+2)(N+2)

ν(N+4)

(∫

B(x,r)∩�

| f (y)|2(1+ 2
N+2 )d2(y)dγ

K (y)dy

) (ν+2)(N+2)
ν(N+4)

= Mγ (x, r)1−
(ν+2)(N+2)

ν(N+4)

(∫

B(x,r)∩�

| f (y)|2(1+ 2
N+2 )d2(y)dγ

K (y)dy

)1− 2(ν−N−2)
ν(N+4)

≤ Mγ (x, r)
2

N+2− 2
ν

∫

B(x,r)∩�

| f (y)|2(1+ 2
N+2 )d2(y)dγ

K (y)dy

×
(∫

B(x,r)∩�

| f (y)|2d2(y)dγ

K (y)dy

)− 2(ν−N−2)
ν(N+2)

,

≤ Mγ (x, r)
2

N+2− 2
ν

(∫

B(x,r)∩�

| f (y)| 2(N+2)
N d2(y)dγ

K (y)dy

) N
N+2

×
(∫

B(x,r)∩�

| f (y)|2d2(y)dγ

K (y)dy

) 2
ν

, (4.23)

where in the second to last inequality we have used (4.22). By Corollary 3.7 and
Proposition 3.1, we have

(∫

B(x,r)∩�

| f (y)| 2(N+2)
N d2(y)dγ

K (y)dy

) N
N+2

≤ C
∫

B(x,r)∩�

|∇ f (y)|2d2(y)d
γ N
N+2
K (y)dy

≤ Cr− 2γ
N+2

∫

B(x,r)∩�

|∇ f (y)|2d2(y)dγ

K (y)dy

(4.24)

Now, by Lemma 4.2

Mγ (x, r) 
 C(�, K , γ, N ,Cξ , β0)r
N+γ+2. (4.25)

The desired result follows by (4.23), (4.24) and (4.25).
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If γ > 0, the proof of (4.21) is similar, the only difference is that we use Corollary
3.6 instead of Corollary 3.7. ��
By (2.2) and the above theorem, we have

Corollary 4.13 Let μ ≤ k2/4 and let β1 be the constant in Lemma 4.2. Then for any
ν ≥ N + max{2, 2 + γ }, there exists C = C(�, K , ν, β1) such that for any x ∈ �,
any r ∈ (0, β1) and any f ∈ H1

0 (B(x, r) ∩ �;φ2
μ) there holds

∫

B(x,r)∩�

| f |2(1+ 2
ν
)φ2

μdy ≤ Cr2M(x, r)−
2
ν

(∫

B(x,r)∩�

|∇ f |2φ2
μdy

)

×
(∫

B(x,r)∩�

f 2φ2
μdy

) 2
ν

.

4.5 Harnack inequality

We consider the problem

(∂t + Lμ)u := ut − φ−2
μ div(φ2

μ∇u) = 0, in (0, T ) × B(x, r) ∩ �, (4.26)

for any T > 0 and r <
β1
4 where β1 is the constant in Lemma 4.2. Similarly with

Definition 2.3 we have

Definition 4.14 Let D ⊂ � be an open set. A function v ∈ C1((0, T ) : H1(D;φ2
μ))

is a weak subsolution of vt + Lμv = 0 in (0, T ) × D if for any non-negative � ∈
C1
c ((0, T ) : C∞

c (D)) we have

∫ T

0

∫

D
(vt� + ∇v · ∇�)φ2

μ dy dt ≤ 0.

We now set

Q = (s − r2, s) × B(x, r) ∩ �

Qδ = (s − δr2, s) × B(x, δr) ∩ �.

Now we are ready to apply the Moser iteration argument in order to prove the Har-
nack inequality for nonnegative weak solutions. The proof is based on the ideas in
the proof of Harnack inequality in noncompact smooth manifold (see [50, Chap-
ter 5]). Let us note here that Theorem 4.5 allows to us to consider test functions
in C∞

c (B(x, r))) instead of C∞
c (B(x, r) ∩ �)). Thus we are able to prove boundary

Harnack inequalities.
Let us first state the L p mean value inequality for nonnegative subsolutions of the

operator ∂t + Lμ.
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Theorem 4.15 Let μ ≤ k2/4, ν ≥ N + max{2, 2 + 2γ+} and p > 0. There exists a
constantC(ν, λ, β1, p,�, K ) such that for any x ∈ � and for any positive subsolution
v of (4.26) in Q we have the estimate

sup
Qδ

|v|p ≤ C

(δ′ − δ)ν+2r2Mγ (x, r)

∫

Qδ′
|v|pφ2

μ dy dt,

for each 0 < δ < δ′ ≤ 1.

The proof of the above theorem is similar to the proof of [50, Theorem 5.2.9] and
we omit it (see also [25, Theorem 2.12]). Similarly one can establish the proof of the
parabolic Harnack inequality up to the boundary of Theorem 2.4.

Let k(t, x, y) be the heat kernel of the problem

⎧
⎨

⎩

vt = −Lμv, in (0, T ] × �,

v = 0, on (0, T ] × ∂�,

v(0, x) = v0(x), in �.

By the parabolic Harnack inequality (2.4), and following the methods of Grigoryan
and Saloff-Coste (see for example [34, Theorem 2.7] and [50, Theorem 5.4.12]) we
obtain the following sharp two-sided heat kernel estimate for small time (we recall
that M(x, r) has been defined in Corollary 4.3):

Theorem 4.16 Let β1 be the constant of Lemma 4.2. Then there exist positive constants

A1, A2, C1 and C2, such that for all x, y ∈ � and all 0 < t <
β2
1
4 the heat kernel

k(t, x, y) satisfies

C1

M 1
2 (x,

√
t)M 1

2 (y,
√
t)

exp

(

− A1
|x − y|2

t

)

≤ k(t, x, y)

≤ C2

M 1
2 (x,

√
t)M 1

2 (y,
√
t)

× exp

(

− A2
|x − y|2

t

)

.

Proof of Theorem 2.5 This follows easily from Theorem 4.16 and Corollary 4.3. ��

5 Heat kernel estimates for large time

5.1 Weighted logarithmic Sobolev inequality

Theorem 5.1 Let μ ≤ k2/4. There exists a positive constant C = C(�, K , μ) such
that for any ε > 0 there holds

∫

�

u2 ln
|u|

‖u‖L2(�;φ2
μ)

φ2
μdx ≤ ε

∫

�

|∇u|2φ2
μdx + b(ε)

∫

�

u2φ2
μdx, (5.1)
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for all u ∈ H1(�;φ2
μ); here b(ε) = C − N+2+max(γ+,0)

4 min(ln ε, 0).

Proof We may assume that ‖u‖L2(�;φ2
μ) = 1. Assume first that − k

2 ≤ γ+ < 0. Then

∫

�

|u|2 ln |u|φ2
μdx = N

4

∫

�

|u|2 ln |u| 4
N φ2

μdx

≤ N

4
ln

(∫

�

|u| 2(N+2)
N φ2

μdx

)

= N + 2

4
ln

((∫

�

|u| 2(N+2)
N φ2

μdx

) N
N+2
)

≤ N + 2

4
ln

(

C0

(∫

�

|∇u|2φ2
μdx +

∫

�

|u|2φ2
μdx

))

,

where in the last inequality, we used Corollary 4.7 and (2.2). Using the fact that
N+2
4 log θ = N+2

4 ln 4εθ
C0(N+2) + N+2

4 ln C0(N+2)
4ε , ∀ε, θ > 0, we obtain the desired

result with b(ε) = 1 + N+2
4 (lnC0 + ln N+2

4 − ln ε), if 0 < ε ≤ 1
Similarly, if ε ≥ 1 and − k

2 ≤ γ+ < 0, we obtain the desired result with b(ε) =
1 + N+2

4 (lnC0 + ln N+2
4 ).

If γ+ > 0 we proceed as above and we use Corollary 4.6 instead of Corollary 4.7,
in order to obtain (5.1) with b(ε) = 1+ N+2+2γ+

4 (lnC1 + ln N+2+2γ+
4 − ln ε), where

C1 is the constant in Corollary 4.6. ��
Theorem 5.2 Let μ ≤ k2/4 and let u ∈ H1(�;φ2

μ) be such that
∫

�
u φ2

μdx = 0.
There exists a positive constant C = C(�, K , μ) such that for any ε > 0 there holds

∫

�

u2 ln
|u|

‖u‖L2(�;φ2
μ)

φ2
μdx ≤ ε

∫

�

|∇u|2φ2
μdx + b(ε)

∫

�

u2φ2
μdx,

where b(ε) = C − N+2+max(2γ+,0)
4 ln ε.

Proof By (4.20) and in view of the proof of (5.1) we obtain the desired result. ��
Proof of Theorem 2.2 We normalize φμ so that

∫

�
φ2

μdx = 1. We define the bilinear
form Q : H1

0 (�;φ2
μ) × H1

0 (�;φ2
μ) → R by

Q(u, v) =
∫

�

∇u · ∇v φ2
μdx .

We recall here that H1(�;φ2
μ) = H1

0 (�;φ2
μ) by (2.2) and Theorem 4.5.

Let Lμ denote the self-adjoint operator on L2(�;φ2
μ) associated to the form Q, so

that formally we may write

Lμu = −φ−2
μ div

(
φ2

μ∇u
)

.
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The operator Lμ generates a contraction semigroup T (t) : L2(�;φ2
μ) → L2(�;φ2

μ),

t ≥ 0, denoted also by e−Lμt . This semigroup is positivity preserving and by [17,
Lemma 1.3.4] we can easily show that satisfies the conditions of [17, Theorems 1.3.2
and 1.3.3]. Thus, by (5.1), we can apply [17, Corollary 2.2.8] to deduce that

‖e−Lμt u‖L∞(�) ≤ Ct‖u‖L2(�;φ2
μ), t > 0, u ∈ L2(�;φ2

μ), (5.2)

where

Ct = e
1
t

∫ t
0 b(ε)dε.

Hence, by [17, Lemma 2.1.2], e−Lμt is ultracontractive and has a kernel k(t, x, y)
such that

0 ≤ k(t, x, y) ≤ C2
t
2
.

By the last inequality, the upper estimate in Theorem 2.2 follows easily. For the lower
estimate in Theorem 2.2 we will give two proofs. One using the boundary Harnack
inequality (2.4) and the other one proceeding as the proof of [16, Theorem 6].

First proof (as in the proof of [16, Theorem 6]). First we note that since H1(�;φ2
μ)

is compactly embedded in L2(�;φ2
μ), the operator Lμ has compact resolvent. In

addition, we have that Lμ1 = 0 and hence, by (4.20),

sp(Lμ) ⊂ {0} ∪ [λ,∞),

for some λ > 0. Thus, using the spectral theorem, we can easily show that for any
f ∈ L2(�;φ2

μ) such that
∫

�
f φ2

μdx = 0 we have

‖e−Lμt f ‖L2(�;φ2
μ) ≤ e−λt ‖ f ‖L2(�;φ2

μ) , ∀t ≥ 0. (5.3)

Now, let f ∈ L1(�;φ2
μ) and

∫

�
f φ2

μdx = 0. By (5.2) and (5.3), we have

‖e−Lμt f ‖L∞(�) = ‖e−Lμ
t
3
(
e−Lμ

2t
3 f
)‖L∞(�) ≤ C t

3
‖e−Lμ

2t
3 f ‖L2(�;φ2

μ)

≤ e− λt
3 C t

3
‖e−Lμ

t
3 f ‖L2(�;φ2

μ).

Taking adjoints we have

‖e−Lμ
t
3 f ‖L2(�;φ2

μ) ≤ C t
3
‖ f ‖L1(�;φ2

μ) ,

hence

‖e−Lμt f ‖L∞(�) ≤ e− λt
3 C2

t
3
‖ f ‖L1(�;φ2

μ) .

123



G. Barbatis et al.

Let now f ∈ L1(�;φ2
μ). The function g := f − ∫

�
f φ2

μdx satisfies
∫

�
gφ2

μdx = 0,
thus

e−Lμt g = e−Lμt f − 〈 f , 1〉L2(�;φ2
μ).

Hence the operator

T̃ (t) f = e−Lμt f − 〈 f , 1〉L2(�;φ2
μ)

satisfies

‖T̃ (t) f ‖L∞(�) = ‖e−Lμt g‖L∞(�) ≤ e− λt
3 C2

t
3
‖g‖L1(�;φ2

μ) ≤ 2e− λt
3 C2

t
3
‖ f ‖L1(�;φ2

μ) .

Therefore the integral kernel k̃(t, x, y) of T̃ (t) satisfies k̃(t, x, y) = k(t, x, y) − 1
and

|k̃(t, x, y)| ≤ 2e− λt
3 C2

t
3
.

The desired result follows if we choose t large enough.

Second proof (using the boundary Harnack inequality (2.4)). Let x0 ∈ �. Then by
(2.4) we can show that

k(t − 1, x, y) ≤ C(�, K )k(t, x, x0),

for all t ≥ 2 and x, y ∈ �. Thus,

1 =
∫

�

k(t − 1, x, y)φ2
μ(y)dy ≤ C(�, K )

∫

�

k(t, x, x0)φ
2
μ(y)dy

= C(�, K )k(t, x, x0), ∀t ≥ 2.

The desired result follows. ��

5.2 Green function estimates

In this subsection we prove the existence of the Green kernel of Lμ along with sharp
two-sided estimates.

Proposition 5.3 Let μ ≤ k2/4 and assume that λμ > 0. For any y ∈ � there exists a
minimal Green function Gμ(·, y) of the equation

Lμu = δy in �,
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where δy denotes the Dirac measure at y. Furthermore, the following estimates hold

Gμ(x, y) 


⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|x − y|2−N min

{

1,
d(x)d(y)

|x − y|2
}(

dK (x)dK (y)

(dK (x) + |x − y|) (dK (y) + |x − y|)
)γ+

,

if γ+ > − N

2
,

|x − y|2−N min

{

1,
d(x)d(y)

|x − y|2
}( |x | |y|

(|x | + |x − y|) (|y| + |x − y|)
)− N

2

+ d(x)d(y)

(|x ||y|) N
2

∣
∣
∣
∣ln

(

min

{
1

|x − y|2 ,
1

d(x)d(y)

})∣
∣
∣
∣ , if γ+ = − N

2
.

(5.4)

Proof First, let C1 > 0 and T be as in Theorem 2.6. We note that

(( √
t

d(x)
+ 1

)( √
t

d(y)
+ 1

))−1

= d(x)d(y)

(
√
t + d(x))(

√
t + d(y))

≤ min

{

1,
d(x)d(y)

t

}

(5.5)

and

(( √
t

d(x)
+ 1

)( √
t

d(y)
+ 1

))−1

e−C1|x−y|2
t = d(x)d(y)

(
√
t + d(x))(

√
t + d(y))

e−C1|x−y|2
t

≥ C min

{

1,
d(x)d(y)

t

}

e− (1+C1)|x−y|2
t

(5.6)

for all x, y ∈ � and 0 < t < T , where C = C(C1, T ) > 0.
ByTheorem2.6, (2.2) and estimates (5.5)–(5.6), there existCi = Ci (�, K , μ) > 0,

i = 1, 2 and T = T (�, K , μ) > 0 such that for t ∈ (0, T ) and x, y ∈ �,

C1 min

{

1,
d(x)d(y)

t

}(
dK (x)

dK (x) + √
t

)γ+( dK (y)

dK (y) + √
t

)γ+
t− N

2 e−
C2 |x−y|2

t ≤ h(t, x, y)

≤ C2 min

{

1,
d(x)d(y)

t

}(
dK (x)

dK (x) + √
t

)γ+( dK (y)

dK (y) + √
t

)γ+
t− N

2 e−
C1|x−y|2

t ,

(5.7)

while

C1 ≤ h(t, x, y)

d(x)d(y)dγ+
K (x)dγ+

K (y)e−λμt
≤ C2, ∀t ≥ T , x, y ∈ �. (5.8)
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By (5.7) and (5.8), we deduce the existence of the minimal Green kernel Gμ of Lμ,
given by

Gμ(x, y) =
∫ ∞

0
h(t, x, y)dt =

∫ T

0
h(t, x, y)dt +

∫ ∞

T
h(t, x, y)dt . (5.9)

Using (5.8) we easily see that the second integral in (5.9) satisfies the required upper
estimate in both cases considered (i.e. γ+ > − N

2 or γ+ = − N
2 ). We now concentrate

on the first integral in (5.9).

By the change of variable s = |x−y|2
t , we obtain for i = 1, 2,

∫ T

0
min

{

1,
d(x)d(y)

t

}(
dK (x)

dK (x) + √
t

)γ+( dK (y)

dK (y) + √
t

)γ+
t−

N
2 e− Ci |x−y|2

t dt = |x − y|2−N

∫ ∞
|x−y|2

T

min

{

1, s
d(x)d(y)

|x − y|2
}(( |x − y|√

sdK (x)
+ 1

)( |x − y|√
sdK (y)

+ 1

))−γ+
s

N
2 −2e−Ci sds

=: |x − y|2−N Si (x, y) .

By (5.7) we therefore have for some c1, c2 > 0 that

c1|x − y|2−N S2(x, y) ≤
∫ T

0
h(t, x, y)dt ≤ c2|x − y|2−N S1(x, y) , x, y ∈ �.

(5.10)

In the sequel, we assume that |x−y|2
T < 1

2 . The proof in the case
|x−y|2

T > 1
2 is similar,

indeed simpler. We write

S1 =
∫ 1

|x−y|2
T

min

{

1, s
d(x)d(y)

|x − y|2
}(( |x − y|√

sdK (x)
+ 1

)( |x − y|√
sdK (y)

+ 1

))−γ+
s

N
2 −2e−C1sds

+
∫ ∞

1
min

{

1, s
d(x)d(y)

|x − y|2
}(( |x − y|√

sdK (x)
+ 1

)( |x − y|√
sdK (y)

+ 1

))−γ+
s

N
2 −2e−C1sds.

(5.11)

Concerning the second term in the RHS of (5.11) we have

∫ ∞

1
min

{

1, s
d(x)d(y)

|x − y|2
}(( |x − y|√

sdK (x)
+ 1

)( |x − y|√
sdK (y)

+ 1

))−γ+
s

N
2 −2e−C1sds

≤ C min

{

1,
d(x)d(y)

|x − y|2
}(( |x − y|

dK (x)
+ 1

)( |x − y|
dK (y)

+ 1

))−γ+
,

and therefore the required estimate is satisfied.
Let γ+ ≤ 0. For the first term in the RHS of (5.11) we have

∫ 1

|x−y|2
T

min

{

1, s
d(x)d(y)

|x − y|2
}(( |x − y|√

sdK (x)
+ 1

)( |x − y|√
sdK (y)

+ 1

))−γ+
s

N
2 −2e−C1sds
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=
∫ 1

|x−y|2
T

min

{

1, s
d(x)d(y)

|x − y|2
}(( |x − y|

dK (x)
+ √

s

)( |x − y|
dK (y)

+ √
s

))−γ+
s

N
2 +γ+−2e−C1sds

≤ C

(

|x − y|−2γ+(dK (x)dK (y)
)γ+
∫ 1

|x−y|2
T

min

{

1, s
d(x)d(y)

|x − y|2
}

s
N
2 +γ+−2e−C1sds

+|x − y|−γ+(dK (x)dK (y)
)γ+
∫ 1

|x−y|2
T

min

{

1, s
d(x)d(y)

|x − y|2
}

× (dK (x) + dK (y))−γ+s
N
2 + γ+

2 −2e−C1sds

+
∫ 1

|x−y|2
T

min

{

1, s
d(x)d(y)

|x − y|2
}

s
N
2 −2e−C1sds

)

=: C(J1 + J2 + J3) (5.12)

It is easily seen that

J3 ≤ C min

{

1,
d(x)d(y)

|x − y|2
}

.

Concerning J1 and J2 we consider two cases.

Case I. − N
2 < γ+ ≤ 0. In view of (5.10) and (5.12), it is enough to establish that for

i = 1, 2 we have

Ji ≤ min

{

1,
d(x)d(y)

|x − y|2
}(

dK (x)dK (y)

(dK (x) + |x − y|) (dK (y) + |x − y|)
)γ+

, i = 1, 2.

(5.13)

In order to prove (5.13) we shall need to consider additional cases.

Case Ia. d(x)d(y)
|x−y|2 ≤ 1. In this case it is immediate that

J1 = C |x − y|−2−2γ+(dK (x)dK (y)
)γ+d(x)d(y).

and

J2 = C |x − y|−2−γ+(dK (x)dK (y))γ+(dK (x) + dK (y)
)−γ+d(x)d(y).

Hence inequality (5.13) is satisfied.

Case Ib. d(x)d(y)
|x−y|2 > 1. In this case we have 1

4dK (y) ≤ dK (x) ≤ 4dK (y). Indeed,
suppose that dK (x) > 4dK (y). Then, since dK (x) ≤ |x − y| + dK (y), we easily
obtain that dK (y) ≤ 1

3 |x − y| and dK (x) ≤ 4
3 |x − y|; hence d(x)d(y) ≤ 4

9 |x − y|2,
a contradiction.

To proceed we first note that

J1 ≤ |x − y|−2γ+(dK (x)dK (y)
)γ+

⎛

⎝
d(x)d(y)

|x − y|2
∫ |x−y|2

d(x)d(y)

0
s

N
2 +γ+−1e−C1sds
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+
∫ 1

|x−y|2
d(x)d(y)

s
N
2 +γ+−2e−C1sds

)

(5.14)

and similarly

J2 ≤ |x − y|−γ+
(

dK (x)dK (y)

dK (x) + dK (y)

)γ+
⎛

⎝
d(x)d(y)

|x − y|2
∫ |x−y|2

d(x)d(y)

0
s

N
2 + γ+

2 −1e−C1sds

+
∫ 1

|x−y|2
d(x)d(y)

s
N
2 + γ+

2 −2e−C1sds

)

(5.15)

We now consider different subcases.
Case 1. − N

2 < γ+ < −N + 2. From (5.14) and (5.15) we obtain

J1 ≤ c, J2 ≤ c.

It follows that (5.13) is satisfied.
Case 2. γ+ = −N + 2 > − N

2 . In this case (5.14) and (5.15) give

J1 ≤ c

and

J2 ≤ c|x − y|−γ+
(

dK (x)dK (y)

dK (x) + dK (y)

)γ+(

1 + ln

(
d(x)d(y)

|x − y|2
))

≤ c

Again it is easily seen that (5.13) is satisfied.
Case 3. max{− N

2 ,−N + 2} < γ+ < − N−2
2 . In this case we obtain

J1 ≤ c, J2 ≤ c|x − y|−γ+
(

dK (x)dK (y)

dK (x) + dK (y)

)γ+
≤ c

and (5.13) once again follows.
Case 4. γ+ = − N−2

2 < 0. In this case we obtain

J1 ≤ c|x − y|−2γ+(dK (x)dK (y)
)γ+
(

1 + ln

(
d(x)d(y)

|x − y|2
))

≤ c,

J2 ≤ c|x − y|−γ+
(

dK (x)dK (y)

dK (x) + dK (y)

)γ+
≤ c

and (5.13) once again follows.
Case 5. − N−2

2 < γ+ ≤ 0. In this case we obtain

J1 ≤ c|x − y|−2γ+(dK (x)dK (y)
)γ+ ≤ c, J2 ≤ c|x − y|−γ+

(
dK (x)dK (y)

dK (x) + dK (y)

)γ+
≤ c
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and (5.13) once again follows.

Case II. γ+ = − N
2 . The proof is very similar to the previous case and for the sake of

brevity we shall only consider J1, where the main difference appears. We note that in
this case we have dK (x) = |x |.

We assume that |x−y|2
T ≤ 1

2 . The proof in the case |x−y|2
T > 1

2 is similar, indeed
simpler.

Case IIa. d(x)d(y)
|x−y|2 ≤ 1. In this case we easily obtain

J1 ≤ c |x − y|N−2d(x)d(y)(|x | |y|)− N
2 log

(
T

|x − y|2
)

,

and this is estimated using the second term in the RHS of (5.4).

Case IIb. d(x)d(y)
|x−y|2 ≥ 1. We may assume that |x−y|2

d(x)d(y) >
|x−y|2

T , otherwise we need
only consider the second of the two integrals below.

We have

J1 = |x − y|N (|x | |y|)− N
2

⎛

⎝
d(x)d(y)

|x − y|2
∫ |x−y|2

d(x)d(y)

|x−y|2
T

s−1e−C1sds +
∫ 1

|x−y|2
d(x)d(y)

s−2e−C1sds

⎞

⎠

≤ c|x − y|N−2d(x)d(y)
(|x | |y|)− N

2 log

(
T

d(x)d(y)

)

,

which satisfies the upper bound in (5.4). Hence the upper bound has been established
in all cases.

This concludes the proof of the upper estimate when γ+ ≤ 0. If γ+ > 0 then the
proof is essentially similar, indeed simpler, and is omitted.

The proof of the lower bound is much simpler. For example, in case γ+ ≤ 0 we
have from (5.10)

Gμ(x, y) ≥ c1|x − y|2−N S2(x, y) ≥ c|x − y|2−N J1(x, y),

where J1 is as above, the only difference being that the exponential factor in the
integrand is e−C2s instead of e−C1s . The result then follows easily. ��

6 The linear elliptic problem

6.1 Subsolutions and supersolutions

We recall the definition of the function d̃K from (2.5). Given parameters ε > 0 and
M ∈ R we define the functions
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ηγ+,ε = e−Md (d + d̃2K )d̃
γ+
K − dd̃

γ++ε
K ζγ+,ε = eMd (d + d̃2K )d̃

γ+
K + dd̃

γ++ε
K

ηγ−,ε = e−Md (d + d̃2K )d̃
γ−
K + dd̃

γ−+ε
K ζγ−,ε = eMd (d + d̃2K )d̃

γ−
K − dd̃

γ−+ε
K

ζ+,ε =e−Md (− ln d̃K )(d+ d̃2K )d̃
− k

2
K −dd̃

− k
2+ε

K ζ−,ε =eMd (− ln d̃K )(d + d̃2K )d̃
− k

2
K +dd̃

− k
2+ε

K

Lemma 6.1 Let μ ≤ k2/4 and 0 < ε < 1. There exist positive constants β0 =
β0(�, K , μ, ε) and M = M(�, K , μ, ε) such that the following hold in Kβ0 ∩ �:
(i) The functions ηγ+,ε and ζγ+,ε are non-negative in Kβ0 ∩ � and satisfy

Lμηγ+,ε ≥ 0, Lμζγ+,ε ≤ 0, in Kβ0 ∩ �.

(ii) If μ < k2/4 and ε < min{1,√k2 − 4μ}) then ηγ−,ε and ζγ−,ε are non-negative
in Kβ0 ∩ � and satisfy

Lμηγ−,ε ≥ 0, Lμζγ−,ε ≤ 0, in Kβ0 ∩ �. (6.1)

(iii) The functions ζ+,ε and ζ−,ε are non-negative in Kβ0 ∩ � and satisfy

L k2
4
ζ+,ε ≥ 0, L k2

4
ζ−,ε ≤ 0, in Kβ0 ∩ �.

Proof Let M ∈ R. By Proposition 3.1 we have in � ∩ Kβ0 ,

�(dad̃bK ) = da−2d̃bK
(
a(a − 1) + ad�d

)

+ da d̃b−2
K

(
2ab + b(k − 1 + f ) + b(b − 1)(1 + h)

)

∇eMd · ∇(dad̃bK ) = MeMd(ada−1d̃bK + bda+1d̃b−2
K )

�eMd = eMd(M2 + M�d)

Thus

Lμ(eMddad̃bK ) = −eMdda−1d̃bK

(
M2d + Md�d + 2aM + a�d + a(a − 1)d−1

)

− eMddad̃b−1
K

(
2Mbd + b f + b(b − 1)h + μg

d̃K

)

− (b(k − 1) + b(b − 1) + 2ab + μ
)
eMddad̃b−2

K .

Now let M ∈ R and 0 < ε < 1. Using the above formulas we find

Lμ(eMd(d + d̃2K )d̃γ+
K ) − Lμ(dd̃γ++ε

K )

= −eMd d̃γ+
K

(
(M2d + Md�d + 2M + �d) + (M2 + M�d)d̃2K

)

− eMddd̃γ+−2
K

(
2Mγ+d + γ+ f + γ+(γ+ − 1)h + μg

)

− eMd d̃γ+
K

(
2(γ+ + k) + (γ+ + 2)

(
(γ+ + 1)h + f + 2Md

))
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+ ε(2γ+ + k + ε)dd̃γ++ε−2
K

+ dd̃γ++ε−2
K

(
(γ+ + ε)(γ+ + ε − 1)h + (γ+ + ε) f + μg

)
+ (�d)d̃γ++ε

K .

The RHS in the last equality consists of six terms. We now choose β0 small enough
andM < 0 so that the sum of the first, third and sixth terms is non-negative in Kβ0 ∩�.
The fourth term is clearly positive, and by taking β0 smaller if necessary it may also
control the second and the fifth terms. Hence Lμηγ+,ε ≥ 0 in Kβ0 ∩ �.

The proofs of the other cases of the lemma are similar and are omitted. For (iii) we
also use the relations

� ln d̃K = �d̃K

d̃K
− |∇d̃K |2

d̃2K

∇ ln d̃K · ∇(eMddd̃bK ) = d̃b−2
K eMd

(

Md2 + d + b d|∇d̃K |2
)

and

− Lμ

(
(− ln d̃K )eMddd̃bK

) = (− ln d̃K )eMd d̃bK

(
M2d + Md�d + 2M + �d

)

+ (− ln d̃K )eMddd̃b−1
K

(
2Mbd + b f + b(b − 1)h + μg

d̃K

)

+ (− ln d̃K )
(
b(k + 1) + b(b − 1) + μ

)
eMddd̃b−2

K

+ eMddd̃b−2
K

(
− 2Md − f + (1 − 2b)h − 2b − k

)
.

��

Lemma 6.2 Let β0 > 0 be the constant in Lemma 6.1, ξ ∈ ∂� and 0 < r <
β0
16 . We

assume that u ∈ H1
loc(Br (ξ)∩�)∩C(Br (ξ)∩�) is Lμ-harmonic in Br (ξ)∩� and

lim
dist(x,F)→0

u(x)

W̃ (x)
= 0, ∀ compact F ⊂ Br (ξ) ∩ ∂�. (6.2)

Then there exists C = C(u,�, K , r) > 0 such that

|u| ≤ Cφμ , x ∈ Br
4
(ξ) ∩ � . (6.3)

Moreover, if 0 ≤ ηr ≤ 1 is a smooth function with compact support in B r
2
(ξ) with

ηr = 1 on Br
4
(ξ), then

ηr u

φμ

∈ H1
0 (�;φ2

μ). (6.4)
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Furthermore, if u is nonnegative there exists c1 = c1(�, K ) > 0 such that

u(x)

φμ(x)
≤ c1

u(y)

φμ(y)
, ∀x, y ∈ B r

16
(ξ) ∩ �. (6.5)

Proof We will only consider the case μ < k2/4 and ξ ∈ K β
16

∩ ∂�; the proof of the

other cases is very similar and we omit it.
Since u is Lμ- harmonic in Br (ξ) ∩ �, by standard elliptic estimates we have that

u ∈ C2(Br (ξ) ∩ �). Set wl = max{u − lηγ−,ε, 0} where l > 0 and ηγ−,ε is the
supersolution in (6.1). Then by Kato’s formula we have

Lμwl ≤ 0 , in Br (ξ) ∩ �.

Setting vl = wl
φμ

, by straightforward calculations we have

− div(φ2
μ∇vl) + λμφ2

μvl ≤ 0 , in Br (ξ) ∩ �. (6.6)

We note here that vl = 0 if u ≤ lηα+,ε, thus by the assumptions we can easily obtain
that vl ∈ H1(Br

2
(ξ);φ2

μ).
By Theorem 4.15, we can prove the existence of a constant rβ0 and C = C(K ) > 0

such that for any r ′ ≤ min{ r2 , rβ0} and p ≥ 1 the following inequality holds

sup
x∈Br ′

2
(ξ)∩�

vl ≤ C

((∫

Br ′ (ξ)∩�

φ2
μdx

)−1 ∫

Br ′ (ξ)∩�

|vl |pφ2
μdx

) 1
p

. (6.7)

From (6.2) and the definition of wl , we have

wl ≤ u+ ≤ CW̃ = C(d + d̃2K )d̃γ−
K , in Br

2
(ξ) ∩ �.

This and (2.2) imply that

∫

Br ′ (ξ)∩�

|vl |φ2
μdx ≤

∫

B r
2
(ξ)∩�

|wl |φμdx

≤ C
∫

B r
2
(ξ)∩�

(d + d̃2K )dd̃−k
K dx ≤ C

∫

B r
2
(ξ)∩�

d2−k
K dx < ∞.

Thus by (6.7) and the last inequality we deduce that

sup
Br ′

2
(ξ)∩K

vl < C1
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for some constant C1 > 0 which does not depend on l. Thus

wl ≤ C1φμ , in Br ′
2
(ξ) ∩ �.

By letting l → 0, we derive

u+ ≤ C1φμ , in Br ′
2
(ξ) ∩ �.

Thus by a covering argument we can find a constant C2 > 0 such that

u+ ≤ C2φμ , in Br
2
(ξ) ∩ �. (6.8)

This implies v0 := u+
φμ

< C2 in Br
2
(ξ) ∩ �.

Using η2r vl as a test function in (6.6) we can easily obtain

∫

B r
2
(ξ)∩�

|∇(ηrvl)|2φ2
μdx + λμ

∫

B r
2
(ξ)∩�

|ηrvl |2φ2
μdx ≤ C

r2

∫

B r
2
(ξ)∩�

|vl |2φ2
μdx .

By (6.8) and by letting l → 0 we obtain that ηrv0 ∈ H1(�;φ2
μ), which in turn implies

that ηr u+
φμ

∈ H1(�;φ2
μ). Applying the same argument to −u we obtain

u− ≤ C2φμ in Br
2
(ξ) ∩ �,

and ηr u−
φμ

∈ H1(�;φ2
μ). By using the fact that u = u+ − u−, we obtain (6.4) and

(6.3).
We next prove the boundary Harnack inequality (6.5). Let u be a nonnegative

Lμ-harmonic function and put v = u
φμ

. Then v ∈ H1(Br
4
(ξ);φ2

μ) and v satisfies

−φ−2
μ div(φ2

μ∇v) + λμv = 0, in Br
4
(ξ) ∩ �.

The function v̂(x, t) := eλμtv(x) then satisfies

∂t v̂ − φ−2
μ div(φ2

μ∇v̂) = 0, in Br
4
(ξ) ∩ � ×

(

0,
r2

16

)

.

By the Harnack inequality (2.4),

ess sup

{

v̂(t, x) : (t, x) ∈
(
r2

64
,
r2

32

)

× B
(
ξ,

r

8

)
∩ �

}

≤ C ess inf

{

v̂(t, x) : (t, x) ∈
(
3r2

64
,
r2

16

)

× B
(
ξ,

r

8

)
∩ �

}

.

This implies (6.5). ��
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Lemma 6.3 Let μ ≤ k2/4 and assume that λμ > 0. Let u ∈ H1
loc(�) ∩ C(�) be

Lμ-subharmonic in �. Assume that

lim sup
dist(x,F)→0

u(x)

W̃ (x)
≤ 0, ∀ compact F ⊂ ∂�. (6.9)

Then u ≤ 0 in �.

Proof First we note that u+ = max(u(x), 0) is a nonnegative Lμ-subharmonic func-
tion in �. Let v = u+

φμ
. In view of the proof of (6.4), v ∈ H1

0 (�;φ2
μ); moreover by a

straightforward calculation we have

− div(φ2
μ∇v) + λμφ2

μv ≤ 0 in �. (6.10)

Since v ∈ H1
0 (�;φ2

μ), we can use it as a test function for (6.10) and obtain

∫

�

|∇v|2φ2
μdx + λμ

∫

�

|v|2φ2
μdx ≤ 0.

Hence v = 0 and the result follows. ��

6.2 Existence and uniqueness

The aim of this subsection is to prove existence and uniqueness of the solution of
Lμu = f , with smooth boundary data. We also prove the boundary Harnack inequal-
ities and maximum principle for the operator Lμ. Let us first define the notion of a
weak solution.

Definition 6.4 Let f ∈ L2(�). We say that u is a weak solution of

Lμu = f , in � (6.11)

if u
φμ

∈ H1
0 (�;φ2

μ) and

∫

�

∇u · ∇ψ dx − μ

∫

�

uψ

d2K
dx =

∫

�

f ψ dx, ∀ψ ∈ C∞
c (�).

In the next lemma we give the first existence and uniqueness result.

Lemma 6.5 Let μ ≤ k2/4 and assume that λμ > 0. For any f ∈ L2(�) there exists
a unique weak solution u of (6.11). Furthermore there holds

∫

�

u2dx ≤ C
∫

�

f 2dx, (6.12)

where C = C(λμ) > 0.
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Proof Wefirst observe that u is a weak solution of (6.11) if and only if v = u
φμ

satisfies

∫

�

φ2
μ∇v · ∇ζdx + λμ

∫

�

φ2
μvζdx =

∫

�

φμ f ζdx , ∀ζ ∈ H1
0 (�;φ2

μ).

(6.13)

We define on H1
0 (�;φ2

μ) the inner product

〈ψ, ζ 〉φ2
μ

=
∫

�

φ2
μ(∇ψ · ∇ζ + λμψ ζ)dx

and consider the bounded linear functional T f on H1
0 (�;φ2

μ) given by

T f (ζ ) =
∫

�

φμ f ζdx .

Then (6.13) becomes

〈v, ζ 〉φ2
μ

= T f (ζ ) ∀ζ ∈ H1
0 (�;φ2

μ). (6.14)

By Riesz representation theorem there exists a unique function v ∈ H1
0 (�;φ2

μ) sat-
isfying (6.14). Furthermore, by choosing ζ = v in (6.13) and then using Young’s
inequality, we obtain

∫

�

φ2
μ|∇v|2dx + λμ

2

∫

�

φ2
μv2dx ≤ C(λμ)

∫

�

f 2dx . (6.15)

By putting u = φμv, we deduce that u is the uniqueweak solution of (6.11).Moreover,
(6.12) follows from (6.15). ��

The next lemmawill be useful in order to prove existence and uniqueness of solution
for the equation Lμu = f with zero boundary data.

Lemma 6.6 [29, Lemma 5.3] Let γ < N and α ∈ (0,min{k, γ }). There exists a
positive constant C = C(α, γ,�, K ) such that

sup
x∈�

∫

�

|x − y|−N+γ d−α
K (y)dy < C .

In the following lemmaweprove the existence of solution for the equation Lμu = f
with zero boundary data, as well as pointwise estimates.

Lemma 6.7 Letμ ≤ k2/4 and assume that λμ > 0, γ− −1 < b < 0 and f ∈ L∞(�).
Then there exists a unique u ∈ H1

loc(�) ∩ C(�) which satisfies Lμu = f dbK in the
sense of distributions as well as (6.9). Moreover, for any γ ∈ (−∞, γ+] ∩ (−∞, b +
1) ∩ (−∞, 0] there exists a positive constant C = C(�, K , b, μ, γ ) such that

|u(x)| ≤ C‖ f ‖L∞(�)d(x)dγ

K (x), x ∈ �. (6.16)
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Proof We assume first that f ≥ 0. Set fn = min{ f dbK , n}. By Lemma 6.5, there exists
a unique solution un of Lμv = fn in �. Furthermore, a standard argument yields the
representation formula

un(x) =
∫

�

Gμ(x, y) fn(y)dy.

We assume first that 0 < μ < k2
4 . By (5.4) we have

0 ≤
∫

�

Gμ(x, y) fn(y)dy

≤ C1

∫

�

min

{
1

|x − y|N−2 ,
d(x)d(y)

|x − y|N
}

×
(

dK (x)dK (y)

(dK (x) + |x − y|) (dK (y) + |x − y|)
)γ+

fn(y)dy

≤ Cdγ+
K (x)

∫

�

|x − y|−N+2−2γ+ min

{

1,
d(x)d(y)

|x − y|2
}

dγ+
K (y) fn(y)dy

+ C
∫

�

|x − y|−N+2−γ+ min

{

1,
d(x)d(y)

|x − y|2
}

dγ+
K (y) fn(y)dy

+ Cdγ+
K (x)

∫

�

|x − y|−N+2−γ+ min

{

1,
d(x)d(y)

|x − y|2
}

fn(y)dy

+ C
∫

�

|x − y|−N+2 min

{

1,
d(x)d(y)

|x − y|2
}

fn(y)dy

= C(I1 + I2 + I3 + I4).

First we note that if dK (y) ≤ 1
4dK (x) then |x − y| ≥ 3

4dK (x). Thus for γ ≤ γ+, we
have

I1 = dγ+
K (x)

∫

�∩{dK (y)≤ 1
4 dK (x)}

|x − y|−N+2−2γ+ min

{

1,
d(x)d(y)

|x − y|2
}

dγ+
K (y) fn(y)dy

+ dγ+
K (x)

∫

�∩{dK (y)> 1
4 dK (x)}

|x − y|−N+2−2γ+ min

{

1,
d(x)d(y)

|x − y|2
}

dγ+
K (y) fn(y)dy

≤ C‖ f ‖L∞(�)d
γ

K (x)
∫

�∩{dK (y)≤ 1
4 dK (x)}

|x − y|−N+2−γ−γ+

× min

{

1,
d(x)d(y)

|x − y|2
}

db+γ+
K (y)dy

+ C‖ f ‖L∞(�)d
γ

K (x)
∫

�∩{dK (y)> 1
4 dK (x)}

|x − y|−N+2−2γ+

× min

{

1,
d(x)d(y)

|x − y|2
}

db−γ+2γ+
K (y)dy
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≤ C‖ f ‖L∞(�)d
γ

K (x)d(x)
∫

�∩{dK (y)≤ 1
4 dK (x)}

|x − y|−N−γ−γ+db+γ++1
K (y)dy

+ C‖ f ‖L∞(�)d
γ

K (x)d(x)
∫

�∩{dK (y)> 1
4 dK (x)}

|x − y|−N−2γ+db−γ+2γ++1
K (y)dy

≤ C‖ f ‖L∞(�)d
γ

K (x)d(x)

where in the last inequalities we have used Lemma 6.6.
Similarly we can prove that

I1 + I2 + I3 + I4 ≤ C‖ f ‖L∞(�)d
γ

K (x)d(x).

Combining the above estimates, we deduce that for any γ ∈ (−∞, γ+]∩(−∞, b+
1), there exists a positive constant C = C(�, K , μ, b, γ ) such that

|un(x)| ≤ C‖ f ‖L∞(�)d(x)dγ

K (x), x ∈ �. (6.17)

If we choose γ ∈ (γ−, γ+] ∩ (γ−, b + 1), then we can show that

lim
dist(x,F)→0

d(x)dγ

K (x)

W̃ (x)
= 0, ∀ compact F ⊂ ∂�. (6.18)

Thus by the above inequality, (6.17) and applying Lemma 6.3, we can easily show
that un ↗ u locally uniformly in � and in H1

loc(�). Furthermore, by standard elliptic
theory u ∈ C1(�) and, by (6.17),

|u(x)| ≤ C‖ f ‖L∞(�)d(x)dγ

K (x), x ∈ �. (6.19)

The uniqueness follows by (6.18), (6.19) and Lemma 6.3.
For the general case, we set u = u+ − u− where u± are the unique solutions of

Lμv = f±d−b
K in � respectively, which satisfy (6.16). Thus u satisfies (6.16) and the

result follows in the case 0 < μ < k2
4 .

The proof in the cases μ = k2
4 and μ ≤ 0 is similar and is omitted. ��

The following lemma is the main result of this subsection.

Lemma 6.8 Let μ ≤ k2/4 and assume that λμ > 0. For any h ∈ C(∂�) there exists
a unique Lμ-harmonic function u ∈ H1

loc(�) ∩ C(�) satisfying

lim
x∈�, x→y∈∂�

u(x)

W̃ (x)
= h(y) uniformly in y ∈ ∂�.

Furthermore there exists a constant c = c(�, K ) > 0

∣
∣
∣
∣

∣
∣
∣
∣
u

W̃

∣
∣
∣
∣

∣
∣
∣
∣
L∞(�)

≤ c‖h‖C(∂�).
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Proof Uniqueness is a consequence of Lemma 6.3.
Existence. We will only consider the case 0 < μ < k2

4 , the proof in the other
cases is very similar. First we assume that h ∈ C2(�). Then a function u ∈ C2(�) is
Lμ-harmonic if and only if v := W̃h − u is a solution of

Lμv = Lμ(W̃h) = h(LμW̃ ) − 2∇W̃ · ∇h − W̃�h, in � . (6.20)

Arguing as in the proof of Lemma 6.1 we see that there exists C = C(�, K , μ, β0)

such that

|LμW̃ | ≤ Cdγ−
K , in �.

Hence (6.20) can be written as

Lμv = f dγ−
K , in �,

with ‖ f ‖L∞(�) ≤ C(γ−,�, K ) ‖h‖C2(�) .

By Lemma 6.7 there exists a unique solution v of (6.20) that satisfies

|v(x)| ≤ C‖h‖C2(�)d(x)dγ

K (x), x ∈ �,

for any γ ∈ (γ−, γ+] ∩ (γ−, γ− + 1). Thus

∣
∣
∣
∣
u(x)

W̃ (x)
− h(x)

∣
∣
∣
∣ ≤ C‖h‖C2(�)

d(x)dγ

K (x)

W̃ (x)
, x ∈ �, (6.21)

and the desired result follows in this case, since

lim
dist(x,F)→0

d(x)dγ

K (x)

W̃ (x)
= 0, ∀ compact F ⊂ ∂�.

for any γ ∈ (γ−, γ+] ∩ (γ−, γ− + 1).
Suppose now that h ∈ C(∂�). We can then find a sequence {hn}∞n=1 of smooth

functions in ∂� such that hn → h in L∞(∂�). Then there exist Hn ∈ C2(�) with
value Hn|∂� = hn and ‖Hn‖L∞(�) ≤ C‖hn‖L∞(∂�) where C does not depend on n or
hn . By the previous case there exists a unique weak solution un of Lμu = 0 satisfying

∣
∣
∣
∣
un(x)

W̃ (x)
− Hn(x)

∣
∣
∣
∣ ≤ C‖Hn‖C2(�)

d(x)dγ

K (x)

W̃ (x)
, ∀x ∈ �,

for some C which does not depend on n and hn .
By (6.21) and Lemma 6.3, we can easily show that

∣
∣
∣
∣
un(x) − um(x)

W̃ (x)

∣
∣
∣
∣ ≤ C‖hn − hm‖L∞(∂�), x ∈ �;
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thus un → u locally uniformly in �.
Now, let y ∈ ∂�. Then

∣
∣
∣
∣
u(x)

W̃ (x)
− h(y)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
u(x) − un(x)

W̃ (x)

∣
∣
∣
∣+
∣
∣
∣
∣
un(x)

W̃ (x)
− hn(y)

∣
∣
∣
∣+ |hn(y) − h(y)|

and the result follows by letting successively x → y and n → ∞. ��

7 Martin kernel

7.1 L�-harmonic measure

Let x0 ∈ �, h ∈ C(∂�) and denote Lμ,x0(h) := vh(x0) where vh is the solution of
the Dirichlet problem (see Lemma 6.8)

{
Lμv = 0, in �,

t̃r(v) = h, in ∂�,

where t̃r(v) = h is understood in the sense of Lemma 6.8 (cf. also (2.6)). By Lemma
6.3, the mapping h �→ Lμ,x0(h) is a positive linear functional on C(∂�). Thus there
exists a unique Borel measure on ∂�, called Lμ-harmonic measure in �, denoted by
ωx0 , such that

vh(x0) =
∫

∂�

h(y)dωx0(y).

Thanks to the Harnack inequality the measures ωx and ωx0 , x0, x ∈ �, are mutually
absolutely continuous. For every fixed x we denote the Radon–Nikodyn derivative by

Kμ(x, y) := dwx

dwx0
(y), for ωx0 - almost all y ∈ ∂�. (7.1)

Let ξ ∈ ∂�. We set �r (ξ) = ∂� ∩ Br (ξ) and denote by xr = xr (ξ) the point in
� determined by d(xr ) = |xr − ξ | = r . We recall here that β0 = β0(�, K , μ) > 0 is
small enough and has been defined in Lemma 6.1.

Lemma 7.1 Let μ ≤ k2/4 and assume that λμ > 0. Let 0 < r ≤ β0. We assume that
u is a positive Lμ-harmonic function in � such that

(i) u
W̃

∈ C(�\Br (ξ)),

(ii) limx∈�,x→x0
u(x)
W̃ (x)

= 0, ∀x0 ∈ ∂�\Br (ξ), uniformly with respect to x0.
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Then

c−1 u(xr (ξ))

Gμ(xr (ξ), x r
16

(ξ))
Gμ(x, x r

16
(ξ)) ≤ u(x)

≤ c
u(xr (ξ))

Gμ(xr (ξ), x r
16

(ξ))
Gμ(x, x r

16
(ξ)), ∀x ∈ �\B2r (ξ),

(7.2)

with c > 1 depending only on �, K and μ.

Proof It follows from Lemma 6.2 that there exists c > 1 such that

c−1 u(x2r (ξ))

Gμ(x2r (ξ), x r
16

(ξ))
Gμ(x, x r

16
(ξ)) ≤ u(x)

≤ c
u(x2r (ξ))

Gμ(x2r (ξ), x r
16

(ξ))
Gμ(x, x r

16
(ξ)), ∀x ∈ � ∩ ∂B2r (ξ),

Applying Harnack inequality between x2r (ξ) and xr (ξ) we obtain

c−1 u(xr (ξ))

Gμ(xr (ξ), x r
16

(ξ))
Gμ(x, x r

16
(ξ)) ≤ u(x)

≤ c
u(xr (ξ))

Gμ(xr (ξ), x r
16

(ξ))
Gμ(x, x r

16
(ξ)), ∀x ∈ � ∩ ∂B2r (ξ).

For ε > 0 let

uε(x) = u(x) − c
u(xr (ξ))

Gμ(xr (ξ), x r
16

(ξ))
Gμ(x, x r

16
(ξ)) − εv1(x),

where c is as above. Then uε is Lμ-harmonic and the function u+
ε = max(uε, 0) has

compact support in �\B2r (ξ). Set vε = uε

φμ
and v+

ε = u+
ε

φμ
. Using u+

ε as a test function
we obtain

∫

�\B2r (ξ)

∇vε · ∇v+
ε φ2

μdx + λμ

∫

�\B2r (ξ)

vεv
+
ε φ2

μdx = 0.

Letting ε → 0 in the above equation we get

λμ

∫

�

|v+|2φ2
μdx ≤ 0,

hence u(x) − c u(xr (ξ))
Gμ(xr (ξ),x r

16
(ξ))

Gμ(x, x r
16

(ξ)) ≤ 0 for all x ∈ �\B2r (ξ). The proof of

the lower estimate in (7.2) is similar and we omit it. ��
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7.2 The Poisson kernel of L�

In this section we establish some properties of the Poisson kernel associated to Lμ.

Definition 7.2 A function K defined in � is called a kernel function for Lμ with pole
at ξ ∈ ∂� and basis at x0 ∈ � if

(i) K(·, ξ) is Lμ-harmonic in �,

(ii) K(·,ξ)

W̃ (·) ∈ C(�\{ξ}) and for any η ∈ ∂�\{ξ} we have limx∈�, x→η
K(x,ξ)

W̃ (x)
= 0,

(iii) K(x, ξ) > 0 for each x ∈ � and K(x0, ξ) = 1.

Proposition 7.3 Assume that λμ > 0. There exists a unique kernel function for Lμ

with pole at ξ and basis at x0.

Proof The proof is similar to that of [12, Theorem 3.1] and we include it for the sake
of completeness.

Existence.We shall prove that the function Kμ(x, ξ) defined by (7.1) has the required
properties.

Fix ξ ∈ ∂�. Set

un(x) = ωx (�2−n (ξ))

ωx0(�2−n (ξ))
, ∀n ∈ N.

Clearly un(x) → Kμ(x, ξ), x ∈ �. Since un ≥ 0, Lμun = 0 in � and un(x0) = 1
the sequence {un} is locally bounded in � by Harnack inequality. Hence we can find
a subsequence, again denoted by {un}, which converges to Kμ(·, ξ) locally uniformly
in �.

Let η ∈ ∂�\{ξ} and let n1 ∈ N be such that η ∈ ∂�\B2−n+1(ξ), ∀n ≥ n1. By
Lemma 7.1 we have

un(x) ≤ c
un(x2−n1 (ξ))

Gμ(x2−n1 , x2−n1−4(ξ))
Gμ(x, x2−n1−4(ξ)), ∀x ∈ �\B2−n1+1(ξ),

which implies

Kμ(x, ξ) ≤ c
un(x2−n1 (ξ))

Gμ(x2−n1 , x2−n1−4(ξ))
Gμ(x, x2−n1−4(ξ)), ∀x ∈ �\B2−n1+1(ξ).

It follows that

lim
x∈�, x→η

Kμ(x, ξ)

W̃ (x)
= 0,

hence Kμ(x, ξ) is a kernel function for Lμ with pole at ξ and basis at x0.
Uniqueness. Assume f and g are two kernel functions for Lμ in � with pole at ξ and
basis at x0. Let 0 < r < β0. By Lemma 7.1 and the properties of f and g there holds

1

c′
f (xr (ξ))

g(xr (ξ))
≤ f (x)

g(x)
≤ c′ f (xr (ξ))

g(xr (ξ))
, ∀x ∈ �\B2r (ξ).
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In particular we can obtain if we take x = x0

f (xr (ξ))

g(xr (ξ))
≤ c′,

and hence

f (x)

g(x)
≤ c′2 =: c , ∀x ∈ �.

We derive that for any two kernel functions f and g for Lμ with pole at ξ and basis
at x0 there holds

f (x) ≤ cg(x) ≤ c2 f (x) , x ∈ �.

Obviously c ≥ 1. If c = 1 the result is proved. If c > 1 then we set A = 1
c−1 and

f + A( f −g) is also a kernel function for Lμ with pole at ξ and basis at x0. Repeating
the argument for the functions f + A( f − g) and g we obtain that

f + A( f − g) + A
(
f − g + A( f − g)

)
,

is also a kernel function with pole at ξ and basis at x0. Proceeding in this manner we
conclude that for each positive integer k there exist nonnegative numbers a1k, . . . , akk
such that

f +
(

k A +
k∑

i=1

aik

)

( f − g)

is a kernel function with pole at ξ and basis at x0. Hence

f +
(

k A +
k∑

i=1

aik

)

( f − g) ≤ c f .

This last inequality can hold for all k only if f ≡ g. ��
Proposition 7.4 Assume that λμ > 0. For any x ∈ �, the function ξ �→ Kμ(x, ξ) is
continuous on ∂�.

Proof The proof is an adaptation of that of [12, Corollary 3.2]. Suppose that {ξn} is
a sequence converging to ξ . Then the sequence {Kμ(·, ξn)} of positive solutions of
Lμu = 0 in� has a subsequence which converges locally uniformly in� to a positive

Lμ-harmonic function.Moreover, for any r > 0, Kμ(x,ξn)

W̃ (x)
converges to zero uniformly

in n as x → η ∈ ∂�\Br (ξ). Hence the limit function of the subsequence is the kernel
function Kμ(x, ξ). By the uniqueness of the kernel function we conclude that the
convergence

Kμ(x, ξn) → Kμ(x, ξ)
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holds for the entire sequence {ξn}. ��
We can now identify the Martin boundary and topology with their classical ana-

logues. We begin by recalling the definitions of the Martin boundary and related
concepts.

Let x0 ∈ � be fixed. For x, y ∈ � we set

Kμ(x, y) := Gμ(x, y)

Gμ(x0, y)
.

Consider the family of sequences {yk}k≥1 of points of � without cluster points
in � for which Kμ(x, yk) converges in � to a Lμ-harmonic function, denoted by
Kμ(x, {yk}). Two such sequences yk and y′

k are called equivalent if Kμ(x, {yk}) =
Kμ(x, {y′

k}) and each equivalence class is called an element of the Martin boundary
�. If Y is such an equivalence class (i.e., Y ∈ �) then Kμ(x,Y ) will denote the
corresponding harmonic limit function. Thus each Y ∈ � ∪ � is associated with a
unique function Kμ(x,Y ). The Martin topology on � ∪ � is given by the metric

ρ(Y ,Y ′) =
∫

A

|Kμ(x,Y ) − Kμ(x,Y ′)|
1 + |Kμ(x,Y ) − Kμ(x,Y ′)|dx, Y ,Y ′ ∈ � ∪ �,

where A is a small enough neighbourhood of x0. The function Kμ(x,Y ) is a ρ-
continuous function of Y ∈ � ∪ � for any fixed x ∈ �. Moreover � ∪ � is compact
and complete with respect to ρ, � ∪ � is the ρ-closure of � and the ρ-topology is
equivalent to the Euclidean topology in �.

Proposition 7.5 Assume that λμ > 0. There is a one-to-one correspondence between
the Martin boundary of � and the Euclidean boundary ∂�. If Y ∈ � corresponds to
ξ ∈ ∂� then Kμ(x,Y ) = Kμ(x, ξ). The Martin topology on � ∪ � is equivalent to
the Euclidean topology on � ∪ ∂�.

Proof The proof is similar as the one of Theorem 4.2 in [35] and we include it for the
sake of completeness. By uniqueness of the kernel function we have that

Kμ(x, {yk}) = Kμ(x, ξ),

where {yk} is a sequence in � such that yk → ξ ∈ ∂�. It follows that each
point of � may be associated with a point of ∂�. Lemma 7.1 clearly shows that
Kμ(·, ξ) �= Kμ(·, ξ ′) if ξ �= ξ ′. Hence, the functions Kμ(x, yk) cannot converge if
the sequence {yk} has more than one cluster point on ∂� and different points of ∂�

must be associated with different points of �. This gives a one-to-one correspondence
between ∂� and � with Kμ(x,Y ) = Kμ(x, ξ) when Y ∈ � corresponds to ξ ∈ ∂�.

If ξk → ξ in the Euclidean topology then Kμ(x,Yk) → Kμ(x,Y ) and, therefore,
Yk → Y in the ρ-topology by Lebesgue’s dominated convergence theorem. On the
other hand suppose that Yk → Y in the ρ-topology. If ξk does not converge to ξ in
the Euclidean topology there is a subsequence ξk j such that ξk j → ξ ′ �= ξ in the
Euclidean topology. Then Yk j → Y ′ and Yk j → Y in the ρ- topology with Y �= Y ′,
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which is impossible. Therefore, the Martin ρ-topology on � ∪ � is equivalent to the
Euclidean topology on � ∪ ∂�. ��
Proof of Theorem 2.8 The result follows immediately by Propositions 5.3 and 7.5. ��

The next lemma will be used to prove the representation formula of Theorem 2.9.

Lemma 7.6 Assume that λμ > 0. Let F ⊂ ∂� and D be an open smooth neighbour-
hood of F .We assume �∩ D ⊂ �β for some β > 0. Let u be a positive Lμ-harmonic
function in �. There exists a Lμ-superharmonic function V such that

V (x) =
{

v(x), in �\D,

u(x), in � ∩ D,

where v satisfies

⎧
⎪⎨

⎪⎩

Lμv = 0, in �\D,

limx∈�\D, x→y v(x) = u(y), ∀y ∈ ∂D ∩ �,

limx∈�\D, x→y
v(x)
W̃ (x)

= 0, ∀y ∈ ∂�\D.

Proof The function u is C2 in � since it is Lμ-harmonic. We assume that {rn}∞n=0 is a

decreasing sequence rn ↘ 0 and r1 <
β0
16 . We set Drn = {ξ ∈ ∂D ∩ � : d(ξ) > 2rn}.

Let 0 ≤ ηn ≤ 1 be a smooth function such that ηn = 1 in Drn with compact support
in Drn

2
. In view of the proof of Lemmas 6.5 and 6.8, for m > n, we can find a unique

solution vn,m of

⎧
⎪⎨

⎪⎩

Lμv = 0, in (�\� rm
2

)\D,

limx→y v(x) = ηn(y)u(y), ∀y ∈ ∂D ∩ (�\� rm
2

),

limx→y v(x) = 0, ∀y ∈ (∂� rm
2

)\D.

By comparison principle we have 0 ≤ vn,m ≤ u and vn,m ≤ vn,m+1. In addition, there
exists a constant cn = cn(‖u‖L∞(Drn

2
), inf x∈Drn

2
φμ) such that

0 ≤ vn,m(x) ≤ min{u(x), cnφμ(x)}, x ∈ (�\� rm
2

)\D.

Thus vn,m converges to some function vn as m → ∞ locally uniformly in �\D and

0 ≤ vn(x) ≤ min{u(x), cnφμ(x)}, x ∈ �\D , n ∈ N. (7.3)

Let ξ ∈ ∂�\D. By (7.3) and (6.5) there exists r0 <
dist(ξ,∂D)

4 such that

vn(x)

φμ(x)
≤ c

vn(y)

φμ(y)
≤ c

u(y)

φμ(y)
, ∀x, y ∈ Br0

4
(ξ) ∩ �.

Thus vn converges to some function v locally uniformly in �. The desired result now
follows easily. ��
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We consider a smooth exhaustion of �, that is an increasing sequence of bounded
open smooth domains {�n} such that �n ⊂ �n+1, ∪n�n = � and HN−1(∂�n) →
HN−1(∂�). The operator L�n

μ defined by

L�n
μ u = −�u − μ

d2K
u (7.4)

is uniformly elliptic and coercive in H1
0 (�n) and its first eigenvalue λ

�n
μ is larger than

λμ. For h ∈ C(∂�n) the problem

{
L�n

μ v = 0, in �n,

v = h, on ∂�n,

admits a unique solution which allows to define the L�n
μ -harmonic measure on ∂�n

by

v(x0) =
∫

∂�n

h(y)dω
x0
�n

(y).

Thus the Poisson kernel of L�n
μ is

KL�n
μ

(x, y) = dωx
�n

dω
x0
�n

(y), x ∈ �n, y ∈ ∂�n . (7.5)

Proposition 7.7 Assume that λμ > 0 and x0 ∈ �1. Then for every Z ∈ C(�),

lim
n→∞

∫

∂�n

Z(x)W̃ (x)dω
x0
�n

(x) =
∫

∂�

Z(x)dωx0(x). (7.6)

Proof Let n0 ∈ N be such that

dist(∂�n, ∂�) <
β0

16
, ∀n ≥ n0.

For n ≥ n0 let wn be the solution of

{
L�n

μ wn = 0, in �n,

wn = W̃ , on ∂�n .

In view of the proof of Lemma 6.8, there exists a positive constant c = c(�, K , μ)

such that
∥
∥
∥
∥
wn

W̃

∥
∥
∥
∥
L∞(�n)

≤ c, ∀n ≥ n0.
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Furthermore

wn(x0) =
∫

∂�n

W̃ (x)dω
x0
�n

(x) < c. (7.7)

We extend ω
x0
�n

to a Borel measure on � by setting ω
x0
�n

(�\�n) = 0, and keep the

notation ω
x0
�n

for the extension. Because of (7.7) the sequence {W̃ω
x0
�n

} is bounded in
the space Mb(�) of bounded Borel measures in �. Thus there exists a subsequence,
still denoted by {W̃ω

x0
�n

}, which converges narrowly to some positive measure, say ω̃,
which is clearly supported on ∂� and satisfies ‖ω̃‖Mb

≤ c by (7.7). Thus for every
Z ∈ C(�) there holds

lim
n→∞

∫

∂�n

Z W̃dω
x0
�n

=
∫

∂�

Zdω̃.

Setting ζ = Z�∂� and

z(x) :=
∫

∂�

Kμ(x, y)ζ(y)dωx0(y)

we then have

lim
d(x)→0

z(x)

W̃ (x)
= ζ and z(x0) =

∫

∂�

ζdωx0 .

By Lemma 6.8, z
W̃

∈ C(�). Since z
W̃

�∂�n converges uniformly to ζ as n → ∞, there
holds

z(x0) =
∫

∂�n

z�∂�n dω
x0
�n

=
∫

∂�n

W̃
z�∂�n

W̃
dω

x0
�n

→
∫

∂�

ζdω̃, as n → ∞.

It follows that

∫

∂�

ζdω̃ =
∫

∂�

ζdωx0 , ∀ζ ∈ C(∂�).

Consequently dω̃ = dωx0 . Because the limit does not depend on the subsequence it
follows that the whole sequence W̃ (x)dω

x0
�n

converges weakly to ωx0 . This implies
(7.6). ��
Proof of Theorem 2.9 The proof which is presented below follows the ideas of the one
of [35, Th. 4.3]. Let B be a relatively closed subset of �. We define

RB
u (x) := inf

{

ψ(x) : ψ is a nonnegative supersolution in � with ψ ≥ u on B

}

.
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For a closed subset F of ∂�, we define

νx (F) := inf
{
R�∩G
u (x) : F ⊂ G, G open in R

N
}

.

The set function νx defines a regular Borel measure on ∂� for each fixed x ∈ �. Since
νx (F) is a positive Lμ-harmonic function in � the measures νx , x ∈ �, are mutually
absolutely continuous by Harnack inequality. Hence,

νx (F) =
∫

F
dνx (y) =

∫

F

dνx

dνx0
dνx0(y).

We assert that dνx

dνx0
= Kμ(x, y) for νx0 -a.e. y ∈ ∂�. By Besicovitch’s theorem,

dνx

dνx0
(y) = lim

r→0

νx (�r (y))

νx0(�r (y))
,

for νx0 -a.e. y ∈ ∂�. In view of the proof of Proposition 7.3, we can prove that the
function νx (�r (y)) is Lμ-harmonic and

lim
x∈�, x→ξ

νx (�r (y))

W̃ (x)
= 0, ∀ξ ∈ ∂�\�r (y).

Proceeding as in the proof of Proposition 7.3, we may prove that dνx

dνx0
is a kernel

function, and by the uniqueness of kernel functions the assertion follows. Hence

νx (A) =
∫

A
Kμ(x, y)dνx0(y),

for all Borel A ⊂ ∂� and in particular

u(x) = νx (∂�) =
∫

∂�

Kμ(x, y)dνx0(y).

Suppose now that

u(x) =
∫

∂�

Kμ(x, y)dν(y),

for some nonnegative Borel measure ν on ∂�. We will show that ν(F) = νx0(F) for
any closed set F ⊂ ∂�.

Choose a sequence of open sets {G�} in RN such that ∩∞
�=1G� = F and

νx (F) = lim
l→∞ R�∩G�

u (x).
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Since

RB
u (x) ≤ RA

u (x), if B ⊂ A,

we can choose {G�} so that G�+1 ⊂ G�, ∀� ≥ 1 and G� to be a C2 domain for all

� ≥ 1. In view of the proof of Lemma 7.6, we may assume that R�∩G�
u (x) = V�

where V� is the Lμ-superharmonic function in Lemma 7.6 for D = G�. Furthermore

we have that R�∩G�
u (x) = u(x) in � ∩ G� and R�∩G�

u (x) ≤ u(x) for all x ∈ �.
We consider an increasing sequence of smooth domains {��} such that�� ⊂ ��+1,

∪∞
�=1�� = �, G� ∩ � ⊂ �\��, HN−1(∂��) → HN−1(∂�). Let w

x0
�n

be the Lμ-
harmonicmeasure in ∂�n (see (7.4)–(7.5)). Let n > � and let vn be the unique solution
of

{
Lμv = 0, in �n,

v = R�∩G�
u , on ∂�n .

Since R�∩G�
u (x) is a supersolution in � we have R�∩G�

u (x) ≥ vn(x), x ∈ �n . Hence

R�∩G�
u (x0) ≥ vn(x0) =

∫

∂�n

R�∩G�
u (y)dw

x0
�n

(y) ≥
∫

∂�n∩G�

R�∩G�
u (y)dw

x0
�n

(y).

Now, by Lemma 7.6,

∫

∂�n∩G�

R�∩G�
u (y)dw

x0
�n

(y) =
∫

∂�n∩G�

u(y)dw
x0
�n

(y)

=
∫

∂�n∩G�

∫

∂�

Kμ(y, ξ)dν(ξ)dw
x0
�n

(y)

=
∫

∂�

∫

∂�n∩G�

Kμ(y, ξ)dw
x0
�n

(y)dν(ξ)

≥
∫

F

∫

∂�n∩G�

Kμ(y, ξ)dw
x0
�n

(y)dν(ξ).

Let ξ ∈ F . We have

1 = Kμ(x0, ξ) =
∫

∂�n∩G�

Kμ(y, ξ)dw
x0
�n

(y) +
∫

∂�n\G�

Kμ(y, ξ)dw
x0
�n

(y).

But

Kμ(y, ξ) ≤ cd(y)dγ+
K (y), ∀y ∈ ∂�n\G�,

thus by Proposition 7.7 we have that

lim
n→∞

∫

∂�n\G�

Kμ(y, ξ)dw
x0
�n

(y) = 0.
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Combining all the above inequalities and using Lebesgue’s dominated convergence
theorem we obtain

R�∩G�
u (x0) ≥ lim

n→∞

∫

F

∫

∂�n∩G�

Kμ(y, ξ)dw
x0
�n

(y)dν(ξ) = ν(F),

which implies

νx0(F) ≥ ν(F).

For the opposite inequality, let m < �. Then

R�∩G�
u (x0) =

∫

∂��

R�∩G�
u (y)dw

x0
��

(y)

=
∫

∂��∩Gm

R�∩G�
u (y)dw

x0
��

(y) +
∫

∂��\Gm

R�∩G�
u (y)dw

x0
��

(y).

In view of the proof of Lemma 7.6, we have that

R�∩G�
u (x) ≤ Cd(x)dγ+

K (x), ∀x ∈ �\Gm .

Thus by Proposition 7.7 we have

lim
l→∞

∫

∂��\Gm

R�∩G�
u (y)dw

x0
��

(y) = 0,

and

∫

∂��∩Gm

R�∩G�
u (y)dw

x0
��

(y) ≤
∫

∂��∩Gm

u(y)dw
x0
��

(y)

=
∫

∂��∩Gm

∫

∂�

Kμ(y, ξ)dν(ξ)dw
x0
��

(y)

=
∫

∂�

∫

∂��∩Gm

Kμ(y, ξ)dw
x0
��

(y)dν(ξ).

If ξ ∈ ∂�\Gm−1 we have again by Proposition 7.7 that

lim
�→∞

∫

∂��∩Gm

Kμ(y, ξ)dw
x0
��

(y) = 0.

If ξ ∈ ∂� ∩ Gm , then

∫

∂��∩Gm

Kμ(y, ξ)dw
x0
��

(y) ≤ Kμ(x0, ξ) = 1.
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Combining all the above inequalities, we obtain

νx0(F) = lim
�→∞ R�∩G�

u (x0) ≤
∫

∂�∩Gm−1

Kμ(x0, ξ)dν(ξ) = ν(∂� ∩ Gm−1),

which implies

νx0(F) ≤ ν(F).

Thus we get the desired result. ��

8 Boundary value problem for linear equations

8.1 Boundary trace

We first examine the boundary trace of Kμ[ν].
Lemma 8.1 Let μ ≤ k2/4 and assume that λμ > 0. Then for any ν ∈ M(∂�) we
have trμ(Kμ[ν]) = ν.

Proof The proof is the similar to the proof of Lemma 2.2 in [45] and we omit it. ��
Lemma 8.2 Let μ ≤ k2/4 and assume that λμ > 0. For τ ∈ M(�;φμ) we set

u = Gμ[τ ]. Then u ∈ W 1,p
loc (�) for every 1 < p < N

N−1 and trμ(u) = 0 for any

p ∈ [1, N
N−1 ).

Proof By [44, Theorem 1.2.2], u ∈ W 1,p
loc (�) for every 1 < p < N

N−1 . Let {�n} be a
smooth exhaustion of � (cf. (7.4)) and vn be the unique solution of

{
L�n

μ v = 0, in �n,

v = u, on ∂�n .

We note here that vn(x0) = ∫
∂�n

u(y)dω
x0
�n

(y). We first assume that τ ≥ 0. Let G�n
μ

be the Green kernel of Lμ in �n . Then G�n
μ (x, y) ↗ Gμ(x, y) for any x, y ∈ �,

x �= y. Putting τn = τ |�n and un = G
�n
μ [τn] we then have un ↗ u a.e. in �. By

uniqueness we have that u = un+vn a.e. in�n . In particular, u(x0) = un(x0)+vn(x0)
and therefore limn→∞ vn(x0) = 0. Consequently, trμ(u) = 0.

In the general case, the result follows by linearity. ��
Theorem 8.3 Let μ ≤ k2/4 and assume that λμ > 0. We then have
(i) Let u be a positive Lμ-superharmonic function in the sense of distributions in �.
Then u ∈ L1(�;φμ) and there exist τ ∈ M+(�;φμ) and ν ∈ M+(∂�) such that

u = Gμ[τ ] + Kμ[ν]. (8.1)

In particular, u ≥ Kμ[ν] in � and trμ(u) = ν.
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(ii) Let u be a positive Lμ-subharmonic function in the sense of distributions in �.
Assume that there exists a positive Lμ-superharmonic function w such that u ≤ w in
�. Then u ∈ L1(�;φμ) and there exist τ ∈ M+(�;φμ) and ν ∈ M+(∂�) such that

u + Gμ[τ ] = Kμ[ν]. (8.2)

In particular, u ≤ Kμ[ν] in � and trμ(u) = ν.

Proof (i) Since Lμu ≥ 0 in the sense of distributions in �, there exists a nonnegative
Radonmeasure τ in� such that Lμu = τ in the sense of distributions. By [44, Lemma

1.5.3], u ∈ W 1,p
loc (�) for any p ∈ [1, N

N−1 ).

Let {�n} be a smooth exhaustion of � (cf. (7.4)). Denote by G�n
μ and P�n

μ the
Green kernel and the Poisson kernel of Lμ in �n respectively (recalling that P�n

μ =
−∂nG

�n
μ ). Then u = G

�n
μ [τ ] + P

�n
μ [u], where G�n

μ and P
�n
μ are the Green operator

and the Poisson operator for �n respectively.
Since τ and P�n

μ [u] are nonnegative and G�n
μ (x, y) ↗ Gμ(x, y) for any x, y ∈ �,

x �= y, we obtain 0 ≤ Gμ[τ ] ≤ u a.e. in �. In particular, 0 ≤ Gμ[τ ](x0) ≤ u(x0)
where x0 ∈ � is a fixed reference point. This, together with the estimate Gμ(x0, ·) ≥
cφμ a.e. in �, implies τ ∈ M(�;φμ).

Moreover, we see that u − Gμ[τ ] is a nonnegative Lμ- harmonic function in �.
Thus by Theorem 2.9 there exists a unique ν ∈ M+(∂�) such that (8.1) holds.

(ii) Since Lμu ≤ 0 in the sense of distributions in �, there exists a nonnegative
Radon measure τ in � such that Lμu = −τ in the sense of distributions. By [44,

Lemma 1.5.3], u ∈ W 1,p
loc (�) for any p ∈ [1, N

N−1 ). Let �n and P
�n
μ be as in (i). Then

u+G
�n
μ [τ ] = P

�n
μ [u]. This, together with the fact that u ≥ 0 and Pμ[u] ≤ w, implies

G
�n
μ [τ ] ≤ w. By using a similar argument as in (i), we deduce that τ ∈ M(�;φμ)

and there exists ν ∈ M+(∂�) such that (8.2) holds. ��

8.2 Boundary value problem for linear equations

We recall (cf. (2.10)) that for μ ≤ k2/4 we have defined

Xμ(�, K ) :=
{
ζ ∈ H1

loc(�) : φ−1
μ ζ ∈ H1(�;φ2

μ), φ−1
μ Lμζ ∈ L∞(�)

}
.

Lemma 8.4 Let μ ≤ k2/4 and assume that λμ > 0. Then any ζ ∈ Xμ(�, K ) satisfies
|ζ | ≤ cφμ in �.

Proof Let ζ ∈ Xμ(�, K ) and g = Lμζ. Then there exist C = C(
∥
∥gφ−1

μ

∥
∥
L∞(�)

, λμ)

such that |g| ≤ Cλμφμ in �. Set ζ̃ = C−1φ−1
μ ζ . Then,

∫

�

φ2
μ∇ ζ̃ · ∇ψ dx + λμ

∫

�

φ2
μζ̃ψ dx = 1

C

∫

�

φμgψ dx ≤ λμ

∫

�

φ2
μψ dx ,

∀0 ≤ ψ ∈ H1
0 (�;φ2

μ).
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By takingψ = (ζ̃ −1)+ as test function in the above inequality, we obtain that ζ̃ ≤ 1,
which implies ζ ≤ Cφμ in �. Applying the same argument to −ζ completes the
proof. ��
Lemma 8.5 Let μ ≤ k2/4 and assume that λμ > 0. Given τ ∈ M(�;φμ) there exists
a unique weak solution u of (2.9)with ν = 0. Furthermore u = Gμ[τ ] and there holds

‖u‖L1(�;φμ) ≤ 1

λμ

‖τ‖M(�;φμ). (8.3)

Proof A priori estimate. Assume u ∈ L1(�;φμ) is a weak solution of (2.9) with
ν = 0. Let ζ ∈ Xμ(�, K ) be such that Lμζ = sign(u)φμ. By Kato’s inequality,

Lμ|ζ | ≤ sign(ζ )Lμζ ≤ φμ = Lμ

(
1

λμ

φμ

)

.

Hence by Lemmas 6.3 and 8.4 we deduce that |ζ | ≤ 1
λμ

φμ in �. This, combined with
(2.9) (for ν = 0) implies (8.3).

Uniqueness. The uniqueness follows directly from (8.3).

Existence. Assume τ = f dx with f ∈ L∞(�) with compact support in �. The
existence of a solution u follows by Lemma 6.5.

Since f ∈ L∞(�) has compact support in �, there exists a positive constant
c = c(supp( f ), ‖ f ‖∞,�, K , μ) such that | f | ≤ cφμ. It follows that u ∈ Xμ(�) and
therefore |u(x)| ≤ Cφμ(x), x ∈ �, by Lemma 8.4.

Next we will show that u = Gμ[ f ]. Set w = Gμ[ f ]. We can easily show that w

satisfies Lμw = f in the sense of distributions in� and by (5.4) there exists a positive
constant C such that |w(x)| ≤ Cφμ(x) for all x ∈ �. Therefore,

lim
dist(x,F)→0

|u(x) − w(x)|
W̃ (x)

≤ C lim
dist(x,F)→0

φμ(x)

W̃ (x)
= 0

for any compact set F ⊂ ∂�. Furthermore, we note that |u − w| is Lμ-subharmonic
in �. Hence from Lemma 6.3, we deduce that |u − w| = 0, i.e. u = w in �.

Now assume that τ = f dx with f ∈ L1(�;φμ). Let {�n} be a smooth exhaustion
of � (see (7.4)). Set fn = χ�n gn( f ) ∈ L∞(�), where

g(t) =
⎧
⎨

⎩

n, if t ≥ n,

t, if − n < t < n,

−n, if t ≤ −n.

Then fn → f in L1(�;φμ). Put un := Gμ[ fn]. Then
∫

�

unLμζ dx =
∫

�

fnζ dx, ∀ξ ∈ Xμ(�, K ).
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By (8.3) we can easily prove that un = Gμ[ fn] → Gμ[ f ] := u in L1(�;φμ).
Then by letting n → ∞ and using Lemma 8.4, we deduce the desired result when
f ∈ L1(�;φμ).
Assume finally that τ ∈ M(�;φμ). Let { fn} be a sequence in L1(�;φμ) such that

fn⇀τ in Cφμ(�), where Cφμ(�) = {ζ ∈ C(�) : φ−1
μ ζ ∈ L∞(�)}. Then proceeding

as above we can prove that un = Gμ[ fn] → Gμ[τ ] := u in L1(�;φμ) and u satisfies
(2.9) with ν = 0. ��
Proof of Theorem 2.12 First we note that by Theorem 2.8, we can easily show that

‖Kμ[|ν|]‖L1(�;φμ) ≤ c‖ν‖M(∂�). (8.4)

Existence. The existence and (2.11) follow from Lemma 8.5 and (8.4).

A priori estimate (2.12). This follows from (8.4), (8.3) and (2.11).

Uniqueness. Uniqueness follows from (2.12).
Proof of estimates (2.13)–(2.14). Assume dτ = f dx + dρ and let {�n} be a smooth
exhaustion of �. Let vnτ be the solution of

{
L�n

μ v = 0, in �n

v = Gμ[τ ], on ∂�n,

and wν = Kμ[ν]. Then, by uniqueness, u = G
�n
μ [τ |�n ] + vτ + wν and |u| ≤

Gμ[|τ |] + w|ν| HN−1-a.e. on ∂�n .
Let η ∈ C2

c (�n) be non-negative and such that η = 0 on ∂�n . By [44, Proposition
1.5.9],

∫

�n

|u|Lμη dx ≤
∫

�n

sign(u) f η dx +
∫

�n

ηd|ρ| −
∫

∂�n

|u| ∂η

∂nn
dS

where nn is the unit outer normal vector on ∂�n . Since |u| ≤ Gμ[|τ |] + w|ν| a.e. on
∂�n and

∂η
∂nn ≤ 0 on ∂�n , using integration by parts we obtain

−
∫

∂�n

|u| ∂η

∂nn
dS ≤ −

∫

∂�n

(Gμ[|τ |] + w|ν|)
∂η

∂nn
dS =

∫

�n

(vn|τ | + w|ν|)Lμη dx .

Hence
∫

�n

|u|Lμηdx ≤
∫

�n

sign(u) f η dx +
∫

�n

ηd|ρ| +
∫

�n

(vn|τ | + w|ν|)Lμη dx . (8.5)

Let ζ ∈ Xμ(�, K ), ζ > 0 in �. Let zn and ζn be respectively solutions of

{
Lμzn = Lμζ, in �n,

zn = 0, on ∂�n,

{
Lμζn = sign(zn)Lμζ, in �n,

ζn = 0, on ∂�n .
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By Kato’s inequality, Lμ|zn| ≤ sign(zn)Lμzn in the sense of distributions in �n .
Hence by a comparison argument, we have that |zn| ≤ ζn in �n . Furthermore it can
be checked that zn → ζ and ζn → ζ in L1(�;φμ) and locally uniformly in �.

Now note that (8.5) is valid for any nonnegative solution η ∈ C2
c (�n). Thus we can

use ζn as a test function in (8.5) to obtain

∫

�n

|u|sign(zn)Lμζdx ≤
∫

�n

sign(u) f ζndx +
∫

�n

ζnd|ρ|

+
∫

�n

(vn|τ | + w|ν|)sign(zn)Lμζdx .
(8.6)

Also, since Gμ[|τ |] = G
�n
μ [|τ ||�n ] + vn|τ | a.e. in �n , we deduce that vn|τ | → 0 in

L1(�;φμ) as n → ∞. Thus sending n → ∞ in (8.6) we obtain (2.13) since ζ > 0
in �. Estimate (2.14) follows by adding (2.13) and (2.9). Thus the proof is complete
when ζ is positive.

If ζ is nonnegative we set ζε = ζ + εφμ. Then estimates (2.13) and (2.14) are valid
for ζε for any ε > 0. The desired result follows by letting ε → 0. ��
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Appendix A: Pointwise estimates on eigenfunctions

In this appendix, we prove sharp two-sided pointwise estimates for eigenfunctions of
(2.1). Let β > 0 be small enough and � = ∂� or K . Let ηβ,� ∈ C∞

c (�β) be such that
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0 ≤ ηβ,� ≤ 1 in RN and η = 1 in � β
2
. We set

ζβ = (1 − η4β,∂�) + η4β,∂�d

(

(1 − ηβ,K ) + ηβ,K d̃
γ+
K

)

in �.

Setting u = ζβv in (2.1) we obtain that

λμ = inf
v∈C∞

c (�)\{0}

∫

�
ζ 2
β |∇v|2dx − ∫

�
v2(ζβ�ζβ + μ

ζ 2β

d2K
)dx

∫

�
ζ 2
βu

2dx
. (A.1)

By [22, Lemma 3.1] there exists β0 and a positive constant C = C(�, K , β0) such
that∫

Kβ0∩�

|∇u|2dx − k2

4

∫

Kβ0∩�

u2

d2K
dx ≥ C

∫

Kβ0∩�

|u|2
d2K | ln dK |2 dx, ∀u ∈ C∞

c (Kβ0 ∩ �).

(A.2)

In view of the proof of Lemma 6.1, for ε > 0 there exist positive constants M =
M(�, K , ε) and β1 = β1(�, K , ε) such that the function

φ̃ := eMddd̃γ+
K + dd̃γ++ε

K 
 dd̃γ+
K

satisfies Lμφ̃ ≤ 0 in Kβ1 ∩ �.
Now let u ∈ C∞

c (Kβ1 ∩ �). Setting u = φ̃v, by (A.2) we have

∫

Kβ1∩�

d2d̃2γ+
K |∇v|2dx ≥ C

∫

Kβ1∩�

d2v2

d̃2−2γ+
K | ln d̃K |2

dx, ∀v ∈ C∞
c (Kβ1 ∩ �).

(A.3)

Now, by [24, Theorem 3.2], there exists β2 = β2(�) > 0 such that

∫

�β2

|∇u|2dx ≥ 1

4

∫

�β2

u2

d2
dx , ∀u ∈ C∞

c (�β2).

Setting u = dv, we have that there exists a positive constant β3 = β3(�) < β2 such
that

∫

�β3

d2|∇v|2dx ≥ 1

8

∫

�β3

v2dx , ∀v ∈ C∞
c (�β3). (A.4)

We denote by H1
0 (�; d2d̃2γ+

K ) the closure of C∞
c (�) in the norm

‖u‖2
H1(�;d2d̃2γ+

K )
=
∫

�

u2d2d̃2γ+
K dx +

∫

�

|∇u|2d2d̃2γ+
K dx .
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Proposition A.1 Let μ ≤ k2
4 and β ≤ 1

16 min(β3, β1). Then there exists a minimizer

vμ ∈ H1
0 (�; d2d̃2γ+

K ) of (A.1).

Proof Let {wk}k ⊂ C∞
c (�) be a minimizing sequence of (A.1) normalized by

∫

�

ζ 2
βw2

k dx = 1, k ∈ N.

First we note that ζ 2
β 
 d2d̃2γ+

K in � and

∣
∣
∣
∣
∣
ζβ�ζβ + μ

ζ 2
β

d2K

∣
∣
∣
∣
∣
≤ Cdd̃2γ+

K , in K β
2
, (A.5)

where C depends only on �, K and β0. For any v ∈ C∞
c (Kβ5 ∩ �) we have

∫

Kβ5∩�

dd̃
2γ+− 1

2
K v2dx = 1

2

∫

Kβ5∩�

d
2γ+− 1

2
K (∇d2 · ∇d)v2dx ,

so by integration by parts, Hölder inequality, Proposition 3.1 (b) and (A.3), we find
that for any ε > 0 there exits β5 = β5(�, K , ε) such that

∫

Kβ5∩�

dd̃
2γ+− 1

2
K v2dx ≤ ε

∫

Kβ5∩�

|∇v|2d2d̃2γ+
K dx, (A.6)

Now, there holds

∣
∣
∣
∣ζβ�ζβ + μ

ζ 2
β

d2K

∣
∣
∣
∣ ≤ Cd , in �\K β

2
,

where C depends only on �, K and β0.
Let r > 0. By (A.4) and proceeding as in the proof of (A.6), we have that for any

ε > 0 there exists β6 = β6(�, K , ε, r) such that

∫

�β6\Kr

d|v|2dx ≤ ε

∫

�β6\Kr

|∇v|2d2d̃2γ+
K dx , ∀v ∈ C∞

c (�β6\Kr ).

Combining all above, we may deduce that for any ε > 0 there exists M(ε, β) such
that

∣
∣
∣
∣

∫

�

w2
k

(

ζβ�ζβ + μ
ζ 2
β

d2K

)

dx

∣
∣
∣
∣ ≤ ε

∫

�

ζ 2
β |∇wk |2dx + M .

Hence, the sequence {wk} is uniformly bounded in H1
0 (�; d2d̃2γ+

K ). Thus there exists

vμ ∈ H1
0 (�; d2d̃2γ+

K ) and a subsequence wk, denoted by the same index k, such that

wk⇀vμ in H1
0 (�; d2d̃2γ+

K ); it follows that wk → vμ in L2
loc(�) and a.e. in �.
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By compactness we have that wk → vμ in L2(�; ζ 2
β ). Moreover, from (A.6) and

(A.4) we have

∫

�

w2
k

(

ζβ�ζβ + μ
ζ 2
β

d2K

)

dx →
∫

�

v2μ

(

ζβ�ζβ + μ
ζ 2
β

d2K

)

dx .

The desired result now follows by the lower semicontinuity of the gradient term. ��

Proposition A.2 Let μ ≤ k2
4 and β ≤ 1

16 min(β3, β1). The function φμ = vμζβ

satisfies

Lμφμ = λμφμ, in �.

and has the asymptotics

φμ 
 dd̃γ+
K , in �.

Proof First we note that ζβ 
 dd̃γ+
K . Furthermore (1 − ηβ,K )φμ ∈ H1

0 (�) for small
β > 0. Hence by standard elliptic theory, we have that for any r > 0 there exists
C = C(r ,�, K , μ) such that

φμ 
 Cd in �\Kr ,

which implies

vμ 
 C in �\Kr .

Wewill show that vμ ≥ c in�. Let� > −λμ. For any ε ∈ (0, 1), there exists β0 <
β
4

such that the function

φ̃ = eMddd̃γ+
K + dd̃γ++ε

K 
 dd̃γ+
K in Kβ0 ∩ �

satisfies

Lμφ̃ + �φ̃ ≤ 0 , in Kβ0 ∩ �. (A.7)

Set φ = Cζ−1
β φ̃ = C(eMd + d̃ε

K ), where C > 0 is a constant such that φ ≤ 1
2vμ in

∂Kβ0 ∩ �. By (A.7) and because vμ satisfies the Euler equation for (A.1), we have

−div(ζ 2
β∇(φ − vμ)) − (φ − vμ)

(

ζβ�ζβ + μ
ζ 2
β

d2K

)

+ �ζ 2
β (φ − vμ) ≤ 0, in Kβ0 ∩ �.
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By Theorem 4.5, we may take g = (φ − vμ)+ as test function in the above inequality.
Therefore,

∫

Kβ0∩�

ζ 2
β |∇g|2dx −

∫

Kβ0∩�

g2
(

ζβ�ζβ + μ
ζ 2
β

d2K

)

dx + �

∫

Kβ0∩�

g2ζ 2
βdx ≤ 0,

(A.8)

But, by (A.1) we have

∫

Kβ0∩�

ζ 2
β |∇g|2dx −

∫

Kβ0∩�

g2
(

ζβ�ζβ + μ
ζ 2
β

d2K

)

dx ≥ λμ

∫

Kβ0∩�

g2ζ 2
βdx .

This, together with (A.8), implies g = 0 since � > −λμ. Hence vμ ≥ c in �.
Next we will similarly prove that vμ ≤ c in �. As in the proof of Lemma 6.1, for

ε ∈ (0, 1) there exists β0 <
β
4 such that the function

ζ̃ = e−Mddd̃γ+
K − dd̃γ++ε

K 
 dd̃γ+
K in Kβ0 ∩ �

satisfies Lμζ̃ − λμζ̃ ≥ 0 in Kβ0 ∩ �. Set ζ = Cζ−1
β ζ̃ , where C > 0 is a constant

such that

ζ ≥ 2vμ , in ∂Kβ0 ∩ �.

This time we have

−div

(

ζ 2
β∇(vμ − ζ )

)

− (vμ − ζ )

(

ζβ�ζβ + μ
ζ 2
β

d2K

)

≤ λμζ 2
β (vμ − ζ ), in Kβ0 ∩ �.

Hence, we may take g = (vμ −ζ )+ as test function in the above inequality. Therefore,

∫

Kβ0∩�

ζ 2
β |∇g|2dx +

∫

Kβ0∩�

g2
(

ζβ�ζβ + μ
ζ 2
β

d2K

)

dx ≤ λμ

∫

Kβ0∩�

g2ζ 2
βdx .

By (A.3), (A.5), (A.6) and the above inequality we obtain

C
∫

Kβ0∩�

d2g2

d̃2−2γ+
K | ln d̃K |2

dx ≤ λμ

∫

Kβ0∩�

g2ζ 2
βdx,

which implies that g = 0, provided β0 is small enough. Hence, vμ ≤ c in � and the
result follows. ��
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Appendix B: Applications to nonlinear problems

We present here some consequences of our results on the operator Lμ to the study of
the semilinear problem

{
Lμu + g(u) = 0, in �,

trμ(u) = ν,
(B.1)

where g : R → R is a nondecreasing continuous function such that g(0) = 0.
The above problem was treated by Marcus and Nguyen who consider a normalized
boundary trace tr∗(u) (see [42, Definition 1.2]) instead of trμ(u). The proofs of the
following theorems can be found in the first version of the present article which is
available in arXiv.

Theorem B.1 Letμ ≤ k2/4. We set p = min
(
N+1
N−1 ,

N+γ++1
N+γ+−1

)
and in addition assume

that λμ > 0. Then there exists a positive constant C = C(�, K , μ) such that

∥
∥Kμ[ν]∥∥L p

w(�;φμ)
≤ C ‖ν‖M(∂�)

for any measure ν ∈ M(∂�).

Theorem B.2 Let μ ≤ k2/4 and assume that λμ > 0. We set p∂� = N+1
N−1 and

pK = N+γ++1
N+γ+−1 . We then have

(i) Let ν ∈ M(∂�) with compact support F, where F ⊂ ∂�\K . Then there exists a
positive constant C = C(�, K , μ, dist(F, K )) such that

∥
∥Kμ[ν]∥∥L p∂�

w (�;φμ)
≤ C ‖ν‖M(∂�) .

(ii)Assume in addition thatμ < N2

4 . There exists a positive constant C = C(�, K , μ)

such that for any ν ∈ M(∂�) with compact support in K there holds

∥
∥Kμ[ν]∥∥L pK

w (�;φμ)
≤ C ‖ν‖M(∂�) .

(iii) Let μ = N2

4 . For any 0 < γ < 2 there exists a positive constant C = C(�,μ, γ )

such that for any ν ∈ M(∂�) which is concentrated at 0 ∈ ∂� there holds

∥
∥Kμ[ν]∥∥

L
N+2
N−γ
w (�;φμ)

≤ C ‖ν‖M(∂�) .

The above weak estimates lead to the following existence results.

Theorem B.3 Letμ ≤ k2/4, λμ > 0, ν ∈ M(∂�) and g : R → R be a nondecreasing
continuous function such that g(0) = 0. Assume that g(±Kμ[ν±]) ∈ L1(�;φμ).Then
there exists a unique weak solution u of (B.1). Furthermore, there holds

u + Gμ[g(u)] = Kμ[ν], a.e. in �.
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Theorem B.4 Let μ ≤ k2/4 and let g : R → R be a nondecreasing continuous
function such that g(0) = 0. Assume that for some p > 1 there holds

∫ ∞

1
t−1−p(g(t) − g(−t))dt < +∞. (B.2)

Let ν ∈ M(∂�). Then

(a) If (B.2) holds true with p = min
(
N+1
N−1 ,

N+γ++1
N+γ+−1

)
then there exists a unique weak

solution u of (B.1).
(b) Assume that either k < N or k = N and μ < N 2/4. If ν has support in K and

(B.2) holds true with p = N+γ++1
N+γ+−1 then there exists a unique weak solution u of

(B.1).
(c) If ν has compact support in ∂�\K and (B.2) holds true with p = N+1

N−1 then there
exists a unique weak solution u of (B.1).

Moreover in all three cases the weak solution u satisfies

u + Gμ[g(u)] = Kμ[ν], a.e. in �.
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