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Abstract

Let  be a bounded domain in RY with C? boundary and let K C 9<2 be either a C?
submanifold of the boundary of codimension k < N or a point. In this article we study
various problems related to the Schrodinger operator L, = —A — /,LdEZ where dg
denotes the distance to K and ;1 < k?/4. We establish parabolic boundary Harnack
inequalities as well as related two-sided heat kernel and Green function estimates.
We construct the associated Martin kernel and prove existence and uniqueness for
the corresponding boundary value problem with data given by measures. To prove our
results we introduce among other things a suitable notion of boundary trace. This trace
is different from the one used by Marcus and Nguyen (Math Ann 374(1-2):361-394,
2019) thus allowing us to cover the whole range p < k2 /4.
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1 Introduction

The study of linear Schrodinger operators with singular potentials is central in the the-
ory of parabolic and elliptic partial differential equations. In recent years in particular
there has been an intense study of operators with Hardy potentials, see e.g. [2, 4, 6, 9,
10, 15, 20, 22, 23, 31, 40].

Throughout this work we assume that €2 is a bounded C 2 domain; we note however
that some of the results presented in this introduction are valid under weaker regularity
assumptions.

Consider the problem

Uy =Au+Vxu, x e, t>0,
u=0, x €d, t >0, (1.1)
u©,x) =up(x), xe€€,

where V € L}OC(Q) and set

2 2
O Jo IVwl?dx — [o Vw dx.
(@) Jo w?dx
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Heat and Martin kernel estimates for Schrédinger operators. . .

Cabré and Martel [11] have established that if A* > —oo then for regular enough
initial data there exists a global in time weak solution of (1.1) which in addition
satisfies an exponential in time bound. Conversely, the existence of a weak solution
which satisfies an exponential bound implies that A* > —oo. In the prototype case
of the Hardy potential V (x) = c|x|2 this has already been studied by Baras and
Goldstein [3].

Given the existence of a weak solution one natural question is the existence and
asymptotic behaviour of the heat kernel and Green function. If the potential is not too
singular then the asymptotic behaviour of the heat kernel for small time is the same

as that of the Laplacian, namely
_vI2
exp ( - Cu>

)
exp(—C_1—|x ty| >,

where d(x) = dist(x, d€2) denotes the distance to the boundary, see e.g. [53].

In the case of a more singular potential such as a Hardy potential, the problem has
been studied in [5, 17, 18, 25, 26, 37, 47-49, 51].

A distinction that plays an important role in this context is whether the singularity
of the Hardy potential occurs in the interior or on the boundary of the domain. For the
potential p,lxl_z, O0<u< (NT*Z)z, where 0 € €2, for small time we have

)
exp(_cg>

C( d(x)d(y) )( x| Iy >9+t_g
=\ W) + VD@ + VD )\ xl + VD + VD)
( = y|2)
xexp| —C — )

where 6, is the largest solution to the equation 62 + (N — 2)0 4+ u = 0; see [25].
This estimate was generalized in [29] in case where the distance is taken from a closed
surface ¥ C 2 of codimension k, 2 < k < N, see also [27, 28] for more results
within this framework.

On the other hand, when the distance is taken from the boundary <2 the following
small time estimate is valid for the heat kernel of the operator —A — ud x)"2,0<

9=

—1< d(x)d(y) )t_
dx) + VD) + 1)

< h(t.x.y) < C( d(x)d(y) )t_
@) + /D) + V1)

o=

oz

71< d(x)d(y) )( x| || >9+ _
() + VDA + VD ) \ (x| + VO yl + V1)
<h(t,x,y)

T
B d(x)d(y) Oy b — yI?
c( ) rew(-emS)
d(x) + VD) + V) P :
d(x)d(y) )”9* w ( Ll —ylz)
ht, x, <C -CcC —,
<nos <o mamr)  hew r
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G. Barbatis et al.

where 6 is the largest solution to the equation 02 +6+ n =0, see [25, 26].
Another function that is important in the study of this type of problems is the Martin

kernel [1, 35, 46]. Ancona proved the existence of the Martin kernel K, 3q(x, y) of

LI =—A-4pu< 1, with pole at y, which is unique up to a normalization (see

[1, Theorem 3]). He showed that for any positive solution u of L?ﬁu = 0 there exists
a unique nonnegative Radon measure v on 9€2 such that

u(x) = / K00, )dv(y). (12)
o

The case u = é—lt was treated by Gkikas and Véron in [30]. In particular, they showed
that the representation formula (1.2) holds true provided the bottom of the spectrum
of L% is positive.

When K C Qisaclosed smooth surface of codimensionk € {3, ..., N}, analogous

2
results where obtained in [29] for the operator Lllf =—-A— sz n < @, under
K

the assumption that the bottom of the spectrum of L llf is positive.

Our aim in this article is to study such problems in the case where the Hardy
potential involves the distance to a smooth submanifold of the boundary, including
the case of a boundary point. In this direction:

e We establish parabolic boundary Harnack inequalities as well as related two-sided
heat kernel estimates. For small time, our approach is based on the ideas of Grig-
oryan and Saloff-Coste [34] (see also [50]), while for large time, we exploit the
work of Davies in [16, 17] to obtain sharp- two sided heat kernel estimates; see
also [25, 26].

e In the spirit of [12, 35] (see also [29, 30]), we construct the Martin kernel of L,
in © and we prove the uniqueness also in the critical case. Using the heat kernel
estimates, we obtain sharp pointwise estimates for the Green function as well as
the Martin kernel. We also show that every nonnegative L, -harmonic function
(i.e. solution of L,u = 0 in Q in the sense of distributions) can be represented as
the integral of the Martin kernel with respect to a finite measure on 9<2.

e Using the properties of the Green function and Martin kernel we study the boundary
value problem with data given by measures. Following Marcus-Véron [44] we
prove existence, uniqueness as well as a representation formula for any solution
of this problem.

We note that these results are the main tools in the study of semilinear problems for
the operator L, involving absorption or source terms. In Appendix B we include such
results for subcritical absorption. For relevant work see also [7, 8, 13, 21, 27, 28, 30,
32, 33, 41-45] and references therein.

2 Main results

Throughout this article we consider a bounded C? domain @ ¢ RY, N > 3, and a
C? compact submanifold without boundary K C 92 of codimension k, 1 < k < N.
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Heat and Martin kernel estimates for Schrédinger operators. . .

For the extreme cases k = N and k = 1 we assume that K = {0} and K = 02
respectively. We set dg (x) = dist(x, K) and define the operator

u

Ly=-A— -,
dK

in 2,

where u is a parameter; we shall always assume that u < % so that L, is bounded
from below. The study of the parabolic equation u, + L, u = 0 with Dirichlet boundary
conditions is strongly related with the minimization problem,

) fQ |Vul?dx
CQ,K = lnf T
ueHy \(0)  [q “o-dx
K

It is well known that 0 < Cq x < % (see, e.g., [22]).

Let u < % and let y; (resp. y—) denote the largest (resp. the smallest) solution of
the equation y> + ky + u = 0. The infimum

Jq |VulPdx — p [o 5—22dx
Ay = inf L

ueH ()\(0} Jou?dx

2.1)

is finite and, moreover, if pu < %, then there exists a minimizer ¢, € HOl () of
(2.1); see [22] for more details. In addition, by [42, Lemma 2.2] the eigenfunction ¢,
satisfies

¢u(x) < d(x)dy (x), inQ, 2.2)

provided u < Cq g .1 On the other hand, if n= % then there is no H(} (€2) minimizer.
However, there exists a function ¢, € H,\ (Q) such that L,¢, = A, ¢, in Q in the
sense of distributions. In Proposition A.2 in the Appendix we follow ideas of [10,

19, 20, 26] and extend (2.2) to the full range u < %, thus removing the restriction
nw<Cqok.

2.1 Heat kernel and boundary Harnack inequality
Letu € C'((0, 00) : C3()), setting u = e_)‘ﬂtqﬁﬂv, we can easily see that

U + LMM

Y = — ¢;2 div (q’)ﬁVv) =:1v; + Lyv. 2.3)

! Here and below we write f(x) < g(x) in © to mean that there exists a constant ¢ > 1 such that
@) < g(x) < cf (x) forall x € Q.
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Hence, instead of studying the properties of the operator L, it is more convenient
to study the operator ‘(?_t + L. In this direction, we introduce the weighted Sobolev
space HY(Q; c/)i).

Definition 2.1 Let D C 2 be an open set. We denote by H'(D; ¢i) the weighted
Sobolev space

H'(D; ¢%) = {u € Hy},.(D) : |ul¢y, + |Vulg, € L*(D)}

endowed with the norm

Nl s =/ u2¢>2dx—|—/ |Vu|’¢p>dx.
H' Dy — f 0 e b n

We also denote by Hé (D; qﬁﬁ) the closure of C2°(D) in the norm ||-||H1(D;¢§). Itis
worth mentioning here that HO1 (2; qbﬁ) = HY(Q; ¢ﬁ) (see Theorem 4.5).

Next, we normalize ¢, so that fQ qﬁdx = 1. We define the bilinear form Q :
Hy (2 ¢%) x Hy (2 ¢%) — Rby

O(u,v) = / Vu - Vv ¢idx.
Q

The associated operator is the operator £, defined in (2.3) and generates a contraction
semigroup 7(¢) : L(Q; ¢i) — L% ¢ﬁ), t > 0, denoted also by e~Lut . This
semigroup is positivity preserving and by [17, Lemma 1.3.4] we can easily show
that satisfies the conditions of [17, Theorems 1.3.2 and 1.3.3]. Using the logarithmic
Sobolev inequality (Theorem 5.1) and some ideas of Davies [16, 17], we shall show
that e ~£#? is ultracontractive and therefore has a kernel (7, x, y). More precisely, we
prove the following large time estimates:

Theorem 2.2 Let n < % and T > 0. Then there exists ¢ > 1 depending only on €2,

K, wand T such that

! <k(,x,y)<c

foranyt > T and x,y € Q.

For small time the two-sided heat kernel estimate is different. A pivotal ingredient
in the proof of this estimate is the boundary Harnack inequality. However, in order to
state the boundary Harnack inequality, we first need to give the following definition
of weak solution.

Definition 2.3 Let D C € be an open set. We say thatv € C'((0, T) : H'(D; ¢7)) is
a weak solution of v, + L, v = 01in (0, T) x D if for each ® € CCI((O, T): C(D)),
we have

T
/ / (v ® + Vv - VO)¢7, dydt = 0.
0 D
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Theorem 2.4 (Boundary Harnack inequality) Let 1 < k?/4 and v be a non-negative
solution of v, + L, v in (0, rz) X B(x,r) N Q. There exist B > 0 and a positive
constant C = C(2, K, B1, u) such that for all r < B there holds

sup v<C inf v. 2.4)

r2 r
(. ) xB(x, 5)NQ ) xB(x,5)NQ

Here B(x, r) are suitably defined “balls” (see Definition 4.1). Let us briefly explain
the proof of the above theorem. We first prove the doubling property for the “balls”
B(x, r) (Lemma 4.2), the Poincaré inequality (Theorem 4.9) and the Moser inequality
(Theorem 4.21). The last three results along with the density Theorem 4.5 allow us to
apply a Moser iteration argument similar to the one in [34, 50] so that we reach the
desired result. Due to the fact that K C 9€2, the proof of the above theorem is more
complicated than the one in [25, 26] and new essential difficulties arise which should
be handled in a very delicate way.

Proceeding as in the proof of [50, Theorem 5.4.12], we may deduce that the bound-
ary Harnack inequality (2.4) implies the following sharp two-sided heat kernel estimate
for small time.

Theorem 2.5 Let © < %. There exist T = T(Q,K,u) > 0 and C =

C(Q,K,u, T) > 1suchthat

-1 _
(@) + VD) + VD) (k@) +VDEk o) +vD) 1 E
o2
X exp < - Cg)
< ki, x,y)
-1 Y+ _N
< (@@ + VD) + VD) ((x(0) + Vg () + VD) 17

_v2
X exp(— Clu),

foranyQ) <t <Tandx,y € Q.

Let h(t, x, y) denote the Dirichlet heat kernel of L. It is then immediate that
h(t,x,y) = (¢M(x)¢ﬂ(y))e_)\ﬂtk(t, x, y).Hence, by Theorems 2.2 and 2.5, we obtain
the following theorem.

Theorem 2.6 Let u < ]‘4—2 and T > 0. There exist C1 = C1(2, K, u, T, Ay) > 1 and
Cr,=C(RQ,K,u, T) > 1suchthat

@)
C_l( d(x) )( d(y) )( di (x) >V< di () )H,—zv
P \de) + i/ \d(y) + Vi) \dx () + Vi) \dx() + i

_ vl?
Xexp(—Cllx ty| )
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<h(, x,y)

<c1( d(x) >< d() >< di (x) )y< di (¥) )y*t_g
T\ + V1 \d(y) + Vi \dg ) + V1) \dk () + V1

( —1|X—y|2>
xexp| —C; ———— |,

t

forany0 <t <Tandx,y € Q.
(i)

Cy ' )P (e ™ < h(t, x,y) < Cagp () (e,

forany t > T and x,y € Q.

If A, > 0, then by the above theorem we can obtain the existence of a minimal Green
function G, (x, y) of L, as well as precise asymptotic for G, (x, y) (see Sect. 5.2 for
more details).

2.2 Martin Kernels and boundary value problems

If @ < Cgq, i then the operator L, = —A — ;—é is coercive in H(}(Q). Hence,

K
taking into account the discussion on the first eigenfunction ¢,, of (2.1), we may apply
Ancona’s results in [1] to deduce that any positive solution # of L, u = 0in 2 can

be represented like (1.2). If u = Cq x < % then there exists an H(; minimiser of
the Hardy quotient and therefore there is no Green function and the operator is not
coercive. In the remaining case © = Cq x = %, the operator L, clearly is not
coercive and this case is not covered by Ancona’s results in [1]. One of the main goals
of this work is to prove that the assumption A, > 0 suffices to have a respective
representation formula, also in the case . = %.

In order to state the main results we first need to give some notations and definitions.
For B > 0 we set

Kg={x eRM\K: dx(x) <B}), Qp={xeQ:dx) <8}

We assume that 8 is small enough so that for any x € Qg there exists a unique
&, € 02, which satisfies d(x) = |x — &|. Now set

dg (x) = \/|dist39(§x, K2+ |x —&>, xeKg, (2.5)

where dist?(&,, K) denotes the distance of &, to K measured on 9€2.
Let Bp > O (this will be determined in Lemma 6.1). We consider a smooth cut-off
function 0 < ng, < 1 with compact support in K g, such that ng, = 1in K 5,. We
2 3
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define
- k2
d +d)dy, if u < T
W(x) = . k2 XEQmKﬁO,
(@ +di)dg* 0 Indg (0], if =,
and

W(x) == (1 = g (x) + ng(DW(x), x € Q.

Leth € C(9Q) and u € HL (Q) N C(Q). We write ff(u) = h whenever

loc

u(x)

1m =
xeQ, x—>yedQ W(x)

= h(y)  uniformly for y € 9<2. (2.6)

In Sect. 6 we prove that for any 2 € C(0€2) the problem

L,v=0, in Q,
tr(v) =h, on 9%,

has a unique solution v = vy, € Hlloc(Q) N C(£2). From this and the accompanying
estimate follows that for any xo € 2 the mapping & +— v, (xp) is a linear positive
functional on C(9€2). Thus there exists a unique Borel measure on <2, called L -

harmonic measure in 2, denoted by w*, such that

on(x0) = f R ().
IR

Thanks to the Harnack inequality the measures w* and w*, xo, x € 2, are mutually
absolutely continuous. Therefore, the Radon—Nikodyn derivative exists and we set

dw*

dw~o (y)  for w™-almost all y € 9%2.
w

Ky(x,y) =

Definition 2.7 Fix & € Q2. A function K defined in 2 is called a kernel function for
L,, with pole at £ and basis at xg € Q if
(i) K(, &) is L,-harmonic in €,
(ii) ’C‘}VS—f)) e C(Q\{£)) and for any n € 3Q\{£} we have limyeQ, x—y ’Cvétj)) =0,
(iii) KC(x,&) > 0 foreach x € Q and K(xp, &) = 1.

Using the ideas in [12], we show the existence and uniqueness of a kernel function
with pole at & and basis at xq (see Proposition 7.3). As a result we obtain the existence
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of the Martin kernel and moreover

Gux,y)

. VE € oQ.
yeQ, y—=& G (x0, y)

K, (x,8) =

In addition, by the estimates on Green function G, (x, y) of L, (see Proposition 5.3)
we obtain the following result.

Theorem 2.8 Assume that @ < g and Ay, > 0. We then have:
0 Ifu< %oruz %andk < N then

Kyu(x,8) =

d(x) ( di (x)

Y+
in Q2 x 082. 2.7
x— gy (dK(x>+|x—5|)2) e @7

(ii)If,u:NTz(sokzN), then

oz

, inQXx08Q.

d(x) |x| ) d(x)
K, (x, &) < + 1 —
A e <<|x|+|x—s|>2 ikl

(2.8)

When K = 9, Filippas, Moschini and Tertikas [25] derived sharp two-sided
estimate on the associated heat kernel. These estimates where then used in order to
obtain sharp estimates on G, (x, y). Chen and Véron [14] studied the operator L,
with K = {0} C 92 and they constructed the corresponding Martin kernel. The
case K C 2 was thoroughly studied by Gkikas and Nguyen in [29]. Estimates on
the Green kernel of L,y = —A — uV, where V is a singular potential such that
[Vx)| < cd~2(x) in €, have been given by Marcus [38, 39]. Marcus and Nguyen
[42] used Ancona’s result to show that the Martin kernel K, (x, y) is well defined and
they applied the results in [39] to the model case L, in order to obtain estimates on
the Green kernel G, (x, y) and the Martin kernel K, (x, y). However, their results do
not cover the critical case p = %.

In this work, we follow a different approach which does not use Ancona’s result
[1] and allows us to study the critical case. In particular our work is inspired by the
articles [25, 29, 30]. The main difference here is that K C 92, which has an effect
on the value of the optimal Hardy constant Cq g as well as on the behaviour of the
eigenfunction ¢,. As a result, this fact yields substantial difficulties and reveals new
aspects of the study of L.

We are now ready to state the representation formula.

Theorem 2.9 Assume that @ < % and Ay, > 0. Let u be a positive L, -harmonic

function in Q. Then u € L'(; @) and there exists a unique Radon measure v on
32 such that

ulx) = /z;sz K, (x,8)dv(E) = K,[v].
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In order to study the corresponding boundary value problem, we should first
introduce the notion of the boundary trace. We will define it in a dynamic way.
In this direction, let {€2,} be a smooth exhaustion of €2, that is an increasing
sequence of bounded open smooth domains such that Q, C Qp+1, Up2p, = Q and
HN=13%,) — HV~1(3K). The operator L,Sf" defined by

u
Ly = —Au — —u
B 2
di
is uniformly elliptic and coercive in H(} (£2,) and its first eigenvalue )»ff" is larger than
Ay. For h € C(0€2,) the problem

L'y =0, ingQ,
v =h, on 082,

admits a unique solution which allows to define the LS” -harmonic measure on 92,
by

v(xp) :/ h(y)dwg (¥).
GioM

Definition 2.10 (L -boundary trace) A function u € Wli’f(Q), p > 1, possesses an
L,,-boundary trace if there exists a measure v € 9(I2) such that for any smooth
exhaustion {€2,} of €2, there holds

lim pudwgy =/ odv, Vo e CQ).
Q2

n—o0 Jya

The L, -boundary trace of u will be denoted by tr, (u).
Let M (0€2) denote the space of bounded Borel measures on €2 and M (2; ¢, ) the
space of Borel measures 7 on 2 such that

/ ¢pud|t| < oo.
Q

Arguing as in [45] we obtain in Lemma 8.1 that for any v € 9U(9€2) we have
tr, (Ky[v]) =v.
Assume now that T € 9($2; ¢,,) and let

u=Gylr] = /QGM(x, )t (y).

Then u € Wllo’cp(Q) forevery 1 < p < % and tr,, (u) = 0 (see Lemma 8.2).
Next, we give the definition of weak solutions of the following boundary value
problem.
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Definition 2.11 Let v € 9M(2; ¢,) and v € M(IQ). We say that u € LY(Q; ¢u)isa
weak solution of

Lyu=r, in €,
{tru(u) =, (2.9)
if
/uL,Lgdx=/ §dr+/ KuWlL ¢ dx, V¢ e X, (R, K),
Q Q Q
where
X, (2, K) = {g €HL.(Q) :¢,'c e H(Qie)), ¢, Lyt € LOO(Q)}.
(2.10)

Let us state our main result for problem (2.9).

Theorem 2.12 Let t € IM(Q; ¢y) and v € (). There exists a unique weak
solution u € L' (S ¢,.) of (2.9),

u=Gult]+ Kulv]. @2.11)

Furthermore there exists a positive constant C = C(2, K, ) such that

1
lull L1 @i,y =< k—llfllm(Q;W) + Clvllomog)- (2.12)
m

If in addition dt = fdx + dp where f € LY(Q; o) and p € M(KX; @), then for
any ¢ € X, (2, K) with { > 0, there hold

f|u|LM§dx §/Sign(u)f§dx+f Cd|p|+f Ku[VL, g dx, (2.13)
Q Q Q Q

/u+LM§dx 5/3ign+(u)f§dx+/ Cdp++/ Kulv4lL g dx.
Q Q Q Q
(2.14)

It is worth mentioning here that Marcus and Nguyen [42] studied problem (2.9) by
introducing an alternative normalized boundary trace tr* (1) (see [42, Definition 1.2]).
However this normalized boundary trace is well defined only if © < min(Cq g, 2"4—’1).
As a consequence they showed that the boundary value problem

Lyu=r, in €,
tr* (u) = v,

admits a unique solution provided 4 < min(Cgq k, %).
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3 Hardy-Sobolev type inequalities

In this section we shall prove various Hardy-Sobolev type inequalities that will be
essential for our analysis. We start by recalling the following result:

Proposition 3.1 [22, Lemma 2.1] There exists By = Bo(K, 2) small enough such that,
forany x € QN Kg,, the following estimates hold:

(a) di(x) =dgz(x)(1+gx))

(b) Vd(x) - Vg () = 2
SR P

(c) |Vdg(x)[* =1+ h(x)

(d) dg (x)Adg(x) =k — 1+ f(x),

where the functions g, h and f satisfy

18] + 1RO + | f ()] < C1(Bo, N)di (x), Vx € QN Kg,. 3.D

Lemma 3.2 Assume that o« # O and y +o + k — 1 # 0. There exist Bo > 0 and
C =C(y,a,k, Bo, N) such that for any open V.C Kg, N Q and for any u € C°(V)
there holds

fd“c?};_l|u|dx+/ d*'dy |uldx < c/ d“d%|Vuldx.
\%4 \% |4
Proof By Proposition 3.1 we have
y/ d“&,ﬁ“|u|dx+y/ dad,y("mumx:/dav&;.vjmmdx
14 \%4 |4
=—a/ d“—lci,y(w-vcimmdx—/ d“d,ﬁmimmdx—/ d*dyVdg - Viuldx
\%4 \ \4
:—oc/ d%?,y(“|u|dx—/ d“a?,’;_l(k—1+f)|u|dx—/ d*d}vdy - Viuldx ,
|4 \%4 \%4

that is

tatk=1 [ @@ wldy =~ [ @d G+ yhuids
\%4 \%4
—/ d*dyVd - Viuldx .
|4

By the above equality, Proposition 3.1 and (3.1), we can easily prove that

(ly +a+k—1]—C(Cy, V),Bo)/ d*ay Muldx < (1 + cl\/ﬂo>f d*d%|Vuldx,
%4 %4
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where C1 = C1(Bo, N) is the constant in inequality (3.1). Choosing By small enough,
we obtain

fvd%?,yg‘mwx < c/vd“ci,ﬁwmdx. (3.2)

By (3.2) and Proposition 3.1 we have

= ‘[V(Vd“ -Vd)dy |uldx

a/ d*~1d¥ u|dx
\%4
§C/ d“&§‘1|u|dx+/ d*d% | Vuldx,
\%4 \4

provided By is small enough. The result now follows. O

Lemma 3.3 Assume thata # Oandc+a+k —1 # 0. Let 1 < g < % and
b=a—-1+ qu;l. If Bo is small enough then there exists C = C(a, c, k, Bo, q, N)

such that for any open V.C QN K g, and for any u € C°(V) the following inequality
is valid

1
~ q ~
(/ dqbd;’(°|u|qu> < cf d*d$, |Vuldx. (3.3)
\%4 \4

Proof Let0 < 6; < 1,i = 1,2, be such that 6; + 6, = 1 and Y16; + 6, = 7. By
Holder inequality we have

/ 9 34 u|dx = / (dqaeld,“{"‘|u|9ﬂ> (a2 DL u 24 ) dx
Vv Vv

3 01 —153 02
< a“dgul ™y Nd gl
LN—I(V)

and therefore
b e e ~1j¢
Id"diculiaw) < Wd*dgull o o+ 10 g, (3.4)
By the L! Sobolev inequality and Lemma 3.2 we have
- _— 13 -
||d”d;(u||L%(v) <C <|c| /;/ af”aff< luldx + |a| /V d* d%|u|dx + ];/ d“d%quldx)
< c/ dd$ |Vuldx.
v
Combining this with Lemma 3.2 and (3.4) concludes the proof. O
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Lemma 3.4 Assumethata #0andc+a+k—1#0.Let2 < Q < 2and

b=a—-1+ N Ifﬂo is small enough then there exists C = C(c, a, k, ,30 O,N)
such that for any open V C QN Kg, and for any v € C°(V) there holds

2
~. 20 [9 _20b . A
(/ (d”d;()Q+2|v|de> < C/ d* 02 d 2" |Vu|dx.
|4 Vv

Proof Lets = % + 1 and write Q = gs. Applying (3.3) to the function u = |v|* we
obtain

0+2
b e\ o 0 o a jc 2
(d°dy) 7 |v|Cdx <C | d“d%|v|?|Vv|dx. (3.5)
v 1%
Now, by Schwarz inequality, we have

a—b-2s ~c(1—=

- 0 0 2L 0 2
/d“d;<|v|2 |Vv|dx=/ V¥ MTINE ¥ F M TN
Vv Vv

1 1
.20 2 _20b c(2—-2%) :
5(/ (dbd%)Q+2|v|de> (/ a* me( 9% |Vv|2dx> .
|4 Vv

The result follows by (3.5) and the last inequality. O

Corollary 3.5 Let a # 0 and assume that (« + y)%—:; + k — 1 # 0. There exist By
small enough and C > 0 such that for any open V.C QN Kpg, and forallu € C°(V)
there holds

N-2

o ~L 2N_ N ~ )
</ (dzd,§|u|)N—2dx> < c/ d*dy | Vul*dx.
\4 \%4

Proof We apply Lemma 3.4 with Q = = z,a—a% é,c—y( ) O

Corollary 3.6 Let o > 0 and y > 0. There exist Bg > 0 and C > 0 such that for any
open V.C QN Kg, and all u € C°(V), the following inequality is valid

N+a+y—2

Neaty—2 )
2(N+a+y) N+a+y y Y
( / dedy |u| V=2 2dx> <C / dT VR d e N |V 2dx.
|4 |4

Proof This follows by Lemma 3.4 with Q = %ﬁ:—m, c = g, b = %, where

— 20
q = o+2: O
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Corollary 3.7 Let a > 0, y < 0 and assume that o + )/NN+—$;1 +k —1# 0. There
exist Bo > 0 and C > 0 such that for any open V. C QN Kg, and all u € C°(V)
there holds

N+a—2

~ 2(N+a) N+a oy N4+a—2
(/ d“d§|u|w+azdx) < c/ d*dl V7 |Vuldx .
\4 \%4

2(N+a) Nta—1

Proof The proof follows from Lemma 3.4, with Q = Nia—2' € = V" Nia and
b= OlN-|—0l—l O
N+a

4 Heat Kernel estimates for small time

We are now going to introduce some notation and tools that will be useful for our local
analysis near K and 9€2; see e.g. [36].

Letx = (x/,x") e RN, x" = (x1,...,x) € RE, x” = (g1, ..., xn) € RVK,
For 8 > 0, we denote by Bg (x') the ball in R¥ with center x’ and radius . For any
& € K we also set

Vi (€, B) = {x = (LX) — £ < By i — T ()] < B, Vi = 1,...,k},

for some functions ka RNk SR i=1,... k.
Since K is a C? compact submanifold in RY without boundary, there exists By > 0
such that

e For any x € Kgg,, there is a unique & € K satisfying |x — &| = dg (x).
e di € CZ(K4,30), |[Vdg| = 1in K4p, and there exists g € L°°(K4ﬁ0) such that

k—1 .
Adg(x) = —— +g(x), in Kup,.

dg (x)
(See [52, Lemma 2.2] and [21, Lemma 6.2].)
e Forany £ € K, there exist C? functions Ff’K € Cz(RN_k; R),i =1,...,k,such
that defining
Vi, B) == [x =@ X)X =" < B, |xi — F,»E,K(X'/)I <B,i=1,..., k],

we have (upon relabelling and reorienting the coordinate axes if necessary)
Vk(E. B)NK = {x = (X < Byoxi =T (), i =1, k}

e There existé-/, j=1,...,mg, (my € N)and g1 € (0, Bo) such that

mo
Ko | Vk (. Bo). 4.1)

i=1
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Now set

1

k 2
8y (x) = (Z i — Tf K(x”)|2) . x=(.x") € V(& 4Bo).

i=1
Then there exists a constant C = C(N, K) such that
dg (x) < 5%()6) < ClIK|lc2dk (x), Vx € Vk(§,2p0), (4.2)

where &/ = ((7), (7)) € K, j =1, ..., my, are the points in (4.1) and

gl . .
[|K||-2 :=su HF ) ci=1,...,k, j=1,...,mg¢{ < 00.
¢ P ekl 2tk ey /

For simplicity we shall write 65 instead of 82. Moreover, f; can be chosen small
enough so that for any x € Kg,,

B(x, 1) C Vk (&, Bo).
where & € K satisfies |x — &| = dg (x).
When K = 02 we assume that
N
Vi, p)NQ=1x: Y |5 — &I < p7 0 <x1 — T yo(x2.....xn) < B
i=2

Thus, when x € K C 3K is a C? compact submanifold in R without boundary, of
co-dimension k, 1 < k < N, we have that

Tf ¢ ) =T o5 ¢ @)oo Tf (), ). 4.3)
Let £ € K. For any x € Vg (&, Bo) N 2, we define
8(x) = x1 — ] yo(x2. ... xN),

and

1

k 2
8. (x) = (Z X — T} K(x“)|2) .

i=2

Then by (4.3), there exists a constant A > 1 which depends only on €2, K and Sy such
that

1
X(SZ,K(X) +48(x)) = dk(x) < A(d2,x (x) + 8(x)), 4.4
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Thus by (4.2) and (4.4) there exists a constant C = C(€2, K, y) > 1 which depends
onk, N, Fik, Ff)m, y such that

C718%(x) (B2, k (x) + 8(x))7 < d*(x)d (x) < C8*(x)(S2.x (x) +8(x))". (4.5)
We set
Vi (&, Bo) = {(',x") : |x" = £" < o, 18(0)| < Bo, 162,k (¥)| < Bo} -
We may then assume that

Vi (€, o) N2 = {(x',x") 1 [x" —&"] < Bo, 0 < 8(x) < Bo, 182,k(0)| < Po},
Vi (€, o) NI = {(x', x") 1 [x" = &"| < Bo,8(x) =0, 82,5 ()| < o},

and
Vi€, Bo)NK ={(x,x")  |x" —&"| < o.8(x) =0, 82,k =0}.

Let 1 >0,1 <b <2,and 0 < r < By. For any x € Vyq(§, ‘f—g) with d(x) < br,
taking B small enough we have

N
D(x,r) = {y ; Z lvi — x> <r? 18 <r +d(x)} CC Van <$’ f_g) '

i=2
In addition there exists Cs = C (T'%, Q) > 1, such that
D(x,r) C B(x, Cer). 4.6)

Also,

N
Dx,r)yNQ2 = {y:zm —xi|2 <r2, 0<480) <r+d(x)}.
i=2

Definition 4.1 Let 8; > 0 be small enough, r € (0, 81), b € (1,2), & € K and
x e V(, ’f—g). We define

(i) B(x,r) = B(x,r), ifd(x) > br
(ii) B(x,r) =D(x,r), ifd(x) < br and dg (x) > bC¢r
(i) Bx,r) ={y = (), y") : " =x"| < r, 182k < r +dg(x), [6(y)] <
r+d(x)}, if d(x) < br and dg (x) < bCer.

Finally we set

M, (x.r) = / P ()L (dy.
B(x,r)NQ
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4.1 Doubling property

Lemma4.2 Lety > —k. Let& € 0Q and x € V (&, f—g). Then, there exist B1 > 0 and
C=C,K,y, Bo) > 1such that

é(r +d))2(r +dg ()Y < My (x, 1) < Cr +d @) + dg ()7 rV,
4.7)

forany 0 <r < B.

Proof We will consider three cases.

Case 1. d(x) > br Since dg (x) > d(x), we can easily show that for any y € B(x, r)
we have 2-1d(x) < d(y) < ZHd(x) and 2 dg (x) < dk (y) < ZHdg (x). Thus
the proof of (4.7) follows easily in this case.

Case 2. d(x) < br and dk (x) > bCer. By (4.6), we again have that bb;ldK x) <

dg(y) < %d;g (x). Using the last inequality and proceeding as the proof of [25,
Lemma 2.2], we obtain the desired result.

Case 3. d(x) < br and dg (x) < bCs¢r.
Lety = (y2, ..., yx) € RE"1. By (4.5) and the definition of B(x, r), we have

d*(y)dy (y)dy < / C8* ()2, () +8(y)Y dy
B(x,r)NQ

/Vy(x, r)y= /

Bx,r)NQ

d(x)+r )
<c / / / (31 + y)? ydy dy; dy"
BN=k(x".r) JO [yl <dg (x)+r

d(x)+r pdg(x)+r
= CCl(k, N)rN_k/ / s572(s + y1)Y yidsdy;.  (4.8)
0 0

Now, if y > 0 then

d(x)+r pdg(x)+r o )
/ / s (s + y)V yids dy,
0 0

! 14 k—1 3
= m(Zr +d(x)+dg () (dxg (x) +7r) " (dx) +r)

_ b+ BCe + DT+ 1)

P (r 4 dg (x))7 (d(x) + r)*r*.

If —k <y <0, then

d(x)+r pdg(x)+r o 5
/ / sY 75 (s + yD)Y yids dy:
0 0

dx)+r pdg(x)+r
< / / s*72(s + y1)? Mds dy,
0 0
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dx)+r pdg(x)+r
5/ / (s +y1)? ds dy,
0

< (dg(x) +r)(dx) +r)Qr +dx) +dg (x))’T*
< (2C: +2)(d(x) 4+ 1 (dg (x) + 1) Qr +d(x) + dg (x))F
< 2Ce +2)2 + b+ bCe)*(d(x) + r)*(dk (x) + 1)V r*.

Similarly, for the reverse inequality, we have

d(x)+r d,((x)+r
/ / (S+y1)yy1dsdy1
d@tr pdg+r .
- Y
/:1(\')+r _/‘;K(X)‘*" (S + }’1) yldsdyl
> C(b, Ce, k, ) (d(x) + )k (x) + 1) 7 4.9)

The desired result follows by (4.8)—(4.9). O
From (2.2) and Lemma 4.2, we have the following corollary.

Corollary 4.3 Let x € V (&, 16) and

M. r) = / 82 (n)dy.
B(x,r)NQ
Then, there exist f1 > 0and C = C(2, K, By) > 1 such that
1
0+ +dk ()Pt < M(x, 1) < CO+d ()2 + dic ()7 Y,

forany 0 <r < B.
We point out that by (2.2) we have

M(x, 1) = Moy, (x,7r),  inQx (0, B).

4.2 Density of C°(R2) functions

Lemmad4.4 Letk < N,y > —k, x = (X1, X2, ..., Xk» Xk+1, - .-, XN) = (x1, X, x7).
Let

0=01xB%¥"0,1)x B 0,1
and u € HY(0; x12(x1 + |x])V). Assume that there exists 0 < o < 1 such that
u(x) = 0 if either x;1 > &g or |f|2 + |)c”|2 > 8(2). Then there exists a sequence

{un 322, € C2°(0) such that

Uy — u, in H'(0; x3(x1 + X))
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Proof Let m € N. Set

m, ifu(x) > m,
U (x) = Jux), if —m <u(x) <m,

—m ifulx) < —m.

Then we can easily prove that v, — u in H'(0; xlz(xl + [x])Y).
Let ¢ > 0. There exists mg € N, such that

1

2
[omo = ul 1105201121y = (/0 xF 1+ 7D (umg = ul? + Vo, - V“'2>"">

(4.10)

<

W] ™

For any 0 < i < 1, we consider the function
1 if x; > h,
mx) ={1—=0nh)"In (%) ith? <x; <h,
0 if x; < h?,

We will show that zj, := 0V, —> VU, in HY0:; xlz(xl +|x])¥),ash — 0. We can
easily show that z, — vy, in L2(0; x2(x1 + [%])7). Also,

/ox%(xl + XDV (g (1 = m) Pdx < Z/Ox%(xl + EDY IV g 211 = i) Plx
2 Ny 2 2
+2f0x1(x1+|x|> g 21V 2dx

< Zf XF 1+ XD [V, 1211 — 1) 2dx
o0

+ C(N, kym3(Inh)~>

hopl
X / / (x1 4+ 1) r*2drdx; — 0,
h? Jo

since y > —k. Thus there exists g € (0, 1) such that

&
[omo =20l i1 02 im0y < 3 (4.11)

Note that zj,, vanishes outside O, = (o, 1) x B®'(0, 1) x BRY(0, 1), for some
o =o(hp) € (0, 1). Thus zp, € HO1 (0~g), which implies the existence of a sequence
{u,} C C§°(0~G) such that u, — zp, in Hé(én). Hence, there exists ng € N such

that

&
ko = a1 0s2 ey <30 Y1 = 10 4.12)

The desired result follows by (4.10), (4.11) and (4.12). U
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We write a point x € RY as x = (x1,x2, ..., Xk, Xkt 15 -+ XN) = (x1, X, x7).
Given rq, rp, r3 > 0 we denote

k—1 N—k
Oy rars = (0,71) x BX (0, 12) x BX (0, 13).

Theorem 4.5 Assume that y > —k. Then C°(Q2) is dense in HY (S dzd};).

Proof Letu € HY(Q; dzd};) and Bp > 0 be the constant in Lemma 4.2. Let £ € K
and 0 < ¢¢ < 1 be a smooth function with supp(¢s) C Vi (&, %), and = 1 in
Vk (€, ’f—g). Then the function v = u¢¢ belongs in H'(Q; dzd};).

By (4.5) we have

/ d*(x)dy () ([v)* + |Vv[*)dx
Q

=CQ.K) | 820Gk () +300)7 (v +[VolP)dx
Vi (6.5)

= C(Q, K) yiG1 + VDY (1012 + V01 H)dy,

where 7 = (y2, ..., yx) and
) =v(y +I% +T5 () Cex 0.y
y) = V1 1.0Q Y2 2,Ky ,...,yk+ k,Ky » Y » )2
TS 7)o ik TE O,

The desired result follows by Lemma 4.4 and a partition of unity argument. O

By Corollaries 3.6 and 3.7, Theorem 4.5 and using a partition of unity argument,
we obtain the following two results.

Corollary 4.6 Let y > 0. There exists C = C(R2, K, y) such that

N+y
2N+2+4y) N2+
(/ d*dlu|” " dx> "< c(/ d2d,y<|vu|2dx+/ dzd;uzdx>,
Q Q Q

foranyu € H'(; dzd}g).

Corollary 4.7 Let —k < y < 0. There exists C = C(2, K, y) such that

N
N+2 _N_
( / d2d;|u|2(’v~”)dx> <cC ( / d*dy "7 |VuPdx + / d2d;u2dx>,
Q Q Q

foranyu € H'(; dzd}g).
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4.3 Poincaré inequality

Lemmad4.8 Let1 <k < N andy > —k. Assume that 0 < corp < r3 <ry < ro, for
some constant O < co < 1. Then there exists a positive constant C = C(co, N, K, y)
such that

inf f |f(x) — ¢*x}(x1 + X))V dx < Crj / IV £ (x)[2xi(x1 + [X])Y dx,
O,

CeRJ O 1y s Ory.ry.r3

forany f € cl(@l,rm).

Proof Let { € Rand y; = 3L, 5 = 5= and y” = 5-. Set f(y) = f(2r1y1,2r7.
2r3y"). Then

/0 If(x) = ¢Px7 (x1 + X)) dx

r1.72,r3

= C(co, N, k, yyry 1772 /0 FO) = ¢Pyion + [FD7dy.  (4.13)

111
2°'2°2
Let
-1

= yi(y1 + 37 dy Ty (1 + [F)7dy.
! 01 1 o0

1 111
2'2°2 2°2°2

We assert that there exists a positive constant C > 0 such that

fo IF) = e Pyin + IyD7dy < € /O IVF YT + )7 dy,
11

[l
[l
Nl—
[T
o
Nl—

(4.14)

s

forany? € CI(U%,% %).
We will prove this by contradiction. Let {?n} cclo

1 1) be a sequence such

D=
[S]
[~]

that
/ 1Fa) = &5 Pyin + 17D dy > n / IV Fu Py + 1317 dy.
O111 0111
222 222
(4.15)
Setting

gn(») = (fn(») = ¢7) / 1Fa) = &7 PYin + 907y |,

0,

[l
N—
(S
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(4.15) becomes

1= /0 lenNIPyiOn + [F1)dy > n /0 Ve MDI2yi (v + ¥ dy
111

[S]

[S]

[~
=
-
=

and we also have ¢, = 0.
Let ¢ > 0. There exists an extension g, of g, such that g, = g, in Oi11,
20202

g, € C1(51,1,1), g, =0if y; > % or |y| > % or [y'| > % and there exists a positive
constant C; = C1(N, k, ¢) such that

/0 12, DIy (1 + [F)Ydy < C fO lgn NI yE (1 + [T dy
1,1,1

D=
D=
=

111
2°2°2

/ IV, MI7yi( + V) dy < C / VeI yT (o + 3D dy
O1,1,1 0

+ / &I + [T dy |
011 1

2°2°2

for any ¢ > 1. Assume first that —k < y < 0. Given o € (0, 1/2), by Corollary 3.7
we have that for some C = C(y, N, k),

/O 12: N 2yE (1 + 7)) dy
11

0,5:7
N
N+2

6 _ ANED) 5 —ny
< Co¥+2 g, M1 ¥ yiOn + [yD"dy
0

111
2°2°2
N

6 _ 2ANHD) 5 —ny N
< CoW+2 [, DIV y7(1 +[yD"dy
O1,1,1

< CoTo \V 232 N d
<Co Vg, M7y (v + 1YD"dy
01,11

- 2.2 1y 2.2 —1yy
< CoW+ . IVgnMI7y1 (1 + YDV dy + . [gnI7y7 (1 + (YD dy
1

1 111
222 222
6 1
< Co¥# (1 + —>. (4.16)
n
Similarly in case y > 0, by Corollary 3.6 we can show that

2 2 —y 2(3+y) 1
o 1871 (1 + [YD"dy < C(y, N, k)o N+ 1+; . 4.17)
11

o,

[
[
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Since (g,) is bounded in H' (0, 1) x BE'(0, 1) x BE" (0, 1)) uniformly in o €
(0, %), by (4.16) and (4.17), we can easily show that there exists a subsequence (g, )
such that g, — g in L>(0y 1 13 y{ (1 + [F)7).

But

lim Ve > i (1 + 37 dy = 0,
[0

n—o00

=
D=
D=

which implies that Vg = 0 a.e. in O} . Hence there exists constant ¢ such that
2

N
N\

g=cae.in 0; 1l But g, —Oandg — gin L*(01 1 1), thus ¢ = 0, which
2°2°2 2°2°2
is clearly a contradlctlon since

fO gy + [T dy = 1.

111
2'2°2

Since
/ IVFD)IPyion + 7)Y dy
0111
2°2°2
= C(N,k,y) r NV f (0P (e + (XD dx, (4.18)
O’l 1213
the result follows by (4.13), (4.14) and (4.18). O

Theorem 4.9 Assumethaty > —k. Leté € K,x € V (&, 16) and let B be the constant
in Lemma 4.2. Then there exists a positive constant C = C(C¢, 2, K, y, b) > 0 such
that

inf / If ) = ¢1Pd*(n)dk (y)dy < Cr? / IV £ () d*(»)dg (y)dy,
CeR JBx,rNQ Bx,r)NQ
(4.19)

forany0 <r < By and f € C'(B(x,r) N Q).

Proof Case 1 d(x) = br. Since dg(x) > d(x), we can easily show that for any
y € BGe.r) Bd() < d(y) < MHld@) and 5ldg () < di(y) < Bdi (o).
Thus the proof of (4.19) follows easﬂy in this case.

Case 2. d(x) < br and dk (x) > bCer. By (4.6), we again have that 2 dK x) <
dg(y) < b'l';ld k (x). Using the last inequality and proceeding as the proof of [25,
Theorem 2.5], we obtain the desired result.

Case 3. d(x) < br and dk (x) < bC:r. By (4.5), it is enough to prove the following
inequality
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inf / |f = ¢P8*(Gok +8)dy < Cr f IV /1?62 (2. +8)7dy.

CeR JBx,rHNQ Bx,r)NQ

This is a consequence of Lemma 4.8. O
By (2.2) and the above theorem, we can easily prove the following result.

Corollary 4.10 Let i < k?/4 and let By be the constant in Lemma 4.2. Then there

exists a constant C = C(2, K, y,b) > 0 such that forany 0 < r < By any f €
C'(B(x,r) N Q) and all x € Q there holds

inf / () — £Pg2(n)dy < Cr? / IV F0)P02 (dy -
B(x,r)NQ

{eR B(x,r)NQ

Proof Ifdist(x, K) < Bo/16theresult follows from Theorem4.9. In case dist(x, K) >
Bo/16 the result is well known. O

In view of the proof of Lemma 4.8, Corollaries 4.6 and 4.7 and (2.2), we can prove
the following Poincaré inequality in €2.

Theorem 4.11 Let u < k2/4. There exists a positive constant C = C(2, K, ) such
that

inf / £ () = ¢IP¢n(ndy < C / IV £} ()dy, (4.20)
teR Jo Q
forany f € C1(Q).

4.4 Moser inequality

Theorem4.12 Leté e K,y > —k,x € V(§, %) and let By be the constant in Lemma
4.2. Then for any v > N +max{2, 2+ y}, there exists C = C(R2, K, v, B1) such that

2
fB L HOP Ry
x,r

277 -2 22 y
< CPM (v, 1) f IV ) P2 ()l () dy
B(x,r)NQ
2
x ( / |f<y>|2d2<y>d,§<y>dy> , (4.21)
B(x,r)NQ

forany0 <r < Brandall f € C°(B(x,r) N Q).
Proof The cases [d(x) > br] and [d(x) < br and dg(x) > bCgr] are proved as

in [26, Theorem 3.5] and [25, Theorem 2.6] respectively, using also the inequalities
already obtained in the proof of Lemma 4.2.
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So, let us assume that d(x) < br and dg (x) < bCer. We consider first the case
where —k < y < 0. By Holder inequality, we have

2(v—N=2)
V(N+2)

( / If(y)lzdz(y)d,ﬁ(y)dy)
B(x,r)NQ

2(w—N—-2)
< T, (x, r) VDD ( / f PRI 2 (), (y)dy) o
B(x,r)NQ
(4.22)
Moreover
2
/B L HOPIDE0 0y
x,r)N
W+2)(N+2 (V+(2[:,(er4-;—Z)
- v+ +2) v
< M, (x, )\~ ( / If(y)|2(1+1V2+2)d2(y)d,y<(y)dy)
B(x,r)NQ
(W+2)(N+2) 2 1- 2(vv(!_V]Y#Z)2)
=M, (x,r)' ( / |f<y>|2“+~+z>d2<y>d§<y)dy)
B(x,r)NQ
_ 2 _2 _2
< T, (x, 1y / LF ORI () d (y)dy
B(x,r)NQ
_2(0-N-2)
21 v v(N+2)
X [ fDI7d”(y)dy (y)dy ,
B(x,r)NQ
R 2 2 2N+2) o y NL”
<M, (x,r)¥2 "> LfO)IT N d*(y)dg (y)dy
B(x,r)NQ
2
2 0 y '
x ( f |f)I2d (y)dK<y)dy> , (4.23)
B(x,r)NQ

where in the second to last inequality we have used (4.22). By Corollary 3.7 and
Proposition 3.1, we have

N
N+2

yN
( / O 2yl (y)dy) <c / IV £ () 2d>(0)d ) (v)dy
B(x,r)NQ B(x,r)NQ

<crh / IV £ )P () ()dy
B(x,r)NQ2
(4.24)

Now, by Lemma 4.2
M, (x,r) < C(Q,K,y, N, Cg, Bo)rV 772, (4.25)

The desired result follows by (4.23), (4.24) and (4.25).
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If y > 0, the proof of (4.21) is similar, the only difference is that we use Corollary
3.6 instead of Corollary 3.7. O

By (2.2) and the above theorem, we have

Corollary 4.13 Let 1 < k*/4 and let B be the constant in Lemma 4.2. Then for any
v > N + max{2,2 + y}, there exists C = C(R2, K, v, B1) such that for any x € <,
anyr € (0, B1) and any f € HO1 (B(x,r)yN; qﬁﬁ) there holds

2 _2
/ |FPITgldy < CriMx, ) ( / |Vf|2¢idy)
B(x,r)NQ B(x,r)NQ

2

(L)
B(x,r)NQ

4.5 Harnack inequality

We consider the problem
@ + Lou = u; — ¢ 2div(¢;Vu) =0, in (0,T) x B(x,r)NQ, (4.26)

forany T > O and r < % where B is the constant in Lemma 4.2. Similarly with
Definition 2.3 we have

Definition 4.14 Let D C € be an open set. A function v € C'((0,T) : H'(D; ¢2))
is a weak subsolution of v; + L, v = 0in (0, T) x D if for any non-negative ® €
Cl((0,T) : C°(D)) we have

T
/ / (v ® + Vv - V)¢, dydt <0.
0o Jp
We now set

0= (s—r%s) xBx,r)NQ
Qs = (s — 8r%, s) x B(x, 8r) N Q.

Now we are ready to apply the Moser iteration argument in order to prove the Har-
nack inequality for nonnegative weak solutions. The proof is based on the ideas in
the proof of Harnack inequality in noncompact smooth manifold (see [50, Chap-
ter 5]). Let us note here that Theorem 4.5 allows to us to consider test functions
in C°(B(x, r))) instead of C°(B(x, r) N 2)). Thus we are able to prove boundary
Harnack inequalities.

Let us first state the L” mean value inequality for nonnegative subsolutions of the
operator d; + L.
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Theorem 4.15 Let p < k2/4, v > N+ max{2,2 + 2y} and p > 0. There exists a
constant C(v, A, B1, p, 2, K) such that for any x € Q2 and for any positive subsolution
v 0of (4.26) in Q we have the estimate

C
sup [o]? < _ / IPg2 dy d,
oS M, o Jo, U E

foreach0 <8 <& < 1.

The proof of the above theorem is similar to the proof of [50, Theorem 5.2.9] and
we omit it (see also [25, Theorem 2.12]). Similarly one can establish the proof of the
parabolic Harnack inequality up to the boundary of Theorem 2.4.

Let k(¢, x, y) be the heat kernel of the problem

vy =—Lyv, in (0,7T] x L,
v=20, on (0,T] x 0%,
v(0, x) = vg(x), in Q.

By the parabolic Harnack inequality (2.4), and following the methods of Grigoryan
and Saloff-Coste (see for example [34, Theorem 2.7] and [50, Theorem 5.4.12]) we
obtain the following sharp two-sided heat kernel estimate for small time (we recall
that M (x, r) has been defined in Corollary 4.3):

Theorem 4.16 Let B be the constant of Lemma 4.2. Then there exist positive constants

2
Ay, Ay, Cyand Cy, such that forall x, y € Qandall) <t < %‘ the heat kernel
k(t, x, y) satisfies

2
: €1 1 exp(—A1u>§k(l,x,y)
M2 (x, VM2 (y, V1) !

Cy

<
T M (x, VHOME(y, Vi)
( Ix—y|2>
xexp| — Az .

t

Proof of Theorem 2.5 This follows easily from Theorem 4.16 and Corollary 4.3. 0O

5 Heat kernel estimates for large time
5.1 Weighted logarithmic Sobolev inequality

Theorem 5.1 Let (1 < k?/4. There exists a positive constant C = C(2, K, i) such
that for any € > 0 there holds

/uzln Lqﬁidx 58/ |W|2¢ﬁdx+b(s)/ weidx,  (5.1)
Q Q Q

el 2202:92)
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forallu € H'(2; ¢2); here b(e) = € — X200 min(n e, 0).

Proof We may assume that IIuIILz(Q;d,ﬁ) = 1. Assume first that —% < y4+ < 0. Then

N 4
P In ful¢2dx = —/ el In | ¥ $2dx
/Q . 4 Jo :

7! /l 15 g2d
1 n . u ¢># X
¥
()
N+2
<2y, (co </ |Vu|2¢idx+/ |u|2¢§dx)),
4 Q Q

where in the last inequality, we used Corollary 4.7 and (2.2). Using the fact that

N“ logh = N+2 In 00?12\213-2) + N+21 M, Ve, 0 > 0, we obtain the desired

result with b(e) =1+ N+2(1nC +In 2 —Ineg), if0 < e <1

Similarly, if ¢ > 1 and —5 5 vy < 0, we obtain the desired result with b(g) =
1+ 22(nCo + In 2.

Ifyy >0we proceed as above and we use Corollary 4.6 instead of Corollary 4.7,
in order to obtain (5.1) with b(e) = 1+ 2FZ22% (In €y + In T4E2% _Ing), where
C is the constant in Corollary 4.6. O

IA

Theorem 5.2 Let yu < k*/4 and let u € H'(Q; ¢7) be such that [qu ¢dx = 0.
There exists a positive constant C = C(S2, K, ) such that for any € > 0 there holds

/ 2ln Lfi’ﬁdx < g/ |Vu|2¢>idx +b(8)/ uquidx,
Q lull 22 (@:92) Q Q

where b(e) = C — M@0 1 ¢,
Proof By (4.20) and in view of the proof of (5.1) we obtain the desired result. m]

Proof of Theorem 2.2 We normalize ¢,, so that |, qﬁdx = 1. We define the bilinear
form Q : Hy (Q: ¢;) x Hy(Q: ¢5) — R by

Ou,v) = / Vu - Vv ¢ dx.
Q

We recall here that H' (Q; ¢;24) = H& (2; ¢>i) by (2.2) and Theorem 4.5.

Let £, denote the self-adjoint operator on L2(Q; qbi) associated to the form Q, so
that formally we may write

Lou = —¢, % div ((ﬁﬁVu) .
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The operator £,, generates a contraction semigroup 7'(¢) : L2(S2 qbi) — L2(; ¢EL),
t > 0, denoted also by eLut This semigroup is positivity preserving and by [17,

Lemma 1.3.4] we can easily show that satisfies the conditions of [17, Theorems 1.3.2
and 1.3.3]. Thus, by (5.1), we can apply [17, Corollary 2.2.8] to deduce that

le "l < Crllullaaigzy, >0, ue LR,  (52)
where

€, = o ibene

Hence, by [17, Lemma 2.1.2], e~Lul is ultracontractive and has a kernel k(t,x,y)
such that

0 <k(r,x,y) <C2.
2

By the last inequality, the upper estimate in Theorem 2.2 follows easily. For the lower
estimate in Theorem 2.2 we will give two proofs. One using the boundary Harnack
inequality (2.4) and the other one proceeding as the proof of [16, Theorem 6].

First proof (as in the proof of [16, Theorem 6]). First we note that since H L@ qbﬁ)
is compactly embedded in L?(; ¢ﬁ), the operator £, has compact resolvent. In
addition, we have that £,,1 = 0 and hence, by (4.20),

sp(Ly) C {0} U[A, 00),

for some A > 0. Thus, using the spectral theorem, we can easily show that for any
f € L*(Q; ¢7,) such that [, f¢2dx = 0 we have

||€7£”tf||L2(Q;¢!2L) <e M ||f||L2(Q;¢ﬁ) ) Vi = 0. (5:3)
Now, let f € L'(Q: ¢7) and [, f¢7dx = 0. By (5.2) and (5.3), we have
_ Loty _po 2t o2
lle™ 4! fll ooy = lle™ 3 (7545 £l < Colle™ 5 fll2 g2
A —L, %
<e 3Clle ™5 fll2qig2)-
Taking adjoints we have
L.t
lle "3f||L2(S2;¢§ = C% ”f”Ll(Q;(p/ZL),
hence
_ _ M
le™ ! Flleey < ™5 CH Iy

@ Springer



G. Barbatis et al.

Letnow f € L' (Q; qﬁi). The function g := f — [o fqbidx satisfies [, gq&ﬁdx =0,
thus

e Fulg = e hulf —(f, Di2@ig2)-
Hence the operator
T f =e ™' f = {f g
satisfies

= -L, —A 0 —A D
IT @) fllreo@ = lle™= " gl < e 3 Cg gl r(@p2) < 2¢3 C% 1AL ;02) -

Therefore the integral kernel lz(t, x,y) of T(t) satisfies 12(;, x,y) = k(t,x,y) — 1
and

K(,x, )| < 275 C2.
3

The desired result follows if we choose ¢ large enough.

Second proof (using the boundary Harnack inequality (2.4)). Let xo € 2. Then by
(2.4) we can show that

k(t - laxa J’) S C(Q7 K)k(t,x»x0)7
forall t > 2 and x, y € Q. Thus,
1= [ ko 1Lxngimay = C@ K [ kexxos o)y
Q Q
= C(, K)k(t, x, xg), Vt=>2.
The desired result follows. |

5.2 Green function estimates

In this subsection we prove the existence of the Green kernel of L, along with sharp
two-sided estimates.

Proposition 5.3 Let i < k?/4 and assume that Ay > 0. Forany y € Q there exists a
minimal Green function G (-, y) of the equation

Lyu=34, inQ,
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where 8 denotes the Dirac measure at y. Furthermore, the following estimates hold

x — y12~N min {] d(x)d(y) } ( dg (x)dg (y) )y+
T =y F\@r () +Ix = yD @k () + 1x = YD) '
fyy > —%,
G = _N
ne ) 32 min {1 dx)d() }( x| ) ¥
U= y12 SN Axl A = yD Uyl e = yD)
d(x)d(y) . 1 1 )’ . N
1 L ——TH -
! (xllyD) > n(mln{lx—yl2 d(X)d(y)} Tre==3
(5.4)
Proof First, let C; > 0 and T be as in Theorem 2.6. We note that
(<;g5”+1><;£5“+1>>‘= d(x)d(y)
d(x) d(y) (V1 +d@X) (V1 +d(y)
Smin{l,w} (5.5
and
<<VG_+1)(\E +1))‘1_qXﬂ2 d(x)d(y) TS
- N e 7 — t
) { d(x)d(y) } _ a+Cpla—yl?
>Cminil, ————te r

forallx,y e Qand0 <t < T, where C = C(C1,T) > 0.
By Theorem 2.6, (2.2) and estimates (5.5)—(5.6), thereexist C; = C; (2, K, u) > 0,
i=1,2and T =T(Q2, K, ) > Osuchthatfort € (0, T) and x, y € €,

=camn {1’ e K@iﬁ?ﬁ )H (dKf;{)(i)JE)Ht_ge_W’
(5.7)
while
h(t, %, ) <Ch Vi>T, x,yeQ (58

Qfdumwm?um?@k*w—
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By (5.7) and (5.8), we deduce the existence of the minimal Green kernel G, of L,
given by
o) T 9]
Gu(x,y) :/ h(t,x,y)dt :/ h(t,x,y)dt +/ h(t,x,y)dt. (5.9)
0 0 T

Using (5.8) we easily see that the second integral in (5.9) satisfies the required upper
). We now concentrate

estimate in both cases considered (i.e. y; > —5 or y; =

on the first integral in (5.9).
12
By the change of variable s = x_t” , we obtain fori = 1, 2,

/ { d(x)d(y)}( dg (x) >V< dx () )”t_ge Gl ]

r Naxw+vi) \acm+vi) '
d(x)d(y) lx =l lx =yl AT IEgCR

/ { S ((ﬁdmn“)(ﬁ@u)“)) v &

= |x —yPVSix, ).

By (5.7) we therefore have for some ¢y, ¢ > 0 that

T
cllx — y|2_NSz(x, y) < / h(t,x,y)dt <c|lx — y|2_NS1(x, y), X, yeQ
0
(5.10)

]2 .
In the sequel, we assume that % < % The proof in the case = y 2 2 is similar,
indeed simpler. We write
_ —V+
|X yl 1)) 57_2 —C[Yds

U dwdm | (=
= fu e {1’ } ((ﬁdm) " 1>(ﬁdk<y>

Ix — y|?
[ d@dm) | [ x>yl I — y| Yo e
+/1 mm{” P } ((ﬁdm) * 1)<ﬁdk(y> “)) * as-
(5.11)

Concerning the second term in the RHS of (5.11) we have

> d(x)d(y) lx =yl lx—y TN e
flmm{l’s|x—yl2K(ﬁdm)“)(ﬁdm) 1)) $Eoe s

d(x)d(y)}<(|x—y| 1><|x—y| 1))‘”
- dK(y)+ ’

< Cmin{l,
{ Ix —y? dk (x)

and therefore the required estimate is satisfied
Let y4+ < 0. For the first term in the RHS of (5.11) we have

_ —V+
|)C yl 1)) 87_2 —C]vds

fl min{l d(x)d(y)}(( [x — ¥ +1>(
| ’ sdk (x) Vsdk (y)

_y2 — |2
Lo Ix =l
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: d d - — —V+
[ A (B )G+ ) e

T
2 min {1, s d®dk) }S%J“V*_ze_c"“ds

1

<C <|x — Y7 (dk (Ddg ()7 /

bl lx = yI?
b d(x)d
+lx — y|7"* (dx (x)dg (y))%f%zmm il, s |)(Cxi y(|yz) }

X (di (x) + dig (y) V+s TTT 2 Cis g

1
+/ , min 1,sd(x)d(y) 52 2e=C1s g
=yl |x — y|?

T

= C(J1+ 2+ J3) (5.12)

It is easily seen that

J3 §Cmin{1 M}

9
lx — y[?
Concerning J; and J, we consider two cases.

Case 1. —% < y4+ < 0. In view of (5.10) and (5.12), it is enough to establish that for
i = 1,2 we have

P {1 d(x)d(y) } ( dg (Ddk () >V+ 1
T Cle=yP JN@x ) + = yD @) +Ix—yD/) ’
(5.13)
In order to prove (5.13) we shall need to consider additional cases.
Case la. % < 1. In this case it is immediate that
Ji = Clx — y|7272 (dg (0dg () d(0)d (7).
and

Ty = Clx — y| 7277 (dk (x)dg (1)) (dk (x) + dg () " d(x)d ().

Hence inequality (5.13) is satisfied.

Case Ib. %‘iﬁg) > 1. In this case we have %dK(y) < dg(x) < 4dg(y). Indeed,
suppose that dx (x) > 4dg(y). Then, since dx (x) < |x — y| + dk(y), we easily
obtain that dg (y) < %|x —yland dg (x) < %Ix — y|; hence d(x)d(y) < %|x -y
a contradiction.

To proceed we first note that

X—y 2
d(x)d(y) [ awier

5 s Hre—1,=Cisgg
lx — 1= Jo

Ji < |x =y (dg (0)dg ()7
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1
N .
s 2o C1s g (5.14)
lx—y2
d(x)d(y)

and similarly

le—y[2
dx (x)dk (y) >V+ dx)d(y) [0 § P Cis g

J < |x—y|_V+( s
dig (x) +dk (y) Ix —y12 Jo

1
R ds) (5.15)

lx—y|2
Ad(y)

We now consider different subcases.
Case 1. —% < Y4+ < —N + 2. From (5.14) and (5.15) we obtain

It follows that (5.13) is satisfied.
Case2. yy = —N+2 > —%. In this case (5.14) and (5.15) give

J1 <c

and

_ dx ()dk (y) \* d(x)d(y)
_ Y- VIR 7 7
2= clr -yl +<d1<(X) +d1<<y)> (1 H“( x— P )) =¢

Again it is easily seen that (5.13) is satisfied.
Case 3. max{—%, —N+2}<yy < —Nsz. In this case we obtain

d d Y+
N<e stc|x—yry+< K K(”) <

dg (x) +dg(y)

and (5.13) once again follows.
Case4. yy = —% < 0. In this case we obtain

Ji <clx — y| 72+ (dK(x)dK(y))V+ (1 + In <M>> <c,

lx = yI?
di (x)dk (¥) )” -

Jr Zclx — _V+<—
2= e =N o+ dk )

and (5.13) once again follows.
Case 5. —NT_Z < ¥4+ < 0. In this case we obtain

d d Y+
B <clx =y (dg dg ())F <e, §c|x_y|—y+( x ()dx () ) <c

dg (x) +dg(y)
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and (5.13) once again follows.

Casell. y;, = — % The proof is very similar to the previous case and for the sake of
brevity we shall only consider J;, where the main difference appears. We note that in
this case we have dg (x) = |x]|.

|x—Ty|2 1

P ) e
We assume that % < % The proof in the case > 5 is similar, indeed

simpler.

Case 1la. % < 1. In this case we easily obtain

N-2 -5 —T
S = el =y N @) D log (5 ).

and this is estimated using the second term in the RHS of (5.4).

' o2 o2 )
Case IIb. % > 1. We may assume that dl();) j(ly) > P2 otherwise we need
only consider the second of the two integrals below.
We have
v (ddey) [F 1
Jo=lx—y Ny [ EEEL [T G s72e~C15ds
[x — y|2 lx=yl? lx—yl?
T d(x)d(y)

L T
< clx — yI¥"2d@)d () (1x] 1yl) " ? log (Wd(y))

which satisfies the upper bound in (5.4). Hence the upper bound has been established
in all cases.

This concludes the proof of the upper estimate when y < 0. If y; > 0 then the
proof is essentially similar, indeed simpler, and is omitted.

The proof of the lower bound is much simpler. For example, in case y; < 0 we
have from (5.10)

Gulx,y) >cilx =y ¥S0x,y) > clx — y* N hi(x, y),

where J; is as above, the only difference being that the exponential factor in the
integrand is ¢ ~€2* instead of e ~C!*. The result then follows easily. O

6 The linear elliptic problem
6.1 Subsolutions and supersolutions

We recall the definition of the function d x from (2.5). Given parameters ¢ > 0 and
M € R we define the functions
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My = MU DA —ddg ™ gy =M+ dpdyt +ddd
e = e Md(d 4 a2yay +ddy e tyo = M +dp)dy —ddy *°

~ ay K ~_k - oy ok Lk
Coe=eMA(indg)(d+d2)dg 2 —ddg > F ¢ =eMd(—Indg)(d +d2)dg +dd*

Lemma6.1 Let i < k?/4 and 0 < & < 1. There exist positive constants By =
Bo(2, K, , &) and M = M(2, K, 1, €) such that the following hold in Kg, N Q:
(i) The functions 1y, . and ¢y, ¢ are non-negative in Kg, N Q2 and satisfy

Lyny, >0, Lygy, <0, inKg NQ.

(i) If u < k%/4 and ¢ < min{l1, k2 — 4u}) then Ny_,e and §y_ ¢ are non-negative
in Kg, N Q and satisfy

Lyny_e >0, Luty <0, inKg NK. 6.1)

(iii) The functions ¢, ¢ and {_ ¢ are non-negative in K g, N Q and satisfy

i

Lole>0, Lot <0, inKgNQ.
'y

Proof Let M € R. By Proposition 3.1 we have in 2 N Kg,,

A(ddy) = d**d% (a(a — 1) + ad Ad)
+d*dy?(2ab + bk — 1+ )+ b(b — 1)(1 + h))
Vel . v(d'dy) = MM (ad* ™' dy + bd* T dy?)
AeMd = MA(M? + MAd)
Thus
Lu(eMidadhy = —eMdga-1gh (Mzd + MdAd +2aM +aAd + a(a — 1)d—1)
2Mbd +bf +b(b — )h + /Lg)

dx

— (blk — 1)+ b(b — 1) + 2ab + p)eM4a*dl 2.

_ eMdfzd[b(—l(

Now let M € R and 0 < ¢ < 1. Using the above formulas we find
L (eM(d +d2)d)) — L (ddyg ™)
= —eMdgs ((Mzd + MdAd +2M + Ad) + (M? + MAd)c?%)
- eMddCZ?iz (ZMJ/+d +ysf+rvilyy —Dh+ Mg>

— eMd s (2(y+ k) + (s + 2)((;/+ S DA+ f+ 2Md))
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+eQyy +k+e)ddyTe?

+ dc?lag++e—2((y+ +e)yr+e—Dh+(yr+)f + Mg) + (Ad)&}?“,

The RHS in the last equality consists of six terms. We now choose Sy small enough
and M < 0 so that the sum of the first, third and sixth terms is non-negative in K g, N Q2.
The fourth term is clearly positive, and by taking By smaller if necessary it may also
control the second and the fifth terms. Hence L, n,, . > 0in Kg, N .

The proofs of the other cases of the lemma are similar and are omitted. For (iii) we
also use the relations

Adx  |Vdg|?

Alndg = = =
T &

Vindg - V(eMiddy) = db2eMd (Md2 +d+bd|Vdg |2)

and

— Lu((=Indg)eM?ddl) = (—Indg)eM4dt, (Mzd + MdAd +2M + Ad)
2Mbd + bf —|—~b(b —Dh+ ug)
dg
+ (—Ind)(blk + 1)+ b(b — 1) + p)eMIddy?
+eMIddy(— 2Md — f + (1 = 2b)h = 2b — k).

+ (—1In c?K)eMddc?Ib{I <

m}

Lemma 6.2 Let By > O be the constant in Lemma 6.1, § € 0Q and 0 < r < % We

assume thatu € H! (B, &) NQ)NC(B,(5)NQ) is L,-harmonic in B.(§) N Q2 and

loc

u(x)

m =
dist(x,F)—0 W (x)

=0, Vcompact F C B.-(§) NoK2. (6.2)

Then there exists C = C(u, 2, K, r) > 0 such that
lu] < Co,., xeB%(S)ﬂQ. (6.3)

Moreover, if 0 < n, < 1 is a smooth function with compact support in B% (&) with
nr=1on B% (&), then

nri

€ Hy(Q: ¢,)). (6.4)
"
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Furthermore, if u is nonnegative there exists ¢y = c1(2, K) > 0 such that

u) _ u@)

, Vx, Br N Q. 6.5
b0 = V00 OV PG ©

Proof We will only consider the case 1 < k*/4and & € K 5 N 9Q; the proof of the
other cases is very similar and we omit it. ‘

Since u is L,- harmonic in B, (§) N €2, by standard elliptic estimates we have that
u € C3(Br(§) N Q). Set w; = max{u — Iny_e,0} where [ > 0 and n,_ . is the
supersolution in (6.1). Then by Kato’s formula we have

Lyw; <0, inB.(§)NQ.

Setting v; = %, by straightforward calculations we have
"

—div(¢, Vo) + Audiu <0, in B.(§)NQ. (6.6)
We note here that v, = 0if u < In,, ., thus by the assumptions we can easily obtain
that v; € Hl(B%(E); b7
By Theorem 4.15, we can prove the existence of a constant g, and C = C(K) > 0
such that for any r* < min{5, rg,} and p > 1 the following inequality holds
-1 1
P
sup v < C((/ ¢,§dx) / vy |P¢,3dx) . (67
x€B,s (5)NQ B,/ (§)N B,/ (£)NQ
7
From (6.2) and the definition of w;, we have

w <uyp <CW =Cd+dgp)dy, inB:(§)NQ.

This and (2.2) imply that

/ uilp2dx < f il
B,/ (5)NQ B% &N

< cf d +dy)dd*dx < Cf dy*dx < cc.
B%(é)ﬂﬂ B%(é)ﬁQ

Thus by (6.7) and the last inequality we deduce that

sup v < Cy
B, (§)NK
2
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for some constant C; > 0 which does not depend on /. Thus

w <Ci¢,, in B%(E)DQ.
By letting [ — 0, we derive
uy < Ciy , in B%f(é)ﬂQ.
Thus by a covering argument we can find a constant C > 0 such that
uy < Cogpy s in B (&) N K. (6.8)

This implies vy := ;—X <G in B (&) N Q.

Using 77r2 vy as a test function in (6.6) we can easily obtain

C
/ V(o) Ppdx + Ay / IneviPgrdx < = lvi*dx.
B%(S)OQ B%(S)OQ r B%(S)QQ

By (6.8) and by letting / — 0 we obtain that n,vy € H'(; ¢>12L), which in turn implies
that % e H'(Q; (]5/3). Applying the same argument to —u we obtain

u- < Cagy inBy(§)NQ,

and % e HY(Q; ¢ﬁ). By using the fact that u = u; — u_, we obtain (6.4) and
(6.3).

We next prove the boundary Harnack inequality (6.5). Let u be a nonnegative
L ,-harmonic function and put v = 4. Then v € H' (B% &); ¢/24) and v satisfies

b
—¢,2div(¢;Vv) + 2,0 =0,  inB:(§)NQ.

The function d(x, 1) := e*#!v(x) then satisfies

2
8,0 — ¢, 2div(g2 V) = 0, in B;(§) N Q x (o, %) .

By the Harnack inequality (2.4),

esssup | 0(7, %) : (¢, x) € o xB(g r)msz
up {1 0(¢, x) : (¢, x —, — , =
P 64’ 32 8
2 2
< Cess inf{ﬁ(t,x) 2 (t,x) € <36L4 :—6> X B(E, %) N Q}
This implies (6.5). O
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Lemma6.3 Let u < k2/4 and assume that X, > 0. Let u €
L,,-subharmonic in Q. Assume that

() N C(Q) be

loc

lim sup bf(x) <0, Y compact F C 2. (6.9)

dist(x, F)—0 W(X)

Thenu < 0in Q2.

Proof First we note that uy = max(u(x),0)isa nonnegative L ,-subharmonic func-
tionin Q. Let v = ¢ . In view of the proof of (6.4), v € H (Q (;5 ); moreover by a

straightforward Calculatlon we have

— div(¢}, Vv) + Augpv <0 in Q. (6.10)

Since v € HO1 (2; qbﬁ), we can use it as a test function for (6.10) and obtain

/ Vo’ dx +/\ﬂ/ lv[*pdx <0.
Q Q
Hence v = 0 and the result follows. O

6.2 Existence and uniqueness
The aim of this subsection is to prove existence and uniqueness of the solution of
L,u = f, with smooth boundary data. We also prove the boundary Harnack inequal-

ities and maximum principle for the operator L. Let us first define the notion of a
weak solution.

Definition 6.4 Let f < L2(Q). We say that u is a weak solution of
Lyju=f, inQ (6.11)
if - € Hj (2 ¢7) and
/ Vu -Vydx —pu / —dx = /Qfxpdx, Vi € C°(Q).

In the next lemma we give the first existence and uniqueness result.

Lemma 6.5 Let ju < k?/4 and assume that Ay > 0. Forany f € L?() there exists
a unique weak solution u of (6.11). Furthermore there holds

/ uldx < C / fdx, (6.12)
Q Q
where C = C(X;) > 0.
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u

o satisfies

Proof We first observe that i is a weak solution of (6.11) ifand only if v =

/¢iw-v;dx+xu/ ¢iv§dx=/¢uf§dx, V¢ € Hy(Q; 7).
Q Q Q

(6.13)
We define on HO1 (22; q&i) the inner product
V. )3 = fﬂqs,%(w VE ) Odx
and consider the bounded linear functional 77 on H(} (€2 dﬁ) given by
770 = [ ufear
Then (6.13) becomes
(v, 8)ga = Tr(¢) V& € Hy (2 97). (6.14)

By Riesz representation theorem there exists a unique function v € Hé (2; qbi) sat-
isfying (6.14). Furthermore, by choosing { = v in (6.13) and then using Young’s
inequality, we obtain

A
/¢2|W|2dx+—“/ $2v2dx < C()W)/ fldx. (6.15)
o " 2 Jo ' Q

By putting u = ¢, v, we deduce that u is the unique weak solution of (6.11). Moreover,
(6.12) follows from (6.15). O

The next lemma will be useful in order to prove existence and uniqueness of solution
for the equation L,u = f with zero boundary data.

Lemma 6.6 [29, Lemma 5.3] Let y < N and o € (0, min{k, y}). There exists a
positive constant C = C(«a, y, 2, K) such that

supf lx — yI 7V d® (y)dy < C.
xeQJQ

In the following lemma we prove the existence of solution for the equation L u = f
with zero boundary data, as well as pointwise estimates.

Lemma 6.7 Let u < k?/4 and assume that Au>0y_—1<b<0and f € L2(Q).
Then there exists a unique u € HIIOC(Q) N C(K2) which satisfies L, u = fdf( in the
sense of distributions as well as (6.9). Moreover, for any y € (—o0o, y4+]N (—o0, b +

1) N (—o0, 0] there exists a positive constant C = C(2, K, b, u, y) such that

)| < Cllfllie@d()di (x),  x € Q. (6.16)
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Proof We assume firstthat f > 0. Set f, = min{f d’ ,n}. By Lemma 6.5, there exists
a unique solution u, of L, v = f, in Q. Furthermore, a standard argument yields the
representation formula

up(x) = /Q Gu(x,y) fa(y)dy.
We assume first that 0 < u < %. By (5.4) we have

0< /Q G (s ) fo(0)dy

. 1 dwd)
= Cl/szmm{|x—y|N—2’ |x—y|N}

i (V)dx () >V+
w(y)d
. ((dK<x)+|x—y|>(d1<<y)+|x—y|> Jn)dy
< cap o [ -y min 1, SO ) oy
A —

+C / x — y[~¥*277 min {1, w}diy ) fa )y
Q lx — ¥l

+ Cd?(X)f lx — y| 7N T2 min {1, w}fn()’)dy
Q |x — ¥

+ C[ x — y[7¥** min {1, M}fn@)dy
Q lx =yl

=Ch+ L+ 1L+ 1y).

First we note that if dx (y) < %dK(x) then |x — y| > %dK(x). Thus for y < y4, we
have

_Nao— . d(x)d(y)
I = di (x) x — y[ 7N+ min {1, 5 14X ) fa(y)dy
QN{dg ()< dk (1)} |x — ¥l
_Nao— . d(x)d(y)
+dg" (%) lx — y| 7N 2724 min {1, 5 14X ) fa()dy
QN{dk (y)> }dk ()} |x — ¥l
< C|l fllze@ydy (x) [x — y| T NF2r=rs
QN{dx ()< §dx ()}
d(x)d
x min {1, @) (yz) dZ+V+ (y)dy
lx — yl
+ CIIfIILw<Q>d,V<(x)/ Ix — y| "N+ 2+
QN{dk ()> §dk (x)}
d(x)d _
x min {1, I(X) (|y2) A% () dy
xX—y
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“Ne—y— b 1
< Cllfll=@dg (0)d(x) =y TN (dy
QN{dk () <dk ()}
_N— b—y+2 1
+ Cll fllz(@ydf (x)d(x) lx — y| 7N T () dy
QN{dk ()> §dk (x)}

< Cll fllLeydy (x)d(x)

where in the last inequalities we have used Lemma 6.6.
Similarly we can prove that

I+ L+ I+ Iy < C|l fllLeo@dg (x)d (x).

Combining the above estimates, we deduce that for any y € (—oo, y+]1N(—o00, b+
1), there exists a positive constant C = C(€2, K, u, b, y) such that

un ()| < C|l fllLe@d(x)dg (x),  x € Q. (6.17)
If we choose y € (y—, y+]1N (y—, b + 1), then we can show that

d(x)dj (x)

im — =0, Vcompact F C 0L2. (6.18)
dist(x,F)—>0 W (x)

Thus by the above inequality, (6.17) and applying Lemma 6.3, we can easily show
that u,, /' u locally uniformly in 2 and in H, ZL - (§2). Furthermore, by standard elliptic
theory u € C'() and, by (6.17),

lu(0)| < CllfliLo@d(Ddg (x),  x € Q. (6.19)

The uniqueness follows by (6.18), (6.19) and Lemma 6.3.
For the general case, we set u = uy — u_ where uy are the unique solutions of
Lyv= fidEb in Q respectively, which satisfy (6.16). Thus u satisfies (6.16) and the

. 2
result follows in the case 0 < u < kT'

The proof in the cases u = % and p < 0 is similar and is omitted. O
The following lemma is the main result of this subsection.
Lemma 6.8 Let ju < k?/4 and assume that Ay > 0. For any h € C(02) there exists

a unique L, -harmonic function u € HIZC(Q) N C(2) satisfying

u(x)
o, xlgyeBQ W00 (y)  uniformlyiny €

Furthermore there exists a constant ¢ = ¢(2, K) > 0

E
W

< clhllcon)-
L>(Q)
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Proof Uniqueness is a consequence of Lemma 6.3.
. . 2 .
Existence. We will only consider the case 0 < u < kT, the proof in the other
cases is very similar. First we assume that 4 € C*($2). Then a function u € C?(Q) is

L,,-harmonic if and only if v := Wh — u is a solution of

Lyv =Ly (Wh) =h(L,W)—2VW.-Vh—WAh, inQ. (6.20)

Arguing as in the proof of Lemma 6.1 we see that there exists C = C($2, K, i, Bo)
such that

IL,W|<Cdy, inQ.
Hence (6.20) can be written as
Lyv=fdy, ingQ,

with [| fll gy < COr— . K) Il g, -
By Lemma 6.7 there exists a unique solution v of (6.20) that satisfies

lv()| < Cllhllc2gyd)di (x),  x €Q,
forany y € (y—, y+1N (y—, y— + 1). Thus

u(x)
W (x)

d(x)d} (x)
W (x)

—h(@)| < Cllhll 2 cQ, 621)

and the desired result follows in this case, since

d()dy(x)

im - 0, VY compact F' C 9€2.
distx. F)—>0 W (x)
forany y € (y—, y+1N(r—, v- + 1.

Suppose now that 7 € C(9€2). We can then find a sequence {A,};° | of smooth
functions in 92 such that b, — h in L*(dK2). Then there exist H, € C%(Q) with
value Hy g = hyp and || Hy |l oo i) =< Cllhn |l L2 (92) Where C does not depend on n or

h,. By the previous case there exists a unique weak solution u,, of L, u = 0 satisfying

up(x)

d(x)dy (x)
W (x) '

= C”Hn”@@)W Vx € Q,
X

— Hy(x)

for some C which does not depend on n and #,.
By (6.21) and Lemma 6.3, we can easily show that

Up(X) — Uy (x)

= < Clhy = hmllLe@g), X €
W(x) n LR
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thus u,, — u locally uniformly in €.
Now, let y € 2. Then

u(x) u(x) — up(x) Un(x)
= —h()‘f = = —h()‘+|h()—h()|
W) y W(x) W) nly nly y

and the result follows by letting successively x — y and n — oo. O

7 Martin kernel
7.1 Lﬂ-harmonic measure

Let xo € Q, h € C(02) and denote L, x,(h) := v (xo) where vy, is the solution of
the Dirichlet problem (see Lemma 6.8)

L,v=0, in €,
tr(v) =h, in 9%,

where E(v) = h is understood in the sense of Lemma 6.8 (cf. also (2.6)). By Lemma
6.3, the mapping / +— L, x,(h) is a positive linear functional on C(9€2). Thus there
exists a unique Borel measure on 92, called L ,-harmonic measure in 2, denoted by
™0, such that

o (xo) = / 3w ().
0

Thanks to the Harnack inequality the measures w* and w*°, xp, x € €2, are mutually
absolutely continuous. For every fixed x we denote the Radon—Nikodyn derivative by

dw*

T (y),  for - almostall y € 9. (7.1

K/,L(xv y) =

Let& € 9Q2. We set A,(§) = Q2 N B,-(§) and denote by x, = x,(&) the point in
2 determined by d(x;) = |x, —&| = r. We recall here that 8y = Bo(2, K, u) > Ois
small enough and has been defined in Lemma 6.1.

Lemma7.1 Let u < k2/4 and assume that A, > 0. Let 0 < r < Bo. We assume that
u is a positive L,,-harmonic function in Q such that

(i) € C(Q\B(£)),
(i) limyeq x—x, % =0, Vxo € 9Q\By (&), uniformly with respect to x.

@ Springer



G. Barbatis et al.

Then

! u(x,(£))
Gu(xr(§). x1.(8))
- u(x,(&))
Cc
T Gu(xr(8),xr(9)

Gulx, xr () <ux)
(7.2)

Gu(x,xr(§),  Vx € Q\Bay(§),

with ¢ > 1 depending only on 2, K and .
Proof It follows from Lemma 6.2 that there exists ¢ > 1 such that

4 u(x2(§))
Gpu(x2(8), x . (8))
. u(x2r(§))
T Gl (8), x 1 (8))

Gulx, xr(§)) < u(x)

G/L(xvxlr—ﬁ(s))v Vx € QmaBZr(é)v

Applying Harnack inequality between x>, (§) and x,(§) we obtain

! u(xr(§))
Gpu(xr(§), xr (§))
. u(xr(§))
- Gu(xr(é),xl%(S)

Gulx, xzr(§)) < u(x)

)G,L(x,xlr,é(f)), Vx € QN aBy(§).

For ¢ > 0O let

. u(x,(§))
ug(x) = u(x) — cGu(xr(é), T0) Gu(x, x 1 (§)) — evi(x),

where c is as above. Then u; is L, -harmonic and the function u;” = max(u,, 0) has

_ +
compact support in 2\ By, (§). Set v, = (’;—5 and v} = ;—f Using u; as a test function
n n

we obtain

f Ve - Vol grdx + )wf Vv ¢ dx = 0.
\By, (6) \B, (§)

Letting ¢ — 0 in the above equation we get
A fQ vt PPgndx <0,

hence u(x) — cmﬁgrfﬁ%@»cﬂu, x7.(§)) < Oforall x € Q\By (€). The proof of

the lower estimate in (7.2) is similar and we omit it. ]
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7.2 The Poisson kernel of L,

In this section we establish some properties of the Poisson kernel associated to L ,.
Definition 7.2 A function K defined in €2 is called a kernel function for L, with pole
at & € 992 and basis at xg € Q2 if
(i) K(-, &)is L,-harmonic in €2,
(ii) ’CW<—(5)> € C(Q\{£}) and for any n € IQ\{£} we have lim,cq, ¢,y ’C‘;;’Ef)> =0,
(iii) K(x, &) > 0 foreach x € Q and K(xg, £) = 1.

Proposition 7.3 Assume that X, > 0. There exists a unique kernel function for L,
with pole at & and basis at x.

Proof The proof is similar to that of [12, Theorem 3.1] and we include it for the sake
of completeness.

Existence. We shall prove that the function K, (x, &) defined by (7.1) has the required
properties.
Fix £ € 092. Set

@ (Ay-n ()

—=——"  VnelN
@ (Az-n(§))

up(x) =
Clearly u, (x) — K, (x,&), x € Q. Since u, > 0, L,u, = 0in  and u,(xo) = 1
the sequence {u,} is locally bounded in €2 by Harnack inequality. Hence we can find
a subsequence, again denoted by {u,}, which converges to K, (-, &) locally uniformly
in Q.
Let n € 0Q2\{£} and let n; € N be such that n € 9Q\By-»+1(§), Vn > ny. By
Lemma 7.1 we have

y (Xp-n1 (§))
G (xp-n1 5 Xy—ny—4(§))

u,(x) <c Gu(x, xy-n-4(8)), Vx € Q\By-n+1(§),

which implies

up (xg-n (§))
G/L(x2_"l y Xp—ny—4 &)

K,x,8§) <c G (x, xy-n-4(8)), Vx € Q\By—n +1(§).

It follows that

K
im XS
xeQ, x—>n  W(x)

hence K, (x, &) is a kernel function for L, with pole at £ and basis at xo.
Unigueness. Assume f and g are two kernel functions for L, in £ with pole at & and
basis at xg. Let 0 < r < Bo. By Lemma 7.1 and the properties of f and g there holds

1/e@) S [ )
¢ g (§) T gx) T glx(€)

Vx € Q\ By (§).
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In particular we can obtain if we take x = xg

fE®) _
S @) _ .
g0, (€) ~

and hence

IACY 50/2 =:c, Vx € Q.
g(x)

We derive that for any two kernel functions f and g for L, with pole at £ and basis
at xq there holds

f(x) <cgx) < f(x), x € Q.

Obviously ¢ > 1. If ¢ = 1 the result is proved. If ¢ > 1 then we set A = c+1 and
f+A(f — g) is also a kernel function for L, with pole at £ and basis at xy. Repeating
the argument for the functions f + A(f — g) and g we obtain that

fHAf -9 +A(f—g+ A —9).

is also a kernel function with pole at £ and basis at xg. Proceeding in this manner we
conclude that for each positive integer k there exist nonnegative numbers aiy, . . . , gk
such that

k
[+ (kA +Zaik) f-9

i=1

is a kernel function with pole at £ and basis at xo. Hence

k
f+ <kA+Zaik> (f—8) <cf.

i=1
This last inequality can hold for all k£ only if f = g. O

Proposition 7.4 Assume that A, > 0. For any x € Q, the function § — K, (x,§) is
continuous on 052.

Proof The proof is an adaptation of that of [12, Corollary 3.2]. Suppose that {§,} is
a sequence converging to &. Then the sequence {K (-, §,)} of positive solutions of

L,u = 0in 2 has a subsequence which converges locally uniformly in €2 to a positive
Ky (x,&n)
W(x)
innasx — n € 9Q2\B,(§). Hence the limit function of the subsequence is the kernel
function K, (x, £). By the uniqueness of the kernel function we conclude that the

convergence

L ,-harmonic function. Moreover, for any r > 0, converges to zero uniformly

K[L(xﬂ &) — Ku.(x7 &)
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holds for the entire sequence {£,}. m]

We can now identify the Martin boundary and topology with their classical ana-
logues. We begin by recalling the definitions of the Martin boundary and related
concepts.

Let xp € Q2 be fixed. For x, y € Q we set

_ Gulx,y)

o) =G oy

Consider the family of sequences {yr}x>1 of points of € without cluster points
in © for which /C, (x, yx) converges in € to a L, -harmonic function, denoted by
K. (x, {yx}). Two such sequences y; and y,’( are called equivalent if /Cy (x, {yx}) =
K (x, { y,’c}) and each equivalence class is called an element of the Martin boundary
I'. If Y is such an equivalence class (i.e., ¥ € I') then K, (x, Y) will denote the
corresponding harmonic limit function. Thus each ¥ € Q U T is associated with a
unique function K, (x, Y). The Martin topology on © U I' is given by the metric

Cp(x, Y) — Kpu(x, Y

YY) = dx. Y.V €QUT,
P, YY) A1+|Kﬂ(x,y)—/cu(x,y/)|x <

where A is a small enough neighbourhood of x¢. The function K, (x,Y) is a p-
continuous function of ¥ € Q U I" for any fixed x € 2. Moreover 2 U I is compact
and complete with respect to p, 2 U I' is the p-closure of 2 and the p-topology is
equivalent to the Euclidean topology in 2.

Proposition 7.5 Assume that A, > 0. There is a one-to-one correspondence between
the Martin boundary of Q2 and the Euclidean boundary 0Q2. If Y € T corresponds to
& € 0Qthen Ky (x,Y) = K, (x, ). The Martin topology on Q U I" is equivalent to
the Euclidean topology on Q2 U 0L2.

Proof The proof is similar as the one of Theorem 4.2 in [35] and we include it for the
sake of completeness. By uniqueness of the kernel function we have that

K, {yih) = Kpulx, ),

where {yx} is a sequence in 2 such that yy — & € 9. It follows that each
point of I' may be associated with a point of d2. Lemma 7.1 clearly shows that
Ku(, &) # K,(-, &) if & # &'. Hence, the functions K, (x, yx) cannot converge if
the sequence {y} has more than one cluster point on d€2 and different points of 92
must be associated with different points of I". This gives a one-to-one correspondence
between 92 and I" with Ky (x, Y) = K, (x, &) when Y € I" corresponds to & € 9.
If & — & in the Euclidean topology then K\, (x, Yx) — K, (x,Y) and, therefore,
Yy — Y in the p-topology by Lebesgue’s dominated convergence theorem. On the
other hand suppose that Yy — Y in the p-topology. If & does not converge to £ in
the Euclidean topology there is a subsequence &; such that §, — & # & in the
Euclidean topology. Then Yy, — Y’ and Y;; — Y in the p- topology with ¥ # Y/,
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which is impossible. Therefore, the Martin p-topology on €2 U I is equivalent to the
Euclidean topology on 2 U 9€2. O

Proof of Theorem 2.8 The result follows immediately by Propositions 5.3 and 7.5. O

The next lemma will be used to prove the representation formula of Theorem 2.9.

Lemma 7.6 Assume that L, > 0. Let F C 02 and D be an open smooth neighbour-
hood of F. We assume QN D C Qg for some 8 > 0. Let u be a positive L, -harmonic
function in Q. There exists a L, -superharmonic function V such that

v, in Q\D,
V) = {u(x), in QN D,
where v satisfies
L,v=0, in Q\D,
limer\E, Xy v(x) =u(y), Vye daD N,
lim v — 0, Vy e dQ\D.

xeQ\D, x—y W)

Proof The function u is C? in € since it is L p-harmonic. We assume that {r,}>°  is a
decreasing sequence r, \( O and r; < ’f—g. Weset D, ={§ € 0DNQ :d(§) > 2ry}.

Let0 < 5, < 1beasmooth function such thatn,, = 1in B,n with compact support
in D . In view of the proof of Lemmas 6.5 and 6.8, for m > n, we can find a unique
solution vy ;, of

L,v=0, in (Q\@Tm)\ﬁ,
limy, y v(x) = 0, (Nu(y), ¥y € 9D N (2\ Qg ),
limy—y v(x) =0, Vy € (asz%m)\ﬁ.

By comparison principle we have 0 < v, ,, < uand v, < vy n+1.1n addition, there
exists a constant ¢, = ¢, (||u||L>(p,, ), infxep,, ¢,) such that
5 5

0 < vy (x) < min{u(x), cagpu ()}, x € (\Qp)\D.
Thus v,,,,, converges to some function v, as m — oo locally uniformly in \ D and
0 < v, (x) < min{u(x), c,pu(x)}, xe€Q\D, neN. (7.3)
Let& € 89\5. By (7.3) and (6.5) there exists ry < diSt(iﬂ such that

v (X) <ec vn (y) <ec u(y)
u(x) T () T du ()’

Vx,y € B%o(é‘;)ﬂQ.

Thus v,, converges to some function v locally uniformly in €2. The desired result now
follows easily. O
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We consider a smooth exhaustion of €2, that is an increasing sequence of bounded
open smooth domains {€2,} such that , C Q,41, U,Q, = Q and HN-T (0R2,) —
HN=1(3R2). The operator Lff" defined by

N
- 7.4
d%(u (7.4

Q.
Luu_—Au—

is uniformly elliptic and coercive in Hé (£2,) and its first eigenvalue Aff" is larger than
Ay.For h € C(0€2,) the problem
Ly =0, in Q,,
v =h, on 082,

admits a unique solution which allows to define the L,gf” -harmonic measure on 92,
by

v(x0) = / el (7).
02,

Thus the Poisson kernel of L,iz" is
X

dwy,
KL/SIZH (x7 Y) = _On()’), X € Qna y € a5211 (75)

X
d wo

Proposition 7.7 Assume that A, > 0 and xo € 21. Then for every Z € c(Q),

lim Z(x)W(x)da) (x) / Z(x)dw™ (x). (7.6)
=00 JaQ, £l

Proof Let ny € N be such that

dist(0€2,,, 902) < 'f—g, Vn > ny.

For n > ng let w, be the solution of

L w, =0, in Qp,
wy, = W, on 0$2,.

In view of the proof of Lemma 6.8, there exists a positive constant ¢ = ¢(2, K, u)
such that

<c, Vn > ng.
L>®(Q2)
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Furthermore

wy (x0) = W(x)dog (x) < c. (7.7)
9,

We extend a)g‘fn to a Borel measure on 2 by setting a)g’n (Q\2,) = 0, and keep the
notation wg’n for the extension. Because of (7.7) the sequence {Wa)g’n} is bounded in

the space 9, (Q) of bounded Borel measures in . Thus there exists a subsequence,
still denoted by {ng’n }, which converges narrowly to some positive measure, say @,
which is clearly supported on 92 and satisfies ||@| gn, < c by (7.7). Thus for every
Z € C(RQ) there holds

lim ZWdwd = f Zdo.
! a0

n—oo aQn

Setting { = Z|3q and

z(x) :=/ Ky (x, y)C(0)dw™ (y)
Q2

we then have

z(x)
mm = =
d(x)—0 W (x)

and  z(xp) =/ tdw™.
a0

By Lemma 6.8, % € C(Q). Since iW lag, converges uniformly to ¢ as n — oo, there
holds

- zlae .
z(x0) =/ zLagnda)g’n = W%dwg’n — / cdo, as n — 00.
Ko 9, w Q

It follows that

gd&:/ tdo™, VI € C(ORQ).
Q2 Q2

Consequently dw = dw™. Because the limit does not depend on the subsequence it
follows that the whole sequence W(x)da)g’n converges weakly to ™. This implies
(7.6). O

Proof of Theorem 2.9 The proof which is presented below follows the ideas of the one
of [35, Th. 4.3]. Let B be a relatively closed subset of 2. We define

R,f (x) := inf {w(x) : Y is a nonnegative supersolution in € with ¥ > u on B }
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For a closed subset F of 02, we define
V¥ (F) := inf {Ryma(x) . FC G, Gopenin RN} .

The set function v* defines a regular Borel measure on 9€2 for each fixed x € Q. Since
V¥ (F) is a positive L, -harmonic function in  the measures v*, x € 2, are mutually
absolutely continuous by Harnack inequality. Hence,

VE(F) = fF dv*(y) = /F D gy,

dv*o
We assert that % =K, (x,y) forv*-ae. y € Q. By Besicovitch’s theorem,

AV VA
v Y T B (A, ()

for v-ae. y € 9. In view of the proof of Proposition 7.3, we can prove that the
function v* (A, (y)) is L,-harmonic and

A _

- 0, V& edIQ\A ().
et W) & \A ()

Proceeding as in the proof of Proposition 7.3, we may prove that % is a kernel
function, and by the uniqueness of kernel functions the assertion follows. Hence

vx(A)=/AKM(x,y)dvx°(y),
for all Borel A C 92 and in particular
u(x) =v*0RQ) = /asz K, (x, y)dv*(y).
Suppose now that
w0 = [ Kux,dviy)

for some nonnegative Borel measure v on 9€2. We will show that v(F) = v*°(F) for
any closed set F' C 9€2.
Choose a sequence of open sets {G,} in R¥ such that ﬂ}’i] G¢ = F and

V() = lim R9NGe(y),
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Since
REB(x) < RA(x), if BC A4,

we can choose {G¢} so that Gy C G¢, V€ > 1 and G; to be a C? domain for all

£ > 1. In view of the proof of Lemma 7.6, we may assume that RQOG’Z(x) =V
where V; is the L, -superharmonic function in Lemma 7.6 for D = G,. Furthermore

we have that R (x) = u(x) in 2 N Gy and RZ" (x) < u(x) for all x € Q.

We consider an increasing sequence of smooth domains {2} such that @, C Q41,
U, Qe = Q, G NQ C 2\, HN1(0Q) — HY1(3R). Let wgy be the L -
harmonic measure in 9€2,, (see (7.4)—(7.5)). Letn > £ and let v,, be the unique solution
of

L,v=0, in 2,
RQQG‘Z, on 982,.

Since R,imG‘ (x) is a supersolution in 2 we have R,imGk (x) > v,(x), x € 2,. Hence

RO 2 o) = [ RO 00 = [ RO du )
A 92,NGy

Now, by Lemma 7.6,

/ RO (3w () = / u(dwy ()

02,NGy 02,NGy
/ f Ku(y, )dv©)dw ()
3Q,NGy JoQ
/ f Ku(y, )dws () dv(E)
Q2 JoR,NGy

/ / Koy, E)dw (7)dv (&),
02,NGy

Let & € F. We have

I =K, (x0,§) =f Ku(y,§)dwg (y)+/ Ku(y,&)dwg (0.
92,NGy 92, \Gy
But

Ku(y,&) <cd(y)di (y), Yy € dQ,\Gy,

thus by Proposition 7.7 we have that

lim Ku(y,&)dwg (y) =0.
n—=00 Jaq \G,
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Combining all the above inequalities and using Lebesgue’s dominated convergence
theorem we obtain

n—oo

R (xg) > lim f [ Kutodu )ave) = v
092,NGy
which implies
VO(F) > v(F).

For the opposite inequality, let m < £. Then

ROGe (x) = f RO (3w (7)
Q2

= / RE"Gt (y)dwg) (y) + / R (n)dwg, (v).
QNG Q2 \G

In view of the proof of Lemma 7.6, we have that
thma‘f x) < Cd(x)d}? (x), Vx € Q\Gy,.

Thus by Proposition 7.7 we have

lim R2NGe (yydw ) (y) =0,
[—o00 3Q2\Gm

and

[ R awg o= [ utdw o)
9Q2¢NGy, 0Q2¢NGy

_ /  Kuly, v Edug, (1)
BQZOGW

/ / K, (v, £)dws (1)dv (&),
a9 JonG,,

If & € 9Q\G,,—1 we have again by Proposition 7.7 that

lim K, (y, s)dw (y)—O
£—=00 JHQ,NG

If£ € 3Q N Gy, then

f Kyu(y, )dw () < Ky, 6) = 1.
aﬂfﬁ m
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Combining all the above inequalities, we obtain

VO(F) = lim RTC (xg) < [ Ky (x0, £)dv(E) = v(0Q N 1),
{—o0 AQNG_1

which implies
VO(F) < v(F).

Thus we get the desired result. O

8 Boundary value problem for linear equations
8.1 Boundary trace

We first examine the boundary trace of K,[v].

Lemma 8.1 Let u < k*/4 and assume that Ay > 0. Then for any v € IM(02) we
have tr, (K, [v]) = v.

Proof The proof is the similar to the proof of Lemma 2.2 in [45] and we omitit. O

Lemma8.2 Let u < k2/4 and assume that Ay > 0. For t € IMM(Q; ¢y) we set

u = Gulr]. Then u € Wllo’cp(Q) foreveryl < p < % and try,(u) = 0 for any
N

pell, g9

Proof By [44, Theorem 1.2.2], u € Wllo’f () forevery 1 < p < % Let {2,,} be a
smooth exhaustion of €2 (cf. (7.4)) and v, be the unique solution of

L,SE'ZU =0, inQ,,
vV=u, on 0€2,.

We note here that v, (xg) = IBQ,. u(y)da)g“” (y). We first assume that T > 0. Let Gﬁ"

be the Green kernel of L, in 2,. Then G,Sf” (x,y) /" Gu(x,y) forany x,y € £,

x # y.Putting v, = 7lg, and u, = GS” [t,] we then have u, / u ae. in Q. By
uniqueness we have thatu = u,, +v,, a.e. in ;. In particular, u (xg) = u, (x0) + v, (xp)
and therefore lim,,_, o v, (xg) = 0. Consequently, tr,, (u) = 0.

In the general case, the result follows by linearity. O

Theorem 8.3 Let u < k2/4 and assume that A, > 0. We then have

(i) Let u be a positive L, -superharmonic function in the sense of distributions in Q.

Thenu € L' (2 ¢,,) and there exist T € MY (Q; ¢,) and v € MF(IQ) such that
u=Gylt]+Kgv]. 8.1)

In particular, u > K [v] in Q and tr; (u) = v.

@ Springer



Heat and Martin kernel estimates for Schrédinger operators. . .

(ii) Let u be a positive L, -subharmonic function in the sense of distributions in .
Assume that there exists a positive L -superharmonic function w such thatu < w in
Q. Thenu € L'(Q; ¢,,) and there exist T € IMT(Q; ¢,,) and v € M (IQ) such that

U+ Gyl = K,[v]. (8.2)

In particular, u < K, [v]in Q and tr,(u) = v.

Proof (i) Since L, u > 0 in the sense of distributions in €2, there exists a nonnegative
Radon measure 7 in 2 such that L, u = 7 in the sense of distributions. By [44, Lemma
1531, u € W27 () forany p € [1, 12%5).

Let {€2,} be a smooth exhaustion of 2 (cf. (7.4)). Denote by fo" and P,iz " the
Green kernel and the Poisson kernel of L, in €2, respectively (recalling that P,? "=
—SHGS"). Then u = (G,SZ" [t]+ IP’,iZ” [u], where G,sf” and ]P’,Sf" are the Green operator
and the Poisson operator for €2,, respectively.

Since 7 and ]P’,SB” [1] are nonnegative and G,SE" (x,y) /" Gu(x,y)forany x,y € Q,
x # y,weobtain 0 < G,[r] < u ae. in Q. In particular, 0 < G,[t](x0) < u(xp)
where xo € Q is a fixed reference point. This, together with the estimate G, (xg, -) >
c¢y, ae. in Q, implies T € M(L2; ¢p,).

Moreover, we see that u — G, [] is a nonnegative L, - harmonic function in .
Thus by Theorem 2.9 there exists a unique v € 9T (3€2) such that (8.1) holds.

(ii) Since L,u < 0 in the sense of distributions in €2, there exists a nonnegative
Radon measure 7 in 2 such that L,u = —7 in the sense of distributions. By [44,

Lemma 1.5.3],u € W27 () forany p € [1, 3%7). Let 2, and Pj;" be as in (i). Then
u —i—fo” [t] = IPff” [u]. This, together with the fact that u > 0 and P, [u] < w, implies

G,iz” [r] < w. By using a similar argument as in (i), we deduce that T € IM(2; ¢,,)
and there exists v € 9T (IQ) such that (8.2) holds. m]

8.2 Boundary value problem for linear equations

We recall (cf. (2.10)) that for i < k2/4 we have defined
X, (Q,K) = {g €HL.(Q) :¢,'c e H(Q:¢)), ¢, Lyt € LOO(Q)] .

Lemma 8.4 Let pu < k?/4 and assume that A > 0. Thenany ¢ € X, (2, K) satisfies
[¢] < cgy in Q.

Proof Let { € X, (€2, K) and g = L,,¢. Then there exist C = C(||gqb;1 ||LOO(Q) s Aw)
such that [g| < CA,¢y in Q. Set £ = C~'¢ !¢, Then,

/¢,3v5~wdx+m/¢,’i§wdx=1f¢,lgwdxsx,l/¢,%l/fdx,
Q Q ClJa Q
YO < v € Hy (Q: ¢)).
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By taking ¥ = (Z — 1) as test function in the above inequality, we obtain that £ < 1,
which implies ¢ < C¢, in 2. Applying the same argument to —¢ completes the
proof. O

Lemma 8.5 Letu < k2/4 and assume that 1., > 0. Given v € IM(Q; ¢,,) there exists
a unigue weak solution u of (2.9) with v = 0. Furthermore u = G, [t] and there holds

1
el 1@, = 51T lomig- (8.3)
m

Proof A priori estimate. Assume u € L'(S; ¢,) is a weak solution of (2.9) with
v =0.Let¢ € X,,(£2, K) be such that L, ¢ = sign(u)¢,,. By Kato’s inequality,

1
L,l¢l < Sign(f)Lug <¢p=1L, <X_¢M>
n

Hence by Lemmas 6.3 and 8.4 we deduce that |[¢| < id)“ in . This, combined with
(2.9) (for v = 0) implies (8.3).

Uniqueness. The uniqueness follows directly from (8.3).

Existence. Assume 1 = fdx with f € L% () with compact support in 2. The
existence of a solution u follows by Lemma 6.5.

Since f € L°(2) has compact support in €2, there exists a positive constant
¢ = c(supp(f), | flloos 2, K, ) such that | f] < c¢,,. It follows that u € X, (€2) and
therefore [u(x)| < C¢,(x), x € 2, by Lemma 8.4.

Next we will show that u = G, [ f]. Set w = G,[ f]. We can easily show that w
satisfies L, w = f in the sense of distributions in €2 and by (5.4) there exists a positive
constant C such that |w(x)| < C¢, (x) for all x € 2. Therefore,

Iu(X)N— w(x)] <C lim ¢>~,¢(X) —0
dist(x, F)—0 W (x) dist(x, F)=0 W (x)

for any compact set ' C 9€2. Furthermore, we note that [y — w/| is L -subharmonic
in 2. Hence from Lemma 6.3, we deduce that [u — w| = 0, i.e. u = w in 2.

Now assume that T = fdx with f € L' (; ¢u). Let {Q2;,} be a smooth exhaustion
of Q (see (7.4)). Set f,, = xq,8:(f) € L°°(2), where

n, ift>n,
gty=41t, if —n<t<n,
—n, ift < —n.

Then f, — fin L1(; o). Putu, :== G,[ f,]. Then

/ up Ly dx =/ fnC dx, VE € X, (2, K).
Q Q
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By (8.3) we can easily prove that u, = G.[f,] — Gu[f] := u in LI(Q; Du)-
Then by letting n — oo and using Lemma 8.4, we deduce the desired result when
fe L' Qo).

Assume finally that T € 9U(2; ¢,,). Let { f,,} be a sequence in LY(Q; @) such that
Jn—1in Cy, ($2), where Cy, (2) = {¢ € C(£2) : q);l{ € L°°(2)}. Then proceeding
as above we can prove that u, = G,[f,] = G,lr] :=uin LY(; ¢,) and u satisfies
(2.9) with v = 0. O

Proof of Theorem 2.12 First we note that by Theorem 2.8, we can easily show that

1KLLVl @i, = clViiomee)- (8.4)

Existence. The existence and (2.11) follow from Lemma 8.5 and (8.4).
A priori estimate (2.12). This follows from (8.4), (8.3) and (2.11).

Uniqueness. Uniqueness follows from (2.12).
Proof of estimates (2.13)—(2.14). Assume dt = fdx + dp and let {€2,,} be a smooth
exhaustion of Q. Let v} be the solution of

L"v =0, inQ,
v=Gy[r], ond2,,

and w, = Kj[v]. Then, by uniqueness, u = (fo” [tle,] + ve + wy and |u] <
Gulltll + w\v\ﬂ’v’]—a.e. on 0€2,.
Letn € cf(szn) be non-negative and such that n = 0 on 9€2,,. By [44, Proposition

1.5.9],
. an
lulLyndx < | sign(u)fndx+ [ ndlp|— |u| —-dS
Q Q o e, om

where n” is the unit outer normal vector on 9€2,,. Since |u| < G, [|t|] + w),| a.e. on

02, and % < 0 on 02, using integration by parts we obtain

an an /
— ds < — G ds = n L,ndx.
/asz,l |u|8n” B /asz,,( M[|T|]+wlvl)3nn Qn(v‘fler‘vl) ner

Hence
/Q IulL;deS/Q Sis,’n(u).f77dX+/s2 nd|p|+/Q (Vg +wp)Lundx. (8.5)

Let¢ € X, (2, K), ¢ > 01in . Let z,, and ¢, be respectively solutions of

Lyzn = Lyg, in ,, L&, = sign(zp)Lyg, in 2,
zn =0, on 982, =0, on 9€2;,.
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By Kato’s inequality, L, |z,| < sign(z,)L,z, in the sense of distributions in £2,.
Hence by a comparison argument, we have that |z,| < ¢, in €,. Furthermore it can
be checked that z, — ¢ and ¢, — ¢ in L' (2 ¢,) and locally uniformly in €.

Now note that (8.5) is valid for any nonnegative solution n € CCZ(SZH). Thus we can
use ¢, as a test function in (8.5) to obtain

/ lulsign(en) L g dx < / sign(u) f gudx + / Gl

Ql‘l Qn Qn

(8.6)

—i—/ (V7 + wpp)sign(zn) Ly gdx.
Qp

Also, since G[|7]] = Gy [Itlla,] + Uy a.¢. in €, we deduce that v — 0 in
LY(; ¢.) as n — oo. Thus sending n — oo in (8.6) we obtain (2.13) since ¢ > 0
in Q. Estimate (2.14) follows by adding (2.13) and (2.9). Thus the proof is complete
when ¢ is positive.

If ¢ is nonnegative we set { = ¢ + £¢,,. Then estimates (2.13) and (2.14) are valid
for ¢, for any ¢ > 0. The desired result follows by letting ¢ — 0. O

Acknowledgements We would like to thank the referee for the careful reading of the manuscript and
his/her useful suggestions. K.T. Gkikas acknowledges support by the Hellenic Foundation for Research
and Innovation (H.ER.I.) under the “2nd Call for H.FER.I. Research Projects to support Post-Doctoral
Researchers” (Project Number: 59).

Funding Open access funding provided by HEAL-Link Greece.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Pointwise estimates on eigenfunctions

In this appendix, we prove sharp two-sided pointwise estimates for eigenfunctions of
(2.1). Let B > O be small enoughand ' = 9Q or K. Let ng,r € C°(I'g) be such that
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0<ngr <1inRNandn=1inT 5. We set
2

¢p = —napae) + 774;3,35261((1 —ng.k) + 77/3,1(6?1)?) in Q.

Setting u = ¢gv in (2.1) we obtain that

;.2
Ja S5IVVPdx — [ov*(Ep AL + nr)dx
y = inf £

A.l
veCE(Q)\(0) Jo tpuldx A-D
By [22, Lemma 3.1] there exists By and a positive constant C = C(2, K, fo) such

th k2 I/l2 |M|2
|Vul?dx — — —dx > cf —————dx, YueCX(KgNQ).
KgyN% 4 Jkgne di Ko dig|Indg |?

(A2)

In view of the proof of Lemma 6.1, for ¢ > 0 there exist positive constants M =
M(2, K, ¢) and 81 = B1(R2, K, ¢€) such that the function

o Md ;3 Jv+te 3V
¢ = eMadl +ad* < ddy

satisfies LMq; <0in Kg N Q.
Now letu € C2°(Kpg, N ). Setting u = q;v, by (A.2) we have

» d2 2
/ d*d2* |V 2dx > c/ ————dx, YveCX(Kp NQ).
Kp, N2 Kgn@ dy | Indg|?

(A3)

Now, by [24, Theorem 3.2], there exists B2 = B>(£2) > 0 such that

2 1 I/l2 o Q
|Vul|“dx > 7 d—zdx, Yu € C7(828,).
Qp, Qp,

Setting u = dv, we have that there exists a positive constant 83 = 83(2) < B> such
that

1
/ d?|Vv|?dx > -/ vidx, Vv e CX(Q). (A4)
Qpy 8 Qp;

We denote by HO1 (2; dzcilz(’”’) the closure of C2°(2) in the norm

2
flael -

_ 2 12 72y. 2 232y
Hl(Q;dde(”) —/Qu d dK+dx+/Q|Vu| d dK+dx_
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Proposition A.1 Ler u < ]‘4—2 and B < 11_6 min(Bs, B1). Then there exists a minimizer
vy € HY(Q; d*d%) of (A1),

Proof Let {wy}r C C°(€2) be a minimizing sequence of (A.1) normalized by
/ fpwidx =1, kel
Q

First we note that ¢ g = d2J12(V+ in © and

2

8s
LpALg + Md—z

<Cddy*, inKg, (A5)
2
K

where C depends only on €2, K and fy. For any v € C2°(K g5 N 2) we have

Dy, —1 1 _1
f ddy Tty = - / 4272 (Vd? - Vdyldx
KﬁsﬁQ KﬁsﬂQ

so by integration by parts, Holder inequality, Proposition 3.1 (b) and (A.3), we find
that for any ¢ > 0 there exits 85 = B5(2, K, ¢) such that

~ _1 ~
f dd,z(y+ 2v%dx < e / \VoPd?dy dx, (A.6)
KﬁsﬂQ KﬂsﬁQ

Now, there holds

2
8p
‘CﬂAKﬂ +u—
dK

<(Cd, in Q\Kg,
2

where C depends only on €2, K and Sy.
Let r > 0. By (A.4) and proceeding as in the proof of (A.6), we have that for any
& > 0 there exists B¢ = B6(<2, K, &, r) such that

f dlvPdx < a/ \VoPd?d dx, Vv e C(Qp\K,).
Qﬂé\Kr Qﬁ6\Kr

Combining all above, we may deduce that for any ¢ > 0 there exists M (e, ) such
that

;2
2(¢5A i)d
Lo eee

Hence, the sequence {wy} is uniformly bounded in HO1 (2; dzci,z(y+). Thus there exists

< s/ 5 IVwe*dx + M.
Q

vy € HO1 (2; dzcilz(’”’) and a subsequence wy, denoted by the same index k, such that

wi—v, in H} (Q; d2dy); it follows that wy, — v, in L2 () and a.e. in Q.
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By compactness we have that wy — v, in L2(S2 {é). Moreover, from (A.6) and
(A.4) we have

7 &

2 B 2 B

wi | Lp AL + 1 dx—>/v LAl + 1 dx.

,/Q k < BESB d%{) Q 1 B2SH d12<

The desired result now follows by the lower semicontinuity of the gradient term. O

Proposition A.2 Let pu < % and B < f—émin(ﬁ3, B1). The function ¢, = v, g
satisfies

Ly =xdu, in Q.
and has the asymptotics
¢ = ddy, in Q.

Proof First we note that {g = dc?}?’. Furthermore (1 — ng.x)¢, € HO1 (2) for small
B > 0. Hence by standard elliptic theory, we have that for any r > 0 there exists
C =C(r, 2, K, ) such that

¢, < Cd in Q\K,,
which implies
v, <C in Q\K,.

We will show that v, > c¢in Q. Let A > —A,. Forany ¢ € (0, 1), there exists By < %
such that the function

¢ = eMlady +dd} ™" <ddf inKgNQ
satisfies
Lug+Ad<0, inKgNnQ. (A7)

Set ¢ = C§_1d~> = C(eMd + c?;), where C > 0 is a constant such that ¢ < %vﬂ in
0K g, N Q2. By (A.7) and because v,, satisfies the Euler equation for (A.1), we have

2

¢
—div(Z3V (¢ — V) — (@ — V) (gﬂAgﬂ + ud’j) +AL3(@ —vu) <0, in K NQ.
K
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By Theorem 4.5, we may take g = (¢ — v,)+ as test function in the above inequality.
Therefore,

§-2
/ 5| VglPdx — / g (CﬁACﬁ + u—ﬁ) dx + A/ g°¢hdx <0,
K[;OQQ KﬁoﬂQ dK KﬁoﬂQ

(A.8)

But, by (A.1) we have

;2
f ;,%lVngx—/ g (cpags +u-L ) dx zxuf g*t4dx.
K/goﬂQ KﬂoﬂQ dK KﬂoﬂQ

This, together with (A.8), implies g = 0 since A > —A,. Hence v, > ¢ in Q.
Next we will similarly prove that v, < ¢ in Q. As in the proof of Lemma 6.1, for
& € (0, 1) there exists By < % such that the function

¢ =eMlgarr —ddp™" < ddyt in Kgy NS

satisfies LMZ - )wg: > 0in Kg, N 2. Set ¢ = Cg“ﬁ_lf, where C > 0 is a constant
such that

£>2v,, in 3dKg NK.

This time we have

CZ
—div<§§V(vM - ;)) — (=90 (;ﬁAgﬁ + ud‘;) <Ml —0),  in KgNQ.
K

Hence, we may take g = (v, — ¢)4 as test function in the above inequality. Therefore,

2

¢
/ ¢51Vgl*dx +/ ¢ (¢pags+ns | dx < AM/ gjdx.
Kp,NQ KpyNQ dg KpyNQ

By (A.3), (A.5), (A.6) and the above inequality we obtain

d2g2 -
c ~2_2—~dx = )",LL 8 Cﬁdxa
Kgpn@ dy | Indg |2 K2

which implies that g = 0, provided By is small enough. Hence, v, < ¢ in 2 and the
result follows. O
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Appendix B: Applications to nonlinear problems

We present here some consequences of our results on the operator L, to the study of
the semilinear problem

Lyu+gu) =0, in Q, B.1)
tr, (u) =v,

where g : R — R is a nondecreasing continuous function such that g(0) = 0.
The above problem was treated by Marcus and Nguyen who consider a normalized
boundary trace tr*(u) (see [42, Definition 1.2]) instead of tr,, (u). The proofs of the
following theorems can be found in the first version of the present article which is
available in arXiv.

Theorem B.1 Let o < k?/4. We set p = min (%ﬂ, %i+++l) and in addition assume
that X, > 0. Then there exists a positive constant C = C(2, K, ) such that

K, [v] HL{;(QW) < Clvismaoe)

for any measure v € 9(I).

TheoremB.2 Let i < k*/4 and assume that Ay > 0. We set pyo = N—J_“} and
PK = % We then have

(1) Let v € M(9) with compact support F, where F C 0Q\ K. Then there exists a
positive constant C = C(S2, K, u, dist(F, K)) such that

[Ktv1] s g9, = € IV llmrsn -

(i1) Assume in addition that u < NTz. There exists a positive constant C = C(2, K, )
such that for any v € 9M(32) with compact support in K there holds

|Kulvl] 26 ., = € IVllomcagy -

(iii) Let u = NTz. Forany 0 < y < 2 there exists a positive constant C = C(2, i, y)
such that for any v € 9M(3) which is concentrated at O € 0S2 there holds

K, o1 N2 < Clvimaoe) -
Ly, 4 Z¢u
The above weak estimates lead to the following existence results.

Theorem B.3 Ler ju < k2 /4, Ay > 0,v e MOR) and g : R — R be anondecreasing
continuous function such that g(0) = 0. Assume that g(£K,[v+]) € L'(S: @u). Then
there exists a unique weak solution u of (B.1). Furthermore, there holds

u+Gulgw)] =Kyvl, a.e. inQ.
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TheoremB.4 Let i < k*/4 and let g : R — R be a nondecreasing continuous
function such that g(0) = 0. Assume that for some p > 1 there holds

/Oo 1~17P(g(1) — g(—1))dt < +oo. (B.2)
1

Letv € 9M(02). Then

(a) If (B.2) holds true with p = min (%, xL*H) then there exists a unique weak

+y+—1
solution u of (B.1).

(b) Assume that either k < N ork = N and p < N2/4. If v has support in K and
(B.2) holds true with p = %%:ﬂ then there exists a unique weak solution u of
(B.1).

(¢) If v has compact support in dQ\K and (B.2) holds true with p = %—ﬂ then there
exists a unique weak solution u of (B.1).

Moreover in all three cases the weak solution u satisfies

u+Gulgw)] =Kuvl, ae.in Q.
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