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Abstract

We study an initial-boundary value problem for the incompressible Navier—Stokes—
Cahn-Hilliard system with non-constant density proposed by Abels, Garcke and Griin
in 2012. This model arises in the diffuse interface theory for binary mixtures of viscous
incompressible fluids. This system is a generalization of the well-known model H in the
case of fluids with unmatched densities. In three dimensions, we prove that any global
weak solution (for which uniqueness is not known) exhibits a propagation of regularity
in time and stabilizes towards an equilibrium state as ¢ — oo. More precisely, the con-
centration function ¢ is a strong solution of the Cahn—Hilliard equation for (arbitrary)
positive times, whereas the velocity field # becomes a strong solution of the momen-
tum equation for large times. Our analysis hinges upon the following key points: a
novel global regularity result (with explicit bounds) for the Cahn—Hilliard equation
with divergence-free velocity belonging only to L(0, 00; H(l)’g (R2)), the energy dissi-
pation of the system, the separation property for large times, a weak-strong uniqueness
type result, and the Lojasiewicz—Simon inequality. Additionally, in two dimensions,
we show the existence and uniqueness of global strong solutions for the full system.
Finally, we discuss the existence of global weak solutions for the case of the double
obstacle potential.
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1 Introduction

We consider the initial-boundary value problem for the diffuse interface model describ-
ing a two-phase flow of incompressible viscous Newtonian fluids in the case of general
densities, which was introduced by Abels et al. [8] (also called AGG-model nowadays).
This model leads to the system

0 (p(@)u) +div (u ® (p(@)u +1J)) — div (v(§) Du) + VP = —div (V§ ® Vp) ,
divu =0,

¢ +u-Vo =div(m@)Vu),

w=—A¢+V(p),

(1.1)

in Q x (0, c0), where 2 is a bounded domain in Rd, withd = 2 and d = 3. The
system (1.1) is completed with the following boundary and initial conditions

u=0, 0,¢0=0u=0 ond2x(0,T),

. (1.2)
Uli=0 =uo, @li=0o=¢o inQ.

Here, n is the unit outward normal vector on 9€2, and 9, denotes the outer nor-
mal derivative on d<2. The state variables of the system are the volume averaged
velocity u: Q x [0,00) — RY, (x,1) + u(x,1), the pressure of the mixture
P:Q x[0,00) - R, (x,t) — P(x,t), and the difference of the fluids volume
fractions ¢p: Q x [0, 00) — [—1, 1], (x,1) — ¢(x,t). Here Du = %(Vu + (Va)h)
is the symmetrized gradient of u. The flux term 7, the density p and the viscosity v of
the mixture are given by

~_ PL—p 1+ 1—¢
J= 5 Vi, p(@) =p 2 + 2 7
1+ -
v(@) = vy 2¢’+v2 2¢, (13)

where p1, p2 and vy, v, are the positive homogeneous density and viscosity parameters
of the two fluids, respectively. Moreover, m: [—1, 1] — [0, co) is a mobility coeffi-
cient, which in general might depend on ¢. The homogeneous free energy density W
is the Flory-Huggins potential

W(s) = F(s) — %Osz = g[(l + 5)log(1 +s) + (1 — s5) log(1 —s)] — %Osz’ (1.4)
for s € [—1, 1] where 6 and 6y are constant positive parameters.

As mentioned before, system (1.1) and (1.2) is a diffuse interface model for the flow
of two incompressible and viscous Newtonian fluids, in which the macroscopically
immiscible fluids are considered to be (partly) miscible on a small length scale ¢ > 0.
Here the parameter ¢ is for simplicity set to 1. This model is thermodynamically
consistent as shown in [8] (see also [9]). The total energy associated to system (1.1) is
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NSCH system with unmatched densities

E(u, ¢) = Exin(u, ¢) + Efrec(¢)
1 1
= / 5p(¢)|u|2dx +/ §|V¢|2 + W () dx, (1.5)
Q Q

and the corresponding energy balance reads as

iE(u,¢)+/ v(¢)|Du|2dx+f m(@)|Vu)>dx =0 (1.6)
dr Q Q

for sufﬁcieNntly smooth solutions (u, P, ¢). Let us note that in the case p; = p, the
flux term J = 0 and the model simplifies to the well-known “Model H” (cf. [26,
28]). An alternative and thermodynamically consistent model was derived before by
Lowengrub and Truskinovski in [31]. From the mathematical viewpoint, the latter has
the disadvantage that the mass averaged (barycentric) velocity is not divergence free,
which is the case in the present model based on a volume averaged velocity. Moreover,
the pressure enters the equation for the chemical potential, which leads to additional
difficulties for the construction of weak solutions, cf. [2], and a strong coupling of
the linearized systems, cf. [4], where existence of strong solutions locally in time
was shown. To the best of our knowledge, there are no results on existence of strong
solutions for large times (in two space dimensions), regularity for weak solutions or
qualitative behavior for large times for this model. But from a physical point of view it
has the advantage that by the choice of the barycentric velocity the linear momentum
of the sum of both fluids is conserved, which is not the case in general for the model
under consideration (unless p; = p3). See also [35, Remark 2.2]. We also refer the
interested reader to [13, 16, 27, 34] for further (different) diffuse interface systems
modeling two-phase flows with unmatched densities. In the recent work [35], the
reader can find a unified derivation and comparison of the known diffuse interface
models from the physical point of view.

The existence of global weak solutions to the model (1.1) and (1.2) was proved in
[6, Theorem 3.4] in the case of a strictly positive mobility m. The corresponding result
in the case of a degenerate mobility in the Cahn—Hilliard equation (1.1)3_4 was shown
in [7]. The convergence of a fully discrete numerical scheme to weak solutions was
shown by Griin et al. [25]. The existence of strong solutions for regular free energy
densities W and small times was proved by Weber [36] (cf. also Abels and Weber
[10]). The existence of weak solutions in the case of dynamic boundary conditions
was proved by Gal et al. [20]. Results on well-posedness of this system with the free
energy density (1.4) in two-space dimensions, locally in time for bounded domains
and globally in time in the case of periodic boundary conditions, were achieved in
[21]. In three space dimensions, the existence of strong solutions locally in time was
obtained in [22]. The existence of weak solutions for a variant of (1.1) with a non-
local Cahn—Hilliard equation was shown by Frigeri [18, 19] for non-degenerate and
degenerate mobility, respectively, and for non-Newtonian fluids in Abels and Breit
[5]. Finally, a model for a two-phase flow with magnetic fluids, where (1.1) is coupled
to a gradient flow of the magnetization vector was studied by Kalousek et al. [29],
where the existence of weak solutions was proven.

@ Springer



H. Abels et al.

The main goal of the present contribution is to show regularity properties of weak
solutions of (1.1) and (1.2) and to study the convergence for large times in the case of
constant positive mobility. Let us first recall the result on existence of weak solutions
shown in [6] (in the specific case a(-) = 1). We refer to the end of this introduction for
the notation and, in particular, for the function spaces used in the following theorems.

Theorem 1.1 (Global existence of weak solutions) Let §2 be a bounded domain in R4,
d = 2,3, with boundary 92 of class CZand m: [—1,1] — (0, 00) be continuous.
Assume that ug € L2(Q), ¢o € H'(Q) with ||¢oll .~ < 1 and |¢o| < 1. Then,
there exists a global weak solution (u, ¢) to (1.1) and (1.2) defined on Q2 x [0, co0)
such that

u € BCy ([0, 00); L2 () N L*(0, 00; H , (),

¢ € BCy([0, 00); H'(Q)) N L% (10, 00); HA(R)), W' (¢) € L% (10, 00); L3 (), (17
¢ € L®(Q2 x (0, 00)) with |¢p(x,1)| < 1 a.e in Q x (0, 00),

1t € L2 ([0, 00); H'(Q)), Vi e L*(0, 00; L2()),

uloc

which satisfies
/ — (pu, w) + (div(pu Qu), w) — ((u ®J), Vw) + (v(¢)Du, Dw) dt
0
= / (uVe,w) dt (1.8)
0

forallw e Cf)’i,(Q x (0, 00)), and

oo

/ —(¢,8,v)+(u~V¢,v)dt:f —(m($)V, V) dt (1.9)
0 0

forall v € C§°((0, 00); C1(Q)), where
w=—A¢p+ W (p) ae. inQ x (0,00) (1.10)

aswell asu(-,0) = ug(-) and ¢ (-, 0) = ¢g in Q. In addition, the energy inequality
2 2
dr

t
.o+ [ [Vve@uo|,  + [Vae@veal,
< E@(). $(s) (1.1

holds for all t € [s, 00) and almost all s € [0, 00) (including s = 0).

Remark 1.2 The regularity properties (1.7) and the weak formulation (1.9), combined
with a density argument, entail that 9;¢ € LZ(O, oo; H'(R)). Asa consequence, (1.9)
is equivalent to

(0;p, V) + -V, v) + (m(@)Vu,Vv) =0, Vve HI(Q), a.e. in (0, 00).
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NSCH system with unmatched densities

Furthermore, arguing as in [1, 24] (cf. also [23]), it follows from (1.10) that ¢ €
L2,..(10, 00); W2P(Q)NLE ([0, 00); H*(Q)) and W' (¢) € L2, ([0, 00); L7 (Q)),

forany p € [2, 00) if d = 2 and p = 6 if d = 3. Finally, it holds that d,¢ = 0 almost
everywhere on 9€2 x (0, 00).

Throughout the manuscript we assume m = 1 for simplicity. Because of the energy
dissipation (1.6), it is inherently expected that, as time ¢ goes to infinity, the velocity
u(t) tends to zero and ¢ (¢) converges to an equilibrium of the Cahn—Hilliard equation/a
critical point of the free energy Ef... Moreover, one predicts the solution to become
regular for sufficiently large times. In the case of matched densities, i.e., p; = p2, such
aresult was shown in [1]. However, in the case of non-matched densities p; # 03, this
result for (1.1) was unknown so far. It is the purpose of this contribution to provide
such a result. Our main result describes the global regularity features and the large
time behavior of each weak solution given by Theorem 1.1 as follows.

Theorem 1.3 (Regularity and asymptotic behavior of weak solutions) Let Q2 be a
bounded domain in R4, d = 2, 3, with boundary dQ of class C> and m = 1. Consider
a global weak solution (u, ¢) given by Theorem 1.1. Then, the following results hold:

(1) Global regularity of the concentration: for any T > 0, we have

¢ € L®(z,00; WHP(Q)), 8¢ € L(r,00; H'(Q)), a
e L=(z, 00, H'(Q)) N L2 ([1, 00); H3(Q)), F'(¢) € L¥(r,00; LP(RQ)),

uloc

12)

forany2 < p <ooifd =2and p =6 ifd = 3. The Eq. (1.1)3 4 are satisfied
almost everywhere in Q x (0, 0c0) and the boundary condition oy = 0 holds
almost everywhere on 92 x (0, 00).

(ii) Separation property: there exist Tsp > 0 and § > 0 such that

lp(x, )] <1—8, Y(x,1) € Qx[Tsp,00). (1.13)

(iii) Large time regularity of the velocity: if Q is a C* domain, then there exists
Tr > 0 (possibly larger than Tsp) such that

u € L®(Tg, o0; Hy , (Q)) N L*(Tg, 00; HX()) N H'(Tg, 00; L2 (). (1.14)

(iv) Convergence to a stationary solution: (u(t), ¢(t)) — (0, ¢poo) in L[ZT (2) x
W2=&P(Q) ast — oo, forany e > 0, withany2 < p < oo ifd =2 and p = 6
ifd = 3, where poo € WHP(Q) is a solution to the stationary Cahn—Hilliard
equation

—A¢pso + ‘I'/(‘Poo) = Moo in 2,
O =0 on 082,

/ Poo(x)dx = ¢y,
Q

1.15
0 (1.15)
|€2]

where s € R.
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The structure of this contribution is as follows: in Sect.2 we show a result on
improved regularity for the solutions to the Cahn—Hilliard equation (1.1)3_4 with
given velocity u € L2(0, oo; H(l)’ - (§2)), which implies (1.12) and is the basis for the
following analysis. Next, we study the w-limit set of a weak solution to (1.1) in Sect. 3.
In particular, it is shown that u () =, 0 in L2(2) and that the w-limit set of the
concentration ¢ consists of stationary solutions of the Cahn—Hilliard equation (cf.
(1.15)). Moreover, we prove the strict separation property (1.13). In order to achieve
the regularity for large times (1.14), we first prove a result on weak-strong uniqueness
in Sect. 4. Combining this with the local existence result of strong solutions from [22],
we obtain that every weak solutions becomes a strong solution for sufficiently large
times in Sect. 5. The convergence to an equilibrium of the system is shown with the
aid of the Lojasiewicz—Simon inequality in the same Sect. 6. Furthermore, we prove
the global regularity in two space dimensions in Sect.7. Finally, we study the limit
¢ — 01in (1.4) and show that weak solutions converge (for a suitable subsequence) to
weak solutions to (1.1) in the case of a double obstacle potential in Sect. 8.

Notation. In the sequel, we will use the following notation

psx = min{p1, p2}, p* =max{pi, p2}, vs« =min{vy, vz}, v* = max{vi, v}

We denote a ® b = (al-bj)f’j:1 fora, b € R2.If X is a Banach space and X' is its
dual, then

(f.e)=(f.e)xx=r(, [feX. geX,

denotes the duality product.
For a measurable set M € RY and 1 < q < o0, L1(M) denotes the Lebesgue
space and || - || La(pm) its norm. We define

(f, o :/ f(x)g(x)dx forall f e LI(RQ), g€ qu(Q) with l—f-i,: 1.
Q q9 4

If g = 2, (-,-) stands for the inner product in L*(M). For any f € L'(M)

with |M| < oo, the total mass is defined as f = Wl\fM f(x)dx. The space
L9(M) := L9(M; R?) consists of all q-integrable/essentially bounded vector-fields.
For simplicity of notation, we denote the norm in LY (M) by || - ||¢(ar) and the inner

product in L2(M) by (-,-). Let X be a Banach space, LY9(M; X) denotes the set
of all strongly measurable g-integrable functions/essentially bounded functions with
values in X. If M = (a, b), we write for simplicity L?(a, b; X) and L% (a, b). Fur-
thermore, f € Li’oc([O, o0); X) if and only if f € L9(0, T; X) for every T > 0 and
L ([0, 00); X) denotes the uniformly local variant of L9 (0, co; X) consisting of all

uloc
strongly measurable f: [0, co) — X such that

1Al Le qo.00:%) = sup I lza i) < 00

For T < oo, weset LY ([0, T); X) := L9(0, T; X).

uloc
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Let @ C RY be an open bounded and connected domain with Lipschitz bound-
ary. The set W™9(Q2), m € Ry, 1 < g < oo, denotes the L7-Sobolev space, and
Whd(Q) = W{;” (2; R?) is the corresponding space for vector-fields. In both cases,

the corresponding norms are denoted by || - || w.q (). The space W(;" “1(€) is the closure

of CS°(S2) in W4 (), W9(Q) = wg"q’(sz)/ (where ¢’ is such that 5 + qi =1).
As usual, H™(Q) = W™*(Q) and H™(Q) = W™2(Q). Next, L (Q) and Hj ,(Q)
are the closure of C§% (2 RY) = {¢ € CP(Q:RY) : dive = 0} in L*(Q) and
H' (), respectively.

Let/ = [0,T]withO < T < oocorlet! = [0,00)if T = oo and X be a
Banach space. The set BC(/; X) is the Banach space of all bounded and continuous
f: 1 — X equipped with the supremum norm, and BUC(/; X) is the subspace of
all bounded and uniformly continuous functions. We define BCy,(/; X) as the topo-
logical vector space of all bounded and weakly continuous functions f: I — X. We
denote by COoo (0, T; X) the vector space of all smooth functions f: (0,7) — X

with supp f é (0, T). Moreover, for 1 < p < oo, W]’l’(O, T; X) is the space of all
feLPO,T; X)withd, f € LP(0, T; X), where 9, denotes the vector-valued distri-

butional derivative of f. The set Wull’oi ([0, 00); X) is defined in the same way, replacing

LP(0,T; X) by L?,_ ([0, 00); X). Lastly, we set H'(0, T; X) = W'2(0, T; X) as

uloc
well as H)| ([0, 00); X) := Wll’ozc([(), 00); X).

u

2 On the Cahn-Hilliard equation with divergence-free drift

In this section we prove new regularity results for the Cahn—Hilliard equation with
divergence-free drift

in Q x (0, 00), 2.1)

hp+u-Vo=Ap
w=-A¢+V(p)

subject to the boundary and initial conditions

(2.2)

On = gt =0 on Q2 x (0, 00),
Gli=0 = ¢o in Q.

We first report the following well-posedness result proved in [1, Theorem 6].

Theorem 2.1 Let Q be a bounded domain in RY, d = 2,3 with C3 boundary.
Assume that ¢g € H'(Q) N L2(Q) with |¢ollLo) < 1 and |¢o| < 1, and
u € L0, oo; L?, () N L2(O, o0; H(l)’(7 (R2)). Then, there exists a unique global
weak solution ¢ to (2.1) and (2.2) such that:
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(1) The weak solution satisfies

¢ € BC(10.00); H'(2)) N Lo (10, 00): H2(2)) N Lo (10, 00); WP (),
¢ € L*°(Q x (0, 00)) such that |¢(x, )| < 1 a.e. in Q x (0, 00),
d¢ € L*(0, 00; H(Q))),

1€ L2 ([0, 00); HY(Q), F'(¢) € L2..([0, 00); LP()),

uloc uloc

forany2 < p <ooifd =2and p =6ifd = 3.
(2) The weak solution solves (2.1) in a variational sense as follows:

(9, v) + -V, v) + (Vu,Vv) =0, Yve HY(Q), ae. in(0,00), (2.3)

where  is given by = —A¢ + V' (). Moreover, 9,¢ = 0 almost everywhere
on 32 x (0, 00), and ¢ (-, 0) = ¢g in Q.
(3) The weak solution satisfies the energy equality

t t
Eiree (1)) + / IV g ds = Eiree (1) — / (- V. 1) ds, 2.4)

forevery) <1 <t < o0.
4) Let Q = Q x (0, 00). The following estimates holds

1612 0 ocsrtc@ + 1981220 moe @y + 1VE 2 gy = € (14 Enreo(@0) + Il g )
2.5)

19132 o mrwarian +IF @I oo inay = Co (1+ Eree@) + lul2q)) - (2.6)
2
4 2
19135 o ner iy = € (14 Enee@0) + i}z 0)) 2.7

for2 < p <ooifd =2and p = 6ifd = 3. The constants C and C, are
independent of 0, u and ¢y.

Remark 2.2 The following comments concerning Theorem 2.1 are in order:

(1) A closer look at the proof of [1, Theorem 6] reveals that u € L%(0, oo; H(])’ - (£2)
is sufficient to show the desired claim in Theorem 2.1.

(i) The regularity ¢ € Lﬁloc((), 00; H%(R)) is not shown in [1], but the proof can be
found in [23].

The propagation of regularity of the weak solutions and the existence of strong
solutions have been first shown in [1, Lemma 3]. We report it here below for clarity
of presentation.

Theorem 2.3 Let the assumptions of Theorem 2.1 hold. Assume that k = 1 if ¢pg €
H*(Q), no = —A¢g + V(o) € HY(Q) and dpp9 = 0 on 9, whereas k(1) =
1

+ \2 .
<l_+t) otherwise.
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1. If du € L}, ([0, 00); L2(R)), then the weak solution to (2.1) and (2.2) satisfies

uloc

Kdp € L0, 005 H'(R))) N L2, ([0, 00); H' (),
Ko € L*>(0, oo; WZ”’(Q)), KF/(¢) € L*(0, oo; LP(R)),
Kk € L0, T; H'Y(R)),

forany2 < p <ooifd =2and p =6ifd =3.
2. Ifu € B‘j‘oouloc([o, 00); H* (2)) N BCy ([0, 00); Lg(Q))for some —% <s5=<0
3 00,

and o € (0, 1), then the weak solution to (2.1) and (2.2) fulfills
kg € C*([0,00); H'(R)) N BY o 410 (10, 00); H'(R)).

Theorem 2.3 provides two regularity results for the weak solutions to the Cahn—Hilliard

equation with divergence-free drift by requiring that either d;u € Lll110C ([0, 00); L2(2))

oru € B‘}{OO ulOC([O, 00); H¥(2)) for some —% < s <0and a € (0, 1), in addition
i ’

tou € L*(0, oo; Lg(Q)) N L2(O, o0; H(l) » (82)). Although the assumption in the
second part of Theorem 2.3 can be proverf for weak solutions of (1.1) in the case
of matched densities (namely for the Model H) as in [1], it does not seem possible
for the case with unmatched densities since the weak formulation only gives some
control of 9, (ou) |y (@) To overcome this issue, we will now show that the condition

u € L*0, oo; H(l), , (§2)) is sufficient to gain full regularity for the solutions to (2.1)
and (2.2). We expect that such result will be useful for other diffuse interface models
with hydrodynamics.

Theorem 2.4 Let Q be a bounded domain in RY, d = 2,3, with C3 boundary and
the initial condition ¢g € H*(Y) be such that lpollLe@ =< 1, |¢70| <1, uo =
—Ado+V(¢o) € H' (Q) and du¢po = 0 0n 9Q. Assume thatu € L*(0, oo; Hj ().
Then, there exists a unique global (strong) solution to (2.1) and (2.2) such that

¢ € L=(0, 00; WHP(Q)), ¢ € L0, 00; H (),

¢ € L®(Q x (0, 00)) with |¢p(x,1)] < 1a.e. in Q x (0, 00), (2.8)
1€ L0, 00; H'(2)) N L}, (10, 00); H3(R)), F'(¢) € L™(0, o00; LP (),

forany2 < p < ooifd = 2and p = 6 if d = 3. The strong solution satisfies
(2.1) almost everywhere in Q2 x (0, 00) and 0,¢ = 0 = 0 almost everywhere on
a2 x (0, 00). Moreover; there exists a positive constant C depending only on 2, 9,
0o, and ¢o such that

IV HLOO((),OO;U(Q))
|

00 2
sz(}|v(—A¢o+\V @0) |72 + € /0 ||w(s)||iz(m+||w<s>||iz(mds) (2.9)

o0
X exp (Cfo ||Vu(s)||2Lz(Q) ds)
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and

* 2
‘/(; ||vat¢(s)”L2(Q) ds

<6 (l}v (—Ago + ¥ (¢0)) ||iz<m +C fo Va6 1720 HIVEO) 1720 ds) (2.10)

x (1 + (/0 ||Vu(s)||i2(9) ds> exp <2c/0 ||Vu(s)||i2(9) ds>>.

In particular, the constant C is bounded whenever 0 is restricted to a bounded interval.
In addition, ifu € L>(0, oo; L2) N L%(0, oc; H(l),a(Q)), then 9;¢ € L (0, oo;

HY(Q)).

Proof Let us assume first that u € C3°(0, T; H(l), L ()N H?($2)) and the initial con-

dition ¢ is such that

¢ € H(Q) with [/l Loy < 1 and dpghp = 0 on Q. @2.11)

Forany « € (0, 1), we consider the viscous Cahn—Hilliard system with divergence-free
drift

P +u-Vo =Ap

in Qx (0,7), 2.12)
w=adp—Ap+ F'(¢) — 6o

which is equipped with the boundary and initial conditions
o =0yt =0 ondQ2 x (0,7T), ¢li=0=¢o in Q. (2.13)
Thanks to [22, Theorem A.1], there exists a unique solution such that
¢ € L>(0,T; H3(Q)) with max lp(x,t)] <1,
(x,1)e2x[0,T]

9¢ € L, T; H(Q)) N L2, T: HX(Q) N W20, T; LA(Q)), 214
we L®0,T: H(Q) NWH2(0, T: L*(Q)).

The pair (¢, ) satisfies (2.12) almost everywhere in 2 x (0, T'), the boundary con-
ditions d,¢ = 9, = 0 almost everywhere on 92 x (0, T) and ¢ (-, 0) = ¢o(-) in
Q.

We now proceed with the conservation of mass and the first energy estimate. Inte-
grating (2.12); over €2, exploiting the incompressibility and the no-slip boundary
condition of the velocity field u, we infer that

/qﬁ(t)dx:/ dodx, Viel0, Tl (2.15)
Q Q

@ Springer



NSCH system with unmatched densities

Multiplying (2.12); by u, integrating over 2 and exploiting the definition of u, we
find for almost every ¢t € (0, T)

d

1
— (/ = |V + ¥ (g) dx) +f IVil* + |3 ¢]* dx
dt Q2 Q

+/u-V¢u,dx=0. (2.16)
Q

Since u(t) belongs to H(l),G(Q), we have that fQu - Vo udx = —fQu -Vu¢gdx.
Then, thanks to the L bound of ¢ in (2.14), we easily reach

d /1|V¢|2+w<¢>d +1/ IVul*d +/ 19,* dx < L a2
—_— — X — X X —||U .
dr 92 2 Q H QOl d -2 LX)

An integration in time on [0, ¢], with 0 < ¢t < T, yields

T T
sup [V ()72 g, + f IV (1172 g ds + 20 / 18 (1172, ds
t€[0,T] 0 0 (2.17)

T
< 60121 + IVoll7 g + 2/9 W (o) dx + /0 lee(s)175 g ds-
By using (2.15), we obtain

1Pl oo, 7:m51 ) = Co. IVRll20,7;02(0) = Co,
Vellddll20.7: 22 = Co (2.18)

where the constant Co depends only on Egree (), |dol, 0o, € and el 220, 7:22(2))>
but is independent of @ and depends on 6 only through Efee (o).

Next, we derive some preliminary estimates which will play a crucial role for the
subsequent part. We recall the well-known inequality (see, for instance, [33])

/Q |F'(¢)] dx < C) /Q F'(¢) (¢ — do) dx + Ca, (2.19)

where the positive constant C; only depends only on ¢y and C, only depends on 6
and ¢. We also observe that C5 can be chosen to depend only on ¢y if we restrict 6
to lie in a bounded interval. This can be seen if we consider (2.19) for & = 1 and then
multiply the equation by . Multiplying (2.12); by ¢ — g (cf. (2.15)), we find

/|V¢|2dx+/ F'(¢) (¢ — ¢o) dx
Q Q

:—a/;zatqb(q)—%) dx+/9(u—ﬁ)¢dx4r90/9¢(¢—¢0) dx.

@ Springer



H. Abels et al.

By the generalized Poincaré inequality and the L* bound of ¢, we reach

/Q IF'@)] dx < € (1+ Vil 2 + bl 1200 - (2.20)

where C onl_y depends on the Poincaré constant, 6y, C1, C> and 2. Then, since &t =
F’(¢p) — 6o, we infer from (2.19) and (2.20) that

7l < C(1+ 1Vl 2 +@llddll 2 g)) -
As a consequence, we deduce that
il gy < € (1+ 11Vl 2 + @llddll2g)) - (2.21)

Besides, multiplying (2.12), by |F’ (®)|P2F'(¢), with p > 2, and integrating over
Q, we find

/Q (p = DIF' @I 2F" (@) |VI dx + | F' ()| g

=/Q(—0taz¢>+u+90¢) |F'(¢)|IP2F'(¢) dx.

Here these computations are justified since ¢ is separated from the pure phases (cf.
(2.14)). Then, by the Holder inequality, it follows that

IF' @)lLr@) < C (1+alddllire + Il @) - (2.22)

Combining (2.22) with (2.12),, the elliptic regularity of the Neumann problem yields
that

Ipllwr) < C (1 +alddlr@ + Ity @) - (2.23)

In addition, we also find by comparison in (2.12); that

10: 01l 1y < C (IVRll 2@y + lull12q)) - (2.24)

The positive constants C in (2.21)—(2.24) may vary from line to line, but they only
depend on %, 0, 6o, 2 and Cq, C>. In particular, they are all independent of « and
stay bounded for 6 belonging to a bounded interval.

We now carry out the higher-order Sobolev energy estimates. Multiplying (2.12);
by ;¢ and integrating over €2, we find

——|IVull +/ 8¢8/de+/u-v¢8,udx=0.
Zdt LZ(Q) o 13 t o 3
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By definition of u, we observe that

abande = S L a.012 va,p2d
o t¢ t L X_EE” t¢”L2(Q)+ Ql I¢| X

+/ F”(¢>|at¢|2dx—eo/ 191 dx.
Q Q

Similarly, by exploiting the incompressibility and the no-slip boundary condition of
the velocity field, we notice that

/ u-Vodpudx = / u-Vo (ad’p — Adp+ F'($)dd — 00d¢) dx
Q Q

:i<a/u-v¢8,¢dx>—a/ 6,u~V¢8,¢dx—a/u-Vthﬁthﬁdx
dr Q Q Q

=0

+/ V(u.v¢).va,¢dx—/ - V) (Vo - n)do
Q 194

=0

+/ u-(F"(¢)Ve) 8¢ dx —90/ u-Vdodx
Q Q
= i (a/ u- V¢8,¢dx> +otf ou - Vo ¢pdx
dr Q Q
+/ <VuTv¢)-va,¢dx
Q
+/ (V2pu) -V3,¢dx+/ u-V(F'())d¢dx
Q Q
—90/ u-Veo o, ¢ dx
Q
= i <a/ u- V¢3,¢dx> +a/ ou - Vo ¢pdx
dr Q Q
+/ <VuTV¢)-V8,¢dx
Q
+/ (V2pu) ~V81¢)dx—/ u-Vp F(¢)dx
Q Q

+90/ u-Voppdx.
Q

Then, we arrive at

d /1 o
— =1Vl 0 + =301 +a/u-V¢8¢dx)
dr (2 2@ T Pl o !

+/ |Vat¢|2dx+/ F"()[8,61? dx
Q Q

=90/ 1862 dx —a/ a,u-va,¢¢dx—/ (VuTV¢>)-V8,¢dx
Q Q Q
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—/Q (v2¢ u) Vo dx

+/ u-vVop F'(¢)dx —90/ u-Vooodx. (2.25)
Q Q

In order to estimate the terms on the right-hand side of (2.25), combining (2.22) and
(2.23) with (2.21) through the Sobolev embedding theorem, we have

Il warie + IF' @llLr@ < aClldipliLr@ + Cp (1+ 11Vl 2) . (2.26)

where2 < p < o0ifd =2 and p = 6if d = 3. Here the positive constants C and C),
are independent of « and remains bounded for 6 in a bounded interval. Recalling that
0:¢ is mean-free, thanks to (2.24) and the generalized Poincaré inequality, we obtain

oo [ 1068 dx < CIVABI 12010l
Q
1 2 2 2
= S8 1320+ C (Il 2q) + VA1) -

By using the L* bound of ¢ in (2.14), we also get

Ol/ ou - Vorppdx| < 05||atu||L2(Q)||V3t¢||L2(Q)||¢||L°°(Q)
Q

< invam&nzz +a*Clldul?, o
- 12 L*(R2) L*(R2)

Exploiting (2.26), the Gagliardo—Nirenberg interpolation inequality and the Sobolev
embedding theorem, we infer that

/Q (vﬂw) V¢ dx

< Va2 IVOllL=@ IVl L2(q)

< L IvaglE, T T+ ClIVal]

21 V1) + IVl (1 +a ||a,¢||L4(Q> + VRl

< 24||va,¢||Lz(Q) T 2 CIVu ) 111 2 0 IV

+ ClIVal g (1+1V0l22 )
< 12||va,¢>||Lz(Q)+o:8cnw|| 22y 1901172
+ ClIVul g (14 1V g))
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and
/Q(Vz(ﬁu) Vo pdx| < l@llw2s3 @) llell Lo I VIrdliL2 ()
<C (1 +Ol||3t¢||L3(Q) + ||VM||L2(Q)) ||V"||L2(Q)||V3t¢||L2(Q)
1
< 51 IV0I72q) + > ClAl 20 I Vbl 20 I VHl 72 g
+ ClIVul g (14 1Vl )
1 2 4 2 4
= 5 IV0I72q + " ClAIL g I VHl g,
+ ClIVal g (14 1Vil2(0))
as well as

/;;4 -V F'(¢)dx| < ||u||L6(Q) ||V3t¢||L2(Q) ||F/(¢)||L3(Q)

1 2 2 2 2 2
< 5 IV g, + ClIVula g, (14100135 g, + VA2 0))

IA

1
—IV39lI32,.) + 2> Cll DIl 20 IVHD 20 IV,
2% L2(Q) ) ( L2(Q)
2 2
+ ClIVa 2 q) (14 1V )
1 2 4 2 4
S E”vat¢|ll‘2(g) +O( C||al¢||L2(Q) ”Vu”LZ(Q)

+ ClIVal g (1+1Viela(g)) -

By using (2.14), we find that

IA

C||”||L2(Q) ||V3t¢||L2(Q) &Nl Loo )

90/ u-Vop¢dx
Q

< V0l + Clul?

=MVl L)
The positive constants C in all the above estimates depend on the parameters of the
system, such as 6y, 0, 2 and ¢, but are independent of «, u, T and the norms of the

initial condition ¢g. They also are uniformly bounded for # from a bounded interval.
Therefore, collecting the above inequalities, we end up with the differential inequality

4 (Livur, o + ClaiR o + fu Vo d¢d +1f|va¢|2d
dt 2 I'L LZ(Q) 2 t LZ(Q) o o t X 2 o t X

< C(IVul2sq + I Vults o + o[ Va3 L T
= Wlipaq) T IVRI 20y T IV ) ) \ STV L2 @) T L 10 P2 ()

+aClldulls g + ClIVallF2 g +CIVRlTa g (2.27)
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In light of (2.18), we observe that

< alullLeo@ VOl L2 19:P1l L2

a/ u-Voopdx
Q

o
< 2138172, + aCollul i g, (2.28)

Owing to this, we rewrite (2.27) as follows

d 1||v 122 o+ S8, + f Vo 0,0 d +1/ [Vo,p|>d
— — — u. —
d[ 2 M LZ(Q) 2 1 LZ(Q) o o t X 2 o t X

(2.29)
1 2 o 2
S ]:1 (E”VM”LZ(Q) + 5”81‘¢”L2(Q) +O{\/§;u : V(b at¢dx) + fZa
where
Fi = C (IVuls g + I Vals g, + e IVuls ).
(2.30)

Fo = C (g + V01220 H1 Vit ) ) + @ Collul} e gy Fi-

Since u € Cé’o o, T; H(l)’U(Q) N HZ(Q)) by assumption, it is easily seen that Fi,
Fre L! (0, T). Thanks to the Gronwall lemma, we deduce that
sp (19010 + Ll06 1 +a/ u -V o dx

p S VR @) T 1012 ) o 1

t€[0,T]

1 T
< | IV gy + S 100 O ) +a /Q u(0) - Vo (0) ¢ (0) dx + /O Fals)ds

T
X exp (/ Fi(s) ds) .
0

By exploiting (2.28), we then arrive at

=0

2 2
sup (Il g + @l08122,0))
1e[0.7] L*(2) L*(©)

T T
< (2||w(0)||iz(m + 201 (0) 172 gy + 4 /O fz(s)ds) exp ( /0 Fi (s)ds)
+ 4 Colle| 7 oo g3)-
We observe that 9;¢ € BC([0, T]; H'(€)) and & € BC([0, T]; H'()) due to

(2.14). By comparison in (2.12), it follows that —A¢ + W' (¢p) € BC ([0, T1; H'(Q)).
Now, multiplying (2.12), by 9;¢ and integrating over 2, we have

a3l 720, + (A + W' (@), 3¢) = (1, ).
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By using (2.12)1, we notice that
01720, + (~A0 + W' @). App—u- V) = (. A —u - V).

Integrating by parts and exploiting the boundary conditions of © and u, we deduce
that

13912210y + VL1220 = (V(=Ap + W (). Vit — pu) + (Via., pu).

By continuity of each term in the above equation and recalling that u € C§°(0, T’;
H{ (), we infer that

a[3:¢ )72, + V1O = (V (=Ado + ¥ (@) , V(0))
which, in turn, entails that
2
alldp O3 + IVO)72g) < 2|V (=20 + ¥'(@0)) [ 12y - (23D

As a consequence, we find

sup (IVROI32q) + b (0122
tel0,T]

T
< (4 |V (= Ao + ¥ @0)] 720, +4/0 fz(s)ds)

T
X exp </O Fi(s) ds) +4aCollullfx(q)- (2.32)

Besides, integrating (2.29) on [0, T'], and exploiting (2.28), (2.31) and (2.32), we have

T
/0 IV ()22, ds < 2|V (— Ao+ ¥'(60)) 720,

T
+6 <||v (= Ao +W'60) |2 + /O Fa(s) ds)
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T T
X (/ fl(s)ds> exp (/ fl(s)ds)
0 0

T T
~|—805C0||u||%90(9)/ Fl(s)ds+2f Frds. (2.33)
0 0

Sincea € (0, 1], u € C°(0, T; H(l)’U(Q) NH2(Q)), —Apo + V' (¢) € H' (), and
(2.18), we thus conclude that

||VM||L°0(0,T;L2(Q)) < Ky, \/5||at¢||L0<>(o,T;L2(Q)) < Ko,
||V3t¢||L2(o,T;L2(Q)) < Kp. (2.34)

It easily follows from (2.21) and (2.26) that

el oo, m1 () < Kis Nl 1:m2002)) < K1, (2.35)

and

ol 20.7:w2r (@) + I1F @207 02 < Kp- (2.36)

where 2 < p < c0ifd =2 and p = 6if d = 3. The constants Ko, K1 and K, (for p
as mentioned above) are independent of « and remain bounded for 6 from a bounded
interval.

Let us now consider a sequence of real numbers «,, € (0, 1] such that o, — 0 as
n — oo. Thanks to the above analysis, there exists a sequence of pairs (¢q,, , Mo, )
such that

8z¢an +u- V¢a,, = Allg,

, ae.in Q x (0,T), (2.37)
Mo, = anat¢an - A¢an + F (¢a,,) - 90¢01,,

and 0y, = Onle, = 0 almost everywhere on 92 x (0, T'), ¢q, (-, 0) = ¢ in Q.
Each pair (¢q,, , [1a, ) satisfies (2.34)—(2.36) replacing (¢, ) with (¢q,, e, ). Thus,
there exists a subsequence (still denoted in the same way) (¢q,, , to,) such that

bo,—¢  weakly in L2(0, T; W>P(R)),
bo,—¢  weakly in WI2(0, T; H'(Q)), (2.38)
Mo, —1  weak-starin L=, T} H'(Q)),

forany2 < p < o0 ifd =2 and p = 6 if d = 3, and, by the Aubin-Lions theorem,
G, = @ strongly in BC ([0, T']; Wl’q(Q)), (2.39)

forall2 < g <ocoifd =2and 2 < g < 6if d = 3. In order to pass to the limit in
the logarithmic function F’, we recall from (2.14) that

¢a, € LP(2 x (0, T)) suchthat |¢g,(x, )] <1 ae.in Q x (0, T).
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Thanks to (2.39), we infer that ¢,, — ¢ almost everywhere in 2 x (0,T). As a
consequence, we have that

¢ € L®°(Q x (0,T)) with |¢(x,1)] <1 ae.in  x (0, T).

Then, F'(¢a,) — ﬁ(gb) almost everywhere in Q2 x (0,7), where f’(s) =
F'(s) if s_€ (=1,1) and F'(£l) = Zoo. By the Fatou lemma and (2.36),
Joxo.1) |F'(¢)|>dxds < K3, which implies that F'(¢) € L*(Q2 x (0, T)). This
entails that

¢ € L®°(Q2 x (0,T)) suchthat |¢(x,1)| <1 ae.in  x (0, T),

and F’(d)) = F'(¢) almost everywhere in  x (0, T'). Owing to this, and by (2.36),
we conclude that

F'(¢a,)—F'(¢) weakly in L*(0,T; LP(Q)),

for any p as above. Thus, letting n — o0 in (2.37), we obtain that (¢, u) solves the
Cahn-Hilliard system with divergence-free drift

hp+u-Vo =Aun

, ae.in 2 x (0, 7). (2.40)

n=—A¢+ F(¢)— b
In addition, 9,¢ = 9« = 0 almost everywhere on 92 x (0, T') and ¢ (-, 0) = ¢p in
2. Furthermore, by the lower semi-continuity of the norm with respect to the weak
convergence, we can pass to the limit in the left-hand side of (2.32) and (2.33). In

order to pass to the limit on the right-hand side containing fOT IV g, () ||i2 @ ds, we
need to show that, up to a subsequence,
’ 2 ! 2
/(; IV i, (S)”L2(§2) ds — /0 1V (s) ||L2(Q) ds asn — oo. (2.41)

To this end, by the above convergences, we first observe that

T T T
/ /u.VMa" ba, dxds—)/ /u.V;updxds, oc,,/ ||a,¢an(s)||iz(mds—>o,
0 Q 0 Q 0
and
nlingo Efree((pan(T)) = Efree(¢(T))-

The latter follows from (2.39) and F € (-1, 1]). Therefore, by integrating the
energy identity (2.16) written for (¢, , ite,) and taking the limit as n — oo, we
obtain
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T T
Efree(¢(T)) + lim / IIVMa,l(S)IIiz(Q) ds = Efree(¢o)+/ /u Ve pdxds.

On the other hand, thanks to Theorem 2.1, the solution (¢, 1) to (2.40) satisfies the
following energy identity

T T
Efree(¢(T))+/0 ||VM(S)||i2(Q) ds = Efree(¢o)+/0 /Qu-V/ubdxds.

Computing the difference of the two equations above, we deduce (2.41). Thus, we
conclude that

IVl oo 0,7:22(02)) < 2 (HV (—A¢o + V' (¢0)) ”il(sz)

1

T 2
+{1£ HVumn@%m+va@n@qQ¢h) (2.42)

T
X exp (C/O ||Vu(s)||iz(m ds)

and

T
2
/0 1V8: (51125 ds

T
<6 (Hv (= Ao+ 9'@0) |12 + € /0 Va6 1720 HIVEO) 1720 ds) (2.43)

T T
x (1 + (c /0 Va7, ds)exp (c /0 IVa($)1172q ds)),

where the positive constant C depends on 6y, 6, 2 and %, but is independent of u, T
and the norms of the initial condition ¢q. In particular, C is bounded if 6 belongs to
a bounded interval. Then, repeating the argument to obtain (2.20) and (2.21) without
the («) viscous term, we easily recover that

il L0, 7: 11 () < Ro- (2.44)

Since 9;¢ is mean-free, we also have

19: Pl 20,711 () < Ri1- (2.45)

By recalling the inequality proven in [1, Lemma 2] for (2.40),

I@llw2r @) + IF' @llr@ < Cp (14 1Vl 2q) - (2.46)

where 2 < p < o0 ifd =2 and p = 6 if d = 3, we obtain that
@1l oo 0.7 w2r ) + 1 F (@)L, 7:L0(2) < R2(p). (2.47)
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Finally, since

lw - Vol a1 ) < lullz20,7: 11 @) IVOlLe©.7:079)

el z20,7: 26 @) 19l Lo, 7: w23 (02))»

we easily obtain by the elliptic regularity theory applied to (2.40); that
Il 20,7153 (0)) = Ra(T). (2.48)

Here the positive constants Ry, R, R3 and R4 depend on 6y, 6, €2, %, V( — A¢o +
W (¢0))|| 120 A4 l1#ll 120 711} (q)- They all remain bounded for ¢ from a bounded
interval. Additionally, R4 is bounded for 7" bounded.

We are left to show that the existence of the unique solution ¢ to (2.1) and
(2.2) satisfying (2.8) holds for any divergence-free velocity u € L2(0, oo; H(l)’U(Q))
do| < 1,
o = —Adpy + V(gy) € HI(SZ) and 9,99 = 0 on 9. For this purpose, since
Cy° (0, T; H(l)’a () NH2(R)) is dense in L2(0, T; H(l)’g(Q)), there exists a sequence
{u,} € C°(0,T: Hj ,(Q) N HA(Q)) such that w, — u in L*(0, T; H ,(Q)) as
n — o0o0. Besides, it was shown in [24, proof of Theorem 4.1] that there exists a
sequence {¢g .} C H 3(Q) such that

1. There exist m € (0, 1) depending only on ¢o and § = 8(n) € (0, 1) such that

and for any initial condition ¢9 € H?>(2) such that ||¢o]| o) < 1,

|po.n| <m, lonlliog <1-8, ¥YneN.

2. ¢on — o in H'(Q), ¢o.,—¢o weakly in H*(Q) and —Ado., + F'(¢o.0) —
—A¢o + F'(¢o) in H' () with

| =2d0.n + F' @0 410 = [-A¢0 + F'@o] 1 -

3. Forany n € N, d,¢0,, = 0 almost everywhere on 9€2.

Now, owing to the first part of the proof, for any n € N, there exists a pair (¢n, it,)
solving the Cahn—Hilliard system with divergence-free drift

ae.in 2 x (0,7), (2.49)

0ty +uy - Vo, = Ay
Mn = _Ad)n + F/(¢n) - 00¢n

and 9, ¢, = 0, = 0 almost everywhere on 92 x (0, T'), as well as ¢, (-, 0) = ¢
in 2. It follows from (2.42) and (2.43) that

IVl oo, 102

<2( |V (~8gon + ' @0) [12q)

T 1 T
+cC /0 ||Vun(s)||iz(m+||wn<s>uiz(mds)zexp(c fo ||Vun(s>||iz(g)ds), (2.50)
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and

T
/0 V3, ()72 ds

T
<6 <|}v (=Ado.n + ¥ (do.n)) ||iz(g> +C fo IVt ()72 0y FIV a9 1720 ds)

T T
x (1 + (cfo ||Vun(s)||iz(m ds> exp (C/O ||Vu,,(s)||iz(9) ds)>. (2.51)

In light of the properties of u,, and ¢g ,, we simply obtain that

IVienllpooo, 2y < Q1 10@nll200,7: 01 (@) < Q2 (2.52)

where the positive constants Q1 and Q; are independent of n. By reasoning as above
to get (2.44)—(2.48), it follows that

lnllpoo.r a1y < O35 NMnllLzor w3 @) < Qa(T), (2.53)
I @nll Lo, 7:w2r @) < O5(P)s I F (@n)llLx@.1:0@) < Q6s '

where the positive constants O3, Q4(T"), Os5(p) and Qg are independent of n. Thanks
to these bounds, in a similar way as for the vanishing viscosity limit, we obtain
by compactness the existence of two limit functions ¢ € L0, T; W>?(2)) N
H' (0, T; H'(Q)), such that F'(¢) € L°(0,T;LP()) with p as above, and
w e L0, T; H'(Q)) N L?(0, T; H*(R)), which solve (2.1) almost everywhere
on 2 x (0, T) and (2.2) almost everywhere on 92 x (0, T'). The uniqueness of such
solution is inferred from [1, Theorem 6] (see Theorem 2.1 and Remark 2.2). By the
arbitrariness of T, we can extend the solution on (0, co) and obtain the conclusion as
stated in Theorem 2.4. The estimates (2.9) and (2.10) simply follows by passing to
the limit as n — oo in (2.50) and (2.51) and letting 7 — oo.
Finally, if u € L*°(0, 00; L7 (2)) N L*(0, o0; Hy , (R)), we deduce from

10:0 1 g1y < C IVl 20 + llullz2)) - (2.54)

that 9,¢p € L°°(0, oo; H'(Q)"). The proof is complete. O

In order to derive a further global estimate for the gradient of the chemical potential
in (2.1), we report the following well-known result for the Neumann problem (see,
e.g., [32]).

Lemma 2.5 (Neumann problem) Let Q be a bounded domain in R, d = 2, 3, with

C3 boundary. Given f € WEP(Q) and g € WKHI=1/P-P(3Q), where k = 0, 1 and
p € (1, 00), such that

/fdx:/ gdo, (2.55)
Q Q2
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there exists a u € W*t2P(Q) which is unique up to a constant satisfying

Au=f inQ,

(2.56)
opu = g on Q2.

In addition,

||Vu||wk+l,p(gz) <C (||f||wk,p(gz) + ||g||wk+1—1/p-p(a§z))7 (2.57)

where the positive constant C only depends on k, p and Q.
Using this, we derive the following conclusion for the gradient of the chemical
potential. Beyond its intrinsic interest, it will play a crucial role to control the flux J

in the momentum equation (1.1).

Corollary 2.6 Let the assumptions of Theorem 2.4. Then, we have the following esti-
mate fork = 1,2

> 2
/(\) ||VM(S)||Hk(Q) dS

<cC <||v (—Ago + ¥/ (¢0)) ||iz(m +C fo IV ()72 00y +1 V172 g ds)

x (1 + <f0 IVa )13 q, ds) exp <2c/0 IVa()117 2 ds>>, (2.58)

where the positive constant C depends only on k, 2, 0, 6y, F, and q)_o

Proof Since
Ap=0¢p+u-Ve ae.in Q x (0,00), dpuu =0 ae.ondQ x (0, 00),

and fQ 0 +u-Ve(t)dx = 0 forall t € (0, 00), it follows from Lemma 2.5, the
generalized Poincaré inequality and (2.46) that

IVl iy < C (130120 + e - Vol 120)
< C (109l 2 + lull Lo I Vel L3q)
< C(IV3 ol 12 + IVull 2 |91l p2q)
< C(IVdl 12 + IVull 2 (1 + 1Vl 2)) - (2.59)
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Similarly, we find

IVl gey <€ (||31¢||H1(52) +lu- V¢||H1(Q))
< C (139l g1 + IVal 2 (1 + 1Vl 2(0)
+ IV@-V)l12@)
<C (IVadll 2+ 1 Vall 2y (1+ 1Vl 20
HIVal 2 IVellLe@) + Il oo llpllw2a o)
< C(IV3dli 12 + IVull 2 (1 + 1Vl 2()) - (2.60)

Thus, in light of (2.9) and (2.10), for k = 1, 2, we deduce the desired estimate (2.58).
m}

We are now in the position to prove the first part of our main result

Proof of Theorem 1.3-(i) Global regularity of the concentration Let (u, ¢) be a global
weak solution to (1.1) and (1.2) given by Theorem 1.1. Consider an arbitrary pos-
itive time 7. Thanks to the energy inequality (1.11) and the Korn inequality, we infer
that

o0
/O IV ()72, + IVR©) 72 g, ds < oo.

In addition, we have that u € L2, ([0, 00); H'(R)), ¢ € L* ([0, co; H*(2)) and

uloc uloc
dp¢ = 0 almost everywhere on 92 x (0, co) (cf. Remark 1.2). Thus, there exists

* € (0, 7] such that ¢ (t*) € H*() with o)L < 1, oM < 1, u(t*) =
—AP (T +V (P (%) € H' () and 9,¢ (t*) = 00n I2. An application of Theorem
2.4 on theinterval [t*, 00), together with the uniqueness of weak solutions (cf. Remark
2.2), gives us the desired conclusion. O

3 Large time behaviour and strict separation property

For any m € R, let us define the function spaces

1
Li(Q) = {feLz(Q) : @/Qf(x)dxzm},

1
H(lm)(Q) = {f € HI(Q) : @/Qf(X)dx =m}_

Notice that H(lm)(Q) is not a linear space if m # 0. Nevertheless, it can be identi-
fied with H(lo)(Q) by simply translation with the constant m. Moreover, the tangent
space of H(lm)(Q) is H(lo)(Q). Hence, if G: H(lm)(Q) — R is differentiable, then
DG(f): Hiy () — R is linear and bounded, ie., DG(f) € H (Q)' for all
fe H(lm)(SZ).
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We now introduce
1 2
Eo(p) = EIWI + F(p)dx
Q

for ¢ € dom(Ep) = {f € H(lm)(Q) 1 f(x)] < 1ae.in Q}, where F is the “convex
part” of W (cf. (1.4)). We recall that Ej is convex and lower semi-continuous. Thanks
to [11, Theorem 4.3], the subgradient 0 Eg(¢p) € L%O)(Q) for all ¢ € D(Ey), where

D@E) = [g € HA@N LY, () : F(g) € LX), F'@)IVol € L), duglsa = 0}

is given as

1

Vo) = ~Bp+ PoF'(p), where Pof = f = = fQ F) dx.

Let us now consider ¢, € D(dEy), which solves the stationary Cahn—Hilliard equa-
tion

—A¢ + V' (¢) = const. in Q, (3.1)
o =0 on 9L2, (3.2)

1
@/qu(x) dx = m. 3.3)

We recall that solutions to (3.1)—(3.3) are critical points of the functional Efe. on
H <1m) (€2). In addition, they are separated from the pure phases +-1 as stated in the next
result, whose proof can be found in [11, Proposition 6.1] and in [15, Lemma A.1].

Proposition 3.1 Let ¢ € D(0Eg) be a solution to (3.1)—(3.3). Then, there exist two
constants M, j = 1,2, such that

— 1 <M <¢oo(x) <My <1 forallxeQ. 3.4)

The first important step towards the longtime stabilization of weak solutions to
(1.1) and (1.2) is to show

Lemma 3.2 Let (u, ¢) be a weak solution to (1.1) and (1.2) in the sense of Theorem
1.1. Then u(t) — 0 in L2(Q) as t — 0.

Proof First of all, we have by (1.11) that the energy inequality for the full system

t
E@(), $(1) + / /Q v( ()| Du(s) > dxds

t
4 / / V()2 deds < E@(z), ¢(2) (3.5)
T Q
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holds for almost every t > 0 including t = 0 and every ¢ > t. Subtracting the energy
equality (2.4) for the Cahn—Hilliard equation with divergence-free drift, we obtain

t
Exin(u(0)) + / / v($ ()| Du(s) [ dxds
T Q
t
< Exn(u(e)) / / u(s) - Viuls) $ (s) drds (3.6)
T Q

for almost every T > 0 including 7 = 0 and every ¢t > t. Now, let ¢ > 0 be arbitrary.
Since Vi € L?(22 x (0, 00)) by the energy estimate, there is some 7’ > 0 such that
||V/L||L2(QX(T’OO)) < eforall T > T'. Moreover, since u € LZ(O, 00; H(l)’a(Q)), the
setofall T > T’ such that ||u(T)|| 12(e) = ¢ has positive measure. Hence there is some
T > T’ such that Vil L2 @x(r.00)) < € and [[u(T) | 12(q) < € hold true. Because of
(3.6), and exploiting the L°° bound of ¢ (cf. (1.7)), we deduce that

ju ()| * 2
sup p(p(t)——dx + v(¢)|Dul|” dx dt
T<t<ooJQ 2 T Q

lu(T)|*
= IVillz2r, o2 18 22(7,00; 22 (02)) + i ,0(¢(T))T dx
for almost every T > 0. Therefore, by the Cauchy-Schwarz, Korn and Young inequal-
ities we obtain

”u”if’c(T,oo;Lz(Q)) + ”u”iz(T,oo:Hl(Q)) =< c (llvulliz(T,oo,Lz(Q)) + ”u(T)lliZ(Q)) = 2C85

where C is independent of 7" and ¢. This shows the claim. O

We highlight that the proof of Lemma 3.2 consists of a direct argument which only
relies on the validity of the total energy inequality for (weak) solutions of (1.1) and
the free energy equality for solutions to the Cahn—Hilliard equation with drift. In
comparison with [1, Lemma 11], no square-summability of the time derivative of u is
requested.

Next, we proceed with the proof of the second part of our main result.

Proof of Theorem 1.3-(ii) Separation property Let us recall from the first part of the
proof (cf. (1.12)) that ¢ € L*(z, oo; W2P () for any T > 0, and for arbitrary
2<p<ooifd =2and p =6if d = 3. Now we define the w-limit set of (u, ¢) as

o, ¢) = {(u’, @) € L2(Q) x WP (Q) :

31, 7 oo suchthat (1), ¢ (1)) — @', ¢") in L>(Q) x W2_‘9’p(s2)},

where ¢ > 0. Since ¢ € BUC([7, 00); W2’5,’P(Q)) forany ¢’ € (0,¢) and T > 0
by interpolation, and u(t) —;—.~ 0 by Lemma 3.2, we easily obtain that w(u, ¢)
is a non-empty, compact, and connected subset of L(z, () x WP (Q)) (cf. [14,
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Definition 1.4.1 and Theorem 1.4.7]). In addition, owing to the fact that E is a strict
Lyapunov functional for (1.1) and following [1, Lemma 11], we are able to prove:

Lemma 3.3 Let (u, ¢) be a weak solution to (1.1) and (1.2) in the sense of Theorem
1.1. Then, we have

w, ¢) C [(0, ) : ¢ € WHP(Q) N HL, () solves (3.1 )-(3.3)}, where m = go.

Proof Thanks to (2.4), we recall that

t t
Etree(d (1)) + / / VP dxds = Eggee(do) — / f w-Vigdeds, (3.7)
0 Q 0 Q

forallz > 0. Sinceu - Viegp € L1 (2 x (0, 00)), the limit lim;_, oo Efrec (¢ () exists.
In addition, owing to u(t) —;— 0in L(ZT (2), lim;_, oo Exin(u(t)) = 0, and thereby
the limit Eoo 1= lim;_ o E(u(t), ¢ (2)) exists.

Let us consider a sequence {f,},en C R such that 0 < #, 7 oo. We set
limy, oo (U(ty), ¢(t,)) = (ug, ¢). By Lemma 3.2, it clearly follows that u; = 0.
Now define (u, (), ¢, (1)) := u(t +t,), ¢t +t,)) fort € [0, 00). Due to [1, Theo-
rem 6], {¢n }nen converges weakly in L2(0, T'; W;(Q)) NH'(0, T; H'(Q)), forevery
T > 0, to a limit function ¢’, which is a weak solution (as defined in Theorem 2.1)
to (2.1) and (2.2) with u = 0, chemical potential 4" and initial value ¢'|;—o = ¢,.
In particular, ¢, —,—00 ¢ in L2(O, T; HI(Q)) for every T > 0. Hence, there is a
subsequence such that

Efiee (@n (1)) = nooo Efree(‘i’/(t)) fora.e.t € [0, 00).

On the other hand, lim;_ o E @, (t), ¢, (t)) = lim,— oo Efree(¢pn(t)) = E~ since
U, (1) = n—ooo 01in L2(Q). Thus, Efee(¢'(1)) = Eo for ace. t € [0, 00). As a con-
sequence, by the energy identity for the convective Cahn—Hilliard system (2.4) with
u = 0, we deduce that Vu/(¢) = 0 for almost all ¢ € [0, oo). Therefore, 9,¢'(t) = 0,
and ¢’ (1) = ¢(/) solves the stationary Cahn—Hilliard equation (3.1)—(3.3) withm = %.

O

Finally, we are in the position to show the desired separation property (1.13). In
fact, thanks to the above characterization of w(u, ¢), Proposition 3.1, the embedding
W2=EP(Q) < C(Q) fore > 0 sufficiently small, and the compactness of w (u, ¢) in
Lg(Q) x W2=&P(Q), there exists some 8’ > 0 such that

|¢'(x)| <1 =68 VxeQ, forany (0,¢') € wu, ).
Observing that lim;_, oo dist((u(t), ¢ (¢)), w(m, ¢)) = 0 in the norm of Lg(Q) X

W2=¢P(Q), we conclude that, for every 8§ € (0,8'), there is some Tsp > O such
that

p(x,0)|<1—8 VxeQ, t>Tsp.
O
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4 Weak-strong uniqueness result

In this section we demonstrate a weak-strong uniqueness result for the system (1.1)
and (1.2) in both two and three dimensions. This will be essential to achieve the large
time regularity of the velocity of each weak solution. Due to the presence of the non-
constant density, our approach is inspired by [17]. Moreover, the separation property
plays a crucial role in our argument.

Theorem 4.1 Let Q be a bounded domain in R¢, d = 2,3, of class C*. Assume
that ug € Hy ,(Q), o € H*(Q) be such that |pollL=@) < 1 I¢ol < 1, po =
—Ago + V' (¢) € HY(Q) and d,¢0 = 0 on Q. In addition, we suppose that:

e (u, @) is a solution on [0, T such that

u e BCy([0, T]; LZ () N L*(0, T; Hj ,(R)),
¢ € L0, T; H(Q)NL*0,T; H(Q)), 8¢ € L0, T; H (Q)),

— . “.1)
C(Qx[0,T), h S 1,
$eCEx| D, wit tg[l(%);] ||¢(t)||c(gz) <

pe L0, T; HY(Q) N L*0, T; H3(Q)),

which satisfies

t
/Qp(¢(t))u(t)~W(t)dx—/Qp(¢o)uo~W(0)dx—/O (p(P)u, dyw)dr
t t
—/ (p(D)u Qu, Vw)dt—}—/ (v(¢)Du, Dw) dt “4.2)
0 0

t t
—/ ®®J, Vw)dt:/ (uVe,w)dr,
0 0

where J = —p @)V, for any t € (0, T), for allw € WH2(0, T; Lg(Q)) N
L0, T; H) ,()), and

W +tu-Vo=Apu, p=—-Ap+V(P) aeinQx(©T). (“43)

Moreover, (u(0), ¢(0)) = (ug, ¢o) and the energy inequality holds

t t
E(u(l),qb(t))Jr/ /V(¢)|Du|2dxdr+/ / IVul? dxdt < E(uo, ¢o)
0 JQ 0 JQ
(4.4)

foranyt € [0, T].
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o (U, II, ®) is a strong solution on [0, T] such that

U e C([0, T1; Hj , (@) N L*(0, T; H*(2)) N W"2(0, T; L2 (),
Me L*0.T: H(Q),
® e L®0,T; H*(Q)NL*0,T; HY(Q)), 8P € L*(0,T; H'(Q)).(4.5)
®eC(Qx[0,T]), with ) g < L,
e C(2x[ D, wit tg[l(?:);] I (I)HC(Q) <

M e L®0,T; H(Q) N L0, T; H (Q)),
which satisfies

(@), U+ p(®)(U - VYU + (J* - V)U — div(v(d) DU) “6)
+VII=MVP ae inQx(0,T), '
where J* = —p'(®)VM, and
QYO +U - VO =AM, M=—-A®+ V(D) aeinQx(0,T), 4.7

as well as (U(0), ©(0)) = (ug, ¢o).
Then,u = U and ¢ = ® on [0, T].

Remark 4.2 Notice that if (u, ¢) is a weak solution to (1.1) and (1.2) (as in Theorem
1.1) with & € L*°(0, T HY(Q)) andu € L2(0, T: H2(2)), then one can choose u as
a test function in (1.8). Exploiting (2.4), we then obtain the energy identity

t t
E(u(r),¢(r>)+/ /v<¢>)|Du|2dxdr+/ / |Vul? dxdt = E(uo, do) (4.8)
0 JQ 0 JQ

for every ¢t € [0, T].

Proof First of all, thanks to Remark 4.2, we have the energy identity (4.8) for
(U, &, M) (i.e. replacing (u, ¢, ) with (U, ®, M)). In addition, Theorem 2.1 entails
the validity of the following free energy equalities

t t
Efree (¢ (1)) +/0 /Q |Vﬂ|2dxdf + /0 (w -V, u)dt = Efee(¢o),
and
t t
Efree (P (1)) +/ / |V1VI|2 dxdr + / U-Vo, M)dr = Efree((po)’
0 JQ 0

forall ¢+ € [0, T']. Thus, we deduce from (4.4) and (4.8) (for (U, ®, M)) that
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1 t
/Ep(¢(t))|u(t)|2dx+/ /v(¢)|Du|2dxdr
Q 0 JQ
1 t
S/ 5P(¢0)|u0|2dX+/ (uVe,u)dr, 4.9)
Q 0

and

t
/ %p(@(r»w(r)ﬁdw f / »(®)| DU dxdr
Q 0 Q
t
=f9%p(¢0)|u0|2dx+/o (MV®, U)dr, (4.10)

for all ¢t € [0, T']. Now, taking w = —U in (4.2), we obtain

t
—/Qp(flﬁ(t))u(t%U(t)dx+/Qp(¢o)|uo|2dX+/0 (p(Pu, 3,U) dr
t t
+/ (p(P)uQu, VU)dr—/ (v(¢)Du, DU)dr 4.11)
0 0

t t
+/ @®J, VU)dr = —/ (uVe, U)dr,
0 0

for all t € [0, T']. We recall the following basic relations

1 1
/ §p<¢>|u—U|2dx:f 5P(®) (lui? +10P) dx—/ p(P)u - U dx
Q Q Q
1
=/ §p<¢>|u|2dx+f p(®)|U|? dx
@ | « (4.12)
+f95<p<¢>—p(<1>>>|v|2dx

—/ p(@u - Udx,
Q
and
/v(¢)|D(u—U)|2dx=/ () <|Du|2+|DU)|2—2Du:DU) dx
Q Q
=/ v(¢)|Du|2dx+/ v(®)|DU)|* dx
Q Q
+/ (@) — v(®)) |DU|* dx
Q

—f 20(¢)Du : DU dx. (4.13)
Q
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Summing (4.9), (4.10) and (4.11), and exploiting (4.12) and (4.13), we find

] t
/5p<¢<z>>|u<z)—U(t>|2dx+[ /v<¢>|D(u—U)|2dxdr
Q 0 JQ
1 t
< / E<p<¢><z>>—p(<1>(r))>|U<r)|2dx+ / ((v(¢) — v(®))DU, DU) dt
Q 0
, , , , (4.14)
f/ (v(¢p)Du, DU)dr+/ (MV¢,u)dT+/ (MV O, U)d‘l.’*/ (uVe,U)dt
0 0 0 0

! 1 t
- / (p(@)u, 3,U)dt — / (p(Pu@u,VU)dr — / @®]J,VU)dr,
0 0 0
for all t € [0, T']. The conservation law of the densities reads as

3:p(¢) + div (o(p)u +J) =0,
3 p(®) +div (p(@U +J*) =0 ae.inQx (0,7). (4.15)

For any function v € C'([0, T]; C'(RQ)), we have

/Q(p@(t))—p(<1>(t)))v(t)dx—/Q(p(¢(0))—p(d>(0)))v(0)dx

=0

t
—/0 (p(p) — p(®), dv)dt (4.16)

t t
=f (0@ — p(®)U, Vo) de +f J -1, Vo) dr,
0 0
forall ¢ € [0, T']. By a density argument, we take v = %|U |? in (4.16) obtaining

1
f 5 (P@@) = p(®@) U@ dx
Q
t t 1
=f0 (p<¢>>—p<<1>>,U‘atU>dr+/0 (p(¢>u—p(<1>>U,V<5|U|2)> dr
t
+ / (3 —J*,v(1|U|2)) dar, (4.17)
0 2
for all t € [0, T']. Substituting (4.17) in (4.14), we deduce that
1 t
f5p(¢(r>)|u(t>—U<z)|2dx+/ / V(@)D — U)|* dxdr
Q 0 JQ
t t 1
5/0 (p<¢)—p<d>>,U-a[U)dr+/0 <p<¢>u—p<<b>U,V(5|U|2)) dr

ty t
+/0 (J -Jv <%|U|2)> dr +‘/(; ((v(¢) —v(®))DU, DU) dr
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t t 1 t
—/ (v(¢)Du,DU)dt+/ (qu&,u)dt-l—/ (MV®, U)dr—/ (uV¢, U)dr
0 0 0 0

t t t -
—/ (p(q&)u,B[U)df—/ (p(Pu®u,VU)dr — | w®J, VU)dr. (4.18)
0 0 0

On the other hand, multiplying (4.6) by u and integrating over 2 x (0, t), we infer
that

t t t
/(p(CD)E);U, u)dr—i—/ (p(®)(U - VU, u)dt—i—/ ((*-V)U,u)dr
0 0 0

. ; (4.19)
~|—/ (v(®)DU, Du)dr — / (MV®,u)dr =0,
0 0

for all r € [0, T']. Summing (4.18) and (4.19), we arrive at

1 t
/ 3P@O)u() — U dx +/ / V()| D@ — U)* dxdr
Q 0 Q

t t t
S/(; (p((b)—p(cb),U-BrU)df-i-/(; (0(®)8, U, u)dt—[o (o(P)u, 3,U) dr

1

t t t
+/ <p(¢)u —p(@U.V (%IU\2)> dr +/ (p(@)U - VU, u)dr *f (p(P)u @u,VU) dr
0 0 0

11

t t t
+/ (J*-wu, u)dr+/ (]—J',v<%|w2>> dr—/ ®®7J,vU)dr
0 0 0

111

t t '
+/ ((v(¢) —v(®))DU, DU) dt — / (v(¢)Du, DU)dt +/ (v(®)DU, Du)dr
0 0 0

v
! ' ' '
+/ (MV¢,u)d‘[+/ (MV®, U)dr—/ (;LV(/),U)dr—/ (MV®,u)dr,
0 0 0 0

Vv

forall + € [0, T']. We notice that

= /0t<p<¢> — p(®),U - ,U)d + /()'(p@) — PO, w) de
_ fo (@) — p(@)U.u — ) dr. (4.20)
1= fo (p(@u V) U, U) dr —/Ot (p(®U - V) U, U) dr
+ /Otm(cb)(U VU, w)de — /0‘((,)((,5),, VU, w)de

t t
=/0 ((p(Pu - V)U, (U —w) dt —/0 (p(®U-NU, (U —m)) dr
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t
= /0 (((p(Pu — p(®Y)U) - VYU, (U —w) dr

t
:_/o (p(@)@—-U)-V)U,u—U)dr

t
—/0 ((p(@) — p(@P)HWU -V)U,u - U) dr, (4.21)
_ t _ t
11 =-" . pz/ (VM - VU, u)dr — 2! . m/ (Vi — VM) - VYU, U) dt
0 0
_ t
Lo m f (Vi V)U. u) dr
2 0
. t
_ A . 2 / (Vi = VM) - VYU, (u — U)) dr, (4.22)
0

t t
1A% =f ((v(¢p) — v(®))DU, DU) dt —/ ((v(¢) — v(P))Du, DU) dt
0 0
t
=— / (V($) — v(®)) DU, D(u — U)) dr, (4.23)
0
1 t
\%4 =/ (uVe,u —U)dr —/ (MV®,u—U)dr
0 0
t
= f (uVp — MV, u — U)dr. (4.24)
0
Thanks to (4.20)—(4.24), we reach
1 t
/ PG O)u(@) — U(n)|*dx +/ / V(@)D — U)|* dxdt
Q 0 Q
t t
< —/0 (p(¢p) — p(®)3,U,u — U) dt — fo (p(p)u—U)-V)U,u—U) dr

t
—/0 ((p(@) — p(P)U - VYU, u —U) dr (4.25)

P1 — P2
2

t
+ f (((Vu—=VM)- VU, (u—-U)) dr
0

t t
- / ((v(@) —v(®))DU, D(u — U)) dr/ (uVep — MVP, u—U)dr,
0 0

for all ¢+ € [0, T']. The right-hand side can be estimated as in [21, Section 6] and in
[22, Section 4]. As a result, we obtain

1 t
/5p<¢(z))|u(t)—U(z>|2dx+/ /V(d))ID(u—U)\zdxdr
Q 0 JQ

v ! 2 L 2 2
<5 [ 106 -V)g a5 [ 1070 - ) g, ar

t
+ C/o (14 1B gy + 10U g ) (I = D)2 + 186 = D)2, ) dr.
(4.26)
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On the other hand, arguing as in [22, Section 4], we have the differential equation
L4 A= D)2, + 1826 — B2
2 dr L2(Q) L2(Q)
= / u-Vip— ®)A%(¢p — @) dx +f (u—U) - VOA*(p — D) dx
Q Q
+ / AW (@) — W' (D) A*(¢p — D) dx. 4.27)
Q

We observe that

/Qu V(@ — D) A% — D) dx| < [ull L3y V@ = PliLsey|A* (@ — D)2

1

< 1A% @ = D) j2 ) + Clluljs ) 186 = DT> g

NI

and

< llu = Ul 20 I VOllLx @) 1A% (¢ — P)ll12()

/(u—U)~V<I>A2(¢—<I>)dx
Q

=

18%(@ = D) 72y + Cllu = Ul}2 g -

N =

By exploiting (4.1) and (4.5), it follows that

‘ /Q AW () — W/ (®) A% — P) dx

< [ @a@ =0+ (v - v'@) a0) 426 - @) ax

+ [ |(v7@ (1908 = 1908) + (97@) w7 (@) IVOF) 82 - @) ax

< ClA@ — D)l IA% (@ — D)2
+ C (V" (D) lLe@ + 1Y (@) L=@) 1@ — P) =@ HA¢HL2(9)|IA2(¢ = D)2
+C (IVellLy@ + VPl L) V(9 — @) 120 1A% (@ — D)l 120
+ (I (D)@ + 1¥" (@)llz=@) (P — P)llL=@) IIV@\im(mIIAZ(tP — D)2

1
< 1A%@ = D)z, + CIAG — D)2 g

As a consequence, integrating (4.27) on [0, ¢] and using the above estimates, we infer
that

1 2 1 ! 2 2
;mwm—¢mmm@+§AnA@—¢mm®m

t
scA(me@m)@u—w@mVWAw—¢w;®)m. (4.28)
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Then, summing (4.26) and (4.28), and exploiting the assumption on v, we end up with

1 1
/Q SP@O)u@) —UMP dx + S A @) = 2072 q,
* ! 1 t
+ %/0 ID@ = Ul g, dt + Z/o 1A% (@ — D)2 dT  (4.29)

t
= [FO (0= Vg + 1860 = D)l g) dr.
where
F@) =1+ 1UO3p g, + 18U, + l®II75q)-

Finally, since F(t) € LY0,7) in light of (4.1) and (4.5), the desired conclusion
u =U and ¢ = ® on [0, T] directly follows from the Gronwall lemma. O

5 Large time regularity in three dimensions

This section is devoted to the third part of our main result, namely the large time
regularity of the velocity u. The proof is based on a continuation argument for some
Sobolev norms of # when the initial data and forcing terms are small, for which we
will make use of Corollary 2.6. Notice that, in the case of matched densities, a general
result has been formulated in [1, Theorem 8] for the Navier—Stokes equation with
non-constant viscosity. Instead, for unmatched densities, we are forced to consider the
full system.

Proof of Theorem 1.3-(iii) Large time regularity of the velocity Let Q2be abounded domain
inR?, d = 2,3 with 9 of class C*. Consider a global weak solution (u, ¢) to (1.1)
and (1.2) given by Theorem 1.1. We first summarize from the previous parts (i)—(ii)
of Theorem 1.3 that, for any 7 > 0,

¢ € L™®(t, 00; WHP(Q)), 8¢ € L* (1, 00; H (Q)),
pe L®(t, 00; H' () N L2 (7, 00); H3 (),

uloc

F'(¢) € L®(z, 00; L7 (R)), 6D

where 2 < p < oo if d =2 and p = 6 if d = 3. Furthermore, the energy inequality
(1.11) entails that

o0
/0 I gy )+ IVAE) 72, ds < Co, (5.2)
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for some positive constant Cy depending only on E(ug, ¢p) and €2, and the strict
separation property

max |p(x, )| =1—-6, Vi=Tsp (5.3)

xe

holds for some § € (0,1) and Tsp > 0. It immediately follows from (5.3)
that F”(¢) and F"'(¢) are globally bounded in [Tsp, 00). As a consequence, it
is easily seen from (1.1)4 and (5.1) that o, € L2(T5p, oo; H'(R)'), which, in
turn, gives u € BC([Tsp, 00); H'(RQ)). Then, we infer from the regularity the-
ory of the Laplace equation with homogeneous Neumann boundary condition that
¢ € L®(Tsp, 00; H3(Q)) N L%, ([Tsp; 00); H*()). Finally, we observe from the
achieved regularity that 9,¢ (t) = 0 on 92 for any t > Tgp.

Letus now fix 0 <2 < & < 1, whose specific (small) values will be chosen later
on. Thanks to (5.2), there exists a positive time 7 = 7 (¢, ¢) (which can be taken,

without loss of generality, larger than Tsp) such that

1

00 2
lu(T) gy @) <& and (/T Jae(s) gy (Q)ds> <% (54)

Furthermore, we infer from the above regularity properties that ¢(7) € H?(R),
oDl < L oD < 1, w(T) = —A(T) + V' (¢(T)) € H'(Q) and
on®(7) = 0 on 3Q2. Exploiting once again (5.2), up to a possible redefinition of 7,
we also have

o0 2
IVi(T)ll 2y < and ( /T Vi) 220 ds) <% (5.5)
Thanks to (2.10) of Theorem 2.4 and Corollary 2.6, we obtain the following estimates

0 2
fT 1V6,6()1122, ds

o0 o0
< C<|\W<T)niz(m+ fT IVu(s)I75 g ds+ /T V()72 q) ds)

(1 ([ 190 ) 0 (20 [ 1972 0,05

< 3CF(1 +3)eXF = K32 (5.6)
and

o0 o0 o0
/T IV () 152y ds < C(I\VM(T)\IZLz(Q)+ /7 IVa(s)l72 g, ds + /T IV 1720 ds)

x (1 + </7 ||Vu(s)||iz(m ds> exp (20 /T ”V"(S)”izm> dx)) 6.7

<3CE(1+7%)e* = K7,
where K and K, are two positive constants depending only on €2, 8, 6, F, and ¢.
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Next, by [22, Theorem 1.1] there exists a local strong solution (U, I1, ®) defined
on the maximal interval [7, Tmax) such that

UeC(T,TI:H) ()N LT, T; B> Q) nW"*(T, T, L2 (),
MelX7T,7; H(Q)),
®e LT, T: H(Q)NLXT.T: HY(Q)), 8, e LX(T.T: H(Q)),

®eC@x[T.T) with max [N < 1.
telT,7]

M=—Ad+ V(D) eC(T,T1; H'(Q)NLAT,T; H(Q)), (5.8)

for any 7 < T < Tmax, Which satisfies (1.1) almost everywhere in (7', 7pax) and
the energy identity in [7, %] for any 7 < T < Tmax (cf. Remark 4.2). On the other
hand, in light of Theorem 4.1, we deduce that (u, ) = (U, ®) (and so P = ®) in the
interval [7, Tyax). This implies that

ueC(T,TLEH),(@)NLYT, T; B2 Q)N WA(T, T; L2(Q),
VT <7 < Toax, (5.9)

and (1.1); is solved almost everywhere in (7, 7pax)-

We are left to show that Tr,ax = oo provided that e, 2 and 7 are suitably chosen. To
this end, we notice that the regularity properties in (5.1) and the separation property in
(5.3) hold globally in time (from Tgp on), and so they are independent of 7p .. Thus,
we only need to prove that the norms of the spaces in (5.9) do not blow up as T is
replaced by Tpax. We now write the momentum equation (1.1); as follows

p(P)du~+ p(@) w-Vyu—p'(¢) (V- V)u
—div (v(¢)Du) + VP* =f, in Q x (T, Tmax), (5.10)

where
1
P* =P+ Vol +W($) — g and f=—¢Vp.

Multiplying (5.10) by d,u and integrating over €2, we find

d V() 2 Px 2
a Jo TIDul dx + 7||atu||Lz(Q)

< C(ufniz(m+|| @-VyulFsg + | (W-vmniz(m+/Q|a,¢||Du|2dx), (5.11)

for some positive constant C depending only on p1, p2, v; and v,. Besides, by the
regularity theory of the Stokes operator with variable viscosity (see [1, Lemma 4]),
we have
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(5.12)

for some positive constant C depending on py, p2, vi, v2, Qand ¢l g7 .00): w4 (@))-
For ¥ > 0, we observe that

G- Vyulfa g, < lullsg IVullZs g,
< ClIVall}s g el 2o (5.13)

< Oulfp g + CollValfs g,

and
1 (Vi - VyulFa g < VU5 ) IV 60
= ClVull 2@ llull g2 IV il L2 IV il 52 ) (5.14)
< Olulfp g + Coll VRl o IVl g 1 DUl T2 g
as well as

| 011w dx < 115 oy 1Dl

= ClIV P2l Dull 2o Il g2y
< Olulfp g, + CollVa I 72 I Dull?s g,

(5.15)

for some positive constant Cy depending only on ¥ and 2. Combining the above
estimates and choosing ¢ sufficiently small, we arrive at the differential inequality

v(¢)

i |Du|*dx + == ||a,u||L2(m+w||u||§,z(m

< cRufuLz(Q) +Cr (||Vu||L2(Q) VB2 + 1Vt g ) 178122
(5.16)

where @ is a (possibly small) positive constant and Cg is a (possibly large) positive

constant. They depends on [|¢ | gc (17, 00): w14 @))> | VI Loo (T 00: 12(02))> P15 025 V1, V2
and €2, but are independent of ¢, € and 7. Let us now define

4p*
T, = max {t €7, Thax) : ”u”C([T,t];H(l) @) = v—s} . (5.17)
, 0 %
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Since ,/ %* > 1, it is easily seen that 7, > 7. We choose ¢ € (0, 1) such that

4

4yp*
CR< Y e> <z (5.18)
Ve 4
Recalling that
(d))
Q

we infer from (5.16) and (5.18) that, for almost all ¢t € [T, 7],

4 (/ u(¢)|D 12 dx ) - (/Q v(¢>>|D 2d ) 7 N0z g, + %nuu@zm)
=\ (5.20)
< CRIlflliz(Q) + Cr <||V8,¢||iz(m + ||Vulli,z(9)) (\/ng> )

Then, integrating in time (5.20), multiplying by Ui* and using (5.5), (5.6), (5.7) and
(5.19), we obtain that

IVa(0)]122 0, + 2 / 10(5) By ds + 22 / )y g d
Ve JT Ve JT

2v* 2 4CR
= v_Hvu(T)HLZ(Q) + — IV||L2(T 00; LZ(Q))

*

16CRV* 5 Va2 d
=) ||va,¢(s)||L2(Q)ds+ L IVEO 2 s
o 2
L “V/'L(S)”LZ(Q) ds

2v* 4C
< Vv 82—|— R
16Cgv* > >
e ( | 19806 a5+ [ Ilws)lliz(m‘“)

(5.21)

Vi %
*

2% , 4Cr., 16CRv* = ~ _
< T2 Ry (K K@
Vs Vs v2

for any t € [T, 7.]. Setting now € € (0, &) such that

*

2
(K1+K2)}8 <2 (5.22)

Vi

|:4CR n 16CRV

Vs 2

we eventually infer that

()| hi (523)
max u < —E. .
telT. T Hy,, () Vs
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. 4p* L . ~
In particular, ||u(’];)||H(|) L@ < '/IS' However, by continuity, there exists T > 0

such that ||u(?) ||H(1) @ =4/ %*s in [7, 7. +7]. Thus, we found a contradiction with
the definition of 7, in (5.17). We conclude that

4p* ~
”u”C([T,’ZN'];H(IM(SZ)) < /v—*s, VT <7 < Thax- (5.24)

In addition, exploiting (5.21) and (5.22), we are led to

4v* 2
—¢&
Vs ~
||u||L2(T,7';H2(Q)) + ||afu||L2(’]"'j";L%(Q)) =< T S o 2 } s, VT <7 < Tnax
min § &£ ==
Vi ? Vs
(5.25)

In light of (5.24) and (5.25), we have that

tim sup (Wl e,y oy + 100227 ssmeay + 100l 27 rinz ) < 0

t—Thax

As a result, by a classical argument, it is possible to define #(Zmax) € Hé’ -+ Since
¢ (Tmax) € H*(Q), ¢ (Tmallo@ < 1 10 (Tma)| < 1, 1(Tmax) € H'(Q) and
On® (Tmax) = 0 on 9%2, a further application of [22, Theorem 1.1] and Theorem
4.1 ensure the existence of a strong solution beyond the maximal time 7p,,x, Which
contradicts with the definition of 7,,x. Hence, (u, P, ¢) is a strong solution defined
on the whole interval [7, 00) such that

”u”LOO(T,OO;H(l)U(Q)) + ||u||L2(T oo H2(R) T ||8tu||L2(T,oo;L(2f(SZ))

4v*
U*

,0* 2w
mln v s

< 2max (5.26)

V*

Therefore, the desired claim in Theorem 1.3-(iii) follows with T = 7 (&) where
e € (0, 1) is given by (5.18). O
6 Convergence to equilibrium

In this section, we complete the proof of Theorem 1.3 by showing that each weak
solution converges to an equilibrium (stationary state) of the system (1.1) and (1.2).

Proof of Theorem 1.3-(iv) Convergence to a stationary solution Let us first recall (cf.
Theorem 1.3-(ii)) that

[p(x, )| <1—=6, V(x,t) e Q x [Tsp, 00).
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Now let ¥ be the smooth and bounded function such that U [[145,1=8] = Yl[—1+45,1-5]>
and

o~ 1 ~
Eirec () = / SVl + ¥ () dx,
Q2
forall p € H m)(Q) with |@(x)| < 1 for almost every x € 2. Then, we report the

following result whose proof can be found in [11, Proposition 6.1].

Proposition 6.1 (Lojasiewicz—Simon inequality) Let ¢ € D(0Ey) be a solution to
(3.1)—(3.3). Then, there exist three constants 6 € ( ] C, k > 0 such that

’Efree(ﬁa) - Efree(‘f’/)’ <C HDEfree(w) H H(IO)(Q)/ )
V(p € H(]m)(Q) : ”90 - ¢/||H(10)(Q) <K, (61)
where Dgfree (m)(Q) — (0)(52) denotes the Frechét derivative of Efree H(lm)
() — R.

Next, we note that the only critical points of the energy

1 .
Exin(v, ¢) = / SP@P@Pdx, ¥y e12(9), ¢ € L) with llpl e < |
Q

are (v, ¢) with v = 0 and ¢ arbitrary. Moreover, obviously

1 p*
| Exin (v, 9) — Exin(0,¢)|? <,/ > vliz2@)

Vv e L2(Q), ¢ € L¥(Q) with @]l < 1.

Hence, by Proposition 6.1, forany ¢’ € D(d Ey) solution to (3. 1)-(3.3)and any R > 0,
there exist three constants 6 € (0, 2] C,k > 0 such that E(v, ¢) = Exin(v, ) +

Efree(gp) satisfies
|[Ew,9) — E©0,¢)] " <C (HDEfree(@ I miy @+ ||v||Lz<Q)) (6.2)

for all |l — ¢’||H(10> <«,andv € LZ(Q) with [[v]|;2(q) < R.

Since w(u, ¢) is a compact subset of Lg (Q) x W &P (Q) for every ¢ > 0, and
because of Lemma 3.3, for every R > 0 there exist three universal constants 0 €
(O ] C, k > 0 such that (6.2) holds for all (0, ¢') € w(u, ¢), ¢ € H(m)(Q) such

that || — ¢’ ||H(|(J <k,andv € L(ZT(Q) with [|[v||;2(q) < R. Furthermore, by choosing

Tc > max{Tsp, Tg} sufficiently large, we obtain dist((u(z), ¢ (¢)), w(u, ¢)) < k with
respect to the norm of L(z, () x HY(Q) for all t > T¢. Thus, we infer that
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|E@(), p(0)) — E0,¢)|'™*

<C (}!Diﬁee(cp(r))uf,(h @t ||u(r>||Lz(Q)) V= Te,¥(0,9) € o, ).

On the other hand, since w(u, ¢) is connected, E (0, ¢’) is independent of ¢’ with
0, ¢") € w(u, $)). Thus, we set such a value as E,, and we conclude that

|E(t), () — En|' ™" < C (||DEfree(¢(r>>|| Hoy@y T \Iu(l)lle(m), Vi>Tc. (6.3)
Lastly, in order to prove the convergence as t — 0o, we consider
H() = (E@(1). (1) — Ex)’ |

where 0 is as in (6.3). By the energy identity (4.8), which holds due to Remark 4.2
and Theorem 1.3-(iii), H () is non-increasing and

—%H(t) =0 (nwmniz(m + /Q V(¢ (1) Du(r)|* dx) (E@(t), $(1) — Eoo)’™"
>0C™! (nwmu% - /Q V(¢ (1)) Du(t)|* dx
x (||DEfree<¢<t))||H(10 @t ||u(r)||Lz<m>1
for all > T¢. Now we use that

DEgrec((1)) = — A (1) + PoW'(§(1)) = —Ad(1) + PoW (¢ (1) = Pou(r). V1 =T,

since [ ()] < 1=8.Inlightof | s (1)l ) ey < CIVI(D 20 and u(t)ll 20y <

C||Du(t)||Lz(Q) by Korn’s inequality, —%H(r) >C (||V,u(t)||Lz(Q) + ||Du(t)||Lz(Q)) ,
for some positive constant C. In turn, this implies that

o0 o0
/ IV i) 20 di + f | Du(t) |l 2 df < CH(Tc) < oo
Tc Tc

Therefore, by (2.54), we deduce that
o0
/ 18: (1) 1 @y dr < CH(T¢) < o0,
T

which entails that d,¢p € L (Tc, oo H! (2)). Thus, we infer that
t
B0 =0T + [ 30T > b in ().

Tc
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In particular, w (u, ¢) = {(0, o)} and ¢ solves the stationary Cahn—Hilliard equa-
tion (3.1)—(3.3) thanks to Lemma 3.3. Since (u,¢) € BC([Tg, o0); H(l)’g(Q) X
W2P(Q), forany 2 < p < coifd = 2 and p = 6 if d = 3, we conclude that
(u(t), ¢ (t)) converges weakly to (0, ¢po) in H(l)’ﬂ () x W2P(). This finally proves
Theorem 1.3-(iv). O

7 Global regularity for the AGG model in two dimensions

In this section we prove the global well-posedness of the AGG model in any generic
two dimensional bounded domain. We recall that the local well-posedness has been
proven in [21, Theorem 3.1]. We show herein that the local strong solutions to system
(1.1) and (1.2) are in fact globally defined.

Theorem 7.1 Let Q be a bounded domain of class C3 in R%. Assume thatug € H(l)’(7 ()
and ¢po € H*(RQ) such that ||gollz=) < 1, gol < 1, po = —Ado + ¥/ (o) €
HY(Q), and ondo = 0 on Q2. Then, there exists a unique global strong solution
(u, P, ¢) to system (1.1) and (1.2) defined on Q x [0, 00) in the following sense:

(1) The solution (u, P, @) satisfies

u € BC([0, 00); H , () N L2(0, 003 H*(2)) N W2(0, 00; L2 (),
P € L3, ([0, 00); H'(Q)),

uloc
¢ € L0, 00; H*(Q)), 8¢ € L0, 0o; H'(Q)') N L*(0, 00; H(Q)),
¢ € L®(2 x (0, 00)) with |¢p(x,1)| < 1 a.e in Q x (0,00),
p € BC([0, 00); H'(R)) N L2 ([0, 00); H3 () N W2.([0, 00); H(R)),

ulo uloc

F'(¢), F"($), F"(¢) € L™(0, 00; LP(Q)), V p € [1, 00). (1.1)

(ii) The solution (u, P, ¢) fulfills the system (1.1) almost everywhere in Q2 x (0, c0)
and the boundary conditions 0,¢ = o, = 0 almost everywhere in 92 x (0, 00).
(iii) The solution (u, P, @) is such that u(-, 0) = ug and ¢ (-, 0) = ¢ in Q2.

Proof Given an initial condition (g, ¢) satisfying the required assumptions, the result
in [21, Theorem 3.1] guarantees the existence and uniqueness of a local strong solution
(u, P, ¢)tosystem (1.1) and (1.2) originating from (¢, ¢o). We consider the maximal
interval of existence [0, Tihax) of such solution. That is, the solution (u, P, ¢) satisfies
(7.1) in the interval [0, T'] for any T < Tpax, the system (1.1) almost everywhere in
Q X (0, Tnax) and the boundary conditions d,¢ = 9,4 = 0 almost everywhere in
02 x (0, Thax)- Furthermore, u(0) = up and ¢ (0) = ¢¢ in 2. Our goal is to show
that Tipax = 00.

We assume by contradiction that Tiax < 00. First, integrating (1.1)3 over 2 x (0, 1)
with t < Tax, We obtain

/¢(t)dx=/ dodx, Yt el0, Tma). (7.2)
Q Q
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Multiplying (1.1); and (1.1)3 by # and p, respectively, integrating over 2 and summing
the resulting equation, we find the energy identity

t
E@®). 90+ [ [ v@)IDul + VP dxde = Euo. dn). ¥0 =1 < T
0 JQ
Since E (ug, ¢g) < oo, we infer that, for all 0 < ¢ < Tiax,

lull oo, 22) < Cos  Nullz200.: 15 () < Co, (7.3)

&l oo 0,0: 11 (2)) < Cos IVIIL20,1:22(2)) = Co- (7.4)

Here the positive constant Co depends on E(ug, ¢p), but it is independent of ¢ and
Tmax- In light of (7.3), owing to Theorem (2.4) and Corollary 2.6, it follows that

Il oo 0.t )y < Crs IVRIL200. m2(02)) < C1s (7.5)
10: Pl Lo y) < C1s 10Dl 200,11 (2)) < Cis (7.6)
1l Lo 0. w2y < C1(P)s IIF @) lL=©.rLr@) < C1(p), (7.7)

forall 0 < ¢ < Thax and 2 < p < oo, where the positive constants a a(p) are
independent of T, . Furthermore, by [15, Lemma A.6] (see also [33]) and (7.5)—(7.7),
we get

IF" @) | = 0.:r@) + I F” @)l Lo@.:Lr @) < Ca(p), (7.8)
for p as above and some 65( p) independent of Tpax.

Next, exploiting (1.1)3, we rewrite (1.1); in non-conservative form (cf. (5.10)) as
follows

p(@)du + p(@)u - Viu — p'(¢)(Vie - Viu — div(v(¢) Du) + VP* = —¢Vpu.

(7.9)
Multiplying (7.9) by 0;u and integrating over €2, we obtain
& | P iou ax ol < | [ p@)a Vu- duax
+ /Q '@ (V- Vo - dud
+ /Q V' ($)0 | Dul” dx
+ /Q—qﬁVu - oudx|. (7.10)
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Using the Ladyzhenskaya inequality, the Korn inequality and (7.3), we find

‘/ p(@) (@ - Viu - dudx| < p*llull L4 Vuell 2o | 3l 12
Q

~ 1 1
< CC? I Vull gyl o o Nortl gy 1D

P ~
< L0l g) + @l + ClDuI g,

where C stands for a generic positive constant, whose value may change from line to
line, which depends on the norms of the initial data, the parameters of the system and
@ > 0. The (small) value of @ will be chosen subsequently. Similarly, we have

‘/ V' ($), | Dul® dx
Q

< Cll9:pll2(q) ||D”||i4(sz)
(7.12)

IA

ClIIVOodli L2l Dull 2oy lull g2 (o)

@ [l gy + CIIVOPIT2 g I DUl 2 g -

A

Besides, by the Sobolev embedding and (7.7)

P1— P2
‘/ P (@) (Vi - Viu - dudx| < ’ 5 IViLllLooy IVull p2q) 102l L2
Q
P 2 ~ 2 2
= F ||3tu||L2(Q) + C”VMHHZ(Q) ”Vu”LZ(Q)»
(7.13)
and
/ —¢Vu - dudx| < ||¢||L°°(Q)||V¢||L2(Q)||3t”||L2(Q)
Q (7.14)
=

p ~
5 10l + CIVi L2 g

On the other hand, exploiting the regularity theory of the Stokes equation with
concentration-depending viscosity in [1, Lemma 4] and owing to (7.7), we infer that

2y = € (I0@aiu13 gy + @) @ - Vul

(7.15)
+Ho' @) (Vi - Vyulga g, + ||¢vm|iz(m) :

Arguing in a similar way as above, we deduce that

leell 3 ) < c(p*nafuniz(m + o [l e ) IVEl 74 g

p1— P2
T2

IVl 700 I Va2 ) + ||¢>||%oo||wniz(9)>
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<C (p*natuuiz(m + p*CoClIVull 72 g 1l 2

PL— P2
2

i

IVl 320y I VRl 2 g + ||vm|iz(m) : (7.16)
Thus, using the Young inequality, we arrive at

el 30 < Clldul}ag) + ClVullgs g + ClIVilp g I Vala g,
+ClIVl T q)- (7.17)

Now, combining (7.10) with (7.11)—(7.14), summing the resulting equation by

3w x(7.17), and setting @ = 1%5’ we eventually reach the differential inequality

d (1 2 Px 2 P 2
1 ~
<G (5/ v<¢)|Du|2dx> +ClIVulZa g
Q
where

G(t) = C (I DU gy + VA D) 221g) + IV1O 12 )

The Gronwall lemma yields

t
2 2 2
‘[Iél[%?(t] ”u(f) ”HI(Q) + /(; ”8;“(1') ||L2(Q) + ||ll(T)||H2(Q) d'L'

t

4 t ~
x (1 +/ G(s)ds) el GO — G(1), Vi < Toyax. (7.18)
0

Inlight of (7.3), (7.5) and (7.6), Gel™ (0, Tiax). On the other hand, by the assump-
tion Thax < 00, it is easily seen that

tim sup (Ila()llgy + 12110 ) = .

t— Tinax
Otherwise, the solution could be extended beyond the time Tiax thanks to [21, Theorem
3.1]. This contradicts (7.5) and (7.18). Thus, we conclude that Tj,x = oo, and the

solution (u, P, ¢) exists onLO, 00). In particular, since the estimates (7.3)—(7.8) holds
on [0, 00), it follows that |G| 10,00y < 00 and thereby

u € BC([0, 00); H , () N L*(0, o0; H*(22)) N W2(0, 00; L7 ().

@ Springer



NSCH system with unmatched densities

In addition, since F”(¢) € L*°(0, co; LP(R2)) for any 2 < p < 0o, by comparison

with terms in (1.1)4, we also deduce that du € L2, ([0, 00); H'(2)'), which, in turn,

implies that u € BC([0, o0); H(Q)). o

8 Double obstacle potential: the limit 8 \ 0

In this final section we study the double obstacle version of the system (1.1) and (1.2)
which is obtained by passing to the limit 6 \( O in the Flory—Huggins potential W, cf.
(1.4). The limiting free energy is then given by

1 6o
E%gm=i/—w¢ﬁ+q4ﬂw»~—&dx
Q2 2
Here I 1) is the indicator function of the interval [—1, 1] given by

0 ifse[-1,1],
I_ =
-1.11(6) {oo ifs ¢ =1, 1].

In this case equation (1.1)4 has to be replaced by

W+ A+ bod € DI 1_1.1)(¢) @.1)

almost everywhere in  x (0, 0o) where 0/[_1, 1] is the subdifferential of /|y 1. The
inclusion (8.1) is equivalent to the variational inequality

— (U, =P+ (Vo VL =V¢) =6 (0. L =) =0

which has to hold for almost all ¢ and all ¢ € H' () which fulfill |z (x)| < 1 almost
everywhere in €2, see [12].

We first state a result on the double obstacle limit for the convective Cahn—Hilliard
equation which has been shown in [3, Theorem 3.10].

Theorem 8.1 (Double obstacle limit of the convective Cahn—Hilliard equation) Let 2
be a bounded domain in RY, d = 2, 3, with C2 boundary and 0 < 6 < 1, k € N, be
such thatlimg_, o 6k = 0. Moreover, assume ¢o, ¢o ik € H! () with |lpo il L) <1
and supy ¢y |m| < 1, and u,u; € L*(0, oo; H(l)’a(Q)) be such that as k tends to

infinity

box — o in H'(Q) and ux —u in L*(0, T; Hy ,(Q))
forall T € (0, 00). Furthermore, let (¢r, L) be the sequence of weak solutions to
(2.1) and (2.2) with (u, ¢o, F) replaced by (uy, ¢o k. Fx) where F is defined with 6y

instead of 0. Then, it holds in the limit k tending to oo
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d— weakly in L*>(0, T; W>P(S)),
Vuk—Vu  weakly in L*0, T; L*(2)), (8.2)
Fl(pr)—F*  weakly in L*(0, T; LP()),
for all T € (0,00), where F* = p + A¢ + 0.¢ € 9Ij—1,11(¢p) almost every-

where in Q@ x (0,00), p = 6ifd = 3, p € [2,00) is arbitrary if d = 2 and
(¢, 1) € C([0, 00); HI(R)) N LY, (10, 00); H?(R2)) N L2, ([0, 00); WP (Q)) x

uloc uloc
Lﬁloc([(), 00): HY(Q)) is the unique weak solution of
0 Vo =A
ipFu- Vo= Au in Q x (0, 00) (8.3)
n+ AP+ 0pp € 011—1,11(P)

completed with the following boundary and initial conditions

!a,,qs:a,,uzo on 3 x (0,7), 8.4)

¢(¢.0)=¢o inK.

The weak solution satisfies the free energy equality

t t
E©.(¢(1)) + / Vi) 132 ds = Efie, (¢(7)) — / @-Vé, wds, (8.5

forevery) <1 <t < o0.

The formulation in [3, Theorem 3.10] is slightly different. However, e.g., the variable
mean values ¢ x do not effect the arguments substantially.

We now formulate our result stating the higher regularity for the Cahn—Hilliard
equation with divergence-free drift in the double obstacle case.

Theorem 8.2 Let Q be a bounded domain in RY, d = 2, 3, with_C3 boundary and the
initial condition ¢y € H*(Y) be such that lgollLe) < 1, |¢0| < 1. Furthermore,
we assume that a function (1o € H Y(Q) exists such that

mo + oo + Ago € dI[—1,11(¢0) almost everywhere in Q (8.6)

and o9 = 0 on 0K2. Assume that u € L2(0, oo; H(l)’(7 (2)). Then, there exists a
unique global solution to

0 -V =A
{ ¢ Fu-Vo " almost everywhere in Q x (0, 00), (8.7)

m+ Ad+0op € dl—1,11(d)
such that

¢ € L0, 00; WHP(Q)), 8¢ € L*(0,00; H'(Q)),
¢ € L2 x (0, 00)) with |p(x, )| < 1 a.e. in 2 x (0, 00), (8.8)
p e L0, 00; H'(2)) N L. ([0, 00); H(Q)),

uloc
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forany2 < p < ooifd =2and p = 6 if d = 3. The solution satisfies (8.7) almost
everywhere in Q2 x (0, 00) and 9, ;0 = 0 almost everywhere on 92 x (0, 00). Moreover,
there exists a positive constant C depending only on Q, 6y,

and ¢ such that

1

o0
1V ill oo 0,001 L2(2) < 2 (nwoniz(m +C fo IVa )17y HIVEO 1720 ds)

oo
X exp (c/0 IV ()32 g, ds> :

(8.9)

and

o0 o0
/0 IV ()72, ds < 6 (nwoniz(m +C /0 IVa() 17200, HIVIO7 20 ds)

(1 ([ 1900 gy 05) e (26 [ 19001 g 05 )

(8.10)

In addition, ifu € L*(0, 00; L (2)) N L*(0, 00; H (), then ;¢ € L>(0, oc;
HY(Q)).

Proof The argument relies on the limit &6 = 1/k \( 0, with k € N, in the problem
(2.1)-(2.2). To this end, we will use Theorem 2.4 with appropriate initial data ¢]5. To
fulfill the assumptions on the initial data in Theorem 2.4, we solve the elliptic boundary
value problem

—AQE + FFY(@5) + 5 = 1o+ fogo + o =: fio in L,

8.11
I =0 on 9%, (811

where we choose Fy(s) = %[(1 + s)log(1 4+ 5) + (1 — s)log(1l — s)]. Some of the
following estimates are formal but can be justified by approximating F by smooth
functions with quadratic growth. Testing (8.11) with %Fé ((l)g) and using the fact that
Fy is monotone gives that %Fé (¢]6) is uniformly in k bounded in L%(Q). Now elliptic
regularity theory gives that ¢’(§ is uniformly in k bounded in H?(S). As Fé(d)’(;) €
L2(2), we obtain that |¢(]§ (x)] < 1 almost everywhere in 2. For a subsequence, we
obtain that qbg converges to ¢* weakly in H%($2) and strongly in H'($2). We now
choose 7 € H' () with |5(x)| < 1 almost everywhere in  and use n = 7 — qb’(; as
test function in the weak formulation of (8.11) obtaining

—/Qﬁo(ﬁ—wg) dx—i—/Qqu’g-V(’ﬁ—d)’g) dx+/9¢(;(ﬁ—¢’5) dx

| N
- _ /Q ZF(;(qﬂg) (n _ ¢>’5) dx. (8.12)
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As Fj is convex, we have
Fo(i) = Fo(f) + F3(4) i — ¢5).

Then, the right hand side in (8.12) is greater or equal than
1 k
- (Fo@b) — Foip ) ax
ok

which converges to zero for k tending to infinity. The above convergence properties
now give the inequality

~ [ R0 -9 ax+ [ VorV@-67) x| 6 G-07) dx 0,
Q Q Q
which gives that

flo + AQ* — @™ = po + oo + o + Ap* — ¢* € dI—1,11(¢™)

together with zero Neumann boundary conditions. As the operator ¢ — —A¢p + ¢ +
9111, 17(¢) is strictly monotone we obtain from (8.6) that ¢g = ¢*.

We now consider the sequence of strong solutions {(¢*, 1¥)} given by Theorem
2.4 with 6 = % and qﬁé instead of ¢g. In order to derive estimates, which are uniform

in k, from (2.9) and(2.10), we need to control —A@} + 1 Fj(#8) — 6ogl in H'(Q).
In fact, by construction in (8.11), we notice that
1 1
— A+ zFé(rb’é) — Oy = —Agh + zFo’(qs’o‘) + ¢ — b0 — b5

= 1o + 0o(¢o — B5) + (o — pf) =:

and we observe that ul(‘) is uniformly bounded in H' () in k. Setting W 1 (s) = %%[(1 +
s)log(1 +5) + (1 — s)log(l — )] — Ls% = 1 Fy(s) — 52, we infer that

k
IVl oo 0, 00; 22 (92))

<2 <Hv (—A¢>{§ + W%(q&é))

1

2 2

o0
+C /0 Va6 1720 HIVHE 911720 ds>

L2(Q)

X exp (C/O V()32 q) ds> (8.13)

1

2 S ) 2 2
+C [0 IV 0 V) 22 ds

<2 (Hv (1o + G0+ Dgo — 45))
X exp (cfo ||Vu(s)\|iz(9) ds>
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and
/0 19064 (5)]122 g ds
k / k
<6 <‘V (—A% + ‘I’%(%))

. (1 + ( /0 V512 ds) exp (2c /0 1Vu () 122 g, ds))

INYE o 2 2
< 6(HV(MO + (60 + (9o — ¢5)) poey FC /0 IVa() 1220, HIVIO) 22 ds)

(o] o0
1+ (/0 HVu(s)niz(Q) ds) exp <2C/0 ||Vu(s)|\iz(9) ds>).

Here, the convergence of ||V/,Lk||L2(O’OO;L2(Q)) o [[Viell 20,00 22(02)) @S kK —> 00
can be deduced as in the proof of Theorem 2.4. In particular, the constant C depends
on €2, 6, and ¢, but is independent of k. In the limit as k tends to co, we obtain that
Vi € L%(0, 00; L2(Q)) and Vd,¢ € L?(0, oo; L*(R2)). In addition, thanks to [3,
Proposition 3.3], we deduce that ¢ € L°°(0, oo; W2P(Q)) for 2 < p<ooifd=2
and p = 6 if d = 3. Also, the estimates (8.9) and (8.10) hold due to the fact that
qb(])‘ — ¢ in H'(2) and the lower semicontinuity of the norm. The rest of the proof
follows by arguing similarly as in Theorem 2.4 (see also [3]). O

2 %)
2 k 2
+ C / ”VH(S) ”LZ(Q)J’_”VIU' (S) ”LZ(Q) dS)
L%(Q) 0

X

(8.14)

We now study the double obstacle limit of the full Navier—Stokes/Cahn—Hilliard
system (1.1) with the boundary conditions (1.2). The limiting system is given as

3 (o(p)w) + div (u ® (0(p)u +J)) — div (v(¢)Du) + VP = —div (V¢ ® V§),
divu =0,

(8.15)
w+ Ap+ 00 € 0I1—1,11(),
in 2 x (0, 00), subject to the initial and boundary conditions
u=0, 0,¢0=0u=0 ond2x(0,T), (8.16)

ul;=o =ug, @Pli=0=¢o in Q.

Combining the arguments of [3, 6] and the methods of this paper we obtain the fol-
lowing result.

Theorem 8.3 (Weak solutions in the double obstacle case) Let Q2 be a bounded domain
inR4, d = 2,3, with boundary 92 of class C2. Moreover, let 0 < Or <1, keN, be
such that limy_, o Ok = 0. Assume that ¢o, ok € H! (2) with ||¢okll Lo < 1 and
supgen |Pok| < 1, and ug, uo i € Hé’J(Q) be such that

up, —>u in H(l)’U(SZ), Pox — Po in HI(Q) as k — oo.
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In addition, let (uy, ¢r, i) be weak solutions to (1.1) and (1.2) with initial values
(wo,k, $0.x)- Then, there exists a subsequence kj, j € N, withk; — oo as j — oo,
such that as j tends to infinity

(i, Vi) =@, V) weakly in L*(0, 00; H 5 (2) x L*(Q)),
(Wi, dr;)— (. ¢) weak-star in L (0, 0o; L2 () x H'(R)), (8.17)
(@r;, i) =(¢, ) weakly in L*(0, T; W>P(Q) x L*(Q)),

forall T € (0, 00), with p € [2,00) arbitrary ifd = 2 and p = 6 ifd = 3, and
(u, ¢, ) is a weak solution to (8.15)—(8.16). Furthermore, the energy inequality

t
2w ¢w)+ [ [Vo@@ipuc)|

< E®u(s), ¢(s)) (8.18)

2
2
LZ(Q) + ”VI'L(T)”LZ(Q) dT

holds for all t € [s, 00) and almost all s € [0, 00) (including s = 0). Here, the total
energy EY(u, ¢) is given by

E®®, ¢) = Exin(u, ¢) + E. ().

The following result now states additional regularity for the concentration of any
weak solution obtained in the previous Theorem 8.3. The proof of which can be
performed exactly in the same way as in the proof of Theorem 1.3 (i), see the end of
Sect. 2.

Theorem 8.4 (Regularity of weak solutions in the double obstacle case) Let 2 be a
bounded domain in RY, d = 2, 3, with boundary 3K of class C*. Consider a global
weak solution (u, ¢) given by Theorem 8.3. Then, for any t > 0, we have

¢ € L™®(t, 00; WHP(Q)), 8¢ € L*(r,00; H(Q)),
e L®(z, 00; H'(2)) N L. ([7, 00); H (),

uloc

(8.19)

where2 < p < ooifd =2 and p = 6 ifd = 3. Moreover, the equations (8.15)3_4
are satisfied almost everywhere in Q x (0, 0c0) and the boundary conditions d,¢ =
on it = 0 holds almost everywhere on 92 x (0, 00).

Let us finally comment about the longtime behavior. In the double obstacle case,
we cannot obtain enough large time regularity to show the same results as in the case
of a logarithmic potential. This is mainly due to the fact that a separation property
does not hold in this case. In addition, as typical for obstacle problems, the variable ¢
in space will not lie in H3(£2). This is already true for simple stationary solutions, see,
e.g., [12]. In addition, no Lojasiewicz—Simon inequality is known so far in the double
obstacle case and hence it is not possible to show that the solution converges for large
time to a single stationary solution. However, we can still characterize the w-limit set
of a weak solution. As in Lemma 3.2 one can show that the velocity for large times
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converges to 0. Concerning the concentration ¢, its long time limits consist of critical

points of the energy Eg‘ée. Defining the convex part of Eg‘ée as

do 1 2
Ep” (¢) =/Q§|V¢I + I—1,17(¢) dx,

we now recall the characterization of the subgradient 8E8° given in [3, 30].

Theorem 8.5 The domain of definition of the subgradient o Ego with respect to L%O) ()

of ESO is given as
DOEX) = {(;5 e HXQ N L2, (Q): ¢x) € [~1, 1] ae. inQ, dudlog = 0} .
For any ¢g € ’D(8Eg°), we have g € 3E8°(¢) if and only if

no(x) + Ap(x) +w € dlj—1,11(p(x)) a.e. in

for some constant 1.

The stationary solutions ¢, € D(9 Eg") of the double obstacle version of the
Cahn-Hilliard equation fulfill (with a suitable constant 7z)

w4+ A+ 6 € 91—1,11(¢p) in Q, (8.20)
onp =0 on 02, (8.21)

1
@/;Zqﬁ(x) dx = m. (8.22)

We notice that the solutions to (8.20)—(8.22) are critical points of the functional E?r‘ée

on H ]m (£2). For the long time behavior, we find with the help of the energy inequality
(8.18) and the free energy identity (8.5) similar as in Lemmas 3.2 and 3.3 the following
result

Theorem 8.6 Let (u, ¢) be aweak solution to (8.15) and (8.16) in the sense of Theorem
8.3. Then, we have

ut) - 0 in L2(Q), ast — oo
and

o, d) C {(0, $): ¢ € WHP(Q) N HL, () solves (8.20)-(8.22)} ,

where m = ¢o and w(u, @) is the w-limit set with respect to the norm of Lg X
W2=¢P(Q) for an arbitrary ¢ > 0 and p as before.
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