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Abstract
For m, n ∈ N, let X = (Xi j )i≤m, j≤n be a random matrix, A = (ai j )i≤m, j≤n a real
deterministicmatrix, and XA = (ai j Xi j )i≤m, j≤n the corresponding structured random
matrix. We study the expected operator norm of XA considered as a random operator
between �np and �mq for 1 ≤ p, q ≤ ∞. We prove optimal bounds up to logarithmic
terms when the underlying random matrix X has i.i.d. Gaussian entries, independent
mean-zero bounded entries, or independent mean-zero ψr (r ∈ (0, 2]) entries. In
certain cases, we determine the precise order of the expected norm up to constants.
Our results are expressed through a sum of operator norms of Hadamard products
A ◦ A and (A ◦ A)T .

R. Adamczak is partially supported by the National Science Center, Poland via the Sonata Bis grant no.
2015/18/E/ST1/00214. R. Adamczak was partially supported by the WTZ Grant PL 06/2018 of the OeAD.
J. Prochno and M. Strzelecka are—and M. Strzelecki was — supported by the Austrian Science Fund
(FWF) Project P32405 Asymptotic Geometric Analysis and Applications. M. Strzelecka was partially
supported by the National Science Center, Poland, via the Maestro grant no. 2015/18/A/ST1/00553.

B Marta Strzelecka
martast@mimuw.edu.pl

Radosław Adamczak
radamcz@mimuw.edu.pl

Joscha Prochno
joscha.prochno@uni-passau.de

Michał Strzelecki
michalst@mimuw.edu.pl

1 Institute of Mathematics, University of Warsaw, Banacha 2, 02–097 Warsaw, Poland

2 Faculty of Computer Science and Mathematics, University of Passau, Innstraße 33, 94032
Passau, Germany

3 Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, 8010
Graz, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-023-02599-6&domain=pdf
http://orcid.org/0000-0001-8942-7710


3464 R. Adamczak et al.

Keywords Gaussian random matrix · Operator norm · Structured random matrix · ψr

random variable

Mathematics Subject Classification Primary 60B20 · Secondary 46B09 · 52A23 ·
60G15 · 60E15

Contents

1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3464
1.1 History of the problem and known results . . . . . . . . . . . . . . . . . . . . . . . . . . 3466
1.2 Lower bounds and conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3468
1.3 Main results valid for 1 ≤ p, q ≤ ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3472
1.4 Results for particular ranges of p, q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3475
1.5 Tail bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3479
1.6 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3480

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3480
2.1 General facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3480
2.2 Contraction principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3483
2.3 Gaussian random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3483
2.4 Random variables with heavy tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3485

3 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3489
3.1 General bound via Slepian’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3489
3.2 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3496

4 Proofs of further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3501
4.1 Gaussian random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3501
4.2 Bounded random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3507
4.3 ψr random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3510

5 Lower bounds and further discussion of conjectures . . . . . . . . . . . . . . . . . . . . . . . 3515
5.1 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3515
5.2 The proof of Inequalities (1.13) and (1.11) . . . . . . . . . . . . . . . . . . . . . . . . . . 3517
5.3 Counterexample to a seemingly natural conjecture . . . . . . . . . . . . . . . . . . . . . . 3519
5.4 Discussion of another natural conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 3520
5.5 Infinite dimensional Gaussian operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 3523

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3525

1 Introduction andmain results

With his work on the statistical analysis of large samples [69], Wishart initiated the
systematic study of large random matrices. Ever since, random matrices have con-
tinuously entered more and more areas of mathematics and applied sciences beyond
probability theory and statistics, for instance, in numerical analysis through the work
of Goldstine and von Neumann [20, 65] and in quantum physics through the works
of Wigner [66–68] on his famous semicircle law, which resulted in significant effort
to understand spectral statistics of random matrices from an asymptotic point of view.
Today, random matrix theory has grown into a vital area of probability theory and
statistics, and within the last two decades, random matrices have come to play a
major role in many areas of (algorithmic) computational mathematics, for instance, in
questions related to sparsification methods [1, 54] and sparse approximation [57, 58],
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Norms of structured random… 3465

dimension reduction [4, 12, 44], or combinatorial optimization [46, 53]. We refer the
reader to [5, 6, 60] for more information.

In this paper, we are interested in the non-asymptotic theory of (large) random
matrices. This theory plays a fundamental role in geometric functional analysis at least
since the ’70 s, the connection coming in various different flavors. It is of particular
importance in the geometry of Banach spaces and the theory of operator algebras [9,
10, 15, 18, 21, 30] and their applications to high-dimensional problems, for instance,
in convex geometry [17, 22], compressed sensing [14, 16, 48, 63], information-based
complexity [27, 28], or statistical learning theory [50, 64].On the other hand, geometric
functional analysis had and still has enduring influence on random matrix theory as is
witnessed, for instance, through applications of measure concentration techniques; we
refer to [15, 42] and the references cited therein. The quantity we study and focus on
here concerns the expected operator norm of randommatrices considered as operators
between finite-dimensional �p spaces; recall that �np denotes the space Rn equipped
with the (quasi-)norm ‖·‖p, given by ‖(x j )nj=1‖p = (

∑n
j=1 |x j |p)1/p for 0 < p < ∞

and ‖(x j )nj=1‖∞ = max j≤n |x j | if p = ∞. We address the following problem: for
1 ≤ p, q ≤ ∞ and m, n ∈ N, determine the right order (up to constants that may
depend on the parameters p and q) of

E‖XA : �np → �mq ‖,

where, given a deterministic realm×n matrix A = (ai j )i≤m, j≤n and a randommatrix
X = (Xi j )i≤m, j≤n , we denote by

XA:=A ◦ X = (ai j Xi j )i≤m, j≤n

the structured randommatrix; the symbol ◦ stands for the Hadamard product of matri-
ces (i.e., entrywise multiplication). The bounds on the expected operator norm should
be of optimal order and expressed in terms of the coefficients ai j , i ≤ m, j ≤ n.
Understanding such expressions and related quantities is important, for instance, when
studying the worst-case error of optimal algorithms which are based on random infor-
mation in function approximation problems [28] (see also [33]) or the quality of
random information for the recovery of vectors from an �p-ellipsoid, where (the radius
of) optimal information is given by Gelfand numbers of a diagonal operator [29].

In the case where the random entries of X are i.i.d. standard Gaussians (then we
writeGA instead of XA) and 1 ≤ p, q ≤ ∞, we will show the following bound, which
is sharp up to logarithmic terms:

D1 + D2 � E‖GA : �np → �mq ‖ � (ln n)1/p
∗
(lnm)1/q

[√
ln(mn)D1 + √

ln nD2
]
,

(1.1)

where D1:=‖A ◦ A : �np/2 → �mq/2‖1/2, D2:=‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2, and p∗
denotes the Hölder conjugate of p defined by the relation 1/p+1/p∗ = 1. As will be
explained later, we obtain sharp estimates in certain cases and derive results similar
to (1.1) for other models of randomness.
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1.1 History of the problem and known results

In what follows, A = (ai j )i, j is a real deterministic matrix and G = (gi j )i, j always
stands for a random matrix with i.i.d. standard Gaussian entries (usually the matrices
are of size m × n unless explicitly stated otherwise). We use C(r), C(r , K ), etc. for
positive constants which may depend only on the parameters given in brackets and
write C,C ′, c, c′, . . . for positive absolute constants. The symbols �, �r , �r ,K , etc.
denote that the inequality holds up to multiplicative constants depending only on the
parameters given in the subscripts; we write a � b if a � b and b � a, and �r , �r ,K ,
etc. if the constants may depend on the parameters given in the subscript.

In 1975, Bennett, Goodman, and Newman [9] proved that if X is an m × n random
matrix with independent, mean-zero entries taking values in [−1, 1], and 2 ≤ q < ∞,
then

E‖X : �n2 → �mq ‖ �q max{n1/2,m1/q}. (1.2)

In fact, up to constants, this estimate is best possible: for anym×n matrix X ′ with±1
entries one readily sees that ‖X ′ : �n2 → �mq ‖ ≥ max{n1/2,m1/q}; just use standard
unit vectors and operator duality. Moreover, in this ‘unstructured’ case, where ai j = 1
for all i, j , it is easy to extend (1.2) to the whole range of p, q ∈ [1,∞] (see [8, 13] or
Remark 4.2 below). Also, if all entries are i.i.d. Rademacher random variables, then
the bounds are two-sided, i.e., the expected operator norm is, up to constants, the same
as the minimal norm for all p, q (see [8, Proposition 3.2] or [13, Satz 2]).

The case most studied in the literature is the one of the spectral norm, i.e., the
�n2 → �m2 operator norm. Seginer [51] proved in 2000 that if X = (Xi j )i≤m, j≤n is an
m × n random matrix with i.i.d. mean-zero entries, then its operator norm is of the
same order as the sum of expectations of the maximum Euclidean norm of rows and
columns of X , i.e.,

E‖X : �n2 → �m2 ‖ � Emax
j≤n

‖(Xi j )
m
i=1‖2 + Emax

i≤m
‖(Xi j )

n
j=1‖2. (1.3)

Riemer and Schütt [49] proved that, up to a logarithmic factor ln(en)2, the same holds
true for any randommatrix with independent but not necessarily identically distributed
mean-zero entries. Let us also mention that in the Gaussian setting one can use a non-
commutative Khintchine bound (see, e.g., [59, Equation (4.9)]) to show that, up to a
factor

√
ln n, the expected spectral norm is of the order of the largest Euclidean norm

of its rows and columns.
In the very same setting that was considered by Riemer and Schütt, Latała [37] had

obtained a few years earlier the dimension-free estimate

E‖X : �n2 → �m2 ‖ � max
j≤n

( m∑

i=1

EX2
i j

)1/2 + max
i≤m

( n∑

j=1

EX2
i j

)1/2 +
( m∑

i=1

n∑

j=1

EX4
i j

)1/4
.
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Norms of structured random… 3467

This bound is superior to the Riemer–Schütt bound in the case of matrices with all
entries equal to 1 and is optimal for Wigner matrices. In other cases, like the one of
diagonal matrices, the Riemer–Schütt bound is better.

In the case of structured Gaussian matrices, Latała, van Handel, and Youssef [40],
building upon earlier work of Bandeira and van Handel [7] (which combined the
moment method with combinatorial considerations) as well as results proved by
van Handel in [61] (which used Slepian’s lemma), obtained the precise behavior with-
out any logarithmic terms in the dimension, namely

E‖GA : �n2 → �m2 ‖ � Emax
j≤n

‖(ai j gi j )mi=1‖2 + Emax
i≤m

‖(ai j gi j )nj=1‖2
� max

j≤n
‖(ai j )mi=1‖2 + max

i≤m
‖(ai j )nj=1‖2 + E max

i≤m, j≤n
|ai j gi j |.

(1.4)

Their proof is based on a clever block decomposition of the underlyingmatrix (see [40,
Fig. 3.1]). This result finally answered in the affirmative a conjecture made by Latała
more than adecadebefore.Wealso refer the reader to the survey [62] discussing in quite
some detail results prior to [40] and [61]—the latter work discusses the conjectures
of Latała and van Handel and shows their equivalence.

Very recently, Latała and Świątkowski [39] investigated a similar problem when
the underlying random matrix has Rademacher entries. They proved a lower bound
which, up to a ln ln n factor, can be reversed for randomized n × n circulant matrices.

In [23], Guédon, Hinrichs, Litvak, and Prochno studied our main and motivating
question on the order of the expected operator norm of structured random matrices
considered as operators between �np and �mq in the special case where p ≤ 2 ≤ q and
the random entries are Gaussian. In this situation, where we are not dealing with the
spectral norm, the moment method cannot be employed. The approach in [23] was
therefore different and based on a majorizing measure construction combining the
works [24] and [25]. In [23, Theorem 1.1], the authors proved that if 1 < p ≤ 2 ≤
q < ∞, then

E‖GA : �np → �mq ‖ � γq max
j≤n

‖(ai j )mi=1‖q + (p∗)5/q(lnm)1/qγp∗ max
i≤m

‖(ai j )nj=1‖p∗

+(p∗)5/q(lnm)1/qγq E max
i≤m, j≤n

|ai j gi j |, (1.5)

where γr :=(E|g|r )1/r for a standardGaussian random variable g.Moreover, for p = 1
and q ≥ 2, it was noted in [23, Remark 1.4] (see also [45, Twierdzenie 2]) that

E‖GA : �n1 → �mq ‖ � √
q max

j≤n
‖(ai j )mi=1‖q + E max

i≤m, j≤n
|ai j gi j |. (1.6)

Later, an extension of (1.5) to the case of matrices with i.i.d. isotropic log-concave
rows was obtained by Strzelecka in [55].

Trying to extend the upper bound for E‖GA : �np → �mq ‖ to the whole range 1 ≤
p, q ≤ ∞ one encounters two difficulties. First of all, the methods used in order to
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prove (1.5) fail if q ≤ 2 or p ≥ 2, because the majorizing measure construction used
in [23] is restricted to the case q ≥ 2 and the assumption 1 < p ≤ 2 is required in a
Hölder bound. Moreover, when q ≤ 2 or p ≥ 2 the result cannot hold with the right-
hand side of the same form as in (1.5) (see Remark 4.2 below for counterexamples1

to (1.5) in the cases q ≤ 2 and p ≥ 2). This explains the different form of expressions
D1 and D2 in (1.1), which in the range p ≤ 2 ≤ q reduce to the maxima of norms on
the right-hand side of (1.5)—see (1.9) below.

1.2 Lower bounds and conjectures

By arguments similar to the ones used in order to prove the lower bound in (1.4), one
can check that in the range considered in [23, 45] (i.e., 1 ≤ p ≤ 2 ≤ q ≤ ∞) one has

E‖GA : �np → �mq ‖ �p,q max
j≤n

‖(ai j )mi=1‖q + max
i≤m

‖(ai j )nj=1‖p∗

+ E max
i≤m, j≤n

|ai j gi j |. (1.7)

Note that for p = 1,

max
i≤m

‖(ai j )nj=1‖p∗ = max
i≤m, j≤n

|ai j | ≤ √
π/2E max

i≤m, j≤n
|ai j gi j |,

which explains the simplified form of (1.6).
We remark that the proof of (1.7) is basedmerely on the observation that the operator

norm is greater than the maximum entry of the matrix and the appropriate maximum
norms of its rows and columns, combined with comparison of moments for Gaussian
random vectors. Another but related way to proceed, valid for all 1 ≤ p, q ≤ ∞, is
to exchange expectation and suprema over the �np and �mq∗ balls in the definition of the
operator norm. We present the details in Sect. 5.1. In particular, Proposition 5.1 and
Corollary 5.2 imply2 that, for 1 ≤ p, q ≤ ∞,

E‖GA : �np → �mq ‖ �‖A ◦ A : �np/2 → �mq/2‖1/2 + ‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2
+ E max

i≤m, j≤n
|ai j gi j |. (1.8)

It is an easy observation (see Lemma 2.1 below) that for p ≤ 2 ≤ q,

‖A ◦ A : �np/2 → �mq/2‖1/2 = max
j≤n

‖(ai j )mi=1‖q ,
‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2 = max

i≤m
‖(ai j )nj=1‖p∗ .

(1.9)

1 By Jensen’s inequality, the expected norm of a matrix with i.i.d. Rademacher entries is less than or equal
to

√
2/π times the expected norm of the matrix with Gaussian entries, so (1.5) for q ≤ 2 or p ≥ 2 would

imply the same (up to a constant) bound for ±1 matrices, which does not hold in this range of (p, q) as we
explain in Remark 4.2.
2 We use here also a trivial observation that ‖GA : �np → �mq ‖ ≥ maxi, j |ai j gi j |.

123



Norms of structured random… 3469

Thus, in the range 1 ≤ p ≤ 2 ≤ q < ∞ considered in [23, 45], the lower bounds
(1.7) and (1.8) coincide.

Although it would be natural to conjecture at this point that the bound (1.8) may be
reversed up to a multiplicative constant depending only on p, q, such a reverse bound
turns out not to be true in the case p ≤ q < 2 (and in the dual one 2 < p ≤ q) as we
shall show in Sect. 5.3.

In order to conjecture the right asymptotic behavior of E‖GA : �np → �mq ‖, one
may take a look at the boundary values of p and q, i.e., p ∈ {1,∞} or q ∈ {1,∞}.
Note that (1.6) provides an asymptotic behavior ofE‖GA : �np → �mq ‖ on a part of this
boundary (i.e., for p = 1 and 2 ≤ q ≤ ∞ and in the dual case q = ∞ and 1 ≤ p ≤ 2).
We provide sharp results on the remaining parts of the boundary of [1,∞] × [1,∞]
(see dense lines on the boundary of Fig. 1 below):

E‖GA : �np → �m1 ‖ �p D1 + D2 for all 1 < p ≤ ∞,

E‖GA : �n∞ → �mq ‖ �q D1 + D2 for all 1 ≤ q < ∞,

E‖GA : �n1 → �mq ‖ � D1 + max
j≤n

(
√
ln( j + 1)b↓

j ) for all 1 ≤ q ≤ 2,

E‖GA : �np → �m∞‖ � D2 + max
i≤m

(
√
ln(i + 1)d↓

i ) for all 2 ≤ p ≤ ∞,

where

D1:=‖A ◦ A : �np/2 → �mq/2‖1/2,
D2:=‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2,

b j :=‖(ai j )i≤m‖2q/(2−q),

di :=‖(ai j ) j≤n‖2p/(p−2),

and with (x↓
1 , . . . , x↓

n ) denoting the non-increasing rearrangement of (|x1|, . . . , |xn|)
for a given (x j ) j≤n ∈ R

n . (For the precise formulation see Propositions 1.8 and 1.10,
and Corollary 1.11 below.)

Moreover, in Sect. 5.1 we generalize the lower bounds from the boundary into the
whole range (p, q) ∈ [1,∞] × [1,∞] (see Fig. 1 below), i.e., we prove

E‖GA : �np → �mq ‖ �p,q D1 + D2 +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Emaxi≤m, j≤n |ai j gi j | if p ≤ 2 ≤ q,

max j≤n
√
ln( j + 1)b↓

j if p ≤ q ≤ 2,

maxi≤m
√
ln(i + 1)d↓

i if 2 ≤ p ≤ q,

0 if q < p.

(1.10)

Let us now discuss the relation between the terms appearing above. We postpone
the proofs of all the following claims to Sect. 5.

In the case p ≤ 2 ≤ q, we have

D1 + D2 + E max
i≤m, j≤n

|ai j gi j | �p,q D1 + D2 + max
i≤m, j≤n

√
ln( j + 1)a′

i j

�p,q D1 + D2 + max
i≤m, j≤n

√
ln(i + 1)a′′

i j , (1.11)
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Fig. 1 The third summand in (1.10) and in Conjecture 1:

northeast lines: E max
i≤m, j≤n

|ai j gi j |,

horizontal lines: max
j≤n

√
ln( j + 1)b↓

j ,

vertical lines: max
i≤m

√
ln(i + 1)d↓

i ,

northwest lines: 0.
Note that the horizontal axis represents 1/p and the vertical one 1/q. Dense lines correspond to exact
asymptotics and loosely spaced lines to upper and lower bounds matching up to logarithms

where the matrices (a′
i j )i, j and (a′′

i j )i, j are obtained by permuting the columns and
rows, respectively, of thematrix (|ai j |)i, j in such away thatmaxi a′

i1 ≥ · · · ≥ maxi a′
in

and max j a′′
1 j ≥ · · · ≥ max j a′′

mj . Therefore, in the range 1 ≤ p ≤ q ≤ ∞ the right-
hand side of (1.10) changes continuously with p and q (for a fixed matrix A).

Obviously, max j≤n
√
ln( j + 1)b↓

j ≥ maxi≤m, j≤n
√
ln( j + 1)a′

i j and, in general,
the former quantity may be of larger order than the latter one. In Sect. 5.3 we shall
present a more subtle relation: for every 1 ≤ p ≤ q < 2 we shall give an example
showing that the right-hand side of (1.10) may be of larger order than D1 + D2 +
Emaxi≤m, j≤n |ai j gi j |. Note that by duality, i.e., the fact that

‖XA : �np → �mq ‖ = ‖(XA)T : �mq∗ → �np∗‖ = ‖(XT )AT : �mq∗ → �np∗‖, (1.12)

the same holds in the case 2 < p ≤ q. This suggests that the behavior ofE‖GA : �np →
�mq ‖ is different in the regions with horizontal or vertical lines than in the region with
northeast lines.

Moreover, we have

D1 + D2 �p,q

{
max j≤n

√
ln( j + 1)b↓

j if q < p and q < 2,

maxi≤m
√
ln(i + 1)d↓

i if q < p and p∗ < 2
(1.13)
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(see Sect. 5.2). Note that this is not the case for p ≤ q, as one can easily see by
considering, e.g., A equal to the identity matrix. This suggests a different (than in
other regions), simplified, behavior ofE‖GA : �np → �mq ‖ in the region with northwest
lines.

Given the discussion above, the lower bounds presented in (1.10), and the fact
that they can be reversed for all p ∈ [1,∞], q ∈ {1,∞} (and for all q ∈ [1,∞],
p ∈ {1,∞}), it is natural to conjecture the following.
Conjecture 1 For all 1 ≤ p, q ≤ ∞, we conjecture that

E‖GA : �np → �mq ‖ �p,q D1 + D2 +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Emaxi≤m, j≤n |ai j gi j | if p ≤ 2 ≤ q,

max j≤n
√
ln( j + 1)b↓

j if p ≤ q ≤ 2,

maxi≤m
√
ln(i + 1)d↓

i if 2 ≤ p ≤ q,

0 if q < p.

(1.14)

Remark 1.1 One could pose another natural conjecture, based on the potential gener-
alization of the first line of the bound (1.4), namely that the inequality

E‖GA : �np → �mq ‖ �p,q Emax
i≤m

‖(ai j gi j ) j‖p∗ + Emax
j≤n

‖(ai j gi j )i‖q (1.15)

holds for all 1 ≤ p, q ≤ ∞. Indeed, the lower bound is true with constant 1
2 , since for

every deterministic matrix X one has

‖X : �np → �mq ‖ ≥ max
{
max
i≤m

‖(Xi j ) j‖p∗ ,max
j≤n

‖(Xi j )i‖q
}
.

However, as we prove in Sect. 5.4, this conjecture is wrong: although the right-hand
sides of (1.14) and (1.15) are comparable in the range 1 ≤ p ≤ 2 ≤ q ≤ ∞, for every
pair of p, q outside this range the right-hand side of (1.15) may be of smaller order
than the left-hand side.

Let us now present a conjecture concerning the boundedness of linear operators
given by infinite dimensional matrices. In what follows, we say that a matrix B =
(bi j )i, j∈N defines a bounded operator from �p(N) to �q(N) if for all x ∈ �p(N) the
product Bx is well defined, belongs to �q(N) and the corresponding linear operator is
bounded.

Conjecture 2 Let A = (ai j )i, j∈N be an infinite matrix with real coefficients and let
1 ≤ p, q ≤ ∞. We conjecture that the matrix GA = (ai j gi j )i, j∈N defines a bounded
linear operator between �p(N) and �q(N) almost surely if and only if the matrix A◦ A
defines a bounded linear operator between �p/2(N) and �q/2(N), the matrix (A ◦ A)T

defines a bounded linear operator between �q∗/2(N) and �p∗/2(N), and

• in the case p ≤ 2 ≤ q, E supi, j∈N |ai j gi j | < ∞,
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• in the case p ≤ q ≤ 2, lim j→∞ b j = 0, and sup j∈N
√
ln( j + 1)b↓

j < ∞, where
b j = ‖(ai j )i∈N‖2q/(2−q), j ∈ N,

• in the case 2 ≤ p ≤ q, limi→∞ di = 0, and supi∈N
√
ln(i + 1)d↓

i < ∞, where
di :=‖(ai j ) j∈N‖2p/(p−2), i ∈ N,

• (in the case q < p we do not need to assume any additional conditions).

We remark that it suffices to prove Conjecture 1 in order to confirm Conjecture 2.

Proposition 1.2 Assume 1 ≤ p, q ≤ ∞. Then (1.14) for this choice of p, q implies
the assertion of Conjecture 2 for the same choice of p, q.

We postpone the proof of this proposition to Subsection 5.5.
In this article, in addition to the cases p = q = 2 obtained in [40] and p = 1, q ≥ 2

proved in [23, 45], we confirm Conjecture 1 when p ∈ {1,∞}, q ∈ [1,∞] and when
q ∈ {1,∞}, p ∈ [1,∞]. In all the other cases, we are able to prove the upper
bounds only up to logarithmic (in the dimensions m, n) multiplicative factors (see
Corollary 1.4 below). In particular, Proposition 1.2 implies that Conjecture 2 holds
for all p ∈ {1,∞}, q ∈ [1,∞] and for all q ∈ {1,∞}, p ∈ [1,∞].

Note that in the structured case we work with, interpolating the results obtained
for the boundary cases p ∈ {1,∞} or q ∈ {1,∞} gives a bound with polynomial
(in the dimensions) multiplicative constants which are much worse than logarithmic
constants from Corollary 1.4 below. However, as we shall see in Remark 4.2 below,
interpolation techniques work well in the non-structured case.

1.3 Main results valid for 1 ≤ p, q ≤ ∞

We start with general theorems valid for the whole range of p, q. Results which are
based on methods working only for specific values of p, q, but yielding better loga-
rithmic terms, are presented in the next subsection. A brief summary and comparison
of all results can be found in Table 1.

Before stating our main results, we need to introduce additional notation. For a
non-empty set J ⊂ {1, . . . , n}, and 1 ≤ p ≤ ∞, we define

BJ
p :=

{
(x j ) j∈J :

∑

j∈J

|x j |p ≤ 1, x j ∈ R

}
.

By �Jp we denote the space R
J :={

(x j ) j∈J : x j ∈ R
}
equipped with the norm

‖x‖�Jp
=
(∑

j∈J

|x j |p
)1/p

,

whose unit ball is BJ
p . Obviously, the space �Jp can be identified with a subspace of

�np. If A : �np → �mq is a linear operator, the notation A : �Jp → �Iq means that A

is restricted to the space �Jp and composed with a projection onto �Iq . Moreover, for

x = (x1, . . . , xn) ∈ R
n , supJ ‖x‖�Jp

= (∑
j≤k |x↓

j |p
)1/p, where the supremum is
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taken over all J ⊂ {1, . . . , n} with |J | = k, and (x↓
1 , . . . , x↓

n ) is the non-increasing
rearrangement of (|x1|, . . . , |xn|).
Theorem 1.3 (Main theorem in a general versionwith sets I0, J0)Assume thatm ≤ M,
n ≤ N, 1 ≤ p, q ≤ ∞, and G = (gi j )i≤M, j≤N has i.i.d. standard Gaussian entries.
Then

E sup
I0,J0

‖GA: �J0p → �I0q ‖ = E sup
I0,J0

sup
x∈BJ0

p

sup
y∈BI0

q∗

∑

i∈I0

∑

j∈J0

yi ai j gi j x j

≤ ln(en)1/p
∗
ln(em)1/q

[(
2.4

√
ln(mn) + 8

√
lnM + √

2/π
)
sup
I0,J0

‖A ◦ A : �
J0
p/2 → �

I0
q/2‖1/2

+ (
8
√
ln N + 2

√
2/π

)
sup
I0,J0

‖(A ◦ A)T : �
I0
q∗/2 → �

J0
p∗/2‖1/2

]
,

where the suprema are taken over all sets I0 ⊂ {1, . . . , M}, J0 ⊂ {1, . . . , N } such
that |I0| = m, |J0| = n.

The above theorem gives an estimate on the largest operator norm among all sub-
matrices of GA of fixed size. Let us remark that apart from being of intrinsic interest,
quantities of this type (for p = q = 2) have appeared in connection with the study of
the restricted isometry property of random matrices with independent rows [2] or in
the analysis of entropic uncertainty principles for random quantum measurements [3,
47].

Let us now give an outline of the proof of Theorem 1.3. Note that

‖GA: �J0p → �I0q ‖ = sup
x∈BJ0

p

sup
y∈BI0

q∗

∑

i∈I0

∑

j∈J0

yiai j gi j x j . (1.16)

In the first step of our proof, we find polytopes L and K approximating (with accuracy
depending logarithmically on the dimension) the unit balls in �

J0
p and �

I0
q∗ , respectively.

The extreme points of the sets K and L have a special and simple structure: absolute
values of their non-zero coordinates are all equal to a constant depending only on the
size of the support of a given point. Since K is close to BI0

q∗ and L is close to BJ0
p ,

we may consider only x ∈ Ext(L), y ∈ Ext(K ) in (1.16). Since non-zero coordinates
of x ∈ Ext(L) and y ∈ Ext(K ), respectively, are all equal up to a sign we may use a
symmetrization argument and the contraction principle to remove x and y in the sum
on the right-hand side of (1.16). Thus, in the next step of the proof we only need to
estimate the expected value of

sup
I0,J0

sup
∅�=I⊂I0

sup
∅�=J⊂J0

|I |−1/q∗ |J |−1/p
∑

i∈I , j∈J

ai j gi j ,

where I and J represent the potential supports of points in Ext(K ) and Ext(L). To
deal with this quantity, we first consider the suprema over the subsets of fixed sizes
and use Slepian’s lemma to compare the supremum of the Gaussian process above
with the supremum of another Gaussian process, which may be bounded easily. Then
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we make use of the term |I |−1/q∗ |J |−1/p < 1, which allows us to go back to suprema
over the sets BJ0

p and BI0
q∗ . At the end, we use the Gaussian concentration inequality

to unfix the sizes of sets I and J and complete the proof.
Applying Theorem 1.3 with N = n, M = m immediately yields the following

result, which confirms Conjecture 1 up to some logarithmic terms.

Corollary 1.4 (Main theorem – �p to �q version) Assume that 1 ≤ p, q ≤ ∞ and
G = (gi j )i≤m, j≤n has i.i.d. standard Gaussian entries. Then,

E‖GA : �np → �mq ‖ � (ln n)1/p
∗
(lnm)1/q

[√
ln(mn)‖A ◦ A : �np/2 → �mq/2‖1/2

+ √
ln n‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2

]
.

Moreover, we easily recover the same bound in the case of independent bounded
entries. We state and prove a general version with sets I0 and J0 akin to Theorem 1.3
in Sect. 3.2.

Corollary 1.5 Assume that 1 ≤ p, q ≤ ∞ and X = (Xi j )i≤m, j≤n has independent
mean-zero entries taking values in [−1, 1]. Then

E‖XA : �np → �mq ‖ � (ln n)1/p
∗
(lnm)1/q

[√
ln(mn)‖A ◦ A : �np/2 → �mq/2‖1/2

+ √
ln n‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2

]
.

We use the two results above to obtain their analogue in the case of ψr entries for
r ≤ 2; these random variables are defined by (1.17).

This class contains, among others,

• log-concave random variables (which are ψ1),
• heavy tailed Weibull random variables (of shape parameter r ∈ (0, 1), i.e.,
P(|Xi j | ≥ t) = e−tr /L for t ≥ 0),

• random variables satisfying the condition

‖Xi j‖2ρ ≤ α‖Xi j‖ρ for all ρ ≥ 1.

These random variables areψr with r = 1/ log2 α. They were considered recently
in [38].

A general version of the following Corollary 1.6 with sets I0 and J0 is stated and
proved in Subsection 3.2.

Corollary 1.6 Assume that K , L > 0, r ∈ (0, 2], 1 ≤ p, q ≤ ∞, and X =
(Xi j )i≤m, j≤n has independent mean-zero entries satisfying

P(|Xi j | ≥ t) ≤ Ke−tr /L for all t ≥ 0, i ≤ m, j ≤ n. (1.17)
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Then

E‖XA : �np → �mq ‖
�r ,K ,L (ln n)1/p

∗
(lnm)1/q ln(mn)

1
r − 1

2

[√
ln(mn)‖A ◦ A : �np/2 → �mq/2‖1/2

+ √
ln n‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2

]
.

1.4 Results for particular ranges of p, q

We continue with results for some specific ranges of p, q, where we are able to prove
estimates with better logarithmic dependence (results which follow from them by
duality (1.12) are stated in Table 1 to keep the presentation short). We postpone their
proofs to Sect. 4. We start with the case of Gaussian random variables. Recall that
γq = (E|g|q)1/q , where g is a standard Gaussian random variable.

Proposition 1.7 For all 1 ≤ p ≤ 2 and 1 ≤ q < ∞, we have

E‖GA : �np → �mq ‖ ≤ γq ln(en)1/p
∗‖A ◦ A : �np/2 → �mq/2‖1/2

+ 2.2 ln(en)1/2+1/p∗‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2. (1.18)

If q = 1 or p = ∞, thenwe are able to get a result without logarithmic terms. Recall
that for a sequence (x j ) j≤n we denote by (x↓

j ) j≤n the non-increasing rearrangement
of (|x j |) j≤n .

Proposition 1.8 (i) For 1 < p ≤ ∞, we have

‖A ◦ A : �np/2 → �m1/2‖1/2 + ‖(A ◦ A)T : �m∞ → �np∗/2‖1/2 � E‖GA : �np → �m1 ‖
≤ γ1‖A ◦ A : �np/2 → �m1/2‖1/2 + 2γp∗‖(A ◦ A)T : �m∞ → �np∗/2‖1/2.

(ii) Moreover,

E‖GA : �n1 → �m1 ‖ � ‖A ◦ A : �n1/2 → �m1/2‖1/2 + max
j≤n

√
ln( j + 1)b↓

j ,

where b j :=‖(ai j )i≤m‖2, j ≤ n.

Note that (ii) shows in particular that a blow up of the constant γp∗ in the upper
estimate (i) for p → 1 is necessary, since the right most summands in (i) and (ii) are
non-comparable.

Remark 1.9 It shall be clear from the proof that the upper bound in part (i) of Propo-
sition 1.8 remains valid for any random matrix X (instead of G) with independent
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isotropic rows (i.e., rows with mean zero and the covariance matrix equal to the iden-
tity) such that

(
E

∣
∣
∣

m∑

i=1

αi Xi j

∣
∣
∣
p∗)1/p∗

�p

( m∑

i=1

α2
i

)1/2
for all α ∈ R

m, j ≤ n. (1.19)

Note that the independence and the isotropicity of rows imply that also the columns of
X are isotropic (since the coordinates of every column are independent and have mean
zero and variance 1). Therefore, whenever p ≥ 2, condition (1.19) is always satisfied
(because the p∗-integral norm is bounded above by the 2-integral norm, which is then
equal to the right-hand side of (1.19), since the covariance matrix of each column is
equal to the m × m identity matrix).

The following proposition generalizes part (ii) of Proposition 1.8 to an arbitrary
q ≤ 2. We list it separately since we present a proof using different arguments. Recall
that the case p = 1, q ≥ 2 was established before, see (1.6).

Proposition 1.10 If 1 ≤ q ≤ 2, then

‖GA : �n1 → �mq ‖ � ‖A ◦ A : �n1/2 → �mq/2‖1/2 + max
j≤n

(
√
ln( j + 1)b↓

j )

= max
j≤n

‖(ai j )i≤m‖q + max
j≤n

(
√
ln( j + 1)b↓

j ),

where b j = ‖(ai j )i≤m‖2q/(2−q) for j ≤ n.

Proposition 1.10 immediately implies its dual version.

Corollary 1.11 If 2 ≤ p ≤ ∞, then

‖GA : �np → �m∞‖ � ‖(A ◦ A)T : �m1/2 → �np∗/2‖1/2 + max
i≤m

(
√
ln(i + 1)d↓

i )

= max
i≤m

‖(ai j ) j≤n‖p∗ + max
i≤m

(
√
ln(i + 1)d↓

i ),

where di = ‖(ai j ) j≤n‖2p∗/(2−p∗) = ‖(ai j ) j≤n‖2p/(p−2) for i ≤ m.

Remark 1.12 Corollary 1.11 and the dual version of (1.6) provide the exact behavior
of expected norm of Gaussian operator from �np to �mq not only when q = ∞, but also
for q ≥ c0 lnm, as we explain now. For all q ≥ q0:=c0 lnm we have the following
inequalities for norms on R

m ,

‖ · ‖q ≥ ‖ · ‖∞ ≥ m−1/q0‖ · ‖q0 = e−1/c0‖ · ‖q0 ≥ e−1/c0‖ · ‖q ,

therefore,

1

e1/c0
E‖XA : �np → �mq ‖ ≤ E‖XA : �np → �m∞‖ ≤ E‖XA : �np → �mq ‖.
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Similarly,

‖(A ◦ A)T : �mq∗/2 → �np∗/2‖ �c0 ‖(A ◦ A)T : �m1/2 → �np∗/2‖.

Proposition 1.7 implies the following estimate for matrices with independent ψr

entries, in the same way as Corollary 1.4 implies Corollary 1.6 (see Sect. 3.2).

Corollary 1.13 Assume that K , L > 0, r ∈ (0, 2], and X = (Xi j )i≤m, j≤n has inde-
pendent mean-zero entries satisfying

P(|Xi j | ≥ t) ≤ Ke−tr /L for all t ≥ 0. (1.20)

Then, for 1 ≤ p ≤ 2, 1 ≤ q ≤ ∞,

E‖XA : �np → �mq ‖ �r ,K ,L (ln n)1/p
∗
ln(nm)1/r−1/2‖A ◦ A : �np/2 → �mq/2‖1/2

+ (ln n)1/2+1/p∗
ln(nm)1/r−1/2‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2.

By Hoeffding’s inequality (i.e., Lemma 2.13) we know that matrices with inde-
pendent valued in [−1, 1] entries having mean zero satisfy (1.20) with r = 2 and
K = 2 = L . In this special case of independent bounded random variables one can
also adapt the methods of [9] to prove in the smaller range 1 ≤ p ≤ 2 ≤ q < ∞
the following result with explicit numerical constants and improved dependence on
n (note that the second logarithmic term is better than in Corollary 1.13, where the
exponent equals 1/2 + 1/p∗).

Proposition 1.14 Assume that X = (Xi j )i≤m, j≤n has independent mean-zero entries
taking values in [−1, 1]. Then, for 1 ≤ p ≤ 2 ≤ q < ∞,

E‖XA : �np → �mq ‖ ≤ C(q) ln(en)1/p
∗‖A ◦ A : �np/2 → �mq/2‖1/2

+ 101/q ln(en)1/q+1/p∗‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2,

where C(q):=2(q�(q/2))1/q � √
q.

Finally, we have the following general result for matrices with independent ψr

entries (cf. Corollary 1.6).

Theorem 1.15 Let K , L > 0, r ∈ (0, 2], and assume that X = (Xi j )i≤m, j≤n has
independent mean-zero entries satisfying

P(|Xi j | ≥ t) ≤ Ke−tr /L for all t ≥ 0.

Then, for all 1 ≤ p ≤ 2 and 1 ≤ q < ∞,

E‖XA : �np → �mq ‖ �r ,K ,L q1/r (ln n)1/p
∗‖A ◦ A : �np/2 → �mq/2‖1/2

+ (ln n)1/2+1/p∗
ln(mn)1/r‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2.
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Having in mind the strategy of proof described after Theorem 1.3, let us elaborate
on the idea of proof of Theorem 1.15. We shall split the matrix X into two parts
X (1) and X (2) which we treat separately. In our decomposition, all entries of X (1) are
bounded by C ln(mn)1/r and the probability that X (2) �= 0 is very small. Then we
shall deal with X (2) using a crude bound (Lemma 4.3) and the fact that the probability
that X (2) �= 0 is small enough to compensate it. In order to bound the expectation
of the norm of X (1), we require a cut-off version of Theorem 1.15 (Lemma 4.4). To
obtain it, we shall replace Bn

p in the expression for the operator norm with a suitable
polytope K (and leave supy∈Bm

q∗ as it is) and then apply a Gaussian-type concentration

inequality to the function Z �→ F(Z):=‖ZAx‖q for x ∈ Ext(K ).

1.5 Tail bounds

All the bounds forE‖XA : �np → �mq ‖ provided in thiswork for randommatrices X also
yield a tail bound for ‖XA : �np → �mq ‖. (It is clear from the proof of Proposition 1.16—

see Sect. 3.2—that the same applies to the estimates for supI0,J0 ‖GA : �
J0
p → �

I0
q ‖,

but we omit the details to keep the presentation clear.)

Proposition 1.16 (Tail bound) Assume that K , L ≥ 1, r ∈ (0, 2], 1 ≤ p, q ≤ ∞, and
γ ≥ 1. Fix a deterministic m × n matrix A and assume that

D ≥ ‖A ◦ A : �np/2 → �mq/2‖1/2.

If for all random matrices X = (Xi j )i≤m, j≤n with independent mean-zero entries
satisfying

P(|Xi j | ≥ t) ≤ Ke−tr /L for all t ≥ 0, i ≤ m, j ≤ n, (1.21)

we have

E‖XA : �np → �mq ‖ ≤ γ D, (1.22)

then, for all random matrices with independent mean-zero entries satisfying (1.21),
we also have

(
E‖XA : �np → �mq ‖ρ

)1/ρ �r ,K ,L ρ1/rγ D for all ρ ≥ 1, (1.23)

and, for all t > 0,

P
(‖XA : �np → �mq ‖ ≥ tγ D

) ≤ C(r , K , L) exp
(−tr/C(r , K , L)

)
. (1.24)

Note that random variables taking values in [−1, 1] satisfy condition (1.21) with
r = 2, K = e, and L = 1. Thus, Proposition 1.16 applies also in the setting of
bounded or Gaussian entries.
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1.6 Organization of the paper

In Sect. 2 we gather various preliminary results we shall use in the sequel. Section3
contains the proofs of the main results valid for all p, q (i.e., Theorem 1.3 and its
corollaries) and the tail bound from Proposition 1.16. In Sect. 4 we prove the results
for specific choices/ranges of p, q. In Sect. 5 we prove lower bounds on expected
operator norms, showing in particular that our estimates are optimal up to logarithmic
factors. We also prove other results justifying the proposed form of Conjecture 1. The
last subsection of Sect. 5 is devoted to infinite dimensional Gaussian operators.

2 Preliminaries

2.1 General facts

We start with some easy lemmas which will be used repeatedly throughout the paper.

Lemma 2.1 For any real m × n matrix B = (bi j )i≤m, j≤n and 0 < r ≤ 1 ≤ s ≤ ∞,
we have

‖B : �nr → �ms ‖ = ‖B : �n1 → �ms ‖ = max
j≤n

‖(bi j )mi=1‖s .

Furthermore, for a real m×n matrix A = (ai j )i≤m, j≤n and 1 ≤ p ≤ 2, p ≤ q ≤ ∞,

‖A ◦ A : �np/2 → �mq/2‖1/2 = max
j≤n

‖(ai j )mi=1‖q .

Proof. Since 0 < r ≤ 1, we have conv Bn
r = Bn

1 , where conv S denotes the convex
hull of the set S. Moreover, the extreme points of Bn

1 are the signed standard unit
vectors, i.e., ±e1, . . . ,±en , and z �→ ‖z‖s is a convex function (since s ≥ 1). Thus,

sup
x∈Bn

r

‖Bx‖s = sup
x∈conv Bn

r

‖Bx‖s = sup
x∈Bn

1

‖Bx‖s = max
1≤ j≤n

‖Be j‖s = max
1≤ j≤n

‖(bi j )mi=1‖s .

This immediately implies the result for the Hadamard product A ◦ A =: B if 1 ≤ p ≤
2 ≤ q ≤ ∞.

If, on the other hand, 1 ≤ p ≤ q ≤ 2, then by the subadditivity of the function
t �→ |t |q/2,

‖A ◦ A : �np/2 → �mq/2‖q/2 = sup
x∈Bn

p/2

m∑

i=1

∣
∣
∣

n∑

j=1

a2i j x j
∣
∣
∣
q/2 ≤ sup

x∈Bn
p/2

m∑

i=1

n∑

j=1

|ai j |q |x j |q/2

= ‖(|ai j |q)i≤m, j≤n : �np/q → �m1 ‖ = max
j≤n

‖(ai j )i≤m‖qq ,
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where in the last equality we used the first part of the Lemma. Since we clearly have

‖A ◦ A : �np/2 → �mq/2‖ ≥ max
j≤n

‖(a2i j )i≤m‖q/2 = max
j≤n

‖(ai j )i≤m‖2q ,

we thus obtain

‖A ◦ A : �np/2 → �mq/2‖1/2 = max
j≤n

‖(ai j )i≤m‖q .

Definition 2.2 A set K ⊂ R
n is called unconditional, if for every (x j ) j≤n ∈ K and

every (ε j ) j≤n ∈ {−1, 1}n we have (ε j x j ) j≤n ∈ K .

We shall use the following version of [49, Lemma 2.1].

Lemma 2.3 Assume that 1 ≤ p ≤ ∞, n ∈ N, and define the convex set

K := conv
{ 1

|J |1/p
(
ε j1{ j∈J }

)n
j=1 : J ⊂ {1, . . . , n}, J �= ∅, (ε j )

n
j=1 ∈ {−1, 1}n

}
.

Then Bn
p ⊂ ln(en)1/p

∗
K.

Proof Fix a vector x = (x1, . . . , xn) ∈ R
n . We want to prove that ‖x‖K ≤

ln(en)1/p
∗‖x‖p, where

‖x‖K = inf{λ > 0 : x ∈ λK }
denotes the norm generated by K , i.e., its Minkowski gauge. Since both K and Bn

p
are permutationally invariant and unconditional (see Definition 2.2), we may and will
assume that x1 ≥ · · · ≥ xn ≥ 0. If we put xn+1:=0, then

x =
n∑

j=1

x j e j =
n∑

j=1

(x j − x j+1)(e1 + · · · + e j ).

Since ‖e1 + · · · + e j‖K = j1/p for 1 ≤ j ≤ n,3 the triangle and Hölder inequalities
yield

‖x‖K ≤
n∑

j=1

(x j − x j+1) j
1/p =

n∑

j=1

x j ( j
1/p − ( j − 1)1/p)

≤
n∑

j=1

x j j
1/p−1 ≤ ‖x‖p

( n∑

j=1

1

j

)1/p∗
≤ ‖x‖p ln(en)1/p

∗
,

wherewe also used the elementary estimates j1/p−( j−1)1/p ≤ j
1
p −1 and

∑n
j=1

1
j ≤

1 + ∫ n
1

1
t dt = ln(en). This completes the proof.

3 Indeed, j−1/p(e1 + · · · + e j ) ∈ K , so ‖e1 + · · · + e j‖K ≤ j1/p ; on the other hand, K ⊂ Bn
p , so

‖e1 + · · · + e j‖K ≥ ‖e1 + · · · + e j‖p = j1/p .

123



3482 R. Adamczak et al.

Remark 2.4 The term ln(en)1/p
∗
can be replaced by 1 + 1

p ln(en)1/p
∗
by writing in

the above proof

n∑

j=1

x j ( j
1/p − ( j − 1)1/p) ≤ x1 + 1

p

n∑

j=2

x j ( j − 1)
1
p −1 ≤ ‖x‖p

(
1 + 1

p

(n−1∑

j=1

1

j

)1/p∗)
.

Here we used the estimates j1/p − ( j − 1)1/p ≤ 1
p ( j − 1)

1
p −1 for j > 1 (which

follows from the concavity of the function t �→ t1/p) and the trivial one x1 ≤ ‖x‖p.

Remark 2.5 The constant (ln n)1/p
∗
in Lemma 2.3 is sharp up to a constant depending

on p for every 1 ≤ p < ∞ (when p = ∞, K = Bn
p and the constant depending on p

degenerates as p → ∞). More precisely, we shall prove that if Bn
p ⊂ C(p, n)K , then

C(p, n) �p (ln n)1/p
∗
. Note that Bn

p ⊂ C(p, n)K if and only if

‖ · ‖p∗ ≤ C(p, n)‖ · ‖∗
K , (2.1)

where ‖ · ‖∗
K is norm dual to ‖ · ‖K .

Let Ext K be the set of extreme points of K , and let (y↓
j ) j≤n be the non-increasing

rearrangement of (|y j |) j≤n . For every y ∈ R
n ,

‖y‖∗
K = sup

x∈K

n∑

j=1

x j y j = sup
x∈Ext K

n∑

j=1

x j y j = sup
J⊂[n],J �=∅

∑

j∈J

|y j | 1

|J |1/p

= sup
k≤n

k∑

j=1

y↓
j

1

k1/p
.

Assume that p∗ �= 1 and put y j := j−1/p∗
. We get

‖y‖∗
K = sup

k≤n

k∑

j=1

j−1/p∗ 1

k1/p
�p sup

k≤n
k
1− 1

p∗ 1

k1/p
= 1,

whereas

‖y‖p∗ =
( n∑

j=1

j−1
)1/p∗

� (ln n)1/p
∗
,

so inequality (2.1) yields that C(p, n) �p (ln n)1/p
∗
.

We shall also need the following standard lemma (see, e.g., [41, Sect. 1.3]). We
will use the versions with r = 1 and r = 2.
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Lemma 2.6 Let Z be a nonnegative random variable. If there exist a ≥ 0, b, α, β, s0 >

0, and r ≥ 1 such that

P(Z ≥ a + bs) ≤ αe−βsr for s ≥ s0,

then

EZ ≤ a + b
(
s0 + α

e−βsr0

rβsr−1
0

)
.

Proof. Integration by parts yields

EZ ≤ a + bs0 +
∫ ∞

a+bs0
P(Z ≥ u)du = a + bs0 + b

∫ ∞

s0
P(Z ≥ a + bs)ds

≤ a + bs0 + bα
∫ ∞

s0
e−βsr ds

≤ a + bs0 + bα

rβsr−1
0

∫ ∞

s0
rβsr−1e−βsr ds = a + b

(
s0 + α

e−βsr0

rβsr−1
0

)
.

2.2 Contraction principles

Below we recall the well-known contraction principle due to Kahane and its extension
by Talagrand (see, e.g., [64, Exercise 6.7.7] and [43, Theorem 4.4 and the proof of
Theorem 4.12]).

Lemma 2.7 (Contraction principle) Let (X , ‖ · ‖) be a normed space, n ∈ N, and
ρ ≥ 1. Assume that x1, . . . , xn ∈ X and α:=(α1, . . . , αn) ∈ R

n. Then, if ε1, . . . , εn
are independent Rademacher random variables, we have

E
∥
∥

n∑

i=1

αiεi xi
∥
∥ρ ≤ ‖α‖ρ∞ E

∥
∥

n∑

i=1

εi xi
∥
∥ρ

.

Lemma 2.8 (Contraction principle) Let T be a bounded subset of Rn. Assume that
ϕi : R → R are 1-Lipschitz and ϕi (0) = 0 for i = 1, . . . , n. Then, if ε1, . . . , εn are
independent Rademacher random variables, we have

E sup
t∈T

n∑

i=1

εiϕi (ti ) ≤ E sup
t∈T

n∑

i=1

εi ti .

2.3 Gaussian random variables

The following result is fundamental to the theory of Gaussian processes and referred
to as Slepian’s inequality or Slepian’s lemma [52]. We use the following (slightly
adapted) version taken from [11, Theorem 13.3].
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Lemma 2.9 (Slepian’s lemma) Let (Xt )t∈T and (Yt )t∈T be two Gaussian random
vectors satisfying E[Xt ] = E[Yt ] for all t ∈ T . Assume that, for all s, t ∈ T , we have
E[(Xs − Xt )

2] ≤ E[(Ys − Yt )2]. Then

E sup
t∈T

Xt ≤ E sup
t∈T

Yt .

The next lemma is folklore. We include a short proof of an estimate with specific
constants for the sake of completeness.

Lemma 2.10 Assume that k ≥ 2 and let gi , i ≤ k, be standard Gaussian random
variables (not necessarily independent). Then

E max
1≤i≤k

gi ≤ √
2 ln k,

E max
1≤i≤k

|gi | ≤ 2
√
ln k.

Proof. Since the moment generating function of a Gaussian random variable is given
by Eetg1 = et

2/2, it follows from Jensen’s inequality that

Emax
i≤k

gi ≤ 1

t
ln
(
E exp(t max

i≤k
gi )

)

≤ 1

t
ln
(
E

k∑

i=1

exp(tgi )
) = 1

t
ln
(
ket

2/2) = ln k

t
+ t

2
.

By taking t = √
2 ln k, we get the first assertion.We apply this inequality with random

variables g1,−g1, . . . , gk,−gk to get the second assertion, namely

Emax
i≤k

|gi | = Emax
i≤k

max{gi ,−gi } ≤ √
2 ln(2k) ≤

√
2 ln(k2) = 2

√
ln k.

The next two lemmas are taken from [61]. Recall that b↓
1 ≥ . . . ≥ b↓

n is the non-
increasing rearrangement of (|b j |) j≤n .

Lemma 2.11 ([61, Lemma2.3])Assume that (b j ) j≤n ∈ R
n and let (X j ) j≤n be random

variables (not necessarily independent) satisfying

P(|X j | > t) ≤ Ke−t2/b2j for all t ≥ 0, j ≤ n.

Then

Emax
j≤n

|X j | �K max
j≤n

b↓
j

√
ln( j + 1).
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Lemma 2.12 ([61, Lemma 2.4]) Assume that (b j ) j≤n ∈ R
n and let (X j ) j≤n be inde-

pendent random variables with X j ∼ N (0, b2j ) for j ≤ n. Then

Emax
j≤n

|X j | � max
j≤n

b↓
j

√
ln( j + 1).

Lemma 2.13 (Hoeffding’s inequality, [32, Theorem 2]) Assume that (b j ) j≤n ∈ R
n

and let X j , j ≤ n, be independent mean-zero random variables such that |X j | ≤ 1
a.s. Then, for all t ≥ 0,

P
(∣
∣

n∑

j=1

b j X j
∣
∣ ≥ t

) ≤ 2 exp
(
− t2

2
∑n

j=1 b
2
j

)
.

2.4 Random variables with heavy tails

The following lemma is a special case of [34, Theorem 1].

Lemma 2.14 (Contraction principle) Let K , L > 0 and assume that (ηi )i≤n and
(ξi )i≤n are two sequences of independent symmetric random variables satisfying for
every i ≤ n and t ≥ 0,

P(|ηi | ≥ t) ≤ KP(L|ξi | ≥ t).

Then, for every convex function ϕ and every a1, . . . , an ∈ R,

Eϕ
( n∑

i=1

aiηi
)

≤ Eϕ
(
K L

n∑

i=1

aiξi
)
.

Lemma 2.15 ([31, Theorem 6.2]) Assume that Z1, . . . , Zn are independent symmetric
Weibull random variables with shape parameter r ∈ (0, 1] and scale parameter 1,
i.e., P(|Zi | ≥ t) = e−tr for t ≥ 0. Then, for every ρ ≥ 2 and a ∈ R

n,

∥
∥
∥

n∑

i=1

ai Zi

∥
∥
∥

ρ
� max

{√
ρ‖a‖2‖Z1‖2, ‖a‖ρ‖Z1‖ρ

}
.

Remark 2.16 (Moments of Weibull random variables) Note that if Z is a symmetric
random variable such that P(|Z | ≥ t) = e−tr , r ∈ (0, 2], then Y = |Z |r sgn(Z) has
(symmetric) exponential distribution with parameter 1, so by Stirling’s formula we
obtain, for all ρ ≥ 1,

‖Z‖ρ = ‖Y‖1/rρ/r = �
(ρ

r
+ 1

)1/ρ ≤
(C

r

) 1
r + 1

2ρ
ρ1/r ≤

(C

r

) 1
r + 1

2
ρ1/r ,

with C ≥ 1.
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The three previous results easily imply the following estimate for integral norms
of linear combinations of independent ψr random variables.

Proposition 2.17 Let K , L > 0, r ∈ (0, 1] and assume that Z1, . . . , Zn are indepen-
dent symmetric random variables satisfying P(|Zi | ≥ t) ≤ Ke−tr /L for all t ≥ 0 and
i ≤ n. Then, for every ρ ≥ 2 and a ∈ R

n,

∥
∥
∥

n∑

i=1

ai Zi

∥
∥
∥

ρ
� (C/r)

1
r + 1

2 K L1/r max
{√

ρ‖a‖2, ρ1/r‖a‖ρ

}

� (C ′/r)
1
r + 1

2 K L1/r max
{√

ρ‖a‖2, ρ1/r‖a‖∞
}
.

Proof The first inequality is an immediate consequence of Lemma 2.14 (applied with
ηi = Zi , independentWeibull variables ξi with shape parameter r and scale parameter
1, and with the convex function ϕ : t �→ |t |ρ), Lemma 2.15, and Remark 2.16. The
second inequality follows from

‖a‖ρ ≤ ‖a‖2/ρ2 ‖a‖1−2/ρ∞ = ρ
2
ρr ‖ρ−1/r a‖2/ρ2 ‖a‖1−2/ρ∞

≤ ρ
2
ρr

( 2

ρ1+1/r ‖a‖2 +
(
1 − 2/ρ

)
‖a‖∞

)
,

where in the last step we used the inequality between weighted arithmetic and geo-
metric means.

The next lemma is standard and provides us with several equivalent formulations of
theψr property expressed through tail bounds, growth ofmoments, and the exponential
moments, respectively. We provide a brief proof, since in the literature one usually
finds versions for r ≥ 1 only.

Lemma 2.18 Assume that r ∈ (0, 2]. Let Z be a non-negative random variable. The
following conditions are equivalent:

(i) There exist K1, L1 > 0 such that

P(Z ≥ t) ≤ K1e
−tr /L1 for all t ≥ 0.

(ii) There exists K2 such that

‖Z‖ρ ≤ K2ρ
1/r for all ρ ≥ 1.

(iii) There exist K3, u > 0 such that

E exp(uZr ) ≤ K3.

Here, (i) implies (ii) with K2 = C(r)K1L
1/r
1 , (ii) implies (iii) with K3 = 1+ e(2er)−1

,
u = (2er Kr

2)
−1, and (iii) implies (i) with K1 = K3, L1 = u−1.
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Proof. Property (i) implies (ii) by Lemma 2.14 (applied with n = 1, η1 = Z and an
independent Weibull variable ξ1 with parameter r ) and Remark 2.16. Property (iii)
implies (i) by Chebyshev’s inequality:

P(Z ≥ t) = P
(
exp(uZr ) ≥ exp(utr )

) ≤ K3 exp(−utr ).

Assume now that (ii) holds and denote k0 = � 1
r �. Then, for every k ∈ [1, k0], we have

kr ≤ 1 and

EZkr ≤ (EZ
)kr ≤ Kkr

2 ,

while for k ≥ k0 + 1, we have kr ≥ 1 and, hence, property (ii) yields

EZkr ≤ Kkr
2 (kr)k .

Hence, by Stirling’s formula we have for u = (2er Kr
2)

−1,

E exp(uZr ) = 1 +
k0∑

k=1

ukEZkr

k! +
∞∑

k=k0+1

ukEZkr

k!

≤ 1 +
k0∑

k=1

ukK kr
2

k! +
∞∑

k=k0+1

ukK kr
2 (kr)k

(
k/e

)k

= 1 +
k0∑

k=1

ukK kr
2

k! +
∞∑

k=k0+1

2−k ≤ euK
r
2 + 1.

The next lemma states that a linear combination of independentψr randomvariables
is a ψr random variable.

Lemma 2.19 Assume that u > 0, r ∈ (0, 2], and let (Zi )i≤k be independent symmetric
random variables satisfying P(|Zi | ≥ t) ≤ Ke−tr /L for all t ≥ 0. Then for every
a ∈ R

k the random variable Y :=‖a‖−1
2

∑k
i=1 ai Zi satisfies, for all t ≥ 0,

P(|Y | ≥ t) ≤ K ′e−tr /L ′
,

where K ′, L ′ depend only on K , L, and r.

Proof The case r ≥ 1 is standard (see, e.g., [14, Theorem 1.2.5]), therefore we skip a
proof in this case (however, in order to prove the lemma in the case r ≥ 1 it suffices
to use the result of Gluskin and Kwapień [19] (together with Lemma 2.14) instead of
Lemma 2.15 in the proof below).

Assume that r ∈ (0, 1] and recall that Y = ‖a‖−1
2

∑k
i=1 ai Zi . By Proposition 2.17,

‖Y‖ρ �K ,L,r max{√ρ, ρ1/r } = ρ1/r for all ρ ≥ 1.

Hence, Lemma 2.18 yields the assertion.
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Lemma 2.20 Assume that r ∈ (0, 2], 1s := 1
r − 1

2 , Y is a non-negative random variable

such that P(Y ≥ t) = e−t s for all t ≥ 0, and g ∼ N (0, 1) is independent of Y . Then,
for every t ≥ 0,

P
(|g|Y ≥ t

) ≥ ce−4tr ,

where c := √
2/πe−2.

Proof In the case r = 2we have s = ∞ and thenY = 1 almost surely and the assertion
is trivial. Assume now that r < 2. By our assumptions r = 2s

2+s . Let x0:=(2t s)1/(2+s).

Note that x ≥ x0 is equivalent to t s
xs ≤ x2

2 . Thus,

P
(|g|Y ≥ t

) = Ee− ts

|g|s =
√

2

π

∫ ∞

0
e− ts

xs − x2
2 dx ≥

√
2

π

∫ x0+1

x0
e− ts

xs − x2
2 dx

≥
√

2

π

∫ x0+1

x0
e−x2dx ≥

√
2

π
e−(x0+1)2 ≥

√
2

π
e−2(x20+1)

= ce−2x20 ≥ ce−4t2s/(2+s) = ce−4tr ,

where we used 22/(2+s) ≤ 2 and chose c:=√
2/πe−2.

Lemma 2.21 Assume that K , L > 0, r ∈ (0, 2] and that Z is a random variable
satisfying P(|Z | ≥ t) ≤ Ke−tr /L for all t ≥ 0. Let Y , g, and c = √

2/πe−2 be as in
Lemma 2.20. Then there exist random variables U ∼ |Z | and V ∼ |g|Y such that

U ≤ (8L)1/r
(( ln(K/c)

4

)1/r + V
)

a.s.

Proof For t = 0 we have 1 = P(|Z | ≥ 0) ≤ K , so K ≥ 1, and thus ln(K/c) =
ln(Ke2

√
π/2) > 0. We use our assumptions, the inequality (a + b)r ≥ (ar + br )/2,

and Lemma 2.20 to obtain for any t ≥ 0,

P

(
(8L)−1/r |Z | ≥ t + (

ln(K/c)/4
)1/r

)
≤ K exp

(
−8

[
t + (

ln(K/c)/4
)1/r

]r)

≤ K exp
(
−4

(
tr + ln(K/c)/4

)) = ce−4tr

≤ P
(|g|Y ≥ t

)
.

Consider the version U of |Z | and the version V of |g|Y defined on the (common)
probability space (0, 1) equipped with Lebesgue measure, constructed as the (gen-
eralised) inverses of cumulative distribution functions of |Z | and |g|Y , respectively.
Then (8L)−1/rU − (

ln(K/c)/4
)1/r ≤ V , which implies the assertion.

Lemma 2.22 Let K , L > 0, r ∈ (0, 2] and k ≥ 3, and assume that (Zi )i≤k , are
random variables satisfying P(|Zi | ≥ t) ≤ Ke−tr /L for all t ≥ 0. Then

P
(
max
i≤k

|Zi | ≥ (vL ln k)1/r
) ≤ Kk−v+1 ≤ eKe−v for every v ≥ 1
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and

Emax
i≤k

|Zi | �
(
LKrr−1 ln k

)1/r �r ,K ,L (ln k)1/r .

Proof. By a union bound and the assumptions we get, for every v ≥ 1,

P
(
max
i≤k

|Zi | ≥ (vL ln k)1/r
) ≤

k∑

i=1

P
(|Zi | ≥ (vL ln k)1/r

) ≤ k · Ke−v ln k

= Ke−(v−1) ln k = Kk−v+1 ≤ eKe−v,

where we used k ≥ 3 in the last step. We integrate by parts, change the variables, and
use the above bound to obtain the second part of the assertion, i.e.,

Emax
i≤k

|Zi | =
∫ ∞

0
P
(
max
i≤k

|Zi | ≥ u
)
du ≤ (L ln k)1/r +

∫ ∞

(L ln k)1/r
P
(
max
i≤k

|Zi | ≥ u
)
du

= (L ln k)1/r + (L ln k)1/r

r

∫ ∞

1
v

1
r −1

P
(
max
i≤k

|Zi | ≥ (vL ln k)1/r
)
dv

≤ (L ln k)1/r
(
1 + eK

r

∫ ∞

1
v

1
r −1e−vdv

)

≤ (L ln k)1/r
(
1 + eK �

(1

r
+ 1

))
.

3 Proofs of themain results

After the preparation in the previous section, we shall now present the proofs of our
main results.

3.1 General bound via Slepian’s lemma

In order to obtain Theorem 1.3 we first prove its weaker version, for p = ∞ and
q = 1 only. After that we shall use the polytope K from Lemma 2.3 and the Gaussian
concentration to see how Proposition 3.1 implies the general bound. The proof of
this proposition relies on the symmetrization together with the contraction principle,
which allow us to get rid of yi and x j , and make use of Slepian’s lemma.

Proposition 3.1 Assume that G = (gi j )i≤m, j≤n has i.i.d. standard Gaussian entries
and k ≤ m, l ≤ n. Then

E sup
I ,J

sup
y∈Bm∞

sup
x∈Bn∞

∑

i∈I , j∈J

yi ai j gi j x j ≤ (
8
√
lnm + √

2/π
)
sup
I ,J

∑

i∈I

√∑

j∈J

a2i j

+ (
8
√
ln n + 2

√
2/π

)
sup
I ,J

∑

j∈J

√∑

i∈I
a2i j ,
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where the suprema are taken over all sets I ⊂ {1, . . . ,m}, J ⊂ {1, . . . , n} such that
|I | = k, |J | = l.

Proof Throughout the proof, k ≤ m and l ≤ n are fixed and the suprema are taken
over all index sets satisfying I ⊂ {1, . . . ,m}, |I | = k and J ⊂ {1, . . . , n}, |J | = l.

Let us denote by (g̃i j )i≤m, j≤n an independent copy of (gi j )i≤m, j≤n . Using the dual-
ity (�m1 )∗ = �m∞, centering the expression, noticing that

∑
j∈J ai j g̃i j x j is a Gaussian√∑

j∈J a
2
i j x

2
j , and using Jensen’s inequality, we see that

E sup
I ,J

sup
x∈Bn∞

sup
y∈Bm∞

∑

i∈I , j∈J

yi ai j gi j x j = E sup
I ,J

sup
x∈Bn∞

∑

i∈I

∣
∣
∣
∑

j∈J

ai j gi j x j
∣
∣
∣

≤ E sup
I ,J

sup
x∈Bn∞

∑

i∈I

(∣
∣
∣
∑

j∈J

ai j gi j x j
∣
∣
∣ − E

∣
∣
∣
∑

j∈J

ai j g̃i j x j
∣
∣
∣
)

+ sup
I ,J

sup
x∈Bn∞

∑

i∈I
E

∣
∣
∣
∑

j∈J

ai j g̃i j x j
∣
∣
∣

= E sup
I ,J

sup
x∈Bn∞

∑

i∈I

(∣
∣
∣
∑

j∈J

ai j gi j x j
∣
∣
∣ − E

∣
∣
∣
∑

j∈J

ai j g̃i j x j
∣
∣
∣
)

+ sup
I ,J

sup
x∈Bn∞

∑

i∈I

√∑

j∈J

a2i j x
2
jE|g|

≤ E sup
I ,J

sup
x∈Bn∞

∑

i∈I

(∣
∣
∣
∑

j∈J

ai j gi j x j
∣
∣
∣ −

∣
∣
∣
∑

j∈J

ai j g̃i j x j
∣
∣
∣
)

+
√

2

π
sup
I ,J

∑

i∈I

√∑

j∈J

a2i j .

(3.1)

To estimate the expected value on the right-hand side, we use a symmetrization trick
together with the contraction principle (Lemma 2.8). Let (εi )i≤m be a sequence of
independentRademacher randomvariables independent of all others. Since the random
vectors

Zi =
(
1{i∈I }

(∣
∣
∑

j∈J

ai j gi j x j
∣
∣ − ∣

∣
∑

j∈J

ai j g̃i j x j
∣
∣
))

I⊂[m],J⊂[n],x∈Bn∞

(where i ≤ m) are independent and symmetric, (Zi )i≤m has the same distribution as
(εi Zi )i≤m . Therefore,

E sup
I ,J

sup
x∈Bn∞

∑

i∈I

(∣
∣
∣
∑

j∈J

ai j gi j x j
∣
∣
∣ −

∣
∣
∣
∑

j∈J

ai j g̃i j x j
∣
∣
∣
)

= E sup
I ,J

sup
x∈Bn∞

∑

i∈I
εi

(∣
∣
∣
∑

j∈J

ai j gi j x j
∣
∣
∣ −

∣
∣
∣
∑

j∈J

ai j g̃i j x j
∣
∣
∣
)

≤ 2E sup
I ,J

sup
x∈Bn∞

∑

i∈I
εi

∣
∣
∣
∑

j∈J

ai j gi j x j
∣
∣
∣
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= 2E sup
I ,J

sup
x∈Bn∞

m∑

i=1

εi

∣
∣
∣
∑

j∈J

ai j gi j x j1{i∈I }
∣
∣
∣. (3.2)

Applying (conditionally, with the values of gi j ’s fixed) the contraction principle (i.e.,
Lemma 2.8) with the set

T =
{(∑

j∈J

ai j gi j x j1{i∈I }
)

i≤m
: I ⊂ [m], |I | = k, J ⊂ [n], |J | = l, x ∈ Bn∞

}

and the function u �→ |u| (which is 1-Lipschitz and takes the value 0 at the origin),
we get

E sup
I ,J

sup
x∈Bn∞

m∑

i=1

εi

∣
∣
∣
∑

j∈J

ai j gi j x j1{i∈I }
∣
∣
∣ ≤ E sup

I ,J
sup
x∈Bn∞

m∑

i=1

εi
∑

j∈J

ai j gi j x j1{i∈I }

= E sup
I ,J

sup
x∈Bn∞

∑

j∈J

∑

i∈I
ai jεi gi j x j = E sup

I ,J
sup
x∈Bn∞

∑

j∈J

∑

i∈I
ai j gi j x j . (3.3)

By proceeding similarly as in (3.1), we obtain

E sup
I ,J

sup
x∈Bn∞

∑

j∈J

∑

i∈I
ai j gi j x j = E sup

I ,J

∑

j∈J

∣
∣
∣
∑

i∈I
ai j gi j

∣
∣
∣

≤ E sup
I ,J

∑

j∈J

(∣
∣
∣
∑

i∈I
ai j gi j

∣
∣
∣ − E

∣
∣
∣
∑

i∈I
ai j g̃i j

∣
∣
∣
)

+
√

2

π
sup
I ,J

∑

j∈J

√∑

i∈I
a2i j . (3.4)

Observe that using symmetrization and the contraction principle similarly as in (3.2)
and (3.3), we can estimate the first summand on right-hand side of (3.4) as follows,

E sup
I ,J

∑

j∈J

(∣
∣
∣
∑

i∈I
ai j gi j

∣
∣
∣ − E

∣
∣
∣
∑

i∈I
ai j g̃i j

∣
∣
∣
)

≤ 2E sup
I ,J

∑

i∈I

∑

j∈J

ai j gi j . (3.5)

Altogether, the inequalities in (3.1) – (3.5) yield that

E sup
I ,J

sup
y∈Bm∞

sup
x∈Bn∞

∑

i∈I , j∈J

yi ai j gi j x j ≤ 4E sup
I ,J

∑

i∈I

∑

j∈J

ai j gi j + 2

√
2

π
sup
I ,J

∑

j∈J

√∑

i∈I
a2i j

+
√

2

π
sup
I ,J

∑

i∈I

√∑

j∈J

a2i j . (3.6)

We shall now estimate the first summand on the right-hand side of (3.6) using
Slepian’s lemma (i.e., Lemma 2.9). Denote

XI ,J :=
∑

i∈I

∑

j∈J

ai j gi j ,
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YI ,J :=
∑

i∈I
gi

√∑

j∈J

a2i j +
∑

j∈J

g̃ j

√∑

i∈I
a2i j ,

where gi , i = 1, . . . ,m, g̃ j , j = 1, . . . , n are independent standard Gaussian vari-
ables. The random variables XI ,J ,YI ,J clearly have zero mean. Thus, we only need
to calculate and compare E(XI ,J − X Ĩ , J̃ )

2 and E(YI ,J − YĨ , J̃ )
2. In the calculations

below it will be evident over which sets the index i (resp. j) runs, so in order to shorten
the notation and improve readability, we use the notational convention

∑

I

:=
∑

i∈I
,

∑

J̃

:=
∑

j∈ J̃

,
∑

I∩ Ĩ ,J\ J̃
:=

∑

i∈I∩ Ĩ , j∈J\ J̃
, etc.

By independence,

E(XI ,J − X Ĩ , J̃ )
2 =

∑

I ,J

a2i j +
∑

Ĩ , J̃

a2i j − 2
∑

I∩ Ĩ ,J∩ J̃

a2i j

=
∑

I ,J

a2i j +
∑

Ĩ , J̃

a2i j −
∑

I∩ Ĩ ,J

a2i j −
∑

I∩ Ĩ , J̃

a2i j +
∑

I∩ Ĩ ,J\ J̃
a2i j +

∑

I∩ Ĩ , J̃\J
a2i j .

By independence and the inequality 2
√
ab ≤ a + b (valid for a, b ≥ 0),

E(YI ,J − YĨ , J̃ )
2 = 2

∑

I ,J

a2i j + 2
∑

Ĩ , J̃

a2i j

− 2
∑

I∩ Ĩ

√∑

J

a2i j

√∑

J̃

a2i j − 2
∑

J∩ J̃

√∑

I

a2i j

√∑

Ĩ

a2i j

≥ 2
∑

I ,J

a2i j + 2
∑

Ĩ , J̃

a2i j −
∑

I∩ Ĩ ,J

a2i j −
∑

I∩ Ĩ , J̃

a2i j −
∑

I ,J∩ J̃

a2i j −
∑

Ĩ ,J∩ J̃

a2i j

=
∑

I ,J

a2i j +
∑

Ĩ , J̃

a2i j −
∑

I∩ Ĩ ,J

a2i j −
∑

I∩ Ĩ , J̃

a2i j +
∑

I ,J\ J̃
a2i j +

∑

Ĩ , J̃\J
a2i j .

Thus, we clearly have

E(XI ,J − X Ĩ , J̃ )
2 ≤ E(YI ,J − YĨ , J̃ )

2

(cf. Remark 3.2 below). Hence, by Slepian’s lemma (Lemma 2.9) and Lemma 2.10
on the expected maxima of standard Gaussian random variables,

E sup
I ,J

∑

i∈I

∑

j∈J

ai j gi j ≤ E sup
I ,J

[∑

i∈I
gi

√∑

j∈J

a2i j +
∑

j∈J

g̃ j

√∑

i∈I
a2i j

]

≤ E sup
I ,J

∑

i∈I
gi

√∑

j∈J

a2i j + E sup
I ,J

∑

j∈J

g̃ j

√∑

i∈I
a2i j
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≤ E sup
i≤m

|gi | sup
I ,J

∑

i∈I

√∑

j∈J

a2i j + E sup
j≤n

|̃g j | sup
I ,J

∑

j∈J

√∑

i∈I
a2i j

≤ 2
√
lnm sup

I ,J

∑

i∈I

√∑

j∈J

a2i j + 2
√
ln n sup

I ,J

∑

j∈J

√∑

i∈I
a2i j .

Recalling the estimate (3.6), we arrive at

E sup
I ,J

sup
y∈Bm∞

sup
x∈Bn∞

∑

i∈I , j∈J

yi ai j gi j x j ≤ (
8
√
lnm + √

2/π
)
sup
I ,J

∑

i∈I

√∑

j∈J

a2i j

+ (
8
√
ln n + 2

√
2/π

)
sup
I ,J

∑

j∈J

√∑

i∈I
a2i j ,

which completes the proof of Proposition 3.1.

Remark 3.2 In the above proof, we also have

E(XI ,J − X Ĩ , J̃ )
2 =

∑

I ,J

a2i j +
∑

Ĩ , J̃

a2i j −
∑

I∩ Ĩ ,J∩ J̃

a2i j −
∑

J∩ J̃ ,I∩ Ĩ

a2i j

≥
∑

I ,J

a2i j +
∑

Ĩ , J̃

a2i j −
∑

I∩ Ĩ

√∑

J

a2i j

√∑

J̃

a2i j −
∑

J∩ J̃

√∑

I

a2i j

√∑

Ĩ

a2i j

= 1

2
E(YI ,J − YĨ , J̃ )

2.

Therefore, by Slepian’s lemma (Lemma 2.9) we may reverse the estimate from the
proof as follows:

E sup
I ,J

sup
y∈Bm∞

sup
x∈Bn∞

∑

i∈I , j∈J

yi ai j gi j x j ≥ 1√
2
E sup

I ,J

[∑

i∈I
gi

√∑

j∈J

a2i j +
∑

j∈J

g̃ j

√∑

i∈I
a2i j

]

.

Proof of Theorem 1.3 Recall that supI0,J0 stands for the supremum taken over all sets
I0 ⊂ [M]:={1, . . . , M}, J0 ⊂ [N ]:={1, . . . , N } with |I0| = m, |J0| = n. Given such
sets I0, J0, we introduce the sets

K = K (I0):= conv
{ 1

|I |1/q∗
(
εi1{i∈I }

)
i∈I0 : I ⊂ I0, I �= ∅, (εi )i∈I0 ∈ {−1, 1}I0

}
,

L = L(J0):= conv
{ 1

|J |1/p
(
η j1{ j∈J }

)
j∈J0

: J ⊂ J0, J �= ∅, (η j ) j∈J0 ∈ {−1, 1}J0
}
.

Then, by Lemma 2.3, BI0
q∗ ⊂ ln(em)1/q K and BJ0

p ⊂ ln(en)1/p
∗
L . Therefore,

E sup
I0,J0

sup
x∈BJ0

p

sup
y∈BI0

q∗

∑

i∈I0

∑

j∈J0

yiai j gi j x j
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≤ ln(em)1/q ln(en)1/p
∗

· E sup
I0,J0

sup
I⊂I0,J⊂J0

sup
{ 1

|I |1/q∗ |J |1/p
∑

i∈I

∑

j∈J

εi ai j gi jη j : εi , η j ∈ {−1, 1}
}

= ln(em)1/q ln(en)1/p
∗

· E max
k≤m,l≤n

1

k1/q∗l1/p
sup

I⊂[M],|I |=k
sup

J⊂[N ],|J |=l
sup
x∈BN∞

sup
y∈BM∞

∑

i∈I

∑

j∈J

yi ai j gi j x j

= ln(em)1/q ln(en)1/p
∗
E max

k≤m,l≤n
Zk,l , (3.7)

where we denoted

Zk,l := 1

k1/q∗l1/p
sup
I ,J

sup
x∈BN∞

sup
y∈BM∞

∑

i∈I

∑

j∈J

yi ai j gi j x j ,

with the suprema here (and later on in this proof) being always taken over all sets
I ⊂ [M], |I | = k and J ⊂ [N ], |J | = l.

By Proposition 3.1, we only know that for all k ≤ m and l ≤ n,

EZk,l ≤ (
8
√
lnM + √

2/π
) 1

k1/q∗l1/p
sup
I ,J

∑

i∈I

√∑

j∈J

a2i j

+ (
8
√
ln N + 2

√
2/π

) 1

k1/q∗l1/p
sup
I ,J

∑

j∈J

√∑

i∈I
a2i j , (3.8)

but we shall use the Gaussian concentration and the union bound to obtain an estimate
for Emaxk≤m,l≤n Zk,l .

Note first that (k−1/q∗
1{i∈I })i∈I0 ∈ K (I0) ⊂ BI0

q∗ and (l−1/p1{ j∈J }) j∈J0 ∈ L(J0) ⊂
BJ0
p , provided that |I | = k, |J | = l, I ⊂ I0, J ⊂ J0. Therefore,

1

k1/q∗l1/p
sup
I ,J

∑

i∈I

√∑

j∈J

a2i j ≤ sup
I0,J0

sup
x∈BJ0

p

sup
y∈BI0

q∗

∑

i∈I0
yi

√∑

j∈J0

a2i j x
2
j

= sup
I0,J0

sup
z∈BJ0

p/2

(∑

i∈I0

(∑

j∈J0

a2i j z j
)q/2

)1/q

= sup
I0,J0

‖A ◦ A : �
J0
p/2 → �

I0
q/2‖1/2

and, similarly,

1

k1/q∗l1/p
sup
I ,J

∑

j∈J

√∑

i∈I
a2i j ≤ sup

I0,J0
‖(A ◦ A)T : �

I0
q∗/2 → �

J0
p∗/2‖1/2.
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This together with the estimate in (3.8) gives

EZk,l ≤ (
8
√
lnM + √

2/π
)
sup
I0,J0

‖A ◦ A : �
J0
p/2 → �

I0
q/2‖1/2

+ (
8
√
ln N + 2

√
2/π

)
sup
I0,J0

‖(A ◦ A)T : �
I0
q∗/2 → �

J0
p∗/2‖1/2. (3.9)

Note that by the Cauchy–Schwarz inequality, the function

z �→ 1

k1/q∗l1/p
sup
I ,J

sup
x∈BN∞

sup
y∈BM∞

∑

i∈I

∑

j∈J

yi ai j zi j x j

is D-Lipschitz with

D ≤ 1

k1/q∗l1/p
sup
I ,J

√∑

j∈J

∑

i∈I
a2i j ≤ sup

I ,J

√

sup
x∈BN

p/2

sup
y∈BM

q∗/2

∑

i∈I

∑

j∈J

yi a2i j x j

≤ sup
I0,J0

√

sup
x∈BN

p/2

sup
y∈BM

q∗/2

∑

i∈I0

∑

j∈J0

yia2i j x j ,

where in the last inequality we used the fact that k ≤ m and l ≤ n. In order to estimate
the right-hand side of the latter inequality, we consider the following two cases:

Case 1. If q∗ ≥ 2, then (q∗/2)∗ = q/(2 − q) ≥ q/2 and ‖ · ‖q/(2−q) ≤ ‖ · ‖q/2.
Consequently,

sup
x∈BN

p/2,y∈BM
q∗/2

∑

i∈I0

∑

j∈J0

yia
2
i j x j = ‖A ◦ A : �

J0
p/2 → �

I0
q/(2−q)‖

≤ ‖A ◦ A : �
J0
p/2 → �

I0
q/2‖. (3.10)

Case 2. If q∗ ≤ 2, then BM
q∗/2 ⊂ BM

1 and ‖ · ‖∞ ≤ ‖ · ‖q/2. Thus,

sup
x∈BN

p/2,y∈BM
q∗/2

∑

i∈I0

∑

j∈J0

yia
2
i j x j ≤ sup

u∈BN
p/2,v∈BM

1

∑

i∈I0

∑

j∈J0

vi a
2
i j u j

= ‖A ◦ A : �
J0
p/2 → �I0∞‖ ≤ ‖A ◦ A : �

J0
p/2 → �

I0
q/2‖.
(3.11)

In both cases we have

D ≤ sup
I0,J0

‖A ◦ A : �
J0
p/2 → �

I0
q/2‖1/2,
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so the Gaussian concentration inequality (see, e.g., [41, Chapter 5.1]) implies that for
all u ≥ 0, k ≤ m, and l ≤ n,

P(Zk,l ≥ EZk,l + u) ≤ exp
(
− u2

2 supI0,J0 ‖A ◦ A : �
J0
p/2 → �

I0
q/2‖

)
,

so

P
(
Zk,l ≥ max

k≤m,l≤n
EZk,l + √

2 ln(mn)u sup
I0,J0

‖A ◦ A : �
J0
p/2 → �

I0
q/2‖1/2

)

≤ exp(−u2 ln(mn)).

This, together with the union bound, implies that for u ≥ √
2, we have

P
(

max
k≤m,l≤n

Zk,l ≥ max
k≤m,l≤n

EZk,l + √
2 ln(mn)u sup

I0,J0
‖A ◦ A : �

J0
p/2 → �

I0
q/2‖1/2

)

≤ mne−u2 ln(mn) = exp
(
−(u2 − 1) ln(mn)

)
≤ e−u2/2.

Hence, by Lemma 2.6 and the estimate in (3.9),

E max
k≤m,l≤n

Zk,l ≤ max
k≤m,l≤n

EZk,l

+ √
2 ln(mn)

(√
2 + 1

e
√
2

)
sup
I0,J0

‖A ◦ A : �
J0
p/2 → �

I0
q/2‖1/2

≤ (
2.4

√
ln(mn) + 8

√
lnM + √

2/π
)
sup
I0,J0

‖A ◦ A : �
J0
p/2 → �

I0
q/2‖1/2

+ (
8
√
ln N + 2

√
2/π

)
sup
I0,J0

‖(A ◦ A)T : �
I0
q∗/2 → �

J0
p∗/2‖1/2.

Recalling (3.7) yields the assertion.

3.2 Coupling

In this subsection we use contraction principles and the coupling described in
Lemma 2.21 to prove Corollaries 1.5 and 1.6, and Proposition 1.16. Below we state
more general versions of the corollaries akin to Theorem 1.3 (the versions from the
introduction follow by setting M = m, N = n).

Theorem 3.3 (General version of Corollary 1.5) Assume that m ≤ M, n ≤ N, 1 ≤
p, q ≤ ∞, and X = (Xi j )i≤M, j≤N has independent mean-zero entries taking values
in [−1, 1]. Then

E sup
I ,J

‖XA : �Jp → �Iq‖ = E sup
I ,J

sup
x∈BJ

p

sup
y∈BI

q∗

∑

i∈I

∑

j∈J

yi ai j Xi j x j
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≤ ln(en)1/p
∗
ln(em)1/q

·
[(
2.4

√
2π

√
ln(mn) + 8

√
2π

√
lnM + 2

)
sup
I ,J

‖A ◦ A : �Jp/2 → �Iq/2‖1/2

+(
8
√
2π

√
ln N + 4

)
sup
I ,J

‖(A ◦ A)T : �Iq∗/2 → �Jp∗/2‖1/2
]
,

where the suprema are taken over all sets I ⊂ {1, . . . , M}, J ⊂ {1, . . . , N } such that
|I | = m, |J | = n.

Remark 3.4 (Symmetrization of entries of a random matrix) Let Z̃ be an independent
copy of a random matrix Z with mean 0 entries. Then for any norm ‖ · ‖, including
the operator norm from �np to �mq , we have by Jensen’s inequality

E‖Z‖ = E‖Z − EZ̃‖ ≤ E‖Z − Z̃‖ ≤ E‖Z‖ + E‖Z̃‖ = 2E‖Z‖.

Therefore, in many cases we may simply assume that we deal with matrices with
symmetric (not only mean 0) entries. For example, in the setting of Theorem 3.3, the
entries of X − X̃ are symmetric and take values in [−2, 2], so it suffices to prove
the assertion of this theorem (with a two times smaller constant on the right-hand
side) under the additional assumption that the entries of the given random matrix are
symmetric.

Proof of Theorem 3.3 By Remark 3.4 we may and do assume that the entries of X
are symmetric—in this case we need to prove the assertion with a two times smaller
constant.

Since the entries of X are independent and symmetric, X has the same distribu-
tion as (εi j |Xi j |)i, j , where (εi j )i≤M, j≤N is a random matrix with i.i.d. Rademacher
entries, independent of all other random variables. Thus, the contraction principle
(see Lemma 2.7) applied conditionally yields (below the suprema are taken over all
sets I ⊂ {1, . . . , M}, J ⊂ {1, . . . , N } such that |I | = m, |J | = n, and over all
x ∈ BJ

p , y ∈ BI
q∗ , and the sums run over all i ∈ I and j ∈ J )

E sup
∑

I ,J

yi ai j Xi j x j = E sup
∑

I ,J

yi ai jεi j
∣
∣Xi j

∣
∣x j ≤ E sup

∑

I ,J

yi ai jεi j x j

=
√

π

2
E sup

∑

I ,J

yi ai jεi jE|gi j |x j ≤
√

π

2
E sup

∑

I ,J

yi ai jεi j |gi j |x j

=
√

π

2
E sup

∑

I ,J

yi ai j gi j x j ,

and the assertion follows from Theorem 1.3.

Theorem 3.5 (General version of Corollary 1.6) Assume that K , L > 0, r ∈ (0, 2],
m ≤ M, n ≤ N, 1 ≤ p, q ≤ ∞, and X = (Xi j )i≤M, j≤N has independent mean-zero
entries satisfying

P(|Xi j | ≥ t) ≤ Ke−tr /L for all t ≥ 0, i ≤ M, j ≤ N .
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Then

E sup
I ,J

‖XA : �Jp → �Iq‖ = E sup
I ,J

sup
x∈BJ

p

sup
y∈BI

q∗

∑

i∈I

∑

j∈J

yi ai j Xi j x j

�r ,K ,L (ln n)1/p
∗
(lnm)1/q ln(MN )

1
r − 1

2

·
[(√

ln(mn) + √
lnM

)
sup
I ,J

‖A ◦ A : �Jp/2 → �Iq/2‖1/2

+√
ln N sup

I ,J
‖(A ◦ A)T : �Iq∗/2 → �Jp∗/2‖1/2

]
,

where the suprema are taken over all sets I ⊂ {1, . . . , M}, J ⊂ {1, . . . , N } such that
|I | = m, |J | = n.

Proof Let X̃ be an independent copy of X . Then

P(|Xi j − X̃i j | ≥ t) ≤ P(|Xi j | ≥ t/2 or |X̃i j | ≥ t/2)

≤ 2P(|Xi j | ≥ t/2) ≤ 2Ke−tr /(2r L).

This means that the symmetric matrix X− X̃ satisfies the assumptions of Theorem 3.5.
Hence, due to Remark 3.4, we may and do assume that the entries of X are symmetric.

Take the unique positive parameter s satisfying 1
r = 1

2 + 1
s . For i ≤ M , j ≤ N , let

gi j be i.i.d. standard Gaussian variables, independent of other variables, and let Yi j be
i.i.d. non-negativeWeibull random variables with shape parameter s scale parameter 1
(i.e., P(Yi j ≥ t) = e−t s for t ≥ 0), independent of other variables. (In the case r = 2,
we have s = ∞ and then Yi j = 1 almost surely.) Take

(Ui j )i≤M, j≤N
d∼ (|Xi j |)i≤M, j≤N , (Vi j )i≤M, j≤N

d∼ (|gi j |Yi j )i≤M, j≤N

as in Lemma 2.21 (we pick a pair (Ui j , Vi j ) separately for every (i, j), and then
take such a version of each pair that the system of MN random pairs (Ui j , Vi j ) is
independent).

Let (εi j )i≤M, j≤N be a random matrix with i.i.d. Rademacher entries, independent
of all other random variables. Since the entries of X are symmetric and independent,
X has the same distribution as (εi j |Xi j |)i j . By Lemma 2.21 we know that

Ui j ≤ (8L)1/r
(( ln(K/c)

4

)1/r + Vi j
)

�r ,K ,L 1 + Vi j a.s.

We use the contraction principle conditionally for Eε, i.e., for Ui j ’s and Vi j ’s fixed.
More precisely, we apply Lemma 2.7 to the space X of all M × N matrices with real
coefficients, equipped with the norm

‖(Mi j )i≤M, j≤N‖:= sup
I ,J

∥
∥(Mi j )i∈I , j∈J : �Ip → �Jq

∥
∥ = sup

∑

I ,J

yi Mi j x j
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(where the first supremum is taken over all sets I ⊂ {1, . . . , M}, J ⊂ {1, . . . , N } such
that |I | = m, |J | = n; recall that the second supremum is taken over all sets I , J as
in the first supremum, and over all x ∈ BJ

p , y ∈ BI
q∗ , and the sum runs over all i ∈ I

and j ∈ J ); note that we identify X with R
MN (and MN plays the role of n from

Lemma 2.7). We apply the contraction principle of Lemma 2.7 (conditionally, with
the values of Ui j ’s and Vi j ’s fixed) with coefficients αi j := Ui j

C(r ,K ,L)(1+Vi j )
and points

xi j :=
(
aklC(r , K , L)(1 + Vkl)1{(k,l)=(i, j)}

)
kl ∈ X to get

E sup
∑

I ,J

yi ai j Xi j x j = E sup
∑

I ,J

yi ai jεi j |Xi j |x j = E sup
∑

I ,J

yi ai jεi jUi j x j

Lemma 2.7
�r ,K ,L E sup

∑

I ,J

yi ai jεi j x j + E sup
∑

I ,J

yi ai jεi j Vi j x j .

(3.12)

We may estimate the first term using Theorem 3.3 applied to the matrix (εi j )i≤M, j≤N

as follows,

E sup
∑

I ,J

yi ai jεi j x j � ln(en)1/p
∗
ln(em)1/q

·
[(√

ln(mn) + √
lnM

)
sup
I ,J

‖A ◦ A : �Jp/2 → �Iq/2‖1/2

+ √
ln N sup

I ,J
‖(A ◦ A)T : �Iq∗/2 → �Jp∗/2‖1/2

]
. (3.13)

Recall that (εi j Vi j )i≤M, j≤N
d∼ (εi j gi j Yi j )i≤M, j≤N and that Yi j ≥ 0 almost surely.

Next we again use the contraction principle (applied conditionally forEε, i.e. for fixed
Yi j ’s and gi j ’s) and get

E sup
∑

I ,J

yi ai jεi j Vi j x j = E sup
∑

I ,J

yi ai jεi j gi j Yi j x j

≤ EY max
i≤M, j≤N

|Yi j | Eε,g sup
∑

I ,J

yi ai jεi j gi j x j . (3.14)

Moreover, Theorem 1.3 and Lemma 2.22 (applied with r = s, k = MN , Zi j = Yi j ,
and K = 1 = L), imply

EY max
i≤M, j≤N

|Yi j | Eε,g sup
∑

I ,J

yi ai jεi j gi j x j

�r ln(MN )1/s E sup
∑

I ,J

yi ai j gi j x j

� ln(MN )
1
r − 1

2 (ln n)1/p
∗
(lnm)1/q
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·
[(√

ln(mn) + √
lnM

)
sup
I ,J

‖A ◦ A : �Jp/2 → �Iq/2‖1/2

+ √
ln N sup

I ,J
‖(A ◦ A)T : �Iq∗/2 → �Jp∗/2‖1/2

]
. (3.15)

Combining the estimates in (3.12)–(3.15) yields the assertion.

Finally, we prove that these estimates of the operator norms translate into tail
bounds.

Proof of Proposition 1.16 Since (1.23) implies (1.24) (by Lemma 2.18), it suffices to
prove inequality (1.23). By the symmetrization argument similar to the one from the
first paragraph of the proof of Theorem 3.5, we may nad will assume that X has
independent and symmetric entries satisfying (1.21). By assumption (1.21), and the
inequality 2(a + b)r ≥ ar + br we have for every t ≥ 0,

P
(
(2L)−1/r |Xi j | ≥ t + (ln K )1/r

)

≤ K exp
(
−2

(
t + (ln K )1/r

)r
)

≤ K exp
(−tr − ln K

) = e−tr ,

so (as in the proof of Lemma 2.21) there exists a random matrix (Yi j )i≤m, j≤n with
i.i.d. entries with the symmetric Weibull distribution with shape parameter r and scale
parameter 1 (i.e., P(|Yi j | ≥ t) = e−tr for t ≥ 0) satisfying

|Xi j | ≤ (2L)1/r
(
(ln K )1/r + |Yi j |

)
�r ,K ,L 1 + Yi j a.s. (3.16)

Let (εi j )i≤m, j≤n be a matrix of independent Rademacher random variables inde-
pendent of all others, and let ‖ ·‖ denote the operator norm from �np to �mq . Let Ei j be a
matrixwith 1 at the intersection of i th row and j th column andwith other entries 0. The
contraction principle (i.e., Lemma 2.7) applied conditionally, (3.16), and the triangle
inequality yield for any ρ ≥ 1,

(

E

∥
∥
∥

m∑

i=1

n∑

j=1

Xi j ai j Ei j

∥
∥
∥

ρ
)1/ρ

≤
(

E

∥
∥
∥
∑

i, j

εi j |Xi j |ai j Ei j

∥
∥
∥

ρ
)1/ρ

�r ,K ,L

(

E

∥
∥
∥
∑

i, j

εi j ai j Ei j

∥
∥
∥

ρ
)1/ρ

+
(

E

∥
∥
∥
∑

i, j

εi j |Yi j |ai j Ei j

∥
∥
∥

ρ
)1/ρ

=
(

E

∥
∥
∥
∑

i, j

εi j ai j Ei j

∥
∥
∥

ρ
)1/ρ

+
(

E

∥
∥
∥
∑

i, j

Yi j ai j Ei j

∥
∥
∥

ρ
)1/ρ

.

Therefore, it suffices to prove (1.23) for random matrices (Yi j )i j and (εi j )i j instead
of X .

Since by assumption K , L ≥ 1, both random matrices (Yi j )i j and (εi j )i j satisfy
(1.21), so for them inequality (1.22) holds. By the comparison of weak and strong
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moments [38, Theorem 1.1] (note that the random variables Yi j satisfy the assumption
‖Yi j‖2 s ≤ α‖Yi j‖s for all s ≥ 2 with α = 21/r by [38, Remark 1.5]), we have

(

E

∥
∥
∥
∑

i, j

Yi j ai j Ei j

∥
∥
∥

ρ
)1/ρ

=
(

E sup
x∈Bn

p, y∈Bm
q∗

∣
∣
∣
∑

i, j

yi Yi j ai j x j
∣
∣
∣
ρ
)1/ρ

�r E sup
x∈Bn

p, y∈Bm
q∗

∑

i, j

yi Yi j ai j x j + sup
x∈Bn

p, y∈Bm
q∗

(

E

∣
∣
∣
∑

i, j

yi Yi j ai j x j
∣
∣
∣
ρ
)1/ρ

.(3.17)

Because of inequality (1.22), thefirst summandon the right-hand sidemaybe estimated
by γ D. Lemma 2.19 and the implication (i) �⇒ (ii) from Lemma 2.18 yield

(

E

∣
∣
∣
∑

i, j

yi Yi j ai j x j
∣
∣
∣
ρ
)1/ρ

�r ,K ,L ρ1/r
√∑

i, j

y2i a
2
i j x

2
j .

Moreover, by (3.10) and (3.11) (used with m = M and n = N ) and our assumption
that ‖A ◦ A : �np/2 → �mq/2‖1/2 ≤ D,

sup
x∈Bn

p, y∈Bm
q∗

√∑

i, j

y2i a
2
i j x

2
j ≤ D,

so the second summand on the right-hand side of (3.17) is bounded above (up to a
multiplicative constant depending only on r , K , and L) by ρ1/r D. Thus, (1.23) indeed
holds for the random matrix (Yi j )i j instead of X . A similar reasoning shows that the
same inequality holds also for the random matrix (εi j )i j (one may also simply use the
Khintchine–Kahane inequality and assumption (1.22)).

4 Proofs of further results

4.1 Gaussian random variables

Proof of Proposition 1.7 Fix 1 ≤ p ≤ 2 and 1 ≤ q ≤ ∞. Let K be the set defined in
Lemma 2.3 for which Bn

p ⊂ ln(en)1/p
∗
K . Then

‖GA : �np → �mq ‖ = sup
x∈Bn

p

‖GAx‖q ≤ ln(en)1/p
∗

sup
x∈Ext(K )

‖GAx‖q , (4.1)

where Ext(K ) is the set of extreme points of K . We shall now estimate the expected
value of the right-hand side of (4.1).

To this end, we first consider a fixed x = (x j )nj=1 ∈ Ext(K ). Then there exists a

non-empty index set J ⊂ {1, . . . , n} of cardinality k ≤ n such that x j = ±1
k1/p

for
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j ∈ J and x j = 0 for j /∈ J . We have

‖GAx‖q =
∥
∥
∥
( n∑

j=1

ai j gi j x j
)m

i=1

∥
∥
∥
q

=
( m∑

i=1

∣
∣
∣

n∑

j=1

ai j gi j x j
∣
∣
∣
q)1/q

. (4.2)

Let us estimate the Lipschitz constant of the function

z = (zi j )i j �→
∥
∥
∥
( n∑

j=1

ai j zi j x j
)m

i=1

∥
∥
∥
q

= sup
y∈Bm

q∗

m∑

i=1

n∑

j=1

yiai j zi j x j . (4.3)

It follows from the Cauchy–Schwarz inequality (used in Rm×n) that

sup
y∈Bm

q∗

m∑

i=1

n∑

j=1

yiai j zi j x j ≤ ‖z‖2
√
√
√
√ sup

y∈Bm
q∗

m∑

i=1

n∑

j=1

y2i a
2
i j x

2
j

= ‖z‖2 1

k1/p

√
√
√
√ sup

y∈Bm
q∗/2

m∑

i=1

∑

j∈J

yi a2i j = ‖z‖2 bJ
k1/p

, (4.4)

where we put

bJ :=
√
√
√
√ sup

y∈Bm
q∗/2

m∑

i=1

∑

j∈J

yi a2i j .

This shows that the function defined by (4.3) is bJ
k1/p

-Lipschitz continuous. Therefore,
by the Gaussian concentration inequality (see, e.g., [41, Chapter 5.1]), for any u ≥ 0,

P
(‖GAx‖q ≥ E‖GAx‖q + u

) ≤ exp
(−k2/pu2

2b2J

)
. (4.5)

We shall transform this inequality into a form which is more convenient to work with.
We want to estimate E‖GAx‖q independently of x and get rid of the dependence on J
and p on the right-hand side. By (4.2) and the fact that x ∈ Ext(K ) ⊂ Bn

p, we obtain

E‖GAx‖q ≤ (E‖GAx‖qq)1/q = γq

( m∑

i=1

∣
∣
∣

n∑

j=1

a2i j x
2
j

∣
∣
∣
q/2)1/q

≤ γq sup
z∈Bn

p

( m∑

i=1

∣
∣
∣

n∑

j=1

a2i j z
2
j

∣
∣
∣
q/2)1/q = γq‖A ◦ A : �np/2 → �mq/2‖1/2=:a.

We use the definition of bJ , then interchange the sums, use the triangle inequality,
and then the inequality between the arithmetic mean and the power mean of order
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p∗/2 ≥ 1 (recall that |J | = k and p ≤ 2) to obtain

k2/p
∗−1b2J = k2/p

∗−1 sup
y∈Bm

q∗/2

m∑

i=1

∑

j∈J

a2i j yi = k2/p
∗−1 sup

y∈Bm
q∗/2

∑

j∈J

∣
∣
∣

m∑

i=1

a2i j yi
∣
∣
∣

≤ sup
y∈Bm

q∗/2

(∑

j∈J

∣
∣
∣

m∑

i=1

a2i j yi
∣
∣
∣
p∗/2)2/p∗

≤ sup
y∈Bm

q∗/2

( n∑

j=1

∣
∣
∣

m∑

i=1

a2i j yi
∣
∣
∣
p∗/2)2/p∗

= ‖(A ◦ A)T : �mq∗/2 → �np∗/2‖=:b2. (4.6)

The two inequalities above, together with inequality (4.5) (applied with u =
k1/p

∗−1/2bJ
√
2 ln(en)s), imply that

P
(‖GAx‖q ≥ a + b

√
2 ln(en) s

) ≤ exp
(−k2/p+2/p∗−1 ln(en)s2

)

= exp
(−k ln(en)s2

)
(4.7)

holds for any s ≥ 0 and all x ∈ Ext(K ) with support of cardinality k.
For any k ≤ n, there are 2k

(n
k

) ≤ 2knk ≤ exp(k ln(en)) vectors in Ext(K ) with
support of cardinality k. Therefore, using a union bound together with (4.7), we see
that, for all s ≥ √

2,

P
(

sup
x∈Ext K

‖GAx‖q ≥ a + b
√
2 ln(en)s

) ≤
n∑

k=1

exp(−k ln(en)(s2 − 1))

≤ n exp(− ln(en)(s2 − 1)) = n(en)−s2+1 ≤ e−s2+1.

Hence, by Lemma 2.6 (applied with s0:=
√
2, α:=e, β:=1, and r :=2),

E sup
x∈Ext K

‖GAx‖q ≤ a + b
√
2 ln(en)

(√
2 + e

e−2

2
√
2

)
≤ a + 2.2b

√
ln(en).

Recalling (4.1) and the definitions of a and b yields the assertion.

We now turn to the special case q = 1.

Proof of Proposition 1.8 Since the first part of this proof works for general q ≥ 1, we
do not restrict our attention to q = 1 for now. First of all,

E‖GA : �np → �mq ‖ ≤ (
E‖GA : �np → �mq ‖q)1/q =

(
E sup

x∈Bn
p

m∑

i=1

|〈Xi , x〉|q
)1/q

,

where Xi = (ai j gi j )nj=1 is the i-th row of the matrix GA. Centering this expression
gives

E sup
x∈Bn

p

m∑

i=1

|〈Xi , x〉|q ≤ E sup
x∈Bn

p

[ m∑

i=1

|〈Xi , x〉|q − E|〈Xi , x〉|q
]
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+ sup
x∈Bn

p

m∑

i=1

E|〈Xi , x〉|q . (4.8)

We first take care of the second term on the right-hand side of (4.8). We have

sup
x∈Bn

p

m∑

i=1

E|〈Xi , x〉|q = γ
q
q sup

x∈Bn
p

m∑

i=1

( n∑

j=1

a2i j x
2
j

)q/2

= γ
q
q sup

z∈Bn
p/2

∥
∥
∥
( n∑

j=1

a2i j z j
)

i≤m

∥
∥
∥
q/2

q/2
= γ

q
q ‖A ◦ A : �np/2 → �mq/2‖q/2.

(4.9)

In order to deal with the first term on the right-hand side of (4.8), we use a sym-
metrization trick together with the contraction principle. The latter is the reason
that we need to work with q = 1 here. We start with the symmetrization. Denot-
ing by X̃1, . . . , X̃n independent copies of X1, . . . , Xn and by (εi )

m
i=1 a sequence of

Rademacher random variables independent of all others, we obtain by Jensen’s and
the triangle inequalities that

E sup
x∈Bn

p

[ m∑

i=1

|〈Xi , x〉|q − E|〈Xi , x〉|q
]

= E sup
x∈Bn

p

[ m∑

i=1

|〈Xi , x〉|q − E|〈X̃i , x〉|q
]

≤ E sup
x∈Bn

p

[ m∑

i=1

|〈Xi , x〉|q − |〈X̃i , x〉|q
]

= E sup
x∈Bn

p

[ m∑

i=1

εi (|〈Xi , x〉|q − |〈X̃i , x〉|q)
]

≤ 2 · E sup
x∈Bn

p

m∑

i=1

εi |〈Xi , x〉|q . (4.10)

If q = 1, we may use the contraction principle (i.e., Lemma 2.8 applied with
functions ϕi (t) = |t |) conditionally to obtain

E sup
x∈Bn

p

m∑

i=1

εi |〈Xi , x〉| ≤ E sup
x∈Bn

p

m∑

i=1

εi 〈Xi , x〉

= E sup
x∈Bn

p

n∑

j=1

x j

m∑

i=1

ai j · εi gi j = E sup
x∈Bn

p

n∑

j=1

x j

m∑

i=1

ai j gi j .

(4.11)

For p > 1, we have

E sup
x∈Bn

p

n∑

j=1

x j

m∑

i=1

ai j gi j = E

( n∑

j=1

∣
∣
∣

m∑

i=1

ai j gi j
∣
∣
∣
p∗)1/p∗
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≤
( n∑

j=1

E

∣
∣
∣

m∑

i=1

ai j gi j
∣
∣
∣
p∗)1/p∗

= γp∗
( n∑

j=1

( m∑

i=1

a2i j

)p∗/2)1/p∗
.

(4.12)

Moreover, we have

( n∑

j=1

( m∑

i=1

a2i j

)p∗/2)1/p∗
= sup

δ∈{−1,1}m

∥
∥
∥
( m∑

i=1

a2i jδi
)

j≤n

∥
∥
∥
1/2

p∗/2

= ∥
∥(A ◦ A)T : �m∞ → �np∗/2

∥
∥
∥
1/2

. (4.13)

Inequalities (4.10)–(4.13) give the estimate of the first term on the right-hand side
of (4.8). This ends the proof of the upper bound for p > 1.

If p = 1, then letting g1, . . . , gn be i.i.d. standard Gaussian random variables, we
have

E sup
x∈Bn

p

n∑

j=1

x j

m∑

i=1

ai j gi j = Emax
j≤n

∣
∣
∣

m∑

i=1

ai j gi j
∣
∣
∣

= Emax
j≤n

g j b j � max
j≤n

(
√
ln( j + 1)b↓

j ), (4.14)

where the last step follows from Lemmas 2.11 and 2.12 with b j :=‖(ai j )i≤m‖2, j ≤ n.
Putting together (4.8)–(4.11) and (4.14) completes the proof of the upper bound in the
case p = 1.

The lower bound in the case p > 1 follows from Proposition 5.1 and Corollary 5.2
below. In the case p = 1, we use Proposition 5.1, note that

E‖GA : �np → �m1 ‖ ≥ E sup
x∈Bn

p

n∑

j=1

x j

m∑

i=1

ai j gi j ,

and use (4.14) to obtain a lower bound.

Now we deal with another special case, the one where p = 1.

Proof of Proposition 1.10 Recall that we deal with the range p = 1 ≤ q ≤ 2. Using
the structure of extreme points of Bn

1 we get

E‖GA : �n1 → �mq ‖ = Emax
j≤n

‖(ai j gi j )i≤m‖q .

Denote Z j = ‖(ai j gi j )i≤m‖q . By well-known tail estimates of norms of Gaussian
variables with values in Banach spaces (see, e.g., [36, Corollary 1] for a more general
formulation) we get for all t > 0,

P
(
Z j ≥ C(EZ j + √

tb j )
) ≤ e−t , (4.15)
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P
(
Z j ≥ c(EZ j + √

tb j )
) ≥ min(c, e−t ), (4.16)

where c,C are universal positive constants, and

b2j = ‖(a2i j )i≤m‖q/(2−q) = ‖(a2i j )i≤m‖(q∗/2)∗ = sup
x∈Bm

q∗

m∑

i=1

a2i j x
2
i .

Inequality (4.15) shows in particular that the random variables (Z j − CEZ j )+
satisfy

P((Z j − CEZ j )+ ≥ t) ≤ exp
(
− t2

C2b2j

)

for all t > 0, thus by Lemma 2.11 we get

E‖GA : �n1 → �mq ‖ = Emax
j≤n

Z j ≤ C max
j≤n

EZ j + max
j≤n

(Z j − CEZ j )+

�
(
max
j≤n

EZ j + max
j≤n

(
√
ln( j + 1)b↓

j )
)
,

which together with the observation (following from Lemma 2.1 and the fact that
1 = p ≤ q ≤ 2) that

EZ j ≤
(
E

m∑

i=1

|ai j |q |gi j |q
)1/q = γq‖(ai j )i≤m‖q = γq‖A ◦ A : �n1/2 → �mq/2‖1/2,

proves the upper estimate of the proposition.
Using comparison of moments of norms of Gaussian random vectors, we also get

E‖GA : �n1 → �mq ‖ ≥ max
j≤n

EZ j � max
j≤n

(EZq
j )

1/q

= γq‖(ai j )i≤m‖q = γq‖A ◦ A : �n1/2 → �mq/2‖1/2, (4.17)

so to end the proof it is enough to show that

E‖GA : �n1 → �mq ‖ ≥ max
j≤n

(
√
ln( j + 1)b↓

j ). (4.18)

This will follow by a straightforward adaptation of the argument from the proof of
Lemma 2.12. We may and do assume that the sequence (b j ) j≤n is non-increasing in
j . By (4.16) we have for any j ≤ n and k ≥ 1,

P(Z j ≥ c
√
ln(k + 1)b j ) ≥ c′

k
.
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Thus, since b j ≥ bk for all j ≤ k, we have for any k ≤ n,

P(max
j≤n

Z j ≥ √
ln(k + 1)bk) ≥ P(∃ j≤k Z j ≥ √

ln(k + 1)b j )

≥ 1 − (1 − c′/k)k ≥ 1 − e−c′
> 0.

Thus,

E‖GA : �n1 → �mq ‖ = Emax
j≤n

Z j �
√
ln(k + 1)bk .

Taking maximum over k ≤ n gives (4.18) and ends the proof.

4.2 Bounded random variables

Here we show how one can adapt the methods of [9] to prove Proposition 1.14, i.e., a
version of Corollary 1.13 in the special case of bounded random variables with better
logarithmic terms and with explicit numerical constants. Following [9], we start with
a lemma.

Lemma 4.1 Assume that X is as in Proposition 1.14. Let (b j ) j≤n ∈ R
n and suppose

that t0 is such that
∣
∣
∑n

j=1 b j Xi j
∣
∣ ≤ t0 almost surely. Then, for all q ≥ 2 and 0 ≤ t ≤

t2−q
0 (4

∑n
j=1 b

2
j )

−1,

E exp
(
t
∣
∣

n∑

j=1

b j Xi j
∣
∣q
) ≤ 1 + Cq(q) t

( n∑

j=1

b2j
)q/2

, (4.19)

where C(q):=2(q�(q/2))1/q � √
q.

Proof. Without loss of generality we may and do assume that
∑n

j=1 b
2
j = 1.

Since q ≥ 2, for s ∈ [0, t0] and t ∈ [0, 1
4 t

2−q
0 ] we have tsq − s2/2 ≤ −s2/4. Thus,

integration by parts, our assumption 0 ≤ ∣
∣
∑n

j=1 b j Xi j
∣
∣ ≤ t0 a.s., and Hoeffding’s

inequality (i.e., Lemma 2.13) yield

E exp
(
t
∣
∣

n∑

j=1

b j Xi j
∣
∣q
) = 1 + qt

∫ t0

0
sq−1 exp(tsq)P

(∣
∣

n∑

j=1

b j Xi j
∣
∣ ≥ s

)
ds

≤ 1 + 2qt
∫ t0

0
sq−1 exp(tsq − s2/2)ds

≤ 1 + 2qt
∫ ∞

0
sq−1 exp(−s2/4)ds

= 1 + t2qq�(q/2).
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Proof of Proposition 1.14 We start with a bunch of reductions. Set

a:=‖A ◦ A : �np/2 → �mq/2‖1/2 = max
j≤n

‖(ai j )mi=1‖q ,
b:=‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2 = max

i≤m
‖(ai j )nj=1‖p∗ .

(The equalities follow fromLemma 2.1, since p/2 ≤ 1 ≤ q/2 and q∗/2 ≤ 1 ≤ p∗/2).
Let K be the set defined in Lemma 2.3, so that Bn

p ⊂ ln(en)1/p
∗
K . Then

‖XA : �np → �mq ‖ = sup
x∈Bn

p

‖XAx‖q ≤ ln(en)1/p
∗

sup
x∈Ext(K )

‖XAx‖q , (4.20)

where Ext(K ) is the set of extreme points of K .
Consider first a fixed x = (x j )nj=1 ∈ Ext(K ) ⊂ Bn

p. We have

‖XAx‖qq =
m∑

i=1

∣
∣
∣

n∑

j=1

ai j Xi j x j
∣
∣
∣
q
. (4.21)

Denote

t0:=b = max
i≤m

‖(ai j )nj=1‖p∗ ,

t := t2−q
0

4maxi≤m ‖(ai j x j )nj=1‖22
.

Then, by the boundedness of Xi j and by Hölder’s inequality, for every i ≤ m,

∣
∣

n∑

j=1

ai j x j Xi j
∣
∣ ≤

n∑

j=1

|ai j ||x j | ≤ ‖(ai j )nj=1‖p∗‖(x j )nj=1‖p ≤ t0.

We can now apply, for every i ≤ m, Lemma 4.1 (with t and t0 as above and with
coefficients b j = ai j x j ). Since the random variables

∣
∣
∑n

j=1 ai j x j Xi j
∣
∣, i ≤ m, are

independent, using Lemma 4.1 yields

E exp
(
t

m∑

i=1

∣
∣

n∑

j=1

ai j x j Xi j
∣
∣q
) =

m∏

i=1

[
E exp

(
t
∣
∣

n∑

j=1

ai j x j Xi j
∣
∣q
)]

≤
m∏

i=1

(
1 + Cq(q) t

( n∑

j=1

a2i j x
2
j

)q/2
)

≤ exp
(
Cq(q) t

m∑

i=1

( n∑

j=1

a2i j x
2
j

)q/2
)

≤ exp
(
Cq(q) taq

)
,
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where in the last step we used the definition of a = ‖A◦ A : �np/2 → �mq/2‖1/2 (and the
fact that x ∈ Bn

p). By Chebyshev’s inequality and (4.21), we have, for every s ≥ 0,

P
(
t‖XAx‖qq ≥ ln

[
E exp

(
t

m∑

i=1

∣
∣

n∑

j=1

ai j x j Xi j
∣
∣q
)] + sk

) ≤ e−sk .

Combining this with the previous estimate yields, for every s ≥ 0,

P
(‖XAx‖qq ≥ Cq(q) aq + sk

t

) ≤ e−sk .

Recall that x ∈ Ext(K ). Thus, there exists an index set J ⊂ {1, . . . , n} of cardinality
k ≤ n, such that x j = ±1

k1/p
for j ∈ J and x j = 0 for j /∈ J . We use the definition

of t and the inequality between the arithmetic mean and the power mean of order
p∗/2 ≥ 1 (recall that |J | = k and p ≤ 2) to get

1

4t
= bq−2 max

i≤m
‖(ai j x j )nj=1‖22 = bq−2k−2/p max

i≤m

∑

j∈J

a2i j

≤ bq−2k−2/p+1−2/p∗
max
i≤m

(∑

j∈J

|ai j |p∗)2/p∗ = bqk−1.

Putting everything together, we obtain

P
(‖XAx‖qq ≥ Cq(q) aq + 4bqs

) ≤ e−sk (4.22)

for all s ≥ 0 and all x ∈ Ext(K ) with support of cardinality k.
For any k ≤ n, there are 2k

(n
k

) ≤ 2knk ≤ exp(k ln(en)) vectors in Ext(K ) with
support of cardinality k. Thus, using the union bound and (4.22), we see that, for all
s ≥ 2,

P
(

sup
x∈Ext K

‖XAx‖qq ≥ Cq(q) aq + 4bq ln(en)s
) ≤

n∑

k=1

exp(−k ln(en)(s − 1))

≤ n exp(− ln(en)(s − 1)) = n(en)−s+1 ≤ e−s+1.

Hence, by Lemma 2.6,

E sup
x∈Ext K

‖XAx‖q ≤ (
E sup
x∈Ext K

‖XAx‖qq
)1/q ≤ (

Cq(q) aq + 4bq ln(en)(2 + e · e−2)
)1/q

≤ C(q)a + 101/q ln(en)1/qb.

Recalling (4.20) and the definitions of a, b, and C(q) yields the assertion.
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Remark 4.2 In the unstructured case, for Xi j which are independent, mean-zero, and
take values in [−1, 1], it is easy to extend (1.2) to the whole range of p, q ∈ [1,∞]
(see [8, 13]). Indeed, for p ≥ 2 and q ≥ 2,

E‖X : �np → �mq ‖ ≤ ‖�np ↪→ �n2‖ · E‖X : �n2 → �mq ‖
�q n1/2−1/p · max{n1/2,m1/q} = max{n1−1/p, n1/2−1/pm1/q}.

Thus, for p ≥ 2 and 1 ≤ q ≤ 2,

E‖X : �np → �mq ‖ ≤ E‖X : �np → �m2 ‖ · ‖�m2 ↪→ �mq ‖
�q max{n1−1/p, n1/2−1/pm1/2} · m1/q−1/2

= max{n1−1/pm1/q−1/2, n1/2−1/pm1/q}.

Suppose now that 1 ≤ p ≤ 2 ≤ q ≤ ∞ and 1/p + 1/q ≤ 1 (i.e., q ≥ p∗). Choose
θ ∈ [0, 1] and r ≥ 2 so that 1

p = θ
2 + 1−θ

1 and 1
q = θ

r + 1−θ
∞ , i.e., θ = 2/p∗ and

r = 2q/p∗. Using the Riesz–Thorin interpolation theorem, the fact that ‖X : �n1 →
�m∞‖ ≤ 1 (since the entries take values in [−1, 1]), and Jensen’s inequality, we arrive
at

E‖X : �np → �mq ‖ ≤ E‖X : �n2 → �mr ‖θ‖X : �n1 → �m∞‖1−θ

≤ E‖X : �n2 → �mr ‖θ ≤ (
E‖X : �n2 → �mr ‖)θ

≤ max{n1/2,m1/r }θ = max{n1/p∗
,m1/q}.

The estimates in the remaining ranges of p, q follow by duality (1.12). Moreover, up
to constants, all these estimates are optimal, as they can be reversed for matrices with
±1 entries (see [8, Proposition 3.2] or [13, Satz 2]).

4.3 Ãr random variables

In this section, we prove Theorem 1.15. To this end we shall split the matrix X into two
parts X (1) and X (2) such that all entries of X (1) are bounded byC ln(mn)1/r . Then, we
shall deal with X (2) using the following crude bound and the fact that the probability
that X (2) �= 0 is very small. In order to bound the expectation of the norm of X (1) we
need a cut-off version of Theorem 1.15 – see Lemma 4.4 below.

Lemma 4.3 Let r ∈ (0, 2]. Assume that X = (Xi j )i≤m, j≤n satisfies the assumptions
of Theorem 1.15. Then

(
E‖XA : �np → �mq ‖2)1/2 �r ,K ,L (m + n)1/r‖A ◦ A : �np/2 → �mq/2‖1/2.

Proof By a standard volumetric estimate (see, e.g., [64, Corollary 4.2.13]), we know
that there exists (in the metric ‖ · ‖p) a 1/2-net S in Bn

p of size at most 5n . In other
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words, for any x ∈ Bn
p there exists y ∈ S such that x − y ∈ 1

2 B
n
p. Thus, for any

z ∈ R
n ,

sup
x∈Bn

p

n∑

j=1

x j z j ≤ sup
x∈Bn

p

min
y∈S

n∑

j=1

(x j − y j )z j + sup
y∈S

n∑

j=1

y j z j

≤ sup
u∈ 1

2 B
n
p

n∑

j=1

u j z j + sup
y∈S

n∑

j=1

y j z j = 1

2
sup
x∈Bn

p

n∑

j=1

x j z j + sup
y∈S

n∑

j=1

y j z j .

Hence,

sup
x∈Bn

p

n∑

j=1

x j z j ≤ 2 sup
y∈S

n∑

j=1

y j z j . (4.23)

Likewise, if we denote by T the 1/2-net in Bm
q∗ (in the metric ‖ · ‖q∗ ) of size at most

5m , then

sup
x∈Bm

q∗

m∑

i=1

xi zi ≤ 2 sup
y∈T

m∑

i=1

yi zi . (4.24)

Combining these two estimates, we see that

(
E‖XA : �np → �mq ‖2)1/2 = (

E sup
x∈Bn

p,y∈Bm
q∗

( m∑

i=1

n∑

j=1

yiai j Xi j x j
)2)1/2

≤ 4
(
E sup

x∈S,y∈T
( m∑

i=1

n∑

j=1

yiai j Xi j x j
)2)1/2

. (4.25)

Lemma 2.19 implies that for any x ∈ R
n , y ∈ R

m , the random variable

Z(x, y):=(∑

i, j

y2i a
2
i j x

2
j

)−1/2
m∑

i=1

n∑

j=1

yiai j Xi j x j

satisfies condition (i) in Lemma 2.18. Thus, Lemma 2.18 implies that

E exp
(
c(r , K , L)

(∑

i, j

y2i a
2
i j x

2
j

)−r/2
( m∑

i=1

n∑

j=1

yiai j Xi j x j
)r) ≤ C(r , K , L), (4.26)

where c(r , K , L) ∈ (0,∞) and C(r , K , L) ∈ (0,∞) depend only on r , K , and L .
The function z �→ ez

r/2
is convex on [(2r−1 − 1)2/r ,∞). Therefore, by Jensen’s

inequality, for any u > 0 and any nonnegative random variable Z ,

exp
(
u(EZ2)r/2

) ≤ exp
(
(u2/rEZ2 + (2r−1 − 1)2/r )r/2

)
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≤ E exp
(
(u2/r Z2 + (2r−1 − 1)2/r )r/2

)

≤ E exp
(
uZr + (2r−1 − 1)

) ≤ e2/rE exp(uZr ).

Hence,

(EZ2)1/2 ≤ u−1/r
(
ln
(
e2/rE exp(uZr )

))1/r
.

Thus, when

u:=c(r , K , L)

⎛

⎝ max
x∈S,y∈T

∑

i, j

y2i a
2
i j x

2
j

⎞

⎠

−r/2

,

we get by (4.26), (3.10), and (3.11),

(
E sup

x∈S,y∈T
( m∑

i=1

n∑

j=1

yiai j Xi j x j
)2)1/2

≤ u−1/r ln1/r
(
e2/rE exp

(
c(r , K , L) sup

x∈S,y∈T
Z(x, y)r

))

≤ u−1/r ln1/r
(
e2/rE

∑

x∈S,y∈T
exp

(
c(r , K , L)Z(x, y)r

))

≤ u−1/r ln1/r
(
e2/r |S||T |C(r , K , L)

)

≤ 1

c(r , K , L)
max

x∈S,y∈T
(∑

i, j

y2i a
2
i j x

2
j

)1/2 ln1/r
(
e2/r5m5nC(r , K , L)

)

(3.10), (3.11)

�r ,K ,L ‖A ◦ A : �np/2 → �mq/2‖1/2
(
m + n + C̃(r , K , L)

)1/r
,

where in the last two inequalities we also used inequalities |S| ≤ 5n and |T | ≤ 5m ,
and the inclusions S ⊂ Bn

p, T ⊂ Bm
q∗ . Recalling (4.25) completes the proof.

The following cut-off version of Theorem 1.15 can be proved similarly as Propo-
sition 1.7.

Lemma 4.4 Let K , L, M > 0 and r ∈ (0, 2]. Assume X = (Xi j )i≤m, j≤n is a random
matrix with independent symmetric entries taking values in [−M, M] and satisfying
the condition

P
(|Xi j | ≥ t

) ≤ Ke−tr /L for all t ≥ 0. (4.27)

Then, for 1 ≤ p ≤ 2 and 1 ≤ q < ∞, we have

E‖XA : �np → �mq ‖ � q1/rC(r , K , L) ln(en)1/p
∗‖A ◦ A : �np/2 → �mq/2‖1/2
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+ M ln(en)1/2+1/p∗‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2.

Proof Fix 1 ≤ p ≤ 2 and 1 ≤ q ≤ ∞. Let K be the set defined in Lemma 2.3 so that
Bn
p ⊂ ln(en)1/p

∗
K . Then

‖XA : �np → �mq ‖ = sup
x∈Bn

p

‖XAx‖q ≤ ln(en)1/p
∗

sup
x∈Ext(K )

‖XAx‖q , (4.28)

where Ext(K ) is the set of extreme points of K . We shall now estimate the expected
value of the right-hand side of (4.28).

To this end, we consider a fixed x = (x j )nj=1 ∈ Ext(K ). This means that there

exists a non-empty index set J ⊂ {1, . . . , n} of cardinality k ≤ n such that x j = ±1
k1/p

for j ∈ J and x j = 0 for j /∈ J . We know from (4.4) that the Lipschitz constant of
the convex function

z = (zi j )i j �→
∥
∥
∥
( n∑

j=1

ai j zi j x j
)

i

∥
∥
∥
q

= sup
y∈Bm

q∗

m∑

i=1

n∑

j=1

yiai j zi j x j

is less than or equal to

1

k1/p

√
√
√
√ sup

y∈Bm
q∗/2

m∑

i=1

∑

j∈J

yi a2i j =: bJ
k1/p

.

Thus, Talagrand’s concentration for convex functions and random vectors with inde-
pendent bounded coordinates (see [56, Theorem 6.6 and Eq. (6.18)]), together with
the inequality Med(|Z |) ≤ 2E|Z |, implies

P(‖XAx‖q ≥ 2E‖XAx‖q + t) ≤ 4 exp
(
− k2/pt2

16M2b2J

)
for all t ≥ 0. (4.29)

Similar to the proof in the Gaussian case (i.e., proof of Proposition 1.7), we shall trans-
form this into a more convenient form by getting rid of bJ and estimating E‖XAx‖q .
Let us denote, for each i ∈ {1, . . . ,m},

Zi :=
n∑

j=1

ai j Xi j x j .

From our assumption (4.27) as well as Lemmas 2.19 and 2.18, we obtain that

(E|Zi |q)1/q �r ,K ,L q1/r
√∑n

j=1 a
2
i j x

2
j . Hence,

E‖XAx‖q ≤ (
E‖XAx‖qq

)1/q = ( m∑

i=1

E|(XAx)i |q
)1/q �r ,K ,L q1/r

( m∑

i=1

( n∑

j=1

a2i j x
2
j

)q/2
)1/q
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≤ q1/r sup
z∈Bn

p

( m∑

i=1

∣
∣
∣

n∑

j=1

a2i j z
2
j

∣
∣
∣
q/2)1/q = q1/r‖A ◦ A : �np/2 → �mq/2‖1/2=:q1/r a.

From (4.6), we see that

k2/p
∗−1b2J ≤ ‖(A ◦ A)T : �mq∗/2 → �np∗/2‖=:b2.

The above two inequalities together with estimate (4.29) (applied with t =
4k

1
p∗ − 1

2 bJ M
√
ln(en)s), imply that

P
(‖XAx‖q ≥ C(r , K , L)q1/r a + 4bM

√
ln(en)s

) ≤ 4 exp
(−k ln(en)s2

)
(4.30)

for every s ≥ 0 and any x ∈ Ext(K ) with support of cardinality k.
For any k ≤ n, there are 2k

(n
k

) ≤ 2knk ≤ exp(k ln(en)) vectors in Ext(K ) with
support of cardinality k. Thus, using the union bound and (4.30), we see that for
s ≥ √

2,
P
(

sup
x∈Ext K

‖XAx‖q ≥ C(r , K , L)q1/r a + 4bM
√
ln(en)s

)

≤ 4
n∑

k=1

exp(−k ln(en)(s2 − 1))

≤ 4n exp(− ln(en)(s2 − 1)) = 4n(en)−s2+1 ≤ 4e−s2+1.

Hence, by Lemma 2.6,

E sup
x∈Ext K

‖XAx‖q ≤ C(r , K , L)q1/r a + 4bM
√
ln(en)

(√
2 + 4e

e−2

2
√
2

)
.

Recalling (4.28) and the definitions of a and b yields the assertion.

Proof of Theorem 1.15 By a symmetrization argument (as in the first paragraph of the
proof of Theorem 3.5), we may and do assume that all the entries Xi j are symmetric.
Set M = (4 L ln(mn)/r)1/r . Denote X̂i j = Xi j1{|Xi j |≤M} and let X̂ be the m × n
matrix with entries X̂i j . We have

E‖XA : �np → �mq ‖ = E‖XA : �np → �mq ‖1{maxk,l |Xkl |≤M}
+ E‖XA : �np → �mq ‖1{maxk,l |Xkl |>M}.

The random matrix X̂ satisfies the assumptions of Lemma 4.4. Thus, the first sum-
mand above can be estimated as follows:

E‖XA : �np → �mq ‖1{maxk,l |Xkl |≤M}

= E sup
y∈Bm

q∗ ,x∈Bn
p

{ m∑

i=1

n∑

j=1

yiai j Xi j x j
} · 1{maxk,l |Xkl |≤M}
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= E sup
y∈Bm

q∗ ,x∈Bn
p

{ m∑

i=1

n∑

j=1

yiai j Xi j1{|Xi j |≤M}x j
} · 1{maxk,l |Xkl |≤M}

= E‖X̂ A : �np → �mq ‖1{maxk,l |Xkl |≤M} ≤ E‖X̂ A : �np → �mq ‖
�r ,K ,L q1/r ln(en)1/p

∗‖A ◦ A : �np/2 → �mq/2‖1/2
+ M ln(en)1/2+1/p∗‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2

�r ,K ,L q1/r ln(en)1/p
∗‖A ◦ A : �np/2 → �mq/2‖1/2

+ ln(mn)1/r ln(en)1/2+1/p∗‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2.

For the second summand we write, using the Cauchy–Schwarz inequality and then
Lemmas 4.3 and 2.22 (with k = mn and v = 4/r ; recall thatM = (4 L ln(mn)/r)1/r ),

E‖XA : �np → �mq ‖1{maxk,l |Xkl |>M}
≤ (

E‖XA : �np → �mq ‖2)1/2P( max
k≤m,l≤n

|Xkl | > M)1/2

�r ,K ,L (m + n)1/r‖A ◦ A : �np/2 → �mq/2‖1/2 · (mn)−2/r+1/2

�r ‖A ◦ A : �np/2 → �mq/2‖1/2.

Combinging the above three inequalities ends the proof.

5 Lower bounds and further discussion of conjectures

5.1 Lower bounds

Let us first provide lower bounds showing that the upper bounds obtained above are
indeed sharp (up to logarithms).

Proposition 5.1 Let X = (Xi j )i≤m, j≤n be a random matrix with independent mean-
zero entries satisfying E|Xi j | ≥ c for some c ∈ (0,∞). Then, for all 1 ≤ p, q ≤ ∞,

E‖XA : �np → �mq ‖ ≥ c

2
√
2
‖A ◦ A : �np/2 → �mq/2‖1/2.

Using duality (1.12) we immediately obtain the following corollary.

Corollary 5.2 Let X = (Xi j )i≤m, j≤n be as in Proposition 5.1. Then, for all 1 ≤ p, q ≤
∞,

E‖XA : �np → �mq ‖ ≥ c

2
√
2
‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2.

Proof of Proposition 5.1 Let ‖ · ‖ denote the operator norm from �np to �mq . For i ∈
{1, . . . ,m} and j ∈ {1, . . . , n}, let us denote by Ei j the m × n matrix with entry

123
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1 at the intersection of i th row and j th column and with all other entries 0. By the
symmetrization trick described in Remark 3.4, it suffices to consider matrices X with
symmetric entries and prove the assertion with a twice better constant c/

√
2 (note that,

also by Remark 3.4, the lower bound for the absolute first moment of the symmetrized
entries does not change and is still equal to c).

If X has symmetric independent entries, it has the same distribution as (εi j |Xi j |)i j ,
where εi j , i ≤ m, j ≤ n, are i.i.d. Rademacher random variables, independent of all
other random variables. Hence, by Jensen’s inequality and the contraction principle
(Lemma 2.7 applied with αi j = 1/E|Xi j | ≤ 1/c and xi j = ai jE|Xi j |Ei j ), we get

E

∥
∥
∥

m∑

i=1

n∑

j=1

Xi j ai j Ei j

∥
∥
∥ = E

∥
∥
∥
∑

i, j

εi j |Xi j |ai j Ei j

∥
∥
∥ ≥ E

∥
∥
∥
∑

i, j

εi jE|Xi j |ai j Ei j

∥
∥
∥

≥ c E
∥
∥
∥
∑

i, j

εi j ai j Ei j

∥
∥
∥. (5.1)

Thus, it suffices to estimate from below E‖∑i, j εi j ai j Ei j‖.
Since the �q norm is unconditional, we obtain from the inequalities of Jensen and

Khintchine (see [26]) that

E

∥
∥
∥

m∑

i=1

n∑

j=1

εi j ai j Ei j

∥
∥
∥ = E sup

x∈Bn
p

∥
∥
∥
( n∑

j=1

ai jεi j x j
)m
i=1

∥
∥
∥
q

= E sup
x∈Bn

p

∥
∥
∥
(∣
∣

n∑

j=1

ai jεi j x j
∣
∣
)m

i=1

∥
∥
∥
q

≥ sup
x∈Bn

p

∥
∥
∥
(
E
∣
∣

n∑

j=1

ai jεi j x j
∣
∣
)m

i=1

∥
∥
∥
q

Khintchine’s≥
inequality

1√
2

sup
x∈Bn

p

∥
∥
∥
(( n∑

j=1

a2i j x
2
j

)1/2
)m

i=1

∥
∥
∥
q

= 1√
2

sup
z∈Bn

p/2

∥
∥
∥
( n∑

j=1

a2i j z j
)m

i=1

∥
∥
∥
1/2

q/2

= 1√
2
‖A ◦ A : �np/2 → �mq/2‖1/2.

This together with the estimate in (5.1) yields the assertion.

Since ‖GA : �np → �mq ‖ ≥ maxi, j |ai j gi j |, it suffices to prove the following propo-
sition in order to provide the lower bound in Conjecture 1.

Proposition 5.3 For the m × n Gaussian matrix GA, we have

E‖GA : �np → �mq ‖ �p,q

⎧
⎪⎨

⎪⎩

max j≤n
√
ln( j + 1)b↓

j if p ≤ q ≤ 2,

maxi≤m
√
ln(i + 1)d↓

i if 2 ≤ p ≤ q,

0 otherwise,

(5.2)
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where b j = ‖(ai j )i≤m‖2q/(2−q) and di = ‖(ai j ) j≤n‖2p/(p−2).

Proof Since Bn
1 ⊂ Bn

p for p ≥ 1 and the b j ’s do not depend on p, it suffices to prove
the first part of the assertion (in the range p ≤ q ≤ 2) only in the case p = 1 ≤ q ≤ 2.
In this case (5.2) follows by Propostion 1.10.

The assertion in the range 2 ≤ p ≤ q follows by duality (1.12).

5.2 The proof of Inequalities (1.13) and (1.11)

Let us now show that in the case q < p, the third term on the right-hand side in
Conjecture 1 is not needed. To this end it suffices to prove (1.13) only in the case
q < 2, since the case p > 2 follows by duality (1.12).

Proposition 5.4 Whenever 1 ≤ q < p ≤ ∞ and q < 2, we have

D2 = ‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2 �p,q max
j≤n

√
ln( j + 1)b↓

j , (5.3)

where b j = ‖(ai j )i≤m‖2q/(2−q).

Proof Since the right-hand side of (5.3) does not depend on p, and the left-hand side is
non-decreasing with p, we may consider only the case 1 ≤ q < p ≤ 2. By permuting
the columns of A we may and do assume without loss of generality that the sequence
(b j ) j is non-increasing.

Fix j0 ≤ n. Let r be the midpoint of the non-empty interval (
2−p
p ,

2−q
q ). Take

x = (x j ) j≤n with x j = 1
jr . Since rp/(2 − p) > 1, we have

n∑

j=1

x p/(2−p)
j ≤

∞∑

j=1

1

jrp/(2−p)
= C(p, q) < ∞,

so x ∈ C ′(p, q)Bn
p/(2−p) = C ′(p, q)Bn

(p∗/2)∗ . Therefore, the inequality (q∗/2)∗ =
q/(2 − q) ≥ 1 and the facts that b j ≥ b j0 for all j ≤ j0, and that r < (2 − q)/q
imply

D2
2 = sup

z∈Bn
(p∗/2)∗

( m∑

i=1

( n∑

j=1

a2i j z j
)(q∗/2)∗)1/(q∗/2)∗

�p,q

( m∑

i=1

( j0∑

j=1

a2i j j
−r
)q/(2−q)

)(2−q)/q

≥
( m∑

i=1

j0∑

j=1

a2q/(2−q)
i j j−rq/(2−q)

)(2−q)/q

=
( j0∑

j=1

b2q/(q−2)
j j−rq/(2−q)

)(2−q)/q
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≥ b2j0 j
−r+(2−q)/q
0 �p,q b2j0 ln( j0 + 1).

Taking the maximum over all j0 ≤ n completes the proof.

Now we turn to the proof of (1.11). Note that it suffices to prove only the first
two-sided inequality in (1.11), since the second one follows from it by duality (1.12).

Proposition 5.5 For all 1 ≤ p, q ≤ ∞, we have

‖A ◦ A : �np/2 → �mq/2‖1/2 + E max
i≤m, j≤n

|ai j gi j |

�q ‖A ◦ A : �np/2 → �mq/2‖1/2 + max
i≤m, j≤n

√
ln( j + 1)a′

i j , (5.4)

where the matrix (a′
i j )i, j is obtained by permuting the columns of the matrix (|ai j |)i, j

in such a way that maxi a′
i1 ≥ · · · ≥ maxi a′

in .

Proof By permuting the columns of the matrix A, we can assume that the sequence
(maxi≤m |ai j |)nj=1 is non-increasing. We have

E max
i≤m, j≤n

|ai j gi j | ≤ Emax
j≤n

(
max
i≤m

|ai j gi j | − Emax
i≤m

|ai j gi j |
)

+max
j≤n

Emax
i≤m

|ai j gi j |. (5.5)

The function y �→ maxi≤m |ai j yi | is maxi≤m |ai j |-Lipschitz with respect to the
Euclidean norm on R

m , so by Gaussian concentration (see, e.g., [41, Chapter 5.1]),

P
(
max
i≤m

|ai j gi j | − Emax
i≤m

|ai j gi j | ≥ t
) ≤ exp

(
− t2

2maxi≤m |ai j |
)

for all t ≥ 0, j ≤ n. Thus, Lemma 2.11 and inequality (5.5) imply

E max
i≤m, j≤n

|ai j gi j | � max
j≤n

(√
ln( j + 1)max

i≤m
|ai j |

)
+ max

j≤n
Emax

i≤m
|ai j gi j |. (5.6)

We have

max
j≤n

Emax
i≤m

|ai j gi j | ≤ max
j≤n

E

( m∑

i=1

|ai j gi j |q
)1/q ≤ γq max

j≤n
‖(ai j )i‖q

= γq max
j≤n

‖(a2i j )i‖1/2q/2 ≤ γq‖A ◦ A : �np/2 → �mq/2‖1/2,

which, together with (5.6), provides the asserted upper bound.
On the other hand, if (a↓

l )l≤mn denotes the non-increasing rearrangement of the
sequence of all absolute values of entries of A, then Lemma 2.12 implies

Emax
j≤n

max
i≤m

|ai j gi j | � max
l≤mn

√
ln(l + 1)a↓

l ≥ max
j≤n

√
ln( j + 1)a↓

j
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≥ max
j≤n

(√
ln( j + 1)max

i≤m
a′
i j

)
,

which provides the asserted lower bound.

Note that the above proof shows in fact that

max
j≤n

‖(ai j )i‖q + E max
i≤m, j≤n

|ai j gi j |

�q max
j≤n

‖(ai j )i‖q + max
i≤m, j≤n

√
ln( j + 1)a′

i j ,

so

max
j≤n

‖(ai j )i‖q + max
i≤m

‖(ai j ) j‖p∗ + max
j≤n,i≤m

√
ln(i + 1)a′′

i j

�q max
j≤n

‖(ai j )i‖q + max
i≤m

‖(ai j ) j‖p∗ + max
i≤m, j≤n

√
ln( j + 1)a′

i j , (5.7)

where the matrix (a′′
i j )i, j is obtained by permuting the rows of the matrix (|ai j |)i, j in

such a way that max j a′′
1 j ≥ · · · ≥ max j a′′

mj .

5.3 Counterexample to a seemingly natural conjecture

In this subsection we provide an example showing that for any p ≤ q < 2 the bound

E‖GA : �np → �mq ‖ �p,q ‖A ◦ A : �np/2 → �mq/2‖1/2 + ‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2
+ E max

i≤m, j≤n
|ai j gi j |. (5.8)

cannot hold. By duality (1.12), it also cannot hold for any 2 < p ≤ q. This explains
that Conjecture 1 cannot be simplified into a form like on the right-hand side of (1.8).

Let p ≤ q < 2, k, N ∈ N, and let A1, . . . , AN be k × k matrices with all entries
equal to one. Consider a block matrix

A =

⎛

⎜
⎜
⎜
⎝

A1
A2

0

0
. . .

AN

⎞

⎟
⎟
⎟
⎠

of size kN × kN , with blocks A1, . . . AN on the diagonal and with all other entries
equal to 0.

Note that since p ≤ q ≤ 2,

‖A ◦ A : �kNp/2 → �kNq/2‖ = max
l≤N

‖Al ◦ Al : �kp/2 → �kq/2‖ = ‖A1 ◦ A1 : �kp/2 → �kq/2‖
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= sup
x∈Bk

p/2

( k∑

i=1

∣
∣
∣

k∑

j=1

xi
∣
∣
∣
q/2)2/q = sup

x∈Bk
p/2

k2/q
∣
∣
∣

k∑

i=1

xi
∣
∣
∣ = k2/q ,

and similarly, since 2 ≤ q∗ ≤ p∗,

‖(A ◦ A)T : �kNq∗/2 → �kNp∗/2‖ = ‖(A1 ◦ A1)
T : �kq∗/2 → �kp∗/2‖ = k2/p

∗+1−2/q∗
.

The two bounds above and Lemma 2.10 imply that the right-hand side of (5.8) is
bounded from above by

C
(
k1/q + k1/p

∗+1/2−1/q∗ + √
ln(kN )

)
. (5.9)

On the other hand, since for all j ≤ kN , ‖(ai j )i‖2q/(2−q) = k(2−q)/(2q), we obtain
from the lower bound (5.2) that

E‖GA : �kNp → �kNq ‖ �
√
ln(kN )k(2−q)/(2q). (5.10)

If we take N � ee
k
, then (5.10) is of larger order than (5.9) as k → ∞, so (5.8) cannot

hold.

5.4 Discussion of another natural conjecture

In this subsection we prove all the assertions of Remark 1.1. We begin by showing
that for every 1 ≤ p ≤ 2 ≤ q ≤ ∞,

D1 + D2 + Emax
i, j

|ai j gi j | �p,q Emax
i≤m

‖(ai j gi j ) j‖p∗ + Emax
j≤n

‖(ai j gi j )i‖q , (5.11)

and, in the case p, q ≥ 2,

Emax
i≤m

‖(ai j gi j ) j‖p∗ + Emax
j≤n

‖(ai j gi j )i‖q
�p,q max

i≤m
‖(ai j ) j‖p∗ + max

j≤n
‖(ai j )i‖q + max

i≤m

√
ln(i + 1)d↓

i , (5.12)

where D1 = ‖A ◦ A : �np/2 → �mq/2‖1/2, D2 = ‖(A ◦ A)T : �mq∗/2 → �np∗/2‖1/2, and
di = ‖(ai j ) j≤n‖2p/(p−2). In other words, (5.11) shows that Conjecture 1 is equivalent
to (1.15) as long as 1 ≤ p ≤ 2 ≤ q ≤ ∞.

Proof of (5.11) and (5.12) Fix i ≤ m and let f (x) = ‖(ai j x j ) j‖p∗ for x ∈ R
n . For

p ≥ 2 we have p∗(2/p∗)∗ = 2p/(p − 2). Thus f is Lipschitz continuous with
constant Li equal to

sup
x∈Bn

2

( n∑

j=1

|ai j x j |p∗)1/p∗
= sup

y∈Bn
2/p∗

( n∑

j=1

|ai j |p∗
y j
)1/p∗

=
{
max j≤n |ai j | if p ≤ 2,

‖(ai j ) j‖2p/(p−2) if p ≥ 2.
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Therefore, the Gaussian concentration inequality (see, e.g., [41, Chapter 5.1]) implies
that for every t ≥ 0 and every i ≤ m,

P

(
‖(ai j gi j ) j‖p∗ − E‖(ai j gi j ) j‖p∗ ≥ t

)
≤ e−t2/2L2

i ,

so by Lemma 2.11 we get

Emax
i≤m

(
‖(ai j gi j ) j‖p∗ − E‖(ai j gi j ) j‖p∗

)

�
{
maxi≤m max j≤n

√
ln(i + 1)a′′

i j if p ≤ 2,

maxi≤m
√
ln(i + 1)d↓

i if p ≥ 2,
(5.13)

where the matrix (a′′
i j )i, j is obtained by permuting the rows of the matrix (|ai j |)i, j in

such a way that max j a′′
1 j ≥ · · · ≥ max j a′′

mj .
Moreover, by Jensen’s inequality,

E‖(ai j gi j ) j‖p∗ ≤ (
E‖(ai j gi j ) j‖p∗

p∗
)1/p∗ =

(
E

n∑

j=1

|ai j gi j |p∗)1/p∗
= γp∗‖(ai j ) j‖p∗ .

This together with the triangle inequality and (5.13) implies

Emax
i≤m

‖(ai j gi j ) j‖p∗

�p max
i≤m

‖(ai j ) j‖p∗ +
{
maxi≤m max j≤n

√
ln(i + 1)a′′

i j if p ≤ 2,

maxi≤m
√
ln(i + 1)d↓

i if p ≥ 2,

and, by duality,

Emax
j≤n

‖(ai j gi j )i‖q

�q max
j≤n

‖(ai j )i‖q +
{
max j≤n maxi≤m

√
ln( j + 1)a′

i j if q ≥ 2,

max j≤n
√
ln( j + 1)b↓

j if q ≤ 2,

where b j = ‖(ai j )i )‖2q/(2−q), and the matrix (a′
i j )i, j is obtained by permuting the

columns of the matrix (|ai j |)i, j in such a way that maxi a′
i1 ≥ · · · ≥ maxi a′

in . This,
together with Lemma 2.1 and (5.4) yields in the case p ≤ 2 ≤ q,

Emax
i≤m

‖(ai j gi j ) j‖p∗ + Emax
j≤n

‖(ai j gi j )i‖q �p,q D1 + D2 + Emax
i, j

|ai j gi j |,

what implies the lower bound of (5.11). In the case 2 < p, q we additionally use (5.7)
and the simple observation that

max
i≤m

max
j≤n

√
ln(i + 1)a′′

i j ≤ max
i≤m

√
ln(i + 1)d↓

i
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to get (5.12).
Now we move to the proof of the upper bound of (5.11) in the case p ≤ 2 ≤ q.

Since the �np∗ norm is unconditional, we have by Jensen’s inequality and Lemma 2.1

Emax
i≤m

‖(ai j gi j ) j‖p∗ = Emax
i≤m

‖(|ai j gi j |) j‖p∗ ≥ max
i≤m

‖(|ai j |E|gi j |) j‖p∗

= √
2/π max

i≤m
‖(|ai j |) j‖p∗ = √

2/πD2,

and dually

Emax
j≤n

‖(ai j gi j )i‖q ≥ √
2/πD1.

Moreover, since ‖ · ‖q ≥ ‖ · ‖∞,

Emax
j≤n

‖(ai j gi j )i‖q ≥ Emax
j

max
i

|ai j gi j |,

which finishes the proof of the upper bound of (5.11).

Next, for every pair (p, q) ∈ [1,∞]2 which does not satisfy the condition 1 ≤ p ≤
2 ≤ q ≤ ∞ we shall give examples of m, n ∈ N, and m × n matrices A, for which

E‖GA : �np → �mq ‖ � Emax
i≤m

‖(ai j gi j ) j‖p∗ + Emax
j≤n

‖(ai j gi j )i‖q (5.14)

when m, n → ∞. This shows that the natural conjecture (1.15) is wrong outside the
range 1 ≤ p ≤ 2 ≤ q ≤ ∞. The case p = 2 = q, when (1.15) is valid (cf. (1.4)),
is in a sense a boundary case, for which (1.15) (i.e., a natural generalization of (1.4))
may hold.

Example 5.6 (for (5.14) in the case q < p.) Let m = n, and A = Idn . Then by
Lemmas 2.10 and 2.12 we have

Emax
i≤m

‖(ai j gi j ) j‖p∗ + Emax
j≤n

‖(ai j gi j )i‖q = 2max
i≤n

|gii | � √
ln n,

whereas Proposition 5.1 and our assumption p/q > 1 imply

E‖GA : �np → �nq‖ � ‖ Idn : �np/2 → �nq/2‖1/2 = sup
x∈Bn

p/2

( n∑

i=1

|xi |q/2
)1/q

=
(

sup
y∈Bn

p/q

n∑

i=1

|yi |
)1/q = (

n1/(p/q)∗)1/q � √
ln n.

Since cases 2 < p ≤ q and p ≤ q < 2 are dual (see (1.12)), we give an example
for which (5.14) holds only in the first case.
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Example 5.7 (for (5.14) in the case 2 < p ≤ q.) Fix p and q satisfying 2 < p ≤ q.
Let m, n → ∞ be such that m1/q � n1/p

∗
, and let A be an m × n matrix with all

entries equal to 1. For p > 2 we have 2(p/2)∗ = 2p/(p − 2). This together with
(5.12) implies

Emax
i≤m

‖(ai j gi j ) j‖p∗ + Emax
j≤n

‖(ai j gi j )i‖q
�p,q max

i≤m
‖(ai j ) j‖p∗ + max

j≤n
‖(ai j )i‖q + max

i≤m

√
ln(i + 1)d↓

i

= n1/p
∗ + m1/q + √

ln(m + 1)n(p−2)/2p � m1/q + √
lnm n

1
2(p/2)∗ .

On the other hand, Proposition 5.1 and our assumption p/2 > 1 imply

E‖GA : �np → �nq‖ � ‖A : �np/2 → �nq/2‖1/2 = sup
x∈Bn

p/2

( m∑

i=1

∣
∣
∣

n∑

j=1

x j
∣
∣
∣
q/2)1/q

= m1/q sup
x∈Bn

p/2

(∣
∣
∣

n∑

j=1

x j
∣
∣
∣
)1/2 = m1/qn

1
2(p/2)∗

� m1/q + √
lnm n

1
2(p/2)∗ .

5.5 Infinite dimensional Gaussian operators

In this subsection we prove Proposition 1.2 concerning infinite dimensional Gaussian
operators. It allows us to see that Conjecture 1 implies Conjecture 2.

Proof of Proposition 1.2 We adapt the proof of [40, Corollary 1.2] to prove Propo-
sition 1.2 in the case p ≤ 2 ≤ q—remaining cases may be proven similarly. Fix
1 ≤ p ≤ 2 ≤ q ≤ ∞ for which (1.14) holds and a deterministic infinite matrix
A = (ai j )i, j∈N. Using the monotone convergence theorem one can show that a matrix
B = (bi j )i, j∈N defines a bounded operator between �p(N) and �q(N) if an only if
supn∈N ‖(bi j )i, j≤n : �np → �nq‖ < ∞. Interpreting ‖B : �p(N) → �q(N)‖ as infinity
for matrices which do not define a bounded operator, we have

E‖GA : �p(N) → �q(N)‖ = E sup
x∈B∞

p

( ∞∑

i=1

∣
∣
∣

∞∑

j=1

ai j gi j x j
∣
∣
∣
q
)1/q

= E lim
n→∞ sup

x∈Bn
p

( n∑

i=1

∣
∣
∣

n∑

j=1

ai j gi j x j
∣
∣
∣
q
)1/q

= lim
n→∞E sup

x∈Bn
p

( n∑

i=1

∣
∣
∣

n∑

j=1

ai j gi j x j
∣
∣
∣
q
)1/q

= lim
n→∞E

∥
∥(gi j ai j )i, j≤n : �np → �nq

∥
∥

and similarly

‖A ◦ A : �p/2(N) → �q/2(N)‖ = lim
n→∞ ‖(a2i j )i, j≤n : �np/2 → �nq/2‖,
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‖(A ◦ A)T : �q∗/2(N) → �p∗/2(N)‖ = lim
n→∞ ‖(a2j i )i, j≤n : �nq∗/2 → �np∗/2‖,

and

E sup
i, j∈N

|ai j gi j | = lim
n→∞E sup

i, j≤n
|ai j gi j |.

Therefore, (1.14) implies the following: E‖GA : �p(N) → �q(N)‖ < ∞ if and only if
‖A ◦ A : �p/2(N) → �q/2(N)‖ < ∞, ‖(A ◦ A)T : �q∗/2(N) → �p∗/2(N)‖ < ∞, and
E supi, j∈N |ai j gi j | < ∞. It thus suffices to prove the following claim: ‖GA : �p(N) →
�q(N)‖ < ∞ almost surely if and only if E‖GA : �p(N) → �q(N)‖ < ∞.

If P(‖GA : �p(N) → �q(N)‖ < ∞) < 1, then P(‖GA : �p(N) → �q(N)‖ =
∞) > 0, so E‖GA : �p(N) → �q(N)‖ = ∞.

Assume now that P(‖GA : �p(N) → �q(N)‖ < ∞) = 1. By (4.23) and (4.24) we
know that for every n ∈ N there exist finite sets Sn and Tn such that

‖GA : �p(N) → �q(N)‖ = sup
n∈N

sup
x∈Bn

p,y∈Bn
q∗

n∑

i=1

n∑

j=1

yiai j gi j x j

� sup
n

sup
x∈Sn ,y∈Tn

n∑

i=1

n∑

j=1

yiai j gi j x j a.s.

In particular, there exist Gaussian random variables (�k)k∈N such that

‖GA : �p(N) → �q(N)‖ � sup
k∈N

�k a.s.

Therefore, we may apply [35, (1.2)] to see that there exists ε > 0 such that
E exp(ε‖GA : �p(N) → �q(N)‖2) < ∞, so E‖GA : �p(N) → �q(N)‖ < ∞, which
completes the proof of the claim.
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the current study.
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