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Abstract

Form,n € N, let X = (X;j)i<m, j<n be a random matrix, A = (a;;)i<m,j<n a real
deterministic matrix, and X 4 = (a;; X;j)i<m, j<n the corresponding structured random
matrix. We study the expected operator norm of X 4 considered as a random operator
between £}, and £ for 1 < p,q < oo. We prove optimal bounds up to logarithmic
terms when the underlying random matrix X has i.i.d. Gaussian entries, independent
mean-zero bounded entries, or independent mean-zero ¥, (r € (0, 2]) entries. In
certain cases, we determine the precise order of the expected norm up to constants.
Our results are expressed through a sum of operator norms of Hadamard products
AoAand (Ao A)T.
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1 Introduction and main results

With his work on the statistical analysis of large samples [69], Wishart initiated the
systematic study of large random matrices. Ever since, random matrices have con-
tinuously entered more and more areas of mathematics and applied sciences beyond
probability theory and statistics, for instance, in numerical analysis through the work
of Goldstine and von Neumann [20, 65] and in quantum physics through the works
of Wigner [66—68] on his famous semicircle law, which resulted in significant effort
to understand spectral statistics of random matrices from an asymptotic point of view.
Today, random matrix theory has grown into a vital area of probability theory and
statistics, and within the last two decades, random matrices have come to play a
major role in many areas of (algorithmic) computational mathematics, for instance, in
questions related to sparsification methods [1, 54] and sparse approximation [57, 58],
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dimension reduction [4, 12, 44], or combinatorial optimization [46, 53]. We refer the
reader to [5, 6, 60] for more information.

In this paper, we are interested in the non-asymptotic theory of (large) random
matrices. This theory plays a fundamental role in geometric functional analysis at least
since the *70s, the connection coming in various different flavors. It is of particular
importance in the geometry of Banach spaces and the theory of operator algebras [9,
10, 15, 18, 21, 30] and their applications to high-dimensional problems, for instance,
in convex geometry [17, 22], compressed sensing [14, 16, 48, 63], information-based
complexity [27, 28], or statistical learning theory [50, 64]. On the other hand, geometric
functional analysis had and still has enduring influence on random matrix theory as is
witnessed, for instance, through applications of measure concentration techniques; we
refer to [15, 42] and the references cited therein. The quantity we study and focus on
here concerns the expected operator norm of random matrices considered as operators
between finite-dimensional £, spaces; recall that Z’; denotes the space R” equipped
with the (quasi-)norm || - || ,, given by ||()c/-)’}:1 l, = (Z?:l |xj|p)1/” for0 < p < o0
and ||(x]~);'»:1 loo = max;<, |x;| if p = co. We address the following problem: for
1 < p,qg < ooand m,n € N, determine the right order (up to constants that may
depend on the parameters p and g) of

El|lX4: €% — ¢,

where, given a deterministic real m x n matrix A = (a;;)i<m, j<n and arandom matrix
X = (Xij)i<m, j<n, We denote by

Xa=AoX =(aijXij)i<m,j<n

the structured random matrix; the symbol o stands for the Hadamard product of matri-
ces (i.e., entrywise multiplication). The bounds on the expected operator norm should
be of optimal order and expressed in terms of the coefficients a;;, 1 < m, j < n.
Understanding such expressions and related quantities is important, for instance, when
studying the worst-case error of optimal algorithms which are based on random infor-
mation in function approximation problems [28] (see also [33]) or the quality of
random information for the recovery of vectors from an £ ,-ellipsoid, where (the radius
of) optimal information is given by Gelfand numbers of a diagonal operator [29].

In the case where the random entries of X are i.i.d. standard Gaussians (then we
write G 4 instead of X 4) and 1 < p, g < oo, we will show the following bound, which
is sharp up to logarithmic terms:

Di+ Dy SE[Ga: € — € < (nm)'/7" (inm)"/1[/In(mn) Dy + Inn Dy,
(1.1)
where D:=||Ao A: (", — e'q"/2||1/2, Dy:=|[(Ao A)T: e, = e';,*/zul/?, and p*

p/2
denotes the Holder conjugate of p defined by the relation 1/p 4+ 1/p* = 1. As will be

explained later, we obtain sharp estimates in certain cases and derive results similar
to (1.1) for other models of randomness.
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1.1 History of the problem and known results

In what follows, A = (a;;);,j is a real deterministic matrix and G = (g;;);,; always
stands for a random matrix with i.i.d. standard Gaussian entries (usually the matrices
are of size m x n unless explicitly stated otherwise). We use C(r), C(r, K), etc. for
positive constants which may depend only on the parameters given in brackets and
write C, C’, ¢, ¢/, ... for positive absolute constants. The symbols <, <,, <, g, etc.
denote that the inequality holds up to multiplicative constants depending only on the
parameters given in the subscripts; we writea < bifa S bandb < g, and x,, <, k,
etc. if the constants may depend on the parameters given in the subscript.

In 1975, Bennett, Goodman, and Newman [9] proved that if X is an m x n random
matrix with independent, mean-zero entries taking valuesin [—1, 1],and 2 < g < oo,
then

ElIX: £5 — €' $q max{n'/?, m'/7}. (1.2)

In fact, up to constants, this estimate is best possible: for any m x n matrix X’ with +1
entries one readily sees that || X": ¢} — E;”H > max{n'/%, m/4}; just use standard
unit vectors and operator duality. Moreover, in this ‘unstructured’ case, where a;; = 1
foralli, j,itis easy to extend (1.2) to the whole range of p, g € [1, oo] (see [8, 13] or
Remark 4.2 below). Also, if all entries are i.i.d. Rademacher random variables, then
the bounds are two-sided, i.e., the expected operator norm is, up to constants, the same
as the minimal norm for all p, ¢ (see [8, Proposition 3.2] or [13, Satz 2]).

The case most studied in the literature is the one of the spectral norm, i.e., the
£3 — €5 operator norm. Seginer [51] proved in 2000 that if X = (X;;);<m, j<n is an
m x n random matrix with i.i.d. mean-zero entries, then its operator norm is of the
same order as the sum of expectations of the maximum Euclidean norm of rows and
columns of X, i.e.,

EllX: & — &'l < Emax [|(X;j);L; [l2 + Emax [|(Xi;)]_ [l2. (1.3)
j=n i<m

Riemer and Schiitt [49] proved that, up to a logarithmic factor In(en)?, the same holds
true for any random matrix with independent but not necessarily identically distributed
mean-zero entries. Let us also mention that in the Gaussian setting one can use a non-
commutative Khintchine bound (see, e.g., [59, Equation (4.9)]) to show that, up to a
factor +/In 7, the expected spectral norm is of the order of the largest Euclidean norm
of its rows and columns.

In the very same setting that was considered by Riemer and Schiitt, Latata [37] had
obtained a few years earlier the dimension-free estimate

- 1/2 " 1/2 U 1/4
2 2 4
E|X: €2 — ¢ gr}lg(E :IEXZ-J) +rin$(§ ]Exij) + (§ ) ]EXZ-J-)

i=1 j=1 i=1 j=1
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This bound is superior to the Riemer—Schiitt bound in the case of matrices with all
entries equal to 1 and is optimal for Wigner matrices. In other cases, like the one of
diagonal matrices, the Riemer—Schiitt bound is better.

In the case of structured Gaussian matrices, Latata, van Handel, and Youssef [40],
building upon earlier work of Bandeira and van Handel [7] (which combined the
moment method with combinatorial considerations) as well as results proved by
van Handel in [61] (which used Slepian’s lemma), obtained the precise behavior with-
out any logarithmic terms in the dimension, namely

ElGa: €5 — €3] < Emax||(a;;gij)iL;ll2 + Emax [|(a;; i) 12
Jj=n i<m
=< max |[(aij);L; 2 + max [[(a;;)j_; 2 + Emax lajjgijl-
Jj=n i<m i<m,j<n

(1.4)

Their proof is based on a clever block decomposition of the underlying matrix (see [40,
Fig. 3.1]). This result finally answered in the affirmative a conjecture made by Latata
more than a decade before. We also refer the reader to the survey [62] discussing in quite
some detail results prior to [40] and [61]—the latter work discusses the conjectures
of Latata and van Handel and shows their equivalence.

Very recently, Latata and Swiatkowski [39] investigated a similar problem when
the underlying random matrix has Rademacher entries. They proved a lower bound
which, up to a In In n factor, can be reversed for randomized n x n circulant matrices.

In [23], Guédon, Hinrichs, Litvak, and Prochno studied our main and motivating
question on the order of the expected operator norm of structured random matrices
considered as operators between £}, and €' in the special case where p <2 < g and
the random entries are Gaussian. In this situation, where we are not dealing with the
spectral norm, the moment method cannot be employed. The approach in [23] was
therefore different and based on a majorizing measure construction combining the
works [24] and [25]. In [23, Theorem 1.1], the authors proved thatif 1 < p <2 <
q < oo, then

EIGa: €, = €1 S vgmax i)y llg + (P amm) e max i)y e

+(p)1(nm) 1y, E max |aijgijl, (1.5)
i1<m,j<n

where y,:=(E|g|")!/" for a standard Gaussian random variable g. Moreover, for p = 1
and ¢ > 2, it was noted in [23, Remark 1.4] (see also [45, Twierdzenie 2]) that

E[Ga: €] — 51| S Vqmax|[(aij)iLllq + E max |ai;gijl. (1.6)
j=n i<m,j<n

Later, an extension of (1.5) to the case of matrices with i.i.d. isotropic log-concave
rows was obtained by Strzelecka in [55].

Trying to extend the upper bound for E[|G 4: £, — £7'| to the whole range 1 <
p,q < oo one encounters two difficulties. First of all, the methods used in order to
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prove (1.5) fail if ¢ <2 or p > 2, because the majorizing measure construction used
in [23] is restricted to the case g > 2 and the assumption 1 < p < 2 is required in a
Holder bound. Moreover, when ¢ < 2 or p > 2 the result cannot hold with the right-
hand side of the same form as in (1.5) (see Remark 4.2 below for countelrexamples1
to (1.5) in the cases ¢ < 2 and p > 2). This explains the different form of expressions
Dp and D5 in (1.1), which in the range p < 2 < g reduce to the maxima of norms on
the right-hand side of (1.5)—see (1.9) below.

1.2 Lower bounds and conjectures

By arguments similar to the ones used in order to prove the lower bound in (1.4), one
can check that in the range considered in [23, 45] (i.e., 1 < p <2 < g < 00) one has

ElGa: €y — L1l Zp.g max |[(aij)iL;llg + max [|(ai;)j_; Il p+
I4 q j=<n 1<m J

~

+E max |aijg,-j|. (1.7)

i<m,j<n

Note that for p =1,
max [|(a;;)_yllp» = max la;j| < /7/2E max |aj;gil,
1<m lSm,]Sn lSm,]Sn

which explains the simplified form of (1.6).

We remark that the proof of (1.7) is based merely on the observation that the operator
norm is greater than the maximum entry of the matrix and the appropriate maximum
norms of its rows and columns, combined with comparison of moments for Gaussian
random vectors. Another but related way to proceed, valid for all 1 < p, g < o0, is
to exchange expectation and suprema over the E’Il, and Z?* balls in the definition of the
operator norm. We present the details in Sect. 5.1. In particular, Proposition 5.1 and
Corollary 5.2 imply2 that, for 1 < p, g < o0,

EllGa: € — €[ 2l A0 A: £ ) — oIV + (A0 A2 € ) — €'
+E max |aijgijl- (1.8)

i<m,j<n

It is an easy observation (see Lemma 2.1 below) that for p <2 < ¢,

. /2 _
140 A: €, — €l = max @iy llg.

(1.9
T. 1/2
(A0 A)" 2 €0 — ol 2 = max l1€@ij) =y ll p=-

1 By Jensen’s inequality, the expected norm of a matrix with i.i.d. Rademacher entries is less than or equal
to 4/2/m times the expected norm of the matrix with Gaussian entries, so (1.5) forg <2 or p > 2 would
imply the same (up to a constant) bound for £ 1 matrices, which does not hold in this range of (p, g) as we
explain in Remark 4.2.

2 We use here also a trivial observation that |G 4 : Z’; — Z;” | > max; ;la;jgijl-
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Thus, in the range 1 < p < 2 < g < oo considered in [23, 45], the lower bounds
(1.7) and (1.8) coincide.

Although it would be natural to conjecture at this point that the bound (1.8) may be
reversed up to a multiplicative constant depending only on p, ¢, such a reverse bound
turns out not to be true in the case p < ¢ < 2 (and in the dual one 2 < p < g) as we
shall show in Sect. 5.3.

In order to conjecture the right asymptotic behavior of E||G 4: Z’l’, — E?H, one
may take a look at the boundary values of p and ¢, i.e., p € {1, 00} or g € {1, co}.
Note that (1.6) provides an asymptotic behavior of E||G 4 : Z’I’) — EZ’ || on a part of this
boundary (i.e.,for p = land2 < g < coandinthedualcaseq = coand 1 < p < 2).
We provide sharp results on the remaining parts of the boundary of [1, co] x [1, 00]
(see dense lines on the boundary of Fig. 1 below):

IE||GA:EZ—>£’1”|| =, D1+ D> forall 1 < p < oo,
]E||GA:ZZO—>ZZ1|| =4 D1+ D forall 1 < g < oo,
E|Ga: O] — Z;”H = D +n_1ax(,/1n(j + 1)bj¢») forall 1 <g <2,
E|Ga: E" — 2| < Dy +max(\/1n(1 +1) dL forall2 < p < o0,
where
1 2
Di:=[AocA: b}, — L5yl / bj:=ll(aij)izmll2q/2—q)
Dy:=[[(Ao A2 ) — 20 plI'2, di==(aij) j=nll2p/(p-2),
and with (xli e, x,f ) denoting the non-increasing rearrangement of (|xi], ..., [x,])

for a given (x;) j<, € R". (For the precise formulation see Propositions 1.8 and 1.10,
and Corollary 1.11 below.)

Moreover, in Sect. 5.1 we generalize the lower bounds from the boundary into the
whole range (p, q) € [1, oo] x [1, oo] (see Fig. 1 below), i.e., we prove

Emax;<m, j<nlaijgijl if p<2=<gq,
max;j<, vIn(j + DbY if p<gq <2,
max; <, /IG F Dd; if 2 < p <q,
0 if g < p.

El|Ga: Z" — €m|| Zpq D1+ D2+

(1.10)
Let us now discuss the relation between the terms appearing above. We postpone

the proofs of all the following claims to Sect. 5.
In the case p <2 < g, we have

Dy + Dy +E max laijgijl Xpq D1+ D2+ max /In(j + Daj;
i1<m,j=n 1<m,j=n

=p,qg D1+ D2 +  max \/ln(l—i—l)a[/, (1.11)

i<m,j<n
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q=0o0
b= p=2 p=1
northeast lines: E max la;jgijl,
i<m,j<n
horizontal lines: max +/In(j + l)b#,
Fig. 1 The third summand in (1.10) and in Conjecture 1: J=n ’
vertical lines: max +/In(i + l)d#,
i<m
northwest lines: 0

Note that the horizontal axis represents 1/p and the vertical one 1/q. Dense lines correspond to exact
asymptotics and loosely spaced lines to upper and lower bounds matching up to logarithms

where the matrices (alfj)l-, j and (alf})i, ; are obtained by permuting the columns and
rows, respectively, of the matrix (|a;;|);, j in sucha way thatmax; a;; > --- > max; a;,
and max; af; > --- > max; a;,’lj. Therefore, in the range 1 < p < g < oo the right-
hand side of (1.10) changes continuously with p and ¢ (for a fixed matrix A).

Obviously, max j <, \/ln(ji—i-l)bjL > max;<m, j<n v/In(j + Da! ; and, in general,
the former quantity may be of larger order than the latter one. In Sect. 5.3 we shall
present a more subtle relation: for every 1 < p < g < 2 we shall give an example
showing that the right-hand side of (1.10) may be of larger order than D; + D, +
E max; <, j<n laijgij|. Note that by duality, i.e., the fact that

XAz € — €0 = 1(X)T e — 0 = [(XT) pr: €% — €0, (112)

the same holds inthe case 2 < p < ¢.This suggests that the behavior of E||G 4 : E’;, —
Ef]” || is different in the regions with horizontal or vertical lines than in the region with
northeast lines.

Moreover, we have

max <, +/In(j + l)b]l. ifg <pandg < 2,

D+ D; 2
PR AP maxi,, InG F Ddy ifg < pand p*t <2

(1.13)
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(see Sect. 5.2). Note that this is not the case for p < ¢, as one can easily see by
considering, e.g., A equal to the identity matrix. This suggests a different (than in
other regions), simplified, behavior of E||G 4 : Z’; — Eg’ || in the region with northwest
lines.

Given the discussion above, the lower bounds presented in (1.10), and the fact
that they can be reversed for all p € [1, o0], g € {1, 00} (and for all ¢ € [1, oo],
p € {1, oo}), it is natural to conjecture the following.

Conjecture 1 Forall 1 < p,q < oo, we conjecture that

Emax;<m,j<nlaijgijl if p<2=gq,
max j<, vIn(j + Db} if p<q <2,
max; <, vInG + Dd; if 2< p <gq,
0 if g <p.

EGa: € — € =pq D1+ Dy +

(1.14)

Remark 1.1 One could pose another natural conjecture, based on the potential gener-
alization of the first line of the bound (1.4), namely that the inequality

EllGa: €, = £l <pq K max [ (ai;gij) Il - + ]Er?ff (aijgijilly  (1.15)

holds forall 1 < p, g < co. Indeed, the lower bound is true with constant %, since for
every deterministic matrix X one has

X" —n >max{max Xii)illps, max ||(X;;); }
l » gl = max (X))l p max 1(Xij)illg

However, as we prove in Sect. 5.4, this conjecture is wrong: although the right-hand
sides of (1.14) and (1.15) are comparable in therange | < p <2 < g < oo, for every
pair of p, g outside this range the right-hand side of (1.15) may be of smaller order
than the left-hand side.

Let us now present a conjecture concerning the boundedness of linear operators
given by infinite dimensional matrices. In what follows, we say that a matrix B =
(bij)i,jen defines a bounded operator from £, (N) to £,(N) if for all x € £,(N) the
product Bx is well defined, belongs to £, (N) and the corresponding linear operator is
bounded.

Conjecture2 Let A = (a;})i, jen be an infinite matrix with real coefficients and let
1 < p, g < oo. We conjecture that the matrix G 4 = (a;;gij)i, jeN defines a bounded
linear operator between £ ,(N) and £,(N) almost surely if and only if the matrix Ao A
defines a bounded linear operator between £,>(N) and £ ;> (N), the matrix (A o AT
defines a bounded linear operator between £+ 2(N) and £y j»(N), and

e inthecase p <2 <gq, ESUP,-,,-EN laijgij| < oo,
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o inthecase p < q <2 limjo0bj =0, and sup ;e \/M(]Tl)bj < 00, where
bj = (aij)ienll2g/2—q), J €N,

e inthecase2 < p < q, lim;_,od; = 0, and sup; .y \/mdi¢ < 0o, where
di:=|(aij) jenll2p/(p—2), I €N,

e (in the case q < p we do not need to assume any additional conditions).

We remark that it suffices to prove Conjecture 1 in order to confirm Conjecture 2.

Proposition 1.2 Assume 1 < p,q < oo. Then (1.14) for this choice of p, q implies
the assertion of Conjecture 2 for the same choice of p, q.

We postpone the proof of this proposition to Subsection 5.5.

In this article, in addition to the cases p = g = 2 obtainedin [40]and p =1, > 2
proved in [23, 45], we confirm Conjecture 1 when p € {1, oo}, g € [1, o] and when
q € {l,00}, p € [1,00]. In all the other cases, we are able to prove the upper
bounds only up to logarithmic (in the dimensions m, n) multiplicative factors (see
Corollary 1.4 below). In particular, Proposition 1.2 implies that Conjecture 2 holds
for all p € {1, 00}, q € [1, 0o] and for all ¢ € {1, oo}, p € [1, o<].

Note that in the structured case we work with, interpolating the results obtained
for the boundary cases p € {1, 00} or g € {1, oo} gives a bound with polynomial
(in the dimensions) multiplicative constants which are much worse than logarithmic
constants from Corollary 1.4 below. However, as we shall see in Remark 4.2 below,
interpolation techniques work well in the non-structured case.

1.3 Main results valid for1 < p,q < oo

We start with general theorems valid for the whole range of p, ¢g. Results which are
based on methods working only for specific values of p, g, but yielding better loga-
rithmic terms, are presented in the next subsection. A brief summary and comparison
of all results can be found in Table 1.

Before stating our main results, we need to introduce additional notation. For a
non-empty set J C {1,...,n},and 1 < p < oo, we define

By={ejer: Y Inl” =1, xj eR}.
jeJ
By 7 we denote the space R”:={(x;)jes : x; € R} equipped with the norm
1/p
Il = (3 bxt?)
jeJ

whose unit ball is B; . Obviously, the space Z{, can be identified with a subspace of
Z’;. If A: ZZ — E? is a linear operator, the notation A: EIJ, — Z(II means that A
is restricted to the space EIJ, and composed with a projection onto ELI]. Moreover, for

1 .
x = (x1,...,x,) € R", sup;, ||x||e; = (ngk |x}|p) /p, where the supremum is
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taken over all J C {1,...,n} with |J| = k, and (xli, el xni) is the non-increasing
rearrangement of (x|, ..., [x,|).

Theorem 1.3 (Main theorem in a general version with sets Iy, Jo) Assume thatm < M,
n<N,1<p,qg=00 and G = (gij)i<m,j<n has ii.d. standard Gaussian entries.
Then

Esup [Ga: €0 — €0 =Esup sup sup » > yiaijgijx;

lo.Jo ’O’JOXEB,J,O yeB:; icly jely

< In(en)/?" 1n(em)1/‘1[(2.4,/1n(mn) +8vVInM + /2/7) sup Ao A: 1520/2 N z;"/znlﬂ
Io,Jo

+ (8vIn N +2y/2/x) Isoug) (Ao : z;(;/z N E}J)(L/znl/z:l’

where the suprema are taken over all sets Iy C {1,..., M}, Jo C {l,..., N} such
that | Iy| = m, |Jo| = n.

The above theorem gives an estimate on the largest operator norm among all sub-
matrices of G 4 of fixed size. Let us remark that apart from being of intrinsic interest,
quantities of this type (for p = g = 2) have appeared in connection with the study of
the restricted isometry property of random matrices with independent rows [2] or in
the analysis of entropic uncertainty principles for random quantum measurements [3,
47].

Let us now give an outline of the proof of Theorem 1.3. Note that

1Ga: €0 — €] = sup sup D" yiaijgijx. (1.16)

Iy - .
xeB;O yqu(,l iely jedo

In the first step of our proof, we find polytopes L and K approximating (with accuracy
depending logarithmically on the dimension) the unit balls in E,J,O and E;O*, respectively.
The extreme points of the sets K and L have a special and simple structure: absolute
values of their non-zero coordinates are all equal to a constant depending only on the
size of the support of a given point. Since K is close to B;El and L is close to B,{O,
we may consider only x € Ext(L), y € Ext(K) in (1.16). Since non-zero coordinates
of x € Ext(L) and y € Ext(K), respectively, are all equal up to a sign we may use a
symmetrization argument and the contraction principle to remove x and y in the sum
on the right-hand side of (1.16). Thus, in the next step of the proof we only need to
estimate the expected value of

—1/g* | 71—1
sup sup sup |[I|7Veg VP Z aij8ij»
Iy, Jo D£IC Iy B#J CJoy iel,jel

where / and J represent the potential supports of points in Ext(K) and Ext(L). To
deal with this quantity, we first consider the suprema over the subsets of fixed sizes
and use Slepian’s lemma to compare the supremum of the Gaussian process above
with the supremum of another Gaussian process, which may be bounded easily. Then
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we make use of the term |I|’1/‘1* [J]~YP < 1, which allows us to go back to suprema
over the sets Blfo and B At the end, we use the Gaussian concentration inequality
to unfix the sizes of sets / and J and complete the proof.

Applying Theorem 1.3 with N = n, M = m immediately yields the following
result, which confirms Conjecture 1 up to some logarithmic terms.

Corollary 1.4 (Main theorem — £, to £, version) Assume that 1 < p,q < oo and
G = (gij)i<m,j<n has i.i.d. standard Gaussian entries. Then,

ElGa: £ — €0 < (Inn)"/P" (Inm) /4 [\/ln(mn)||A N R

+VInnll(Ao A s en ) — z’;,*/znl/z].

Moreover, we easily recover the same bound in the case of independent bounded
entries. We state and prove a general version with sets /o and Jy akin to Theorem 1.3
in Sect. 3.2.

Corollary 1.5 Assume that 1 < p,q < oo and X = (X;j)i<m, j<n has independent
mean-zero entries taking values in [—1, 1]. Then

ElXa: &) — €' S (1nn)‘/P*(1nm)‘/q[,/1n(mn)||A R R
+VInnll(Ao A s e ) — e’;*/2||1/2].
We use the two results above to obtain their analogue in the case of ¥, entries for

r < 2; these random variables are defined by (1.17).
This class contains, among others,

e log-concave random variables (which are 1),

e heavy tailed Weibull random variables (of shape parameter r € (0, 1), i.e.,
P(|Xij| = 1) = ™"/ for 1 > 0),

e random variables satisfying the condition

I Xijll2p <l Xijll, forallp>1.

These random variables are v, with r = 1/log, . They were considered recently
in [38].

A general version of the following Corollary 1.6 with sets Iy and Jy is stated and
proved in Subsection 3.2.

Corollary 1.6 Assume that K,L > 0, r € (0,2], 1 < p,g < oo, and X =
(Xij)i<m,j<n has independent mean-zero entries satisfying

P(|X;j| > 1) < Ke™"/L forallt =0,i <m, j <n. (1.17)
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Then
El[Xa: € — £
<,.x.. Inm)P"(nm)'/4 1n(mn)*—*[\/1n(mn lAoA: ", — eq/2||1/2

+VInnli(Ao AT €0y — £l /2]

1.4 Results for particular ranges of p, q

We continue with results for some specific ranges of p, ¢, where we are able to prove
estimates with better logarithmic dependence (results which follow from them by
duality (1.12) are stated in Table 1 to keep the presentation short). We postpone their
proofs to Sect.4. We start with the case of Gaussian random variables. Recall that
vy = (E| g|)1/4, where g is a standard Gaussian random variable.

Proposition 1.7 Forall1 < p <2and 1 < g < oo, we have

ElGa: € — £0']| < v In(en) P Ao A: e M
+2.2In(en) PP (A0 AT ) — £ oIV (118)

Ifg = 1 or p = oo, then we are able to get a result without logarithmic terms. Recall
that for a sequence (x;) j<, we denote by (x}) j<n the non-increasing rearrangement
of (Ix1)j<n-

Proposition 1.8 (i) For 1 < p < 0o, we have
lAoA: €)= &l + (A0 AT €2 — £ )" SEIGa: € — 7]
<ypillAoA: £, — £ 2|| 242y l(Ao AT e — e, 2||‘/2

p/

(ii) Moreover,
E|Ga: €] — €] < |Ao A €], — €7,/ +max,/1n(]+ bi

where bj:=||(a;j)i<mll2, ] < n.
Note that (ii) shows in particular that a blow up of the constant y,+« in the upper
estimate (i) for p — 1 is necessary, since the right most summands in (i) and (ii) are

non-comparable.

Remark 1.9 1t shall be clear from the proof that the upper bound in part (i) of Propo-
sition 1.8 remains valid for any random matrix X (instead of G) with independent
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isotropic rows (i.e., rows with mean zero and the covariance matrix equal to the iden-
tity) such that

m
(E’ZO{,’X”’
i=1

P\ 1/p* 1/2
) <Sp ( al-2> foralla € R™, j < n. (1.19)
i=1

Note that the independence and the isotropicity of rows imply that also the columns of
X are isotropic (since the coordinates of every column are independent and have mean
zero and variance 1). Therefore, whenever p > 2, condition (1.19) is always satisfied
(because the p*-integral norm is bounded above by the 2-integral norm, which is then
equal to the right-hand side of (1.19), since the covariance matrix of each column is
equal to the m x m identity matrix).

The following proposition generalizes part (ii) of Proposition 1.8 to an arbitrary
q < 2. We list it separately since we present a proof using different arguments. Recall
that the case p = 1, ¢ > 2 was established before, see (1.6).

Proposition 1.10 If 1 < g < 2, then
1Ga: €] — 0l < Ao A: €], — €02 + 1}135(,/111(]' + 1)bj.)

= max [|(aij)i<m|lg + max(y/In(j + 1)b}),
j<n j=<n

where bj = |[(aij)i<ml2q/2—q) for j < n.
Proposition 1.10 immediately implies its dual version.

Corollary 1.11 If2 < p < oo, then
1Ga: € — ] = [(Ao AT &y — eh /% + max(/in(i + Dd}')
= max [|(aij) j<all o+ max(y/InGi + D),

where d; = |[(aij) j<nll2p/2—pr) = I(aij) j<nll2p/(p—2) fori < m.

Remark 1.12 Corollary 1.11 and the dual version of (1.6) provide the exact behavior
of expected norm of Gaussian operator from ZZ to ZZ" not only when g = oo, but also
for g > colnm, as we explain now. For all ¢ > go:=coInm we have the following
inequalities for norms on R™,

—1 —1/c¢ —1/c
Illg =0 lloo =m0 - gy = e VO - gy = eV - |1y,

therefore,

1 . pn m . ph m . pn m
T ElIXa € > (I <EIXa: € > ) <EIXx: £ — £7].
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Similarly,

1A 0 A2 € ) = £l =eo (A0 A2 67y — €2, ]I,

Proposition 1.7 implies the following estimate for matrices with independent ¥/,
entries, in the same way as Corollary 1.4 implies Corollary 1.6 (see Sect. 3.2).

Corollary 1.13 Assume that K, L > 0, r € (0,2], and X = (X;j)i<m,j<n has inde-
pendent mean-zero entries satisfying

P(|Xij| > 1) < Ke™"/L forallt > 0. (1.20)
Then, for1 < p <2, 1 <q < oo,

EllXa: €} — 21 Srkon Anm)' /7 Inm) /712 A0 Ar 0n ) — 00, |1/
+ (nn) 2P Inum) 2 (A0 A)T ey — 00 )2
By Hoeffding’s inequality (i.e., Lemma 2.13) we know that matrices with inde-
pendent valued in [—1, 1] entries having mean zero satisfy (1.20) with r = 2 and
K = 2 = L. In this special case of independent bounded random variables one can
also adapt the methods of [9] to prove in the smallerrange 1 < p <2 < g < 00
the following result with explicit numerical constants and improved dependence on

n (note that the second logarithmic term is better than in Corollary 1.13, where the
exponent equals 1/2 + 1/p*).

Proposition 1.14 Assume that X = (X;j)i<m, j<n has independent mean-zero entries
taking values in [—1, 1]. Then, for 1 < p <2 < q < 09,

E[Xa: €y — €] < C(g)In(en) /P | A0 Az €3 ) — €]/
+ 107 Inem) 4TV [(A o A)T 1 € 5 — 5. o))V,

where C(q):=2(qT"(q/2))"/ < LR

Finally, we have the following general result for matrices with independent 1,
entries (cf. Corollary 1.6).

Theorem 1.15 Let K, L > 0, r € (0, 2], and assume that X = (X;j)i<m,j<n has
independent mean-zero entries satisfying

P(X;;| > 1) < Ke™"/t forallt > 0.
Then, forall 1 < p <2and1 < q < 09,

ElXa: €y — 61l Srxr g nm)VP A0 A €] 5 — ]2

+ (Inm) 2P InGmn) VY[ (A 0 AT ) — 0|1,
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Having in mind the strategy of proof described after Theorem 1.3, let us elaborate
on the idea of proof of Theorem 1.15. We shall split the matrix X into two parts
XM and X@ which we treat separately. In our decomposition, all entries of X (1 are
bounded by C In(mn)'/" and the probability that X® # 0 is very small. Then we
shall deal with X ® using a crude bound (Lemma 4.3) and the fact that the probability
that X® % 0 is small enough to compensate it. In order to bound the expectation
of the norm of XV, we require a cut-off version of Theorem 1.15 (Lemma 4.4). To
obtain it, we shall replace BZ in the expression for the operator norm with a suitable
polytope K (and leave sup,cpn as itis) and then apply a Gaussian-type concentration

inequality to the function Z > F(Z):=||Zx||4 for x € Ext(K).

1.5 Tail bounds

Allthebounds forE|| X 4 : EZ — 621 || provided in this work for random matrices X also
yield a tail bound for || X 4 : Z;ﬁ — EZ |I. (Itis clear from the proof of Proposition 1.16—

see Sect. 3.2—that the same applies to the estimates for sup;, ; 1G4 : Z,J,O — ﬁg’ Il
but we omit the details to keep the presentation clear.)

Proposition 1.16 (Tail bound) Assume that K, L > 1,r € (0,2], 1 < p,q < oo, and
y > 1. Fix a deterministic m X n matrix A and assume that

D>|lAcA: ), — r)'2.

If for all random matrices X = (X;j)i<m,j<n With independent mean-zero entries
satisfying

P(|Xij| > 1) < Ke™"/t forallt >0, i <m, j<n, (1.21)
we have
EllXa: €% — €M < yD, (1.22)

then, for all random matrices with independent mean-zero entries satisfying (1.21),
we also have

(BIXa: €y — €1°)" S p''yD forallp=1,  (1.23)
and, forall t > 0,
P(IXa: €, = €'l = tyD) < C(r, K, Lyexp(—t"/C(r, K, L)).  (1.24)

Note that random variables taking values in [—1, 1] satisfy condition (1.21) with
r =2, K = e, and L = 1. Thus, Proposition 1.16 applies also in the setting of
bounded or Gaussian entries.

@ Springer



3480 R. Adamczak et al.

1.6 Organization of the paper

In Sect. 2 we gather various preliminary results we shall use in the sequel. Section 3
contains the proofs of the main results valid for all p, ¢ (i.e., Theorem 1.3 and its
corollaries) and the tail bound from Proposition 1.16. In Sect.4 we prove the results
for specific choices/ranges of p, g. In Sect.5 we prove lower bounds on expected
operator norms, showing in particular that our estimates are optimal up to logarithmic

factors. We also prove other results justifying the proposed form of Conjecture 1. The
last subsection of Sect.5 is devoted to infinite dimensional Gaussian operators.

2 Preliminaries
2.1 General facts
We start with some easy lemmas which will be used repeatedly throughout the paper.

Lemma 2.1 For any real m x n matrix B = (b;j)i<m,j<n and 0 <r <1 < s < 00,
we have

IB: €} — &1l = 1B: £f — £'] = max 1ij )ity lls-

Furthermore, for areal m x n matrix A = (a;j)i<m,j<nand 1 < p <2, p < g < o0,

. /2 _
T e max |(ai/ )i -

Proof. Since 0 < r < 1, we have conv B)! = B?, where conv S denotes the convex
hull of the set S. Moreover, the extreme points of B are the signed standard unit

vectors, i.e., *eq, ..., *e,, and z — ||z||s is a convex function (since s > 1). Thus,
sup || Bx|ls = sup ||Bx|s = sup [|Bx|s; = max [Bej|y = max [[(bi;)i;|ls-
XEB! x€conv B! x€B} I<j=<n 1<j<n

This immediately implies the result for the Hadamard product AcA =: Bif 1 < p <
2<q <oo.

If, on the other hand, 1 < p < g < 2, then by the subadditivity of the function
t> [1]972,

m n m n
q/2
|AoA: EZ/Z — 6;"/2”‘1/2 = sup E ’ E aizjxj‘ < sup E E |a,'j|‘1|)c.,~|‘1/2

n

x€By i1 j=1 x€By ) i1 j=1

AW . .pn my _ ). q
a w4 — = max || (a s
||(| l‘/| )lfm,‘lfn r/q 1 ” i< ”( lj)lfm ”q

@ Springer



Norms of structured random... 3481

where in the last equality we used the first part of the Lemma. Since we clearly have

140 A: €3 €l = max @) izmllg/2 = max | @iizml,

we thus obtain

Ao A: " /2—>K 2”/ _I;ﬂax||(azj)t<m”q O

Definition 2.2 A set K C R” is called unconditional, if for every (x;)j<, € K and
every (&j)j<n € {—1,1}" we have (¢jx;)j<un € K.

We shall use the following version of [49, Lemma 2.1].

Lemma 2.3 Assume that 1 < p < 0o, n € N, and define the convex set
n
Ki=conv| |J|1/P( Lgen)isy i ClLn) d 0, e)ioy € =111,

Then BY) C In(en)"/?"K.

Proof Fix a vector x = (x1,...,x;) € R". We want to prove that ||x||x <
In(en)/?" lx]lp, where

lx||[g =inf{lL > 0: x € AK}
denotes the norm generated by K, i.e., its Minkowski gauge. Since both K and Bj,

are permutationally invariant and unconditional (see Definition 2.2), we may and will
assume that x; > --- > x, > 0. If we put x,,41:=0, then

n n
X = ij'ej = Z(Xj —x.j+1)(el —+ .- —}—ej).

Since |le; +--- +ejllxk = jYP for 1 < j < n,? the triangle and Holder inequalities
yield

n n
el <Y G —xje0) P =Y X (G17— (G = DYP)

j=1 j=1
. 1/p—1 — 1\ 1/p" 1/p*
=D =, (30 5) T S el nem
=1 -1/
J J
1

where we also used the elementary estimates j /7 —(j—1)1/? < jr~ and > =17 L <
14 f{" +dt = In(en). This completes the proof. O

3 Indeed, JTVP (e +--4ej) € K,s0flep +--- +ejllxk < jYP; on the other hand, K C Bg, SO
e+ +ejlig = lleg + - +ejllp, = jP.
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Remark 2.4 The term In(en)!/?" can be replaced by 1 + %ln(en)l/ P* by writing in
the above proof

n 1 n 1 1 n—]1 1/p*
;xj(jl/p—(j—l)]/p)fxl“‘pzxj(j_l)’]’ l§||x”P(1+;(Zi> p).

j=2 =
1
Here we used the estimates j!/? — (j — DHV/P < %(j — 1)5_1 for j > 1 (which
follows from the concavity of the function ¢ > #!/7) and the trivial one x| < | x|| p-
Remark 2.5 The constant (Inn)'/?" in Lemma 2.3 is sharp up to a constant depending

on p forevery 1 < p < oo (when p =00, K = B;’, and the constant depending on p
degenerates as p — o0). More precisely, we shall prove that if B;’, C C(p,n)K, then

C(p,n) Zp (Inn)'/?" . Note that B) C C(p,n)K if and only if
-l < Clp.m)ll - Il 2.1
where || - [|% is norm dual to || - || k.

Let Ext K be the set of extreme points of K, and let (y}) j<n be the non-increasing
rearrangement of (|y;|) j<,. For every y € R", '

”y”K—Supr]y] sup ijyj sup Zb’] |J|1/p

xekK x€Ex tK JC[n] J#@
SUPZYJ T

Assume that p* # 1 and put y;:=; /7", We get
puty; g

-4 1
Iylk = SUPZJ kl/,, =p supk 7y = 1.

k<n

whereas

n

L 1/p* *
iy = (3257") " = a7,

J=1

so inequality (2.1) yields that C(p, n) =, (Inn)'/?",

We shall also need the following standard lemma (see, e.g., [41, Sect. 1.3]). We
will use the versions with » = 1 and r = 2.
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Lemma 2.6 Let Z be a nonnegative random variable. If there exista > 0, b, «, B, so >
0, and r > 1 such that

P(Z > a+ bs) < ae P’ fors > sg,

then

e—ﬂs6
EZ§a+b(s0+a r_1>
rPsg

Proof. Integration by parts yields

oo oo

P(ZZu)du=a+bso+b/ P(Z > a + bs)ds

S0

EZ <a+ bso+ /
a+bsg
00

Sa—f—bso—i—ba/ e P ds

50

o 1 r eiﬁs(};
<a+bsy+ — / rBs" " le=Ps ds =a+b(s0—|—a r7]> O
rBsg 50 rBsg

2.2 Contraction principles

Below we recall the well-known contraction principle due to Kahane and its extension
by Talagrand (see, e.g., [64, Exercise 6.7.7] and [43, Theorem 4.4 and the proof of
Theorem 4.12]).

Lemma 2.7 (Contraction principle) Let (X, || - ||) be a normed space, n € N, and
p > 1. Assume that x1, ...,x, € X and «:=(at1, ..., 0y) € R". Then, ife1, ..., &,
are independent Rademacher random variables, we have

n n
E|> aieixi|” < lal%E|Y e’
i=1 i=1

Lemma 2.8 (Contraction principle) Let T be a bounded subset of R". Assume that
@i : R — R are 1-Lipschitz and ¢;(0) = 0 fori = 1,...,n. Then, ife1, ..., &, are
independent Rademacher random variables, we have

n n
EsupZe,-goi(t,-) < IEsupZe,-ti.

teT i=1 teT i=1

2.3 Gaussian random variables
The following result is fundamental to the theory of Gaussian processes and referred

to as Slepian’s inequality or Slepian’s lemma [52]. We use the following (slightly
adapted) version taken from [11, Theorem 13.3].
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Lemma 2.9 (Slepian’s lemma) Let (X;)ier and (Yy)ier be two Gaussian random
vectors satisfying E[X;] = E[Y;] forallt € T. Assume that, for all s,t € T, we have
E[(Xs — X1)*] < E[(Y; — Y,)?]. Then

EsupX; <EsupY;.
teT teT

The next lemma is folklore. We include a short proof of an estimate with specific
constants for the sake of completeness.

Lemma 2.10 Assume that k > 2 and let g;, i < k, be standard Gaussian random
variables (not necessarily independent). Then

E max g; < v2Ink,

1<i<k

E max |gi| <2+/Ink.
I<i<k

Proof. Since the moment generating function of a Gaussian random variable is given
2 . . .
by Ee’8! = ¢'"/2, it follows from Jensen’s inequality that

1
Emax g; < —ln(IEexp(t max gi))
t i<k

i<k

Ink ¢t

k
1 1 2
< ;ln(E E exp(tg)) = - In(ke' /2) = - 5

i=1

By taking t = /2 1n k, we get the first assertion. We apply this inequality with random
variables g1, —g1, - .., &, —&k to get the second assertion, namely

Ema}g& lgil = Ema}z&max{gi, —gi} < \/21n(2k) < \/21n(k2) =2+Ink. O
i< i<

The next two lemmas are taken from [61]. Recall that b% > .0 > bi is the non-
increasing rearrangement of (|b;1) j<p.

Lemma 2.11 ([61,Lemma2.3]) Assumethat (b;)j<, € R" andlet (X ;) j<, be random
variables (not necessarily independent) satisfying

—12/b% .
P(X;| >1t) < Ke i forallt >0, j <n.
Then

Emax |X;| Sk max b¥/In(j + 1).
j<n ’ j<n J
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Lemma 2.12 ([61, Lemma 2.4]) Assume that (b;)j<, € R" and let (X ;) j<, be inde-
pendent random variables with X j ~ N (0, b?) for j < n. Then

Emax | X | > maxbj.w/ln(j +1).
Jj=n J=n

Lemma 2.13 (Hoeffding’s inequality, [32, Theorem 2]) Assume that (b;)j<, € R"
and let X j, j < n, be independent mean-zero random variables such that | X j| < 1
a.s. Then, for all t > 0,

2

n
t
P biXi|>1t) <2exp(———=—).
(p%i1=0 =200(~ 55 5)

2.4 Random variables with heavy tails

The following lemma is a special case of [34, Theorem 1].

Lemma 2.14 (Contraction principle) Let K, L > 0 and assume that (n;)i<n, and
(&1)i<n are two sequences of independent symmetric random variables satisfying for
everyi <mnandt >0,

P(ni| = t) < KP(LI§;| > t).

Then, for every convex function ¢ and every ay, ...,a, € R,
n n
E‘P(Z“iﬂi) < ]Efﬂ(KL Zaiéi)-

i=1 i=1

Lemma 2.15 ([31, Theorem 6.2]) Assume that Z1, . .., Z,, are independent symmetric
Weibull random variables with shape parameter r € (0, 1] and scale parameter 1,
ie,P(Zi| =1t)=e" fort > 0. Then, for every p > 2 and a € R",

n
Hzaizi
i=1

, = max{/pllall2 Z1ll2, lallpll Z1ll,}-

Remark 2.16 (Moments of Weibull random variables) Note that if Z is a symmetric
random variable such that P(|Z| > 1) = e re (0,2],then Y = |Z|" sgn(Z) has
(symmetric) exponential distribution with parameter 1, so by Stirling’s formula we
obtain, for all p > 1,
1,1 1.1
i _ F(B n 1)1//’ - (£>r+2ﬂpl/r < (E)r+2p1/r’
r r r

1Z1lp = 1Yl

with C > 1.
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The three previous results easily imply the following estimate for integral norms
of linear combinations of independent 1/, random variables.

Proposition2.17 Let K, L > 0, r € (0, 1] and assume that Z, ..., Z, are indepen-
dent symmetric random variables satisfying P(|Z;| > t) < Ke™" /L forallt > 0 and
i < n. Then, for every p > 2 and a € R",

n
Hzaizi
i=1

1.1 ,
; <(C/r) T 2K LY max{/plall2, ' llall,)

1.1
Syt KLY max{/pllallz, ' lallo)-

Proof The first inequality is an immediate consequence of Lemma 2.14 (applied with
n; = Z;,independent Weibull variables &; with shape parameter » and scale parameter
1, and with the convex function ¢ : t — |¢|?), Lemma 2.15, and Remark 2.16. The
second inequality follows from

2/py y1=2/p o 2/p . y1=2/p
lall, < llally " llallce ™" = p" llp /ra||2 llalloo

20 2
< o7 (yzrrlala + (1= 2/p ) lallc).

where in the last step we used the inequality between weighted arithmetic and geo-
metric means. O

The next lemma is standard and provides us with several equivalent formulations of
the v, property expressed through tail bounds, growth of moments, and the exponential
moments, respectively. We provide a brief proof, since in the literature one usually
finds versions for 7 > 1 only.

Lemma 2.18 Assume that r € (0, 2]. Let Z be a non-negative random variable. The
following conditions are equivalent:

(i) There exist K1, L1 > 0 such that
P(Z>1) < K1e_’r/L1 forallt > 0.
(i) There exists Ko such that
1Zll, < K2p'" forall p > 1.
(iii) There exist K3, u > 0 such that
EexpuZ") < Ks3.

Here, (i) implies (i) with Ky = C(r)K1 L}/, (i) implies (iii) with K3 = 1 4 @)™,
u = (2erK3)~!, and (iii) implies (i) with Ky = K3, Ly = u~'.

@ Springer



Norms of structured random... 3487

Proof. Property (i) implies (ii) by Lemma 2.14 (applied withn = 1, n; = Z and an
independent Weibull variable & with parameter ) and Remark 2.16. Property (iii)
implies (i) by Chebyshev’s inequality:

P(Z > 1) =P(exp(uZ") > exp(ut")) < Kzexp(—ut").

Assume now that (ii) holds and denote kg = L%J. Then, for every k € [1, ko], we have
kr <1 and

EZ" < E&z)" < K¥,
while for k > ko + 1, we have kr > 1 and, hence, property (ii) yields
EZ* < K5 (kr)*.

Hence, by Stirling’s formula we have for u = (ZerKE )’1,

ko kg ke 0 kg kr
u“"EZ u“EZ
EexpuZ’) =1+ o+ o
k=1 : k=ko+1 ’
ko k pkr 00 k grkr k
u K2 u K2 (kl")
S+t D — A
k=1 ’ k=ko+1 (k/e)
ko MkKkr o r
=1+ k'2 + Y 2Rz gl O
k=1 : k=ko+1

The nextlemma states that a linear combination of independent 1,- random variables
is a ¥, random variable.

Lemma 2.19 Assumethatu > 0,r € (0, 2], and let (Z;); <k be independent symmetric
random variables satisfying P(|Z;| > t) < Ke !'/L forallt > 0. Then for every
a € R¥ the random variable Y::||a||2_l Zle a; Z; satisfies, for all t > 0,

P(Y|>1) < K'e "V,

where K', L' depend only on K, L, and r.

Proof The case r > 1 is standard (see, e.g., [14, Theorem 1.2.5]), therefore we skip a
proof in this case (however, in order to prove the lemma in the case » > 1 it suffices
to use the result of Gluskin and Kwapien [19] (together with Lemma 2.14) instead of
Lemma 2.15 in the proof below).

Assume thatr € (0, 1]and recall that Y = ||a||2_l Zle a; Z;. By Proposition 2.17,

1Yl Sk.L.r max{y/p, p'/"} = p'/" forall p > 1.

Hence, Lemma 2.18 yields the assertion. O
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Lemma 2.20 Assume thatr € (0, 2] + — 5, Y is a non-negative random variable
such that P(Y > t) = e " forallt > O, and g ~N(0, 1) is independent of Y. Then,
foreveryt > 0,

]P’(|g|Y > t) > ce ¥,

where ¢ := /2]mwe™?

Proof Inthecaser = 2wehaves = coandthenY = 1 almost surely and the assertion
is trivial. Assume now that r < 2. By our assumptions r = 2+_& Let xo:=(2%)1/C+5),

. . s 2
Note that x > xg is equivalent to ;T < "7 Thus,

X2 2 x0+1 Ix X2
P(|g|Y >t =Fe \g\s / e F_de > —/ e ¥ Zdx
xo+1
/2 / e dx > / e~ @0+ > / o205+

4t2v/(2+r) 74[)

El

2x0 > c

where we used 2%/ 2+ < 2 and chose c:=/2/me 2. O

Lemma 2.21 Assume that K,L > 0, r € (0, 2] and that Z is a random variable
satisfying P(|1Z| > t) < Ke_’r/Lfor allt > 0. LetY, g, and c = 4/2/7'[6_2 be as in
Lemma 2.20. Then there exist random variables U ~ |Z| and V ~ |g|Y such that

U< (8L)”((@)m +V) as

Proof Fort = 0 we have 1 = P(|Z| > 0) < K, so K > 1, and thus In(K /¢) =
In(Ke?\//2) > 0. We use our assumptions, the inequality (a + b)" > (a” + b")/2,
and Lemma 2.20 to obtain for any # > 0,

B(8L)7771Z1 = 1 + (in(K /e)/4)'") < K exp(=8[1 + (in(k /)/4)""'] )
<K exp(—4(tr +In(K /¢) /4)) = ce "
<P(lgly >1).

Consider the version U of |Z| and the version V of |g|Y defined on the (common)
probability space (0, 1) equipped with Lebesgue measure, constructed as the (gen-
eralised) inverses of cumulative distribution functions of |Z| and |g|Y, respectively.

Then (8L)~1/"U — (1n(K/c)/4)1/r < V, which implies the assertion. O

Lemma2.22 Let K,L > 0, r € (0,2] and k > 3, and assume that (Z;)i<k, are
random variables satisfying P(|Z;| > t) < Ke”r/Lfor allt > 0. Then

P(ma]z( |Z;| > (vL 1nk)1/r) < Kk 'tl <eKe™® foreveryv > 1
i<
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and

Emax |Zi| (LK r ' Ink)"" <ok (nk)V”
1<

Proof. By a union bound and the assumptions we get, for every v > 1,

k
P(malsc|Z,~| > (lenk)l/r) < E ]P(|Z,~| > (lenk)l/r) <k-Ke vk
1<
= i=1
— Kef(vfl)lnk — Kk*?)‘i’l S eKe*U’

where we used k > 3 in the last step. We integrate by parts, change the variables, and
use the above bound to obtain the second part of the assertion, i.e.,

o0 o0
Emax |Z;| = / P(max |Z;| > u)du < (LInk)'/" +/ P(max | Z;| > u)du
i<k 0 i<k (Llnk)l/r isk

Link 1/r o)
=(LInk)"/" + ﬁf v%*‘P(ma1§|z,-| > (LInk)!/")dv
r 1 1<
K o0
< (Llnk)‘/’(1+e—/ v e an)
r 1
1
1r z
< (L1Ink) (l—i—eK I‘(r—i—l)). 0

3 Proofs of the main results

After the preparation in the previous section, we shall now present the proofs of our
main results.

3.1 General bound via Slepian’s lemma

In order to obtain Theorem 1.3 we first prove its weaker version, for p = oo and
q = 1 only. After that we shall use the polytope K from Lemma 2.3 and the Gaussian
concentration to see how Proposition 3.1 implies the general bound. The proof of
this proposition relies on the symmetrization together with the contraction principle,
which allow us to get rid of y; and x;, and make use of Slepian’s lemma.

Proposition 3.1 Assume that G = (g;j)i<m,j<n has ii.d. standard Gaussian entries
and k <m,l < n. Then

Esup sup sup Z yiaijgijxj < (8vInm + /2/m) supZ Zal.zj

1.J yeB% xeBg jeq je LI Ger \jes
2
+ (8VInn +2/2/7) sIupZ Zai.i’
ier\ier
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where the suprema are taken over all sets I C {1,...,m}, J C {1, ..., n} such that
[ =k, |J| =1

Proof Throughout the proof, k < m and [ < n are fixed and the suprema are taken

over all index sets satisfying I C {1,...,m},|I|=kand J C{1,...,n}, |J| =L
Let us denote by (Z’ij)igm,jfn an independent copy of (g;;)i<m, j<n- Using the dual-

ity (£1")* = £, centering the expression, noticing that Zj ¢y aij8ijXj is a Gaussian

> jes a?jx?, and using Jensen’s inequality, we see that

Esup sup sup Z yiaijgijxj = Esup sup Z‘Zaijgijxj‘
J

L.J xeBso yeBs jef, jes L) xeBso jep jes
< Esup sup Z( Zaijg,-jxj’ - ]E)Zaijgijxj‘)
L.J xeBs jef  jey jel
+ sup sup ZE‘Z"UEUXJ"
L.J xeBso icjes
=Esup sup Z(‘Zaijgijxj‘ —E‘ZaijginjD
n
LT xeBs jer * je jed
4+ sup sup Z Zaizjsz.E|g|
1.0 xeBs jer jeJ
~ 2 )
< Esup sup Z(Zaijgijxj — Za,-jg,-jxj-)—i- ;supz Zaij'
n
L) xeBs e jey jed LI Ger \jes

3.1

To estimate the expected value on the right-hand side, we use a symmetrization trick
together with the contraction principle (Lemma 2.8). Let (&;);<» be a sequence of
independent Rademacher random variables independent of all others. Since the random
vectors

2= (tuen(| S s~ (51 s

jelJ jelJ

(where i < m) are independent and symmetric, (Z;); <y has the same distribution as
(&iZ;i)i<m. Therefore,

E sup sup Z(‘Zaijgijxj‘ - )Zaijgijxj‘)

L) xeBs jer  jes =

= Esup sup Z&'(‘Zaijgijxj‘ - ‘Zaijgijij
I,J xeB, icl jed jeJ

< 2Esup sup Z&' Zaijgijxj‘
I.J xeB% e jed
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= 2Esup sup Z &

Zal]gljx] 1{161} (3.2)
1.J xeB5 j—y

jelJ

Applying (conditionally, with the values of g;;’s fixed) the contraction principle (i.e.,
Lemma 2.8) with the set

{(Zaugux,l{,en) 1 CIml | =k J Clnl|J|=lx€ Bgo}
jeJ

and the function u# + |u| (which is 1-Lipschitz and takes the value O at the origin),
we get

m m
IEsup sup ZE,‘ Zaijgijle{ie”‘ < Esup sup 281‘ Zaijgijle{ie”
L. xeBso j=]  jey LI xeBy j=)  jey
= Esup sup ZZaUE,g,Jx/ —Esup sup ZZaug,,xl 3.3)
1,J xeBg, jelJ iel 1,J xeB, jeld iel

By proceeding similarly as in (3.1), we obtain

Esup sup Zzaugux} _]EsupZ‘Za,,gu)

I.J xeBg, jeJ iel jeJ iel

§Esup2(‘2aijgij —E‘Zaijgij)+\/>supz Zalj' (3.4)
LI jer ier iel LJ

iel

Observe that using symmetrization and the contraction principle similarly asin (3.2)
and (3.3), we can estimate the first summand on right-hand side of (3.4) as follows,

EsupZ(‘Za,jg,j) E)Za,jg,j ) < 2EsupZZa,jg,j (3.5

jedJ el 1LJ iel jelJ

Altogether, the inequalities in (3.1) — (3.5) yield that

Esup sup sup Z Vidij&ijXj <4Esup22a;]gq +2[5Up2 Za”

1,J yeBZ, xeBj

xjel,jel el jed jeJ \ iel
+4= supZ Zau (3.6)
zeI jeJ

We shall now estimate the first summand on the right-hand side of (3.6) using
Slepian’s lemma (i.e., Lemma 2.9). Denote

Xp,= Zzaijgij,

iel jeJ
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YIJ::Zgi Zaizj + Zgj /Zaizj’
iel jeJ jed iel

where g;,i = 1,...,m, §j, j = 1,...,n are independent standard Gaussian vari-
ables. The random variables X; j, Y ; clearly have zero mean. Thus, we only need
to calculate and compare E(X; ; — X7, 7)2 and E(Y; j — Y7 j)z. In the calculations
below it will be evident over which sets the index i (resp. j) runs, so in order to shorten
the notation and improve readability, we use the notational convention

IO VED NI

iel jeTl INT,I\T  ieInT,je]\J

By independence,

]E(X]’J—X'f’ Zal]—i—Zal] ZZaU

InT,ing
2 2 2
zz Y d-Tdr Y g+ X d
.7 nt,J nl,J nTN\T InT,J\J

By independence and the inequality 2+/ab < a + b (valid for a, b > 0),
E(Y,y - Y;7)® = ZZaU +22au

ZZZaf.f+2Zal] Z Z aj - > a
1,J ]N’f

IFVA,J Iﬂl,] I,Jﬂ] lA,JﬂJ

_ 2 2 2 2 2 2

=D A+ ay— Y ai— Y an+ ) ap+ ) ay.
1,J 7.7 Int,J nl,J 1,LI\J T,0\J

Thus, we clearly have
E(X1, — X7 )? <E(Yr; - Y;)?

(cf. Remark 3.2 below). Hence, by Slepian’s lemma (Lemma 2.9) and Lemma 2.10
on the expected maxima of standard Gaussian random variables,

]ESllpZZatjglj <Esup Zgl Za1]+zgj | l]
iel

LT ier jeJ LT Lier jeJ jeJ

<]Esung, /Zau—i-Esung] /Zau
LJ iel jeJ /eJ iel
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<Esuplgilsup ) [Y a? +1Esuplg]|supz

i<m 1,J

iel \ jeJ jEJ iel
<2+/Inm supZ Za +2\/1nnsupZ Za
LT er jelJ jed \ iel

Recalling the estimate (3.6), we arrive at

Esup sup sup Z yiaijgijxj < (8vInm + 2/n)supz Zaizj
I,

1.J yeBl xeBl i1 jey Tier \ jes
(8\/1nn+2w/2/7r supZ Zau,
]eJ iel
which completes the proof of Proposition 3.1. O

Remark 3.2 In the above proof, we also have

E(XI]_XTf) _Zalj+zalj Z az' Z az,

1.J nt,Jny JnJnt

>Z“U+Z“U /Zau /Zau /Z“U ;Z“u
Nt nJ

= 5]E(Y,,, - Yrpt

Therefore, by Slepian’s lemma (Lemma 2.9) we may reverse the estimate from the
proof as follows:

Esup sup sup Z y,aljgl]xJZ—IEsup Zg, Zalj—l—Zg] / l]
iel

1,J yeB%, XEBoole] jed iel jeJ jeJ

Proof of Theorem 1.3 Recall that sup;, ,, stands for the supremum taken over all sets
Iy C [M]:={1,..., M}, Jo C [N]:={1, ..., N} with |Iy| = m, |Jo| = n. Given such
sets Ip, Jo, we introduce the sets

K = Ky): —conv{ TG s,l{iez})ieloz I Cly, I #9,(gi)iery € {1, 1}10},
1
L = L(Jo)::conv{W(njl{jej})jeJoi JCJo,J #D,(mj)jes, € {—1, 1}10}.
Then, by Lemma 2.3, B;‘l C In(em)'/4K and B,{O C In(en)"/?" L. Therefore,

E sup sup sup Z Z Yiaij8ijXj

ho. JOxeBJO yeB Oiely jedo
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< In(em)"/? In(en)"/?"

1
-Esup sup sup{— €iaijgiin; - &i,nj € {— ll}}
Io, Jo IC Iy, JCJo \7|ary e ZZ e e

iel jelJ
= In(em)"/ In(en) /7"
1
B max oo sup sup sup sup ViaiigiiX;
esmizn KT i en o= 1xeBé¥,yeBw§; B
= In(em)"/? In(en)/P"Emax  Z,, (3.7)
k<m,l<n

where we denoted

Zi = SV sup sup sup E E ViaiigiiXj,
s /q 1/p Jot)
K xeBY yeBY et jes

with the suprema here (and later on in this proof) being always taken over all sets
I C[M],|I|=kandJ C[N],|J| =L
By Proposition 3.1, we only know that for all k < m and [ < n,

EZi; < (8vVIn M + 2/71)k1/q "1/ s]upZ Za”

iel \ jeJ

+ (8VInN +22/7) s l]/pslpz > a?, (3.8)

jed \ iel

but we shall use the Gaussian concentration and the union bound to obtain an estimate
for E maxk<m.i<n Zk.I-
Note first that (k= /4" 1;ep))icr, € K (I) C B;; and (~VP1je ) jes, € L(Jo) C

BI{O, provided that |I| =k, |J| =1, 1 C Iy, J C Jy. Therefore,

kl/q 17r S“PZ Z“ = Sup sup sup Zy, Zat/ j
LT el jed ho, JOxeB yeB*zelo jedo
2\ 1/4q
sup sup (Z Za,jz] 4/)

fo, JOzeB (/)2 iely jedy

172

sup | Ao A: €00, — el
Iy, Jo

and, similarly,

T. J 1/2
kl/q 1177 sup Y [ af = sup iAo AT, = €]
L.J jeJ \ iel lo,Jo
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This together with the estimate in (3.8) gives
EZis < (8¥InM +/2/7) sup Ao A: £, — j;;z||1/2
Io,Jo
+ (8vIn N +2y/2/m) sup [[(Ao AT : €1 o ’a/znl/z (3.9)
1y, Jo

Note that by the Cauchy—Schwarz inequality, the function

Z = sup Ssu su ZZ a;iZiiXj
kl/q 11/p I? pN p YidijZijXj
xeBY yeBY il jeJ

is D-Lipschitz with

1
2
< — s <
D < AV sIup E E a;; _sIup su sup E E y,a”x]
A\ et ier J xeB 1 yeBN )il jeJ

< sup sup sup Z Z y,aux],
lo,Jo\| x

GBI)/Z yEB q*/2 IEI() jGJO

where in the last inequality we used the fact that k < m and/ < n. In order to estimate
the right-hand side of the latter inequality, we consider the following two cases:

Case I.1f ¢* = 2, then (¢*/2)* = q/(2 = q) = q/2and || - llg/2—¢) = || - llg/2-
Consequently,

sup YD viapa = [Ao Ar )y = L0, |

XEBp/z yEB */ztelo jedo

< Ao A:€)) > £l (3.10)

Case 2. If g* < 2, then Bgz/z C B and | - oo < |l - ll4/2- Thus,

Z Z y,aljx] = Z Z v’aljuf

Xe p/z )’GB *2 1€l j€Jo ue

p/z UEBl iely jedy

—AoA: ¢ o = —th<AocA: ep/z q/2||

3.11)

In both cases we have

D<sup|AoA: zp 172,

) = 2||
IoJo / q/
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so the Gaussian concentration inequality (see, e.g., [41, Chapter 5.1]) implies that for
allu >0,k <m,and! < n,

u?

P(Zi) = EZy;+u) < GXp(
ZSupI J()”AOA Z 2—)£ 2”

SO

P(Zk; > (nax EZ; + /2 In(mn)u Isou})O Ao A: Zp/2 q/2||1/2)
< exp(—u In(mn)).

This, together with the union bound, implies that for u > ﬁ, we have

]P( max Zi; > max EZkl + 2In(mn)u sup ||Ao A: EJ/Z — £ /2||1/2)
k<m,l<n k<m,I< To.Jo q

<mne " 2In(mn) _ exp(—(u2 -1 ln(mn)) < w2,

Hence, by Lemma 2.6 and the estimate in (3.9),

E max Z;; < max EZ,

k<m,l<n k<m,l<n

2 In(mn) (f+ ef) sup JAoA: €h, — ¢lo 112

< (2.4y/In(mn) +8vVIn M + /2/7) sup Ao A: eh 0y e o'
0,70
+ (8VInN +2/2/7) sup (Ao ¢l S /2||1/2
0,70
Recalling (3.7) yields the assertion. O
3.2 Coupling

In this subsection we use contraction principles and the coupling described in
Lemma 2.21 to prove Corollaries 1.5 and 1.6, and Proposition 1.16. Below we state
more general versions of the corollaries akin to Theorem 1.3 (the versions from the
introduction follow by setting M = m, N = n).

Theorem 3.3 (General version of Corollary 1.5) Assume thatm < M, n < N, 1 <

P.q <00, and X = (X;j)i<m,j<n has independent mean-zero entries taking values
n[—1,1]. Then

]Esup||XA ZJ—>Z ||—Esup sup sup ZZy,a,j ijXj
I.J xeBj yeB, iel jeJ
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<1In(en)"/?" In(em)'/?

.[(2.4«/271\/1n(mn) +8V27VIn M +2) sup lAoA: el ) — ¢l

+(8v2rv/IN +4) sup (Ao A L. ) — z;*/znl/z],
1,J

where the suprema are taken over all sets I C {1,..., M}, J C {1,..., N} such that
1| =m, |[J]| =n.

Remark 3.4 (Symmetrization of entries of a random matrix) Let Z be an independent
copy of a random matrix Z with mean O entries. Then for any norm || - ||, including
the operator norm from £, to £, we have by Jensen’s inequality

E|Z| =E|Z - EZ| <E|Z — Z|| < E|Z|| + E|Z| = 2E|| Z]|.

Therefore, in many cases we may simply assume that we deal with matrices with
symmetric (not only mean 0) entries. For example, in the setting of Theorem 3.3, the
entries of X — X are symmetric and take values in [—2, 2], so it suffices to prove
the assertion of this theorem (with a two times smaller constant on the right-hand
side) under the additional assumption that the entries of the given random matrix are
symmetric.

Proof of Theorem 3.3 By Remark 3.4 we may and do assume that the entries of X
are symmetric—in this case we need to prove the assertion with a two times smaller
constant.

Since the entries of X are independent and symmetric, X has the same distribu-
tion as (&;;1X;j1)i,j, where (&;;)i<m,j<n is a random matrix with i.i.d. Rademacher
entries, independent of all other random variables. Thus, the contraction principle
(see Lemma 2.7) applied conditionally yields (below the suprema are taken over all
sets I C {1,...,M},J C {l,...,N} such that |I| = m, |J| = n, and over all
X € B[{, y € B;*, and the sums run overalli € [ and j € J)

EsupZyiainijxj = EsupZyiaijsij|X,~j|xj < EsupZyiaijeijxj
1,J 1,J 1,J

[T |TT
= EEsupZy,-a,-jeijE|gij|xj < EEsupZyia,-jaiﬂg,-”xj
1,J 1,J
T
=y E SUP ) Yiijgij X,
1,J

and the assertion follows from Theorem 1.3. O

Theorem 3.5 (General version of Corollary 1.6) Assume that K, L > 0, r € (0, 2],
m=<Mn=<N,1<p,qg=<00 and X = (X;j)i<m,j<n has independent mean-zero
entries satisfying

P(|X;i|>1) <Ke "'t forallt >0,i <M, j <N.
J J
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Then
Esup | Xa: EJ — €I|| = Esup sup sup ZZyla,j ijXj
I.J xeBj yeBl, iel jeJ
<k (nm) /7 (nm) /4 In(MN)7~2
[(w/ln(mn )+ +/In )sup |[AoA: Ep/z —/ /2||1/2
+VInNsup (Ao ATz el ) — el )Y ]
1,0

where the suprema are taken over all sets I C {1,..., M}, J C {l,..., N} such that
[I|=m, |J| =n.

Proof Let X be an independent copy of X. Then

P(IXij — Xij| = ) < P(1X;j| > t/2or | X;j| > 1/2)
< 2P(|X;j| > 1/2) <2Ke /D),

This means that the symmetric matrix X — X satisfies the assumptions of Theorem 3.5.
Hence, due to Remark 3.4, we may and do assume that the entries of X are symmetric.

Take the unique positive parameter s satlsfymg = 2 + .Fori <M, j<N,let
gij beii.d. standard Gaussian variables, 1ndependent of other variables, and let Y;; be
1.i.d. non-negative Weibull random variables with shape parameter s scale parameter 1
(e, P(Y;; > 1) = e fort > 0), independent of other variables. (In the case r = 2,
we have s = oo and then Y;; = 1 almost surely.) Take

d d
Uij)i<m,j<n ~ (UXijDi<m,j<n, Vij)ism,j<n ~ (gijlYij)i<m,j<N

as in Lemma 2.21 (we pick a pair (U;;, V;;) separately for every (i, j), and then
take such a version of each pair that the system of M N random pairs (U;;, V;;) is
independent).

Let (&;j)i<m, j<n be arandom matrix with i.i.d. Rademacher entries, independent
of all other random variables. Since the entries of X are symmetric and independent,
X has the same distribution as (&;;|X;;]);j. By Lemma 2.21 we know that

In(K /c)\/r
Uj < (SL)W((—(4/ )) + Vi) S 14V as

We use the contraction principle conditionally for [, i.e., for U;;’s and V;;’s fixed.
More precisely, we apply Lemma 2.7 to the space X of all M x N matrices with real
coefficients, equipped with the norm

||(Ml])1<M j<N|| —SuP”(Mz])zel jed - £ - ZJ” = SUPZ)’zMz]X]
1,J
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(where the first supremum is taken overallsets I C {1,..., M}, J C {l,..., N} such
that |I| = m, |J| = n; recall that the second supremum is taken over all sets 7, J as
in the first supremum, and over all x € B/, yeB (g*, and the sum runs over alli € [

and j € J); note that we identify X with R (and M N plays the role of n from
Lemma 2.7). We apply the contraction principle of Lemma 2.7 (conditionally, with

the values of U;;’s and V;;’s fixed) with coefficients «; j::C(r+[)j(l+V//) and points
xij::(ale(r, K,L)y(1+ Vkl)l{(k,l):(i,j)})kl € X to get

Esup Y yiaijXijx; = Esup Y yiaijeij| Xijlxj = Esup Y yiaijeijUijx,

1,J 1,J 1,J
Lemma 2.7
Sr,K,L E sup Z y,'a,'jé‘,'jx.,' + E sup Z y,-aijs,'j V,'jxj'.
1,J 1,J

(3.12)

We may estimate the first term using Theorem 3.3 applied to the matrix (&;;)i<m, j<n
as follows,

IE sup Z Vidij&ijxj S In(en)/?" In(em)'/4
1.7

: [(w/ln(mn) +VInM)sup Ao Az €], — ] 1/
1,J

+VInN sup (4o A el - z;*/znl/z]. (3.13)

d
Recall that (8,']' Vij)iSM,jSN ~ (Sijginij)iSM,jSN and that Yij > 0 almost surely.
Next we again use the contraction principle (applied conditionally for E,, i.e. for fixed
Y;;’s and g;;’s) and get

ESUPZyiaijsij Vijxj = ESUPZyiaij8ijgininj
1.J 1.J

<Ey isﬁfanfN [Yijl Ee g SuP;)’iaijgijgijxj- (3.14)

Moreover, Theorem 1.3 and Lemma 2.22 (applied withr = 5,k = MN, Z;; = Y,
and K =1 = L), imply

Ey max  |¥ij|Ee, SUPZ Vidij€ij&ijXj

i=M,j=< 17
<, In(MN)'/s EsupZy,‘a,'jgijx./
1,J

< In(MN)7 =2 (Inn) /7" (In m)"/2
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[(VinGnn) + Vi M) sup 4o A €, — €] ]1V2
1,J

+VInNsupl(AoA): )., — e{,*/2||1/2]. (3.15)
1,J
Combining the estimates in (3.12)—(3.15) yields the assertion. O

Finally, we prove that these estimates of the operator norms translate into tail
bounds.

Proof of Proposition 1.16 Since (1.23) implies (1.24) (by Lemma 2.18), it suffices to
prove inequality (1.23). By the symmetrization argument similar to the one from the
first paragraph of the proof of Theorem 3.5, we may nad will assume that X has
independent and symmetric entries satisfying (1.21). By assumption (1.21), and the
inequality 2(a + b)" > a” + b" we have for every ¢ > 0,

P(QL)~"Xij| = t + (In K)'7)
<K exp(—Z(t + (In K)l/r)r) < Kexp(—tr —1In K) —e ",

so (as in the proof of Lemma 2.21) there exists a random matrix (¥;;);i<m, j<n With
i.i.d. entries with the symmetric Weibull distribution with shape parameter r and scale
parameter 1 (i.e., P(|Y;;| > 1) = e fort > 0) satisfying

Xl < QLY (K'Y +1v)) Sk 1+ Ys as. (3.16)

Let (&j)i<m, j<n be a matrix of independent Rademacher random variables inde-
pendent of all others, and let || - || denote the operator norm from E’;, to Eg’. Let E;; be a
matrix with 1 at the intersection of ith row and jth column and with other entries 0. The
contraction principle (i.e., Lemma 2.7) applied conditionally, (3.16), and the triangle
inequality yield for any p > 1,

p) 1/p

m n 1/p
o
(EHZZXUGUEU' ) S(]EHZSiﬂxiﬂaijEij
i=1 j=1 i,j
1/p o\ /P
) ‘*‘(EHZ*?UWUWUEU )
i,J

P
SrK.L (E”Z'SijaijEij
ij
1/p 1/p
o o
) + (EHZ Y,’ja,'jE,'j ) .
ij

= (EHZS,‘jd,’j E,’j
ij
Therefore, it suffices to prove (1.23) for random matrices (Y;;);; and (g;;);; instead
of X.
Since by assumption K, L > 1, both random matrices (Y;;);; and (g;;);; satisfy
(1.21), so for them inequality (1.22) holds. By the comparison of weak and strong
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moments [38, Theorem 1.1] (note that the random variables Y;; satisfy the assumption
IYijlls < alYijls forall s > 2 with @ = 2!/ by [38, Remark 1.5]), we have

p>1/p ( Z 1/p
= sup yviYijaijx; ‘ )
X€BY, yeBm P s
1/p

0
<, E sup Zlel]aljxj sup (E‘Zyilﬁjaijxj‘) (3.17)

x€By, yeB oy x€By, yEB;”* i)

(EHZ YijaijEij
i.j

Because of inequality (1.22), the first summand on the right-hand side may be estimated
by ¥ D. Lemma 2.19 and the implication (i) = (ii) from Lemma 2.18 yield

1/p
P
<E‘Zinijainj‘ ) SrK.L ' Zy2 ,2] ,2
iJ

Moreover, by (3.10) and (3.11) (used with m = M and n = N) and our assumption
that [Ao A: €% ) — %2”1/2 <D,

sup /Z y2alzjxj2 <D,
xEB" yEB

so the second summand on the right-hand side of (3.17) is bounded above (up to a
multiplicative constant depending only on r, K, and L) by p!/” D. Thus, (1.23) indeed
holds for the random matrix (Y;;);; instead of X. A similar reasoning shows that the
same inequality holds also for the random matrix (¢;;);; (one may also simply use the
Khintchine—Kahane inequality and assumption (1.22)). O

4 Proofs of further results
4.1 Gaussian random variables

Proof of Proposition 1.7 Fix 1 < p <2and 1 < g < o0. Let K be the set defined in
Lemma 2.3 for which B} C In(en)/?" K. Then

1Ga: €% — €] = sup [Gaxllg <In(em)'/?" sup [Gaxlly, — (4.1)
xeB’l x€Ext(K)

where Ext(K) is the set of extreme points of K. We shall now estimate the expected
value of the right-hand side of (4.1).
To this end, we first consider a fixed x = (x j)7= | € Ext(K). Then there exists a

L for

non-empty index set J C {I,...,n} of cardinality k¥ < n such that x; = o
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j€Jandx; =0for j ¢ J. We have
1/q
”GAx”q = H (Zaljglj-xj> H (Z‘Zaljgl]xj‘ ) . 4.2)
i=1 j=1
Let us estimate the Lipschitz constant of the function
n
7= (zij)ij —> H( laz/szx/) 1” = sup 22})’1‘11/21/)@- 4.3)
J= * i=1j

It follows from the Cauchy—Schwarz inequality (used in R”*") that

swp 30 iy <k sup 3 waa?

yeB*, 1j=1 ye *z 1 j=1
B 1 i,
= lizl2 757 Jup ZZyz al. = Izllzkl/p 4.4)
g*2 i=1 jelJ

where we put

by:= sup ZZy, a;.

yeB"‘*/z i=1 jeJ

This shows that the function defined by (4.3) is 1 +>-Lipschitz continuous. Therefore,
by the Gaussian concentration inequality (see, e. g [41, Chapter 5.1]), for any u > 0,

kZ/puZ
2
252

P(IGaxllq = EllGaxllq +u) < exp(— 4.5

We shall transform this inequality into a form which is more convenient to work with.
We want to estimate [E[|G 4 x ||, independently of x and get rid of the dependence on J
and p on the right-hand side. By (4.2) and the fact that x € Ext(K) C B”, we obtain

q/2\1/q
ElGaxlly < EIGaxIDVe =y, (Z\Za?, <27

i=1 j=1

2 2|2/2\1/a } 1/2_.
= (Z‘Z aj2 J‘ ) =vgllAoA: €y — Ll P=a.
r i=1 j=1

We use the definition of b, then interchange the sums, use the triangle inequality,
and then the inequality between the arithmetic mean and the power mean of order
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p*/2 > 1 (recall that |J| = k and p < 2) to obtain

kz/p*_lbz x2/p =1 sup Zzaljyl — k2/P- sup Z‘ia?j}’i

YEBL )y i=1 jeJ yGB’*/z jed i=1
p*/2\2/p* p*/2\2/p*
< s (SISl ) < (Sl )
By jes i=l e =1 i=I
= ||(AoA)T e, — O /2||_b2 (4.6)

The two inequalities above, together with inequality (4.5) (applied with u =
kY/P"=1/2p /2 Tn(en)s), imply that

P(IGaxlly > a+ by/2In(en)s) < exp(—k>P*2/P" M n(en)s?)
= exp(—k ln(en)sz) .7

holds for any s > 0 and all x € Ext(K) with support of cardinality k.

For any k < n, there are 2% (}) < 2“n* < exp(kIn(en)) vectors in Ext(K) with
support of cardinality k. Therefore, using a union bound together with (4.7), we see
that, for all s > /2,

n
IP’( sup |Gaxlly >a+ b\/2ln(en)s) < Zexp(—k ln(en)(s2 —1))
xeExt K k=1

< nexp(—In(en)(s> — 1)) = n(en) >+ < =5+,

Hence, by Lemma 2.6 (applied with s0:=\/§, a:=e, B:=1, and r:=2),

E sup [|Gaxly <a+ by/2In(en) («/_+ e—) < a+ 2.2by/In(en).
xeExt K 22

Recalling (4.1) and the definitions of a and b yields the assertion. O
We now turn to the special case g = 1.

Proof of Proposition 1.8 Since the first part of this proof works for general ¢ > 1, we
do not restrict our attention to ¢ = 1 for now. First of all,

m

1/q
ElGa: € — 61 < (ENGa: € — €39)""" = (E sup 3" 1(xi, x17) "
xeBgl 1

where X; = (a;;g; j)’;:] is the i-th row of the matrix G 4. Centering this expression
gives

m
E sup Z|X,,x|q<E sup[z 1(X;, x)]| —E|(X,,x>|]

xeBz i=1 xeB”

@ Springer



3504 R. Adamczak et al.

+ sup Y E[(X;, x)|7. (4.8)

xeBp i=1

We first take care of the second term on the right-hand side of (4.8). We have

m

sup ZEKan N = ]/ sup Z(Za?] jz)q/z

xeBp 1 Pll]l

=i s |(Seo),

zeB”

=vygllAoA: th ) — £,

l<m

)q/Z

(4.9)

In order to deal with the first term on the right-hand side of (4.8), we use a sym-
metrization trick together with the contraction principle. The latter is the reason
that we need to work with ¢ = 1 here. We start with the symmetrization. Denot-
ing by Xi,..., )?n independent copies of X1, ..., X, and by (¢;)/", a sequence of
Rademacher random variables independent of all others we obtain by Jensen’s and
the triangle inequalities that

xEB” xEB"

m m
E sup [ Y 1(X, x)I7 ~ EI(X;, x)|] = E sup [Z (Xi 01— EN(K;, 017 ]

i=1

< E sup [D Xi, 0l = (X 017 ]

xeB” i=1

—E sup [Zs,ﬂ X, )l = (K5, 0[] < 2-E sup Ze, (X, x)[9. (4.10)

xeB" i=1 xeBpl 1

If ¢ = 1, we may use the contraction principle (i.e., Lemma 2.8 applied with
functions ¢; (t) = |t|) conditionally to obtain

E sup Zs, [{Xi, x)] <E sup Zsl(X,,x)

xXeBy xXeBy i
=K sup E Xj E ajj-€gij=E sup E Xj E a;ij8ij-
n
XEBI’] 1 i=1 I’] 1 i=1

.11

For p > 1, we have

17*)1/17*

noom
E sup ij Zaljglj = E(Z ‘ Zaijgij
j=1 i=1

XEBZJ 1 i=1
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n m

n m
PN/ P p*/2y 1/p*
= (B Xawss| )" = (2 (a) )
j=1 i=1 j=1 i=1
(4.12)
Moreover, we have
Z Zal] m Zal] i<n */2
j=1 i=1 56{ 11} ; j=nllp
T. 172
= (Ao em — e, /2H . (4.13)

Inequalities (4.10)—(4.13) give the estimate of the first term on the right-hand side
of (4.8). This ends the proof of the upper bound for p > 1.

If p = 1, then letting g1, ..., g, be i.i.d. standard Gaussian random variables, we
have

E sup ij Zaljglj = Emax‘zal]glj

XEBIV;/ 1 i=1

= Emax gjb; = max(y/In(j + )b?), (4.14)
j=n 7T jzn J

where the last step follows from Lemmas 2.11 and 2.12 with b;:=||(a;;)i<mll2, ] < n.
Putting together (4.8)—(4.11) and (4.14) completes the proof of the upper bound in the
case p = 1.

The lower bound in the case p > 1 follows from Proposition 5.1 and Corollary 5.2
below. In the case p = 1, we use Proposition 5.1, note that

E|Ga: Z’I’, — ' = E sup Zx] Za,]g,],

X€Bp i1 =1

and use (4.14) to obtain a lower bound. O
Now we deal with another special case, the one where p = 1.

Proof of Proposition 1.10 Recall that we deal with the range p = 1 < ¢ < 2. Using
the structure of extreme points of B} we get

ElGa: €] — €51 = Erjniaj 1€aijgij)i<mllq-

Denote Z; = ||(aij&ij)i<mllqy- By well-known tail estimates of norms of Gaussian
variables with values in Banach spaces (see, e.g., [36, Corollary 1] for a more general
formulation) we get for all ¢ > 0,

P(Z; = C(EZ; + /1b))) < e, (4.15)
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P(Z; = ¢c(EZj + +/tbj)) = min(c, e "), (4.16)
where ¢, C are universal positive constants, and
m
b7 = 11@})izmllg/@-g) = 1@} )izm /2y = sup Y aix}.
xEB;”* i=1

Inequality (4.15) shows in particular that the random variables (Z; — CEZ;)4
satisfy

2

PUZ; — CEZ))4 2 1) = oxp( 3
J

for all + > 0, thus by Lemma 2.11 we get
E|G4: €] — Z?H =EmaxZ; < CmaxEZ; + max(Z; — CEZ;)
j=<n j<n j=<n ’
< (maxEZj + max(v/In(j + 1)b¢.)),
j<n j<n /

which together with the observation (following from Lemma 2.1 and the fact that
1=p<gq <?2)that

- 1/q
EZ; < (EZ |ai,~|q|gij|q) =yl (@ij))i<mllq = vgllA o A: €}, — €012,
i=1

proves the upper estimate of the proposition.
Using comparison of moments of norms of Gaussian random vectors, we also get

E|Ga: €] — €| = maxEZ; 2 max(]Ezj)l/q
j=n J=n
=yl @ip)izmllq = vglAo A: €], — €052, (4.17)

so to end the proof it is enough to show that
E|Ga: €] — €] = max(y/In(j + D)b}). (4.18)
J=n

This will follow by a straightforward adaptation of the argument from the proof of
Lemma 2.12. We may and do assume that the sequence (b;) j<, is non-increasing in
j.By (4.16) we have forany j <mnand k > 1,

P(Z; > cy/In(k + Db;) >

C/
E.
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Thus, since bj > by for all j < k, we have for any k < n,

P(max Z; > /In(k + 1)by) > P@j<x Z; = /In(k + 1)b;)
J=n

>1—(=c/kf>1-e¢>0.

Thus,
EllGa: €] — €71l = IEI}1<ar)l(Zj = /In(k 4+ 1)by.
Taking maximum over k < n gives (4.18) and ends the proof. O

4.2 Bounded random variables

Here we show how one can adapt the methods of [9] to prove Proposition 1.14, i.e., a
version of Corollary 1.13 in the special case of bounded random variables with better
logarithmic terms and with explicit numerical constants. Following [9], we start with
a lemma.

Lemma 4.1 Assume that X is as in Proposition 1.14. Let (b;) j<, € R" and suppose
that to is such that |Z'}:1 bjXij| < to almost surely. Then, forallqg > 2 and 0 <t <

2— _
ECO BT D

n n
Eexp(t|Y b;Xi|") < 1+ @ (363", (4.19)
j=1 j=1

where C(q):=2(qT(q/2))"/7 =< LR

Proof. Without loss of generality we may and do assume that Z'}-zl b? =1.

Since g > 2, fors € [0, fo] and 7 € [0, lzg‘q] we have 157 —s2/2 < —s? /4. Thus,
integration by parts, our assumption 0 < |Z’}=1 biX; j| < tg a.s., and Hoeffding’s
inequality (i.e., Lemma 2.13) yield

n f0 n
]Eexp(t|ZbJ~X,~j|q) =1 —i—qt/ sq_lexp(tsq)P(|ijX,~j| > s)ds
j=1 0 =1
)

<1+ 2qt/ s Vexp(ts? — 5% /2)ds
0

o0
<1+ 2qt/ 5771 exp(—s2/4)ds
0

1 +129gT(q/2). O
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Proof of Proposition 1.14 We start with a bunch of reductions. Set
a=[AoA: €}, — €),|'* = = max [[(ai)){y .

i T. ym 1/2 __ .
bi=[(Ao A)T: em ) — €2 )| _rl_r;a}:l(||(a,,)j:1||p*.

(The equalities follow from Lemma 2.1, since p/2 < 1 < g/2andg*/2 <1 < p*/2)
Let K be the set defined in Lemma 2.3, so that B;’, C In(en)"/?P" K. Then

sup || Xaxllg,  (4.20)

1Xa: ) — €] = sup IXaxlly <In(en)!/P
xeExt(K)

xeB

where Ext(K) is the set of extreme points of K.
Consider first a fixed x = (xj);?zl € Ext(K) C B;;. We have

m n
q
1Xaxlg = 0| aiXij (421)

i=1 j=1

Denote
to:=b = max || (a;))"_ || =,
1<m
2—q
_ fo
= 5.
4max; < [[(aijx;)}_ 3

Then, by the boundedness of X;; and by Holder’s inequality, for every i < m

n n
1> aijxi Xij| < aijllxsl < @)y s G2yl < fo

We can now apply, for every i < m, Lemma 4.1 (with ¢ and 7y as above and with
coefficients b; = a;;x;). Since the random variables |Z;’-:1 ajjxjXij|,1 < m, are

independent, using Lemma 4.1 yields

[Eexp |Za,]x] U‘ )]

1 j=1

2
<1+Cq(q)t Za}] ]“/)

1 j=1

sexp(cq(qnz )" ) = exp(C(q) 1a),

i=1 j=1

:ls

m n
Eexp(t Z|Zaijxjxij|q)
i=1 j=I1

:ls
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where in the last step we used the definitionofa = ||Ac A: ¢" Y e 6 1 1'% (and the
fact that x € B”) By Chebyshev’s inequality and (4.21), we have for every s > 0,

m n
P(t]| X ax|l§ = In[E exp(t Z}Zaijijij’q)] + sk) < ek,

Combining this with the previous estimate yields, for every s > 0,
q sk —sk
P(IXaxld = C¥(q)a? + T) <e k.

Recall that x € Ext(K ) Thus there exists anindex set J C {l, ..., n}of cardinality
k < n, such that x; = kl/l’ for j € Jand x; = Ofor j ¢ J. We use the definition
of ¢ and the inequality between the arithmetic mean and the power mean of order
p*/2 > 1 (recall that |J| = k and p < 2) to get

1 -2 -2 2
Z:bq max||(al]xj)J 3 = b2 ”’I}lj};{Za

- jeJ
< pi- 2p2/pt1= 2/p* p\2/p* ag=1
man(2 el )T =k
JjeJ
Putting everything together, we obtain
P(IXax|§ = C9(q) a? + 4bis) < e™** (4.22)

for all s > 0 and all x € Ext(K) with support of cardinality k.

For any k < n, there are 2k (Z) < 2kpk < exp(k In(en)) vectors in Ext(K) with
support of cardinality k. Thus, using the union bound and (4.22), we see that, for all
s> 2,

n
P( sup [Xaxl} = C9(q)a? +4b9 In(en)s) < 3 exp(—kIn(en)(s — 1))
xeExt K P
= nexp(— ln(en)(s - 1)) = n(en)is+1 < e*S‘l’l.

Hence, by Lemma 2.6,

E sup [|Xaxlly < (E sup [Xax[$)"7 < (CT(g)a? + 467 In(en) (2 + e - 7))
xeExt K xeExt K

< C(q)a + 109 In(en)'/1p.
Recalling (4.20) and the definitions of a, b, and C(q) yields the assertion. O
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Remark 4.2 In the unstructured case, for X;; which are independent, mean-zero, and
take values in [—1, 1], it is easy to extend (1.2) to the whole range of p, g € [1, oo]
(see [8, 13]). Indeed, for p > 2 and g > 2,

E|X: €% — €] < [[€ < ¢3] - E[X: €5 — €]

<y nl/2=1/p . max{nl/z, ml/q} — max{nlfl/p’ n]/zfl/pml/q}.
Thus, for p >2and 1 < ¢ <2,

EIX: &), — €7 <E|X: €, — &' - 165 — £l
Sq max{nl—l/p’ nl/2—l/pml/2} . m/a—1/2

— max{n' VP /a2 127 bV,

Supposenow that 1 < p <2 <g <ooand1/p+1/q <1 (i.e,, g > p*). Choose
6 € [0,1] and r 2250that% = %—}—#andé = g—i—%,i.e.,e = 2/p* and
r = 2q/p*. Using the Riesz—Thorin interpolation theorem, the fact that || X : £} —
22 ]l < 1 (since the entries take values in [—1, 1]), and Jensen’s inequality, we arrive
at

EIX: €% — || <E[X: 65 — er°)1X: ¢f — ez )™
0
<E|X: €5 — ETHQ < (ElIX: €5 — €"ll)
< max{n'/2, m"") = max{n'/?", m'/1}.
The estimates in the remaining ranges of p, g follow by duality (1.12). Moreover, up

to constants, all these estimates are optimal, as they can be reversed for matrices with
41 entries (see [8, Proposition 3.2] or [13, Satz 2]).

4.3 y, random variables

In this section, we prove Theorem 1.15. To this end we shall split the matrix X into two
parts X and X @ such that all entries of X! are bounded by C In(mn)'/". Then, we
shall deal with X® using the following crude bound and the fact that the probability
that X =£ 0 is very small. In order to bound the expectation of the norm of X we
need a cut-off version of Theorem 1.15 — see Lemma 4.4 below.

Lemma4.3 Letr € (0, 2]. Assume that X = (X;j)i<m, j<n Satisfies the assumptions
of Theorem 1.15. Then

1/2
(ElXa: € — )2 <kr m+m) VAo A ) — £, 12,

~

Proof By a standard volumetric estimate (see, e.g., [64, Corollary 4.2.13]), we know
that there exists (in the metric || - || ,) a 1/2-net § in B;’, of size at most 5”. In other
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words, for any x € BZ there exists y € S such that x — y € %BZ. Thus, for any
zeR",

sup Zx]z] < sup man(xj —¥)zj +supZy]z]

XEB” x€By yes yeSs

rj=1 j=1
< sup Zujz, —i—supZy]z, == sup Zx]z] —i—supZy]z,
MEZB,;] 1 Pj 1
Hence,
n n
sup ijz]- =< ZSUpZyjzj. (4.23)
xeBp j=1 ves j=1

Likewise, if we denote by T the 1/2-net in B;”* (in the metric || - ||4+) of size at most
5™ then

sup Z Xizi < 2sup Z YiZi- (4.24)

XEB*zl vel ;-

Combining these two estimates, we see that

ENXa: € — ") ? = (E  sup ZZyla,] ix))
xEB )EB*I 1] 1

12
<4E sup ZZy,a,j ,jxj / (4.25)
xeS;eTl- 1j=1

Lemma 2.19 implies that for any x € R”, y € R™, the random variable
i m n
Z(x,y)= Z)’z 7ix7) Zzyiaijxijxj
i=1 j=1
satisfies condition (i) in Lemma 2.18. Thus, Lemma 2.18 implies that
/2 m n r
_r
Eexp(c(r K,L) Zyz 12J Jz (ZZyiainijxj) ) <C(r,K,L), (426)
i=1 j=1

where ¢(r, K, L) € (0,00) and C(r, K, L) € (0, o0) depend only on r, K, and L.
The function z +— le/z is convex on [(2r~' — 1)%/", 00). Therefore, by Jensen’s
inequality, for any # > 0 and any nonnegative random variable Z,

exp(u(EZ?)7?) < exp(W?"EZ? + 2r~' — /"y /%)
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3512 R. Adamczak et al.

<Eexp(uzZ" +@r~' — 1)) < e*"EexpuZ").

Hence,
241/2 1 2 1/
EZHV? <y~ /r(ln(e /’Eexp(uz’)))

Thus, when
—r/2

2,2 42
u:=c(r,K, L) max E ,
xeS,yeT < Yid ij j

we get by (4.26), (3.10), and (3.11),

sup ZZ)’lau ljxj 1/2

xeSyETi 1 j=1

5u—l/rln”’<e2/r1EeXP(C(r,KvL) sup Z(x’y)r»
xeS,yeT

<u V7 nl/r (ez/r]E Z exp(c(r, K, L) Z(x, y)r))
xeS,yeT

<u Vil (ez/r|S||T|C(r, K, L))

1 2 2 2\1/2, 1 2
_ 1 /’( /rsmsnc ,K,L)
- c(r K,L) xeS yET Zy 4ij J) n ¢ ¢ )

Q3. 10) 3.11) l/r
SrkL Ao At ) — £0)'? (m+n+C(r,K, L))

where in the last two inequalities we also used inequalities S| < 5" and |T'| < 5™,
and the inclusions S C B}, T C B(;’i. Recalling (4.25) completes the proof. O

The following cut-off version of Theorem 1.15 can be proved similarly as Propo-
sition 1.7.

Lemmad.4 Let K,L,M > Oandr € (0,2]. Assume X = (X;j)i<m,j<n is a random
matrix with independent symmetric entries taking values in [—M, M| and satisfying
the condition

P(1X;;| > 1) < Ke "/t forallt > 0. (4.27)
Then, for1 < p <2and1 < g < oo, we have

El|Xa: €5 — 0 < g C(r. K, L) In(en)'/?" | Ao A: L e
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+ Mn(en)' TP (Ao AT el ) — . )12

Proof Fix 1 < p <2and1 < g < oo. Let K be the set defined in Lemma 2.3 so that
BZ C In(en)/P" K. Then

IXa: €, — €7 = sup [Xaxlly <In(en) VP sup | Xaxllg,  (428)
xeB” x€Ext(K)

where Ext(K) is the set of extreme points of K. We shall now estimate the expected
value of the right-hand side of (4.28).
To this end, we consider a fixed x = (x j)’f_l € Ext(K). This means that there

exists a non-empty index set J C {1, ..., n} of cardinality k < n such that x; = kl / -
for j € Jandx; =O0for j ¢ J. We know from (4.4) that the Lipschitz constant of
the convex function

n
z = (zij)ij —> H (Zaijzz'jxj> H = SUP ZZyla,,z,,x,
Jj=1

*11]1

is less than or equal to

1
i | SUP ZZ% aj; =

YEBL hi=1 jeJ

Thus, Talagrand’s concentration for convex functions and random vectors with inde-
pendent bounded coordinates (see [56, Theorem 6.6 and Eq. (6.18)]), together with
the inequality Med(] Z]) < 2E|Z|, implies

x2/Pg2

P(| X axlly > 2E[ X ax]ly + 1) < dex <__
(X axllg [ Xaxllg +1) p 16175

) forallz > 0.  (4.29)

Similar to the proof in the Gaussian case (i.e., proof of Proposition 1.7), we shall trans-
form this into a more convenient form by getting rid of b; and estimating E|| X sx|l,.
Let us denote, for eachi € {1, ..., m},

n
Zi::Zainijxj.
j=1

From our assumption (4.27) as well as Lemmas 2.19 and 2.18, we obtain that

EIZIOY Sy V7[5, 327 Hence,

1 2\1/4
BIXaxly = E1Xax1) = (LB S (3 242)"")
i=1 i=1 j=I
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n
q/2 l/q
<q'r sup <Z‘Zal2]zﬂ ) g/ Ao A: K']’,/z — Z;"/2||1/2=:q1/’a

From (4.6), we see that
K75 < (Ao AT el ) — 0, =%

The above two inequalities together with estimate (4.29) (applied with ¢t =
11
4kr* 2byM./In(en)s), imply that

P(IXaxlly = C(r, K, L)g""a + 4bM/In(en)s) < 4exp(—k In(en)s?) (4.30)

for every s > 0 and any x € Ext(K) with support of cardinality k.

For any k < n, there are 2¢(}) < 2*a* < exp(kIn(en)) vectors in Ext(K) with
support of cardinality k. Thus, using the union bound and (4.30), we see that for
s >/2,

P( sup [[Xaxlly = C(r, K, L)g"" a+4bM/In(en)s)
xeExt K

<4) exp(—kIn(en)(s* — 1))

k=1

< dnexp(—In(en) (s> — 1)) = dn(en) ™+ < 4o+,

Hence, by Lemma 2.6,

-2
E sup [[Xax|, <C(r, K, L)g"" a +4bM\/1n(en)<x/§+4e—e )
x€Ext K 22

Recalling (4.28) and the definitions of a and b yields the assertion. O

Proof of Theorem 1.15 By a symmetrization argument (as in the first paragraph of the
proof of Theorem 3.5), we may and do assume that all the entries X;; are symmetric.
Set M = (4L ln(mn)/r)l/’ Denote X;; = X;;1{x,<um) and let X be the m x n

matrix with entries X;; ij- We have
E[Xa: € — €] = EIXa: € — | Lmaxe, (Xl <M)
+ E”XA : Zl;) - E?Hl{maxk_; |Xk[|>M}-

The random matrix X satisfies the assumptions of Lemma 4.4. Thus, the first sum-
mand above can be estimated as follows:

ElXa: €, = €5 1N max; ; X 1<M)

m n

=E  sup  {D D viaijXijx;} - Lmaxes |Xul<m)
yeB*xeB[, i=1 j=1
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m n

=B sup {Y > wiaiXijlyx,i<mx;} - Ymaxe, 1Xul<m)

yeBRL xeBy i1 j=1
=E[Xa: €0 — " Ymax, 1xg1<my < EIXa: €0 — €7
Srkn g In(em)! /P [Ao At — 00|
1/241/p* T. 1/2
+ Mn(em)' 2P (Ao A)T e ) — € )Y
Srkr g In(em)! /P Ao Al ) — 0|V
+ In(mn) /" In(en) VZFVPT (A0 AT 2 € ) — €2 ol|M2.
For the second summand we write, using the Cauchy—Schwarz inequality and then
Lemmas 4.3 and 2.22 (withk = mn and v = 4/r;recallthat M = (4 L ln(mn)/r)l/’),
E”XA: Ki;g — e;n”l{maxkl | Xk |>M}
. opn my2\1/2 1/2
< (BIXa: £ — £17) /*P( max [Xu| > M)
SekL m+m)' Ao A ) ) — )17 (mn) T2

SrllAc Ay, — eno)'2.

Combinging the above three inequalities ends the proof. O

5 Lower bounds and further discussion of conjectures
5.1 Lower bounds

Let us first provide lower bounds showing that the upper bounds obtained above are
indeed sharp (up to logarithms).

Proposition 5.1 Let X = (X;j)i<m, j<n be a random matrix with independent mean-
zero entries satisfying E|X; ;| > c for some ¢ € (0, 00). Then, forall1 < p,q < 00,

E|X4: £ — €0 = LZHA oA €l — V2.

o) \/— q/2
Using duality (1.12) we immediately obtain the following corollary.

Corollary 5.2 Let X = (X;j)i<m, j<n be as in Proposition 5.1. Then, forall1 < p,q <

o0,

c
Proof of Proposition 5.1 Let || - || denote the operator norm from Z’; to ZZ? Fori €
{I,...,m}and j € {1,...,n}, let us denote by E;; the m x n matrix with entry
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1 at the intersection of ith row and jth column and with all other entries 0. By the
symmetrization trick described in Remark 3.4, it suffices to consider matrices X with
symmetric entries and prove the assertion with a twice better constant ¢/~/2 (note that,
also by Remark 3.4, the lower bound for the absolute first moment of the symmetrized
entries does not change and is still equal to c).

If X has symmetric independent entries, it has the same distribution as (¢;;|X;;|)i;,
where ¢;;,i < m, j < n, are i.i.d. Rademacher random variables, independent of all
other random variables. Hence, by Jensen’s inequality and the contraction principle
(Lemma 2.7 applied with o;; = 1/E|X;;| < 1/c and x;; = a;;E|X;;|E;;), we get

|

-.a,,E,-jH. (.1

m n
]EHZZXU“UEU ‘ = EHZSileijlaijEij ‘ > EHZ€ijE|Xij|dijEij
i=1 j=1 i i

Thus, it suffices to estimate from below E|l >, ; &jai; Eijl-
Since the £, norm is unconditional, we obtain from the inequalities of Jensen and
Khintchine (see [26]) that

EHZZewa,] ij

i=1 j_

‘_IE sup

xeB”

(E\Za,,g,,x,D H

Khmtchmes 1 12
(@05%2) ),
=1

— sup
1nequa11ty \/ExeB”
mo1/2
7.5 H(Zam), Lo

eB)l

E a,je,jxj)l 1” =E sup
= XEB}

n m
(|jZ::1aij8inj|>i=1 Hq

> sup
xeB"

12
= —||AoA 0, — ol

%

This together with the estimate in (5.1) yields the assertion. ]

Since [Ga: €}, — £3'|| = max; ; |aijgijl, it suffices to prove the following propo-
sition in order to provide the lower bound in Conjecture 1.

Proposition 5.3 For the m x n Gaussian matrix G 5, we have

max;j<, In(j + Db} if p<q <2,
ElGa: € = ' Zpq {maxi<m v/IG + Dd; if 2<p<gq, (52

0 otherwise,
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where b = ||(aij)i<mll2q/2—q) and di = |(aij) j<nll2p/(p—2)-

Proof Since B} C B;’, for p > 1 and the b;’s do not depend on p, it suffices to prove
the first part of the assertion (in the range p < g < 2)onlyinthecasep =1 < g < 2.
In this case (5.2) follows by Propostion 1.10.

The assertion in the range 2 < p < g follows by duality (1.12). O

5.2 The proof of Inequalities (1.13) and (1.11)

Let us now show that in the case ¢ < p, the third term on the right-hand side in
Conjecture 1 is not needed. To this end it suffices to prove (1.13) only in the case
q < 2, since the case p > 2 follows by duality (1.12).

Proposition 5.4 Whenever 1 < g < p < ooand q < 2, we have
Dy= (Ao )Tt — " " 24 maX\/ln(j + )by, (5.3)

where b; = |[(aij)i<mll2g/2—q)-

Proof Since the right-hand side of (5.3) does not depend on p, and the left-hand side is
non-decreasing with p, we may consider only the case | < ¢ < p < 2. By permuting
the columns of A we may and do assume without loss of generality that the sequence
(bj); is non-increasing.

Fix jo < n. Let r be the midpoint of the non-empty interval (2_717, 2;—']). Take

X = (xj)j<n with x; = i, Since rp/(2 — p) > 1, we have

n o0

p/@=p) 1 _
2 =Y Gy = ) <
= -

SO X € C’(p,q)BZ/(z_p) = C/(p,q)BE’p*/z)*. Therefore, the inequality (¢*/2)* =
q/(2 — q) > 1 and the facts that b; > bj, for all j < jo, and thatr < (2 —¢q)/q

imply
m n
(@*/2)*
pi= s (Y(Xaa)")

2€Bx pyx Ni=1 - j=1

> (i(Z“ui )q/<2—q)>

lljl

(Zza%]/@ q) . —rq/(2 q))(2 /q

i=1j=1

Jjo _
_ (Z biq/(q—Z)j7rq/(27q))(2 D/a
j=1

1/(q*/2)*

2-q9)/q

v
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+(2— .
> bi)]o r+(2—q)/q ZP g b?@ 111(]() + 1)
Taking the maximum over all jo < n completes the proof. O

Now we turn to the proof of (1.11). Note that it suffices to prove only the first
two-sided inequality in (1.11), since the second one follows from it by duality (1.12).

Proposition 5.5 Forall 1 < p,q < oo, we have
lAoA: €, — ero|I'? +E max laij i)

=, 1A0A: 0" ) — "o |V2+ max /In(j + al;, (5.4)
p/ q/ i<m,j<n J

where the matrix (a; j) i,j is obtained by permuting the columns of the matrix (|a;;|);,
in such a way that max; a;; > --- > max; a

Proof By permuting the columns of the matrix A, we can assume that the sequence
(max; <, |a;j |)’]1.: | is non-increasing. We have
E max |[a;;8ij| < EmaX (maX laijgij| — E max Iaijgijl)
1<m,j=n j=<n i<m i<m
+ max Emax |a;; g;;l. 5.5
jsni<m
The function y + max;<p, |a;jy;| is max;<,, |a;;|-Lipschitz with respect to the
Euclidean norm on R™, so by Gaussian concentration (see, e.g., [41, Chapter 5.1]),

l‘2

P(max |a;;g;i| — Emax|a;;g;i| > t) <ex (——)
(ifm | l]glj' s | ljgl]| = ) = eXp 2 max; -, |aij|

forallt > 0, j < n. Thus, Lemma 2.11 and inequality (5.5) imply

E max |a;;gij| S max (w/ln(j + 1) max |a,-j|) + max Emax |a;;gij|. (5.6
i<m j=n t=m

i<m,j<n

We have

1/q
maXEmaX laijgijl < maXE(Z |aljgl]| ) < ygmax || (a;j)illq
j<n i< j< j<n

= ¥q max ||<a,j>l I3 < vgllAo Az £,y — ¢y '/2,

which, together with (5.6), provides the asserted upper bound.
On the other hand, if (ali )i<mn denotes the non-increasing rearrangement of the
sequence of all absolute values of entries of A, then Lemma 2.12 implies

E max max |a;;gi;| 2 max vIn(l + )al > max In(j +1 )a¢
js

/<n i<m
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> max (N/ln(j +1 maxal{j),
Jj=n i<m

which provides the asserted lower bound. i
Note that the above proof shows in fact that
max |[(a;j)ills + E max |a;;igij
e Il lj)l ”q ifm,jgnl ljglj'
=g max ||(aij)illy + max /In(j + 1)al{j,
j=n i<m,j<n
SO
max [|(a;j)illg +max || (aij) |l - + max /InG + Da/;
j=<n I1<m Jj=<n,i<m
=g max [[(@;j)illg +max @)l + max (G + Daj;. (5.7
J=n i<m i<m,j<n

where the matrix (alf}) i,j 1s obtained by permuting the rows of the matrix (|a;;l);,; in

. 14 . . VA
such a way that max ; ay; > > max; Q-

5.3 Counterexample to a seemingly natural conjecture

In this subsection we provide an example showing that for any p < g < 2 the bound

EIGa: € — € Spg A0 Az &y — 201V + (Ao AT e ) — €2 )12

+E max |aijgij|. (5.8)

i<m,j<n
cannot hold. By duality (1.12), it also cannot hold for any 2 < p < ¢. This explains
that Conjecture 1 cannot be simplified into a form like on the right-hand side of (1.8).

Letp <qg <2,k,N e N,andlet Ay, ..., Ay be k x k matrices with all entries
equal to one. Consider a block matrix

Aj
A

Ay

of size kN x kN, with blocks Ay, ... Ay on the diagonal and with all other entries
equal to 0.
Note that since p < g < 2,

lAoA: ) — el = max || Ay o Ay: &=l =11A10 Ay: £ ) — £ ]
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koK q/2\2/q kz/q a k2/q
= su X = Su | = s
p (LX) = s 03]
XeBp/Z i=1 ]=1 XEBP/Z i=1
and similarly, since 2 < g* < p*,
(Ao AT t5N,) — eV I = 1Ay o AT 2 sy — £ || = K¥/PTHI22

The two bounds above and Lemma 2.10 imply that the right-hand side of (5.8) is
bounded from above by

C(kl/q + kM Pr2=1g 1n(kN)>. 5.9

On the other hand, since for all j < kN, ||(a;;)il2q/2—q) = k?~97/9) we obtain
from the lower bound (5.2) that

E[Ga: 65V — V) 2 VIn(kN)k@~ 9/, (5.10)

If we take N =< eek, then (5.10) is of larger order than (5.9) as k — o0, so (5.8) cannot
hold.

5.4 Discussion of another natural conjecture

In this subsection we prove all the assertions of Remark 1.1. We begin by showing
that forevery 1 < p <2 < g < oo,

Dy + Dy + Emax |a;;gij| <pq Emax |[(aijgij)jll p + Emax|[(ai;gijillg, (5.11)
i,] i1<m j=<n
and, in the case p,q > 2,
E max ||(a;;gij) |l p+ + Emax |[(a;jgij)illy
i1<m j=<n
Sp.g max ||(aij)jll p+ +max [[(aij)illy + max y/In(i + 1)d,~¢, (5.12)
i<m j<n i<m
where Dy = [[Ao A: €} 5 — £, '/%, Dy = [[(Ao A)T: ey = e';*/2||1{2, and
di = |[(aij) j<nll2p/(p—2)- In other words, (5.11) shows that Conjecture 1 is equivalent
to(l.15)aslongas 1 < p <2 <g < o0.
Proofof (5.11)and (5.12) Fix i < m and let f(x) = |[(a;jx;);llp~ for x € R". For

p > 2 we have p*(2/p*)* = 2p/(p — 2). Thus f is Lipschitz continuous with
constant L; equal to

. “\ 1/p* " N Y max <, |a;j| if p <2,
sup E |a.4x.|P = sup E |a..|P v — =
" R " A I (ai)ill if p>2
YeBy Tj YEBy, ke j=1 ij)j2p/(p=2) pzZ2
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Therefore, the Gaussian concentration inequality (see, e.g., [41, Chapter 5.1]) implies
that for every t > 0 and every i < m,

_42 2
IP><”(aijgij)j||p* — El[(aijgij)jllp = t) < e 12L
so by Lemma 2.11 we get
Emax(”(aijgij)j”p* - E||(a,‘jgij)j||p*)
i<m

- {maxi<m max <, +/In(i + l)alf;. if p<2,

5.13
max; <, /InG + Dd;’ if p>2, G-

where the matrix (alf})i, j is obtained by permuting the rows of the matrix (|a;;|);,j in
such a way that max; af; Z o> max; Ay -
Moreover, by Jensen’s inequality,

] *
Ell(aijgip) il < (Ellasgi 15" (Zm,,g,, ) = ype @il

This together with the triangle inequality and (5.13) implies
E max || (ai;gij) jll p*
i<m

max; <, Max j<, +/In(@ + ) if p <2,
Sp max [[(aij) 1l p+ + ' .
i<m max;<m +/In(i + 1)d; if p>2,
and, by duality,
E max [[(aijgij)ill4
Jj=n

max <, max; <, ~/In(j + Dal. if g > 2,

max <, v/In(j + Db} if ¢ <2,
where b; = |(a;j)i)ll2g/(2—¢), and the matrix (a ), ,j is obtained by permutmg the
columns of the matrix (|a;;|); ; in such a way that max; aj; > --- > max; a;,. This,

together with Lemma 2.1 and (5.4) yields in the case p <2 < g,
E max [[(a;;jgij)jllp+ + Emax |[(a;jgij)illy S,p,q D1 + D> + Emax |a;;gijl,
i<m j<n L]

what implies the lower bound of (5.11). In the case 2 < p, g we additionally use (5.7)
and the simple observation that

max max /In(i + l)a;} < max VIn@ + 1)di¢

i<m j<n
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to get (5.12).
Now we move to the proof of the upper bound of (5.11) in the case p < 2 < g.
Since the Z’Pf* norm is unconditional, we have by Jensen’s inequality and Lemma 2.1

Emax ||(a;jgij)jll p» = Emax [[(laijgij ) jll p» > max ||(la;;|Elgi; )l p=
1<m i<m i<m

=y2/n mmax l(aijDjllpx = +/2/7 D2,

and dually
Erflg:l( I(aijgij)illy = 2/ Dy
Moreover, since || - [lg = | - lloo>
E max ll(aijgijillq = E max max laijgijls
which finishes the proof of the upper bound of (5.11). O

Next, for every pair (p, g) € [1, 00]? which does not satisfy the condition I < p <
2 < g < oo we shall give examples of m, n € N, and m x n matrices A, for which

ElGa: €, — L5 > Emax | (aijgij);ll +Er,r'l<ar)f Iaijgijilly  (5.14)

when m, n — oo. This shows that the natural conjecture (1.15) is wrong outside the
range | < p <2 < g < oo. The case p = 2 = ¢, when (1.15) is valid (cf. (1.4)),
is in a sense a boundary case, for which (1.15) (i.e., a natural generalization of (1.4))
may hold.

Example 5.6 (for (5.14) in the case ¢ < p.) Let m = n, and A = 1d,. Then by
Lemmas 2.10 and 2.12 we have

E max ||(a;;gij)jll p» + Emax ||(a;;gij)illy = 2max|gi;| < vInn,
i<m j<n i<n

whereas Proposition 5.1 and our assumption p/g > 1 imply

n

1/q
ElGa: € — €51 2 1,2 € — Lol = sup (3 ul?’?)

XGBZ/Z i=1

Va
= sup Z wil) = () s in

Y€Byq i=1

Since cases 2 < p < g and p < g < 2 are dual (see (1.12)), we give an example
for which (5.14) holds only in the first case.
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Example 5.7 (for (5.14) in the case 2 < p < ¢.) Fix p and ¢ satisfying 2 < p < q.
Let m, n — oo be such that m/9 > nl/l’*, and let A be an m x n matrix with all
entries equal to 1. For p > 2 we have 2(p/2)* = 2p/(p — 2). This together with
(5.12) implies
Emax || (aijgij)jll p+ + Emax |[(aijgij)ill
i<m J=n
g max [[(@i)) [l + max [[(ai)illg +max v/InGi + Dd}
i<m j<n i<m !
=n"P" 4w £ \/in(m + HnPD2P < /a4 vlnmnm.

On the other hand, Proposition 5.1 and our assumption p/2 > 1 imply

m n
q/2\1/q
ENGa: € — €1 2 1 A: €)y — €212 = sup (Z‘ij‘ )

n

X€BLp ti=l j=1
n
1/2 1
=ml/a sup (‘Zx]‘) = m4p 202"
I
> m' 4+ Inm n207

5.5 Infinite dimensional Gaussian operators

In this subsection we prove Proposition 1.2 concerning infinite dimensional Gaussian
operators. It allows us to see that Conjecture 1 implies Conjecture 2.

Proof of Proposition 1.2 We adapt the proof of [40, Corollary 1.2] to prove Propo-
sition 1.2 in the case p < 2 < g—remaining cases may be proven similarly. Fix
1 < p <2 < g < oo for which (1.14) holds and a deterministic infinite matrix
A = (a;})i, jen. Using the monotone convergence theorem one can show that a matrix
B = (bij)i,jen defines a bounded operator between £, (N) and £4(N) if an only if
sup,en 1(bij)i,j<n: Z’; — ZZH < oo. Interpreting || B: £,(N) — £,(N)|| as infinity
for matrices which do not define a bounded operator, we have

1/q

ElGa: £,(N) - £,(N)| =E sup <Z‘Zaijgijxj“q)

XEBRFE N1 j=1

‘ n o n o\ /4 ‘ noon q\ /4

=, sp ([ avs[) = i £ g (33 s
= nli)ngOIE” (gijaij)ij<n: £y — €

and similarly

140 A: £y () = LMl = Tim [[@h)ijzn: €5 = £,
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T. : 2 .
1A 0 DT s b2 () = Lpep M = Tim_ @i jn: Cap = Lol
and

E sup la;jgij| = lim E sup |a;;gijl.
i,jeN =00 ji<n

Therefore, (1.14) implies the following: E|G 4: £, (N) — £,(N)|| < oo if and only if
Ao A: £y n(N) = £, 2(N)|| < o0, [[(Ao A)T: Ly 2(N) — £y p(N)|| < 00, and
E sup; jen laijgij| < oo.Itthus suffices to prove the following claim: |G 4 : £, (N) —
L;(N)|| < oo almost surely if and only if E[|G 4: £,(N) — £,(N)|| < oo.

FP(IGa: £p(N) = £4(N)|| < 00) < 1, then P(||Ga: £,(N) — £,(N)|| =
00) > 0,50 E||G4: £,(N) — £,(N)|| = o0.

Assume now that P(|Ga: £,(N) — £,(N)|| < c0) = 1. By (4.23) and (4.24) we
know that for every n € N there exist finite sets S, and 7;, such that

n n
sup ~ sup Z Z Yidij8ijXj

neN xeB;ﬁ,yeB;’* i=1 j=1

n o n
sup  sup Z Z Yidij&ijXj a.s.

noxeSp,yel, ;4 =1

[Ga: €p(N) = £,(N)|

X

In particular, there exist Gaussian random variables (I'x)xen such that

1Ga: £p,(N) = £,(N)|| < supl'y  as.
keN

Therefore, we may apply [35, (1.2)] to see that there exists ¢ > 0 such that
Eexp(e|Ga: £,(N) — &,(N)Hz) < 00,50 E|G4: £,(N) — £,(N)|| < oo, which
completes the proof of the claim. O
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