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Abstract
Given a finite-dimensional real vector space V , a probability measure μ on PGL(V )

and a μ-invariant subspace W , under a block-Lyapunov contraction assumption, we
prove existence and uniqueness of lifts to P(V )\P(W ) of stationary probability mea-
sures on the quotient P(V /W ). In the other direction, i.e. block-Lyapunov expansion,
we prove that stationary measures on P(V /W ) have lifts if any only if the group gen-
erated by the support of μ stabilizes a subspaceW ′ not contained inW and exhibiting
a faster growth than on W ∩ W ′. These refine the description of stationary probabil-
ity measures on projective spaces as given by Furstenberg, Kifer and Hennion, and
under the same assumptions, extend corresponding results by Aoun, Benoist, Bruère,
Guivarc’h, and others.

Mathematics Subject Classification Primary 37H15; Secondary 60J05 · 60B15 ·
37A20

1 Introduction

Let V be a finite dimensional real vector space andμ a probability measure on GL(V ).
Let X1, X2, . . . denote GL(V )-valued iid random variables with distribution μ and
write Ln = Xn . . . X1 for the associated random matrix product. Via the action of
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2574 R. Aoun, C. Sert

GL(V ) on the projective space P(V ) the random product Ln induces a Markov chain
on P(V ). The stationary measures (called μ-stationary measure) on P(V ) encode to
a great extent the asymptotic behaviour of the random product Ln . This is for instance
manifested by their ubiquitous role in the limit theorems for random matrix products
starting with the work of Furstenberg–Kesten [18]. Recall that the latter work proved
the non-commutative extension of the law of large numbers which says that if μ has
a finite first moment (i.e.

∫
log N (g)dμ(g) < ∞, where N (g) = max{‖g‖, ‖g−1‖}

for a choice of norm on V ), then there exists a constant λ1 such that μN-a.s.

1

n
log ‖Ln‖ −→

n→∞ λ1. (1.1)

The constant λ1(μ) is called the top Lyapunov exponent and it is expressed via the
Furstenberg formula as an integral with respect to aμ-stationary measure ν on P(V ):

λ1(μ) =
∫∫

log
‖gv‖
‖v‖ dμ(g)dν(Rv). (1.2)

The subsequent work of Furstenberg [16, 17] clarified qualitatively the description
of μ-stationary measures on P(V ) under irreducibility assumptions; the quantitative
study of these measures (their dimensions, regularity properties etc.) are current topics
of study. Here the probability measure μ is called (resp. strongly) irreducible if the
semigroup�μ generated by its support does not preserve a proper non-trivial subspace
of V (resp. the union of finite collection of such spaces). Otherwise, we shall say that
μ is reducible.

The theory of random matrix products encompasses many interesting situations
when the irreducibility assumption is dropped; for example the study of random differ-
ence equations or affine recursion Xn+1 = AnXn+ Bn (An ∈ GLd(R), Xn, Bn ∈ R

d )
belongs to this setting—see more examples in Sect. 2. On the other hand, except
in some particular situations (mainly the affine recursion which is extensively stud-
ied [3, 9, 10, 14, 29, 30] and more recently [11–13]), the theory of random matrix
products—in particular, the description of stationary measures on projective spaces—
is much less complete without the irreducibility assumptions. The remarkable works
due to Furstenberg–Kifer [19] andHennion [27] established a description of stationary
measures without any irreducibility assumption (implying, for example, continuity of
Lyapunov exponents with respect to transition probabilities, see e.g. [34]); however
many natural questions remain open.

The more recent works of Benoist–Bruère [6] and Aoun–Guivarc’h [1] refine the
works of Furstenberg–Kifer and Hennion under various additional assumptions by
giving a more precise description of stationary measures. These assumptions, among
others, include certain domination conditions imposing different speeds (Lyapunov
exponents) in different subspaces preserved by �μ—excepting the treatment of a non-
dominated case in [6] under other algebraic assumption.

Our goal in this paper is to give a description of stationary measures on P(V ) only
under domination conditions. In other words, in previous works, we eliminate all other
hypotheses not pertaining to the domination of Lyapunov exponents. For example, our
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Stationary probability measures on projective spaces 2575

framework eliminates all algebraic assumptions in [6, 9] and considerably relaxes the
domination assumptions in [1, 10]. Our work in the contracting case below can also
been as following up the well-studied field of contracting-on-average iterated function
system (IFS), we comment on more on this in Sect. 1.1.2. Let us now continue by
introducing the necessary notions to express our framework and to state our results
precisely.

Let G be a measurable group acting measurably on a measure space X . Let μ be
a probability measure on G. A probability measure ν on X is said to be μ-stationary
if ν = μ ∗ ν. Here, μ ∗ ν is a probability on X for which the integral of a bounded
measurable function f is given by

∫∫
f (gx)dμ(g)dν(x). In this article, V will denote

a finite dimensional real or complex vector space and we will mostly be concerned
with closed subgroups of GL(V ) acting on P(V ).

All probability measures considered in this paper will be supposed to have a finite
first moment. The top (or first) Lyapunov exponent of a probability measure μ is
defined as in (1.1). The other exponents λi (μ) for i = 1, . . . , d = dim V are defined
by stipulating thatλ1(μ)+· · ·+λk(μ) is the almost sure limit limn→∞ 1

n log ‖
∧k Ln‖,

where
∧k Ln denoted the kth-exterior power of Ln . Clearly, λ1(μ) ≥ λ2(μ) ≥ · · · ≥

λd(μ). Whenever a probability measureμ is understood andW < V is a �μ-invariant
subspace (we equivalently say W is μ-invariant), μ induces a measure on GL(W )

and GL(V /W ), we will denote the associated Lyapunov exponents, respectively, by
λi (W ) and λi (V /W ).

Finally, given a μ-stationary probability measure ν on P(V ), its cocycle average1

is the quantity α(ν) defined as

α(ν) =
∫∫

log
‖gv‖
‖v‖ dμ(g)dν(Rv). (1.3)

Thedefinitiondoes not dependon the choice of thenorm‖.‖ andwhenν varies over var-
iousμ-stationary ergodic probabilitymeasures ν, the values taken byα(ν) is contained
(possibly properly) in the set of Lyapunov exponents {λ1(μ), λ2(μ), . . . , λd(μ)},
always attaining the top Lyapunov exponent (see [19, 27], more will be discussed
below, and in detail in Sect. 3). Here, ergodic means that ν is extremal in the convex
set of μ-stationary probability measures.

1.1 Contracting case

We are now ready to state our first result.

Theorem 1.1 (Contracting case: existence and uniqueness of lifts)Letμ be a probabil-
ity measure onGL(V )with finite first moment and W aμ-invariant subspace. Then for
everyμ-stationary ergodic probability measure ν on P(V /W )whose cocycle average
satisfies

α(ν) > λ1(W ),

there exists a unique μ-stationary lift ν on P(V )\P(W ).

1 The map (g, Rv) 
→ log ‖gv‖‖v‖ satisfies the additive cocycle property, whence comes the terminology.
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2576 R. Aoun, C. Sert

Here and elsewhere, we employ the term lift to mean that ν is a μ-stationary
probability measure on P(V )\P(W ) whose push-forward on P(V /W ) under the
map induced by the natural projection V → V /W is ν.

Before proceeding with associated equidistribution result, let us briefly comment
on the particular cases of this result in the literature. The case where W is a hyper-
plane in V , i.e. the base P(V /W ) is a singleton, corresponds to affine stochastic
recursion, i.e. affine random walks. In this case, the unique stationary measure on
P(V /W ) is trivial and the associated cocycle average is zero (i.e. α(ν) = 0).
In his influential paper, Hutchinson [29] proved the existence and uniqueness of
stationary measure under strict contraction hypothesis. The contracting-on-average
version of Hutchinson’s result (i.e. when 0 > λ1(W )) was proved by Vervaat [37],
Brandt [10] and Bougerol–Picard [9]. More recently, Benoist–Bruère [6] proved
the above result when μ has bounded support and V /W as well as W are sup-
posed to be strongly irreducible and proximal. Finally, Aoun–Guivarc’h [1] treated
the case when W is the second Furstenberg–Kifer–Hennion space (see below)
and λ1(μ) > λ2(μ), in particular when V /W is strongly irreducible and prox-
imal. The previous result therefore generalizes the corresponding results in these
works.

The following is an associated equidistribution result which is, in fact, a crucial
ingredient for Theorem 1.1.

Proposition 1.2 (Equidistribution) Keep the setting of Theorem 1.1.

(1) For any x ∈ P(V )\P(W ), the Cesàro means 1
n

∑n
i=1 μ∗i ∗ δx converge weakly

to ν if and only if 1
n

∑n
i=1 μ∗i ∗ δx converges weakly to ν, where x denotes the

projection of x to P(V /W ).
(2) For any x ∈ P(V )\P(W ), the sequence 1

n

∑n
i=1 δXi ···X1·x converges to ν a.s. if

any only if 1
n

∑n
i=1 δXi ···X1·x converges to ν a.s.

1.1.1 Some consequences

We proceed to single out some consequences of the previous results. The first con-
sequence will provide a refinement of the description of stationary measures given
by Furstenberg–Kifer [19] and Hennion [27]. To state the consequences, we need to
introduce some terminology (coming from [19, 27]).

Given a probabilitymeasureμ onGL(V ), letMμ(V ) denote the set ofμ-stationary
and ergodic probability measures on P(V ). As ν varies in the setMμ(V ), the values
taken by the cocycle average α(ν) describe the set of Furstenberg–Kifer–Hennion
exponents (for short, we will say FKH exponents) ∞ > β1(μ) > β2(μ) > · · · >

βk(μ) =: βmin(μ) > −∞. For each FKH exponent βi (μ), there exists a μ-invariant
subspace, denoted Fi (μ) and called i th FKH space, maximal for the property that that
the top Lyapunov exponent of μ on Fi (μ) is βi (μ). We have the FKH filtration given
by V = F1(μ) � F2(μ) · · · � Fk(μ) � {0}. By convention, we set Fk+1(μ) = {0}
and βk+1(μ) = −∞. When μ is understood, we will omit the dependence on μ

from the notation and in this context the index k will be the index of the smallest real
FKH exponent. We warn the readerthat as opposed to Oseledets’ theorem, the FKH
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Stationary probability measures on projective spaces 2577

spaces depend only on μ, in particular, they are not random. The following is a direct
consequence of Theorem 1.1 and results of [19, 27].

Corollary 1.3 Letμ be a probability measure onGL(V )with finite first moment. Then,
for every μ-stationary ergodic probability measure ν on P(V ), there exists i = iν ∈
{1, . . . , k} such that ν is the unique lift on P(Fiν )\P(Fiν+1) of an ergodicμ-stationary
probability measure on the quotient space Fiν /Fiν+1.

The index iν ∈ {1, . . . , k} appearing above is uniquely defined and will be used
again in the next result. Combining Theorem 1.1 and Proposition 1.2 with the results
of Guivarc’h–Raugi [25] and Benoist–Quint [7], we deduce the following.

Proposition 1.4 Let μ be a probability measure on GL(V ) with finite first moment.
Denote by V = F1 ⊃ · · · ⊃ Fk ⊃ Fk+1 = {0} the FKH filtration of μ.

(1) Let i ∈ {1, . . . , k} and suppose �μ acts irreducibly on Fi/Fi+1. Let ν be a μ-
stationary ergodic probability measure on P(Fi )\P(Fi+1). Then the semigroup
�μ acts minimally on supp(ν)\P(Fi+1).

(2) Moreover, when �μ acts irreducibly on each Fj/Fj+1 for j = 1, . . . , k, the map
ν 
→ supp(ν)\P(Fiν+1) yields a bijection between the sets

Mμ(V )←→
k⋃

i=0
{�μ-minimal subsets of P(Fi )\P(Fi+1)}.

Here, a semigroup � is said to act minimally on a (non-necessarily compact) topo-
logical space X if every orbit is dense or equivalently there is no �-invariant closed
proper subspace of X .

1.1.2 Further comments on previous results and our proofs

The topic of iterated function systems (IFS) of Lipschitz maps on locally compact
metric spaces and the associated Markov processes have a substantial history [4, 29,
33, 36], see the survey of Diaconis–Freedman [14] and the recent work of Kloeckner
[32]. In these works, the contraction (or rather contraction-on-average) assumptions
allow to prove the existence and uniqueness assertions in Theorem 1.1 at a single step,
by proving that trajectory-wise images of X converge to a single point independent
of the initial point—this is also the case in Furstenberg’s (unique) stationary measure
in the irreducible and proximal case. However, in our setting, the lack of contraction
assumptions in the basis P(V /W ) rules out the possibility of such an approach. Indeed,
such a convergence does not need to hold in our situation. We therefore proceed dif-
ferently. For the existence, we use tools fromMarkov chain theory, namely the version
of Foster–Lyapunov recurrence criterion as recently worked out by Bénard–de Saxcé
[5]. This work is well-adapted to our purposes in order to tackle the existence problem
in the finite first moment case; stronger forms of recurrent behaviour (e.g. geometric
recurrence) can be shown under stronger moment assumptions (e.g. finite exponential
moment). For uniqueness, we have to deal with the additional lack of contraction in
the basis. Inspired by the discussion in [1, §2.2], we adopt a fibred dynamical setting
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and see the space P(V )\P(W ) as a fibred system of affine IFS over the compact
P(V /W ). Our hypotheses then allow us to get fibrewise contraction which in turn
suffices to deduce the uniqueness.

Finally, we briefly comment on a different line of study related to our results. The
lift measures ν appearing in Theorem 1.1 live naturally on a non-compact subset
P(V )\P(W ) of the projective space P(V ). Whereas strict contraction assumptions
such as Hutchinson’s [29] are known to imply that ν has compact support, under
the contraction-on-average assumption, ν has typically a non-compact support (see a
discussion in [1, §5]). In the particular case of affine random walks, the quantitative
properties of the tail of the stationary measure ν has also been extensively studied by
many authors including Kesten [31], Goldie [20], Guivarc’h–Le Page [22, 23], and
recently in the more general setting of IFS’s by Kloeckner [32]—see the latter work
for more detailed overview in this direction.

1.2 Expanding case

Our second result treats the expanding case. More precisely,

Theorem 1.5 (Partial expansion) Let μ be a probability measure on GL(V ) with a
finite first moment and W aμ-invariant subspace. Let ν be aμ-stationary and ergodic
probability measure on P(V /W ) such that for some j = 1, . . . , k,

β j+1(W ) < α(ν) < β j (W ). (1.4)

Then, the following are equivalent:

(i) There exists μ-stationary lift ν of ν on P(V )\P(W ).
(ii) There exists a �μ-invariant subspace W ′ < V such that W ′ ∩W = Fj+1(W ) and

P((W +W ′)/W ) is the subspace generated by the support of ν.

In this case, the lift is unique, has the same cocycle average as ν.

In the above statement, for a μ-invariant subspace W < V , we denote by W =
F1(W ) � F2(W ) · · · � Fk(W ) � {0} the FKHfiltration associatedμ-randomproduct
on GL(W ) and by∞ > β1(W ) > β2(W ) > · · · > βmin(W ) > −∞ the associated
FKH exponents.

Here is a direct consequence that we single out (see Corollary 5.4 for amore general
version).

Corollary 1.6 Suppose λ1(V /W ) < βmin(W ). Then the following are equivalent:

i. There exists a μ-stationary probability measure on P(V )\P(W ).
ii. There exists a �μ-invariant subspace of V in direct sum with W.

Theorem 1.5 generalizes results of Benoist–Bruère [6] (as we do not assume
any irreducibility or proximality assumptions) which in turn generalized results of
Bougerol–Picard [9] pertaining to the setting of affine random walks. However, the
previous works also treat the more delicate “critical case” under algebraic assump-
tions.We do not treat the critical case in this paper and plan to cover it in a forthcoming
work.
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Here is another consequence of Theorem 1.5 that gives a slight refinement of the
results of Furstenberg–Kifer [19] and Hennion [27] and generalizing the related result
in [1]. For a more general version, see Corollary 5.6.

Corollary 1.7 Fix a Euclidean structure on V and let μt denote the image of μ by
transpose map. Let V = F1(μt ) > F2(μt ) be the second FKH space of μt in V and
let V1,μ := F2(μt )⊥. Then, anyμ-stationary probabilitymeasure ν withα(ν) = λ1(μ)

is supported in P(V1,μ).

The proof of Theorem1.5 is carried out in sort of an inductiveway.At first, we prove
its particular case (Theorem 5.1, which corresponds to a “purely expanding” case),
where the index j in (1.4) is equal to k (i.e. βk+1(W ) = −∞). The proof of this case
makes use of the decomposition of stationary measures via the martingale approach
due to Furstenberg [16] to exploit the transient behaviour of the random walk—this
is somewhat in the spirit of original application of Furstenberg. In the second step,
by using the work of Furstenberg–Kifer [19] and Hennion [27], we reduce the partial
expansion to a case where we have a purely expanding and a contracting part. We then
combine Theorem 5.1 with Theorem 1.1 to conclude.

1.3 An application to homogeneous dynamics

Our results can be recast from the point of view of homogeneous dynamics. In this
context, they relate to proving (non)-existence and uniqueness of stationary measures
on various algebraic homogeneous spaces of type G/H (where G and H are real
algebraic groups) and lifts from quotients thereof. We defer the statement of our main
result in this context (Theorem 6.1) to Sect. 6. Here we content with Corollary 1.8
below, which follows from an application of our result (combined with Benoist–Quint
[7]) in a concrete case.

To state it, let 0 ≤ k ≤ d be two integers and Xk,d denote the space of affine k-spaces
in R

d . As a homogeneous space, it can be realized as G/H where G = GLd(R)� R
d

and H = P � R
k , with P being a maximal parabolic subgroup in GLd(R) given by

the stabilizer of a k-space in R
d . In the next statement, we consider SL2(C) as a real

linear algebraic subgroup of SL4(R) (preserving a complex structure on R
4) and say

that a probability measure μ on a real linear algebraic group is Zariski-dense if the
semigroup �μ generated by its support is.

Corollary 1.8 Letμ be a Zariski-dense probability measure on SL2(C)�R
4 with finite

first moment. Then,

• (Bougerol–Picard [9]) There exists no μ-stationary probability measure on X0,4.
• There exists no μ-stationary probability measure on X1,4.
• There exists a unique μ-stationary probability measure on X2,4.
• There exists a unique μ-stationary probability measure on X3,4.

In [6], Benoist–Bruère settled the case where μ is Zariski-dense in G (their work
is an inspiration for our Sect. 6). However, in the situation of the previous corollary,
both irreducibility (for the exterior power) and proximality conditions appearing in
the work [6] fail to hold. The lack of such algebraic hypotheses in Theorems 1.1 and
1.5 allows us to deal with these difficulties.
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This article is organized as follows. In Sect. 2, we discuss some general examples
of applications of our results. Section3 is devoted to some preliminaries of random
matrix product theory (mainly results of [19, 27] and some consequences). Section4
is devoted to the contracting case, there we prove Theorem 1.1 and related results in
this case. In Sect. 5, we tackle the expanding case and prove Theorem 1.5 as well as its
corollaries. Finally, in Sect. 6, we adopt the point of view of homogeneous dynamics,
prove Theorem 6.1 and deduce Corollary 1.8.

2 Examples

We give examples of various settings where our results from introduction applies.

2.1 Lifts of stationary measures on irreducible representations

Extending the pioneering work of Furstenberg [16], Guivarc’h–Raugi [25] and later
Benoist–Quint [7] gave a clear classification of stationary measures on projective
spaces for irreducible (more generally completely reducible) representations. The goal
here is to discuss some examples of general situations where each stationary measure
on P(V )/P(W ) is the unique lift of such a Guivarc’h–Raugi–Benoist–Quint measure
on the quotient P(V /W ) or where the latter measures do not lift.

The following is the simplest example of a setting beyond irreducibility.We include
it to illustrate the consequences. Some of the stated consequences of our results in this
example also follow from the recent works of Aoun–Guivarc’h [1] (contracting case,
and purely expanding case ifW is strongly irreducible and proximal), Benoist–Bruère
[6] (all cases including, additionally, the critical case if W is strongly irreducible and
proximal).

Example 2.1 (Strongly irreducible and proximal quotient) Let V
be a finite-dimensional real vector space,μ a probabilitymeasure onGL(V )with finite
first moment such that �μ preserve a subspace W < V and acts strongly irreducibly
and proximally on V /W . By Furstenberg [16], there exists a unique stationarymeasure
(sometimes called the Furstenberg measure) νF on V /W .

(1) (Contracting case) Suppose λ1(V /W ) > λ1(W ). Then, it follows from
uniqueness of Furstenberg measure νF and by our Theorem 1.1 that there exists
a unique μ-stationary probability measure on P(V )\P(W ). Moreover, by Propo-
sition 1.4, there exists a unique �μ-minimal set in P(V )\P(W ).

(2) (Expanding case) Suppose λ1(V /W ) < λ1(W ).

• (Purely expanding case) if βmin(W ) > λ1(V /W )—which happens
if the Furstenberg–Kifer–Hennion subspace of F2(W ) is trivial (this happens
in particular if �μ acts irreducibly on W )—then the hypotheses of Theorem
5.1 are satisfied. It implies that either W has an invariant complementary
subspace W ′ (which is, under the assumptions of this example, necessarily
unique, strongly irreducible, proximal and satisfies W ⊕ W ′ = V ) or there
does not exist any μ-stationary probability measure on P(V )/P(W ).
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• (Mixed=Partially expanding case) Continuing to exclude the crit-
ical case (i.e. equality of λ1(V /W ) with some β j (W )), the remaining case is
there exists j ≥ 2 with

βmin(W ) < · · · < β j (W ) < λ1(V /W ) < β j−1(W ) ≤ λ1(W ). (2.1)

Since we are V /W is irreducible, in particular it satisfies F2(V /W ) = {0} and
hence we are able to apply Theorem 1.5.

The cases described above (contracting, purely and partially expanding) give a descrip-
tion of μ-stationary ergodic probability measures on P(V )\P(W ). Provided that one
can also describe those on P(W ) (e.g. if W is irreducible by using Benoist–Quint [7]
or if one can re-iterate the above analysis for W based on our results), one gets a full
description of probability measures on P(V ).

Notice that the cases in the above example are exhaustive from algebraic point of
view but not from the point of view of Lyapunov exponents. The (only) reason for this
is that we are not yet able to handle the critical case (absence of Lyapunov-domination)
without any algebraic assumption.

The next setting is a more general one compared to the previous and discusses lifts
of Benoist–Quint–Guivarc’h–Raugi measures on the quotient P(V /W ). The exhaus-
tive analysis—contracting, purely and partially expanding cases—carried out in the
previous example can be, in exactly the same way, carried over for the next example
(even the irreducibility assumption on V /W can be relaxed to F2(V /W ) = {0}). Aim-
ing to illustrate certain disparate situations, we only focus on the simpler contracting
and purely expanding cases—up to our knowledge, even these cases are not covered
by previous works.

Example 2.2 (Irreducible quotient) Let V be a finite-dimensional real vector
space, μ a probability measure on GL(V ) such that �μ preserves a subspace W < V
and acts irreducibly V /W . If the quotient V /W isμ-proximal, the action is necessarily
strongly irreducible and we are back to the previous example. So suppose V /W is not
μ-proximal. Note this can happen when dim(V /W ) ≥ 4, unless the representation in
V /W is compact modulo the center. For example,

A. (Compact group, unique stationary) V /W � R
d and the representation of �μ

in V /W lives in R
∗Od(R) and Zariski-dense in Od(R). In this case, P(V /W )

has a unique μ-stationary probability measure (the Od(R)-invariant probability
measure).

B. (Non-compact group, unique stationary) V /W � R
4 and the Zariski-closure of

the image of the representation of �μ in V /W is isomorphic to the real group
G = SL2(C). Then, there exists a unique μ-stationary probability measure on
P(V /W ). Indeed, thanks to [7, Theorem 1.7 and Remark 1.8], M1(P(V /W )) is
in bijection with the M-orbits in the set of fixed points of AN on P(V /W ), where
A � G

1
m(R) a R-split torus subgroup of G, N � R

2 maximal unipotent subgroup
normalized by A and M � SO2(R) is the centralizer of A in a maximal compact
subgroup of G. Up to conjugacy, with appropriate choices of A (as diagonals) and
N (as contained in upper triangular matrices), a straightforward calculation shows
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2582 R. Aoun, C. Sert

that X AN is the real projective line corresponding to the subspace 〈e1, e2〉 in R
4.

The group M � SO2(R) acts by rotations (hence transitively) on X AN and the
claim follows.

C. (Non-compact group, uncountably many stationary) V /W � ∧3
R
n+1 and the

Zariski-closure of the image of the representation of �μ in V /W is the image of
SO(n, 1) in GL(

∧3
R
n+1). In this case, there are uncountably many μ-stationary

ergodic probability measure on P(V /W ) if n ≥ 5 (see [7, Remark 1.9]).

(1) (Contracting case) Suppose λ1(V /W ) > λ1(W ). Then, since V /W is
irreducible, every stationary measure ν on P(V /W ) has the same cocycle aver-
age α(ν) = λ1(V /W ). Therefore, by Theorem 1.1 for each stationary measure
ν on P(V /W ), there exists precisely one μ-stationary measure that lifts ν in
P(V )\P(W ). Moreover, combining Proposition 1.4 and Benoist–Quint [7], we
have the following natural bijections:

M1(P(V /W )) �M1(P(V )\P(W )) � {�μ-minimal sets in P(V /W )}
� {�μ-minimal sets in P(V )\P(W )}.

(2.2)

(2) (Purely expanding case) Suppose λ1(V /W ) < βmin(W ). Then the
hypotheses of Theorem 5.1 is satisfied and the same conclusion as the previous
example holds: EitherW has an invariant complementary subspaceW ′ (which is,
under the assumptions of this example, necessarily unique, strongly irreducible
and satisfies W ⊕ W ′ = V ) or there does not exist any μ-stationary probability
measure on P(V )/P(W ).

Other situations of irreducible, non-proximal representations on V /W � R
4d arise

for instance when the Zariski-closure of the image of the representation of�μ in V /W
is isomorphic to SL2d(C), SLd(H), Spd(C), SO2d(C) etc. (see e.g. [26, §2.2]).

Finally, notice that the first bijection in (2.2) can be thought of as a generalization
of the existence of unique stationary probability measure for the contracting affine
recursion where the V = R

d+1 and W = R
d , studied by Brandt [10], Bougerol–

Picard [9], and in a more general setting, among others by Diaconis–Freedman [14]
(see references therein).

Remark 2.3 In the above examples, the fact that the quotient V /W is irreducible is only
used, for concreteness, to ensure a classification of stationary measures on P(V /W )

(thanks to [7, 24]).However, if, without any algebraic assumption onV /W , one a priori
has such a classification on P(V /W ), then clearly Theorems 1.1 and 1.5 apply under
the respective Lyapunov domination conditions to determine the stationary measures
on P(V )\P(W ).

3 Preliminaries

In Sect. 3.1, we discuss some preliminary material mainly from the work (and conse-
quences thereof) of Furstenberg–Kifer [19] and Hennion [27].
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3.1 The Furstenberg–Kifer–Hennion subspaces

Unless otherwise specified, all our random variables will be defined on the Bernoulli
space B := GLd(R)N. An element of B will be denoted with b = (bi )i∈N. Let μ be a
probabilitymeasure onGLd(R).We endowBwith the probabilitymeasureβ := μ⊗N.
The left random walk associated to μ is the sequence of random variables (Ln)n∈N
defined for every n ∈ N and b ∈ B by Ln(b) := bn · · · b1. The right random walk
(Rn)n∈N is defined by Rn(b) = b1 · · · bn . We denote by �μ the closed semigroup
generated by the support of μ.

The following result of Furstenberg–Kifer and Hennion underlies our considera-
tions in this article.

Theorem 3.1 (Furstenberg–Kifer [19], Hennion [27]) Let μ be a probability measure
on GLd(R) with finite first moment. Then there exists a partial flag R

d = F1 ⊃ F2 ⊃
· · · ⊃ Fk ⊃ Fk+1 = {0} of �μ-invariant subspaces and a collection of real numbers
β1(μ) > · · · > βk(μ) =: βmin(μ) verifying the following:

(1) For every v ∈ Fi\Fi+1, we have for β-almost every b ∈ B,

lim
n→∞

1

n
log ‖Ln(b)v‖ = βi (μ).

(2) The βi (μ) are the values of

α(ν) :=
∫

P(Rd )

∫

GLd (R)

log
‖gv‖
‖v‖ dμ(g)dν(Rv)

that occur when ν ranges over μ-ergodic μ-stationary probability measures on
the projective space P(Rd).

(3) For every μ-stationary ergodic probability measure ν on P(V ), letting i = i(ν) ∈
{1, . . . , k} be such that α(ν) = βi (μ), the subspace Fν generated by supp(ν)

verifies Fν ⊂ Fi . In particular λ1(Fν) = α(ν).

Remark 3.2 In the result above, the set of exponents {β1(μ), . . . , βk(μ)} is contained
in the set of Lyapunov exponents of μ and β1(μ) coincides with the top Lyapunov
exponent λ1(μ). However, this subset can be much smaller. For instance,

(1) If G acts irreducibly on V , then for every probability measure μ on G such that
�μ is Zariski-dense in G, we have F2 = {0}, or equivalently, k = 1.

(2) The same situation (i.e. F2 = {0}) can also occur in reducible settings. For
instance, denote by G := Affd(R) the affine group of R

d and embed it in

GLd+1(R) in the usual way via (x 
→ Ax+b) 
−→
[
A b
0 1

]

. Denote byW � R
d

the invariant subspace ofR
d+1 corresponding to the fixed points of the translations

of G. Let μ be a probability measure on G < GLd+1(R) such that �μ does not
fix a point in R

d . If λ1(W ) > 0 (expanding case), then F2 = {0}. However, if
λ1(W ) < 0 (contracting case), then F2 = W , β1(μ) = V and β2(μ) = λ1(W ).
The other exponents βi ’s depend on the projection of μ to the linear part. As
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one can see, unlike the irreducible setting, the FKH spaces depend heavily on the
measure μ.

(3) More generally, one can easily construct probability measures μ1 and μ2 with
same support such that, for μ1, the FKH exponents comprise all Lyapunov expo-
nents and, for μ2, the only FKH exponent is the top Lyapunov exponent of μ2.

We single out two useful consequences of this result. For the first one, we refer to [35,
Proposition 2.4], [2, Lemma 2.6] or [15, Lemma 1.5] for a similar observation.

Corollary 3.3 For every ε > 0, there exists n0 ∈ N such that for every non-zero v ∈ R
d

and n ≥ n0, we have

1

n

∫
log
‖gv‖
‖v‖ dμ∗n(g) ≥ βmin(μ)− ε.

The proof is similar to [35, Proposition 2.4], we include it for reader’s convenience.

Proof We argue by contradiction and suppose there exists ε0 > 0 a sequence n j ∈ N

going to infinity such that for every j ∈ N there exists v j satisfying

1

n j

∫
log
‖gv j‖
‖v j‖ dμ∗n j (g) ≤ βmin(μ)− ε0.

Up topassing to a subsequenceofn j ,we can suppose that the limit lim j→∞ 1
n j

∑n j−1
k=0 μ∗k

∗ δRv j exists. Denote this limit probability measure on P(Rd) by ν̃. Clearly, ν̃ is μ-
stationary. We have

∫ ∫
log
‖gv‖
‖v‖ dμ(g)d ν̃(Rv) = lim

j→∞
1

n j

n j−1∑

k=0

∫ ∫
log
‖ghv j‖
‖hv j‖ dμ(g)dμ∗k(h)

= lim
j→∞

1

n j

∫
log
‖gv j‖
‖v j‖ dμ∗n j (g) ≤ βmin(μ)− ε0

(3.1)

where we used dominated convergence (thanks to the finite first moment assumption)
in the first equality and the additive cocycle property of (g, Rv) → log ‖gv‖‖v‖ in the
second equality. In particular, ν̃ has a μ-stationary ergodic component ν̂ with

∫ ∫
log
‖gv‖
‖v‖ dμ(g)d ν̂(Rv) ≤ βmin(μ)− ε0

which contradicts (ii) of Theorem 3.1. ��
In general, a FKH exponent βi (V /W ) of the quotient V /W may not appear as a

FKH exponent of the full-space V . The following observation says that this does not
happen if W is already a FKH space.

123



Stationary probability measures on projective spaces 2585

Corollary 3.4 1. For every 1 ≤ i ≤ k, F2(Fi/Fi+1) = {0}.
2. For every 1 ≤ j ≤ k, the FKH spaces (resp. exponents) of V /Fj+1 are the

Fi/Fj+1’s (resp. βi (V )’s) for i = 1, . . . , j . In particular, βmin(V /Fj+1) =
β j (V ).

Proof 1. Without loss generality i = 1. We argue by contraction. If F2(V /F2) �= {0}
there would exist a �μ-invariant non-trivial subspace W ′ of V /F2 whose top
Lyapunov exponent is < λ1(V /F2) = λ1(V ) (the latter identity follows from
[19, Lemma 3.6]). Denote by π : V → V /F2 the canonical projection and let
V ′ := π−1(W ′). The latter is a �μ-invariant subspace of V containing strictly
F2(V ) andwhose top Lyapunov is also< λ1 (the last assertion follows for instance
by representing the matrices in W ′ by upper triangular by block matrices with
F2(V ) being one block). This contradicts Theorem 3.1 (1).

2. The following is clearly a �μ-filtration of V /Fj+1: V /Fj+1 = F1/Fj+1 ⊃
F2/Fj+1 ⊃ · · · Fj/Fj+1 ⊃ Fj+1/Fj+1 = {0}. Let i ∈ {1, . . . , j}. Denote
for simplicity Wi = Fi/Fj+1. By Theorem 3.1 (1), its top Lyapunov expo-
nent is βi (V ). Also λ1(Wi/Wi+1) = λ1(Fi/Fi+1) = βi (V ). Since by (1)
F2(Wi/Wi+1) = {0}, by writing the matrices in Wi as upper triangular matri-
ces by block with Wi+1 ⊂ Wi as one invariant block, and using Theorem 5.1
(1) in Wi/Wi+1, we see that the growth rate of ‖Lnv‖ is λ1(Wi ) = βi (V ) if
v ∈ Wi\Wi+1. This being true for every i = 1, . . . , j , this finishes the proof. ��

4 Contracting case

4.1 The bundle structure behind Theorem 1.1

Let V be a finite dimensional real vector space and W < V a subspace. Let PW <

GL(V ) be the parabolic subgroup of GL(V ) given by the stabilizer of the subspace
W . We fix a complement W ′ of W in V , a basis of V adapted to the decomposition
V = W ⊕W ′. Let d = dim(V ) and r = dim(W ). The matrix representation of each

element g in PW is of the form g =
[
A B
0 C

]

with A ∈ GLr (R), B ∈ Mr ,d(R) and

B ∈ GLd−r (R). The matrix A represents the action of g on W and the matrix C
represents its action on V /W . In the sequel, whenever g ∈ PW is used, we will use
this notation A, B and C without specifying the dependence on g for simplicity in
notation.

Fix a Euclidean structure on V and endow V /W with the associated Euclidean
structure. The open subset P(V )\P(W )of P(V ) identifies thenwith the quotient space
(S1(V /W )× W )/{±1}, where S1(V /W ) denotes the unit sphere of V /W and {±1}
acts as the scalar multiplication diagonally on both factors. We can concretely express
this identification as follows: let [ξ ] ∈ P(V )\P(W ) and choose a representative
ξ ∈ V . Let ξW and ξW ′ be such that ξ = ξW + ξW ′ . The identification then writes as

[ξ ] 
→
(

ξW

||ξW || ,
ξW ′

||ξW ||
)

/{±1}.
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In the sequel, we will often work with a lift of the right-hand-side and ignore the
quotient by {±1}. This should not cause confusion. An element of S1(V /W )×W will
be usually denoted (θ, t) with θ ∈ S1(V /W ) and t for an element of W .

The previous identification induces a cocycle σ : PW × S1(V /W ) → Aff(W )

expressing the action on the product S1(V /W )×W . Namely,

g · (θ, t) = (g · θ, σ (g, θ)(t)),

where for g =
[
A B
0 C

]

, we have

g · θ = Cθ

||Cθ || and σ(g, θ) : t 
→ At

||Cθ || +
B · θ
‖Cθ‖ . (4.1)

The following two subsections are devoted to the proof of Theorem 1.1, where we
prove the uniqueness and existence assertions, respectively.

4.2 Uniqueness

Proposition 4.1 (Uniqueness) Let μ be a probability measure on GL(V ) with a finite
first moment and W a μ-invariant subspace. Then for every μ-stationary ergodic
probability measure ν on P(V /W ) whose cocycle average satisfies

α(ν) > λ1(W ),

there exists at most one μ-stationary lift ν on P(V )\P(W ).

For the proof, we will require the following lemma.

Lemma 4.2 Keep the assumptions of Proposition 4.1 and denote by j ∈ {1, . . . , k} the
largest integer such that λ1(W ) < β j (V /W ). Let θ ∈ S1(V /W )\Fj+1(V /W ). Then,
for any two probability measures ν1 and ν2 on W and every function f ∈ Cc(W ),

∫

W
f (σ (Ln, θ)t)dν1(t)−

∫

W
f (σ (Ln, θ)t)dν2(t)

L1(B,β)−→
n→∞ 0.

The proof uses the bundle structure Sect. 4.1. Let us first fix our notation. Given an
affine space W and an affine map T on W , we denote by L(T ) ∈ GL(W ) its linear
part. Here is an immediate property: for every x, y ∈ W :

T x − T y = Lin(T )(x − y). (4.2)

Proof of Lemma 4.2 By (4.1), the following holds for every n ∈ N,

Lin(σ (Ln(b), θ)) = A(Ln)

||C(Ln)θ || . (4.3)
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Since θ /∈ Fj+1(V /W ), Theorem 3.1 shows that, almost surely,

lim sup
n→∞

1

n
log ‖Lin(σ (Ln, θ))‖ ≤ λ1(W )− β j (V /W ) < 0. (4.4)

Thus there exists some c0 > 0 such that

β {b ∈ B : ‖Lin(σ (Ln(b), θ))‖ ≥ exp(−nc0)} −→
n→+∞ 0. (4.5)

Let now ε > 0. Since ν1 and ν2 are probability measures on W , we can find some
M > 0 such that (ν1 ⊗ ν2)({(t, s) ∈ W 2 | |t − s| > M}) < ε. We write

∣
∣
∣
∣

∫
f (σ (Ln(b), θ)t)dν1(t)−

∫
f (σ (Ln(b), θ)t)dν2(t)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫∫
( f (σ (Ln(b), θ)t)− f (σ (Ln(b), θ)s)) dν1(t)dν2(s)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫∫

{|t−s|≤M}
f (σ (Ln(b), θ)t)− f (σ (Ln(b), θ)s) d(ν1 ⊗ ν2)(t, s)

∣
∣
∣
∣+ 2‖ f ‖∞ε.

Thus, letting

In :=
∫

B
dβ(b)

∣
∣
∣
∣

∫
f (σ (Ln(b), θ)t)dν1(t)−

∫
f (σ (Ln(b), θ)t)dν2(t)

∣
∣
∣
∣ ,

we get from the triangular inequality and Fubini’s theorem,

In ≤
∫∫

{|t−s|≤M}

∫

B
dβ(b) | f (σ (Ln(b), θ)t)

− f (σ (Ln(b), θ)s)| d(ν1 ⊗ ν2)(t, s)+ 2|| f ||∞ε.

By (4.5), we can find n0(ε) ∈ N such that for every n ≥ n0(ε),

β {b ∈ B : ‖Lin(σ (Ln(b), θ))‖ ≥ exp(−nc0)} < ε,

By uniform continuity of f , there is some δ(ε) > 0 such that | f (x) − f (y)| < ε,
whenever |x − y| < δ(ε). Without loss of generality we can assume exp(−n0c0) <

δ(ε)/M so denoting B ′n,ε := {b ∈ B : ‖Lin(σ (Ln(b), θ))‖ < δ(ε)/M}, we have for
every n ≥ n0(ε),

β(B ′n,ε) > 1− ε.

Hence for every n ≥ n0(ε),

In ≤
∫∫

{|t−s|≤M}

∫

B′n,ε

dβ(b) | f (σ (Ln(b), θ)t)
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− f (σ (Ln(b), θ)s)| d(ν1 ⊗ ν2)(t, s)+ 4|| f ||∞ε.

By definition of B ′n,ε , we get from (4.2) that for every n ≥ n0(ε), b ∈ B ′n,ε and
(t, s) ∈ W 2 such that |t − s| ≤ M ,

‖σ(Ln(b), θ)t − σ(Ln(b), θ)s‖ < δ(ε).

By definition of δ(ε), we deduce finally that for every n ≥ n0(ε),

In ≤ ε + 4|| f ||∞ε.
��

Proof of Proposition 4.1 In all the proof, we fix aμ-stationary probabilitymeasure ν on
P(V /W ) such that α(ν) > λ1(W ). Let j ∈ {1, . . . , k} be such that β j (V /W ) = α(ν).
Note that by Theorem 3.1, ν(Fj+1(V /W )) = 0. Each stationary probability measure
η on X := (S1(V /W ) × W )/{±1} � P(V )\P(W ) has a (unique) μ-stationary lift
η̃ on the product space X̃ := S1(V /W ) × W which is invariant under the involution
(θ, t) 
→ (−θ,−t), namely

∫

X̃
g(θ, t)dη̃(θ, t) :=

∫

X

g(θ, t)+ g(−θ,−t)
2

dη([θ, t]).

Similarly, ν has a unique μ-stationary and ±1-invariant lift ν̃ on S1(V /W ). Clearly,
for a probability measure η on X , the projection and lifting operations commute.

Hence, it enough to show that if ν1 and ν2 are twoμ-stationary probabilitymeasures
on the product space X̃ that project to ν̃, then ν1 = ν2. Let then ν1 and ν2 be such
probability measures and consider a continuous function f : X̃ → R with compact
support. By stationarity, we have for every n ∈ N,

∫

X̃
f (θ, t)dν1(θ, t)−

∫

X̃
f (θ, t)dν2(θ, t)

=
∫

G

[∫

X̃
f (g · (θ, t))dν1(θ, t)−

∫

X̃
f (g · (θ, t))dν2(θ, t)

]

dμ∗n(g)

=
∫

G

∫

S1(V /W )

d ν̃(θ)

[∫

W
f (g · (θ, t))dν1,θ (t)−

∫

W
f (g · (θ, t))dν2,θ (t)

]

dμ∗n(g)

=
∫

S1(V /W )

d ν̃(θ)

∫

G
dμ∗n(g)

[∫

W
f (g · (θ, t))dν1,θ (t)−

∫

W
f (g · (θ, t))dν2,θ (t)

]

=
∫

S1(V /W )

d ν̃(θ)

∫

B
dβ(b)

[∫

W
f (Ln(b) · (θ, t))dν1,θ (t)−

∫

W
f (Ln(b) · (θ, t))dν2,θ (t)

]

The probability measures νi,θ onW for i = 1, 2 and θ ∈ S1(V /W ) are the ones given
by Rokhlin’s disintegration theorem. Fubini’s theorem was used in the fourth line. In
the sequel, we assume that the function f is of the form f ((θ, t)) = g(θ)h(t) with
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g ∈ Cc(S1(V /W )) and h ∈ Cc(W ). We then have

∣
∣
∣
∣

∫

X
f (θ, t)dν1(θ, t)−

∫

X
f (θ, t)dν1(θ, t)

∣
∣
∣
∣

≤
∫

S1(V /W )

d ν̃(θ)

∫

B
g(Ln(b)θ)dβ(b)

∣
∣
∣
∣

∫

W
h(σ (Ln(b), θ)t)dν1,θ (t)

−
∫

W
h(σ (Ln(b), θ)t)dν2,θ (t)

∣
∣
∣
∣

≤ ||g||∞
∫

S1(V /W )

d ν̃(θ)

∫

B
dβ(b)

∣
∣
∣
∣

∫

W
h(σ (Ln(b), θ)t)dν1,θ (t)

−
∫

W
h(σ (Ln(b), θ)t)dν2,θ (t)

∣
∣
∣
∣

Applying Lemma 4.2 for ν̃-almost every θ ∈ S1(V /W ) and using the dominated
convergence, we obtain that the bound above tends to 0 as n → ∞ and hence that∫
X f (θ, t)dν1(θ, t) = ∫

X f (θ, t)dν2(θ, t).Adirect applicationof the locally-compact
version ofArzela–Ascoli’s theorem shows that the linear span of functions f : X̃ → R

of the form f (θ, t) = g(θ)h(t) with g ∈ Cc(S1(V /W )) and h ∈ Cc(W ) is dense in
Cc(X). This implies that

∫
X̃ f (θ, t)dν1(θ, t) = ∫

X̃ f (θ, t)dν2(θ, t) for every f ∈
Cc(X̃). Thus ν1 = ν2. ��

4.3 Existence

Wenow turn to proving the existence assertion in Theorem 1.1.We state it as a separate
statement below.

Proposition 4.3 (Existence) Let μ be a probability measure on GL(V ) with finite
first moment and W a μ-invariant subspace. Then for every μ-stationary ergodic
probability measure ν on P(V /W ) whose cocycle average satisfies

α(ν) > λ1(W ),

there exists a μ-stationary lift ν on P(V )\P(W ).

We first prove the following particular case. The general case (i.e. the previous
proposition) will be deduced from the particular case by an inductive argument using
additionally Proposition 4.1.

Proposition 4.4 Let μ be a probability measure on GL(V ) with finite first moment
and W a μ-invariant subspace. Suppose that βmin(V /W ) > λ1(W ). Then, for any
μ-stationary ergodic probability measure ν on P(V /W ) there exists a μ-stationary
lift ν on P(V )\P(W ).

The statement is an extension of the results of Benoist–Bruère [6] pertaining to
the contracting case. The extension concerns both the algebraic assumption (we do
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not suppose irreducibility) and the moment assumption (we do not assume that the
support of μ is bounded).

In the proof of the above proposition, we will make use of the notation introduced
in Sect. 4.1. For simplicity, we will also denote by the same symbol ν a lift of ν

to S1(V /W ). This should not cause confusion. We start by a lemma treating a fully
contracted case (i.e. βmin(V /W ) > λ1(W )) by using a version of Foster–Lyapunov
recurrence criterion due to Bénard–de Saxcé [5] that is well-adapted to our purposes.

Lemma 4.5 Suppose βmin(V /W ) > λ1(W ). Then

(1) for every x ∈ X = P(V )\P(W ), the sequence (μ∗n ∗ δx )n∈N is tight in X.
(2) for every x ∈ X, the sequence 1

n

∑n
i=1 δLi (b)·x is tight for β-almost every b ∈ B.

Proof We will first show that there exists N0 ∈ N and a proper continuous function
f : X → R+ with the property that for every ε > 0, there exists R > 0 such that for
every x ∈ X there exists nx ∈ N satisfying for every n ≥ nx

μ∗nN0 ∗ δx ( f
−1([R,∞))) < ε. (4.6)

Moreover, by continuity of f the constant nx can be chosen to be bounded as x varies
in a compact set of X . To show these, let, for x = (θ, t), the function f be defined by
f (x) = log(‖t‖+ 1). This is a proper function on X . The inequality (4.6) will follow
from [5, Theorem D] if we can show that the (SD) condition in [5, §2.1] is satisfied.
To prove the (SD) condition, we check that the conditions of the (SD) criterion in [5,
Lemma 2.2] is satisfied. We start by showing the following:
Claim (A): There exist λ > 0 and R0 > 0 such that for all α > 0, there exists n0 ∈ N

for every n ≥ n0 and x = (θ, t) ∈ X with ‖t‖ > exp(nR0),

P( f (Ln · x)− f (x) < −nλ) > 1− α. (4.7)

To prove the claim, given α > 0, let n0 ∈ N be such that for every n ≥ n0 and
(θ, x) ∈ X , we have

P(log ‖A(Ln)‖ ≤ (λ1(W )+ α)n) > 1− α/3 (4.8)

and

P(log ‖C(Ln)θ‖ ≥ (βmin(V /W )− α)n) > 1− α/3 (4.9)

That such n0 ∈ N exists, follows fromFurstenberg–Kesten [18] for the inequality (4.8)
and Furstenberg–Kifer [19] (Theorem 3.1) for (4.9). Moreover, since log ‖B(Ln)‖ ≤
log ‖Ln‖, again by Furstenberg–Kesten [18], we can suppose that for every n ≥ n0,

P(log ‖B(Ln)‖ ≤ (λ1(V )+ α)n) > 1− α/3 (4.10)
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Putting (4.8), (4.9), and (4.10) together, we deduce that for every x = (θ, t) ∈ X
and n ≥ n0 on an event of probability at least 1− α, we have

f (Ln · x)− f (x) = log
‖A(Ln)t+B(Ln)θ‖
‖C(Ln)θ‖ + 1

‖t‖ + 1

≤ log

( ‖A(Ln)t‖
‖C(Ln)θ‖‖t‖ +

‖B(Ln)θ‖
‖C(Ln)θ‖(‖t‖ + 1)

+ 1

‖t‖ + 1

)

≤ log (exp (n(λ1(W )− βmin(V /W )+ 2α))

+exp (n(λ1(V )− βmin(V /W )+ 2α))

‖t‖ + 1

‖t‖
)

(4.11)

Therefore, the claim (A) is easily seen to follow for any choice ofλ ∈ (0, βmin(V /W )−
λ1(W )) and R0 > λ1(V )− λ1(W ).

Claim (B): There exists a sequence of integrable random variables Zn such that
Zn/n converge in L1 and such that the following holds almost surely:

∀x ∈ X , f (Ln · x)− f (x) ≤ Zn

Using 1
‖g‖ ≤ ‖g‖−1 for every g ∈ GLd(R) and the fact that N (g) ≥ 1, where, we

recall N (g) = max{‖g‖, ‖g−1‖}, it follows from the middle estimate in (4.11) that
the following almost sure inequality holds for every x ∈ X , f (Ln · x)− f (x) ≤ Zn ,
with

Zn := log 3+ 2 log N (Ln).

Now sinceμ has a firstmoment, it follows that each Zn is integrable and, byKingman’s
theorem, Zn/n converges almost surely and in L1 to a real number. This proves Claim
(B).

Claims (A) and (B) imply that all conditions of [5, Lemma 2.2] are satisfied for
the random walk on X induced by μ∗N0 for a certain N0. Indeed, let λ and R0 be the
constants given by Claim (A). Since the variables Zn given by Claim (B) converge in
L1, there existα > 0 and n1 ∈ N such that for every n ≥ n1,E(Z ′n1[0,α]) ≤ nλ(1−α),
where Z ′n1 is the standard realisation of Zn1 in the sense of [5]. We can now apply
Claim (A) with this α > 0, which yields some n0 ∈ N satisfying (4.7). Letting
N0 := max{n0, n1}, for every n ≥ N0, conditions (1),(2) and (3) are satisfied for the
Markov chain (Lkn · x)k∈N (with constants nλ, nR0 and random variable Zn) proving
(4.6).

Having established (4.6), the rest follows from a standard argument. Namely, let
x ∈ X and let K be a compact subset of X such that μ∗k ∗ δx (K ) > 1− ε for every
k = 0, . . . , N0 − 1. Let nK = max{nx : x ∈ K }, where nx is chosen minimally
so as to satisfy (4.6). Since K is compact, nK is finite. Now, for every n ≥ N0NK ,
writing n = �N0 + k with k ∈ {0, . . . , N0 − 1}, we have μ∗n ∗ δx ( f −1([0, R))) =
μ∗�N0 ∗ μ∗k ∗ δx ( f −1([0, R))) ≥ (1− ε)2 ≥ 1− 2ε proving part (1) of the lemma.
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Finally, to prove part (2) of the lemma, observe that the property (SD) that we have
established above for the random walk driven by μ∗N0 implies, thanks to [5, Theorem
D (ii)], that for every ε > 0, there exists R > 0 such that for every x ∈ X , almost
surely 1

n #{k ∈ {1, . . . , n} : f (LkN0 · x) − f (x) ≥ R} ≤ ε. A standard argument
now shows that the same holds for the μ-random walk (instead of μ∗N0 ), see e.g. [5,
Proposition 3.3.(ii)]. ��
Proof of Proposition 4.4 Let E ⊆ S1(V /W ) be the set of generic points of ν, i.e.

E =
{

θ ∈ S1(V /W ) : 1
n

n∑

k=1
μ∗k ∗ δθ →

n→∞ ν

}

.

By Chacon–Ornstein ergodic theorem, we have ν(E) = 1 and let θ0 ∈ E . Using
Lemma 4.5 and, in it, taking x = (θ0, t) for some t ∈ W , we obtain a μ-stationary
probability measure ν′ on X that projects to ν, as desired. ��

We can now give the proof of the general existence result.

Proof of Proposition 4.3 Let π : V → W be the canonical projection. Let ν be a
probability measure on P(V /W ) such that α(ν) > λ1(W ). Let Fν be the subspace of
V /W generated by the support of ν. By replacing V with π−1(Fν), we can assume
without loss of generality that α(ν) = λ1(V /W ) (see Theorem 3.1 (iii)). Let F2 be the
first proper FKH subspace of F1 = V /W so that ν gives full mass to the open subset
P(V /W )\P(F2) of P(V /W ). Let W1 = π−1(F2). This is a �μ-invariant subspace
of V that contains W and the quotient vector spaces W1/W and (V /W )/F2 are �μ-
equivariantly isomorphic respectively to F2 and V /W1. For simplicity of notation, we
will also denote by π the map P(V )\P(W ) → P(V /W ) induced by the projection
π : V → V /W . Let π̃ be the projection P(V )\P(W1) → P(V /W1). Let also π2
be the canonical projection P(V /W )\P(F2) → P((V /W )/F2) � P(V /W1). With
the latter identification and setting π|P(V )\P(W1)

= π1, we have π̃ = π2 ◦ π1, i.e. the
following diagram is commutative:

P(V )\P(W1) P(V /W1)

P(V /W )\P(F2)

� P((V /W )/F2)
π̃

π|P(V )\P(W1)
= π1 π2

We denote by ν the probability measure π2∗ν on P((V /W )/F2) � P(V /W1). By
�μ-equivariance, ν is μ-stationary. We aim to apply Proposition 4.4 with V as ambi-
ent space, W1 as �μ-invariant space, ν as a μ-stationary probability measure on the
quotient. Let us check that, with these choices, the hypotheses of Proposition 4.4 are
satisfied. Indeed, by definition of F2, the only Furstenberg–Kifer–Hennion subspaces
of V /W1 are V /W1 and {0}, i.e. F2(V /W1) = {0}. Thusβmin(V /W1) = λ1(V /W1) =
λ1((V /W )/F2) = λ1(V /W ) where the last equality follows from [19, Lemma 3.6].
Using the latter result oncemore, we have then λ1(W1) = max{λ1(W ), λ1(W1/W )} =
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max{λ1(W ), λ1(F2)} < λ1(V /W1) = βmin(V /W1). Therefore, we can apply Propo-
sition 4.4 and deduce that there exists a μ-stationary probability measure ν on
P(V )\P(W1) such that π̃∗ν = ν. It remains to show that ν is a lift of ν, i.e. π1∗ν = ν.
Since π̃ = π2 ◦ π1 and ν = π2∗ν, both measures π1∗ν and ν on P(V /W )\P(F2)
are lifts of ν. Applying the uniqueness result (Proposition 4.1) with V /W as ambi-
ent space, F2 as an invariant subspace and ν as a stationary measure on the quotient
(V /W )/F2, we deduce that π1 ∗ ν = ν as desired. Note that we can indeed apply
Proposition 4.1 since we have on the one hand α(ν) = λ1((V /W )/F2)—this follows
from our previous observation that all stationary measures on (V /W )/F2 have the
same cocycle average which is necessarily λ1((V /W )/F2)—and on the other hand
λ1((V /W )/F2) > λ1(F2). ��

4.4 Some consequences

Proof of Proposition 1.2 (1) If the sequence ηn := 1
n

∑n
i=1 μ∗i ∗ δx converges

weakly to ν then, by continuity of the projection map π : P(V )\P(W ) →
P(V /W ), the sequence π ∗ ηn = 1

n

∑n
i=1 μ∗i ∗ δx converges weakly to π ∗

ν = ν. Conversely, suppose that π ∗ ηn converges to ν. Let j ∈ {1, . . . , k}
be such that β j (V /W ) = α(ν) and denote W ′ := π−1(Fj+1(V /W )) >

W . Note that since ν(Fj+1(V /W )) = 0, x /∈ W ′. By Corollary 3.4,
βmin((V /W )/Fj+1(V /W )) = β j (V /W ) = α(ν). Using the�μ-equivariant iso-
morphism (V /W )/Fj+1(V /W ) � V /W ′, we deduce that βmin(V /W ′) = α(ν).
On the other hand, since W ′/W � Fj+1(V /W ), we deduce from Lemma
[19, Lemma 3.6] that λ1(W ′) = max{λ1(W ), β j+1(V /W )} < α(ν). Hence
βmin(V /W ′) > λ1(W ′). Since x /∈ P(W ′), Lemma 4.5 yields the tightness of the
sequence 1

n

∑n
i=1 μ∗i ∗ δx in P(V )\P(W ′). Now consider a limit point ζ of the

sequence ηn . Let (nk)k∈N be an increasing sequence such that ηnk → ζ weakly.
By tightness, ζ is a probability measure on P(V )\P(W ′) ⊂ P(V )\P(W ). Since
by hypothesis π ∗ ηn → ν weakly, we deduce from the continuity of π that
π ∗ ζ = ν. By Proposition 4.1, we deduce that ζ is the unique lift ν of ν. Thus
all limit points of ηn are the same, namely ν. This concludes the proof.

(2) The forward direction is direct thanks to the equivariance of the projection. For the
backward implication, by the same argument as in part (1), we findW ′ > W such
that βmin(V /W ′) > λ1(W ′) and such that x /∈ P(W ′). Then, (2) of Lemma 4.5
yields the tightness of the sequence of empirical means 1

n

∑n
i=1 δXi ···X1·x . Hence

by Breiman’s law of large numbers (see for example [8, Corollary 2.4]), any limit
point ν1 is a μ-stationary probability measure on P(V )\P(W ). Moreover, any
such limit point has ν as projection on P(V /W ′). But since there exists a unique
lift of ν, this implies that 1

n

∑n
i=1 δXi ···X1·x converges. ��

Proof of Corollary 1.3 By Theorem 3.1, eachμ-stationary ergodic probability measure
ν on P(V ) lives in some P(Fi )\P(Fi+1). Also its projection ν on the quotient Fi/Fi+1
satisfies α(ν) = λ1(Fi ) > λ1(Fi+1). The uniqueness assertion in Theorem 1.1 shows
then that ν is the unique lift of ν. ��
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Proof of Proposition 1.4 (1) Denote by ν the projection of ν on P(Fi/Fi+1). It is
a μ-stationary ergodic probability measure on P(Fi/Fi+1) and ν is its unique
lift by Theorem 1.1. Let x ∈ supp(ν)\P(Fi+1). Since �μ acts irreducibly on
Fi/Fi+1, we deduce from [7, Theorem 1.5] that the sequence of probability mea-
sures 1

n

∑n
k=1 μ∗k ∗δx converges to ν. By Proposition 1.2, we get that the sequence

1
n

∑n
k=1 μ∗k ∗δx converges to ν. Since this holds for every x ∈ supp(ν)\P(Fi+1),

we get that supp(ν)\P(Fi+1) is �μ-minimal in P(Fi )\P(Fi+1).
(2) The map is well-defined thanks to (1). Let us show that it is injective. Let ν1 and ν2

be twoμ-stationary ergodic probabilitymeasureswith S := supp(ν1) = supp(ν2).
Then, by [7, Theorem 1.5] π(S) supports a unique μ-stationary probability mea-
sure ν. Therefore π∗ν1 = π∗ν2 = ν. Then, the uniqueness assertion in Theorem
1.1 implies in turn that ν1 = ν2. It remains to prove its surjectivity. Consider a
�μ-minimal set S ⊂ P(Fi )\P(Fi+1) for some i . Without loss of generality, i
is minimal. The projection π(S) of S on P(Fi/Fi+1) is a �μ-minimal subset of
P(V /W ). By compactness π(S) supports a μ-stationary ergodic probability ν.
By irreducibility of Fi/Fi+1, all stationary measures on Fi/Fi+1 have the same
cocycle average. Hence α(ν) = βi > βi+1 = λ1(Fi+1). By Theorem 1.1, there
exists a μ-stationary lift ν on P(Fi )\P(Fi+1). Let x ∈ S. By Proposition 1.2 and
[7, Theorem 1.5], 1n

∑n
k=1 μ∗k ∗δx converges to ν. Since S is a�μ-invariant closed

subset of P(Fi )\P(Fi+1), Portemanteau theorem (applied in the P(Fi )\P(Fi+1))
insures that ν(S) = 1. Thus supp(ν)\P(Fi+1) ⊂ S. Since by (ii) �μ acts mini-
mally on S, we deduce that the latter inclusion is an equality. The surjectivity of
the map follows. ��

Remark 4.6 In Proposition 1.4, the support of an ergodicμ-stationary probabilitymea-
sure ν may not be minimal in P(V ). It is minimal if and only if the support of ν is
compact in P(Fi0)\P(Fi0+1).

Remark 4.7 (Invariance of cocycle average) In passing, we note that similar to the
corresponding statement in Theorem 5.1 (but perhaps less surprisingly), the unique
lift ν of ν satisfies α(ν) = α(ν). Indeed, clearly, α(ν) ≤ α(ν). On the other hand, ν is
a probability measure on P(Fν)\P(W ∩Fν)with λ1(W ∩Fν) ≤ λ1(W ) and Fν/(W ∩
Fν) � π(Fν) = Fν so that, by [19, Lemma 3.6], λ1(Fν) = λ1(Fν/(W ∩ Fν)) = α(ν)

and hence α(ν) ≤ α(ν).

5 Expanding case

This section is devoted to the proof of Theorem 1.5 and Corollaries 1.6 and 1.7 (and
their more general versions below) from the introduction. As explained in the intro-
duction, we start the proof of Theorem 1.5 by first proving a particular case (except for
the moment assumption) covering the purely expanding case, i.e. α(ν) < βmin(W ).

Theorem 5.1 (Purely expanding case: lifts only come from invariant subspaces) Let
μ be a probability measure on GL(V ) with a finite first moment and W a μ-invariant
subspace. Let ν be a μ-stationary and ergodic probability measure on P(V /W ) such

123



Stationary probability measures on projective spaces 2595

that

α(ν) < βmin(W ). (5.1)

Then, the following are equivalent:

(i) There exists a μ-stationary lift ν of ν on P(V )\P(W ).
(ii) There exists a �μ-invariant subspace W ′ of V in direct sum with W such that

P((W ′ ⊕W )/W ) is the projective subspace generated by ν.

In this case, there exists a uniqueμ-stationary lift ν of ν on P(V )\P(W ) and it satisfies
α(ν) = α(ν) = λ1(W ′).

For the proof, we will require the following version of a classical observation of
Furstenberg [16].

Lemma 5.2 Let μ be a probability measure on GL(V ) and ν a μ-stationary prob-
ability measure on P(V ). There exists finitely many subspaces W1, . . . ,Wr of V
such that

⋃r
i=1 Wi is �μ-invariant, ν(

⋃r
i=1 Wi ) = 1, ν(Wi ) = ν(Wj ) for every

i, j ∈ {1, . . . , r} and each Wi is of minimal dimension (among subspaces of P(V )

charged by ν).

Proof Let E := {W ≤ V | ν([W ]) > 0}. This is a non-empty subset of subspaces
of V . Let r := min{dim(W ) |W ∈ E}, E ′ := {W ∈ E | dim(W ) = r}, α :=
sup{ν([W ]) |W ∈ E ′} and F := {W ∈ E ′ | ν([W ]) = α}. By definition of r ∈ N,
ν([W∩W ′]) = 0 for everyW �= W ′ ∈ E ′. Thus 1 ≥ ν(

⋃
W∈F W ) =∑

W∈F ν(W ) =∑
W∈F α. Thus F must be finite. By stationarity, for any W ∈ F , α = ν(W ) =∫
ν(g−1W )dμ(g) and hence, by maximality of α, we deduce that for μ-almost every

g, gW ∈ F . This proves the claim. ��

Remark 5.3 In the setting of previous lemma, let ν be aμ-stationary and ergodic prob-
ability measure on P(V ) and W1, . . . ,Wr the finite subspaces given by that lemma.
ThenW1+· · ·+Wr = Fν ⊂ Fi(ν), where Fν and Fi(ν) are defined in Sect. 3.1. Indeed,
by minimality, each Wi is contained in F(ν) and W1 + · · · + Wr is a �μ-invariant
subspace of P(V ) charged by ν.

Proof of Theorem 5.1 We will prove that Fν ∩W = {0}, which will show the direction
(i) �⇒ (i i) by taking W ′ := Fν . The other implication is immediate. Denote by
π : V → V /W the canonical projection and let ν be a μ-stationary probability
measure on P(V )\P(W ) such that π∗ν = ν. Denote by {W1, . . . ,Wr } the subspaces
defined in Lemma 5.2 applied with ν. Necessarily π(Fν) = Fν ⊂ Fi(ν). Without loss
of generality, we can suppose that V = W + Fν so that λ1(V /W ) = λ1(π(Fν)) =
λ1(Fν) = α(ν).

(1) First, we eliminate the case W ⊂ Fν (i.e. V = Fν). For a contradiction, suppose
W ⊂ Fν . Since ν([W ]) = 0, W is necessarilya proper subspace of Fν . Up
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to passing to a subset B′ of B of β-full mass, we know by Furstenberg [16]
that for every b ∈ B′ there exists a probability measure νb on P(Fν) such that
Rn(b)ν −→ νb weakly. Let Hν be intersection of stabilizers of Wi for i =
1, . . . , r . Clearly, Hν is a finite index subgroup of the group Gμ generated by �μ

and let τ(1) < τ(2) < · · · be the sequence of hitting times of Hν , i.e. for every
n ∈ N and b ∈ B′, Rτ(n)(b) ∈ Hμ. Note that since Hν < Gμ is finite index, for
each n ∈ N, τ(n) is almost surely finite (and even has finite exponential moment).
Passing to a subsequence, we can then assume that

Rτ(n)(b)

||Rτ(n)(b)|| → � ∈ End(Fν). (5.2)

Since λ1(Fν/W ) = α(ν) < βmin(W ) ≤ λ1(W ), then necessarily Im(�) ⊂ W
(this follows for example by representing the elements in �μ as upper triangular

by block matrices

[
A B
0 C

]

with A representing the action onW and C the action

on Fν/W ). We claim that

∃i0 ∈ {1, . . . , r} such that ν([ker(�) ∩Wi0 ]) = 0 (5.3)

Indeed, W1 + · · · + Wr = Fν (see Remark 5.3). Since � �= 0 (as ‖�‖ = 1), we
conclude that there exists some i0 such that �|Wi0

�= 0. Identity (5.3) follows then

from the minimality of Wi0 among the set subspaces with positive ν-mass. Up to
reindexing, denote W1 = Wi0 .
Let us finally reach a contradiction from (5.3). Denote by ν|W1

the restriction
measure to W1. Since ν = ∫

νbdβ(b) (see [16]), then possibly by replacing B′
by a further subset of full measure, we can assume that νb(Wi ) > 0 for every
i = 1, . . . , r and b ∈ B′. Let then (νb)|W1

denote the restriction of νb to W1.
Since Rτ(n)(b) stabilizes W1 for every n ∈ N, Rτ(n)ν|W1

→ (νb)|W1
weakly.

On the other hand, using (5.2) and (5.3), one has also that Rτ(n)ν|W1
→ �ν|W1

.
Hence �ν|W1

= (νb)|W1
. Hence supp((νb)|W1

) ⊂ W1 ∩W . Thus νb([W1 ∩W ]) =
νb([W1]) > 0. Since ν = ∫

νbdβ(b), we conclude that ν([W ∩ W1]) > 0,
contradicting ν([W ]) = 0.

(2) Let now V1 := Fν and W1 := Fν ∩ W . The stationary measure ν lives in
P(V1)\P(W1). Sinceπ(Fν) = V1/W1 has a canonical�μ-equivariant embedding
in V /W , we can identify Fν with P(V1/W1).Moreover, sinceW1 is a�μ-invariant
subspace of W , βmin(W1) ≥ βmin(W ) > α(ν), unless W1 = {0}. Applying Case
(i) to V1, W1, ν and ν shows that W1 = {0} as desired.

This shows the equivalence between statements (i) and (ii) of the theorem. Now we
show the last statement. If ν is aμ-stationary probabilitymeasure on P(V )\P(W ) that
lifts ν, then by (ii), necessarily α(ν) = α(ν) (since Fν is a �μ-invariant complement
ofW and is �μ-equivariant isomorphic to Fν). Finally, to see the uniqueness claim, let
ν′ be another lift of ν in P(V )\P(W ). By the same argument as in the beginning of
the proof, we have π(Fν′) = Fν = π(Fν). Since Fν (and similarly Fν′ ) are in direct
sum with W , this implies that W ⊕ Fν = W ⊕ Fν′ . This implies Fν = Fν′ and hence
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that ν = ν′ (as Fν is �μ-isomorphic to Fν). Indeed, if not, we can find v′ ∈ Fν′ such
that v′ = w + v with w ∈ W\{0} and v ∈ Fν . Since V = W ⊕ Fν is a �μ-invariant
decomposition, we have that almost surely lim 1

n log ||Lnv
′|| ≥ lim 1

n log ||Lnw||.
Since w �= 0, we have by definition of βmin(W ) (see Theorem 3.1) that almost surely

lim
1

n
log ‖Lnv

′‖ ≥ βmin(W ).

On the other hand, since v′ ∈ Fν′ and Fν′ is a �μ-invariant subspace of V with top
Lyapunov exponent equal to α(ν′) = α(ν), we have

lim
1

n
log ‖Lnv

′‖ ≤ α(ν).

This contradicts α(ν) < βmin(W ). ��
Proof of Theorem 1.5 Let ν be as in the statement.
(i i) �⇒ (i): Suppose that such a W ′ exists and let V ′ := W + W ′.
Then V ′/Fj+1(W ) = W/Fj+1(W ) ⊕ W ′/Fj+1(W ). The �μ-invariant subspace
W ′/Fj+1(W ) is �μ-equivariantly isomorphic to V ′/W and hence ν lifts to a μ-
stationary probability measure ν1 on W ′/Fj+1(W ). Clearly, α(ν1) = α(ν) =
λ1(V ′/W ), where the last equality is due to the fact that P(V ′/W ) is the subspace
generated by the support of ν. Since α(ν) > β j+1(W ), Theorem 1.1 (contracting
case) applied to W ′ as ambient space, Fj+1(W ) as invariant subspace and ν as a
μ-stationary probability measure on the quotient, yields a μ-stationary lift of ν1 on
P(W ′)\P(Fj+1(W )) ⊂ P(V )\P(W ) and clearly, ν1 projects to ν.

(i) �⇒ (i i): Suppose there exists a lift ν of ν in P(V )\P(W ). Let Fν be
the subspace of V /W generated by the support of ν and let V ≥ Vr > W be
its pre-image in V . Clearly, ν is supported in P(Vr ) and hence it is a lift of ν

to P(Vr )\P(W ). Since ν gives zero mass to P(W ) and hence to P(Fj+1(W )), it
projects to a measure ν1 on P(Vr/Fj+1(W )) that gives zero mass to P(W/Fj+1(W )).
The push-forward of ν1 by the natural projection Vr/Fj+1(W ) → Vr/W is
precisely ν. This means that there is a lift ν1 of ν from the projective space
of Vr/W � (Vr/Fj+1(W ))/(W/Fj+1(W )) to P(Vr/Fj+1(W ))\P(W/Fj+1(W )).
However, by 2. of Corollary 3.4, βmin(W/Fj+1(W )) = β j (W ) > α(ν) and hence
the hypotheses as well as (i) of Theorem 5.1 is satisfied. This result then implies
that there is a Gμ-invariant subspace W ′ < Vr containing Fj+1(W ) such that
W ′/Fj+1(W ) and W/Fj+1(W ) are in direct sum and the subspace generated by ν

is P((Vr/Fj+1(W ))/(W/Fj+1(W ))) � P(W +W ′/W ). This completes the proof of
(i) ⇐⇒ (i i). It remains to prove the additional claims. So suppose, (i) and (ii). We
have the following diagram:
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P(Vr )\P(W )

P(Vr/Fj+1W ))\P(W/Fj+1(W ))

P(Vr/W )

ν

ν1

ν

Theorem 1.1

Theorem 5.1

Theμ-stationary probabilitymeasure ν determines uniquely the stationarymeasure
ν1 by Theorem 5.1, which itself has a uniqueμ-stationary lift on P(Vr )\P(W ) thanks
to Theorem 1.1. The uniqueness claim follows. Finally, α(ν) = α(ν1) = α(ν), where
the first equality follows from Theorem 5.1 and the second one by Remark 4.7. ��

Here is a consequence which is a more general version of Corollary 1.6 from the
introduction.

Corollary 5.4 Suppose λ1(V /W ) < λ1(W ) and that Furstenberg–Kifer–Hennion
exponents of V /W are distinct from those of W. Then, there exists aμ-stationary prob-
ability measure on P(V )\P(W ) if and only if there exists a�μ-invariant subspace W ′
of V such that W ∩W ′ ⊂ Fj+1(W ) for some j = 1, . . . , k and β j+1(W ) < λ1(W ′).

Proof It follows from hypotheses that any μ-stationary probability measure ν on
P(V /W ) satisfies α(ν) < λ1(W ). The condition is then necessary thanks to The-
orem 1.5. Suppose now that such a �μ-invariant subspace W ′ and such a FKH space
Fj+1(W ) exist. Without loss of generality we can assume that j + 1 is the minimal
index such that β j+1(W ) < λ1(W ′). Let ν be a μ-stationary probability measure on
W ′/(W ′ ∩ Fj+1(W )) with top cocycle average. Since β j+1(W ) < λ1(W ′), α(ν) =
λ1(W ′). Replacing if necessaryW ′with the preimage of Fν by the canonical projection
W ′ −→ W ′/(W ′ ∩ Fj+1(W )), we can also assume that Fν = W ′/(W ′ ∩ Fj+1(W )).
We will check that the �μ-invariant subspace W ′′ := W ′ + Fj+1(W ) of V satis-
fies the requirements of Theorem 1.5 (ii). First, since W ∩ W ′ ⊂ Fj+1(W ) ⊂ W ,
we have clearly that W ∩ W ′′ = Fj+1. This yields a �μ-equivariance isomorphism
W ′/(W ′ ∩ Fj+1(W )) � (W + W ′′)/W < V /W . We can then pushforward ν to a
μ-stationary probability measure on V /W whose subspace generated by its support
is P((W +W ′′)/W ) (without changing its cocycle average). The stationary measure
we obtain will be denoted also by ν for simplicity. Finally, by minimality of j + 1, we
have β j+1(W ) < α(ν) < β j (W ).

Theorem 1.5 gives then a μ-stationary probability measure on P(V )\P(W ). ��
Note thatCorollary 1.6 follows immediately from the previous one since the hypoth-

esis λ1(V /W ) < βmin(W ) forces j = k in which case Fj+1 = {0}.
We end this section by showing an equidistribution result for the (unique) lift of

ν, when it exists. This will be a direct consequence of the similar result shown in the
contracting case and the proof done above.
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Corollary 5.5 Keep the same assumption as in Theorem 1.5. Assume that ν has a μ-
stationary lift on P(V )\P(W ). Then for x ∈ P(V )\P(W ), 1

n

∑n
i=1 μi ∗ δx → ν if

and only if 1
n

∑n
i=1 μi ∗ δx → ν.

Proof We will use the diagram in the proof of Theorem 1.5. Since the bottom-right
arrow (i.e. the correspondence between ν1 and ν) is given via a �μ-equivariant linear
isomorphism between Vr/W and the complement of W/Fj+1(W ) in Vr/Fj+1(W ),
an equidistribution statement of ν is equivalent to an equidistribution statement for ν1.
For the top-right arrow, we are in the setting of the contracting case. Hence the claim
follows from Proposition 1.2. ��

Here is a consequence of Theorem 1.5 (mixed case) that allows a slight refinement
of the results of Furstenberg–Kifer [19] and Hennion [27] regarding the supports of
stationary measures in P(V ).

Corollary 5.6 Let μ be a probability measure on GL(V ) with finite first moment. Fix
a Euclidean structure on V and let μt denote the image of μ by transpose map. Let
V = F1(μt ) > F2(μt ) > · · · > F�(μ

t ) be the Furstenberg–Kifer filtration of μt

with associated exponents λ1(μ) = β1(μ
t ) > β2(μ

t ) > · · · > β�(μ
t ). Given a

FKH exponent βr (μ), let r ′ ≥ 1 be the largest index with βr ′(μt ) ≥ βr (μ) and set
Vr ,μ := Fr ′+1(μt )⊥ ∩ Fr (μ). Then,

(1) Vr ,μ is a non-trivial subspace of Fr (μ) such that any μ-stationary probability
measure ν with α(ν) = βr (μ) is supported in P(Vr ,μ).

(2) Vr ,μ is alternatively characterized as the minimal (for the inclusion) μ-invariant
subspace W of Fr (μ) such that λ1(Fr (μ)/W ) < βr (μ).

Since the proof involves juggling betweenμ andμt and various invariant spaces, for
clarity, given aμ-invariant spaceW , we write λ1,μ(W ) for the top Lyapunov exponent
of μ on W . Moreover, we use the term μ-Lyapunov spectrum of W , to describe the
set of Lyapunov exponents of μ on W with multiplicities.

Proof We start by two observations. First, for any subspace W < V that is μ and
μt invariant, we have the equality of Lyapunov exponents λi (μ) = λi (μ

t ) for every
i = 1, . . . , dimW . Second, for any μ-invariant subspace W , W⊥ is μt -invariant and
the μ-Lyapunov exponents (with multiplicities) appearing in V /W are the same as
μt -Lyapunov exponents appearing in W⊥ (see [27, Proposition 1] or [1, Corollary
3.8]). Let r and r ′ be as in the statement.

(1) We first show that Vr ,μ is a non-trivial subspace of Fr (μ). Indeed, if it is trivial,
this implies that V = Fr ′+1(μt ) + Fr (μ)⊥, where the last two are μt -invariant
subspaces. By the observation above, βr (μ) is aμt -Lyapunov exponent and hence
its multiplicity on V must be less than or equal to the sum of its multiplicities inμt -
Lyapunov spectra of Fr ′+1(μt ) and Fr (μ)⊥. The maximal μt -Lyapunov exponent
in Fr ′+1(μt ) isβr ′+1(μt ) < βr (μ). So all contribution toβr (μ)-multiplicity comes
from μt -Lyapunov spectrum of Fr (μ)⊥. On the other hand, by the observation
above, theμt -Lyapunov spectrumof Fr (μ)⊥ are the sameasμ-Lyapunov spectrum
of V /Fr (μ). But since Fr (μ) has top μ-Lyapunov βr (μ), this means that the μ-
Lyapunov spectrum of V /Fr (μ) has one copy of βr (μ)-missing compared to that
of V which results in a contradiction, showing the claim.
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Let ν be a μ-stationary ergodic probability measure with α(ν) = βr (μ). By
ergodicity and since Vr ,μ is μ-invariant, ν(Vr ,μ) is zero or one. Suppose for a con-
tradiction that it is zero. So we have ν(Fr (μ)\Vr ,μ) = 1 and hence we can project
ν onto a μ-stationary probability measure ν on Fr (μ)/Vr ,μ. But as Fr (μ)/Vr ,μ �
(Fr ′+1(μt )⊥ + Fr (μ))/Fr ′+1(μt )⊥ and by the initial observation above, the μ-
Lyapunov spectrum of (Fr ′+1(μt )⊥+Fr (μ))/Fr ′+1(μt )⊥ is the same asμt -Lyapunov
spectrum of Fr ′+1(μt ), which is bounded above by βr ′+1(μt ) < βr (μ). Hence, the
topμ-Lyapunov exponent λ1,μ(Fr (μ)/Vr ,μ) of Fr (μ)/Vr ,μ is strictly less than βr (μ).
Since λ1,μ(Fr (μ)) = βr (μ), this also implies that λ1,μ(Vr ,μ) = βr (μ). Therefore,
α(ν) ≤ λ1,μ(Fr (μ)/Vr ,μ) < βr (μ). So letting V ′ = Fr (μ) and W ′ = Vr ,μ, and
considering ν on P(V ′/W ′), we are in the setting of Theorem 1.5 and this theorem
implies that if ν has a lift to P(V ′)\P(W ′), the lift has the same cocycle average as ν.
But ν is a lift of ν and α(ν) = βr (μ) > α(ν), yielding a contradiction and concluding
the proof.

(2) Let W be a proper subspace of Vr ,μ satisfying λ1,μ(Fr (μ)/W ) < βr (μ). By
properness, Fr ′+1(μt ) is properly contained in the μt -invariant subspace W⊥ and
henceW⊥ hasμt -topLyapunov exponentλ ≥ βr ′(μ) ≥ βr (μ). Since by the initial
observation, the μ-Lyapunov spectrum of Fr (μ)/W is the same as μt -Lyapunov
spectrum ofW⊥, we get a contradiction to λ1,μ(Fr (μ)/W ) < βr (μ) and the proof
is done. ��

6 Stationarymeasures on non-reductive algebraic homogeneous
spaces

As mentioned in the introduction (Sect. 1.3), our results have direct consequences
and reformulations from the point of view of homogeneous dynamics. We now dis-
cuss this aspect more in detail by proceeding with a case analysis describing (and
commenting on) various situations that occur when trying to describe stationary mea-
sures on algebraic homogeneous spaces. Our result (Theorem 6.1) pertains to the case
2.b. below.

6.1 A case analysis

Let G be (the real points of) a real algebraic group, U its unipotent radical and L a
(reductive) Levi factor so that we have a Levi-decomposition G = L � U . Let μ be
a probability measure on G. We say that it has a finite first moment if its image in a
(equivalently, in any) faithful algebraic representation of G has a finite first moment.
We break the analysis of μ-stationary measures on G/H into several cases as follows.

1. (Reductive quotients) The work of Benoist–Quint [7] allows one to
give a complete description when G is a reductive group (i.e. U = {id}) and μ

is a Zariski-dense probability measure on G. Their results imply that, for such a
probability μ, there exists a μ-stationary probability measure on G/H if and only
if H is cocompact in G.
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2. (Non-reductive quotients) Suppose now thatG is not reductive, i.e.U
is non-trivial. Consider an algebraic subgroup H of G and let L0 be its projection
to the Levi factor of G. In view of the G-equivariant projection

G/H → L/L0

any μ-stationary probability measure on G/H descends to a μ-stationary proba-
bility measure on L/L0, for any probability measure μ on G. We now have two
essentially different situations:

2.a. (Levi projection does not contain a maximal split
solvable) Since L is reductive, if the image μL of μ under the natural
projection G → L is Zariski-dense (e.g. if �μ is Zariski dense in G), then
we are back to the setting of 1. on the base L/L0. In particular if L0 is not
cocompact in L , there does not exist any μ stationary probability measure
on G/H for such a probability μ. Notice that as for 1., this non-existence of
stationary measures applies for any Zariski-dense probability measure μ on
G, a situation which will be in contrast with the following case.
2.b. (Levi projection contains a maximal split solvable)
Suppose finally that L0 contains a maximal R-split solvable subgroup of L . In
this case, by compactness, for any probability measure μ on G, there always
exists aμL -stationary probability measure on L/L0, however it is far less clear
whether they lift to μ-stationary measures on the total space G/H . The partic-
ular case when G = GLd(R) � R

d , U0 is the trivial group and L0 = GLd(R)

(i.e. the base L/L0 is trivial) comprises the extensively studied area of sta-
tionary measures on affine spaces, we refer to the work of Bougerol–Picard
[9]. In the latter case, for a Zariski-dense probability μ on G, in contrast
with 1. and 2.a, the existence of a μ-stationary probability measure on G/H
strongly depends on the Lyapunov exponents of μL appearing in the standard
representation of GLd(R). The more recent work of Benoist–Bruère [6] shows
that this feature also exists in a more general case consisting of a concrete class
of quotients (namely G as in the affine case above and H = P � R

k , where
P is the stabilizer in GLd(R) of a k-dimensional subspace in R

d ). As we now
discuss, the latter results can be extended and refined under block Lyapunov
domination assumptions by using our results.

From now we assume that the unipotent radical U of G is a vector group
(i.e. abelian). In what follows, we identify U with its Lie algebra u. We consider
a subgroup H of G of type H = L0 �U0, whereU0 is a connected (closed) subgroup
of U and L0 is its normalizer in L . We suppose that L0 contains a R-split solvable
subgroup of L and hence it is co-compact in L .

Given a probability measure μ on G, to study μ-stationary probability measures
on G/H , we will find appropriate representations of G. To do so, we let G act on u
by affinities with the linear part given by the action of L on u (which is the restriction
of the adjoint representation) and U acting on itself by translation, namely

(l, u) · w := l · w + u.
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One readily checks that this gives a morphism from G to the group Aff(u). Also, it
is easy to see that H is the stabilizer of the affine space {0} + u0 in u. We can now
linearize this affine action by letting V ′ := u⊕ R and G act linearly on V ′ via

(l, u) · (w, t) = (tu + l · w, t). (6.1)

The subgroup H of G is precisely the stabilizer of the subspace S := u0⊕R. Finally,
letting V = ∧dim S V ′, W = ∧dim S u and W0 = ∧dim S S, we get a representation
of G in GL(V ) such that W < V is G-invariant and H is the stabilizer of the line W0
which does not lie in the subspace W .

Therefore, by considering the resulting continuousG-equivariant injectionψ given
by

G/H
ψ−→ P(V )\P(W )

gH 
−→ gW0,
(6.2)

we obtain the following commutative diagram

G/H P(V )\P(W )

L/L0 P(V /W ) � P(
∧dim u0 u)

ψ

ψ

(6.3)

Here, the vertical arrows are the canonical projections. The map ψ is given by l L0 →
l ∧dim u0 u0, and it is easy to see that it is a G-equivariant homeomorphism onto its
closed image. The same is true of ψ , see Lemma 6.3 below.

In short, under the corresponding dynamical assumptions, diagram (6.3) allows
us to bring our analysis concerning the right-column of (6.3) back to an analysis of
stationary measures on G/H (and correspondence between stationary measures on
L/L0 and on G/H ). Using the representation (6.1) and notation thereof, we express
this in the following result.

Theorem 6.1 LetG, L0 < L < G,U0 < U and H = L0�U0 beas aboveand suppose
that the unipotent radical U is abelian. Let d be the dimension of U and k that of U0.
Given a probability measure μ on G with finite first moment, let λ1 ≥ · · · ≥ λd be the
Lyapunov exponents of μL in the adjoint representation on the Lie algebra u of U.

(1) (Contracting case) For anyμL-stationary ergodic probability measure ν on L/L0
such thatα(ψ∗ν) > λ1+· · ·+λk+1, there exists a uniqueμ-stationary probability
measure on G/H that lifts ν. In particular, if λk+1 < 0, then there exists a μ-
stationary probability measure on G/H. Moreover, if βmin(

∧k u) > λ1 + · · · +
λk+1, then the projection G/H → L/L0 induces a bijection

Mμ(G/H) �MμL (L/L0).
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(2) (Expanding andmixed case) Let ν be aμL-stationary ergodic probability measure
on L/L0. Suppose that α(ψ∗ν) ≤ λ1+· · ·+λk+1 and α(ψ∗ν) is distinct from any
Furstenberg–Kifer–Hennion exponent of �k+1u. Then there exists a μ-stationary
lift of ν on G/H if any only if there exists a �μ-invariant subspace W ′ of V such
that W ′ ∩ W is Fr (W ) � W, λ1(W ′) = α(ψ ∗ ν) and (W ′ + W )/W is the
subspace generated by the support of ψ∗ν, where r ≥ 2 is the smallest index such
that βr (W ) < α(ψ∗ν). In these cases, the lift of ν is unique.

We single out as a corollary the following version of the conclusion (2) above that
one can obtain under an algebraic assumption on �μ. This version will be useful in
the treatment Corollary 1.8 from the introduction.

Corollary 6.2 Assume moreover that the unipotent radical of the Zariski-closure �
Z
μ

of �μ is contained in U. Then, the consequence (2) of Theorem 6.1 can be replaced
with the following:

(2) (Partial expansion) Let ν be a μL-stationary ergodic probability measure on
L/L0. Suppose that α(ψ∗ν) ≤ λ1 + · · · + λk+1 and α(ψ∗ν) is distinct from any
Furstenberg–Kifer–Hennion exponent of �k+1u. Then there exists a μ-stationary
lift of ν on G/H if any only if the subspace R <

∧k u generated by the support
of ψ∗ν in

∧k u satisfies the following: for any (equivalently there exists a) couple

(Sμ, t) where Sμ is a Levi subgroup of �
Z
μ and t ∈ U such that t Sμt−1 < L, for

every (�, u) ∈ t�
Z
μ t
−1 and x ∈ R, we have � · x ∧ u ∈ Fr (

∧k+1 u) where r ≥ 2 is

the smallest index such that βr (
∧k+1 u) < α(ψ∗ν). Moreover, the lift is unique.

This statement has the advantage that the conditions that appear in it only concerns
(exterior powers of) the adjoint representation of G. Note for example that in the
above corollary, up to conjugating μ, t can be taken to be the identity element and
if kth and (k + 1)th exterior powers of the Lμ-representation u are irreducible, then

the last condition above is satisfied if any only if �
Z
μ is a reductive group. So it says

that such a μ-stationary probability measure ν on L/L0 can be lifted if and only if the

unipotent radical of �
Z
μ is trivial.

We now proceed to prove Theorem 6.1 and its Corollary 6.2. The proof will be
guided by the commuting diagram (6.3). We start by proving the following.

Lemma 6.3 The map ψ : G/H → P(V )\P(W ) defined in (6.2) is closed.

Proof It suffices to show that ψ is proper. To do this, let gnH be a sequence in
G/H that escapes any compact in G/H . By definition of ψ , we need to show that
any limit point of gnW0 in P(V ) belong to P(W ). Writing gn ∈ L � U as a tuple
(ln, un) ∈ L×U , since any compact inG is contained in a set of type {(g, h) ∈ A×B :
A < L and B < U are compacts}, the condition on gn is equivalent to saying that
(ln, un) eventually escapes any subset of G of the form (A × B)H with A < L and
B < U compact. By cocompactness of L0 in L , this is equivalent to require that for
every every compact subsets A < L and B < U and every large enough n ∈ N,
we have un /∈ B + A · U0. Recall also that V = ∧dim S V ′ and W = ∧dim S u and
S = u0 ⊕ R. To show the convergence gn

∧dim S S → P(W ) in P(V ), it suffices to
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show that anyw = (u0, t) ∈ Swith t �= 0, any limit point of gnRw in P(u⊕R) belong
to P(u). Now using the representation formula (6.1), we get that for such w ∈ S, we
have gnw = (tun + lnw, t). Therefore we have to show that tun + lnw → ∞ in U .
But if the latter does not go to infinity, it is contained in a compact B < U and hence
un ∈ B + lnU0 for infinitely many n ∈ N. Since U0 has cocompact stabilizer in L by
assumption, we deduce that un ∈ B+ AU0 for some compact A ∈ L and for infinitely
many n ∈ N, contradicting the assumption gnH →∞ in G/H . ��
Remark 6.4 The reason why the fact that the image of ψ being closed is relevant
to show the existence of stationary probability measures on G/H is related to our
approach and it is explained as follows. In the contracting case, we will construct a
stationary measure on G/H by using the recurrence of the induced Markov chain on
P(V )\P(W ). Starting from a point x := ψ(gH) ∈ P(V ), any limiting stationary
measure of the sequence 1

n

∑n−1
k=0 μ∗k ∗ δx lives in the closure ψ(G/H). Hence if ψ

is proper, we can “pull-back” the stationary measure on ψ(G/H) = ψ(G/H) and
obtain a stationary measure on G/H .

Proof of Theorem 6.1 We let G act on u ⊕ R by (6.1). Since u acts trivially on W =∧k+1 u and V /W , the Lyapunov/Furstenberg–Kifer–Hennion exponents of μ on W
and V /W are those of μL . The top Lyapunov exponent for W is λ1 + · · · + λk+1 and
for V /W is λ1+ · · · + λk for the latter (since V /W �∧k u as L-module). Therefore
λ1(W )− λ1(V /W ) = λk+1.

(1) Since α(ν) > λ1 + · · · + λk+1 = λ1(W ), we are in the setting of Theorem 1.1
and Proposition 1.2. By Chacon–Ornstein Theorem, the set

{

x ∈ L/L0 : lim
n→∞

1

n

n−1∑

k=0
μ∗kL ∗ δx = ν

}

has full ν-measure, so let x belong to this set. Let x ∈ G/H be such that its image
under the natural projection G/H → L/L0 is x . Now, it follows from the choice
of x and L-equivariance of ψ that we have

lim
n→∞

1

n

n−1∑

k=0
μ∗kL ∗ δψ(x) = ψ∗ν.

It follows from Proposition 1.2 and Theorem 1.1 that the sequence 1
n

∑n−1
k=0 μ∗k ∗

δψ(x) converges to a μ-stationary probability measure ν1 which is the unique
lift of ψ∗ν. But since the map ψ is a homeomorphism onto its closed image in
P(V )\P(W ), ν1 is supported in ψ(G/H) and hence pulls-back to a μ-stationary
probability measure ν on G/H which is hence the unique lift of ν on L/L0. The
other conclusions are direct consequences.

(2) Let ν be given as in the statement. Since λk+1 > 0 there exists r ≥ 2 such that

βr (W ) < α(ψ∗ν) < βr−1(W ).
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In other words, the condition (5.1) in Theorem 1.5 is satisfied for the �μ-
representation on V =∧k+1

(u⊕ R) and W =∧k+1 u.
Now suppose there exists a μ-stationary lift of ν in G/H , call it ν. Then ψ∗ν is a

lift of ψ∗ν and hence condition (i) of Theorem 1.5 is satisfied. This result then gives
that there exists a �μ-invariant subspace W ′ of

∧k+1
(u⊕R) such that W ′ ∩∧k+1 u

is Fr (
∧k+1 u) �

∧k+1 u, λ1(W ′) = α(ψ ∗ ν) and (W ′ + W )/W is the subspace
generated by the support of ψ∗ν.

Conversely, suppose the �μ-invariant subspace W ′ <
∧k+1

(u⊕R) has the stated
properties. Then, the hypotheses and (ii) of Theorem 1.5 are satisfied, and there exists
then a μ-stationary lift ν of ν on P(V )\P(W ). By Chacon–Ornstein, we can find x ∈
ψ(L/L0) such that 1

n

∑n−1
k=0 μ∗kL ∗δx → ψ∗ν as n→∞. So let x ∈ ψ(G/H) be such

that its image under the projection P(V )\P(W )→ P(V /W ) is x . ApplyingCorollary

5.5, we get that 1
n

∑n−1
k=0 μ∗k ∗ δx converges to ν. But since x ∈ ψ(G/H) and, thanks

to Lemma 6.3, ψ(G/H) is closed, it follows that ν is supported in ψ(G/H) which
hence yields a μ-stationary probability measure on G/H that projects to ν. Finally,
the claim about uniqueness follows from the corresponding assertion in Theorem 1.5.

��
Wewill now deduce Corollary 6.2 from (2) of Theorem 6.1. We first need a lemma.

Lemma 6.5 Let G be a real linear algebraic group and G = L � U a Levi decom-
position of G. Let ρ : G → GL(V ) be an algebraic representation, μ a probability
measure on G and μL := π∗μ where π : G → L is the canonical projection. Then
the μ-Lyapunov spectrum of V is the same as μL-Lyapunov spectrum of V .

Proof We proceed by induction on dim V . If dim V = 0, the claim is trivially true.
Suppose dim V ≥ 1 and letW := V ρ(U ) be the subspace ρ(U )-fixed vectors. By Lie–
Kolchin theorem, dimW ≥ 1. Since U is normal in G, W is G-invariant. Therefore,
ρ induces a representation ρW : G → GL(W ) andU is in the kernel of ρW . It follows
that μ-Lyapunov spectrum of W is the same as μL -Lyapunov spectrum of W . Using
[27, Proposition 1] (or [1, Corollary 3.8]), since dim V /W < dim V , the claim follows
by induction. ��
Proof of Corollary 6.2 We first show the sufficiency ( �⇒ ) direction. Given ν on
L/L0 as in the statement suppose there exists a lift on G/H . By the conclusion in

(2) of Theorem 6.1, there exists �
Z
μ-invariant subspace W

′ of V such that W ′ ∩W is

Fr (W ) � W , λ1(W ′) = α(ψ∗ν) and (W ′ + W )/W is the subspace generated by the
support of ψ∗ν, where r ≥ 2 is the smallest index such that βr (W ) < α(ψ∗ν). Let

Sμ be a Levi subgroup of �
Z
μ and t ∈ U any element such that t Sμt−1 < L (such an

element t ∈ U does exist, see [28, VIII. Theorem 4.3]). Note that π(�
t
μ) = π(�

Z
μt

),
where μt is the probability measure tμt−1 on G obtained by pushingforward μ by
conjugation by t . We now claim that

tW ′ ⊂ Fr ⊕
(

k∧
u⊗ R

)

. (6.4)
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Clearly tW ′ is �
Z
μt
-invariant and hence Sμt -invariant. But by the additional algebraic

hypothesis (i.e. that the unipotent radical of �
Z
μ is contained in U ), it follows that

π(�
Z
μt

) = Sμt . Thus tW
′ is π(�

Z
μt

)-invariant.

Now, suppose (6.4) does not hold. Since V = W ⊕ (
∧k u⊗R), there would exist

a vector x ∈ tW ′ whose projection xW on W parallel to (
∧k u⊗ R) does not belong

to Fr . On the one hand, since xW /∈ Fr , then the exponential growth of ‖LnxW‖ of
the μL = μt,L -random walk is at least βr−1(W ) > α(ψ ∗ ν) (recall that the FKH
exponents and spaces on W are the same for μ and μL because U acts trivially on
W ). On the other hand, since tW ′ is π(Gμ,t )-invariant, then the exponential growth of
‖Lnx‖ is at most λ1,μt,L (W

′). But, by Lemma 6.5, we have λ1,μt,L (W
′) = λ1,μt (W

′).
Since λ1,μt (W

′) = λ1,μ(W ′) > α(ψ ∗ ν), we deduce that ‖Lnx‖ ≤ ‖LnxW‖ for
all large n. This contradicts the fact that the projection on W parallel to

∧k u⊗ R is
L-equivariant and Claim (6.4) follows.

Now taking R′ := tW ′ ∩ (
∧k u⊗R), we get that R′ is a Sμ-invariant subspace of

V that is contained in
∧k u ⊗ R. Since tW ′ > Fr , we have tW ′ = Fr ⊕ R′. Since

tW ′ is Gμt -invariant, we also have that for every g ∈ Gμt , gR
′ ⊆ R′ + Fr . Since

R′ ⊂ ∧k u ⊗ R, we have R′ = R ⊗ R where R is the subspace (W ′ + W )/W of
∧k u � V /W which is the subspace generated by the support of ψ∗ν. Finally, since
tW ′ isGμt -invariant, for any g = (l, u) ∈ Gμt and x ∈ R, we have g·(x∧ξ) ∈ R′+Fr .
By formula (6.1), g · (x ∧ ξ) = lx ∧ (ξ + ξu) = lx ∧ ξ + ξ(lx ∧ u) ∈ tW ′. Since tW ′
contains Fr and hence its projection to

∧k u⊗ R, we have lx ∧ u ∈ Fr , as claimed.
This completes the proof of the sufficiency.

We now prove the converse (⇐� ) direction. Suppose there exists a Levi factor Sμ

of �
Z
μ and t ∈ U such that the subspace R <

∧k u generated by the support of ψ∗ν
has the stated properties. Let R′ = R⊗R < V andW ′ = R′ +Fr (

∧k+1 u). It follows
by the stated property of R that W ′ is Gμt−1 -invariant. Now noting that μL = μt−1,L ,

we can apply the converse direction of (2) in Theorem 6.1 for the measure μt−1 and
deduce that there exists a μt−1 -stationary lift νt−1 of ν. Then, the measure ν = tνt−1
is a μ-stationary lift of ν, completing the proof. ��

6.2 Some consequences

To give explicit examples fitting into the setting of Theorem 6.1, notice that one can
take any algebraic representation U of a reductive group L and form the algebraic
group G = L � U whose unipotent radical is the vector group U . Letting L0 be a
parabolic subgroup of L given by the stabilizer of a subspace U0 < U and setting
H = L0 � U0, we are in the setting of Theorem 6.1. We treat two examples (the
second one is Corollary 1.8).

Example 6.6 (Benoist–Bruère [6]) Let L = GLd(R) with its standard action on U =
R
d . Given a subspace U0 < U , let L0 < L be the stabilizer of U0 in L , which, in

this case, is a parabolic subgroup. In this case, except for the “critical” case λk = 0,
Corollary 6.2 implies [6, Theorem 1.3].
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We now proceed to prove Corollary 1.8. The representations appearing in it are
not proximal (neither irreducible) and hence it constitutes a new example that can be
treated in dominated cases by our results (and not directly by [1, 6, 9]).

Proof of Corollary 1.8 We first set up the homogeneous setting so as to apply Theorem
6.1 and its Corollary 6.2. Let L = GL4(R) act naturally on u = R

4 and G := L � u.
Let (e1, . . . , e4) be the canonical basis of u = R

4. For convenience in calculations, we
realize SL2(C) as a subgroup of SL4(R) preserving the complex structure given by the

linear transformation J =
[
J1 0
0 J1

]

with J1 =
[
0 −1
1 0

]

. For k ∈ {1, 2, 3}, denote
by u0,k the subspace 〈e1, . . . , ek〉. Set also u0,0 = {0}. Let L0,k < L be the maximal
parabolic subgroup given by the stabilizer of u0,k in L and set Hk = L0,k �u0,k . Then,
we have Xk,4 � G/Hk and, for each k = 0, . . . , 3, the assertions in Corollary 1.8 are
equivalent to the corresponding ones onG/Hk . Having defined the algebraic groupsG
and H , we now note that for k = 1, . . . , 3, themapψ : L/L0 → P(

∧k
R
4) appearing

in Theorem 6.1 is given by �L0 
→ � ∧k u0,k ; for k = 0, L/L0 and P(
∧0

R
4) are

singletons, so the map ψ is trivial.
Let nowμ be a probability measure onG such that�μ is Zariski dense in SL2(C)�

U < G and μL its projection on SL2(C). We now make some observations on the
representations of SL2(C) on

∧k
R
4 and the Lyapunov exponents.

• To describe the Lyapunov exponents of μL on u = R
4, note that representation

of SL2(C) on R
4 is irreducible with proximality index two and the R-split torus

of SL2(C) is one-dimensional. Hence it follows from the work of Goldsheid–
Margulis [21] (see [8, Lemma 6.23, Corollary 10.15]) that the Lyapunov exponents
of μL (or equivalently μ) acting on R

4 are of the form λ1 = λ > 0, λ2 = λ,
λ3 = −λ and λ4 = −λ. Finally, F2(R4) = {0} (since SL2(C)�R

4 irreducibly).
• The representation of SL2(C) on

∧2
R
4 is reducible. More precisely,

∧2
R
4 =

E ⊕ F where E = 〈e1 ∧ e2, e3 ∧ e4, e1 ∧ e3 + e2 ∧ e4, e1 ∧ e4 − e2 ∧ e3〉 and
F = 〈e1 ∧ e4 + e2 ∧ e3, e1 ∧ e3 − e2 ∧ e4〉, with SL2(C) acting irreducibly on E
and acting trivially on F . The Lyapunov exponents of μL on E are 2λ, 0, 0− 2λ
and those on F are 0, 0. We have F2(

∧2
R
4) = F .

• The representation of SL2(C) on
∧3

R
4 is isomorphic as SL2(C)-module to the

chosen representation on R
4.

• Finally, SL2(R
4) acts trivially on

∧4
R
4.

We now prove each assertion corresponding to k = 0, 1, 2, 3.

(1) Case k = 0. The quotient L0/L0,0 is trivial and the (unique) μ-stationary prob-
ability measure ν on L0/L0,0 satisfies α(ψ ∗ ν) = 0 < λ1 = λ. We are then in
case (2) of Theorem 6.1 and Corollary 6.2. Since F2(R4) = {0}, by Corollary 6.2,
there exists a lift of ν if any only of �

Z
μ can be conjugated into SL2(C). But since

�
Z
μ has a non-trivial unipotent radical, this is not possible and we are done.

(2) Case k = 1. First, we claim that the quotient L/L0,1 has a unique μL -stationary
probability measure ν. Indeed, on the one hand, by compactness, it has at least
one μL -stationary probability measure. On the other hand, by Example 2.2.(B)
(which relies on the work of Benoist–Quint [7]), the range of ψ in P(R4) has
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a unique μL -stationary probability measure. The claim follows. Now, we have
α(ψ ∗ ν) = λ1(R

4) = λ < 2λ = λ1 + λ2. We are hence again in the setting of
Corollary 6.2. Note that F2(

∧2
R
4) = F and the projective subspace of P(R4)

generated by the support of ψ ∗ ν is all of P(R4) because SL2(C) acts irreducibly
on R

4. Thus by Corollary 6.2, it is enough to show that there exists u, x ∈ u such
that x ∧ u /∈ F . However, it is clear from the expression of F that for any x ∈ R

4,
x ∧ e1 /∈ F . The desired condition is satisfied and there is indeed no μ-stationary
lift of ν in G/H1, and hence no stationary measure on G/H1.

(3) Case k = 2. First, we claim that L/L0,2 has a unique μL -stationary probability
measure ν. Again, by compactness, it has at least one such measure. Recall that
the subspace E of

∧2
R
4 is L-invariant and irreducible, and that the Lyapunov

exponents of μL on E are 2λ1, 0, 0,−2λ2. Since ψ(id L0) = e1 ∧ e2 ∈ E , it
follows that ψ(L/L0,2) ⊂ P(E). Now SL2(C) acts on E strongly irreducibly
and proximally (for instance because the action is irreducible and λ1,μL (E) >

λ2,μL (E)). Thus, by Guivarc’h–Raugi’s theorem [24], there exists a unique μ-
stationary probability measure on P(E) and the claim is proved.
We now show that this unique stationarymeasure has a lift onG/H . Since SL2(C)

acts irreducibly on W3 = ∧3
R
4, we have βmin(W3) = λ1(W3) = λ < 2λ =

α(ψ ∗ ν). Theorem 6.1 (1) insures then that there is a unique μ-stationary lift of
ν on G/H2 and we are done.

(4) Case k = 3. First, we check that L/L0,3 has a unique μ-stationary measure ν.
Since the SL2(C)-representation

∧3
R
4 is isomorphic to the one on R

4, it follows
as for case k = 1 that there exists a unique μ-stationary probability measure ν on
L/L0,3. We have α(ψ ∗ ν) = λ > 0 = λ1(W3). The claim then follows directly
from (1) of Theorem 6.1. ��
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