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Abstract
In this paper, we first introduce quermassintegrals for capillary hypersurfaces in the
half-space. Then we solve the related isoperimetric type problems for the convex cap-
illary hypersurfaces and obtain the corresponding Alexandrov–Fenchel inequalities.
In order to prove these results, we construct a new locally constrained curvature flow
and prove that the flow converges globally to a spherical cap.

Mathematics Subject Classification 53E40 · 53C21 · 35K96 · 53C24

1 Introduction

Let � be a closed embedded hypersurface in R
n+1 and ̂� the domain enclosed by �

in R
n+1. The classical isoperimetric inequality states

|�|
ωn

≥
( |̂�|
bn+1

)
n

n+1

, (1.1)

with equality holding if and only if � is a sphere. Here bn+1 = |Bn+1|, the volume of
the unit ball B

n+1, and ωn = (n + 1)bn+1 = |Sn|, the area of the unit sphere S
n . Its
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natural generalization is the following classical Alexandrov–Fenchel inequality

Vl(̂�)

bn+1
≥

(Vk(̂�)

bn+1

)
n+1−l
n+1−k

, 0 ≤ k < l ≤ n, (1.2)

with equality holding if and only if � is a sphere, provided that � is a C2 convex
hypersurface. Here Vk+1(̂�) is the quermassintegral of ̂� defined by

Vk+1(̂�):= 1

n + 1

∫

�

Hk d A, 0 ≤ k ≤ n, V0(̂�) = |̂�|, (1.3)

where Hk (1 ≤ k ≤ n) is the k-th normalized mean curvature of � ⊂ R
n+1 and

H0 = 1. It was proved in [29] that (1.2) holds true if � is l-convex and star-shaped.
Here by l-convex we mean that Hj > 0 for all j ≤ l. The case k = 0 was proved to be
true for (l+1)-convex hypersurfaces in [14, 45]. The case l = 2, k = 1, in which (1.2)
is called Minkowski’s inequality, was proved to be also true for outward minimizing
sets in [35] (see also [24] and a very recent work [1] by using a nonlinear potential
theory.) It remains still openwhether (1.2) is true for all l-convex hypersurfaces, except
the case l = 2, k = 0 that has been proved in [1].

In this paper we are interested in its generalization to hypersurfaces with boundary.

More precisely, we consider hypersurfaces in R
n+1
+ with boundary supported on the

hyperplane ∂R
n+1
+ . Let� be a compact manifold with boundary ∂�, which is properly

embedded hypersurface into R
n+1
+ . In particular, int(�) ⊂ R

n+1+ and ∂� ⊂ ∂R
n+1
+ .

Let ̂� be the bounded domain enclosed by � and the hyperplane ∂R
n+1
+ . It is clear

that the following relative isoperimetric inequality follows from (1.1)

|�|
|Sn+| ≥

(

|̂�|
|Bn+1+ |

) n
n+1

, (1.4)

where B
n+1+ is the upper half unit ball and S

n+ is the upper half unit sphere. For the
relative isoperimetric inequality outside a convex domain, see [17, 25, 40].As a domain
in R

n+1, ̂� has a boundary, which consists of two parts: one is � and the other, which

will be denoted by ̂∂�, lies on ∂R
n+1
+ . Both have a common boundary, namely ∂�

(see Fig. 1). Instead of just considering the area of �, it is interesting to consider the
following free energy functional

|�| − cos θ |̂∂�| (1.5)

for a fixed angle constant θ ∈ (0, π). The second term cos θ |̂∂�| is the so-called
wetting energy in the theory of capillarity (see for example [23]). If we consider to
minimize this functional under the constraint that the volume |̂�| is fixed, thenwe have
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the following optimal inequality, which is called the capillary isoperimetric inequality,

|�| − cos θ |̂∂�|
|Sn

θ | − cos θ |̂∂S
n
θ |

≥
(

|̂�|
|Bn+1

θ |

) n
n+1

, (1.6)

with equality holding if and only if � is homothetic to S
n
θ , namely a spherical cap

(2.3) with contact angle θ . Here S
n
θ , ∂̂S

n
θ , B

n+1
θ are defined by

S
n
θ = {x ∈ S

n | 〈x, en+1〉 > cos θ}, B
n+1
θ = {x ∈ B

n+1 | 〈x, en+1〉 > cos θ},
∂̂S

n
θ = {x ∈ B

n+1 | 〈x, en+1〉 = cos θ},

where en+1 the (n + 1)th standard basis in R
n+1+ . For simplicity we denote

bθ := bθ
n+1:=|Bn+1

θ |, ωθ :=ωn,θ :=|Sn
θ | − cos θ |̂∂S

n
θ |. (1.7)

The explicit formulas for bθ andωθ will be given in Sect. 2.3. In particular, it is easy to
check that (n + 1)bθ = ωθ . The proof of (1.6) is not trivial, which uses the spherical
symmetrization. See for example [41, Chap. 19]. For related physical problems, one
can refer to the classical book of Finn [23].

The main objectives of this paper are considering the following problems

(1) To find suitable generalizations of the quermassintergalsVk for hypersurfaceswith

boundary supported on ∂R
n+1
+ , which are closely related to the free energy (1.5).

(2) To establish the Alexandrov–Fenchel inequality for these new quermassintegrals.

To answer the first question, we introduce the following new geometric functionals.

V0,θ (̂�):=|̂�|, V1,θ (̂�):= 1

n + 1
(|�| − cos θ |̂∂�|),

and for 1 ≤ k ≤ n,

Vk+1,θ (̂�) := 1

n + 1

⎛

⎝

∫

�

Hkd A − cos θ sink θ

n

∫

∂�

H ∂�
k−1ds

⎞

⎠ , (1.8)

where H ∂�
k−1 is the normalized (k − 1)th mean curvature of ∂� ⊂ R

n (see Sect. 2 for
details). In particular, one has

Vn+1,θ (̂�) = 1

n + 1

∫

�

Hnd A − cos θ sinn θ
ωn−1

n(n + 1)
.

We believe that these quantities are the suitable quermassintegrals for hypersurfaces

with boundary intersecting with ∂R
n+1
+ at angle θ ∈ (0, π), which is supported by the

following result.
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Theorem 1.1 Let�t ⊂ R
n+1
+ be a family of smooth, embedded capillary hypersurfaces

with a constant contact angle θ ∈ (0, π), which are given by the embedding x(·, t) :
M → R

n+1
+ and satisfy

(∂t x)
⊥ = f ν,

for some speed function f . Then for 0 ≤ k ≤ n,

d

dt
Vk,θ (̂�t ) = n + 1 − k

n + 1

∫

�t

f Hkd At , (1.9)

and in particular

d

dt
Vn+1,θ (̂�t ) = 0. (1.10)

A hypersurface in R
n+1
+ with boundary supported on ∂R

n+1
+ is called capillary

hypersurface if it intersects with ∂R
n+1
+ at a constant angle. For closed hypersurfaces

in R
n+1, a similar variational formula as (1.9) characterizes the quermassintegrals in

(1.3). This formula for the quermassintegrals is also true for closed hypersurfaces in
other space forms. See for example [55].

Our second result is the generalized Alexandrov–Fenchel inequalities for convex
capillary hypersurfaces.

Theorem 1.2 For n ≥ 2, let � ⊂ R
n+1
+ be a convex capillary hypersurface with a

constant contact angle θ ∈ (0, π
2 ], then there holds

Vn,θ (̂�)

bθ

≥
(Vk,θ (̂�)

bθ

)
1

n+1−k

, ∀ 0 ≤ k < n, (1.11)

with equality if and only if � is a spherical cap in (2.3). Moreover,

Vn+1,θ (̂�) = ωθ = (n + 1)bθ , (1.12)

(1.12) follows easily from (1.10), by constructing a smooth family of capillary
hypersurfaces connecting to a spherical cap given in (2.3). Therefore (1.12) is true for
any capillary hypersurfaces with contact angle θ . Moreover, it is equivalent to

∫

�

Hnd A = (n + 1)ωθ + cos θ sinn θ
ωn−1

n
= |Sn

θ |, (1.13)

a Gauss–Bonnet type result for capillary hypersurfaces with contact angle θ . When
n = 2, (1.13) implies a Willmore inequality for capillary hypersurfaces with contact
angle θ .
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Corollary 1.3 Let� ⊂ R
3
+ be a convex capillary surface with a constant contact angle

θ ∈ (0, π
2 ], then

∫

�

H2d A ≥ 4|S2
θ |, (1.14)

with equality holding if and only if � is spherical cap in (2.3).

Here H = 2H1 is the ordinary mean curvature for surfaces and it is obvious that
H2 ≥ 4H2. When n = 2, (1.11) implies a Minkowski type inequality for convex

capillary surfaces with boundary in R
3
+.

Corollary 1.4 Let� ⊂ R
3
+ be a convex capillary surface with a constant contact angle

θ ∈ (0, π
2 ], then

∫

�

HdA ≥ 2
√

ω2,θ · (|�| − cos θ |̂∂�|) 1
2 + sin θ cos θ |∂�|, (1.15)

where

ω2,θ = 3bθ =
(

2 − 3 cos θ + cos3 θ
)

π.

Moreover, equality holds if and only if � is a spherical cap in (2.3).

From these results, it is natural to propose

Conjecture 1.5 For n ≥ 2, let � ⊂ R
n+1
+ be a convex capillary hypersurface with a

contact angle θ ∈ (0, π), there holds

Vl,θ (̂�)

bθ

≥
(Vk,θ (̂�)

bθ

)
n+1−l
n+1−k

, ∀0 ≤ k < l ≤ n, (1.16)

with equality iff � is a spherical cap in (2.3).

It would be also interesting to ask further if the conjecture is true for k-convex capillary
hypersurfaces. In order to prove the conjecture, we introduce a suitable nonlinear
curvature flow, which preserves Vl,θ (̂�) and increases Vk,θ (̂�), see Sect. 3. If the flow
globally converges to a spherical cap, then we have the general Alexandrov–Fenchel
inequaltiy (1.16). However, due to technical difficulties we are only able to prove in
this paper the global convergence, for l = n and θ ∈ (0, π

2 ], namely, Theorem 1.2.
To be more precise, let us first recall the related work on the proof of Alenxandrov–

Fenchel inequalities by using geometric curvature flow for closed hypersurfaces in
R
n+1. When ∂� = ∅, and we denote ̂� be the bounded convex domain enclosed by

� in R
n+1. In convex geometry, the Alexandrov–Fenchel inequalities (1.2) between

quermassintegrals Vk and Vl play an important role. In fact there are more general
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2126 G. Wang et al.

inequalities. See [3, 4, 50] for instance. It is an interesting question, if one can use a
curvature flow to reprove such inequalities. In [43], McCoy introduced a normalized
nonlinear curvature flow to reprove the Alexandrov–Fenchel inequalities (1.2) for
convex domains in Euclidean space. Later, Guan–Li [29] weakened the convexity
condition and only assumed that the closed hypersurface � is k-convex and star-
shaped by using the inverse curvature flow, which is defined by

∂t x = Hk−1

Hk
ν. (1.17)

This flow was previously studied by Gerhardt [28] and Urbas [53]. One of key obser-
vations in the study of this flow is that the k-convexity and star-shaped are preserved
along this flow. This flow is also equivalent to the rescaled one

∂t x =
(

Hk−1

Hk
− 〈x, ν〉

)

ν, (1.18)

see [31, 32] for instance. The motivation to use such a flow (1.18) is its nice properties
that the quermassintegrals Vk(̂�) is preserved and Vk+1(̂�) is non-decreasing along
this flow, which follows from the well-known Minkowski formulas. Using similar
geometric flows, there have been a lot of work to establish new Alexandrov–Fenchel
inequalities in the hyperbolic space [6, 7, 10, 19, 26, 33, 34, 38, 49, 55] and in the sphere
[15, 16, 42, 57]. For the anisotropic analogue of Alexandrov–Fenchel (Minkowski)
type inequalities we refer to [8, 58, 60].

If ∂� 
= ∅, the study of geometric inequalities with free boundary or general
capillary boundary has attracted much attention in the last decades. For related relative
isoperimetric inequalities and the Alexandrov–Fenchel inequalities, see for instance
[9, 11, 13, 22, 37, 48, 59] etc. Recently in [48] Scheuer–Wang–Xia introduced the
definition of quermassintegrals for hypersurfaces with free boundary in the Euclidean

unit ball B
n+1

from the viewpoint of the first variational formula, and they proved
the highest order Alexandrov–Fenchel inequalities for convex hypersurfaces with free

boundary in B
n+1

. Very recently, the second and the third authors [59] generalized the
work in [48] by introducing the corresponding quermassintegrals for general capillary
hypersurfaces and established Alexandrov–Fenchel inequalities for convex capillary

hypersurfaces in B
n+1

. The flows introduced to establish these inequalities in [48, 59]
are motivated by new Minkowski formulas proved in [56].

Now we introduce our curvature flow for capillary hypersurfaces in the half space.

Let e = −en+1, where en+1 the (n + 1)th coordinate in R
n+1+ . Let x : � → R

n+1
+

with boundary x|∂� : ∂� → ∂R
n+1+ and ν its unit normal vector field. We introduce

(∂t x)
⊥ =

[

(1 + cos θ〈ν, e〉) Hl−1

Hl
− 〈x, ν〉

]

ν. (1.19)

Using the Minkowski formulas given in (2.9), we show that flow (1.19) preserves
Vl,θ (̂�), while increases Vk,θ (̂�) for k < l. However, due to the weighted function in
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Alexandrov–Fenchel inequalities... 2127

the flow we are only able at moment to show that flow (1.19) preserves the convexity,
when l = n. In this case, we can further bound Hn

Hn−1
. In order to bound all principal

curvature we need to estimate the mean curvature, which satisfies a nice evolution
equation (4.7). However the normal derivative of H , ∇μH , has a bad sign, if θ > π

2 .
Hence we have to restrict ourself on the range θ ∈ (0, π

2 ]. Under these conditions
we then succeed to show the global convergence, and hence Alexandrov–Fenchel
inequalities. It would be interesting to ask if one can also prove the global convergence
for the case θ > π

2 . In analysis, this case is related to the worse case in the Robin
boundary problem for the corresponding PDE. We remark also that a convex capillary
hypersurface with contact angle θ ≤ π

2 could have different geometry from that with
θ > π

2 . The former was called a convex cap and was studied in [12].
Comparing with inequalities established in [48, 59], which are actually implicit

inequalities and involve inverse functions of certain geometric quantities that can not
be explicitly expressed by elementary functions, we have here a geometric inequality
(1.11) in an explicit and clean form. An optimal inequality with an explicit form has
more applications. A further good example was given very recently in an optimal
insulation problem in [18], where the optimal inequalities between Vn and Vk for any
k < n for closed hypersurfaces have been used crucially. We expect that our results
can be similarly used in an optimal insulation problem for capillary hypersurfaces.

The rest of the article is structured as follows. In Sect. 2, we introduce the quer-
massintegrals for capillary hypersurfaces and collect the relevant evolution equations
to finish the proof of Theorem 1.1. In Sect. 3, we introduce our nonlinear inverse cur-
vature flow and show themonotonicty of our quermassintegrals (1.8) under the flow. In
Sect. 4, we obtain uniform estimates for convex capillary hypersurfaces along the flow
and the global convergence. Section5 is devoted to prove the Alexandrov–Fenchel
inequalities for convex capillary hypersurfaces in the half-space, i.e. Theorem 1.2.

2 Quermassintegrals andMinkowski formulas

Since we will deform hypersurfaces by studying a geometric flow, it is convenient to
use immersions. Let M denote a compact orientable smooth manifold of dimension n

with boundary ∂M , and x : M → R
n+1
+ be a proper smooth immersed hypersurface.

In particular, x(int(M)) ⊂ R
n+1+ and x(∂M) ⊂ ∂R

n+1+ . Let � = x(M) and ∂� =
x(∂M). If no confusion, we will do not distinguish the hypersurfaces � and the

immersion x : M → R
n+1
+ . Let ̂� be the bounded domain enclosed by � and ∂R

n+1+ .

Let ν and N be the unit outward normal of � ⊂ ̂� and ∂R
n+1+ ⊂ R

n+1
+ respectively.

2.1 Higher order mean curvatures

For κ = (κ1, κ2 · · · , κn) ∈ R
n , let σk(κ), k = 1, · · · , n, be the kth elementary

symmetric polynomial functions and Hk(κ) be its normalization Hk(κ) = 1
(nk)

σk(κ).

For i = 1, 2, · · · , n, let κ|i ∈ R
n−1 (or κ|κi ) denote (n − 1) tuple deleting the i th

component from κ .
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2128 G. Wang et al.

We shall use the following basic properties about σk .

Proposition 2.1

(1) σk(κ) = σk(κ|i) + κiσk−1(κ|i), ∀1 ≤ i ≤ n.

(2)
n
∑

i=1
σk(κ|i) = (n − k)σk(κ).

(3)
n
∑

i=1
κiσk−1(κ|i) = kσk(κ).

(4)
n
∑

i=1
κ2
i σk−1(κ|i) = σ1(κ)σk(κ) − (k + 1)σk+1(κ).

Let 
+:={κ ∈ R
n : κi > 0, 1 ≤ i ≤ n} and 
k+ = {κ ∈ R

n | Hj (κ) > 0,∀1 ≤ j ≤
k}. It is clear that 
+ = 
n+.

Proposition 2.2 For 1 ≤ k < l ≤ n, we have

HkHl−1 ≥ Hk−1Hl , ∀ κ ∈ 
l+, (2.1)

with equality holding if and only if κ = λ(1, · · · , 1) for any λ > 0. Moreover,
F(κ) = σk

σk−1
(κ) is concave in 
k+.

These are well-known properties. For a proof we refer to [39, Chap. XV, Sect. 4]
and [51, Lemma 2.10, Theorem 2.11] respectively.

We use D to denote the Levi–Civita connection of R
n+1
+ with respect to the

Euclideanmetric δ, and∇ the Levi–Civita connection on� with respect to the induced
metric g from the immersion x . The operator div,
, and∇2 are the divergence, Lapla-
cian, and Hessian operator on � respectively. The second fundamental form h of x is
defined by

DXY = ∇XY − h(X ,Y )ν.

Let κ = (κ1, κ2, · · · , κn) be the set of principal curvatures, i.e, the set of eigenvalues
of h. Then we denote σk = σk(κ) and Hk = Hk(κ) resp. be the kth mean curvature
and the normalized kth mean curvature of �. We also use the convention that

σ0 = H0 = 1 σn+1 = Hn+1 = 0.

Remark 2.3 We will simplify the notation by using the following shortcuts occasion-
ally:

(1) When dealing with complicated evolution equations of tensors, we will use a local
frame to express tensors with the help of their components, i.e. for a tensor field
T ∈ T k,l(�), the expression T i1...ik

j1... jl
denotes

T i1...ik
j1... jl

= T (e j1 , . . . , e jl , ε
i1 , . . . εik ),

where (ei ) is a local frame and (εi ) its dual coframe.
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(2) The mth covariant derivate of a (k, l)-tensor field T , ∇mT , is locally expressed
by

T i1...ik
j1... jl ; jl+1... jl+m

.

(3) We shall use the convention of the Einstein summation. For convenience the
components of the Weingarten map W are denoted by (hij ) = (gikhk j ), and |h|2
be the norm square of the second fundamental form, that is |h|2 = gikhklhi j g jl ,
where (gi j ) is the inverse of (gi j ). We use the metric tensor (gi j ) and its inverse
(gi j ) to lower down and raise up the indices of tensor fields on �.

2.2 Quermassintegrals in the half-space

In order to introduce our quermassintegrals for capillary hypersurfaces in the half-
space, we review first the quermassintegrals in R

n+1, see e.g. [50]. Given a bounded
convex domain ̂� ⊂ R

n+1 with smooth boundary ∂̂�, its kth quermassintegral is
defined by

V0(̂�):=|̂�|,

and for 0 ≤ k ≤ n,

Vk+1(̂�):= 1

n + 1

∫

∂̂�

Hkd A,

where Hk is the normalized kth mean curvature of ∂̂� ⊂ R
n+1. One can check that

d

dt
Vk+1(̂�t ) = n − k

n + 1

∫

∂̂�t

Hk+1 f d A, (2.2)

for a family of bounded convex bodies {̂�t } in R
n+1 whose boundary ∂̂�t evolving

by a normal variation with speed function f . For a proof see e.g. [29, Lemma 5].
As mentioned above, a similar first variational formula also holds in space forms,
see [46]. Therefore formula (2.2) is the characterization of the quermassintegrals for
closed hypersurfaces in space forms.

Now we define the following geometric functionals for convex hypersurfaces �

with capillary boundary in R
n+1
+ with a constant contact angle θ along ∂� ⊂ R

n . Let

V0,θ (̂�):=|̂�|,
V1,θ (̂�):= 1

n + 1

(|�| − cos θ |̂∂�|) .
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and for 1 ≤ k ≤ n,

Vk+1,θ (̂�) := 1

n + 1

⎛

⎝

∫

�

Hkd A − cos θ sink θ

n

∫

∂�

H ∂�
k−1ds

⎞

⎠ .

Here H ∂�
k−1:= 1

(n−1
k−1)

σk−1(κ̂) is the normalized (k − 1)th mean curvature of ∂� ⊂ R
n

and σk−1(κ̂) is the (k − 1)-elementary symmetric function on R
n−1 evaluating at the

principal curvatures κ̂ of ∂� ⊂ R
n . In particular, we have

V2,θ (̂�) = 1

n(n + 1)

⎛

⎝

∫

�

HdA − sin θ cos θ |∂�|
⎞

⎠ .

Here H is the (un-normalized) mean curvature, i.e. H = nH1. From Gauss–Bonnet–
Chern’s theorem, we know

Vn(̂�) = ωn−1

n
,

if ̂� ⊂ R
n is a convex body (non-empty, compact, convex set). As a result, we see

Vn+1,θ (̂�) = 1

n + 1

∫

�

Hnd A − cos θ sinn θ
ωn−1

n(n + 1)
.

2.3 Spherical caps

Let e:=−en+1 = (0, . . . , 0,−1).We consider a family of spherical caps lying entirely

in R
n+1
+ and intersecting R

n with a constant contact angle θ ∈ (0, π) given by

Cr ,θ (e):=
{

x ∈ R
n+1
+

∣

∣|x − r cos θe| = r
}

, r ∈ [0,∞), (2.3)

which has radius r and centered at r cos θe. To emphasize e and to distinguish with
the center of the spherical cap, r cos θe, we call Cr ,θ (e) a spherical cap around e. If
without confusion, we just write Cr ,θ for Cr ,θ (e) in the rest of this paper. One can
easily check that Cr ,θ is the static solution to flow (3.1) below, that is,

1 + cos θ〈ν, e〉 − 1

r
〈x, ν〉 = 0, (2.4)

and it intersects with the support ∂R
n+1
+ at the constant angle θ .

The volume of Ĉr ,θ

V0,θ (̂Cr ,θ ) = rn+1bθ ,
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where bθ is the volume of C1,θ , which is congruent to S
n
θ , defined in the introduction.

One can compute

bθ :=ωn

2
Isin2 θ

(

n

2
,
1

2

)

− ωn−1

n
cos θ sinn θ, (2.5)

and Is(
n
2 , 1

2 ) is the regularized incomplete beta function given by

Is

(

n

2
,
1

2

)

:=
∫ s
0 t

n
2−1(1 − t)− 1

2 dt
∫ 1
0 t

n
2−1(1 − t)− 1

2 dt
. (2.6)

Moreover, one can readily check that

V1,θ (̂Cr ,θ ) = 1

n + 1
(|Cr ,θ | − cos θ |∂̂Cr ,θ |) = rnbθ

and

Vk,θ (̂Cr ,θ ) = rn+1−kbθ .

Therefore, Cr ,θ achieves equality in the Alexandrov–Fenchel inequalities (1.11).

2.4 Minkowski formulas

As above, � ⊂ R
n+1
+ is a smooth, properly embedded capillary hypersurface, given

by the embedding x : M → R
n+1
+ , whereM is a compact, orientable smooth manifold

of dimension n with non-empty boundary. Let μ be the unit outward co-normal of
∂� in � and ν be the unit normal to ∂� in ∂R

n+1+ such that {ν, μ} and {ν, N } have
the same orientation in normal bundle of ∂� ⊂ R

n+1
+ . We define the contact angle θ

between the hypersurface � and the support ∂R
n+1
+ by

〈ν, N 〉 = cos(π − θ).

It follows

N = sin θμ − cos θν,

ν = cos θμ + sin θν,
(2.7)

or equivalently

μ = sin θN + cos θν,

ν = − cos θN + sin θν.
(2.8)
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Fig. 1 A capillary hypersurface
� with a contact angle θ

∂� can be viewed as a smooth closed hypersurface in R
n , which bounds a bounded

domain ̂∂� inside R
n . By our convention, ν̄ is the unit outward normal of ∂� in

̂∂� ⊂ R
n . See Fig.1.

The second fundamental form of ∂� in R
n is given by

̂h(X ,Y ):= − 〈∇R
n

X Y , ν̄〉 = −〈DXY , ν̄〉, X ,Y ∈ T (∂�).

The second equality holds since 〈ν̄, N̄ ◦ x〉 = 0. The second fundamental form of ∂�

in � is given by

˜h(X ,Y ):= − 〈∇XY , μ〉 = −〈DXY , μ〉, X ,Y ∈ T (∂�).

The second equality holds since 〈ν, μ〉 = 0.

Proposition 2.4 Let � ⊂ R
n+1
+ be a capillary hypersurface. Let {eα}nα=2 be an

orthonormal frame of ∂�. Then along ∂�,

(1) μ is a principal direction of �, that is, hμα = h(μ, eα) = 0.
(2) hαβ = sin θ̂hαβ.

(3) ˜hαβ = cos θ̂hαβ = cot θhαβ.

(4) hαβ;μ = ˜hβγ (hμμδαγ − hαγ ).

Proof The first assertion is well-known, see e.g. [47]. (2) and (3) follow from

hαβ = −〈Deαeβ, ν〉 = 〈̂hαβν, ν〉 = sin θ̂hαβ,

and

˜hαβ = −〈Deαeβ, μ〉 = 〈̂hαβν, μ〉 = cos θ̂hαβ.
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For (4), taking derivative of h(μ, eα) = 0 with respect to eβ and using the Codazzi
equation and (1), we get

0 = eβ(h(μ, eα)) = hαμ;β + h(∇eβ eα, μ) + h(∇eβ μ, eα)

= hαβ;μ + 〈∇eβ eα, μ〉hμμ + 〈∇eβ μ, eγ 〉hαγ

= hαβ;μ −˜hβγ (hμμδαγ − hαγ ).

��
The Proposition 2.4 has a direct conseqeunce.

Corollary 2.5 If � is a convex capillary hypersurface, then ∂� ⊂ ∂R
n+1
+ is also

convex, i.e., ̂h ≥ 0, while ∂� ⊂ � is convex (˜h ≥ 0) if θ ∈ (0, π
2 ] and concave

(˜h ≤ 0) if θ ∈ [π
2 , π).

The followingMinkowski type formulas for capillary hypersurfaces play an impor-
tant role in this paper.

Proposition 2.6 Let x : M → R
n+1
+ be an smooth immersion of �:=x(M) into the

half-space, whose boundary intersects R
n with a constant contact angle θ ∈ (0, π)

along ∂�. For 1 ≤ k ≤ n, it holds

∫

�

Hk−1(1 + cos θ〈ν, e〉)d A =
∫

�

Hk〈x, ν〉d A, (2.9)

where d A is the area element of � w.r.t. the induced metric g.

When k = 1 or θ = π
2 , formula (2.9) is known. See e.g. [2, Proof of Theorem 5.1]

and [30, Proposition 2.5]. For our purpose, we need the high order Minkowski type
formulas for general θ .

Proof Denote xT :=x − 〈x, ν〉ν be the tangential projection of x on �, and

Pe:=〈ν, e〉x − 〈x, ν〉e.

From a direct computation, we have

Dei 〈x, e j 〉 = gi j − 〈x, ν〉hi j (2.10)

and

∇i (P
T
e ) j = 〈ν, e〉gi j + hil〈e, el〉〈x, e j 〉 − hil〈x, el〉〈e, e j 〉. (2.11)

Along ∂� ⊂ ∂R
n+1+ , using (2.7) we see

〈PT
e , μ〉 = 〈Pe, μ〉 = 〈ν, e〉〈x, μ〉 − 〈x, ν〉〈e, μ〉

= 〈x,− sin θν − cos θμ〉,
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which follows

〈xT + cos θ PT
e , μ〉 = 〈x, μ〉 − cos θ〈x, sin θν + cos θμ〉

= sin θ〈x, e〉 = 0. (2.12)

Denote σ
i j
k−1:= ∂σk

∂hij
be the kth Newton transformation. Taking contraction with (2.10),

(2.11) and using Proposition 2.1 we obtain

σ
i j
k−1 · ∇i

(

(xT + cos θ PT
e ) j

)

= σ
i j
k−1(gi j − hi j 〈x, ν〉 + cos θ〈ν, e〉gi j )

= (n − k + 1)σk−1(1 + cos θ〈ν, e〉) − kσk〈x, ν〉
= n!

(k − 1)!(n − k)! (Hk−1(1 + cos θ〈ν, e〉) − Hk〈x, ν〉) .

Using integration by parts, we have

∫

�

∇i
(

σ
i j
k−1(x

T + cos θ PT
e ) j

)

d A =
∫

∂�

σ
i j
k−1(x

T + cos θ PT
e ) j · μi ds.

From (2.12), we know that (xT + cos θ PT
e ) ⊥ μ along ∂�.

Since μ is a principal direction of � by Proposition 2.4, we have σ
i j
k−1(x

T +
cos θ PT

e ) j · μi = 0 along ∂�. It is well-known that the Newton tensor is divergence-

free, i.e., ∇iσ
i j
k−1 = 0. Altogether yields the conclusion. ��

2.5 Variational formulas

The following first variational formula motivates us to define the quermassintegrals
for capillary hypersurfaces as (1.8).

Theorem 2.7 Let�t ⊂ R
n+1
+ be a family of smooth capillary hypersurfaces supported

by ∂R
n+1+ with a constant contact angle θ ∈ (0, π) along ∂�t , given by the embedding

x(·, t) : M → R
n+1
+ , and satisfying

(∂t x)
⊥ = f ν, (2.13)

for a smooth function f . Then for −1 ≤ k ≤ n − 1,

d

dt
Vk+1,θ (̂�t ) = n − k

n + 1

∫

�t

f Hk+1d At , (2.14)

and
d

dt
Vn+1,θ (̂�t ) = 0.
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Before proving Theorem 2.7, we remark that if �t ⊂ R
n+1
+ is a family of smooth

capillary hypersurfaces evolving by (2.13), then the tangential component (∂t x)T of
∂t x , which we denote by T ∈ T�t , must satisfy

T |∂�t = f cot θμ + ˜T , (2.15)

where ˜T ∈ T (∂�t ). In fact, the restriction of x(·, t) on ∂M is contained in R
n and

hence,

f ν + T |∂�t = ∂t x |∂M ∈ TR
n .

From (2.7), we know

ν = 1

sin θ
ν̄ − cot θμ.

Since ν̄ ∈ TR
n , it follows T − f cot θμ ∈ TR

n ∩ T�t = T (∂�t ), and hence (2.15).
Up to a diffeomorphism of ∂M , we can assume˜T = 0. For simplicity, in the following,
we always assume that

T |∂�t = f cot θμ. (2.16)

Hence, from now on, let �t be a family of smooth, embedding hypersurfaces with

θ -capillary boundary in R
n+1
+ , given by the embeddings x(·, t) : M → R

n+1
+ , which

evolves by the general flow

∂t x = f ν + T , (2.17)

with T ∈ T�t satisfying (2.16). We emphasize that the tangential part T plays a key
role in the proof of Theorem 2.7 below.

Along flow (2.17), we have the following evolution equations for the inducedmetric
gi j , the area element d At , the unit outward normal ν, the second fundamental form
hi j , the Weingarten matrix hij , the mean curvature H , the kth mean curvature σk and

F :=F(h j
i ) of the hypersurfaces �t . These evolution equations will be used later.

Proposition 2.8 Along flow (2.17), it holds that

(1) ∂t gi j = 2 f hi j + ∇i Tj + ∇ j Ti .
(2) ∂t d At = ( f H + div(T )) d At .

(3) ∂tν = −∇ f + h(ei , T )ei .
(4) ∂t hi j = −∇2

i j f + f hikhkj + ∇T hi j + hkj∇i Tk + hki ∇ j Tk .

(5) ∂t hij = −∇ i∇ j f − f hkj h
i
k + ∇T hij .

(6) ∂t H = −
 f − |h|2 f + 〈∇H , T 〉.
(7) ∂tσk = − ∂σk

∂h j
i

∇ i∇ j f − f (σ1σk − (k + 1)σk+1) + 〈∇σk, T 〉.
(8) ∂t F = −F j

i ∇ i∇ j f − f F j
i h

k
j h

i
k + 〈∇F, T 〉, where Fi

j := ∂F
∂h j

i

.
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The proof of Proposition 2.8 for T = 0 can be found for example in [27, Chap. 2, Sect.
2.3] or [21, Appendix B]. A proof for a general T can be found in [59, Proposition
2.11].

Now we complete the proof of Theorem 2.7.

Proof of Theorem 2.7 Choose an orthonormal frame {eα}nα=2 of T ∂� ⊂ TR
n such

that {e1:=μ, (eα)nα=2} forms an orthonormal frames for T�. First, by taking time
derivative to the capillary boundary condition, 〈ν, N ◦ x〉 = − cos θ along ∂�, we
obtain

0 = 〈∂tν, N (x(·, t))〉 + 〈ν, dN ( f ν + T )〉
= 〈−∇ f + h(ei , T )ei , N 〉
= − sin θ∇μ f + sin θh(ei , T )〈ei , μ〉
= − sin θ∇μ f + sin θh(μ,μ) cot θ f ,

where we have used (2.7), Proposition 2.8 and T |∂M = f cot θμ. As a result,

∇μ f = cot θh(μ,μ) f on ∂�t . (2.18)

Next, using integration by parts and Proposition 2.8 we have

d

dt

⎛

⎜

⎝

∫

�t

σkd At

⎞

⎟

⎠

=
∫

�t

[

(∂tσk)d At + σk∂t (d At )
]

=
∫

�t

∂σk

∂h j
i

( − f i; j − f hikh
k j + 〈∇hij , T 〉)d At +

∫

�

σk
(

f σ1 + div(T )
)

d At

= −
∫

∂�t

∂σk

∂h j
i

f iμ j +
∫

∂�t

σk〈T , μ〉 +
∫

�t

f

(

σ1σk − ∂σk

∂h j
i

hikh
k j

)

d At

=
∫

∂�t

(

f σk cot θ − ∂σk

∂h j
i

f iμ j
) + (k + 1)

∫

�t

f σk+1d At

=
∫

∂�t

cot θ f σk(h|h11) + (k + 1)
∫

�t

f σk+1d At , (2.19)

where we have used T |∂M = f cot θμ, (2.18) and Lemma 2.1 (1), (4).
Moreover flow (3.1) induces a hypersurface flow ∂�t ⊂ R

n with normal speed
f

sin θ
, that is,

∂t x |∂M = f ν + f cot θμ = f

sin θ
ν.
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By (2.2), we have

d

dt
Vk (̂∂�t ) = n − k

n

∫

∂�t

f

sin θ
H ∂�t
k (̂h).

From Proposition 2.4 (2), we know

hαβ = sin θ̂hαβ,

and hence σk(h|h11) = sink θσk(̂h). Substituting these formulas into (2.19), we obtain

d

dt

⎛

⎜

⎝

∫

�t

Hkd At − sink θ cos θVk (̂∂�t )

⎞

⎟

⎠ = (n − k)
∫

�t

f Hk+1d At .

By the definition of Vk+1,θ (̂�t ) in (1.8), we get the desired formula (2.14) for k ≥ 0.
It remains to consider the case k = −1. It is easy to check that

V0,θ (�t ) = |̂�t | = 1

n + 1

∫

�t

〈x, ν〉d At .

A direct computation gives

(n + 1)
d

dt
V0,θ (�t )

=
∫

�t

[

f − 〈x,∇ f 〉 + 〈x, ν〉 f H + h(T , xT ) + 〈x, ν〉div T
]

d At

=
∫

�t

(

(1 + div(xT )) f + 〈x, ν〉 f H
)

d At +
∫

∂�t

(

−〈xT , μ〉 f + 〈x, ν〉〈T , μ〉
)

= (n + 1)
∫

�t

f d At ,

since −〈xT , μ〉 f + 〈x, ν〉〈T , μ〉 = 0 for x ∈ ∂�, which follows from

〈x, ν〉〈T , μ〉 = f cot θ〈x, ν〉 = f cos θ〈x, ν̄〉,
〈xT , μ〉 f = f cos θ〈x, ν̄〉.

Now we complete the proof. ��
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3 Locally constrained curvature flow

In this section, we first introduce a new locally constrained curvature flow and show
the monotonicity of the quermassintegral along the flow.

Let M be a compact orientable smooth n-dimensional manifold. Suppose x0 :
M → R

n+1
+ be a smooth initial embedding such that x0(M) is a convex hypersurface

inR
n+1
+ and intersects with ∂R

n+1+ at a constant contact angle θ ∈ (0, π). We consider

the smooth family of embeddings x : M × [0, T ) → R
n+1
+ , satisfying the following

evolution equations

(∂t x(p, t))⊥ = f (p, t)ν for (p, t) ∈ M × [0, T ),

〈ν(p, t), N ◦ x(p, t)〉 = cos(π − θ) for (p, t) ∈ ∂M × [0, T ),
(3.1)

with x(M, 0) = x0(M) and

f :=1 + cos θ〈ν, e〉
F

− 〈x, ν〉, (3.2)

where

F : = Hl

Hl−1
. (3.3)

The following nice property of flow (3.1) is essential for us to prove Theorem 1.2
later.

Proposition 3.1 As long as flow (3.1) exists and �t is strictly l-convex, Vl,θ (̂�t ) is
preserved and Vk,θ (̂�t ) is non-decreasing for 1 ≤ k < l ≤ n.

Proof From Theorem 2.7, we see

∂tVl,θ (̂�t ) = n + 1 − l

n + 1

∫

�t

f Hld At

= n + 1 − l

n + 1

∫

�t

[

(1 + cos θ〈ν, e〉) Hl−1 − Hl〈x, ν〉] d At

= 0,
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where the last equality follows from (2.9). For 1 ≤ k < l ≤ n, from Theorem 2.7

∂tVk,θ (̂�t ) = n + 1 − k

n + 1

∫

�t

f Hkd At

= n + 1 − k

n + 1

∫

�t

[

Hk
Hl−1

Hl

(

1 + cos θ〈ν, e〉) − Hk〈x, ν〉
]

d At

≥ n + 1 − k

n + 1

∫

�t

[

Hk−1
(

1 + cos θ〈ν, e〉) − Hk〈x, ν〉] d At

= 0,

where we have used the Newton–MacLaurin inequality (2.1) and the Minkowski for-
mula (2.9) in the last two steps respectively. ��

4 A priori estimates and convergence

Themain result of this section is the following long-time existence and the convergence
result of flow (3.1) with l = n, i.e.,

F = Hn

Hn−1
(4.1)

under an angle constraint

θ ∈
(

0,
π

2

]

.

Theorem 4.1 Assume x0 : M → R
n+1
+ is an embedding of a strictly convex capillary

hypersurface in the half-space with the contact angle θ ∈ (0, π
2 ]. Then there exists

x : M × [0,+∞) → R
n+1
+ satisfying flow (3.1) with F given by (4.1) and the initial

condition x(M, 0) = x0(M).Moreover, x(·, t) → x∞(·) inC∞ topology as t → +∞,

and the limit x∞ : M → R
n+1
+ is a spherical cap.

In order to prove this theorem, we need to obtain a priori estimates, which will be
given as follows.

4.1 The short time existence

For the short time existence, one can follow the strategy presented in the paper of
Huisken–Polden [36] to give a proof for a general initial capillary hypersurface. Since
our initial hypersurface is convex, one can prove the short time existence in the class
of star-shaped hypersurfaces. In this class, one can in fact reduce flow (3.1) to a
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scalar flow. Then the short time existence follows clearly from the standard theory for
parabolic equations. Therefore we first consider the reduction.

Assume that a capillary hypersurfaces � is strictly star-shaped with respect to the
origin. One can reparametrize it as a graph over S

n
+. Namely, there exists a positive

function r defined on S
n
+ such that

� =
{

r(X)X |X ∈ S
n
+
}

,

where X :=(X1, . . . , Xn) is a local coordinate of S
n
+.

We denote ∇0 be the Levi-Civita connection on S
n+ with respect to the stan-

dard round metric σ :=g
S
n+
, ∂i :=∂Xi , σi j :=σ(∂i , ∂ j ), ri :=∇0

i r , and ri j :=∇0
i ∇0

j r . The

induced metric g on � is given by

gi j = r2σi j + rir j = e2ϕ
(

σi j + ϕiϕ j
)

,

where ϕ(X):= log r(X). Its inverse g−1 is given by

gi j = 1

r2

(

σ i j − r ir j

r2 + |∇0r |2
)

= e−2ϕ
(

σ i j − ϕiϕ j

v2

)

,

where r i :=σ i j r j , ϕi :=σ i jϕ j and v:=√

1 + |∇0ϕ|2. The unit outward normal vector
field on � is given by

ν = 1

v

(

∂r − r−2∇0r
)

= 1

v

(

∂r − r−1∇0ϕ
)

.

The second fundamental form h on � is

hi j = eϕ

v

(

σi j + ϕiϕ j − ϕi j
)

,

and its Weingarten matrix hij is

hij = gikhk j = 1

eϕv

[

δij −
(

σ ik − ϕiϕk

v2

)

ϕk j

]

.

The higher order mean curvature Hk can also be expressed by ϕ. Moreover,

〈x, ν〉 = 〈r∂r , ν〉 = eϕ

v
.

In order to express the capillary boundary condition in terms of the radial function
ϕ, we use the polar coordinate in the half-space. For x :=(x ′, xn+1) ∈ R

n × [0,+∞)

and X :=(β, ξ) ∈ [0, π
2 ] × S

n−1, we have that

xn+1 = r cosβ, |x ′| = r sin β.
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Then

en+1 = ∂xn+1 = cosβ∂r − sin β

r
∂β.

In these coordinates the standard Euclidean metric is given by

|dx |2 = dr2 + r2
(

dβ2 + sin2 βg
Sn−1

)

.

It follows that

〈ν, en+1〉 = 1

v

(

cosβ + sin β∇0
∂β

ϕ
)

.

Along ∂S
n+ it holds

N ◦ x = −en+1 = 1

r
∂β,

which yields

− cos θ = 〈ν, N ◦ x〉 =
〈

1

v

(

∂r − r−1∇0ϕ
)

,
1

r
∂β

〉

= −
∇0

∂β
ϕ

v
,

that is,

∇0
∂β

ϕ = cos θ
√

1 + |∇0ϕ|2. (4.2)

Therefore, in the class of star-shaped hypersurfaces flow (3.1) is reduced to the fol-
lowing scalar parabolic equation with an oblique boundary condition

∂tϕ = v
eϕ f , in S

n+ × [0, T ∗),
∇0

∂β
ϕ = cos θ

√

1 + |∇0ϕ|2, on ∂S
n+ × [0, T ∗),

ϕ(·, 0) = ϕ0(·), on S
n+,

(4.3)

where ϕ0 is the parameterization radial function of x0(M) over S
n
+, and

f = Hn−1

Hn

[

1 − cos θ

v

(

cosβ + sin β∇0
∂β

ϕ
)

]

− eϕ

v
.

Since | cos θ | < 1, the oblique boundary condition (4.2) satisfies the non-degeneracy
condition in [44], see also [20]. Hence the short time existence follows.
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4.2 Barriers

Let T ∗ be the maximal time of smooth existence of a solution to (3.1), more precisely
in the class of star-shaped hypersurfaces. It is obvious that F can not be zero and hence
F is positive in M × [0, T ∗). The positivity of F implies that �t is strictly convex up
to T ∗.

The convexity of �0 implies that there exists some 0 < r1 < r2 < ∞, such that

�0 ⊂ Ĉr2,θ \ Ĉr1,θ .

The family of Cr ,θ forms natural barriers of (3.1). Therefore, we can show that the
solution to (4.3) is uniformly bounded from above and below.

Proposition 4.2 For any t ∈ [0, T ∗), �t satisfies

�t ⊂ Ĉr2,θ \ Ĉr1,θ .

Proof Recall that Cr ,θ satisfies (2.4). Thus for each r > 0, it is a static solution to
flow (3.1). The assertion follows from the avoidance principle for strictly parabolic
equation with a capillary boundary condition (see [5, Sect. 2.6] or [54, Proposition
4.2]). ��

4.3 Evolution equations of F and H

We first introduce a parabolic operator for (3.1)

L:=∂t − 1 + cos θ〈ν, e〉
F2 Fi j∇2

i j −
〈

T + x − cos θ

F
e,∇

〉

.

Set F :=∑n
i=1 F

i
i . Using Proposition 2.1 we have

F − Fi j hi j
F

= F − 1 ≥ 0, (4.4)

Fi j hki hk j
F2 = 1. (4.5)

Proposition 4.3 Along flow (3.1), we have

LF = 2 cos θF−2Fi j F; j hik〈ek, e〉 − 2(1 + cos θ〈ν, e〉)F−3Fi j F;i F; j

+F

(

1 − Fi j (h2)i j
F2

)

,

and

∇μF = 0, on ∂�t . (4.6)

123



Alexandrov–Fenchel inequalities... 2143

Proof Using the Codazzi formula, we have

Fi j 〈x, ν〉;i j = Fi j
(

hi j + hi j;k〈x, ek〉 − (h2)i j 〈x, ν〉
)

= F + F;k〈x, ek〉 − Fi j (h2)i j 〈x, ν〉,

and

Fi j 〈ν, e〉;i j = Fi j (hik; j 〈ek, e〉 − (h2)i j 〈ν, e〉)

= F;k〈ek, e〉 − Fi j (h2)i j 〈ν, e〉.

Combining with Proposition 2.8, we obtain

∂t F = −Fi j f;i j − f Fi j (h2)i j + 〈∇F, T 〉
= −Fi j

(

1 + cos θ〈ν, e〉
F

− 〈x, ν〉
)

;i j
− f Fi j (h2)i j + 〈∇F, T 〉

= − cos θFi j F−1〈ν, e〉;i j + 2 cos θF−2Fi j F; j 〈ν, e〉;i
−2(1 + cos θ〈ν, e〉)F−3Fi j F;i F; j
+F−2Fi j F;i j (1 + cos θ〈ν, e〉) + (

F + F;k〈x, ek〉 − Fi j (h2)i j 〈x, ν〉)

−(1 + cos θ〈ν, e〉)F−1Fi j (h2)i j + 〈x, ν〉Fi j (h2)i j + 〈∇F, T 〉.

Hence it follows

LF = ∂t F − (1 + cos θ〈ν, e〉)F−2Fi j F;i j − 〈T + x − cos θF−1e,∇F〉
= cos θFi j (h2)i j F

−1〈ν, e〉 + 2 cos θF−2Fi j F; j hik〈ek, e〉
−2(1 + cos θ〈ν, e〉)F−3Fi j F;i F; j
+(

F − Fi j (h2)i j 〈x, ν〉) − (1 + cos θ〈ν, e〉)F−1Fi j (h2)i j + 〈x, ν〉Fi j (h2)i j

= 2 cos θF−2Fi j F; j hik〈ek, e〉 − 2(1 + cos θ〈ν, e〉)F−3Fi j F;i F; j
+F − F−1Fi j (h2)i j .

Along ∂�t , from (2.18) we know

∇μ f = cot θh(μ,μ) f ,

By (2.7) or (2.8) and Proposition 2.4 (1), we have on ∂�t

∇μ〈x, ν〉 = 〈x, h(μ,μ)μ〉 = cos θh(μ,μ)〈x, ν〉 = cot θh(μ,μ)〈x, ν〉,

and hence

∇μ( f + 〈x, ν〉) = cot θh(μ,μ)( f + 〈x, ν〉).
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Using (2.7) and Proposition 2.4 (1) again, we have (e = N )

∇μ〈ν, e〉 = h(μ,μ)〈μ, e〉 = − tan θh(μ,μ)〈ν, e〉

and

∇μ

(

1 + cos θ〈ν, e〉) = − sin θh(μ,μ)〈ν, e〉,

where we used 〈e, ν〉 = 0 and 〈e, x〉 = 0 on ∂�t . One can easily check that the left
hand side of the previous formula equals to cot θh(μ,μ)(1 + cos θ〈ν, e〉), on ∂�.
Hence it follows that

∇μF = ∇μ

(

1 + cos θ〈ν, e〉
f + 〈x, ν〉

)

= 0.

��
We remark that (4.6) plays an important role in applying the maximum principle later.
This property holds for curvature flow of free boundary hypersurfaces and capillary
hypersurfaces, see also [48, 59].

Proposition 4.4 Along flow (3.1), we have

LH = (1 + cos θ〈ν, e〉)F−2Fkl,st hkl;i hst;i + (2 + cos θ〈ν, e〉)H
+
[

2 cos θF−2F;i 〈ν, e〉;i − 2 (1 + cos θ〈ν, e〉) F−3|∇F |2

−(2 + cos θ〈ν, e〉)F−1|h|2
]

, (4.7)

and, while � is convex,

∇μH ≤ 0, on ∂�t . (4.8)

Proof First, note that


〈ν, e〉 = H;k〈ek, e〉 − |h|2〈ν, e〉,

〈x, ν〉 = H + H;k〈x, ek〉 − |h|2〈x, ν〉.

Applying Proposition 2.8, we obtain

∂t H = −
 f − |h|2 f + 〈∇H , T 〉
= (1 + cos θ〈ν, e〉)F−2
F − 2(1 + cos θ〈ν, e〉)F−3|∇F |2

+2 cos θF−2F;i 〈ν, e〉;i − cos θF−1
〈ν, e〉 + 
〈x, ν〉
−(1 + cos θ〈ν, e〉)F−1|h|2 + 〈x, ν〉|h|2 + 〈∇H , T 〉

= (1 + cos θ〈ν, e〉)F−2
F − 2(1 + cos θ〈ν, e〉)F−3|∇F |2
+2 cos θF−2F;i 〈ν, e〉;i − F−1|h|2 + H

+〈x,∇H〉 + 〈∇H , T 〉 − cos θF−1〈e,∇H〉.
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The Ricci equation and the Codazzi equation yield

hkl;i i = hki;li = hki;il + Rp
ili h pk + Rp

kli h pi

= hii;kl + (h pl H − h pi hli )h pk + (h plhki − h pi hkl)h pi

= H;kl + h pkh pl H − |h|2hkl ,

which implies


F = ∂2F

∂hkl∂hst
hkl;i hst;i + Fklhkl;i i

= Fkl,st hkl;i hst;i + Fkl H;kl + Fkl(h2)kl H − F |h|2.

Hence we have

LH = ∂t H − F−2(1 + cos θ〈ν, e〉)Fi j H;i j − 〈T + x − cos θF−1e,∇H〉
= (1 + cos θ〈ν, e〉)F−2[Fkl,st hkl;i hst;i + Fkl(h2)kl H − F |h|2]

−2(1 + cos θ〈ν, e〉)F−3|∇F |2 + 2 cos θF−2F;i 〈ν, e〉;i − F−1|h|2 + H

= (1 + cos θ〈ν, e〉)F−2Fkl,st hkl;i hst;i + (2 + cos θ〈ν, e〉)H
+
[

2 cos θF−2F;i 〈ν, e〉;i − 2(1 + cos θ〈ν, a〉)F−3|∇F |2

−(2 + cos θ〈ν, e〉)F−1|h|2
]

.

Along ∂�t , choosing an orthonormal frame {eα}nα=2 of T ∂�t such that
{e1:=μ, (eα)nα=2} forms an orthonormal frames for T�t . From Proposition 2.4, we
have

hαβ;μ = cos θ̂hβγ (h11δαγ − hαγ ),

for all 2 ≤ α ≤ n. Equation (4.6) implies

0 = ∇μF = F11h11;1 +
n

∑

α=2

Fααhαα;1,

which in turn implies

∇μH = h11;1 +
n

∑

α=2

hαα;1

= −
n

∑

α=2

Fαα

F11 hαα;1 +
n

∑

α=2

hαα;1 =
n

∑

α=2

1

F11

(

F11 − Fαα
)

hαα;1

=
n

∑

α=2

1

F11

(

F11 − Fαα
)

(h11 − hαα)˜hαα

≤ 0,
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where the last inequality follows from the concavity of F , and the convexity of ∂� ⊂
�, see Corollary 2.5. Hence (4.8) is proved. ��

Remark 4.5 (4.8) is the only place where we have used θ ∈ (0, π
2 ].

4.4 Curvature estimates

First, we have the uniform bound of F , which follows directly from Proposition 4.3
and the maximum principle.

Proposition 4.6 Along flow (3.1), it holds

min
M

F(·, 0) ≤ F(p, t) ≤ max
M

F(·, 0), ∀(p, t) ∈ M × [0, T ∗).

In particular, from the uniform lower bound of F := Hn
Hn−1

, we get a uniform curvature
positive lower bound.

Corollary 4.7 �t , t ∈ [0, T ∗) is uniformly convex, that is, there exists c > 0 depending
only on �0, such that the principal curvatures of �t ,

min
i

κi (p, t) ≥ c,

for all (p, t) ∈ M × [0, T ∗).

Next we obtain the uniform bound of the mean curvature.

Proposition 4.8 There exists C > 0 depending only on �0, such that

H(p, t) ≤ C, ∀(p, t) ∈ M × [0, T ∗).

Proof From (4.8), we know that∇μH ≤ 0 on ∂�t . Thus H attains its maximum value
at some interior point, say p0 ∈ int(M). We now compute at p0.

From the concavity of F = nσn
σn−1

in Proposition 2.2, we know

(1 + cos θ〈ν, e〉) F−2Fkl,st hkl;i hst;i ≤ 0.

Using Proposition 4.4, we have

LH ≤ (2 + cos θ〈ν, e〉)H
+
[

2 cos θF−2F;i 〈ν, e〉;i − 2 (1 + cos θ〈ν, e〉) F−3|∇F |2 − (2 + cos θ〈ν, e〉)F−1|h|2
]

:= K1 + K2,
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The term |K1| is bounded by 3H . For the term K2, we note that

FK2 := 2 cos θF−1F;i 〈ν, e〉;i − 2(1 + cos θ〈ν, e〉)F−2|∇F |2
−(2 + cos θ〈ν, e〉)|h|2

= 2 cos θF−1F;i hii 〈e, ei 〉 − 2(1 + cos θ〈ν, e〉)F−2|∇F |2
−(2 + cos θ〈ν, e〉)|h|2

:= −
n

∑

i=1

(

S1F
2
;i + S2,i F;i hii + S3h

2
i i

) = −S1

n
∑

i=1

(

F;i − S2,i
2S1

hii

)2

+
n

∑

i=1

(

S22,i
4S1

− S3

)

h2i i ,

where we have used the notations

S1:=2(1 + cos θ〈ν, e〉)F−2, S2,i := − 2 cos θF−1〈e, ei 〉, S3:=2 + cos θ〈ν, e〉.

One can check

S22,i − 4S1S3 := 4 cos2 θF−2〈e, ei 〉2 − 8(1 + cos θ〈ν, e〉)F−2(2 + cos θ〈ν, e〉)
≤ 4F−2

[

cos2 θ |eT |2 − 2(1 + cos θ〈ν, e〉)(2 + cos θ〈ν, e〉)
]

= 4F−2
[

− 3(1 + cos θ〈ν, e〉)2 − 1 + cos2 θ
]

≤ −c0

for some positive constant c0. Combining with Proposition 4.6, it implies

K2 ≤ − c0
4FS1

|h|2 = − c0F

8(1 + cos θ〈ν, e〉) |h|2 ≤ −C |h|2,

for some positive constant C > 0. Therefore,

0 ≤ LH(p0) ≤ K1 + K2 ≤ 3H − C |h|2,

which yields that H is uniformly bounded from above. ��
Proposition 4.8 and Corollary 4.7 imply directly that

Corollary 4.9 �t , t ∈ [0, T ∗), has a uniform curvature bound, namely, there exists
C > 0 depending only on �0, such that the principal curvatures of �t ,

max
i

κi (p, t) ≤ C,

for all (p, t) ∈ M × [0, T ∗).

123



2148 G. Wang et al.

4.5 Convergence of the flow

First we show that the convexity implies that the star-shaped is preserved in the fol-
lowing sense.

Proposition 4.10 There exists c0 > 0 depending only on �0, such that

〈x, ν〉(p, t) ≥ c0. (4.9)

for all (p, t) ∈ M × [0, T ∗).

Proof For any T ′ < T ∗, assume min
M×[0,T ′]

〈x, ν〉(p, t) = 〈x, ν〉(p0, t0). Then, either
p0 ∈ ∂M or p0 ∈ M \ ∂M .

If p0 ∈ M \ ∂M , let {ei }ni=1 be the orthonormal frame of �t , then at p0,

0 = Dei 〈x, ν〉 = hi j 〈x, e j 〉.

Due to the strict convexity (hi j ) > 0, we have 〈x, ei 〉 = 0. It follows

〈x, ν〉(p0) = |x |(p0) ≥ c0,

for some c0 > 0, which depends only on the initial datum.
If p0 ∈ ∂M , by (2.7) we have

〈x, ν〉 = 〈x, sin θν − cos θe〉 = sin θ〈x, ν〉.

Hence 〈x, ν〉∣∣
∂M attains its minimum value at p0. As above, choosing {eα}nα=2 be the

orthonormal frame of ∂�t in R
n such that e1 = ν, we have

0 = ∇R
n

eα 〈x, ν〉 = ̂hαβ〈x, eβ〉,

By Proposition 2.4 (2) and Corollary 4.7, we know (̂hαβ) > 0, and hence we have
x ‖ ν at p0 and

〈x, ν〉(p0) = |x |(p0) ≥ c0,

for some c0 > 0, which depends only on the initial datum. Therefore, we finish the
proof of (4.9). ��
Proposition 4.11 Flow (3.1) exists for all time with uniform C∞-estimates.

Proof From Proposition 4.2, Proposition 4.10, Proposition 4.7 and Corollary 4.9, we
see that ϕ is uniformly bounded in C2(Sn+ × [0, T ∗)) and the scalar equation in (4.3)
is uniformly parabolic. Since | cos θ | < 1, the boundary value condition in (4.3)
satisfies the uniformly oblique property. From the standard parabolic theory (see e.g.
[20, Theorem 6.1, Theorem 6.4 and Theorem 6.5], also [52, Theorem 5] and [39,
Theorem 14.23]), we conclude the uniformC∞-estimates and the long-time existence
of solution to (4.3). ��
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Proposition 4.12 x(·, t) smoothly converges to a uniquely determined spherical cap
around e with capillary boundary, as t → ∞.

Proof By Proposition 3.1, we know V1,θ (̂�t ) is non-decreasing, due to

∂tV1,θ (̂�t ) = n

n + 1

∫

�t

(

H1Hn−1

Hn
− 1

)

(1 + cos θ〈ν, e〉) d At ≥ 0.

It follows from the long time existence and uniform C∞-estimates that

∞
∫

0

∂tV1,θ (̂�t )dt ≤ V1,θ (̂�∞) < +∞.

Then we obtain
∫

�ti

(

H1Hn−1

Hn
− 1

)

(1 + cos θ〈ν, e〉) d A → 0, as ti → +∞.

Moreover one can show that for any sequence ti → ∞, there exists a convergent
subsequence, whose limit satisfying

(

H1Hn−1

Hn
− 1

)

(1 + cos θ〈ν, e〉) = 0.

It is easy to see that the limit is a spherical cap. Next we show that any limit of a
convergent subsequence is uniquely determined, which implies the flow smoothly
converges to a unique spherical cap. We shall use the argument in [48].

Note that we have proved that x(·, t) subconverges smoothly to a capillary boundary
spherical cap Cρ∞,θ (e∞). Since Vn,θ is preserved along flow (3.1), the radius ρ∞ is
independent of the choice of the subsequence of t . We now show in the following that
e∞ = e. Denote ρ(·, t) be the radius of the unique spherical cap Cρ(·,t),θ (e) around
e with contact angle θ passing through the point x(·, t). Due to the spherical barrier
estimate, i.e. Proposition 4.2, we know

ρmax(t):=max ρ(·, t) = ρ(ξt , t),

is non-increasing with respect to t , for some point ξt ∈ M . Hence the limit
lim

t→+∞ ρmax(t) exists. Next we claim that

lim
t→+∞ ρmax(t) = ρ∞. (4.10)

We prove this claim by contradiction. Suppose (4.10) is not true, then there exists
ε > 0 such that

ρmax(t) > ρ∞ + ε, for t large enough. (4.11)
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By definition, ρ(·, t) satisfies

ρ2 sin2 θ = |x |2 − 2ρ cos θ〈x, e〉. (4.12)

Hence
(

ρ sin2 θ + cos θ〈x, e〉
)

∂tρ = 〈∂t x, x − ρ cos θe〉.

We evaluate at (ξt , t). Since �t is tangential to Cρ,θ (e) at x(ξt , t), we have

ν�t (ξt , t) = ν∂Cr ,θ (e)(ξt , t) = x − ρ cos θe

ρ
.

Thus we deduce

(

ρmax sin
2 θ + cos θ〈x, e〉

)

∂tρ|(ξt ,t) = ρmax

(

1 + cos θ〈ν, e〉
F

− 〈x, ν〉
)

. (4.13)

We note that there exists some δ > 0 such that

ρmax sin
2 θ + cos θ〈x, e〉 ≥ δ > 0. (4.14)

In fact, this follows directly from (4.12), due to

ρ sin2 θ + cos θ〈x, e〉 = 1

2ρ
(|x |2 + ρ2 sin2 θ) ≥ ρ

2
sin2 θ > 0. (4.15)

Since the spherical caps Cρmax,θ (e) are the static solutions to (3.1) and x(·, t) is tan-
gential to Cρmax,θ (e) at x(ξt , t), we see from (2.4)

1 + cos θ〈ν, e〉
〈x, ν〉

∣

∣

∣

x(ξt ,t)
= 1 + cos θ〈ν, e〉

〈x, ν〉
∣

∣

∣

Cρmax,θ (e)
= 1

ρmax(t)
. (4.16)

Since x(·, t) subconverges to Cρ∞,θ (e∞) and ρ∞ is uniquely determined, we have

F = nσn

σn−1
→ 1

ρ∞
uniformly,

as t → +∞. Thus there exists T0 > 0 such that

1

F
− ρ∞ <

ε

2
,

and hence

1

F
− ρmax(t) < −ε

2
,
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for all t > T0. Taking into account of (4.16), we see

(

1

F
− 〈x, ν〉

1 + cos θ〈ν, e〉
)

∣

∣

∣

x(ξt ,t)
< −ε

2
, (4.17)

for all t > T0. By adopting Hamilton’s trick, we conclude from (4.13), (4.14) and
(4.17) that there exists some C > 0 such that for almost every t ,

d

dt
ρmax ≤ −Cε.

This is a contradiction to the fact that lim
t→+∞

d
dt ρmax = 0, and hence claim (4.10) is

true. Similarly, we can obtain that

lim
t→+∞ ρmin(t) = ρ∞. (4.18)

Hence lim
t→∞ ρ(·, t) = ρ∞. This implies that any limit of a convergent subsequence is

the spherical cap around ewith radius ρ∞. We complete the proof of Proposition 4.12.
��

In view of Proposition 4.11 and Proposition 4.12, Theorem 4.1 are proved.

5 Alexandrov–Fenchel inequalities

In this section, we apply the convergence result of flow (3.1) to prove Theorem 1.2.

Proof of Theorem 1.2 Remember

Vk,θ (̂Cr ,θ ) = rn+1−kbθ , (5.1)

where bθ was defined by (2.5).
Assume that� is strictly convex.We have proved in Sect. 4 that flow (3.1) converges

a spherical cap, which we denote by Cr∞,θ (e). By the monotonicity of Vn,θ and Vk,θ ,
Proposition 3.1 we have

Vn,θ (̂�) = Vn,θ ( ̂Cr∞,θ (e)), Vk,θ (̂�) ≤ Vk,θ ( ̂Cr∞,θ (e)),

moreover, equality holds iff � is a spherical cap. It is clear that (5.1) is the same as
(1.11).

When� is convex but not strictly convex, the inequality follows by approximation.
The equality characterization can be proved similar to [48, Sect. 4], by using an
argument of [29]. We omit the details here. ��

For Corollary 1.4, one just notes that when n = 2,

bθ = 1

3

(

2 − 3 cos θ + cos3 θ
)

π.
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