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Abstract

In this paper, we first introduce quermassintegrals for capillary hypersurfaces in the
half-space. Then we solve the related isoperimetric type problems for the convex cap-
illary hypersurfaces and obtain the corresponding Alexandrov—Fenchel inequalities.
In order to prove these results, we construct a new locally constrained curvature flow
and prove that the flow converges globally to a spherical cap.

Mathematics Subject Classification 53E40 - 53C21 - 35K96 - 53C24

1 Introduction

Let ¥ be a closed embedded hypersurface in R”*+! and S the domain enclosed by ¥
in R"*!. The classical isoperimetric inequality states

=l ( 5| )
— > , (1.1)

Wy b, 11

with equality holding if and only if ¥ is a sphere. Here b, | = |B"*!|, the volume of
the unit ball B"*!, and w, = (n + 1)b,1 = |S"|, the area of the unit sphere S”. Its
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natural generalization is the following classical Alexandrov—Fenchel inequality

n+l1-1

n+l—k
) , O0<k<l<n, (1.2)

VE) _ (vk(i>
bn—H - bn+1
with equality holding if and only if X is a sphere, provided that X is a C? convex
hypersurface. Here V1 (Z) is the quermassintegral of X defined by

~ 1 =~ -~
Vk+l(2)::? / HidA, 0<k=<n, W(E)=|Z] (1.3)
n
T

where H; (1 < k < n) is the k-th normalized mean curvature of ¥ C R+ and
Hp = 1. It was proved in [29] that (1.2) holds true if ¥ is /-convex and star-shaped.
Here by [-convex we mean that H; > 0 forall j < /. The case k = 0 was proved to be
true for (I + 1)-convex hypersurfaces in [ 14, 45]. The case [ = 2, k = 1, in which (1.2)
is called Minkowski’s inequality, was proved to be also true for outward minimizing
sets in [35] (see also [24] and a very recent work [1] by using a nonlinear potential
theory.) It remains still open whether (1.2) is true for all /-convex hypersurfaces, except
the case [ = 2, k = 0 that has been proved in [1].

In this paper we are interested in its generalization to hypersurfaces with boundary.
More precisely, we consider hypersurfaces in KTI with boundary supported on the
hyperplane 8@?1 . Let ¥ be a compact manifold with boundary d ¥, which is properly
embedded hypersurface into @’fl. In particular, int(X) C R'j_‘H and 0¥ C Bﬁiﬂ.

Let £ be the bounded domain enclosed by ¥ and the hyperplane BET_I. It is clear
that the following relative isoperimetric inequality follows from (1.1)

= _ (=T (14)
ST~ \ Bt ’ '

where B’ﬁl is the upper half unit ball and '} is the upper half unit sphere. For the
relative isoperimetric inequality outside a convex domain, see [17,25,40]. As adomain
in R"*!, ¥ has a boundary, which consists of two parts: one is ¥ and the other, which

will be denoted by %, lies on BRZ—H. Both have a common boundary, namely 9%
(see Fig. 1). Instead of just considering the area of X, it is interesting to consider the
following free energy functional

|S| — cos 0|92 (1.5)

for a fixed angle constant & € (0, 7). The second term cos@|8/§]| is the so-called
wetting energy in the theory of capillarity (see for example [23]). If we consider to
minimize this functional under the constraint that the volume | 2| is fixed, then we have
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the following optimal inequality, which is called the capillary isoperimetric inequality,

| — cosf|3% S
REC TP i
ISE| — cos 0[S} | By |

with equality holding if and only if ¥ is homothetic to S}, namely a spherical cap
(2.3) with contact angle 6. Here Sj;, 9Sj, ]B%gJrl are defined by

= {x € §" | (x, ens1) > cos6), Byt ={x e B""" | (x, eu11) > cosb},

@: {x € B | (x, ent1) = cos O},
where e, 11 the (n + 1)th standard basis in R’ For simplicity we denote

by := bl ;=[BT wi=wy 0:=|Si| — cos9|aS"| (1.7)

The explicit formulas for bg and wg will be given in Sect. 2.3. In particular, it is easy to
check that (n + 1)bg = wg. The proof of (1.6) is not trivial, which uses the spherical
symmetrization. See for example [41, Chap. 19]. For related physical problems, one
can refer to the classical book of Finn [23].
The main objectives of this paper are considering the following problems

(1) To find suitable generalizations of the quermassintergals V) for hypersurfaces with

boundary supported on 8@’_1:—1 , which are closely related to the free energy (1.5).
(2) To establish the Alexandrov—Fenchel inequality for these new quermassintegrals.

To answer the first question, we introduce the following new geometric functionals.
—~ ~ 1
Voo (B)=IZ.  VipE): —(IEI—C089|3E|)

andforl <k <n,

~ 1 cos 6 sinf 6
Vir1,6(2) = —— /deA— —/H,?Elds , (1.8)
n—+1 n
) ED)

where Hka_z1 is the normalized (k — 1)th mean curvature of X C R” (see Sect. 2 for
details). In particular, one has

1

Vit1,0(2 )——/HdA cos @ sin” 0”(’1—4—1)

We believe that these quantities are the suitable quermassintegrals for hypersurfaces

with boundary intersecting with 8@?1 atangle 6 € (0, m), which is supported by the
following result.
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Theorem 1.1 Let ¥, C EZ:H be afamily of smooth, embedded capillary hypersurfaces
with a constant contact angle 6 € (0, ), which are given by the embedding x (-, t) :

—n+1 .
M — R, and satisfy

@) = f,

for some speed function f. Then for 0 < k < n,

d — n+1—k
— ¥)= —— HidA;, 1.9
dth,e( ) Y /f kd Ay (1.9)
pn
and in particular
d —
TVarn(E) = 0. (1.10)

A hypersurface in KTI with boundary supported on Bﬁiﬂ is called capillary

hypersurface if it intersects with 8@?1 at a constant angle. For closed hypersurfaces
in R"*!, a similar variational formula as (1.9) characterizes the quermassintegrals in
(1.3). This formula for the quermassintegrals is also true for closed hypersurfaces in
other space forms. See for example [55].

Our second result is the generalized Alexandrov—Fenchel inequalities for convex
capillary hypersurfaces.

—=n+1
Theorem 1.2 Forn > 2, let ¥ C Rfj be a convex capillary hypersurface with a
constant contact angle 6 € (0, %], then there holds

Vio(E) _ (Vk,e@)

AR
, YVO<k , 1.11
by by > =r=n (1D

with equality if and only if ¥ is a spherical cap in (2.3). Moreover,
Vit1,6(2) = wp = (n + Dbg, (1.12)

(1.12) follows easily from (1.10), by constructing a smooth family of capillary
hypersurfaces connecting to a spherical cap given in (2.3). Therefore (1.12) is true for
any capillary hypersurfaces with contact angle 6. Moreover, it is equivalent to

wp—

L= sy, (1.13)
n

f H,dA = (n+ 1)wy + cos O sin" O
b

a Gauss—Bonnet type result for capillary hypersurfaces with contact angle 6. When
n = 2, (1.13) implies a Willmore inequality for capillary hypersurfaces with contact
angle 6.
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—3
Corollary 1.3 Let X C R, be a convex capillary surface with a constant contact angle
6 € (0, 31, then

/szA > 4|71, (1.14)
)

with equality holding if and only if ¥ is spherical cap in (2.3).

Here H = 2H; is the ordinary mean curvature for surfaces and it is obvious that
H? > 4H,. When n = 2, (1.11) implies a Minkowski type inequality for convex

capillary surfaces with boundary in ﬁi.

=3
Corollary 1.4 Let ¥ C R be a convex capillary surface with a constant contact angle
6 € (0, 31, then

/HdA >2/wg - (2] — cos@lﬁl)% + sinf cosH|dX], (1.15)
=

where
w29 =3bg = (2 — 3 cos 6 + cos’ 9) .
Moreover, equality holds if and only if ¥ is a spherical cap in (2.3).
From these results, it is natural to propose

Conjecture 1.5 Forn > 2, let ¥ C @IH be a convex capillary hypersurface with a
contact angle 0 € (0, i), there holds

e ~ n+1—

Z Z n+1-k

Vl,@( ) > Vkﬁ( ) , VO < k <1 <n, (116)
b@ b0

with equality iff ¥ is a spherical cap in (2.3).

It would be also interesting to ask further if the conjecture is true for k-convex capillary
hypersurfaces. In order to prove the conjecture, we introduce a suitable nonlinear
curvature flow, which preserves V; g (f) and increases Vy ¢ (f), see Sect. 3. If the flow
globally converges to a spherical cap, then we have the general Alexandrov—Fenchel
inequaltiy (1.16). However, due to technical difficulties we are only able to prove in
this paper the global convergence, for / = n and 6 € (0, 7], namely, Theorem 1.2.
To be more precise, let us first recall the related work on the proof of Alenxandrov—
Fenchel inequalities by using geometric curvature flow for closed hypersurfaces in
R". When 9% = ¢, and we denote S be the bounded convex domain enclosed by
¥ in R"*! In convex geometry, the Alexandrov—Fenchel inequalities (1.2) between
quermassintegrals Vi and V; play an important role. In fact there are more general
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inequalities. See [3, 4, 50] for instance. It is an interesting question, if one can use a
curvature flow to reprove such inequalities. In [43], McCoy introduced a normalized
nonlinear curvature flow to reprove the Alexandrov—Fenchel inequalities (1.2) for
convex domains in Euclidean space. Later, Guan—Li [29] weakened the convexity
condition and only assumed that the closed hypersurface ¥ is k-convex and star-
shaped by using the inverse curvature flow, which is defined by

Hi 4
3

dx = v, (1.17)

This flow was previously studied by Gerhardt [28] and Urbas [53]. One of key obser-
vations in the study of this flow is that the k-convexity and star-shaped are preserved
along this flow. This flow is also equivalent to the rescaled one

dx = (H"“ —(x v)> y (1.18)
t H 5 5 .

see [31, 32] for instance. The motivation to use such a flow (1.18) is its nice properties
that the quermassintegrals V(D) is preserved and Vi41 (%) is non-decreasing along
this flow, which follows from the well-known Minkowski formulas. Using similar
geometric flows, there have been a lot of work to establish new Alexandrov—Fenchel
inequalities in the hyperbolic space [6, 7, 10, 19, 26, 33, 34, 38,49, 55] and in the sphere
[15, 16, 42, 57]. For the anisotropic analogue of Alexandrov—Fenchel (Minkowski)
type inequalities we refer to [8, 58, 60].

If 0X # ¢, the study of geometric inequalities with free boundary or general
capillary boundary has attracted much attention in the last decades. For related relative
isoperimetric inequalities and the Alexandrov—Fenchel inequalities, see for instance
[9, 11, 13, 22, 37, 48, 59] etc. Recently in [48] Scheuer—Wang—Xia introduced the
definition of quermassintegrals for hypersurfaces with free boundary in the Euclidean

unit ball Enﬂ from the viewpoint of the first variational formula, and they proved
the highest order Alexandrov—Fenchel inequalities for convex hypersurfaces with free

boundary in B Very recently, the second and the third authors [59] generalized the
work in [48] by introducing the corresponding quermassintegrals for general capillary
hypersurfaces and established Alexandrov—Fenchel inequalities for convex capillary
hypersurfaces in EHH. The flows introduced to establish these inequalities in [48, 59]
are motivated by new Minkowski formulas proved in [56].

Now we introduce our curvature flow for capillary hypersurfaces in the half space.
Let e = —ep4+1, where e,41 the (n 4 1)th coordinate in R’f]. Letx : X — @Tl

with boundary x5 : 0¥ — B]R’f'l and v its unit normal vector field. We introduce

1 Hp—
(0rx)— = |:(1 + cosB(v, e)) o (x, v)i| V. (1.19)
i

Using\ the Minkowski formulaE given in (2.9), we show that flow (1.19) preserves
V1,0(2), while increases Vy ¢ (2) for k < [. However, due to the weighted function in
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the flow we are only able at moment to show that flow (1.19) preserves the convexity,
when / = n. In this case, we can further bound H"l In order to bound all principal
curvature we need to estimate the mean curvature, which satisfies a nice evolution
equation (4.7). However the normal derivative of H, V,, H, has a bad sign, if 6 > %
Hence we have to restrict ourself on the range 8 € (0, %]. Under these conditions
we then succeed to show the global convergence, and hence Alexandrov—Fenchel
inequalities. It would be interesting to ask if one can also prove the global convergence
for the case 0 > % In analysis, this case is related to the worse case in the Robin
boundary problem for the corresponding PDE. We remark also that a convex capillary
hypersurface with contact angle 6 < 7 could have different geometry from that with
6 > % The former was called a convex cap and was studied in [12].

Comparing with inequalities established in [48, 59], which are actually implicit
inequalities and involve inverse functions of certain geometric quantities that can not
be explicitly expressed by elementary functions, we have here a geometric inequality
(1.11) in an explicit and clean form. An optimal inequality with an explicit form has
more applications. A further good example was given very recently in an optimal
insulation problem in [18], where the optimal inequalities between V,, and V; for any
k < n for closed hypersurfaces have been used crucially. We expect that our results
can be similarly used in an optimal insulation problem for capillary hypersurfaces.

The rest of the article is structured as follows. In Sect.2, we introduce the quer-
massintegrals for capillary hypersurfaces and collect the relevant evolution equations
to finish the proof of Theorem 1.1. In Sect. 3, we introduce our nonlinear inverse cur-
vature flow and show the monotonicty of our quermassintegrals (1.8) under the flow. In
Sect. 4, we obtain uniform estimates for convex capillary hypersurfaces along the flow
and the global convergence. Section5 is devoted to prove the Alexandrov—Fenchel
inequalities for convex capillary hypersurfaces in the half-space, i.e. Theorem 1.2.

2 Quermassintegrals and Minkowski formulas

Since we will deform hypersurfaces by studying a geometric flow, it is convenient to
use immersions. Let M denote a compact orientable smooth manifold of dimension n

with boundary M, and x : M — KTLI be a proper smooth immersed hypersurface.
In particular, x(int(M)) C R and x(dM) C aR™'. Let £ = x(M) and 8% =
x(0M). If no confusion, we will do not distinguish the hypersurfaces ¥ and the

. . —n+1 S .
immersionx : M — RT . Let X be the bounded domain enclosed by ¥ and SRTI.

— ) = —n+1 .
Let v and N be the unit outward normal of ¥ C ¥ and BR'_’:rl C RT respectively.

2.1 Higher order mean curvatures

For k = (k1,k2--+ ,ky) € R, let ox(k),k = 1,---,n, be the kth elementary
symmetric polynomial functions and Hy («) be its normalization Hy (k) = (,11—)01( (k).
k

Fori =1,2,--- ,n,letkli € R*! (or k|«;) denote (n — 1) tuple deleting the ith
component from «.
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We shall use the following basic properties about o.
Proposition 2.1
(1) or(k) = ok (ki) + kiok—1(x|i), VI =i <n.
(2) Y oulkli) = (n — D)o (c).

i=1

(3) 2 kiok—1(k i) = koy (k).

=

(4) 3 kPor—1(kli) = o1(k)ok (k) — (k + D)ogs1 (k).
i=l1

LetTii={k e R" :x; > 0,1 <i <n}andTX = (kK e R" |Hj(x) > 0,V < j <
k}. Itis clear that I'y =T},

Proposition2.2 For 1 <k <[ < n, we have
HyH 1 > H1H, VYV k¢ Fi, 2.1

with equality holding if and only if k = M(1,---,1) for any A > 0. Moreover,
— ; Tk
F(k) = Gf—f](/c) is concave in T
These are well-known properties. For a proof we refer to [39, Chap. XV, Sect. 4]
and [51, Lemma 2.10, Theorem 2.11] respectively.

We use D to denote the Levi—Civita connection of @Tl with respect to the
Euclidean metric §, and V the Levi—Civita connection on X with respect to the induced
metric g from the immersion x. The operator div, A, and V2 are the divergence, Lapla-
cian, and Hessian operator on X respectively. The second fundamental form % of x is
defined by

DxY =VxY —h(X,Y)v.

Letk = (k1, k2, - - - , kn) be the set of principal curvatures, i.e, the set of eigenvalues
of h. Then we denote oy = oy (k) and Hy = Hj(x) resp. be the kth mean curvature
and the normalized kth mean curvature of . We also use the convention that

oo =Ho=1 oy4+1 = Hpy1 =0.

Remark 2.3 We will simplify the notation by using the following shortcuts occasion-
ally:

(1) When dealing with complicated evolution equations of tensors, we will use a local
frame to express tensors with the help of their components, i.e. for a tensor field

T € TF(X), the expression T/lf;]k denotes
i . . i ix
Tj|~~j1 =T(ej,...,ej, €, ...€%),

where (¢;) is a local frame and (¢') its dual coframe.
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(2) The mth covariant derivate of a (k, /)-tensor field 7, V" T, is locally expressed
by

0.0k
JUee U JI4 e Jl4m

(3) We shall use the convention of the Einstein summation. For cpnvenience the
components of the Weingarten map }V are denoted by (h’j) = (g% hy ), and |h|?

be the norm square of the second fundamental form, that is |h|2 = gikhklhi j gj L
where (g'/) is the inverse of (g;;). We use the metric tensor (g;;) and its inverse
(g") to lower down and raise up the indices of tensor fields on X.

2.2 Quermassintegrals in the half-space

In order to introduce our quermassintegrals for capillary hypersurfaces in the half-
space, we review first the quermassintegrals in R"*!, see e.g. [50]. Given a bounded
convex domain £ C R"*! with smooth boundary 3%, its kth quermassintegral is
defined by

Vo(2):=I3],

and for 0 < k < n,

-~ 1
V Y)=——- | HidA,
k+1(2) n+1/ 3

£
where Hj is the normalized kth mean curvature of 9% C R"!. One can check that

d —~ n—=k
—V) X)) = —— H dA, 2.2
T k1(Zr) n+1/ k1 f (2.2)

E)oN

for a family of bounded convex bodies {Z/} in R"*! whose boundary %, evolving
by a normal variation with speed function f. For a proof see e.g. [29, Lemma 5].
As mentioned above, a similar first variational formula also holds in space forms,
see [46]. Therefore formula (2.2) is the characterization of the quermassintegrals for
closed hypersurfaces in space forms.

Now we define the following geometric functionals for convex hypersurfaces X

with capillary boundary in K’r_l with a constant contact angle 6 along 0¥ C R”. Let
Voo (8):=IZ],

~ 1 —
V],g(E):zm (IZ] —cos0[0X]).
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andforl <k <n,
=~ 1 cos O sinf 6 a5
Vit1,6(2) = P fdeA S /Hk_1d5

Here H,? 21 ok—1(k) is the normalized (k — 1)th mean curvature of 9% C R”

(n 1
and oy_1 (k) is the (k — 1)-elementary symmetric function on Rr—! evaluating at the
principal curvatures € of X C R”. In particular, we have

PN 1
V2,g(2) = 2 D) /HdA —sinf cosf|IXT|

Here H is the (un-normalized) mean curvature, i.e. H = nH;. From Gauss—Bonnet—
Chern’s theorem, we know
wp—1

Vi (i) = s

n

if ¥ C R is a convex body (non-empty, compact, convex set). As a result, we see

1

n+19(2) —/HdA cos @ sin” Gm

2.3 Spherical caps

Lete:=—e,+1 = (0, ..., 0, —1). We consider a family of spherical caps lying entirely
in ETI and intersecting R" with a constant contact angle 6 € (0, ) given by

—n+1

Crole):= [x eR, }|x —rcosfe| = r}, r € [0, 00), 2.3)

which has radius r and centered at r cos fe. To emphasize e and to distinguish with
the center of the spherical cap, r cos e, we call C, g(e) a spherical cap around e. If
without confusion, we just write C, g for C, g(e) in the rest of this paper. One can
easily check that C, g is the static solution to flow (3.1) below, that is,

1
14+ cosO(v,e) — —(x,v) =0, 24
r

. . —n-+1
and it intersects with the support BRZF at the constant angle 6.
The volume of C; ¢

Voo (Cro) ="y,
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where by is the volume of C g, which is congruent to S}, defined in the introduction.
One can compute

Wp

bg:=—
=

1 .
L2, <’% 5) - “”; L cos @ sin" 6, 2.5)

and I5(5, %) is the regularized incomplete beta function given by

no 1\ i = 2di
Is E, 5 = 11 1 . (26)
Jot2 (1—=n"2dt

Moreover, one can readily check that
— 1 _— "
V1,0(Cr9) = ——(Cr 9l —cos8|0Cy ]) = r"by
n+1

and
Vio (Crg) = r"*1~Fy.
Therefore, C, g achieves equality in the Alexandrov—Fenchel inequalities (1.11).

2.4 Minkowski formulas

As above, ¥ C E’fl is a smooth, properly embedded capillary hypersurface, given

. —=n+1 . . .
by the embedding x : M — RT , where M is a compact, orientable smooth manifold
of dimension n with non-empty boundary. Let x be the unit outward co-normal of
dX in X and v be the unit normal to 0¥ in BRT'I such that {v, u} and {v, N} have

. . —n+1
the same orientation in normal bundle of 9% C RT . We define the contact angle 0

—=n+1
between the hypersurface X and the support dR, by

(v, N) = cos( — 0).

It follows
N = sinfu — cos v,
V = cosOu + sin6v, 27
or equivalently
m =sindON + cosv, 2.8)

V= —cosON + sin O7.
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Fig.1 A capillary hypersurface
¥ with a contact angle 6

0% can be viewed as a smooth closed hypersurface in R", which bounds a bounded
domain 9% inside R”. By our convention, v is the unit outward normal of 0% in
d% C R". See Fig.1.

The second fundamental form of ¥ in R” is given by

WX, Y):=— (VE'Y,b) = —(DxY,D), X,Y eT@®).

The second equality holds since (b, N o x) = 0. The second fundamental form of 3 X
in X is given by

R(X,Y)i=— (VxY,u) = —(DxY,pn), X,YeT@OX).
The second equality holds since (v, u) = 0.

i —n+1 .
Proposition2.4 Let ¥ C R’jj be a capillary hypersurface. Let {ey},_, be an
orthonormal frame of 9X. Then along 0%,

(1) wis aprincigal direction of X, that is, hyq = h(l, eq) = 0.

(2) hap = sinbhgp.

(3) hop = COEGhaﬁ = cotOhyg.

(4) hap; = hpy (hppday — hay).

Proof The first assertion is well-known, see e.g. [47]. (2) and (3) follow from
hap = —(De,ep, V) = (hapT, V) = sin Ohgp,

and

hap = —(Deyep. 1t) = (hapT, 1) = cos Olgp.
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For (4), taking derivative of h(u, e,) = 0 with respect to eg and using the Codazzi
equation and (1), we get

0= ep (h(p, eq)) = hau;ﬁ + h(veﬁec{’ w) + h(veﬂﬂw eq)
= haﬁ;u + <V€ﬁed’ M)huu + <Ve,g,U«, ey)hozy
= hag;u — hgy (hppday — hay).

The Proposition 2.4 has a direct consegeunce.

Corollary 2.5 ,!f Y is a convex capillary hypersziffﬁlce, then 0¥ C 8@1“ is also
convex, i.e., h > 0, while 0¥ C X is convex (h > 0) if 0 € (0, %] and concave
(h<0)if0 €[5, 7).

The following Minkowski type formulas for capillary hypersurfaces play an impor-
tant role in this paper.

Proposition2.6 Letx : M — E’fl be an smooth immersion of ¥:=x(M) into the
half-space, whose boundary intersects R" with a constant contact angle 0 € (0, 1)
along 0%. For 1 <k < n, it holds

/Hk,l(l 4+ cosB(v,e))dA = /Hk(x, v)dA, 2.9)
b)) )

where d A is the area element of X w.r.t. the induced metric g.

Whenk =1or6 = %, formula (2.9) is known. See e.g. [2, Proof of Theorem 5.1]
and [30, Proposition 2.5]. For our purpose, we need the high order Minkowski type
formulas for general 6.

Proof Denote x”:=x — (x, v)v be the tangential projection of x on X, and
P,:=(v,e)x — (x, V)e.
From a direct computation, we have
D, (x,ej) = gij — {x,v)h;j (2.10)
and
Vi(P)j = (v, e)gij + hile.en)(x. ej) — hi(x, 1) (e, ;). (2.11)

Along 9% C 9R"F!, using (2.7) we see

(P, w) = (Pe, 1) = (v, e){x, ) — (x,v){e, )
= (x, —sinfv —cosOu),
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2134 G.Wang et al.

which follows

(xT + cos@PeT n) = {(x, u) —cosB(x,sinfv 4 cosO )
sinf(x, e) = 0. (2.12)

Denote a,ij; 1= g% be the kth Newton transformation. Taking contraction with (2.10),

(2.11) and using Proposition 2.1 we obtain
ol ((xT + cos QPZ)]-)

= o,/ | (gij — hij{x, v) 4+ cos O (v, e)gi))
=m—k+ Dor_1(1 4+ cosb{v, e)) — kog(x, v)
n!

= m (Hk_l(l + COS@(V, e)) — Hk(.x, V)) .

Using integration by parts, we have
/Vi (o,ij;l(xT + cos GPeT)j)dA = /alfj;l(xT + cos@PeT)j - uids.
z ED)

From (2.12), we know that (x + cos@PI) L p along 3.

Since p is a principal direction of ¥ by Proposition 2.4, we have a,i]; 1 T +
cos QPeT) j - i = 0along dX. It is well-known that the Newton tensor is divergence-
free, i.e., V; a,ij; | = 0. Altogether yields the conclusion. O

2.5 Variational formulas

The following first variational formula motivates us to define the quermassintegrals
for capillary hypersurfaces as (1.8).

Theorem 2.7 Let ¥, C EIH be a family of smooth capillary hypersurfaces supported
by BRT'I with a constant contact angle 6 € (0, ) along 0%, given by the embedding

x(,t): M — EIH, and satisfying
@0 = fv, 2.13)
for a smooth function f. Then for —1 <k <n —1,
Vo = [ riaaa, 2.14)
dt n+1 J

and

d —
o n1,0(X;) = 0.
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Before proving Theorem 2.7, we remark that if ¥, C RT_I is a family of smooth
capillary hypersurfaces evolving by (2.13), then the tangential component (3;x)” of
d;x, which we denote by T € T %;, must satisfy

Tlys, = feotOu+ T, (2.15)

where T € T(0%;). In fact, the restriction of x(-, #) on 9 M is contained in R"” and
hence,

fv+Tlas, = dxlom € TR".

From (2.7), we know

1
V= Vv —cotOu.
sin @

Since v € TR", it follows T — f cotOu € TRZD TX; = T(0%;), and hence (2.15).
Up to adiffeomorphism of 9 M, we can assume 7" = 0. For simplicity, in the following,
we always assume that

T|BE, = fcotOu. (2.16)

Hence, from now on, let ¥, be a family of smooth, embedding hypersurfaces with
0-capillary boundary in EIH, given by the embeddings x(-,¢) : M — @’fl, which

evolves by the general flow
ox = fv+T, (2.17)

with T € T%; satisfying (2.16). We emphasize that the tangential part 7 plays a key
role in the proof of Theorem 2.7 below.

Along flow (2.17), we have the following evolution equations for the induced metric
gij» the area element d A, the unit outward normal v, the second fundamental form
hi;, the Weingarten matrix h’] , the mean curvature H, the kth mean curvature o} and

F:=F (h{ ) of the hypersurfaces ¥;. These evolution equations will be used later.

Proposition 2.8 Along flow (2.17), it holds that

(1) 0:8ij =2fhij +ViT; +V;T,.

(2) 9,dA; = (fH +div(T))dA;.

(3) ;v =—-Vf+h(e,T)e;.

(4) dihij = =V f + [hixh’ + Vrhij + WV T + h{V; Ty
(5) ihly = =V'V; f — fhSh) + VL.

(6) 0:H = —Af — |h]*f +(VH,T).

(7) oo = —S%‘-V’V/’f — f(oyor — (k + Dogy1) + (Vor, T).
(8) % F = —F/Viv;f - fFifh’;.h;; + (VF,T), where F;izzg—F..

J
hi
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The proof of Proposition 2.8 for 7 = 0 can be found for example in [27, Chap. 2, Sect.
2.3] or [21, Appendix B]. A proof for a general T can be found in [59, Proposition
2.11].

Now we complete the proof of Theorem 2.7.

Proof of Theorem 2.7 Choose an orthonormal frame {ey},_, of 70X C TR" such
that {ej:=u, (ey),_,} forms an orthonormal frames for 7 X. First, by taking time

derivative to the capillary boundary condition, (v, N o x) = —cos6 along 9%, we
obtain

0= (3, N(x(-,0)) + (v, dN(fv +T))
= (=Vf +h(e;, T)ei, N)
= —sin6V, f +sinOh(e;, T)(e;, 1)
= —sin6dV, f +sinOh(u, pn)cotd f,

where we have used (2.7), Proposition 2.8 and T' |y = f cotOu. As a result,
Vi f =cotbh(u, ) f ondx;. (2.18)

Next, using integration by parts and Proposition 2.8 we have

d / dA
— oy
dt k t

X

= / [(atak)dA; +Uk3t(dAt)]

P
9 . . .
zfi’f(— flo— fhuh™ + (VR T))d A, +/0k(f01 +div(T))d A,
o~ ’
s i z
doy doy ;
Z_/_-flﬂj+f0k<T»M>+/f 010k — —hith"' ) dA,
! o’
axm, i % 3, i
dox ;
= | (foxcoto — Wf wi)+k+1) | forp1dA,
% i N
= /COt@ka(hlhu)-ir(k-lr1)/f<fk+1dAz, (2.19)
Iz, )

where we have used T' |3y = f cotOu, (2.18) and Lemma 2.1 (1), (4).

Moreover flow (3.1) induces a hypersurface flow 9%; C R” with normal speed
L thatis
sin@° ’

dyxlon = fv+ feotbu = -7,
sin @
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By (2.2), we have

H™ (h).

d, — n—k f
V. = J
dth( ) "

sin @
E)oR

From Proposition 2.4 (2), we know
/’laﬁ = sin Qil\aﬁ,

and hence oy (h|h11) = sin® Boy (ﬁ). Substituting these formulas into (2.19), we obtain

d —_—
- /deAt —sin* 0 cos OV 0T, | = (n—k)/fHk+1dA,.
¥ %

By the definition of Vi 41,9 (f)\t) in (1.8), we get the desired formula (2.14) for k > 0.
It remains to consider the case k = —1. It is easy to check that

BN 1
Voo (30) = 15| = w1 (x, v)dA;.
P

A direct computation gives

d
1)— >
(n+ )dtVo,a( 1)

=/[f—(X,Vf)+(x,v)fH+h(T,xT)+(x,v)divT]dA,

P
=/((1+diV(xT))f+(x,v>fH>dA,—I— / (—(xT,u)f+(x,v)(T,M))
b a%,
:(n—i—l)/fdA,,
P

since —(xT, ) f + (x, v)(T, u) = 0 for x € 3%, which follows from

(x, v)(T, uy = fcotb{x,v) = fcosb(x,v),
(xT, pw) f = fcosbix, D).

Now we complete the proof. O
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3 Locally constrained curvature flow

In this section, we first introduce a new locally constrained curvature flow and show
the monotonicity of the quermassintegral along the flow.
Let M be a compact orientable smooth n-dimensional manifold. Suppose x¢ :

—=n+1 L . .
M — RT_ be a smooth initial embedding such that xo(M) is a convex hypersurface
+1 .
inR" " and intersects with 8R”+1 at a constant contact angle 6 € (0, ). We consider
+ g

the smooth family of embeddings x : M x [0, T) — KTI, satisfying the following
evolution equations

@x(p, )= f(p,nv  for(p,1) € M x[0,T),

(w(p, 1), Nox(p, 1)) =cos(r —0) for(p,1) € IM x [0, T), G.D
with x(M, 0) = xo(M) and
f:zw — ()C, U>, (32)
where
F:= i (3.3)
T .

The following nice property of flow (3.1) is essential for us to prove Theorem 1.2
later.

Proposition 3.1 As l/olag as flow (3.1) exists and %, is strictly [-convex, V) g (i)\t) is
preserved and Vi g (X;) is non-decreasing for 1 <k <1 < n.

Proof From Theorem 2.7, we see

— n+l1-1 1-1
31V1,9(>3z) = /ledAl
n+l
1-1
= nrl-t / [(1 4+ cosO(v,e)) H_1 — Hi{x, v)] dA;
n—+1
P
=0,
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where the last equality follows from (2.9). For 1 < k <[ < n, from Theorem 2.7

— n+1-—
ath,e(Zt) = n+1 /fdeAt

1—k H,
= HZT/ [Hlell(l—i-cosQ(v e)) —Hk(x,v>i| dA;
t

/ [Hi—1(1 + cosO(v, e)) — Hi(x,v)] dA,
=

n+1-—k%k
>
n—+1

=0,

where we have used the Newton—-MacLaurin inequality (2.1) and the Minkowski for-
mula (2.9) in the last two steps respectively. O

4 A priori estimates and convergence

The main result of this section is the following long-time existence and the convergence
result of flow (3.1) with/ = n, i.e.,

H,
F=—" 4.1
anl
under an angle constraint
oe(0.2].
2

Theorem 4.1 Assume xo : M — KSL_—H is an embedding of a strictly convex capillary

hypersurface in the half-space with the contact angle 6 € (0, 51. Then there exists
—n41

x: M x [0, +00) — RT_ satisfying flow (3.1) with F given by (4.1) and the initial

conditionx (M, 0) = xo(M). Moreover, x (-, t) — Xoo(+) in C* topology ast — +00,

and the limit xoo : M — K’:r is a spherical cap.

In order to prove this theorem, we need to obtain a priori estimates, which will be
given as follows.

4.1 The short time existence

For the short time existence, one can follow the strategy presented in the paper of
Huisken—Polden [36] to give a proof for a general initial capillary hypersurface. Since
our initial hypersurface is convex, one can prove the short time existence in the class
of star-shaped hypersurfaces. In this class, one can in fact reduce flow (3.1) to a
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scalar flow. Then the short time existence follows clearly from the standard theory for
parabolic equations. Therefore we first consider the reduction.

Assume that a capillary hypersurfaces ¥ is strictly star-shaped with respect to the
origin. One can reparametrize it as a graph over g’j_ Namely, there exists a positive

function r defined on gi such that
=n
Y = {r(X)X|X c S+} :

where X:=(X1, ..., X;) is a local coordinate of g’i.

We denote V¥ be the Levi-Civita connection on S with respect to the stan-
dard round metric 0i=gy d;:=dx,, 01j:=0(d;, 3;), r;:=V?r, and rijzzvl.OV?r. The
induced metric g on X is given by

gij =r’ojj +rirj = ¥ (0ij + ¢i¢;) .

where ¢(X):=logr(X). Its inverse g_l

gi = L (i T\ e (i 2
r2 r2 + |VOI’|2 UZ ’

where ri:=ai~/rj, ¢ ::ai~/goj and v:=y/1 + |V9|2. The unit outward normal vector
field on X is given by

is given by

1 1
V= — (3, — r_ZVOr) = - (8, — r_IVO(p) .
v v

The second fundamental form 4 on X is

ew
hij = o (0ij + wivj — 0ij) .

and its Weingarten matrix h’J is

. . 1 . . gpi(pk
i giky " el ik ¥ ¥ .
hj =g"hy = o [Bj (a 2 o |-

The higher order mean curvature Hy can also be expressed by ¢. Moreover,

e(p
(x,v) =(roy,v) = o

In order to express the capillary boundary condition in terms of the radial function
@, we use the polar coordinate in the half-space. For x:=(x’, x,41) € R" x [0, +00)
and X:=(B,&) € [0, %] x §"1, we have that

Xpy1 =rcosfB, |x'|=rsinB.
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Then

sin 8
ent1 =0 = cos 0, — 9.
r

Xn+1
In these coordinates the standard Euclidean metric is given by
x| = dr® + 12 (d,B2 + sin? ,Bgsnfl) .

It follows that

1
(v, ent1) = — (cos,B + sin ,BVg (p) .
v B
Along 98’} it holds
Nox=—eu 41 =-p,
r
which yields
0
— 1 1 Vig®
—cosf = (n,Nox)= <— (a —r'v0), —a,3> S A
v r v
that is,

vgﬁq; = cosfy/ 1+ |VOgp|2. 4.2)

Therefore, in the class of star-shaped hypersurfaces flow (3.1) is reduced to the fol-
lowing scalar parabolic equation with an oblique boundary condition

e =5f, in S x [0, T%),
Vgﬁgo = cos0y/1 + V0|2, onaS% x [0, T*), 4.3)
@, 0) = @0 ("), on S,

where ¢ is the parameterization radial function of xo(M) over g’j_, and

f H,_ | cosf ( B +si ,BVO ) e?
= — cos sin BV - —.
: H, v 0% v

Since | cos@| < 1, the oblique boundary condition (4.2) satisfies the non-degeneracy
condition in [44], see also [20]. Hence the short time existence follows.
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4.2 Barriers

Let 7* be the maximal time of smooth existence of a solution to (3.1), more precisely
in the class of star-shaped hypersurfaces. It is obvious that ' can not be zero and hence
F is positive in M x [0, T™*). The positivity of F implies that X; is strictly convex up
to T*.

The convexity of ¥ implies that there exists some 0 < r| < rp < 00, such that

20 CCrp\Crp.

The family of C, ¢ forms natural barriers of (3.1). Therefore, we can show that the
solution to (4.3) is uniformly bounded from above and below.

Proposition 4.2 Foranyt € [0, T*), 3; satisfies

El‘ - Crzﬁ \C}’l,@-
Proof Recall that C, g satisfies (2.4). Thus for each » > 0, it is a static solution to
flow (3.1). The assertion follows from the avoidance principle for strictly parabolic

equation with a capillary boundary condition (see [5, Sect. 2.6] or [54, Proposition
4.2]). O

4.3 Evolution equations of Fand H

We first introduce a parabolic operator for (3.1)

1 o(v, y 0
Limg, — LHCO00) iy <T T v>.

F

Set F:=3""_, Fl.i. Using Proposition 2.1 we have

Fiiny;
F-—U_F_1>0, (4.4)
F
FU Ry
F—lzf = (4.5)

Proposition 4.3 Along flow (3.1), we have

LF =2cosOF 2FYF jhi(ex, e) —2(1 +cosO(v,e)) F > FUF,F.;
FY (h)ij
+F (1 T )

and

V,F =0, onds,. (4.6)
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Proof Using the Codazzi formula, we have
Fil (e, vyij = F7 (hij + hijatx, en) = )i, 0))
= F + Fa(x, ex) — F7 (h%);j(x, v),
and
F'(v, e).ij = F (hix.j(ex. €) — (h)ij (v, €))
= Filex, e) — F(h%)ij(v, e).
Combining with Proposition 2.8, we obtain
O F = —FU f.;; — fFI(h);; + (VF,T)
/1 0(v, .
= —F (M — {x, v>) — FFU2); + (VF,T)
F i
= —cosOF T F~ 1y, e).ij + ZCOSGF_zFijEj(v, e).
—~2(1 +cosO(v, e) F 3 FUF,F.

+F2FUF;(1+cos0(v, ) + (F + Flx, ex) — FY (h*);j(x, v))
—(1 +cos@(v, e)) F~LFU (h?);; + (x, v)FY (h?);; + (VF, T).

Hence it follows

LF =8F —(1+cos@(v,e))F2FUF;; — (T +x —cosF e, VF)
= cosOF (h?);; F~ (v, e) +2cos 0 F 2 FUF.jhy (e, e)
—2(1 +cos@(v, e)) F > FUF,F,
+(F = F7(h%);;(x, 1)) — (1 + cos (v, ) F~ I (h%);; + (x, v) F (h%);
=2c0sOF 2FYF. jhi(ex, e) —2(1 +cos (v, e)) F > FUF,;F.;
+F — F7'FYU (h%);;.

Along 0%;, from (2.18) we know
Vuf =cotOh(u, w)f,
By (2.7) or (2.8) and Proposition 2.4 (1), we have on 0%,
Vilx, v) = (x, h(u, pyp) = cos Oh(p, p){x, v) = cotOh(u, w)(x, v),
and hence

Vu(f 4 (x,v)) = cot Oh(p, w)(f + (x, v)).

@ Springer



2144 G.Wang et al.

Using (2.7) and Proposition 2.4 (1) again, we have (¢ = N)
Vv, e) = h(u, w)i{p, e) = —tan0h(u, p){v, e)
and
Vu(l + cos (v, e)) = —sinOh(u, n){v, e),

where we used (e, V) = 0 and (e, x) = 0 on d%,;. One can easily check that the left
hand side of the previous formula equals to cot Oh(u, w)(1 4 cos6(v, e)), on IX.
Hence it follows that

1+ cosf{v, e)) _0

V”F:V"< Ftno)
O

We remark that (4.6) plays an important role in applying the maximum principle later.
This property holds for curvature flow of free boundary hypersurfaces and capillary
hypersurfaces, see also [48, 59].

Proposition 4.4 Along flow (3.1), we have
LH = (1+cosO(v,e)F2F" Sy ihg; + (24 cosO(v, e) H
+[20030F‘2F;,~(U, e).i —2(1 +cosf(v, e) F3|VF|?
—(2 + cos (v, e))F’1|h|2], (4.7)
and, while X is convex,
V,H <0, onds,. (4.8)
Proof First, note that

A{v, e) = Hylex, e) — [h]* (v, e),
A(x,v) = H 4+ Hy(x, ex) — |h]*(x, v).

Applying Proposition 2.8, we obtain

&WH=—Af—|h>f+(VH,T)
= (14 cosO(v,e)) F2AF —2(1 + cosO(v, e)) F3|VF|?
+2c039F_2E,~(v, e).i — cos@F_lA(v, e) + A{x,v)
—(1 4 cosO(v, e)) F~ h|> + (x, v)|h|> + (VH, T)
= (14 cosO(v, e)) F2AF —2(1 + cos6(v, e)) F > |VF|?
+2cosOF 2F;(v,e).i — F Y n>+ H
+(x, VH) + (VH, T) — cos0F (e, VH).
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The Ricci equation and the Codazzi equation yield

hitii = hkizti = heisit + R hpk + R hpi
= hjiser + (hpt H — hpihii)hpr + (hpthii — hpihi)hpi
= Hy + hpkhp H — |h|*h,

which implies

_9*F
 Ohidhy
= Fkl’ﬁhkl;ihst;i + Fle;kl + Fkl(hz)le - F|h|2'

kl
hkl;ihst;i + F hkl;ii

Hence we have
LH=3H— F*(1+cosO(v,e))FVH,;j — (T +x —cosOF ‘e, VH)
= (1+cosO(v, ) F 2 [F* " by + F* (W) H — F|h)?]

—2(1 +cosO(v, ) F 3| VF|> +2cosOF 2F,;(v,e).i — F'|h*+ H
= (1+cosO(v,e))F2F*S "y ihgi 4+ (24 cosO(v, e)) H

+[200s9F_2F;,'(v, e).i — 2(1 + cosO(v, a)) F3|VF ]
—(2+cos9<v,e>)F*1|h|2].
Along 9%, choosing an orthonormal frame {ey}),_, of T9X%, such that

{e1:=u, (eq)},_,} forms an orthonormal frames for 7'%;. From Proposition 2.4, we
have

hap:p = cos Oﬁﬂy(hn&xy — hgy),

for all 2 < o < n. Equation (4.6) implies

n
0=VuF =F"hi1+ ) F™hga.

a=2
which in turn implies
n
V/J.H = hll;l + Zhaa;l
a=2
F(XC( 1 1
- _Z T Haail +Zh‘” 1= Z £l (F' = F*)hqa:
a=2
S|

F_(F“ F(m)(hll - haoz)ﬁaot

IA
pQ
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where the last inequality follows from the concavity of F', and the convexity of 9% C
%, see Corollary 2.5. Hence (4.8) is proved. O

Remark 4.5 (4.8) is the only place where we have used 6 € (0, 3 1.

4.4 Curvature estimates

First, we have the uniform bound of F', which follows directly from Proposition 4.3
and the maximum principle.

Proposition 4.6 Along flow (3.1), it holds

In particular, from the uniform lower bound of F:= HHfl , we get auniform curvature
positive lower bound.

Corollary 4.7 %,,t € [0, T*) is uniformly convex, that is, there exists ¢ > 0 depending
only on X, such that the principal curvatures of %,

mink;(p,t) > c,
1
forall (p,t) € M x [0, T*).

Next we obtain the uniform bound of the mean curvature.

Proposition 4.8 There exists C > 0 depending only on X, such that
H(p,t) <C, VY(p,t) e M x[0,T").

Proof From (4.8), we know that V, H < 0on d%,. Thus H attains its maximum value
at some interior point, say po € int(M). We now compute at p.
From the concavity of F = G";i”l in Proposition 2.2, we know

(14 cosB(v, e)) F2FXS b < 0.
Using Proposition 4.4, we have

LH < (2+cosO(v,e))H
+[2cos9F*2F;,-<v, e)i —2(1+cosB (v, e) F3VF? — (2 + cosf(v, e)) F~! |h\2]
= Ki + Ko,
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The term |K|| is bounded by 3H. For the term K3, we note that

FKj :=2cosOF 'F.;(v,e).; —2(1 +cosO(v, e)) F2|VF|?
—(2 4+ cosO(v, e))|h|?
= 2cosOF " Fihji(e, e;) —2(1 + cosO(v, e)) F 2| VF|?
—(2 4+ cosO(v, e))|h|?

n .
S1F>+SoiF.ihii + S
: Z( 1 ;% 2,i I S3h” =-S5 E < D20 u’)

i=1
3 -s)a,
where we have used the notations
S1:=2(1 4 cosO(v,e))F~2, Syi:=—2cosOF (e, e;), S3:=2+cosh(v, e).
One can check

83, — 48183 :=4cos’ 0F *(e, ¢;)* — 8(1 +cosO(v, e)) F*(2 + cos (v, ¢))

IA

4F—2[cos2 0leT 12 — 2(1 + cos 6 (v, €)) (2 + cos O (v, e})]

= 4F_2[ —3(1 4+ cosbH{v, e))2 —1 +cos29]

< —¢o

for some positive constant c¢p. Combining with Proposition 4.6, it implies

co coF
Ky < — h|* = — |h|* < —C|h|?,
4FS; 8(1 4+ cosb{v, e))

for some positive constant C > 0. Therefore,
0 < LH(po) <K +Ky <3H —ClhP,

which yields that H is uniformly bounded from above. O

Proposition 4.8 and Corollary 4.7 imply directly that

Corollary 4.9 3;,t € [0, T*), has a uniform curvature bound, namely, there exists
C > 0 depending only on X, such that the principal curvatures of %,

max «;(p,1) < C,
1
forall (p,t) e M x [0, T*).
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4.5 Convergence of the flow

First we show that the convexity implies that the star-shaped is preserved in the fol-
lowing sense.

Proposition 4.10 There exists ¢y > 0 depending only on X, such that
(x,v)(p, 1) = co. 4.9)

forall (p,t) € M x [0, T*).
Proof For any T’ < T*, assume m(i)n (x,v)(p, 1) = {(x,v)(po, to). Then, either
Mx[0,T']
po€IMorpoe M\ oM.
If po € M\ OM, let {e;}_, be the orthonormal frame of X, then at po,
0= D¢ {x,v) =hjj(x,ej).

Due to the strict convexity (;;) > 0, we have (x, ¢;) = 0. It follows

(x, v)(po) = [x|(po) = co,

for some cg > 0, which depends only on the initial datum.
If po € OM, by (2.7) we have

(x,v) = (x,sinfV — cosfe) = sinBH(x, V).

Hence (x, V) | o Attains its minimum value at po. As above, choosing {eq }o—, be the
orthonormal frame of 9%, in R” such that e; = v, we have

0=V (x, D) = hap(x. ep).

By Proposition 2.4 (2) and Corollary 4.7, we know (ﬁaﬁ) > 0, and hence we have
x || vat pg and

(x, v)(po) = |x|(po) = co,

for some c¢p > 0, which depends only on the initial datum. Therefore, we finish the
proof of (4.9). O

Proposition 4.11 Flow (3.1) exists for all time with uniform C°-estimates.

Proof From Proposition 4.2, Proposition 4.10, Proposition 4.7 and Corollary 4.9, we
see that ¢ is uniformly bounded in C Z(S’i x [0, T*)) and the scalar equation in (4.3)
is uniformly parabolic. Since |cosf| < 1, the boundary value condition in (4.3)
satisfies the uniformly oblique property. From the standard parabolic theory (see e.g.
[20, Theorem 6.1, Theorem 6.4 and Theorem 6.5], also [52, Theorem 5] and [39,
Theorem 14.23]), we conclude the uniform C°°-estimates and the long-time existence
of solution to (4.3). O

@ Springer



Alexandrov-Fenchel inequalities... 2149

Proposition 4.12 x (-, t) smoothly converges to a uniquely determined spherical cap
around e with capillary boundary, as t — o0.

Proof By Proposition 3.1, we know Vi g (337) is non-decreasing, due to

0 V1,0(%) = / Lol g (1 +cos@(v,e))dA; >0

.

tV1,0 t 1 Fln S ) t =
oA

It follows from the long time existence and uniform C*-estimates that

o0
f 0, V10(E)dt < V15(Tog) < o0,
0

Then we obtain

H{H,_

_/(%—1) (1+cos(v,e))dA — 0, ast; — +oo.
n

A

Moreover one can show that for any sequence #; — 00, there exists a convergent
subsequence, whose limit satisfying

<H1Hn—1

i, — 1) (I +cosb{v,e)) =0.

It is easy to see that the limit is a spherical cap. Next we show that any limit of a
convergent subsequence is uniquely determined, which implies the flow smoothly
converges to a unique spherical cap. We shall use the argument in [48].

Note that we have proved that x (-, ¢) subconverges smoothly to a capillary boundary
spherical cap C,_ g(ex). Since V, g is preserved along flow (3.1), the radius oo is
independent of the choice of the subsequence of 7. We now show in the following that
ex = e. Denote p(-, t) be the radius of the unique spherical cap Cp. r),9(e) around
e with contact angle 6 passing through the point x (-, #). Due to the spherical barrier
estimate, i.e. Proposition 4.2, we know

Pmax():=max p(-, 1) = p(&, 1),

is non-increasing with respect to ¢, for some point § € M. Hence the limit

lim  pmax (7) exists. Next we claim that
t—400

lim  pmax (1) = poo- (4.10)
+o0

t—

We prove this claim by contradiction. Suppose (4.10) is not true, then there exists
& > 0 such that

Pmax () > poo + €, for t large enough. 4.11)
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By definition, p(-, t) satisfies
p?sin? 0 = |x|> — 2p cosO(x, e). (4.12)
Hence
(,o sin” 6 + cos 6 (x, e)) d;p = (0rx,x — pcosbe).
We evaluate at (§;, 1). Since X; is tangential to C, ¢ (e) at x (&, t), we have

X — pcosfe
vy, (61, 1) = vy ()& 1) = ————.

Thus we deduce

1+ cosB(v,e)

7 — (x, v)) . (4.13)

(pmax sin? 6 + cos 6 (x, e)) 811y = Pmax (
We note that there exists some § > 0 such that
Pmax Sin” 0 + cos O (x, e) > § > 0. 4.14)
In fact, this follows directly from (4.12), due to

I
psin® 6 + cosf(x,e) = 3—(Ix|” + o’ sin’ 0) = gsinzé ~0. (415
0

Since the spherical caps C,,,,. ¢ (e) are the static solutions to (3.1) and x(, ) is tan-
gential to C,, . o (e) at x(&, t), we see from (2.4)

1+ cosb(v,e) I +cost(v,e) . 1 4.16)
(x,v) @ () Cmns@©  pmax(®) '

Since x (-, t) subconverges to C,_ g(€x0) and p is uniquely determined, we have

noy 1 .
F = —— — — uniformly,
On—1 Poo

as t — +o00. Thus there exists Ty > O such that

1 €

L
FPe=3

and hence

€
— — Pmax () < —=
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for all + > Tj. Taking into account of (4.16), we see

1 (x, v)
<F 1 +cosf(v, e))

for all t > Tj. By adopting Hamilton’s trick, we conclude from (4.13), (4.14) and
(4.17) that there exists some C > 0 such that for almost every #,

€
< ——, 4.17
x(&,1) 2 @17

d
E,Omax < —Ce.

This is a contradiction to the fact that , liI—P %,Omax = 0, and hence claim (4.10) is
—> 100

true. Similarly, we can obtain that

lim  pmin(f) = poo- (4.18)
t—>—+00

Hence tlim p(-, 1) = poo. This implies that any limit of a convergent subsequence is
— 00

the spherical cap around e with radius p~,. We complete the proof of Proposition 4.12.
O

In view of Proposition 4.11 and Proposition 4.12, Theorem 4.1 are proved.

5 Alexandrov-Fenchel inequalities

In this section, we apply the convergence result of flow (3.1) to prove Theorem 1.2.

Proof of Theorem 1.2 Remember
Vio(Crg) = r"*1 by, G.1)

where by was defined by (2.5).

Assume that ¥ is strictly convex. We have proved in Sect. 4 that flow (3.1) converges
a spherical cap, which we denote by C,, ¢(e). By the monotonicity of V, ¢ and Vy g,
Proposition 3.1 we have

Voo (E) = Voo(Cre6(@). Vi (E) < Vio(Cr o).

moreover, equality holds iff X is a spherical cap. It is clear that (5.1) is the same as
(1.11).

When ¥ is convex but not strictly convex, the inequality follows by approximation.
The equality characterization can be proved similar to [48, Sect. 4], by using an
argument of [29]. We omit the details here. O

For Corollary 1.4, one just notes that when n = 2,

1
by = 5(2—30059—{—00530)7{.
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