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Abstract
We prove several statements about arithmetic hyperbolicity of certain blow-up vari-
eties. As a corollarywe obtainmultiple examples of simply connected quasi-projective
varieties that are pseudo-arithmetically hyperbolic. This generalizes results of Corvaja
and Zannier obtained in dimension 2 to arbitrary dimension. The key input is an appli-
cation of the Ru–Vojta’s strategy. We also obtain the analogue results for function
fields and Nevanlinna theory with the goal to apply them in a future paper in the
context of Campana’s conjectures.

Mathematics Subject Classification 11J87 · 11J97 · 14G05 · 32A22

1 Introduction

The goal of this project is to generalize the results of our previous paper [26] to higher
dimensions. In [26] we dealt with two competing conjectures that aim to characterize
algebraic varieties defined over a number field k that have a potentially dense set of
k-rational points. On one hand Campana conjectured that the class of these varieties is
the class of special varieties, introduced in [6], while theWeak Specialness Conjecture
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(see [14, Conjecture 1.2]) predicts that these should be the weakly special varieties,
i.e. varieties that do not admit any étale cover that dominates a variety of general type.
In [26, Theorem 4.2] we constructed examples of quasi-projective threefolds that are
not special but weakly-special (see also [3, 7] for other constructions), and proved in
[26, Theorem 6.5] that such examples possess properties that contradict function field
and analytic analogues of the Weak-Specialness conjecture.

In order to generalize these results in higher dimensions we need two ingredients:
the first one, that is the focus of the present paper, is the construction of simply
connected varieties X where we have a good control on the distribution of integral
points and entire curves. The second one, which will be addressed in a forthcoming
paper, is the construction of weakly-special varieties Z fibered over X and the study
of the orbifold hyperbolicity of the base X .

In [26] we used as “arithmetic input” a construction of Corvaja and Zannier in
[10] of a simply connected quasi-projective surface whose integral points are not
Zariski dense. The key observation in [10] was that the study of the distribution of
integral points in such surfaces is connected to divisibility problems of polynomials
evaluated at S-integers. In fact many classical problems in Diophantine Geometry,
such as (certain cases of) Siegel’s finiteness theorem or the S-unit equation, can be
rephrased via divisibility of polynomials. In this paper we use this observation to
obtain several new results that extend [10] to higher dimensions.

The first result is a generalization of [10, Theorem 4] to an arbitrary number of
variables.

Theorem 1 Let n ≥ 2. Let k be a number field, let S be a finite set of places including
the Archimedean ones, and let OS be the ring of S-integers. Let F1, . . . , Fr ,G ∈
OS[t0, . . . , tn] be absolutely irreducible homogeneous polynomials with F1, . . . , Fr
of the same degree. Suppose that the hypersurfaces defined by F1, . . . , Fr and G
are in general position, i.e. any intersection of n + 1 hypersurfaces is empty, and
deg(Fi ) ≥ deg(G) for every i . Then there exists a closed subset Z ⊂ P

n, independent
of k and S, such that there are only finitely many points (x0, . . . , xn) ∈ P

n(OS)\Z
such that one of the following holds:

(i) r ≥ 2n + 1 and Fi (x0, . . . , xn) | G(x0, . . . , xn) in the ring OS, for i = 1, . . . , r;
or

(ii) r ≥ n + 2 and
∏r

i=1 Fi (x0, . . . , xn) | G(x0, . . . , xn) in the ring OS.

In [10, Theorem 4] the original Theoremwas obtained in the case n = 2.Moreover,
in Theorem 1, we obtain a stronger conclusion, namely the existence of an exceptional
set Z independent of the field of definition. The above Theorem yields the following
Corollary that generalizes the classical S-unit equation (that is the case g = 1).

Corollary 1 (Compare with [10, Corollary 1]) Let g ∈ OS[t1, . . . , tn] be a polynomial
of degree≤ 1 such that g(0, . . . , 0) �= 0, g(1, 0, . . . , 0) �= 0, . . . , g(0, . . . , 0, 1) �= 0.
The n-tuples (x1, . . . , xn) ∈ On

S such that
((
1 − ∑n

i=1 xi
) ∏n

i=1 xi
) | g(x1, . . . , xn)

are not Zariski-dense in An.

Proof Apply Theorem 1 (ii) to the linear forms t0,…,tn , and t0 − ∑n
i=1 ti .
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Divisibility of polynomials and degeneracy of integral… 1971

As we will see, both results follow from a more general statement, Theorem 9 in
Sect. 4.

Wementioned above that divisibility results as the ones of Theorem 1 and Corollary
1, are related to degeneracy of integral points on varieties. The first statement in this
direction is the following theorem that studies certain blow up ofPn along intersections
of hypersurfaces.

Theorem 2 Let n ≥ 2, r ≥ 2n + 1 and D0, D1, . . . , Dr be hypersurfaces in general
position inPn definedover k. Letπ : X → P

n be the blowupof the unionof subschemes
Di ∩ D0, 1 ≤ i ≤ r , and let D̃i be the strict transform of Di . Let D = D̃1 +· · ·+ D̃r .
Then X\D is arithmetically pseudo-hyperbolic.

This is the key result needed for the future applications to the study of weakly
special varieties. In fact we can use Theorem 2 to construct simply connected varieties
whose integral points are not Zariski dense, thus generalizing Corvaja and Zannier’s
construction in arbitrary dimension.

Proposition 1 (Compare with [10, Theorem 3]) In the setting of Theorem 2, suppose
that the divisor D0 + D1 + · · · + Dr has simple normal crossing singularities. Then
the variety X\D appearing in Theorem 2 is simply connected.

Proof If n = 2 this was done in [26, Example 4.4]. If n ≥ 3, consider a loop around
D̃i . Now observe that, if E is the exceptional divisor over Di ∩ D0, the generic fiber
of the restriction π : E\D → Di ∩ D0 is isomorphic to C. Thus the loop becomes
homotopically trivial in X\D.

Proposition 1 will be used in a subsequent paper to discuss analogues of a question
of Hassett and Tschinkel in [15, Problem 3.7] for function fields and entire curves.

Along the same lines we generalize to arbitrary dimensions [10, Corollary 2].

Theorem 3 Let n ≥ 2 and let H1, . . . , H2n be 2n hyperplanes in general position
on P

n defined over k. Choose n + 1 points Pi , 1 ≤ i ≤ n + 1 such that Pi ∈ Hi ,
1 ≤ i ≤ n + 1, and Pi /∈ Hj if i �= j for 1 ≤ j ≤ 2n. Let π : X → P

n be the
blowup of the n + 1 points Pi , 1 ≤ i ≤ n + 1, and let D ⊂ X be the strict transform
of H1 + · · · + H2n. Then X\D is arithmetically pseudo-hyperbolic.

Finally we obtain a generalization of [10, Proposition 1, Theorem 7] as follows.

Theorem 4 Let n ≥ 2 and q ≥ 3n be two integers; for every index i ∈ Z/qZ, let Hi

be a hyperplane in P
n defined over k. Suppose that the Hi ’s are in general position.

For each index i ∈ Z/qZ let Pi be the intersection point ∩n−1
j=0Hi+ j . Let π : X → P

n

be the blow-up of the points P1, . . . , Pq, let H̃i ⊂ X be the strict transform of Hi , and
let D = H̃1 + · · · + H̃q . Then X\D is arithmetically pseudo-hyperbolic.

Theorem 5 Let n ≥ 2, q ≥ 3n be an integer; for every index i ∈ Z/qZ, let Fi ,
1 ≤ i ≤ q be linear form in k[t0, . . . , tn] in general position. Then there exists a
Zariski closed subset Z of Pn such that the set of points [x0 : · · · : xn] ∈ P

n(k)
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satisfying, for each i ∈ Z/qZ, the equality of ideals

Fi (x0, . . . , xn) · (x0, . . . , xn) =
i∏

j=i−n+1

(Fj (x0, . . . , xn), . . . , Fj+n−1(x0, . . . , xn))

is contained in Z.

We also mention that most of these results can be rephrased as hyperbolicity of
complements of divisors in certain varieties that are higher dimensional analogues of
Del Pezzo surfaces. For example Theorem 2 applies to open subsets of the blow up
of P3 in r ≥ 7 lines. Interestingly enough the condition r ≥ 7 characterizes precisely
the blow-ups that are not weakly Fano (and hence not Mori dream spaces).
Ideas of the proof The main technical tool to obtain the proof of the previous
results, as in our previous paper [26], is to apply (a generalization of) the main theorem
of Ru–Vojta (see Theorem 7). In fact in [26] we have already proven that the Ru–Vojta
method can be used to recover the main theorem of [9], that was used in [10] to obtain
the degeneracy results that we are generalizing in this paper. However, in this situation,
the computations of the constant β, which is the crucial part of the proof, is less direct
and make use of several ingredients, among them an adaptation of Autissier’s ideas
of [1].

Moreover, by carefully tracing the exceptional set, and following a strategy already
discussed by Levin in [20], we can obtain a stronger result, namely pseudo-arithmetic
hyperbolicity instead of degeneracy of integral points. In particular, this shows that
in our statements, the closed subset outside of which the integral points are finite,
does not depend on the field of definition (as expected in the stronger versions of
the conjectures of Lang and Vojta); we refer to [26, Section 3] for more details and
discussions. In fact our results are indeed instances of the Lang-Vojta conjecture for
integral points.

The paper is organized as follows: in Sect. 2we collect some preliminary definitions
and properties of local heights andwe link divisibility problemswith integral points. In
Sect. 3 we state the Main Theorem of Ru–Vojta with better control of the exceptional
set. In Sect. 4 we prove Theorems 1 and Theorem 2. In Sect. 5 we compute β in several
cases and we prove Theorem 3. In Sect. 6 we prove Theorem 4 and Theorem 5. In
Sect. 7 we collect the analogue results for holomorphic maps, while in Sect. 8 we
present the results over function fields, together with the proof of the key Ru–Vojta
statement.
Divisibility and integral points As observed in [10], there is a con-
nection between distribution of integral points on certain rational quasi-projective
varieties, and divisibility problems. In fact, Corvaja and Zannier show the follow-
ing: given points P1, . . . , Pn ∈ P

2 that are the intersection of two curves C1, C2, let
π : X → P

2 be the blow up along P1, . . . , Pn . Then, for a point Q ∈ P
2, Q �= Pi ,

one can relate the condition that π−1(Q) is integral on X with respect to the strict
transform of C1, with a divisibility condition for the polynomials defining C1 and C2
(locally).

We formalize this in Lemma 1, where we generalize to arbitrary dimensions [10,
Lemma 1].
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In fact, divisibility conditions are connected to the celebrated Vojta’s conjectures
(as in [31, Conjecture 3.4.3]) in many ways: Silverman in [29] observed that GCD
results for S-units in number fields, as in the seminal paper [5], are related to Vojta’s
conjecture on certain blow-ups. Since then, a number of articles have been devoted to
exploit this connection. We cite for example [2, 8, 11–13, 22, 23, 25, 30, 35–37].

2 Heights and integral points

We collect here standard facts and definitions on local and global Weil heights and
integral points.We refer to [18, Chapter 10], [16, B.8], [22, Section 2.3] or [28, Section
2] for more details about this section. We have decided to avoid the use of integral
models to discuss integral points since it is more natural in the arithmetic context of
the Ru–Vojta method.

Let k be a number field and Mk be the set of places of k, normalized so that it
satisfies the product formula

∏

v∈Mk

|x |v = 1, for x ∈ k×.

For a point [x0 : · · · : xn] ∈ P
n(k), the standard logarithmic height is defined by

h([x0 : · · · : xn]) =
∑

v∈Mk

logmax{|x0|v, . . . , |xn|v},

and it is independent of the choice of coordinates x0, . . . , xn by the product formula.
A Mk-constant is a family {γv}v∈Mk of real numbers, with all but finitely many

equal to zero. Equivalently it is a real-valued function γ : Mk → R which is zero
almost everywhere. Given two families {λ1v} and {λ2v}, we say λ1v ≤ λ2v holds up
to an Mk-constant if there exists an Mk-constant {γv} such that λ2v − λ1v ≥ γv for all
v ∈ Mk . We say λ1v = λ2v up to an Mk-constant if λ1v ≤ λ2v and λ2v ≤ λ1v up to
Mk-constants.

Let V be a projective variety defined over a number field k. The classical theory of
heights associates to every Cartier divisor D on V a height function hD : V (k) → R

and a local Weil function (or local height function) λD,v : V (k)\Supp(D) → R for
each v ∈ Mk , such that

∑

v∈Mk

λD,v(P) = hD(P) + O(1)

for all P ∈ V (k)\Supp(D).
We also recall some basic properties of local Weil functions associated to closed

subschemes from [28, Section 2]. Given a closed subscheme Y on a projective variety
V defined over k, we can associate to each place v ∈ Mk a function

λY ,v : V \Supp(Y ) → R.
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Intuitively, for each P ∈ V and v ∈ Mk , we think of

λY ,v(P) = − log(v-adic distance from P to Y ).

To describe λY ,v more precisely, we use (see for example [28, Lemma 2.5.2]) that
for a closed subscheme Y of V , there exist effective divisors D1, . . . , Dr such that
Y = ∩Di . Then, the function λY ,v can be described as follows:

Definition-Theorem 6 ([31, Lemma 2.5.2], [28, Theorem 2.1 (d)(h)]) Let k be a num-
ber field, and Mk be the set of places of k. Let V be a projective variety over k and let
Y = ∩Di ⊂ V be a closed subscheme of V . We define the (local) Weil function for Y
with respect to v ∈ Mk as

λY ,v = min
i

{λDi ,v}, (2.1)

This is independent of the choices of the Di ’s up to an Mk-constant, and satisfies

λY1,v(P) ≤ λY2,v(P)

up to an Mk-constant, whenever Y1 ⊆ Y2. Moreover, if π : Ṽ → V is the blowup of
V along Y with exceptional divisor E, λY ,v(π(P)) = λE,v(P) up to an Mk-constant,
as functions on Ṽ (k)\E.

The height function for a closed subscheme Y of V is defined, for P ∈ V (k)\Y ,
by

hY (P) :=
∑

v∈Mk

λY ,v(P).

We also define two related functions for a closed subscheme Y of V , depending on a
finite set of places S of k: the proximity function mY ,S and the counting function NY ,S ,
for P ∈ V (k)\Y , as

mY ,S(P) :=
∑

v∈S
λY ,v(P) and NY ,S(P) :=

∑

v∈Mk\S
λY ,v(P) = hY (P) − mY ,S(P).

We can now define the notion of (D, S)-integral points following Vojta.

Definition 1 ([33, Definition 13.1]) Let k be a number field and Mk be the set of
places on k. Let S ⊂ Mk be a finite subset containing all Archimedean places. Let
X be a projective variety over k, and let D be an effective divisor on X . A set R ⊆
X(k)\Supp D is a (D, S)-integral set of points if there is a Weil function {λD,v} for
D and an Mk-constant {γv} such that for all v /∈ S, λD,v(P) ≤ γv for all P ∈ R.

By the uniqueness (up to an Mk-constant) of Weil functions for a Cartier divisor D
(see [33, Theorem 9.8 (d)]), one can use a fixedWeil function λD in Definition 1 (after
adjusting {γv}).

Finally we recall the definition of arithmetic hyperbolicity.
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Divisibility of polynomials and degeneracy of integral… 1975

Definition 2 Let X and D be as above. We say that X\D is arithmetically pseudo-
hyperbolic if there exists a proper closed subset Z ⊂ X such that for any number
field k′ ⊃ k, every finite set of places S of k′ containing the Archimedean places, and
every set R of (k′-rational) (D, S)-integral points on X , the set R\Z is finite. We say
that X\D is arithmetically hyperbolic if it is pseudo-arithmetically hyperbolic with
Z = ∅.

The main tool for relating questions of divisibility between values of polynomials
to integrability for points on varieties is established in the following lemma.We state it
in terms of local heights since it is more convenient and it admits an explicit analogue
using local equations as in [10].

Lemma 1 (Compare to [10, Lemma 1]) Let X be a projective variety over a number
field k, and let S ⊂ Mk be a finite subset containing all Archimedean places. Let D
be an effective Cartier divisor of X and W be a closed subscheme of X such that the
codimension of D ∩W is at least 2. Let π : X̃ → X be the blowup along some closed
subscheme of X containing D ∩ W such that π∗D = D̃ + π−1(D ∩ W ), where D̃
is the strict transform of D. Let R be a set of points in X̃(k). Then the following are
equivalent.

(i) λD̃,v(P) = 0 up to a Mk-constant for P ∈ R and v /∈ S,
(ii) λD,v(π(P)) ≤ λW ,v(π(P)) up to a Mk-constant for P ∈ R and v /∈ S.

Proof Let Y = D ∩ W . The functorial property of Weil functions implies that

λD,v(π(P)) = λπ∗D,v(P) = λD̃,v(P) + λY ,v(π(P)) (2.2)

up to a Mk-constant. On the other hand, it follows from (2.1) that

λY ,v(π(P)) = min{λD,v(π(P)), λW ,v(π(P))} (2.3)

up to a Mk-constant for any v ∈ Mk . Then the equivalence of (i) and (ii) can be easily
deduced from (2.2) and the (2.3).

3 Ru–Vojta theorem and some basic propositions

We first recall the following definitions and geometric properties from [27].

Definition 3 Let L be a big line sheaf and let D be a nonzero effective Cartier divisor
on a projective variety X . We define

βL,D := lim
N→∞

∑∞
m=1 h

0(X ,LN (−mD))

N · h0(X ,LN )
.

If A is a big (Cartier) divisor we let βA,D := βO(A),D .

The constant β is the crucial ingredient in Ru–Vojta’s main Theorem. Before stating
it we recall the following definition.
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Definition 4 Let D1, . . . , Dq be effective Cartier divisors on a variety X of dimension
n.

(i) We say that D1, . . . , Dq are in general position if for any I ⊂ {1, . . . , q}, we have

dim(∩i∈I Supp Di ) ≤ n − #I with dim ∅ = −∞.

(ii) We say that D1, . . . , Dq intersect properly if for any I ⊂ {1, . . . , q}, x ∈
∩i∈I Supp Di , and local equations φi for Di in x , the sequence (φi )i∈I is a regular
sequence in the local ring OX ,x .

Remark 1 If D1, . . . , Dq intersect properly, then they are in general position. By [24,
Theorem 17.4], the converse holds if X is Cohen–Macaulay.

The following is the main arithmetic Theorem of Ru and Vojta.

Theorem 7 [27, General Theorem (Arithmetic Part)] Let k be a number field and let
Mk be the set of places of k. Let S ⊂ Mk be a finite subset containing the Archimedean
places. Let X be a projective variety defined over k. Let D1, . . . , Dq be effectiveCartier
divisors intersecting properly on X. LetL be a big line sheaf on X. Then for any ε > 0,
there exists a proper Zariski-closed subset Z ⊂ X, independent of k and S, such that

q∑

i=1

βL,DimDi ,S(x) ≤ (1 + ε)hL(x)

holds for all but finitely many x in X(k)\Z.
We stress that the result is in fact stronger than the original statement, since the

exceptional set Z does not depend on k and S. This can be obtained by carefully tracing
the exceptional sets in the proof with the following version, due to Vojta in [32], of
Schmidt’s subspace theorem, which gives a better control on the exceptional sets.

Theorem 8 Let k be a number field and Mk be the set of places on k. Let S ⊂ Mk

be a finite subset containing the Archimedean places. Let H1, . . . , Hq be hyperplanes
in Pn defined over k with the corresponding Weil functions λH1, . . . , λHq . Then there
exist a finite union of hyperplanes Z, depending only on H1, . . . , Hq (and not on k or
S), such that for any ε > 0,

∑

v∈S
max
I

∑

i∈I
λHi ,v(P) ≤ (n + 1 + ε)h(P)

holds for all but finitely many points P in P
n(k)\Z, where the maximum is taken

over subsets {1, . . . , q} such that the linear forms defining Hi for i ∈ I are linearly
independent.

We end this section with a useful lemma about local height functions.
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Lemma 2 [35, Lemma 5.2] Let D1, . . . , Dq be effective divisors of a projective variety
V of dimension n, defined over k, in general position. Then

q∑

i=1

λDi ,v(P) = max
I

∑

j∈I
λDj ,v(P),

up to a Mk- constant, where v ∈ Mk, I runs over all index subsets of {1, . . . , q} with
n elements for all x ∈ V (k).

4 Proof of Theorem 1 and Theorem 2

In this section we will prove Theorem 1 and Theorem 2. These will be obtained as a
consequence of the following more general statement. From now on, we denote by k
a number field, and by S a finite set of places of k.

Theorem 9 Let V be a Cohen–Macaulay projective variety of dimension n defined
over k. Let D0, D1, . . . , Dr , r ≥ n+ 1, be effective Cartier divisors of V defined over
k in general position. Suppose that there exist an ample Cartier divisor A on V and
positive integers di such that Di ≡ di A for 0 ≤ i ≤ r . Then there exists a proper
Zariski closed subset Z of V , independent of k and S, such that for any Mk constant
{γv}, there are only finitely many P ∈ V (k)\Z such that the following holds.

(i) r ≥ 2n + 1 and 1
di

λDi ,v(P) ≤ 1
d0

λD0,v(P) + γv for v /∈ S and 1 ≤ i ≤ r; or

(ii) r ≥ n + 2 and
∑r

i=1
1
di

λDi ,v(P) ≤ 1
d0

λD0,v(P) + γv for v /∈ S.

Here, ≡ denotes numerical equivalence of divisors, and λDi ,v is a Weil function of Di

at v.
The following theorem can be deduced from Theorem 9 using Lemma 1.

Theorem 10 Let V be a Cohen–Macaulay projective variety of dimension n defined
over k. Let D0, D1, . . . , Dr , r ≥ 2n + 1, be effective Cartier divisors of V defined
over k in general position. Suppose that there exist an ample Cartier divisor A on V
and positive integers di such that Di ≡ di A for all i . Let π : Ṽ → V be the blowup
along the union of subschemes Di ∩ D0, 1 ≤ i ≤ r , and let D̃i be the strict transform
of Di . If D = D̃1 + · · · + D̃r , then Ṽ \D is arithmetically pseudo-hyperbolic.

Then, Theorem 2 is a direct consequence of Theorem 10. We now show that Theorem
9 implies Theorem 1.

Proof of Theorem 1 Let Di := [Fi = 0] for 1 ≤ i ≤ r , and D0 = [G = 0].
Recall the following standard local Weil function for Di

λDi ,v(P) := − log
|Fi (x0, . . . , xn)|v

max{|x0|div , . . . , |xn|div } ,

where P = [x0 : · · · : xn] ∈ P
n(k)\Di , F0 = G and di = deg Fi , 0 ≤ i ≤ r . Since

the coefficients of Fi and G are in OS , for integral points P = (x0, . . . , xn) ∈ On+1
S ,
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1978 E. Rousseau et al.

the condition that Fi (x0, . . . , xn) divides G(x0, . . . , xn) in the ring OS implies that
|G(x0, . . . , xn)|v ≤ |Fi (x0, . . . , xn)|v ≤ 1 for v /∈ S. Then |G(x0, . . . , xn)di |v ≤
|Fi (x0, . . . , xn)d0 |v for v /∈ S as di ≥ d0, and hence for v /∈ S,

1

di
λDi ,v(P) − 1

d0
λD0,v(P) = − 1

d0di
log

∣
∣
∣
∣
Fi (x0, . . . , xn)d0

G(x0, . . . , xn)di

∣
∣
∣
∣
v

≤ 0

Therefore, Theorem 1 (i) is a consequence of Theorem 9 (i). The proof for (ii) is the
same.

4.1 Basic properties and one technical lemma

We will recall some basic results and one technical lemma from [35]. We start with
[35, Proposition 2.4], which is an immediate consequence of [16, Theorem B.3.2.(f)].

Proposition 2 Let X be a projective variety defined over k, and A be an ample Cartier
divisor on X defined over k. Let D be a Cartier divisor D defined over k with D ≡ A.
Let ε > 0. Then there exists a constant cε such that for all P ∈ X(k)

(1 − ε)hA(P) − cε ≤ hD(P) ≤ (1 + ε)hA(P) + cε .

The following theorem is a reformulation of [21, Theorem 3.2] by applying Propo-
sition 2.

Theorem 11 Let X be a projective variety of dimension n defined over k. Let
D1, . . . , Dq be effective Cartier divisors on X, defined over k, in general position.
Suppose that there exists an ample Cartier divisor A on X and positive integer di
such that Di ≡ di A for all i and all v ∈ S. Let ε > 0. Then there exists a proper
Zariski-closed subset Z ⊂ X, independent of S and k, such that for all but finitely
many points P ∈ X(k)\Z,

q∑

i=1

1

di
NDi ,S(P) > (q − n − 1 − ε)hA(P).

The following proposition follows from [17, Proposition 5.5].

Proposition 3 Let X be a Cohen–Macaulay scheme over k and Y ⊂ X be a locally
complete intersection subscheme. Let π : X̃ �→ X be the blowup of X along Y . Then
X̃ is a Cohen–Macaulay scheme. Moreover, if Z is an irreducible subscheme of Y ,

dim π−1(Z) = dim Z + codim Y − 1.

Finally, we recall the following technical lemma which is a modified version of
[35, Lemma 4.7].

Lemma 3 Let V be a projective variety of dimension n, and let Y be a closed subscheme
of V of codimension at least 2. Let π : Ṽ → V be the blowup along Y , and let
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E = π−1(Y ) be the exceptional divisor. Let A be and ample Cartier divisor on V and
let D be an effective Cartier divisor such that D ≡ A. Then, for all sufficiently large
�, the sheaf L = O(�(n + 1)π∗A − E) is ample and

β−1
L,π∗D ≤ 1

�

(

1 + O

(
1

�2

))

≤ 1

�

(

1 + 1

�
√

�

)

.

4.2 Proof of Theorem 9

We begin with the following proposition on general position for pullbacks.

Proposition 4 Let V be aCohen–Macaulay projective variety, and let D0, D1, . . . , Dr

be ample effective Cartier divisors of V in general position. Let Y = ∪r
i=1(Di ∩ D0)

and π : Ṽ → V be the blowup along the subscheme Y . Then, the following holds:

(i) π∗Di = D̃i + π−1(Di ∩ D0) for each 1 ≤ i ≤ r , where D̃i is the strict transform
of Di .

(ii) π∗D1, . . . , π
∗Dr are in general position.

Proof Since D0, . . . , Dr are in general position, for every i �= j the intersection
D0 ∩ Di ∩ Dj has codimension at least 3. Hence, the support of π−1(D0 ∩ Dj ) is not
a subset of the support of π−1(Di ), which implies (i).

To show (ii), we first note that if r ≥ n, then the intersection of any n + 1 of
π∗Di , 0 ≤ i ≤ r , is empty since D0, D1, . . . , Dr are in general position. Next, let
I ⊂ {1, . . . , r}with #I ≤ n. We claim that dim(∩i∈I Supp π∗Di ) ≤ n−#I . LetW be
an irreducible component of ∩i∈I Supp π∗Di . If π(W ) ⊂ Y , then π(W ) is a subset of
(∩i∈I Di )∩D0 and hence dim π(W ) < n−#I . Then dimW ≤ n−#I byProposition 3.
It remains to consider when π(W ) is not a subset of Y , which implies thatW\π−1(Y )

is not empty and is contained in ∩i∈I Supp D̃i\π−1(Y ). Since (∩i∈I D̃i )\π−1(Y ) and
(∩i∈I Di )\Y are isomorphic, this shows that dimW ≤ n − #I .

We can now prove Theorem 9.

Proof of Theorem 9 Let c be the least commonmultiple ofd0, d1, . . . , dr . Let A0 = cA,
D′
i := c

di
Di ≡ A0, for 0 ≤ i ≤ r . For P ∈ V (k) satisfying (i) and v /∈ S, we have

λD′
i ,v

(P) = c

di
λDi ,v(P) ≤ c

d0
λD0,v(P) = λD′

0,v
(P),

up to a Mk constant. Similarly, if P ∈ V (k) satisfies (ii), then

r∑

i=1

λD′
i ,v

(P) =
r∑

i=1

c

di
λDi ,v(P) ≤ c

d0
λD0,v(P) = λD′

0,v
(P)

up to a Mk constant. Therefore, by replacing Di by D′
i , 0 ≤ i ≤ r , and A by A0, we

may assume that Di ≡ A for each 0 ≤ i ≤ r and replace (i) by

λDi ,v(P) ≤ λD0,v(P) + γv, for 1 ≤ i ≤ r; (4.1)
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and, when v /∈ S, replace (ii) by

r∑

i=1

λDi ,v(P) ≤ λD0,v(P) + γv. (4.2)

Let Yi = Di ∩ D0 and Y = ∪r
i=1Yi . Since D0 is in general position with each

Di , 1 ≤ i ≤ r , D0 and each Di intersect properly by Remark 1 (at page 6). Hence,
Y is a local complete intersection. Let π : Ṽ → V be the blowup along Y , and
E = π−1(Y ) be the exceptional divisors. Since Y is a local complete intersection, by
Proposition 3, Ṽ is Cohen–Macaulay and hence by Proposition 4, π∗D1, . . . , π

∗Dr

intersect properly. Let � be a fixed sufficiently large integer such that the line sheaf
L = O(�(n + 1)π∗A − E) is ample and Lemma 3 holds true, i.e.

β−1
L,π∗Di

≤ 1

�

(

1 + 1

�
√

�

)

.

Let ε′ = �−5/2. Theorem 7 applied with ε = ε′, X = Ṽ , L, the divisors π∗Di (for
1 ≤ i ≤ r ) and q = r , gives a proper Zariski closed subset Z̃ ⊂ Ṽ , independent of k
and S such that

r∑

i=1

mπ∗Di ,S(x) ≤
(
1

�
(1 + 1

�
√

�
) + ε′

)

h�(n+1)π∗A−E (x)

≤
(

1 + 2

�
√

�

)

(n + 1)hπ∗A(x) − 1

�
hE (x)

holds for all x outside the proper Zariski-closed subset Z̃ of Ṽ (k). By the functorial
properties of the local height functions, hD = mD,S + ND,S , and hE = hY ◦ π , we
have

(

r − n − 1 − 2(n + 1)

�
√

�

)

· hA(π(x)) + 1

�
hY (π(x)) ≤

r∑

i=1

NDi ,S(π(x)) (4.3)

holds for allπ(x) outside the proper Zariski-closed subset Z = π(Z̃) of V (k). Further-
more, it follows from Lemma 2 and Proposition 2 with ε = 1

�2
that for all P ∈ V (k),

r∑

i=1

NDi ,S(P) ≤ nND0,S(P) + O(1) ≤
(

n + 1

�2

)

hA(P) + O(1). (4.4)

On the other hand, for all P = π(x) ∈ V (k) such that r ≥ 2n + 1 and (4.1) holds,
i.e. λDi ,v(P) ≤ λD0,v(P) + γv for each 1 ≤ i ≤ r , we have

hY (P) ≥ NY ,S(P) =
r∑

i=1

∑

v /∈S
min{λDi ,v(P), λD0,v(P)}
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=
r∑

i=1

NDi ,S(P) −
r∑

i=1

∑

v /∈S
max{0, γv}. (4.5)

If we apply Theorem 11 with ε = 1
�2
, then there exists a proper Zariski-closed

subset Z ′ of V (k), independent of S and k, such that, for all P ∈ V (k)\Z ′,

r∑

i=1

NDi ,S(P) ≥
(

r − n − 1 − 1

�2

)

hA(P). (4.6)

Combining Eqs. (4.5) and (4.6), together with the fact that r ≥ 2n+ 1, we get that,
for all P ∈ V (k)\Z ′,

hY (P) ≥
(

1 − 1

�2

)

hA(P). (4.7)

We now use (4.4) to get an upper bound for the right hand side of (4.3) and use
(4.7) for the left hand side. Then we have that

(

r − 2n − 1 + 1

�
− 2(n + 1)

�
√

�
− 2

�2

)

· hA(π(x)) ≤ O(1) (4.8)

holds for all but finitely many P ∈ V (k) outside Z ∪ Z ′. Since A is ample, r ≥ 2n+1,
and 1

�
− 2(n+1)

�
√

�
− 2

�2
> 0, there are only finitely many P ∈ V (k) such that (4.8) holds.

This shows (i).
We are left considering when r ≥ n + 2 and (4.2) holds. In this case, we have

similarly to (4.4)

r∑

i=1

NDi ,S(P) ≤ ND0,S(P) + O(1) ≤
(

1 + 1

�2

)

hA(P) + O(1)

for all P ∈ V (k). Together with (4.3), (4.5) and (4.6), we have that

(

r − n − 2 + 1

�
− 2(n + 1)

�
√

�
− 2

�2

)

· hA(π(x)) ≤ O(1)

holds for all but finitely many P ∈ V (k) outside a proper Zariski-closed Z ∪ Z ′. Since
A is ample, r ≥ n + 2, and 1

�
− 2(n+1)

�
√

�
− 2

�2
> 0, this implies (ii).

Proof of Theorem 10 Since the property of being arithmetically pseudo-hyperbolic is
independent of the multiplicity of the divisors, we may assume that there exists a
positive constant d such that Di ≡ d A for 0 ≤ i ≤ r .

Let Yi = Di ∩ D0, Y = ∪r
i=1Yi , and π : Ṽ → V be the blowup along Y . By

Proposition 4, π∗Di = D̃i + π−1(Di ∩ D0). Let R be a set of (D, S)-integral points,
where D = D̃1 +· · ·+ D̃r . Then there exists Mk-constant {γv} such that for all v /∈ S,
λD,v(P) ≤ γv for all P ∈ R. By Lemma 1, we have for each 1 ≤ i ≤ r

λDi ,v(π(P)) ≤ λD0,v(π(P)) up to a Mk-constant for P ∈ R and v /∈ S. (4.9)
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Since r ≥ 2n+1, Theorem 9 (i) implies that there exists a proper Zariski closed subset
Z of V , independent of k and S, such that there are only finitelymanyπ(P) ∈ V (k)\Z ,
i.e. P /∈ π−1(Z), satisfying (4.9). Since the choice of Z is independent of the Mk-
constant, it implies that Ṽ \D is arithmetically pseudo-hyperbolic.

5 Proof of Theorem 3

In this section we prove Theorem 3. The main technical result is a computation of the
constant β. To this end we generalize some construction of Autissier removing some
hypotheses.

5.1 Background results and computingˇ

We start by recalling some basic properties on global sections of line bundles, and
refer to [20, Section 7.3] for further references and proofs.

Lemma 4 Suppose D is a nef divisor on a nonsingular projective variety X. Let n =
dim X. Then h0(X ,O(ND)) = (Dn/n!)Nn +O(Nn−1). In particular, Dn > 0 if and
only if D is big.

We will also make use of two basic exact sequences (see [20, Lemma 7.7]).

Lemma 5 Let D be an effective divisor on a projective variety X with inclusion map
i : D → X. Let L be an invertible sheaf on X. Then we have exact sequences

0 → L ⊗ O(−D) → L → i∗(i∗L) → 0,

0 → H0(X ,L ⊗ O(−D)) → H0(X ,L) → H0(D, i∗L).

Lemma 6 [20, Lemma 7.9] Let X be a nonsingular projective variety of dimension
n. Let D and E be any divisor on X, and let F be a nef divisor on X. Then we have

h0(X ,O(ND + E − mF)) ≤ h0(X ,O(ND)) + O(Nn−1) for all m, N ≥ 0,

where the implied constant is independent of m and N.

We will use the following lemma and its corollary, which are modification of [1,
Lemma 4.2, Corollary 4.3] where we weaken the original hypothesis on B.

Lemma 7 Let X be a nonsingular projective variety of dimension n ≥ 2. Let B be a
nonsingular subvariety of X of codimension 1 that is also a nef Cartier divisor. Let A
be a nef Cartier divisor on X such that A− B is also nef. Let δ > 0 be a positive real
number. Then, for any positive integers N and m with 1 ≤ m ≤ δN, we have

h0(X ,O(N A − mB)) ≥ An

n! N
n − An−1.B

(n − 1)!N
n−1m
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+ (n − 1)An−2.B2

n! Nn−2 min{m2, N 2} − O(Nn−1),

(5.1)

where the implicit constant depends on δ.

Proof We will follow the proof of [1, Lemma 4.2] with necessary modification. We
first note whenm ≤ N , (5.1) follows from the proof in [1, Lemma 4.2], since this part
of proof only need the assumption that A, B and A − B are nef.

For the case that m > N , we let N ≤ j ≤ m. Let i : B → X be the inclusion map.
From Lemma 5, we have an exact sequence

0 → H0(X ,O(N A − ( j + 1)B)) → H0(X ,O(N A − j B)) → H0(B, i∗O(N A − j B)).

Therefore, we have

h0(X ,O(N A − ( j + 1)B)) ≥ h0(X ,O(N A − j B)) − h0(B, i∗O(N A − j B)).

Hence,

h0(X ,O(N A − mB)) ≥ h0(X ,O(N A − N B)) −
m−1∑

j=N

h0(B, i∗O(N A − j B)).

(5.2)

Since B is a nef divisor on X , i∗O(B) is nef. Applying Lemma 6 to B, which is a
non-singular subvariety of X , and the divisors corresponding to i∗O(A) and i∗O(B),
we have

h0(B, i∗O(N A − j B)) ≤ h0(B, i∗O(N A)) + O(Nn−2) = An−1B

(n − 1)! N
n−1 + O(Nn−2). (5.3)

Then, from (5.2), (5.3), Lemma 4, and the estimate of h0(X ,O(N A − N B)) in the
first case, it follows that

h0(X ,O(N A − mB)) ≥ h0(X ,O(N A − N B)) − (m − N )
An−1B

(n − 1)! N
n−1 − O(Nn−2)

≥ An

n! Nn − An−1.B

(n − 1)! N
n−1m + (n − 1)An−2.B2

n! Nn − O(Nn−1).

This shows (5.1) for the case that m > N .

We use Lemma 7 to obtain a lower bound on the β constant in terms of intersection
numbers.

Corollary 2 Let X be a nonsingular projective variety of dimension n ≥ 2. Let B be a
nonsingular subvariety of X of codimension 1 that is also a nef Cartier divisor on X.
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Let A be a big and nef Cartier divisor on X such that A − B is nef An−1.B > 0 and
An−2.B2 ≥ 0. Then

βA,B ≥ An

2nAn−1.B
+ (n − 1)An−2.B2

An
g

(
An

nAn−1.B

)

, (5.4)

where g : R+ → R
+ is the function given by g(x) = x3/3 if x ≤ 1 and g(x) = x−2/3

for x ≥ 1.

Proof Let

b = An

nAn−1.B
and a = (n − 1)An−2.B2.

We first consider the case when An−2.B2 > 0. For N sufficiently large and such that
bN is an integer, Lemma 7 implies that

∞∑

m=1

h0(N A − mB)

≥
bN∑

m=1

(
An

n! N
n − An−1.B

(n − 1)!N
n−1m + a

n!N
n−2 min{m2, N 2}

)

+ O(Nn)

≥
(
An

n! b − An−1.B

(n − 1)! · b
2

2
+ a

n!g(b)
)

Nn+1 + O(Nn)

=
(
b

2
+ a

An
g(b)

)

An N
n+1

n! + O(Nn).

Then (5.4) follows. When An−2.B2 = 0, the same computation gives βA,B ≥ b

2
,

which implies that (5.4) holds also in this case.

5.2 Proof of Theorem 3

We apply Corollary 2 to the setting of Theorem 3.

Lemma 8 Let H1, . . . , H2n be 2n hyperplanes in general position on P
n and choose

n+1 points Pi such that Pi ∈ Hi , 1 ≤ i ≤ n+1, and Pi /∈ Hj if i �= j for 1 ≤ j ≤ 2n.

Let π : X → P
n be the blowup of the n+1 points Pi , and let H̃i be the strict transform

of Hi . Finally, let � be a sufficiently large integer and let A = ∑n+1
i=1 �H̃i + H̃n+2.

Then A is big and nef and

βA,H̃1
= · · · = βA,H̃n+1

≥ (n + 1)�

2n
, (5.5)

βA,H̃n+2
= · · · = βA,H̃2n

>
(n + 1)�

2n
− �

2n(n + 1)n−2 . (5.6)
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Proof Let π : X → P
n be the blowup of the points Pi , as in the hypotheses. Let

Ei = π−1(Pi ), be the exceptional divisors. Then

π∗Hi =
{
H̃i + Ei , for 1 ≤ i ≤ n + 1

H̃i , for n + 2 ≤ i ≤ 2n.

Moreover,

A :=
n+1∑

i=1

�H̃i + H̃n+2 ∼ (�(n + 1) + 1)π∗H − �E, (5.7)

where E = E1 + · · · + En+1 and H is a (generic) hyperplane in Pn . Then

An = ((�(n + 1) + 1)π∗H − �E)n = (
(n + 1)n − (n + 1)

)
�n + O(�n−1). (5.8)

We now show that H̃i is nef for 1 ≤ i ≤ 2n. Let C be an irreducible curve on X . Then

H̃i .C =
{

π∗H .C − Ei .C, for 1 ≤ i ≤ n + 1
π∗H .C, for n + 2 ≤ i ≤ 2n.

}

.

If C ⊂ E , then C is contained in exactly one of the Ei . Let us assume that C ⊂ E j for
some 1 ≤ j ≤ n+1. Then E j .C < 0, Ei .C = 0 if i �= j and π∗H .C = H .π∗C = 0.
Hence, H̃ j .C > 0 and H̃i .C = 0 for 1 ≤ i �= j ≤ 2n. Otherwise, π∗(C) is a curve in
P
n . Then for 1 ≤ i ≤ n + 1,

H̃i .C = π∗H .C − Ei .C = H .π∗C − multiPi π∗(C)

= degπ∗C − multiPi π∗(C) ≥ 0,

since multiPi π∗(C) ≤ degπ∗C; and for n + 1 ≤ i ≤ 2n,

H̃i .C = π∗H .C = H .π∗C = degπ∗C > 0.

Therefore, H̃i is nef for each 1 ≤ i ≤ 2n and hence A is also nef. Since A is nef and
An > 0 by (5.8) as n ≥ 2, Lemma 4 implies that A is big.

Next, we estimate the following intersection numbers using (5.7) and (5.8), and we
obtain

An−1.H̃i = ((n + 1)n−1 − 1)�n−1 + O(�n−2)

An−2.H̃2
i = ((n + 1)n−2 − 1)�n−2 + O(�n−3), (5.9)

for 1 ≤ i ≤ n + 1, and

An−1.H̃i = (n + 1)n−1�n−1 + O(�n−2)

An−2.H̃2
i = (n + 1)n−2�n−2 + O(�n−3) (5.10)
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for n+2 ≤ i ≤ 2n. It follows that An−1.H̃i > 0 for n+2 ≤ i ≤ 2n, and An−2.H̃2
i ≥ 0

for 1 ≤ i ≤ n + 1. Then our assertions (5.5) and (5.6) can be easily obtained from
Corollary 2 by (5.8), (5.9) and (5.10) and by noting that for i ≤ n + 2, A − H̃i is still
nef.

We can now prove Theorem 3.

Proof of Theorem 3 Let π : X → P
n be the blowup of the n + 1 points Pi , 1 ≤ i ≤

n+1, such that Pi ∈ Hi , and Pi /∈ Hj if j �= i . Let Ei = π−1(Pi ), 1 ≤ i ≤ n+1, be the
exceptional divisors. We note that X is smooth and the strict transforms H̃1, . . . , H̃2n
are in general position.

Let � be a sufficiently large integer to be determined later. Let A = ∑n+1
i=1 �H̃i +

H̃n+2 ∼ (�(n + 1) + 1)π∗H − �E, where E = E1 + · · · + En+1. By Lemma 8, A is
big and nef and there exist constants β and β̃ such that

β · � = βA,H̃1
= · · · = βA,H̃n+1

,

β̃ · � = βA,H̃n+2
= · · · = βA,H̃2n

,

and

δ := (n − 1)β̃ + 2β − 2 >
(n − 1)

2n

(

n − 1 − 1

(n + 2)n−2

)

≥ 0 (5.11)

since n ≥ 2. Then we let

ε := δ

4(n + 3)
> 0.

Applying Theorem 7 to ε, X , L = O(A) and H̃i , 1 ≤ i ≤ 2n, there exists a proper
Zariski closed subset Z ⊂ X , independent of k and S, such that

β

n+1∑

i=1

mH̃i ,S
(x) + β̃

2n∑

i=n+2

mH̃i ,S
(x) ≤ (1 + ε)

(

n + 1 + 1

�

)

hπ∗H (x) − (1 + ε)hE (x) (5.12)

holds for all x in X(k)\Z . For the set R of (D, S)-integral points, with D = H̃1 +
· · ·+ H̃2n , let cR := ∑

v /∈S max{0, γv} , where {γv} is the Mk constant fromDefinition
1. Then for x ∈ R,

2n∑

i=1

Nπ∗Hi ,S(x) − NE,S(x) =
2n∑

i=1

NH̃i ,S(x) ≤ cR,

and hence

NE,S(x) ≥
2n∑

i=1

NHi ,S(π(x)) − O(1). (5.13)
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Moreover, since x ∈ R,

n+1∑

i=1

mH̃i ,S(x) ≥
n+1∑

i=1

hH̃i
(x) − O(1) = (n + 1)hπ∗H (x) − hE (x) − O(1), (5.14)

and

2n∑

i=n+2

mH̃i ,S(x) ≥
2n∑

i=n+2

hH̃i
(x) − O(1) = (n − 1)hπ∗H (x) − O(1). (5.15)

Using (5.14) and (5.15), and assuming � > 1
ε
, if β < 1 we can rewrite (5.12) as

(1 − β)hE (x) ≤ (
n + 1 − (n + 1)β − (n − 1)β̃ + (n + 3)ε

)
hπ∗H (x) + O(1).

(5.16)

If β ≥ 1 we have

(β − 1)hE (x) ≥ (
(n + 1)(β − 1) + (n − 1)β̃ − (n + 3)ε

)
hπ∗H (x) − O(1).

Since hE (x) ≤ (n + 1)hπ∗H (x), the latter case immediately implies that h(π(x)) =
hπ∗H (x) ≤ O(1), which can only be satisfied for finitely many π(x) ∈ P

n(k). There-
fore we will assume that β < 1.

By Lemma 2 and the fact that mHi ,S(π(x)) + NHi ,S(π(x)) = h(π(x)) + O(1),
we can derive from Theorem 8 that there exists a finite union of hyperplanes W ,
independent of k and S, such that for any ε′ > 0

2n∑

i=1

NHi ,S(π(x)) ≥ (n − 1 − ε′)h(π(x)) − O(1) (5.17)

for all but finitely many π(x) in Pn(k)\W .
Since hE (x) ≥ NE (x), we can deduce from (5.13) and (5.17) that for all but finitely

many π(x) in Pn(k)\W

hE (x) ≥ (n − 1 − ε′)h(π(x)) − O(1). (5.18)

Then we derive from (5.11), (5.16), and (5.18) that

(δ − (1 − β)ε′ − (n + 3)ε)h(π(x)) ≤ O(1)

for all but finitely x ∈ R outside Z ∪ π∗(W ) ∪ E . Let ε′ ≤ δ/4(1 − β). Then, by
definition of ε,

δ

2
h(π(x)) ≤ O(1),
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which can only be satisfied for finitely many π(x) ∈ P
n(k). Therefore, there are only

finitely many x ∈ R outside Z ∪ Suppπ∗(W ) ∪ SuppE .

6 Proof of Theorem 4 and Theorem 5

We fix the notation we will use throughout this section. Let n ≥ 2, q ≥ 3n be
integers. For every index i ∈ Z/qZ, let Hi be a hyperplane in P

n defined over k.
Suppose that H1, . . . , Hq are in general position. For each index i ∈ Z/qZ, let Pi be
the intersection point ∩n−1

j=0Hi+ j . Let π : X → P
n be the blow-up over the points

P1, . . . , Pq and Ei = π−1(Pi ), 1 ≤ i ≤ q, be the exceptional divisors. Let H̃i ⊂ X
be the corresponding strict transform of Hi and let D = H̃1 + · · · + H̃q . Since Pi is
the intersection point ∩n−1

j=0Hi+ j , we have

π∗Hi = H̃i +
i∑

j=i−n+1

E j , (6.1)

and

D =
q∑

i=1

H̃i ∼ qπ∗H − n
q∑

i=1

Ei . (6.2)

6.1 Key lemmas

We collect here the key lemmas for computing the constant β.

Lemma 9 Let n ≥ 2, q ≥ 3n and let D and H̃i be as defined above. Then, for every
1 ≤ i ≤ q and 0 ≤ m ≤ n, the divisor D − mH̃i is nef.

Proof Recall that π : X → P
n is the blowup of the points Pi , as described above.

It is clear that it suffices to show D − mH̃q is nef if q ≥ 3n and 0 ≤ m ≤ n by
rearranging the index. By (6.1) and (6.2), we have

D − mH̃q ∼ (q − m)π∗H − n
q−n∑

i=1

Ei − (n − m)

q∑

i=q−n+1

Ei . (6.3)

Let C be an irreducible curve on X . If π∗(C) is not a curve in Pn , then π∗(C) = Pi for
some i . Hence, π∗H .C = H .π∗C = 0, E j .C = 0 for 1 ≤ j �= i ≤ q and Ei .C > 0.
Therefore, (6.3) gives (D − mH̃q).C ≥ 0 if 0 ≤ m ≤ n.

If π∗(C) is a curve in Pn and π∗(C) is not in any of the Hi , from (6.3) we have
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(D − mH̃q).C

= (q − m)H .π∗(C) − n
q−n∑

i=1

multiPi π∗(C) − (n − m)

q∑

i=q−n+1

multiPi π∗(C).

(6.4)

It suffices to find q − m hyperplanes passing through P1, . . . , Pq with described
multiplicity as the equation above. We note that each Hi contains exactly n points,
Pi−n+1, . . . , Pi , among the Pj ’s; and each point Pi is contained in exactly n hyper-
planes, Hi , . . . , Hn+i−1, among the Hj ’s. We first consider the points Pi ’s contained
in Hn, . . . , Hq−n and denote these points with multiplicities as a formal sum below.

n
q−2n+1∑

i=n

Pi +
n−1∑

i=1

i(Pi + Pq−n+1−i ) = n
q−n∑

i=1

Pi −
n−1∑

i=1

(n − i)(Pi + Pq−n+1−i )

(6.5)

Recall that q ≥ 3n. The last sum in the right hand side of (6.5) contains n(n − 1)
points counting multiplicity and the multiplicities of these points range from one to
n − 1. Therefore, we may choose n − 1 hyperplanes L1, . . . , Ln−1 containing these
n(n − 1) points (counting multiplicity). Then together with (6.5), we have

(q − n)H .π∗(C) =
q−n∑

i=n

Hi .π∗(C) +
n−1∑

i=1

Li .π∗(C) ≥ n
q−n∑

i=1

multiPi π∗(C). (6.6)

Finally, since Pq−n+1, . . . , Pq ∈ Hq , we have

(n − m)H .π∗(C) = (n − m)Hq .π∗(C) ≥ (n − m)

q∑

i=q−n+1

multiPi π∗(C). (6.7)

Then (D − mH̃q).C ≥ 0 if q ≥ 3n and 0 ≤ m ≤ n by (6.4), (6.6) and (6.7).
Finally, we consider the case where π∗(C) is contained in some Hb, where 1 ≤

b ≤ q.
Suppose that π∗(C) ⊂ ∩a

t=0Hb−t and π∗(C) �⊂ Hb−a−1. Clearly, 0 ≤ a ≤ n − 2
since the Hi are in general position andπ∗(C) is a curve. Thenπ∗(C)∩{P1, . . . , Pq} ⊆
{Pb−n+1, . . . , Pb−a},which is contained in Hb−a−1∪Hb−a+ j , for a+1 ≤ j ≤ n−1.
Sinceπ∗(C) ⊂ ∩a

t=0Hb−t , it cannot be contained in every Hb−a+ j , a+1 ≤ j ≤ n−1.
Suppose that π∗(C) is not contained in Hj0 , for some b−a+1 ≤ j0 ≤ b−a+n−1.
Then we have

2H .π∗(C) = (Hb−a−1 + Hj0).π∗(C) ≥
q∑

i=1

multiPi π∗(C).
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Then, by (6.4) since m ≤ n and q ≥ 3n, we have (D − mH̃q).C ≥ (q − 2n −
m)H .π∗(C) ≥ 0.

Lemma 10 Let n ≥ 2 and q ≥ 3n. Let D and H̃i , be as above. Then D is big and

βD,H̃1
= · · · = βD,H̃q

> 1.

Proof Since D is nef by Lemma 9, we have

h0(X ,O(ND)) = Dn

n! · Nn + O(Nn−1)

by Lemma 4. It follows from (6.2) that

Dn =
(

qπ∗H − n
q∑

i=1

Ei

)n

= qn − nnq. (6.8)

Therefore, D is big if qn−1 > nn , which is satisfied when n ≥ 2 and q ≥ 3n.
By the Hirzebruch–Riemann–Roch theorem, adapting the arguments in [1, Lemma

4.2], we obtain

χ(X; ND − mH̃i ) = 1

n! (ND − mH̃i )
n + O(Nn−1),

where χ(X; ·) is the Euler characteristic.
Since D and D − bH̃i are nef for 0 ≤ b ≤ n, hi (X ,O(ND − mH̃i ) = O(Nn−i )

if m ≤ nN (see e.g. [19, Theorem 1.4.40]). Therefore,

h0(X ,O(ND − mH̃i )) = (ND − mH̃i )
n

n! · Nn + O(Nn−1), for m ≤ nN . (6.9)

By (6.1) and (6.2), we can compute

Dk .H̃n−k
i = qk − nk+1, for k ≤ n − 1.

Then

(ND − mH̃i )
n = (qn − nnq)Nn +

n−1∑

k=0

(
n

k

)

(qk − nk+1)(−1)n−k Nkmn−k

= (qN − m)n − n(nN − m)n − nn(q − n)Nn . (6.10)

In particular, for m = nN

(ND − nH̃i )
n = (q − n)

(
(q − n)n−1 − nn

)
Nn ≥ 0
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since q ≥ 3n and n ≥ 2. Since (6.10) is a decreasing function in m, the right hand
side of (6.10) is nonnegative for m ≤ nN . By (6.9) and (6.10), we have

n!
nN∑

m=0

h0(X ,O(ND − mH̃i ))

=
nN∑

m=0

(qN − m)n − n(nN − m)n − nn(q − n)Nn + O(Nn)

= (
qn+1 − (q − n)n+1 − nn+2 − nn+1(n + 1)(q − n)

)Nn+1

n + 1
+ O(Nn).

Together with (6.8), it yields

βD,H̃i
≥ β := qn+1 − (q − n)n+1 − nn+2 − nn+1(n + 1)(q − n)

(n + 1)(qn − nnq)
.

We now show that β > 1. Let

f (q) : = (β − 1)(n + 1)(qn − nnq)

= qn+1 − (q − n)n+1 − nn+2 − nn+1(n + 1)(q − n) − (n + 1)(qn − nnq)

= qn+1 − (q − n)n+1 − (n + 1)qn − (n2 − 1)nn(q − n) + nn+1. (6.11)

We will need to show that f (q) > 0 if q ≥ 3n.

f ′(q) = (n + 1)(qn − (q − n)n) − (n + 1)nqn−1 − nn+2 + nn

= n(n + 1)(qn−1 + qn−2(q − n) + · · · + (q − n)n−1) − (n + 1)nqn−1 − nn+2 + nn

= n(n + 1)(qn−2(q − n) + · · · + (q − n)n−1) − nn+2 + nn

> (n3 − n)(q − n)n−1 − nn+2 ≥ 0 if q ≥ 3n and n ≥ 2.

Therefore, it suffices to show that f (3n) > 0. By (6.11),

f (3n) = nn
(
(2n − 1) · 3n − n · 2n+1 − (2n2 − 3)n

)
.

It is easy to check that f (3n) > 0 for n = 2. We now assume that n ≥ 3. Then

(2n − 1) · 3n − n · 2n+1 − (2n2 − 3)n

≥ n · 3n − n · 2n+1 + (n − 1)3n − (3n2 − 3)n

≥ 9n · 3n−2 − 8n · 2n−2 + (n − 1)(3n − 3n(n + 1)) > 0.

This show that f (3n) > 0 for n ≥ 3 as well.
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6.2 Proof of Theorem 4 and Theorem 5

Proof of Theorem 4 We note that since X is smooth we need to verify that H̃1, . . . , H̃q

are in general position in order to apply Theorem 7. LetW = H̃1∩ H̃2∩· · ·∩ H̃i (after
reindexing) 1 ≤ i ≤ n. Following the proof of Proposition 4, it suffices to consider
when π(W ) ⊂ {P1, . . . , Pq}. Since W is irreducible, it implies that π(W ) is some
Pj ∈ H1 ∩ H2 ∩ · · · ∩ Hi . Since H1, . . . , Hq are hyperplanes in general position, they
intersect transversally. Thus, the codimension of W is i .

Since n ≥ 2 and q ≥ 3n, it follows fromLemma 10 that D is big and β := βD,H̃1
=

· · · = βD,H̃q
> 1. Theorem 7 with ε = 1

2 (β − 1) implies that there exists a proper
Zariski closed set Z ⊂ X independent of k and S such that

β ·
q∑

i=1

mH̃i ,S(x) ≤ (1 + ε)hD(x)

for all but finitely many x ∈ X(k)\Z . Let R be a set of (D, S)-integral points. Then

q∑

i=1

mH̃i ,S(x) = hD(x) + O(1),

where the constant depends only on R. Hence,

1

2
(β − 1)hD(x) = (β − 1 − ε)hD(x) ≤ O(1) (6.12)

for all but finitely many x ∈ R outside Z . Since D is big, for a given ample divisor A,
there exists a positive real constant c and a proper Zariski closed set Z ′ of X , depending
only on A and D such that hA(x) ≤ chD(x)+O(1) for all x ∈ X(k̄) outside of Z ′ (see
[33, Proposition 10.11]). Therefore, (6.12) implies that there are only finitely many
x ∈ R outside Z ∪ Z ′.

Proof of Theorem 5 We denote by x the point [x0 : · · · : xn] ∈ P
n(k). Up to enlarging

the set S, we can suppose that x0, . . . , xn are S-integers and that the ringOS is a unique
factorization domain. Let Hi = [Fi = 0] for 1 ≤ i ≤ q. For each index j ∈ Z/qZ, let
Pj be the intersection point ∩n−1

�=0Hj+�. By Definition 6, the identity of ideals in OS

Fi (x0, . . . , xn) · (x0, . . . , xn) =
i∏

j=i−n+1

(Fj (x0, . . . , xn), . . . , Fj+n−1(x0, . . . , xn))

(6.13)

implies that for v /∈ S

λHi ,v(x) =
i∑

j=i−n+1

λPj ,v(x),
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up to a Mk constant. On the other hand, let π : X → P
n be the blow-up over the points

P1, . . . , Pq and let H̃i ⊂ X be the corresponding strict transform of Hi . It follows
from (6.1) that

λHi ,v(π(Q)) = λH̃i ,v
(Q) +

i∑

j=i−n+1

λPi ,v(π(Q))

up to a Mk constant for Q ∈ X , v /∈ S. If Q /∈ ∪q
i=1 Supp(Ei ), then Q = π−1(x) for

some x �= Pi , 1 ≤ i ≤ q. Therefore, for x := [x0 : · · · : xn] ∈ P
n(k)\{P1, . . . , Pq}

satisfying (6.13) we have

λH̃i ,v
(π−1(x)) = 0 up to a Mk constant for v /∈ S. (6.14)

By Theorem 4, there exists a Zariski closed subset W of X such that the set
of points π−1(x) satisfying (6.14) are contained in W . Therefore, the points x ∈
P
n(k)\{P1, . . . , Pq} satisfying the identity (6.13) are contained in the Zariski closure

of π(W ).

7 Degeneracy of holomorphic maps

In this section, we give the analytic versions of the arithmetic statements obtained in
the previous sections. This imply several results on Brody hyperbolicity.

Theorem 12 Let n ≥ 2, F1, . . . , Fr ,G ∈ C[X1, . . . , Xn] be polynomials in general
position (i.e. the associated hypersurfaces are in general position) with deg(Fi ) ≥
deg(G) for i = 1, . . . , r . Let h1, . . . , hn be holomorphic functions on C such that one
of the following holds

(i) r ≥ 2n + 1 and G(h1,...,hn)
F(h1,...,hn)

is holomorphic, for i = 1, . . . , r; or

(ii) r ≥ n + 2 and G(h1,...,hn)∏r
i=1 Fi (h1,...,hn)

is holomorphic.

Then h1, . . . , hn are algebraically dependent.

This can be seen as a generalization of Borel’s Theorem [4] stating that nowhere
vanishing entire functions h1, . . . , hn+1 satisfying the identity h1 + · · · + hn+1 = 1
are dependent. Indeed, we have the following corollary.

Corollary 3 Let h1, . . . , hn beholomorphic functions onC such that 1
(h1...hn).(1−∑n

i=1 hi )
is holomorphic. Then h1, . . . , hn are algebraically dependent.

We recall the following definition.

Definition 5 We say that a complex variety X is Brody pseudo-hyperbolic if there
exists a proper closed subset Z ⊂ X such that any (non-constant) entire curve f :
C → X is contained in Z i.e. f (C) ⊂ Z .

Then we can rephrase in the analytic setting the main theorems of this paper.
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Theorem 13 Let n ≥ 2, r ≥ 2n + 1 and D0, D1, . . . , Dr be hypersurfaces in general
position on P

n(C). Let π : X → P
n be the blowup long the union of subschemes

Di ∩ D0, 1 ≤ i ≤ r , and let D̃i be the strict transform of Di . Let D = D̃1 +· · ·+ D̃r .
Then X\D is Brody pseudo-hyperbolic.

Theorem 14 Let n ≥ 2 and H1, . . . , H2n be 2n hyperplanes in general position on
P
n(C). Choose n + 1 points Pi , 1 ≤ i ≤ n + 1 such that Pi ∈ Hi , 1 ≤ i ≤ n + 1, and

Pi /∈ Hj if i �= j for 1 ≤ j ≤ 2n. Let π : X → P
n be the blowup of the n + 1 points

Pi , 1 ≤ i ≤ n + 1, and let D ⊂ X be the strict transform of H1 + · · · + H2n. Then
X\D is Brody pseudo-hyperbolic.

Theorem 15 Let n ≥ 2, q ≥ 3n be an integer; for every index i ∈ Z/qZ, let Hi be
a hyperplane in P

n(C). Suppose that Hi ’s are in general position. Let for each index
i ∈ Z/qZ, Pi be the intersection point ∩n−1

j=0Hi+ j . Let π : X → P
n be the blow-up

over the points P1, . . . , Pq and let H̃i ⊂ X be the corresponding strict transform of
Hi and let D = H̃1 + · · · + H̃q . Then X\D is Brody pseudo-hyperbolic.

The proofs of the above statements are the same as the arithmetic ones replacing
Theorem 7 by its analytic analogue. Its generalization is obtained using Vojta’s version
of Schmidt’s subspace theorem [32], which gives a better control on the exceptional
sets.

Theorem 16 Let H1, . . . , Hq be hyperplanes in P
n(C) with the corresponding Weil

functions λH1, . . . , λHq . Then there exists a finite union of hyperplanes Z, depending
only on H1, . . . , Hq, such that for any ε > 0, and any (non-constant) entire curve
f : C → X with f (C) �⊂ Z

∫ 2π

0
max
I

∑

i∈I
λHi ( f (re

iθ ))
dθ

2π
≤exc (n + 1 + ε)T f (r)

holds, where ≤exc means that the inequality holds for all r ∈ R
+ except a set of finite

Lebesgue measure., where the maximum is taken over subsets {1, . . . , q} such that the
linear forms defining Hi for i ∈ I are linearly independent.

By carefully tracing the exceptional sets with Theorem 16, the general analytic
Theorem of Ru and Vojta can be stated as follows.

Theorem 17 [27, General Theorem (Analytic Part)] Let X be a complex projective
variety of dimension n and let D1, . . . , Dq be effective Cartier divisors intersecting
properly on X. Let L be a big line bundle. Let f : C → X be a Zariski dense entire
curve. Then, for every ε > 0, there exists a proper Zariski-closed subset Z ⊂ X, such
that for any (non-constant) entire curve f : C → X with f (C) �⊂ Z,

q∑

j=1

βL,Djm f (r , Dj ) ≤exc (1 + ε)TL, f (r)

holds, where ≤exc means that the inequality holds for all r ∈ R
+ except a set of finite

Lebesgue measure.
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8 Function fields

In this section we give the analogue statements over function fields of the theorems
obtained in the previous sections. For this section we let κ be an algebraically closed
field of characteristic zero. Let C be a non-singular projective curve defined over κ

and let K = κ(C) denote its function field. We refer to [26, Section 7.2] for the basic
definitions of heights and proximity functions in the function field setting. We recall
the definition of algebraic hyperbolicity.

Definition 6 Let (X , D) be a pair of a non-singular projective variety X defined over κ
and a normal crossing divisor D on X . We say that (X , D) is algebraically hyperbolic
if there exists an ample line bundle L on X and a positive constant α such that, for
every non-singular projective curve C and every morphism ϕ : C → X the following
holds:

degϕ∗L ≤ α ·
(
2g(C) − 2 + N [1]

ϕ (D)
)

, (8.1)

where N [1]
ϕ (D) is the cardinality of the support of ϕ∗(D).

We say that (X , D) is pseudo algebraically hyperbolic if there exists a proper closed
subvariety Z of X such that (8.1) holds for every morphism ϕ : C → X such that ϕ(C)

is not contained in Z .

We can now rephrase Theorems 2, 3 and 5.

Theorem 18 Let n ≥ 2, r ≥ 2n + 1 and D0, D1, . . . , Dr be hypersurfaces in general
position on P

n defined over κ . Let π : X → P
n be the blowup long the union of

subschemes Di ∩ D0, 1 ≤ i ≤ r , and let D̃i be the strict transform of Di . Let
D = D̃1 + · · · + D̃r . Then X\D is algebraically pseudo-hyperbolic.

Theorem 19 Let n ≥ 2 and H1, . . . , H2n be 2n hyperplanes in general position on Pn

defined over κ . Choose n+1 points Pi , 1 ≤ i ≤ n+1 such that Pi ∈ Hi , 1 ≤ i ≤ n+1,
and Pi /∈ Hj if i �= j for 1 ≤ j ≤ 2n. Let π : X → P

n be the blowup of the n + 1
points Pi , 1 ≤ i ≤ n + 1, and let D ⊂ X be the strict transform of H1 + · · · + H2n.
Then X\D is algebraically pseudo-hyperbolic.

Theorem 20 Let n ≥ 2, q ≥ 3n be an integer; for every index i ∈ Z/qZ, let Hi be a
hyperplane inPn defined over k. Suppose that Hi ’s are in general position. Let for each
index i ∈ Z/qZ, Pi be the intersection point ∩n−1

j=0Hi+ j . Let π : X → P
n be the blow-

up over the points P1, . . . , Pq and let H̃i ⊂ X be the corresponding strict transform
of Hi and let D = H̃1 + · · · + H̃q . Then X\D is algebraically pseudo-hyperbolic.

We remark that, even if we stated the results in the so-called split case, our proofs
carry over almost verbatim to the non-split case as well.

As in the analytic setting, the proofs of the above statements follow the same lines
of the proof of our arithmetic results and the same strategy as in our previous paper
[26] with two modifications. On one hand we can use the results in Sect. 7 instead of
[20, Theorem 8.3 B] for the case in which 2g(C) − 2 + N [1]

ϕ (D) ≤ 0. On the other
hand we replace the use of Theorem 7 with the following analogue that uses a version
of the Schmidt subspace theorem over function fields obtained in [34, Theorem 1]. In
particular this gives a better control on the exceptional set.
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Theorem 21 Let X ⊂ P
m be a projective variety over κ of dimension n, let D1, . . . , Dq

be effective Cartier divisors intersecting properly on X, and let L be a big line sheaf.
Then for any ε > 0, there exist constants c1 and c2, independent of the curve C and
the set S, and a finite collection of hypersurfaces Z (over κ) in P

m of degree at most
c2 such that for any map x = [x0 : · · · : xm] : C → X, where xi ∈ K, outside the
augmented base locus of L we have either

q∑

i=1

βL,DimDi ,S(x) ≤ (1 + ε)hL(x) + c1 max {1, 2g(C) − 2 + |S|} ,

or the image of x is contained in Z .

Proof The proof is similar to the first part of the proof of [26, Theorem 7.6]. We
will follow its argument and notation and only indicate the modification. Let ε > 0 be
given. SinceL is a big line sheaf, there is a constant c such that

∑q
i=1 hDi (x) ≤ chL(x)

for all x ∈ X(K ) outside the augmented base locus B of L. By the properties of the
local heights, together with the fact that mDi ,S ≤ hDi + O(1), we can choose βi ∈ Q

for all i such that

q∑

i=1

(βL,Di − βi )mDi ,S(x) ≤ ε

2
hL(x)

for all x ∈ X\B(K ). Therefore, we can assume that βL,Di = βi ∈ Q for all i and also
that βi �= 0 for each i . From now on we will assume that the point x ∈ X(K ) does
not lie on B.

Choose positive integers N and b such that

(
1 + n

b

)
max
1≤i≤q

βi Nh0(X ,LN )
∑

m≥1 h
0(X ,LN (−mDi ))

< 1 + ε . (8.2)

Then, using [26, Theorem 7.5] with the same notation, we obtain

b

b + n

⎛

⎝ min
1≤i≤q

∑

m≥1

h0(LN (−mDi ))

βi

⎞

⎠
q∑

i=1

βiλDi ,p(x)

≤ max
1≤i≤T1

λBi ,p(x) + O(1) = max
1≤i≤T1

∑

j∈Ji

λs j ,p(x) + O(1). (8.3)

Let M = h0(X ,LN ), let the set {φ1, . . . , φM } be a basis of the vector space
H0(X ,LN ), and let

� = [φ1, . . . , φM ] : X ��� P
M−1(κ)

be the corresponding rational map. By [34, Theorem 1], there exists a constant c′
1 and

a finite collection of linear subspacesR over κ such that, whenever � ◦ x is not inR,
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we have the following

∑

p∈S
max
J

∑

j∈J

λs j ,p(x) ≤ M hLN (x) + c′
1(2g − 2 + |S|), (8.4)

here the maximum is taken over all subsets J of {1, . . . , T2} for which the sections
s j , j ∈ J , are linearly independent (with the same notation as in the proof of [26,
Theorem 7.1]). We first consider when φ1, . . . , φM are linearly independent over κ .
Combining (8.3) and (8.4) gives

q∑

i=1

βi mDi ,S(x) ≤
(
1 + n

b

)
max
1≤i≤q

βi
∑

m≥1 h
0(LN (−mDi ))

M hLN (x) + c′1(2g − 2 + |S|) + O(1).

Using (8.2) and the fact that hLN (x) = NhL(x), we have

q∑

i=1

βimDi ,S(x) ≤ (1 + ε) hL(x) + c′
1(2g − 2 + |S|) + O(1),

which implies the first case of the Theorem.
To conclude we note that, if � ◦ x is in one of the linear subspace of R over κ in

P
M−1, then a1φ1(x) + · · · + aMφM (x) = 0, where H = {a1z1 + · · · + aMzM = 0}

is one of the hyperplanes (over κ) in PM−1 coming fromR.
On the other hand, since φ1, . . . , φM is a basis of H0(X ,LN ), it follows that �(X)

is not contained in H , hence x(C) is contained in is the hypersurface coming from
a1φ1 + · · · + aMφM = 0 in Pm (as X ⊂ P

m) whose degree is bounded independently
of C and x as wanted. Moreover, sinceR is a finite collection of linear subspaces over
κ in P

M−1, there are only finitely many H and hence the number of hypersurfaces
obtained above is also finite.

Acknowledgements We thank Pietro Corvaja and Umberto Zannier for several discussions. We thank
Pascal Autissier and Min Ru for several comments on a preliminary version of our paper. We thank the
anonymous referee for their comments and suggestions that greatly improved the paper.

Funding Open access funding provided by Universitá degli Studi Roma Tre within the CRUI-CARE
Agreement. ER was supported by Institut Universitaire de France and the ANR project “FOLIAGE”,
ANR-16-CE40-0008. AT was partially supported by PRIN “Advances in Moduli Theory and Birational
Classification” and is a member of GNSAGA-INdAM. JWwas supported in part by Taiwan’s MoST grants
108-2115-M-001-001-MY2 and 110-2115-M-001-009-MY3.

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123



1998 E. Rousseau et al.

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Autissier, P.: Géométries, points entiers et courbes entières. Ann. Sci. Éc. Norm. Supér. (4) 42(2),
221–239 (2009)

2. Barroero, F., Capuano, L., Turchet, A.: Geometric divisibility sequences on abelian and semiabelian
varieties. https://arxiv.org/abs/2205.05562 (2022) (preprint)

3. Bogomolov, F., Tschinkel, Y.: Special elliptic fibrations. In: The Fano Conference, pp. 223–234. Univ.
Torino, Turin (2004)

4. Borel, E.: Sur les zéros des fonctions entières. Acta Math. 20(1), 357–396 (1897)
5. Bugeaud, Y., Corvaja, P., Zannier, U.: An upper bound for the G.C.D. of an − 1 and bn − 1. Math. Z.

243(1), 79–84 (2003)
6. Campana, F.: Orbifolds, special varieties and classification theory. Ann. Inst. Fourier (Grenoble) 54(3),

499–630 (2004)
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