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Abstract
We study the interaction of an incompressible fluid in two dimensions with an elastic
structure yielding the moving boundary of the physical domain. The displacement of
the structure is described by a linear viscoelastic beam equation. Our main result is
the existence of a unique global strong solution. Previously, only the ideal case of
a flat reference geometry was considered such that the structure can only move in
vertical direction. We allow for a general geometric set-up, where the structure can
even occupy the complete boundary. Our main tool—being of independent interest—
is a maximal regularity estimate for the steady Stokes system in domains with minimal
boundary regularity. In particular, we can control the velocity field in W 2,2 in terms
of a forcing in L2 provided the boundary belongs roughly to W 3/2,2. This is applied
to the momentum equation in the moving domain (for a fixed time) with the material
derivative as right-hand side. Since the moving boundary belongs a priori only to the
class W 2,2, known results do not apply here as they require a C2-boundary.

Mathematics Subject Classification 35B65 · 35Q30 · 74F10 · 74K25 · 76D03

1 Introduction

1.1 The fluid–structure interaction problem

The interactions of fluids with elastic structures are important for many applications
ranging from hydro- and aero-elasticity over bio-mechanics to hydrodynamics.We are
interested in the case, where a viscous incompressible fluid interacts with a flexible
shell which is located at one part of the boundary (or even describes the complete
boundary) of the underlying domain � ⊂ R

2 denoted by ω. The shell, described by
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Fig. 1 Domain transformation in the simplified set-up
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Fig. 2 Domain transformation in the general set-up

a function η : (0, T ) × ω → R, reacts to the surface forces induced by the fluid and
deforms the domain � to �η(t), where the function ϕη(t) describes the coordinate
transform (see Figs. 1and 2below) and nη is the normal at the deformed boundary.

The motion of the fluid is governed by the Navier–Stokes equations

� f
(
∂tu + (u · ∇)u

) = μ�u − ∇π + f, div u = 0, (1.1)

in the moving domain �η, where u : (0, T ) × �η → R
2 is the velocity field and

π : (0, T ) × �η → R the pressure function. The function f : (0, T ) × R
2 → R

2 is
a given volume force. The equations are supplemented with initial conditions and the
boundary condition u ◦ ϕη = ∂tηn at the flexible part of the boundary with normal n
(see Sect. 2.6 for the precise definition of a solution). There exist various models in
literature to model the behaviour of the shell and a typical example is given by

�s∂
2
t η − γ ∂t∂

2
yη + α∂4yη = g − nτ ◦ ϕηnη dynη (1.2)

onω supplemented with initial and boundary conditions. Here �s, γ and α are positive
constants and the function g : (0, T ) × ω → is a given forcing term. The quantity
τ denotes the Cauchy stress of the fluid given by Newton’s rheological law, that is
τ = μ

(∇u+∇u�)−πI2×2. The model (1.1)–(1.2) has been suggested, in particular,
for blood vessels (where the 2D geometry is often sufficient), see [8, 15].

There exists already results concerning the existence of local-in-time strong solu-
tions to the coupled system (1.1)–(1.2), see [5, 6, 11, 13, 14].1 Rather recently, even the
existence of a global-in-time strong solution has been shown in [10]. All these papers
are concerned with a simplified geometrical set-up, where the domain � is given by a
rectangle and the flexible part of the boundary is flat, see Fig. 1. In this case the trans-
formation between the reference domain and the moving domain is particularly easy,

1 Some of these results are concerned with the 3D case, where global existence of strong solutions is out
of reach.
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Regularity results in 2D fluid–structure interaction 1497

which simplifies the mathematical analysis significantly. While it is natural to start
the investigation which such an idealised model, this model is not suitable for most
real-world applications such as blood vessels. In the case of a more realistic non-flat
geometry as in Fig. 2 only the existence of weak solutions to (1.1)–(1.2) is known,
see [12, 17, 18]1. For a weak solution, the kinetic energy ‖u‖L2(�η) is bounded, the

velocity gradient belongs to L2 and we have

η ∈ W 1,∞(
I ; L2(ω)

) ∩ W 1,2(I ;W 1,2(ω)
) ∩ L∞(

I ;W 2,2(ω)
)
. (1.3)

This can be seen formerly by testing the momentum equation by u and the shell
equation by ∂tη (note that the boundary terms cancel due to the condition u ◦ ϕη =
∂tηn). With a weak solution at our disposal we are confronted with the question
whether it enjoys additional regularity properties (in this case we speak about strong
solutions) and is, in fact, unique. These properties are not only of theoretical interest
but also crucial for robust numerical simulations. The analysis of regularity properties
of solutions to (1.1)–(1.2) in the framework of Fig. 2 is the purpose of the present
paper. Our main result shows that under natural assumptions on the data there is a
unique global-in-time strong solution to (1.1)–(1.2), see Theorem 2.5 for the precise
statement. Here strong means that both equations hold in the strong sense, that is,
all quantities exist as measurable functions. In particular, all terms in the momentum
equation (1.1) belong, in fact, to L2 and we have

η ∈ W 1,∞(
I ;W 1,2(ω)

) ∩ W 1,2(I ;W 2,2(ω)
) ∩ W 2,2(I ; L2(ω)

)

∩ L∞(
I ;W 3,2(ω)

) ∩ L2(I ;W 4,2(ω)
)
. (1.4)

1.2 Stokes systems in irregular domains

As in [10] the crucial tool in our analysis of (1.1)–(1.2) is an elliptic estimate for the
Stokes system

μ�u − ∇π = −g, div u = 0, (1.5)

in a bounded domainO ⊂ R
n, n = 2, 3, (supplemented with homogeneous boundary

conditions). To be more precise, we require an inequality of the form

‖u‖W 2,p(O) + ‖π‖W 1,p(O) � ‖g‖L p(O) (1.6)

for p ∈ (1,∞) (in fact, p = 2 is sufficient for the application to (1.1)–(1.2)). Such
an estimate is well-known if the boundary of the underlying domains belongs to the
class C2. We will apply (1.6) to (1.1) with g = � f

(
∂tu+ (u · ∇)u

)
andO = �η(t) for

a fixed t . Hence the regularity of O is determined by η which only belongs to W 2,2,

see (1.3). A version of (1.6) for the simplified framework from Fig. 1 is proved in
[10]. It is, however, based on some cancellations which are not available in the general
case. On the other hand, the question about minimal assumptions on the regularity
of ∂O for (1.6) is of independent interest and seems to be missing in literature. The
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1498 D. Breit

only comparable result can be found in [3] (which is, in turn, based on results from
[7]), where an estimate for Lipschitz domains (that is, ∂O ∈ W 1,∞) is shown, which
controls fractional derivatives (of order 3/2 for u and 1/2 for π ). The method from
[3] is, unfortunately, designed specifically for Lipschitz domains and does not seem
to apply in a more general framework.

In Theorem 3.2 we offer an exhaustive picture concerning the maximal regularity
theory for the Stokes system (1.5) in irregular domains in the framework of fractional
Sobolev spaces. This is based on the theory of Sobolevmultipliers from [16] which has
not been used in fluid mechanics before. Our assumptions on the boundary coincide
with those made in [16, Chapter 14] for the Laplace equation which are known to be
optimal. As a special case we obtain estimate (1.6) for p = 2 provided the Lipschitz
constant of ∂O is small and ∂O belongs—roughly speaking—to the classW 3/2,2 (we
will make these concepts precise in Sect. 3.1). The relation between both spaces is
that W 3/2,2 is the trace-space of W 2,2 (the space for the velocity field in (1.6)) in the
sense that the linear mapping

W 2,2(Rn) � ϕ �→ ϕ(·, 0) ∈ W 3/2,2(Rn−1) (1.7)

is continuous.

1.3 The acceleration estimate

With estimate (1.6) at our disposal we return to the fluid–structure interaction problem
(1.1)–(1.2). We aim at testing the structure equation (1.2) with ∂2t η and seek for an
appropriate test-function for the momentum equation. Due to the condition u ◦ ϕη =
∂tηn at the boundary we have

D

Dt
u = ∂tu(t, x + ηn) + (u(t, x + ηn) · ∇)u(t, x + ηn)

= ∂tu(t, x + ηn) + ∂tηn · ∇u(t, x + ηn) on ∂�η.

Hence the material derivative of the velocity field is the corresponding test-function
for the momentum equation. To be precise we use

∂tu + (Fη(∂tηn) · ∇)u, (1.8)

where Fη is an appropriate extension operator, see Sect. 2.5. The drawback with the
function in (1.8) is that it is not solenoidal. This problem is overcome in [10] by using
instead

∂tu + (Fη(∂tηn) · ∇)u − (u · ∇)Fη(∂tηn). (1.9)

In fact, in the simplified geometric set-up used in [10] it is possible to construct an
extension which is at the same time solenoidal and satisfies

∇Fη(∂tηn) · n = 0 on ∂�η. (1.10)

123



Regularity results in 2D fluid–structure interaction 1499

In conclusion, the function in (1.9) is solenoidal and equals to ∂2t η at the boundary. In
the general case, some elementary calculations based on Fourier expansion reveal that
both conditions cannot hold simultaneously. Therefor, the existing extension operators
from [12, 18] are solenoidal but do not satisfy (1.10). In Sect. 5.1 we propose an
alternative approach which is based on (1.8) and an elementary extension operator
introduced in Sect. 2.5. It is not solenoidal but, different to those from [12, 18], has
the usual regularisation property (which is inverse to the trace embedding from (1.7)).
Accordingly, me must introduce the pressure function and estimate it. This can be
done with the help of (1.6), see the proof of Proposition 5.1 for details.

In order to implement these ideas rigorously we first prove the existence of a local-
in-time strong solution in Sect. 4. As in previous papers, where the flat geometry is
considered, we follow a standard approach based on a transformation of (1.1) to the
reference geometry, linearisation and a fixed point argument. Our situation is, however,
technically more complicated due to the non-trivial transformation map between the
reference and moving geometry.

2 Preliminaries

2.1 Conventions

For notational simplicity we set all physical constants in (1.1)–(1.2) to 1. The analysis
is not effected as long as they are strictly positive.Wewrite f � g for two non-negative
quantities f and g if there is a c > 0 such that f ≤ cg. Here c is a generic constant
which does not depend on the crucial quantities. If necessary we specify particular
dependencies. We write f ≈ g if f � g and g � f . We do not distinguish in the
notation for the function spaces between scalar- and vector-valued functions. How-
ever, vector-valued functions will usually be denoted in bold case. For simplicity we
supplement (1.2) with periodic boundary conditions and identify ω (which represents
the complete boundary of �) with the interval (0, 1). We consider periodic function
spaces for zero-average functions. It is only a technical matter to consider instead (1.2)
on a nontrivial subset of ∂� together with zero boundary conditions for η and ∂yη,

see, e.g., [12] or [2] for the corresponding geometrical set-up. We shorten the time
interval (0, T ) by I .

2.2 Classical function spaces

LetO ⊂ R
m,m ≥ 1, be open. Function spaces of continuous or α-Hölder-continuous

functions, α ∈ (0, 1), are denoted by C(O) or C0,α(O) respectively. Similarly, we
write C1(O) and C1,α(O) for spaces of functions which are (α-Hölder) continu-
ously differentiable. We denote as usual by L p(O) and Wk,p(O) for p ∈ [1,∞]
and k ∈ N Lebesgue and Sobolev spaces over O. For a bounded domain O the
space L p

⊥(O) denotes the subspace of L p(O) of functions with zero mean, that is
( f )O := −

∫
O f dx := Lm(O)−1

∫
O f dx = 0. We denote by Ws,p

0 (O) the clo-
sure of the smooth and compactly supported functions in Ws,p(O). If ∂O is regular

123



1500 D. Breit

enough, this coincides with the functions vanishingHm−1-a.e. on ∂O.We also denote
by W−k,p(O) the dual of Wk,p

0 (O). Finally, we consider subspaces W 1,p
div (O) and

W 1,p
0,div(O) of divergence-free vector fields which are defined accordingly. The space

L p
div(O) is defined as the closure of the smooth and compactly supported solenoidal

functions in L p(O). We will use the shorthand notations L p
x and Wk,p

x in the case of
n-dimensional domains (typically spaces defined over � ⊂ R

n or �η ⊂ R
n) and L p

y

and Wk,p
y for (n − 1) dimensional sets (typically spaces of periodic functions defined

over ω ⊂ R).
For a separable Banach space (X , ‖ · ‖X ) we denote by L p(0, T ; X) the set

of (Bochner-) measurable functions u : (0, T ) → X such that the mapping
t �→ ‖u(t)‖X ∈ L p(0, T ). The set C([0, T ]; X) denotes the space of functions
u : [0, T ] → X which are continuous with respect to the norm topology on (X , ‖·‖X ).

For α ∈ (0, 1] we write C0,α([0, T ]; X) for the space of Hölder-continuous func-
tions with values in X . The space W 1,p(0, T ; X) consists of those functions from
L p(0, T ; X) for which the distributional time derivative belongs to L p(0, T ; X) as
well. The space Wk,p(0, T ; X) is defined accordingly. We use the shorthand L p

t X
for L p(0, T ; X). For instance, we write L p

t W
1,p
x for L p(0, T ;W 1,p(O)). Similarly,

Wk,p
t X stands for Wk,p(0, T ; X).

2.3 Fractional differentiability and Sobolevmultipliers

For p ∈ [1,∞) the fractional Sobolev space (Sobolev–Slobodeckij space) with dif-
ferentiability s > 0 with s /∈ N will be denoted by Ws,p(O). For s > 0 we write
s = �s� + {s} with �s� ∈ N0 and {s} ∈ (0, 1). We denote by Ws,p

0 (O) the closure of
the smooth and compactly supported functions in W 1,p(O). For s > 1

p this coincides

with the functions vanishing Hm−1-a.e. on ∂O provided ∂O is regular enough. We
also denote by W−s,p(O) for s > 0 the dual Ws,p(O). Similar to the case of unbro-
ken differentiabilities above we use the shorthand notations Ws,p

x and Ws,p
y . We will

denote by Bs
p,q(R

m) the standard Besov spaces on R
m with differentiability s > 0,

integrability p ∈ [1,∞] and fine index q ∈ [1,∞]. They can be defined (for instance)
via Littlewood-Paley decomposition leading to the norm ‖ · ‖Bs

p,q (Rm ). We refer to
[19–21] for an extensive picture. The Besov spaces Bs

p,q(O) for a bounded domain
O ⊂ R

m are defined as the restriction of functions from Bs
p,q(R

m), that is

Bs
p,q(O) := { f |O : f ∈ Bs

p,q(R
m)},

‖g‖Bs
p,q (O) := inf{‖ f ‖Bs

p,q (Rm) : f |O = g}.

If s /∈ N and p ∈ (1,∞) we have Bs
p,p(O) = Ws,p(O).

In accordance with [16, Chapter 14] the Sobolev multiplier norm is given by

‖ϕ‖M(Ws,p(O)) := sup
v: ‖v‖Ws−1,p (O)

=1
‖∇ϕ · v‖Ws−1,p(O), (2.1)
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Regularity results in 2D fluid–structure interaction 1501

where p ∈ [1,∞] and s ≥ 1. The space M(Ws,p(O)) of Sobolev multipliers is
defined as those objects for which theM(Ws,p(O))-norm is finite. By mathematical
induction with respect to s one can prove for Lipschitz-continuous functions ϕ that
membership toM(Ws,p(O)) in the sense of (2.1) implies that

sup
w: ‖w‖Ws,p (O)=1

‖ϕ w‖Ws,p(O) < ∞. (2.2)

The quantity (2.2) also serves as customary definition of the Sobolev multiplier norm
in the literature but (2.1) ismore suitable for our purposes. Note that in our applications
we always assume that the functions in question are Lipschitz continuous such that
the implication above is given.

Let us finally collect some useful properties of Sobolev multipliers. By [16,
Corollary 14.6.2] we have

‖φ‖M(Ws,p(Rm )) � ‖∇φ‖L∞(Rm), (2.3)

provided that one of the following conditions holds:

• p(s − 1) < m and φ ∈ Bs
�,p(R

m) with � ∈ [ m
s−1 ,∞];

• p(s − 1) = m and φ ∈ Bs
�,p(R

m) with � ∈ (p,∞].
Note that the hidden constant in (2.3) depends on the Bs

�,p(R
m)-norm of φ. By [16,

Corollary 4.3.8] it holds

‖φ‖M(Ws,p(Rm )) ≈ ‖∇φ‖Ws−1,p(Rm ) (2.4)

for p(s − 1) > m. Finally, we note the following rule about the composition with
Sobolev multipliers which is a consequence of [16, Lemma 9.4.1]. For open sets
O1,O2 ⊂ R

m, u ∈ Ws,p(O2) and a Lipschitz continuous function φ : O1 → O2
with Lipschitz continuous inverse and φ ∈ M(Ws,p(O1)) we have

‖u ◦ φ‖Ws,p(O1) � ‖u‖Ws,p(O2) (2.5)

with constant depending on φ.Using Lipschitz continuity of φ and φ−1, estimate (2.5)
is obvious for s ∈ (0, 1]. The general case can be proved by mathematical induction
with respect to s.

2.4 Function spaces on variable domains

The spatial domain � is assumed to be an open bounded subset of Rn, n = 2, 3, with
smooth boundary and an outer unit normal n.Wee assume that ∂� can be parametrised
by an injective mapping ϕ ∈ Ck(ω;Rn) for some sufficiently large k ∈ N. If n = 3
we suppose for all points y = (y1, y2) ∈ ω that the pair of vectors ∂iϕ(y), i = 1, 2,
are linearly independent. If n = 2 the corresponding assumption simply asks for ∂yϕ
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1502 D. Breit

not to vanish. For a point x in the neighborhood or ∂� we can define the functions y
and s by

y(x) = argmin
y∈ω

|x − ϕ(y)|, s(x) = (x − y(x)) · n(y(x)).

Moreover, we define the projection p(x) = ϕ(y(x)).We define L > 0 to be the largest
number such that s, y and p are well-defined on SL , where

SL = {x ∈ R
n : dist(x, ∂�) < L}. (2.6)

Due to the smoothness of ∂� for L small enough we have |s(x)| = miny∈ω |x −ϕ(y)|
for all x ∈ SL . This implies that SL = {sn(y) + y : (s, y) ∈ (−L, L) × ω}. For a
given function η : I × ω → R we parametrise the deformed boundary by

ϕη(t, y) = ϕ(y) + η(t, y)n(y), y ∈ ω, t ∈ I .

By possibly decreasing L, one easily deduces from this formula that �η does not
degenerate, that is

∂yϕη(t, y) �= 0 if n = 2, ∂1ϕη × ∂2ϕη(t, y) �= 0 if n = 3,

n(y) · nη(t)(y) > 0, y ∈ ω, t ∈ I , (2.7)

provided ‖η‖L∞
t,x

< L. Here nη(t) is the normal of the domain �η(t) defined through

∂�η(t) = {ϕ(y) + η(t, y)n(y) : y ∈ ω}. (2.8)

With some abuse of notation we define deformed space-time cylinder

I × �η =
⋃

t∈I
{t} × �η(t) ⊂ R

1+n .

The corresponding function spaces for variable domains are defined as follows.

Definition 2.1 (Function spaces) For I = (0, T ), T > 0, and η ∈ C(I × ω) with
‖η‖L∞(I×ω) < L we define for 1 ≤ p, r ≤ ∞

L p(I ; Lr (�η)) :=
{
v ∈ L1(I × �η) : v(t,·)∈Lr (�η(t)) for a.e. t,

‖v(t,·)‖Lr (�η(t))
∈L p(I )

}
,

L p(I ;W 1,r (�η)) := {
v ∈ L p(I ; Lr (�η)) : ∇v ∈ L p(I ; Lr (�η))

}
.

For various purposes it is useful to relate the time dependent domain and the fixed
domain. This can be done by the means of the Hanzawa transform. Its construction
can be found in [12, pages 210, 211]. Note that variable domains in [12] (see also
[1]) are defined via functions ζ : ∂� → R rather than functions η : ω → R (clearly,

123



Regularity results in 2D fluid–structure interaction 1503

one can link them by setting ζ = η ◦ ϕ−1). For any η : ω → (−L, L) we define the
Hanzawa transform �η : � → �η by

�η(x)=
{
p(x) +

(
s(x) + η(y(x))φ(s(x))

)
n(y(x)), if dist(x, ∂�) < L,

x, elsewhere.
(2.9)

Here φ ∈ C∞(R) is such that φ ≡ 0 in neighborhood of −L and φ ≡ 1 in a
neighborhood of 0. Due to the size of L, we find that �η is a homomorphism such
that �η|�\SL is the identity. We clearly have for k ∈ N and p ∈ [1,∞]

‖�η‖Wk,p
x

� 1 + ‖η‖
Wk,p

y
, η ∈ Wk,p(ω), (2.10)

as well as

‖�η − �ζ ‖Wk,p
x

� ‖η − ζ‖
Wk,p

y
, η, ζ ∈ Wk,p(ω), (2.11)

where the hidden constant only depends on the reference geometry.
If ‖η‖L∞

y
< α < L and ‖∇η‖L∞

y
< R for some α, R > 0 the inverse2 �−1

η :
�η → � satisfies for k ∈ N and p ∈ [1,∞]

‖�−1
η ‖

Wk,p
x

� 1 + ‖η‖
Wk,p

y
, η ∈ Wk,p(ω), (2.12)

as well as

‖�−1
η − �−1

ζ ‖
Wk,p

x
� ‖η − ζ‖

Wk,p
y

, η, ζ ∈ Wk,p(ω), (2.13)

if ‖ζ‖L∞
y

< α and ‖∇ζ‖L∞
y

< R. In (2.12) and (2.13) the hidden constant depends
on the reference geometry (which is assumed to be sufficiently smooth), on L −α and
R. Similarly, we obtain fractional estimates, that is

‖�η‖Ws,p
x

� 1 + ‖η‖Ws,p
y

, η ∈ Ws,p(ω), (2.14)

‖�−1
η ‖Ws,p

x
� 1 + ‖η‖Ws,p

y
, η ∈ Ws,p(ω), (2.15)

for s > 0 with s /∈ N and

‖�η − �ζ ‖Ws,p
x

� ‖η − ζ‖
Wk,p

y
, η, ζ ∈ Ws,p(ω), (2.16)

‖�−1
η − �−1

ζ ‖Ws,p
x

� ‖η − ζ‖Ws,p
y

, η, ζ ∈ Ws,p(ω). (2.17)

Finally, itholds

2 It exists provided we choose φ such that |φ′| < L/α.
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1504 D. Breit

‖∂t�η‖Ws,p
x

� 1 + ‖∂tη‖Ws,p
y

, η ∈ W 1,1(I ;Ws,p(ω)), (2.18)

uniformly in time.

2.5 Extensions on variable domains

In this subsection we construct an extension operator which extends functions from
ω to the moving domain �η for a given function η defined on ω, where n = 2, 3. We
follow [2, Section 2.3]. Since� is assumed to be sufficiently smooth, it is well-known
that there is an extension operator F� which extends functions from ∂� to R

n and
satisfies

F� : W σ,p(∂�) → W σ+1/p,p(Rn) (2.19)

for all p ∈ [1,∞] and σ > 0, as well as F�v|∂� = v. Now we define Fη by

Fηb = F�((bn) ◦ ϕ−1) ◦ �−1
η , b ∈ W σ,p(ω), (2.20)

where ϕ is the function in the parametrisation of�. If η is regular enough,Fη behaves
as a classical extension. To be more precise, we can use the formula

∇Fηb = ∇F�((bn) ◦ ϕ−1) ◦ �−1
η ∇�−1

η ,

estimate (2.12) and (2.19) to obtain the following.

Lemma 2.2 Let η ∈ C0,1(ω) with ‖η‖L∞
y

< α < L. The operator Fη defined in

(2.20) satisfies for all p ∈ (1,∞],3 σ ∈ (0, 1 − 1
p ] and s ∈ (0, 1

p ),

Fη : W σ,p(ω) → W σ+1/p,p(� ∪ Sα), Fη : L p(ω) → Ws,p(� ∪ Sα)

and (Fηb) ◦ ϕη = bn on ω for all b ∈ L p(ω). In particular, we have

‖Fηb‖W σ+1/p,p(�∪Sα) � ‖b‖W σ,p(ω), ‖Fηb‖Ws,p(�∪Sα) � ‖b‖L p(ω),

where the hidden constant depends only on �, p, σ, ‖∇η‖L∞
y
and L − α.

2.6 The concept of solutions and themain results

In this section we introduce the framework for the system (1.1)–(1.2) and present our
main results concerning the regularity of solutions. We start with the definition of a
weak solution. Note that different to the previous subsection we assume again that
n = 2.

3 It is possible to obtain a theory for any σ > 0 provided η is sufficiently regular.
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Regularity results in 2D fluid–structure interaction 1505

Definition 2.3 (Weak solution) Let (f, g, η0,u0, η1) be a dataset such that

f ∈ L2(I ; L2
loc(R

2)
)
, g ∈ L2(I ; L2(ω)

)
, η0 ∈ W 2,2(ω) with ‖η0‖L∞(ω) < L,

u0 ∈ L2
div(�η0) is such that u0 ◦ ϕη0

= η1n on ω, η1 ∈ L2(ω). (2.21)

We call the tuple (η,u) a weak solution to the system (1.1)–(1.2) with data
(f, g, η0, η1,u0) provided that the following holds:

(a) The structure displacement η satisfies

η ∈ W 1,∞(
I ; L2(ω)

) ∩ W 1,2(I ;W 1,2(ω)
) ∩ L∞(

I ;W 2,2(ω)
)

with‖η‖L∞(I×ω) < L,

as well as η(0) = η0 and ∂tη(0) = η1.

(b) The velocity field u satisfies

u ∈ L∞(
I ; L2(�η)

) ∩ L2(I ;W 1,2
div (�η)

)
with u ◦ ϕη = ∂tηn on I × ω,

as well as u(0) = u0.
(c) For all (φ,φ) ∈ C∞(I × ω) × C∞

div(I × R
2;R2) with φ(T , ·) = 0, φ(T , ·) = 0

and φ ◦ ϕη = φn on I × ω, we have

∫

I

d

dt

( ∫

�η

u · φ dx +
∫

ω

∂tη φ dy

)
dt

=
∫

I

∫

�η

(
u · ∂tφ + u ⊗ u : ∇φ

)
dx dt

−
∫

I

∫

�η

(∇u : ∇φ − f · φ
)
dx dt

+
∫

I

∫

ω

(
∂tη ∂tφ − ∂t∂yη ∂yφ − g φ

)
dy dt

−
∫

I

∫

ω

∂2yη ∂2yφ dy dt .

The existence of a weak solution can be shown as in [12]. The term ∂t∂
2
yη is not

included there, but it does not alter the arguments. Note that we use a pressure-free
formulation (that is, with test-function satisfying additionally divφ = 0) here. If the
solution possess more regularity, the pressure can be recovered by setting

π̃0 := �−1
η div((∇u)u), π0 := π̃0 − (π̃0)�η .

For O ⊂ R
n open and bounded with normal nO we denote by �−1

O div the solution
operator to the equation

�h = div g in O, nO · (∇h − g) = 0 on ∂O.
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1506 D. Breit

We must complement π0 by a function depending on time only being uniquely deter-
mined by the structure equation. Setting π(t) = π0(t)+cπ (t) and testing the structure
equation with 1 we obtain

cπ (t)
∫

ω

n · nη|∂yϕη| dy =
∫

ω

n
(∇u + ∇u� − π0I2×2

) ◦ ϕηnη|∂yϕη| dy

+
∫

ω

∂2t η dy −
∫

ω

g dy. (2.22)

Since �η is Lipschitz uniformly in time the operator �−1
�η div has the usual properties.

In particular, it is continuous L2 → W 1,2 such that

∫

I

∫

�η

|∇π |2 dx dt �
∫

I

∫

�η

|(∇u)u)|2 dx dt

�
(∫

I
‖u‖4L4(�η)

) 1
2
( ∫

I
‖∇u‖4L4(�η)

dt

) 1
2

by Ladyshenskaya’s inequality (using again that �η is Lipschitz uniformly in time).
Hence we have π ∈ L2(I W 1,2(�η)) provided the right-hand side is finite (which is
the case if u and ∇u belong to L4 in space-time). This is the case for a strong solution
which is defined as follows.

Definition 2.4 (Strong solution) We call the triple (η,u, π) a strong solution to (1.1)–
(1.2) provided (η,u) is a weak solution to (1.1)–(1.2), it satisfies

η ∈ W 1,∞(
I ;W 1,2(ω)

) ∩ W 1,2(I ;W 2,2(ω)
) ∩ L∞(

I ;W 3,2(ω)
) ∩ W 2,2(I ; L2(ω)),

u ∈ W 1,2(I ; L2(�η)
) ∩ L2(I ;W 2,2(�η)

)
, π ∈ L2(I ;W 1,2(�η)

)
,

and we have ∇π = ∇�−1
�η

div((∇u)u).

For a strong solution (η,u, π) the momentum equation holds in the strong sense,
that is we have

∂tu + (∇u)u = �u − ∇π + f (2.23)

a.a. in I × �η. The beam equation together with the regularity properties above yield
η ∈ L2(I ;W 4,2(ω)). Hence the beam equation holds in the strong sense as well, that
is we have

∂2t η − ∂t∂
2
yη + ∂4yη = g − nτ ◦ ϕη∂yϕ

⊥
η (2.24)

a.a. in I ×ω.Note that for a strong solution the Cauchy stress τ = ∇u+∇u�−πI2×2
possesses enough regularity to be evaluated at the moving boundary (this is due to the
trace theorem and the uniform Lipschitz continuity of �η).
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Regularity results in 2D fluid–structure interaction 1507

We are finally ready to state our main result concerning the existence of a unique
strong solution to (1.1)–(1.2).

Theorem 2.5 Let n = 2. Suppose that the dataset (f, g, η0,u0, η1) satisfies in addition
to (2.21) that

g ∈ L2
(
I ;W 1,2(ω)

)
, η0 ∈ W 3,2(ω), η1 ∈ W 1,2(ω), u0 ∈ W 1,2

div (�η0 ). (2.25)

Then there is a unique strong solution to (1.1)–(1.2) in the sense of Definition 2.4.
The interval of existence is of the form I = (0, t), where t < T only in case
�η(s) approaches a self-intersection when s → t or it degenerates4 (namely, if
lims→t ∂yϕη(s, ω) = 0 or lims→t n(y) · nη(s)(y) = 0 for some y ∈ ω).

The proof of Theorem 2.5 can be found in Sect. 5.

Remark 2.6 The result of Theorem 2.5 heavily hinges on the dissipative term −∂t∂
2
yη

in the shell equation. It is a difficult open problem to understand if a similar result
can be achieved in the purely elastic case (that is, γ = 0 in (1.2)) even for the flat
geometry studied in [10].

Remark 2.7 A drawback of Theorem 2.5 compared to the corresponding statement for
the flat geometry from [10] is that we can currently not exclude a self-intersection
of the moving domain for arbitrary times. It would be a of great interest to prove a
distance estimate as in [10, Section 4.2] in the present set-up.

3 The Stokes equations in non-smooth domains

This section is devoted to the study of the Stokes equations in a domain O ⊂ R
n,

n = 2, 3,with minimal regularity. We start by introducing the necessary framework to
parametrise the boundary of the underlying domain by local maps of a certain regular-
ity. This yields, in particular, a rigorous definition of a Bs

ρ,q -boundary. In Sect. 3.2 we
consider the steady Stokes system. This will be crucial for the acceleration estimate for
the fluid–structure problem in Sect. 5.1 (we explain in Remark 3.4 how to parametrise
the sets �η introduced in Sect. 2.4 by local maps).

3.1 Parametrisation of domains

Let O ⊂ R
n be a bounded open set. We assume that ∂O can be covered by a finite

number of open sets U1, . . . ,U� for some � ∈ N, such that the following holds. For
each j ∈ {1, . . . , �} there is a reference point y j ∈ R

n and a local coordinate system
{e j1 , . . . , e jn} (which we assume to be orthonormal and setQ j = (e j1 | . . . |e jn) ∈ R

n×n),
a function ϕ j : Rn−1 → R and r j > 0 with the following properties:

4 Self-intersection and degeneracy are excluded if ‖η‖L∞
t,x

< L, cf. (2.6) and (2.7).
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1508 D. Breit

(A1) There is h j > 0 such that

U j = {x = Q j z + y j ∈ R
n : z = (z′, zn) ∈ R

n, |z′| < r j , |zn − ϕ j (z
′)| < h j }.

(A2) For x ∈ U j we have with z = Q�
j (x − y j )

• x ∈ ∂O if and only if zn = ϕ j (z′);
• x ∈ O if and only if 0 < zn − ϕ j (z′) < h j ;
• x /∈ O if and only if 0 > zn − ϕ j (z′) > −h j .

(A3) We have that

∂O ⊂
�⋃

j=1

U j .

In other words, for any x0 ∈ ∂O there is a neighborhood U of x0 and a function
ϕ : Rn−1 → R such that after translation and rotation5

U ∩ O = U ∩ G, G = {(x ′, xn) ∈ R
n : x ′ ∈ R

n−1, xn > ϕ(x ′)}. (3.1)

The regularity of ∂Owill be described bymeans of local coordinates as just described.

Definition 3.1 Let O ⊂ R
n be a bounded domain, s > 0 and 1 ≤ ρ, q ≤ ∞. We

say that ∂O belongs to the class Bs
ρ,q if there is � ∈ N and functions ϕ1, . . . , ϕ� ∈

Bs
ρ,q(R

n−1) satisfying (A1)–(A3).

Clearly, a similar definition applies for a Lipschitz boundary (or a C1,α-boundary
with α ∈ (0, 1)) by requiring that ϕ1, . . . , ϕ� ∈ W 1,∞(Rn−1) (or ϕ1, . . . , ϕ� ∈
C1,α(Rn−1)). We say that the local Lipschitz constant of ∂O, denoted by Lip(∂O),

is (smaller or) equal to some number L > 0 provided the Lipschitz constants of
ϕ1, . . . , ϕ� are not exceeding L. Our main result depends on the assumption of a
sufficiently small local Lipschitz constant. While this seems rather restrictive at first
glance, it appears quite natural when looking closer. Indeed, it holds, for instance, if
the regularity of ∂O is better than Lipschitz (such as C1,α for some α > 0). By means
of the transformations Q j introduced above, we can assume that the reference point
y j in question is the origin and that ∇ϕ j (0) = 0. Choosing r j in (A1) small enough
(which can be achieved simply by allowing more sets in the cover U1, . . . ,U l ) we
have

|∇ϕ j (z
′)| = |∇ϕ j (z

′) − ∇ϕ j (0)| ≤ rα
j [∇ϕ j ]Cα � 1

for all z′ with |z′| ≤ r j .

5 By translation via y j and rotation via Q j we can assume that x0 = 0 and that the outer normal at x0 is
pointing in the negative xn -direction.
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Regularity results in 2D fluid–structure interaction 1509

In order to describe the behaviour of functions defined in O close to the bound-
ary we need to extend the functions ϕ1, . . . , ϕ� from (A1)–(A3) to the half space
H := {z = (z′, zn) : zn > 0}. Hence we are confronted with the task of extending a
function φ : R

n−1 → R to a mapping � : H → R
n that maps the 0-neighborhood

inH to the x0-neighborhood inO. Themapping (z′, 0) �→ (z′, φ(z′)) locally maps the
boundary ofH to the one of ∂O.We extend this mapping using the extension operator
of Maz’ya and Shaposhnikova [16, Section 9.4.3]. Let ζ ∈ C∞

c (B1(0′)) with ζ ≥ 0
and

∫
Rn−1 ζ(x ′) dx ′ = 1. Let ζt (x ′) := t−(n−1)ζ(x ′/t) denote the induced family of

mollifiers. We define the extension operator

(T φ)(z′, zn) =
∫

Rn−1
ζzn (z

′ − y′)φ(y′) dy′, (z′, zn) ∈ H,

where φ : R
n → R is a Lipschitz function with Lipschitz constant K . Then the

estimate

‖∇(T φ)‖Bs
ρ,q (Rn) ≤ c‖∇φ‖

B
s− 1

p
ρ,q (Rn−1)

(3.2)

follows from [16, Theorem 8.7.2]. Moreover, [16, Theorem 8.7.2] yields

‖T φ‖M(Ws,p(H)) � ‖φ‖M(Ws−1/p,p(Rn−1)). (3.3)

It is shown in [16, Lemma 9.4.5] that (for sufficiently large N , i.e., N ≥ c(ζ )K + 1)
the mapping

αz′(zn) �→ N zn + (T φ)(z′, zn)

is for every z′ ∈ R
n−1 one to one and the inverse is Lipschitz with its gradient bounded

by (N − K )−1. Now, we define the mapping � : H → R
n as a rescaled version of

the latter one by setting

�(z′, zn) := (
z′, αz′(zn)

) = (
z′, zn + (T φ)(z′, zn/K )

)
. (3.4)

Thus,� is one-to-one (for sufficiently large N = N (K )) and we can define its inverse
� := �−1. The mapping � has the Jacobi matrix of the form

J = ∇� =
(
I(n−1)×(n−1) 0

∂z′(T φ) 1 + 1/N∂znT φ

)
. (3.5)

Since |∂znT φ| ≤ K , we have

1

2
< 1 − K/N ≤ |det(J )| ≤ 1 + K/N ≤ 2 (3.6)
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1510 D. Breit

using that N is large compared to K . Finally, we note the implication

� ∈ M(Ws,p(H)) ⇒ � ∈ M(Ws,p(H)), (3.7)

which holds, for instance, if � is Lipschitz continuous, cf. [16, Lemma 9.4.2]. In fact,
one can prove (3.7) with the help of (2.5) and (3.6).

3.2 The steady Stokes problem

In this section we consider the steady Stokes system

�u − ∇π = −f, div u = 0, u|∂O = u∂ , (3.8)

in a domainO ⊂ R
n with unit normal n. The result given in the following theorem is

a maximal regularity estimate for the solution in terms of the right-hand side and the
boundary datum under minimal assumption on the regularity of ∂O.

Theorem 3.2 Let n = 2, 3. Let p ∈ (1,∞), s ≥ 1 + 1
p and

� ≥ p if p(s − 1) ≥ n, � ≥ p(n−1)
p(s−1)−1 if p(s − 1) < n, (3.9)

such that n
( 1
p − 1

2

) + 1 ≤ s. Suppose thatO is a Bθ
�,p-domain for some θ > s − 1/p

with locally small Lipschitz constant, f ∈ Ws−2,p(O) and u∂ ∈ Ws−1/p,p(∂O) with∫
∂O u∂ · n dHn−1 = 0. Then there is a unique solution to (3.8) and we have

‖u‖Ws,p(O) + ‖π‖Ws−1,p(O) � ‖f‖Ws−2,p(O) + ‖u∂‖Ws−1/p,p(∂O). (3.10)

The constant in (3.10) depends on the local Lipschitz constant of ∂O as well as the
Bθ

�,p-norms of the local charts in the parametrisation of ∂O.

Remark 3.3 The theorem holds under the slightly weaker assumption that ∂O ∈
M(Ws−1/p,p)(δ) for δ sufficiently small. This means that the functions ϕ1, . . . , ϕ�

from the parametrisation of ∂O belong to the multiplier spaceM(Ws,p(Rn−1)) with
norm bounded by δ. This is a sharp assumption for the corresponding theory for the
Laplace equation, cf. [16, Chapter 14]. The relationship between M(Ws−1/p,p)(δ)

and Besov spaces can be seen from (2.3) and (2.4).

Proof By use of a standard extension operator we can assume that u∂ = 0. Otherwise
we can solve the homogeneous problem with solution ũ and set

u := ũ + EOu∂ − BogO(div EOu∂ )

where

EO : Ws−1/p,p(∂O) → Ws,p(O)
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is a continuous linear extension operator and BogO the Bogovskii-operator. The latter
solves the divergence equation (with respect to homogeneous boundary conditions on
∂O) and satisfies

BogO div : Ws,p ∩
{
w :

∫

∂O
w · n dHn−1 = 0

}
→ Ws,p

0 (O) (3.11)

for all s ≥ 1 and p ∈ (1,∞). See [9, Section III.3] for the case s ∈ N0, the case of
fractional s follows by interpolation.

Our assumption n
( 1
p − 1

2
) + 1 ≤ s implies

Ws−2,p(O) ↪→ W−1,2(O), Ws−1/p,p(∂O) ↪→ W 1/2,2(∂O),

such that a unique weak solution (u, π) ∈ W 1,2
0,div(O) × L2⊥(O) to (3.8) exists. Fur-

thermore, let us suppose that u and π are sufficiently smooth. We will remove this
restriction at the end of the proof. By assumption there is � ∈ N and functions
ϕ1, . . . , ϕ� ∈ Bθ

ρ,p(R
n−1) satisfying (A1)–(A3). We clearly find an open set U0 � O

such that O ⊂ ∪�
j=0U j . Finally, we consider a decomposition of unity (ξ j )

�
j=0 with

respect to the covering U0, . . . ,U� ofO. For j ∈ {1, . . . , �}we consider the extension
� j of ϕ j given by (3.4) with inverse � j .

Let us fix j ∈ {1, . . . , �} and assume, without loss of generality, that the reference
point y j = 0 and that the outer normal at 0 is pointing in the negative xn-direction
(this saves us some notation regarding the translation and rotation of the coordinate
system). We multiply u by ξ j and obtain for u j := ξ ju, � j := ξ jπ and f j := ξ j f the
equation

S�u j − ∇� j = [�, ξ j ]u − [∇, ξ j ]� − f j ,

div u j = ∇ξ j · u, u j |∂O = 0, (3.12)

with the commutators [�, ξ j ] = �ξ j + 2∇ξ j · ∇ and [∇, ξ j ] = ∇ξ j . Finally, we set
v j := u j ◦ � j , θ j := � j ◦ � j , g j := det(∇� j )([�, ξ j ]u − [∇, ξ j ]� − f j ) ◦ � j ,

h j = det(∇� j )(∇ξ j · u) ◦ � j and obtain the equations

div
(
A j∇v j ) − div(B jθ j ) = g j , B�

j : ∇v j = h j , v j |∂H = 0, (3.13)

where A j := det(∇� j )∇��
j ◦ � j∇� j ◦ � j and B j := det(∇� j )∇� j ◦ � j (note

that we have divB j = 0 due to the Piola identity). This can be rewritten as

�v j − ∇θ j = div
(
(In×n − A j )∇v j ) + div((B j − In×n)θ j ) + g j ,

div v j = (In×n − B j )
� : ∇v j + h j , v j |∂H = 0. (3.14)

Setting

S(v, θ) = S1(v) + S2(θ),
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1512 D. Breit

S1(v) = div
(
(In×n − A j )∇v),

S2(θ) = div((B j − In×n)θ),

s(v) = (In×n − B j )
� : ∇v,

we can finally write (3.14) as

�v j − ∇θ j = S(v j , θ j ) + g j , div v j = s(v j ) + h j , v j |∂H = 0, (3.15)

inH. Estimates for the Stokes system on the half space are well-known: We apply [9,
Thm. IV 2.1] to (3.15) which yields

‖∇v j‖L p
x

+ ‖θ j‖L p
x

� ‖S(v j , θ j ) + g j‖W−1,p
x

+ ‖s(v j ) + h j‖L p
x
. (3.16)

Similarly, we obtain from [9, Thm. IV 3.3] for k ≥ 2

‖∇kv j‖L p
x

+ ‖∇k−1θ j‖L p
x

� ‖∇k−2(S(v j , θ j ) + g j )‖L p
x

+ ‖∇k−1(s(v j ) + h j )‖L p
x
. (3.17)

Since v j is compactly supported (with support included in ξ j ◦ � j ) we conclude by
Poincaré’s inequality

‖v j‖Wk,p
x

+ ‖θ j‖Wk−1,p
x

� ‖S(v j , θ j ) + g j‖Wk−2
x

+ ‖s(v j ) + h j‖Wk−1,p
x

(3.18)

for all k ≥ 1. Interpolation implies

‖v j‖Ws,p
x

+ ‖θ j‖Ws−1,p
x

� ‖S(v j , θ j ) + g j‖Ws−2
x

+ ‖s(v j ) + h j‖Ws−1,p
x

(3.19)

for all s ≥ 1. Our remaining task consists in estimating the right-hand side. In order
to estimate ‖S(v, θ)‖

Ws−2,p
x

and ‖s(v)‖
Ws−1,p

x
we use the Sobolev multiplier norm

introduced in (2.1). By our assumptions on ϕ j we infer from (2.3) and (2.4) that
φ j ∈ M(Ws−1/p,p(H)). Thus � j ∈ M(Ws,p(H)) by (3.4), (3.3), and (3.9) and
� j ∈ M(Ws,p(H)) by (3.7). Hence we obtain by (3.5), (2.5) and the definitions of
A j and � j

‖S1(v)‖Ws−2,p(H)

� sup
‖w‖

W
s−1,p
x

≤1
‖(In×n − A j )w‖Ws−1,p(H)‖∇v‖

Ws−1,p
x

� sup
‖w‖Ws−1,p (H)

≤1
‖(1 − det(∇� j ))w‖Ws−1,p(H)‖v‖Ws,p

x

+ sup
‖w‖

W
s−1,p
x

≤1
‖det(∇� j )(In×n − ∇��

j ◦ � j )w‖Ws−1,p(H)‖v‖Ws,p
x

+ sup
‖w‖

W
s−1,p
x

≤1
‖det(∇� j )∇��

j ◦ � j (In×n − ∇� j ◦ � j )w‖Ws−1,p(H)‖v‖Ws,p
x
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� ‖T φ j‖M(Ws,p(H))‖v‖Ws,p
x

+ ‖� j‖nM(Ws,p(H)) sup
‖w‖

W
s−1,p
x

≤1
‖(In×n − ∇� j ◦ � j )w‖Ws−1,p(H)‖v‖Ws,p

x

+ ‖� j‖nM(Ws,p(H))‖� j‖M(Ws,p(H)) sup
‖w‖

W
s−1,p
x

≤1
‖(In×n

− ∇� j ◦ � j )w‖Ws−1,p(H)‖v‖Ws,p
x

�
(

‖T φ j‖M(Ws,p(H)) + sup
‖w‖

W
s−1,p
x

≤1
‖(In×n − ∇� j ◦ � j )w‖Ws−1,p(H)

)
‖v‖Ws,p

x
,

where

sup
‖w‖

W
s−1,p
x

≤1
‖(In×n − ∇� j ◦ � j )w‖Ws−1,p(H)

= sup
‖w‖

W
s−1,p
x

≤1
‖(In×n − det(∇� j )cof(∇� j ◦ � j ))w‖Ws−1,p(H)

≤ sup
‖w‖

W
s−1,p
x

≤1
‖(1 − det(∇� j ))w‖Ws−1,p(H)

+ sup
‖w‖

W
s−1,p
x

≤1
‖det(∇� j )(In×n − cof(∇� j ◦ � j ))w‖Ws−1,p(H)

� ‖T φ j‖M(Ws,p(H))‖� j‖nM(Ws,p(H)) � ‖T φ j‖M(Ws,p(H)).

So we finally have

‖S1(v)‖Ws−2,p(H) � ‖T φ j‖M(Ws,p(H))‖v‖Ws,p(H)

and, similarly,

‖S2(θ)‖Ws−2,p(H) � sup
‖w‖Ws−1,p (H)

≤1
‖(B j − In×n)w‖Ws−1,p(H)‖θ‖Ws−1,p(H)

� ‖T φ j‖M(Ws,p(H))‖θ‖Ws−1,p(H),

as well as

‖s(v)‖Ws−1,p(H) � sup
‖w‖Ws−1,p (H)

≤1
‖(B j − In×n)w‖Ws−1,p(H)‖∇v‖Ws−1,p(H)

� ‖T φ j‖M(Ws,p(H))‖v‖Ws,p(H),

By (3.3) we have

‖T φ j‖M(Ws,p(H)) � ‖ϕ j‖M(Ws−1/p,p(H)). (3.20)
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Finally, in the case p ≤ n the right-hand side can be bounded by the Lipschitz constant
due to by (2.3) and the embedding Bθ

p,p ↪→ Bs−1/p
ρ,p for θ > s − 1/p and � satisfying

(3.9). Hence it is conveniently small by our assumption. If p > n we have by (2.4)

‖T φ j‖M(Ws,p(H)) � ‖∇(T φ j )‖Ws−1,p(H) � ‖ϕ j‖Ws−1/p,p(Rn−1)

� ‖ϕ j‖α
W θ,p(Rn−1)

‖ϕ j‖1−α

W1,p(Rn−1)

� ‖ϕ j‖α
W θ,p(Rn−1)

‖ϕ j‖1−α

W1,∞(Rn−1)

(3.21)

for an appropriate choice of α ∈ (0, 1). This is again suitably small. We conclude that

‖S(v j , θ j )‖Ws−2,p
x

+ ‖s(v)‖
Ws−1,p

x
≤ δ

(‖v j‖Ws,p(H) + ‖θ j‖Ws−1,p(H)

)
(3.22)

for some small δ > 0. On the other hand, we have

‖g j‖Ws−2,p
x

� ‖u ◦ � j‖Ws−1,p
x

+ ‖π ◦ � j‖Ws−2,p
x

+ ‖f ◦ � j‖Ws−2
x

� ‖u‖
Ws−1,p

x
+ ‖π‖

Ws−2,p
x

+ ‖f‖Ws−2
x

,

where the hidden constant depends ondet(∇� j ) and‖� j‖M(Ws,p(H)) being controlled
by (3.6), (3.20) and (3.21) (see (2.5) for the composition with Sobolev multipliers).
Similarly, we obtain

‖h j‖Ws−1,p
x

� ‖u‖
Ws−1,p

x
.

Plugging this and (3.22) into (3.19) shows for all j ∈ {1, . . . , �}

‖v j‖Ws,p
x

+ ‖θ j‖Ws−1,p
x

� ‖u‖Ws−1
x

+ ‖π‖Ws−2
x

+ ‖f‖Ws−2
x

(3.23)

provided δ is sufficiently small. Clearly, the same estimate (even without the first two
terms on the right-hand side) holds for j = 0 by local regularity theory for the Stokes
system. Choosing s0 ∈ R such that W 1,2(O) ↪→ Ws0,p(O), there is α ∈ (0, 1) such
that

‖u‖
Ws−1,p

x
≤ ‖u‖α

Ws,p
x

‖u‖1−α

W
s0,p
x

� ‖u‖α

Ws,p
x

‖u‖1−α

W 1,2
x

� ‖u‖α

Ws,p
x

‖f‖1−α

W−1,2
x

� ‖u‖α

Ws,p
x

‖f‖1−α

Ws−2,p
x

by the assumption n
( 1
p − 1

2
) + 1 ≤ s and the standard energy estimate for the Stokes

system. Hence we obtain

‖u‖
Ws−1,p

x
≤ κ‖u‖Ws,p

x
+ c(κ)‖f‖

Ws−2,p
x

(3.24)

for any κ > 0. Similarly,

‖π‖
Ws−2,p

x
≤ κ‖π‖

Ws−1,p
x

+ c(κ)‖f‖
Ws−2,p

x
(3.25)
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using that ‖π‖L2
x

� ‖f‖W−1,2
x

as well. Plugging (3.24) and (3.25) into (3.23) summing
over j = 0, 1, . . . , � and choosing κ small enough proves the claim provided u
and π are sufficiently smooth. Let us finally remove this assumption which is not
a priori given. Applying a standard regularisation procedure (by convolution with
mollifying kernel) to the functions ϕ1, . . . , ϕ� from (A1)–(A3) in the parametrisation
of ∂O we obtain a smooth boundary. Classically, the solution to the corresponding
Stokes system is smooth. Such a procedure is standard and has been applied, for
instance, in [4, Section 4]. It is possible to do this in a way that the original domain
is included in the regularised domain to which we extend the function f by means of
an extension operator. The regularisation applied to the ϕ′

j s converges on all Besov

spaces with p < ∞. It does not converge on W 1,∞(Rn−1), but the regularisation
does not expand theW 1,∞(Rn−1)-norm, which is sufficient. Following the arguments
above we obtain (3.10) for the regularised problem with a uniform constant. The limit
passage is straightforward since (3.8) is linear. ��
Remark 3.4 In Sect. 5.1 we have to apply Theorem 3.2 in the case n = 2 to the
domain O = �η(t) for a fixed t . We exclude self-intersection and degeneracy by
assumption. In the framework of Theorem 2.5 we have η ∈ L∞(I ;W 2,2(ω)) and
�η(t) is defined in accordance with (2.8). We must argue that ∂�η ∈ Bs

2,2(O) (in the

sense of Definition 3.1) for some s > 3
2 and has a small local Lipschitz constant (both

uniformly in time). While the Besov regularity is initially clear, we have to introduce
local coordinates to control the Lipschitz constant appropriately. Eventually, we must
check the Besov regularity again. Given x0 ∈ ∂�η(t) for some t ∈ I fixed we can
rotate the coordinate system such that nη(t)(y(x0)) = (0, 1)� (recall that nη(t) is
well-defined since ∂yϕη �= 0 by assumption). Accordingly, it holds

∂yϕη(t)(y(x0)) =
(

∂yϕ
1
η(t)(y(x0))

∂yϕ
2
η(t)(y(x0))

)

=
(
1
0

)
.

Hence the function ϕ1
η(t) is invertible in a neighborhood U of y(x0). We define in

ϕ1
η(t)(U) the function

ϕ̃x0(z) =
(

z
ϕ̃x0(z))

)
=

(
z

ϕ2
η(t)((ϕ

1
η(t))

−1(z))

)

.

It describes the boundary ∂�η(t) close to x0.One easily checks with z0 = ϕ1
η(t)(y(x0))

that ∂z ϕ̃x0(z0) = 0 such that ∂z ϕ̃ is small close to z0. Also, we obtain from the
chain rule and the one-dimensional Sobolev embedding that ϕ̃x0 ∈ W 2,2 and hence
ϕ̃x0 ∈ Ws,2 = Bs

2,2 for all s ∈ (1, 2) in a neighborhood of z0.

Remark 3.5 A result in the spirit of Theorem3.2 is proved in [5, Lemma 3.1]. However,
it only applies in spaces of high regularity with s ≥ 3 (and only the case p = 2 is
considered) which is too restrictive for our application in Sect. 5. Moreover, it is
assumed that the global parametrisation is a small perturbation of a smooth reference
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domain (such as the half space). First of all, the assumption of a global parametrisation
restricts the result to applications in fluid–structure interaction as generally only local
charts are available on bounded domains. Second, global smallness is a small data
assumption, while local smallness (as the small Lipschitz constant) can be achieved
by local re-parametrisation as in Remark 3.4.

4 Local strong solutions

In this subsection we prove the existence of a unique strong solution to (1.1)–(1.2)
which exists locally in time. We consider again only the case n = 2.

Proposition 4.1 Let n = 2. Suppose that the assumptions of Theorem 2.5 hold. There
is T ∗ > 0 such that there is a unique strong solution to (1.1)–(1.2) in I ∗ = (0, T ∗) in
the sense of Definition 2.4.

The strategy to prove Proposition 4.1 is rather standard and similar to previous
papers [10, 11, 13]:

• We transform the system to the reference domain, cf. Lemma 4.2.
• We linearise the system from Lemma 4.2 and obtain estimates for the linearised
system, cf. Lemma 4.3.

• We construct a contraction map for the linearised problem in Lemma 4.4 (by
choosing the end-time small enough) which gives the local solution to (1.1)–(1.2).

4.1 The transformed problem

For a solution (η,u, π) to (1.1)–(1.2) we define π = π ◦ �η and u = u ◦ �η, where
�η is defined in (2.9). We also introduce

hη(u) = −(Jη − Jη0)∂tu − Jη(∇�−1
η ◦ �η∇u)

(
∂t�

−1
η ◦ �η + u

) + Jηf ◦ �η,

Aη = Jη
(∇�−1

η ◦ �η

)�∇�−1
η ◦ �η, Bη = Jη∇�−1

η ◦ �η,

Hη(u, π) = (Aη0 − Aη)∇u − (Bη0 − Bη)π, hη(u) = (Bη0 − Bη) : ∇u,

where Jη = |det∇�η|.We see that (η,u, π) is a strong solution to the coupled system

Jη0∂tu + div
(
Bη0π

) − div
(
Aη0∇u

) = hη(u) − divHη(u, π), (4.1)

Bη0 : ∇u = hη(u), (4.2)

∂2t η − ∂t∂
2
yη + ∂4yη = −n

(
Aη0∇u − Bη0π

) ◦ ϕ n

+ nHη(u, π) ◦ ϕ n, (4.3)

in I × � and we have

u ◦ ϕ = ∂tηn on I × ω. (4.4)
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Regularity results in 2D fluid–structure interaction 1517

Here Eqs. (4.1) and (4.3) are understood in the strong sense (satisfied a.a. in I × �

and I × ω respectively).
We call (η,u, π) a strong solution to (4.1)–(4.4) provided

η ∈ W 1,∞(
I ;W 1,2(ω)

) ∩ W 1,2(I ;W 2,2(ω)
) ∩ L∞(

I ;W 3,2(ω)
) ∩ W 2,2(I ; L2(ω)),

u ∈ L∞(
I ;W 1,2(�)

) ∩ L2
(
I ;W 2,2(�)

) ∩ W 1,2(I ; L2(�)
)
, π ∈ L2

(
I ;W 1,2(�)

)
.

(4.5)

Note that we construct a weak solution to Eq. (4.3) meaning we have

∫

I

∫

ω

(
∂tη ∂tφ − ∂t∂yη ∂yφ − g φ

)
dy dt −

∫

I

∫

ω

∂2yη ∂2yφ dy dt

= −
∫

ω

n
(
Aη0∇u

) − Bη0π
) ◦ ϕ nφ dy dt

+
∫

ω

nHη(u, π) ◦ ϕ nφ dy dt (4.6)

for all φ ∈ C∞(I × ω). However, one can use the regularity properties (4.5) to infer
that η ∈ L2(I ;W 4,2(ω)) such that all quantities in (4.6) are, in fact, L2-functions and
we have indeed a strong solution.

We obtain the following characterisation regarding (4.1)–(4.18).

Lemma 4.2 Suppose that the dataset (f, g, η0,u0, η1) satisfies (2.21) and (2.25). Then
(η,u, π) is a strong solution to (1.1)–(1.2) (in the sense of Definition 2.4) if and only
if (η,u, π) is a strong solution to (4.1)–(4.4).

Proof Transforming the momentum equation to the reference domain we obtain

Jη∂tu + div
(
Bηπ

) − div
(
Aη∇u

)

= −Jη(∇�−1
η ◦ �η∇u)

(
∂t�

−1
η ◦ �η + u

) + Jηf ◦ �η,

while the incompressibility constraint gives B�
η : ∇u = 0. Reordering terms and

recalling the definitions of Bη, Aη0 , fη and Hη yields

Jη0∂tu + div
(
Bη0π

) − div
(
Aη0∇u

) = hη(u) − divHη(u, π) (4.7)

and
Bη0 : ∇u = hη(u).

Allowing now a couple of test-functions (φ,φ) ∈ C∞(I × ω) × C∞(I × R
3) and

φ ◦ϕη = φn, see Definition 2.3 (c), rewriting the terms for the fluid equation as above

(that is, setting φ = φ ◦ �η) and integrating by parts yields

∫

I

∫

ω

(
∂tη ∂tφ − ∂t∂yη ∂yφ − g φ

)
dy dt −

∫

I

∫

ω

∂2yη ∂2yφ dy dt
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1518 D. Breit

= −
∫

ω

n
(
Aη0∇u

) − Bη0π
) ◦ ϕ nφ dy dt

+
∫

ω

nHη(u, π) ◦ ϕ nφ dy dt

due to (4.7). Note that the terms on the right-hand side are the boundary terms which
arise due to the integration by parts. This finishes the proof as all the manipulations
can be reversed for strong solutions given the regularity of u and π assumed in (4.5).

��

4.2 The linearised problem

We will now consider solutions to the linearised problem for a given right-hand side,
that is we analyse for given functions h,H and h the system

Jη0∂tu + div
(
Bη0π

) − div
(
Aη0∇u

) = h − divH, (4.8)

Bη0 : ∇u = h, (4.9)

∂2t η − ∂t∂
2
yη + ∂4yη = g − n

(
Aη0∇u − Bη0π

) ◦ ϕ n

+ nH ◦ ϕ n, (4.10)

u ◦ ϕ = ∂tηn on I × ω, (4.11)

u(0) = u0, η(0) = η0, ∂tη(0) = η1. (4.12)

Note that (4.8)–(4.12) is linear in (η,u, π) such thatwe expect strong solutions globally
in time belonging to the regularity class specified in (4.5).

Lemma 4.3 Suppose that the dataset (h,H, h, g, η0,u0, η1) satisfies

h ∈ L2(I ; L2(�)
)
, H ∈ L2(I ;W 1,2(�)

)
,

h ∈ L2(I ;W 1,2(�)
) ∩ W 1,2(I ;W−1,2(�)

) ∩ {h(0, ·) = 0},
g ∈ L2(I ;W 1,2(ω)

)
, η0 ∈ W 3,2(ω) with ‖η0‖L∞(ω) < L, η1 ∈ W 1,2(ω),

u0 ∈ W 1,2(�) is such that u0 ◦ ϕ = η1n and Bη0 : ∇u0 = 0. (4.13)

Then there is a strong solution to (4.8)–(4.12) satisfying the estimate

sup
I

∫

�

|∇u|2 dx +
∫

I

∫

�

(|∇2u|2 + |∂tu|2 + |π |2 + |∇π |2) dx dt

+ sup
I

∫

ω

(|∂t∂yη|2 + |∂3yη|2) dy +
∫

I

∫

ω

(|∂t∂2yη|2 + |∂2t η|2) dy dt

�
∫

�

|∇u0|2 dx +
∫

I

∫

�

(|h|2 + |∇H|2 + |∇h|2) dx dt +
∫

I
‖∂t h‖2W−1,2(�)

dt

+
∫

ω

(|∂3yη0|2 + |∂yη1|2
)
dy +

∫

I

∫

ω

|∂yg|2 dy dt
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+ E(0) +
∫

I

∫

�

|H|2 dx dt +
∫

I

∫

ω

|g|2 dy dt, (4.14)

where the energy E is given by

E(t) = 1

2

∫

�

|u(t)|2 dx + 1

2

∫

ω

|∂tη|2 dy + 1

2

∫

ω

|∂2yη|2 dy.

Proof Let us initially suppose that h = 0, that is we have Bη0 : ∇u = 0. We proceed
formally; a rigorous proof can be obtained by working with a Galerkin approximation.
Testing with (u, ∂tη), using Bη0 : ∇u = 0, ellipticity of Aη0 (which follows from
‖η0‖L∞

y
< L) as well as the cancellation of the boundary terms due to (4.11) yields

E(t) +
∫ t

0

∫

�

|∇u|2 dx dσ +
∫ t

0

∫

ω

|∂t∂yη|2 dy dσ

≤ E(0) +
∫ t

0

∫

�

u · h dx dσ +
∫ t

0

∫

�

∇u : H dx dσ +
∫ t

0

∫

ω

g ∂tη dy dσ.

This implies

sup
I

∫

�

|u|2 dx +
∫

I

∫

�

|∇u|2 dx dt

+ sup
I

∫

ω

|∂tη|2 dy + sup
I

∫

ω

|∂2yη|2 dy +
∫

I

∫

ω

|∂t∂yη|2 dy dt

� E(0) +
∫

I

∫

�

(|h|2 + |H|2) dx dt +
∫

I

∫

ω

|g|2 dy dt . (4.15)

Similarly, we can test by (∂tu, ∂2t η) noticing that the coefficients in (4.8) and (4.9) are
independent of time and that ∂tu and ∂2t η match again at the boundary due to (4.11).
We obtain

∫ t

0

∫

�

|∂tu|2 dx dσ + 1

2

∫

�

|∇u|2 dx + 1

2

∫

ω

|∂t∂yη|2 dy +
∫ t

0

∫

ω

|∂2t η|2 dy dσ

= 1

2

∫

�

|∇u0|2 dx +
∫ t

0

∫

�

∂tu · h dx dσ −
∫ t

0

∫

�

∂tu : divH dx dσ

+
∫

ω

nH ◦ ϕ n∂2t η dy dt + 1

2

∫

ω

|∂yη1|2 dy +
∫ t

0

∫

ω

g ∂2t η dy dσ

−
∫ t

0

∫

ω

∂4yη ∂2t η dy dσ,

such that, using

−
∫ t

0

∫

ω

∂4yη ∂2t η dy dσ =
∫ t

0

∫

ω

∂t (∂
3
yη ∂t∂yη) dy dσ +

∫ t

0

∫

ω

|∂t∂2yη|2 dy dσ
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≤ 1
2 sup

I

∫

ω

|∂t∂yη|2 dy + 2 sup
I

∫

ω

|∂3yη|2 dy +
∫

I

∫

ω

|∂t∂2yη|2 dy dσ,

we have

∫

I

∫

�

|∂tu|2 dx dt + sup
I

∫

�

|∇u|2 dx + sup
I

∫

ω

|∂t∂yη|2 dy +
∫

I

∫

ω

|∂2t η|2 dy dt

�
∫

�

|∇u0|2 dx +
∫

ω

|∂yη1|2 dy +
∫

I

∫

�

(|h|2 + |∇H|2) dx dt

+
∫

I

∫

∂�

|H|2 dH1 dt +
∫

I

∫

ω

|g|2 dy dt + sup
I

∫

ω

|∂3yη|2 dy

+
∫

I

∫

ω

|∂t∂2yη|2 dy. (4.16)

Nowwe differentiate the structure equation in space by testing with ∂t∂
2
yη which leads

to

1

2

∫

ω

|∂t∂yη|2 dy + 1

2

∫

ω

|∂3yη|2 dy +
∫ t

0

∫

ω

|∂t∂2yη|2 dy dσ

= 1

2

∫

ω

|∂yη1|2 dy + 1

2

∫

ω

|∂3yη0|2 dy +
∫ t

0

∫

ω

g ∂2y∂tη dy dσ

+
∫

I

∫

ω

n
(
Aη0∇u

) − Bη0π
) ◦ ϕ n ∂t∂

2
yη dy dt

−
∫

I

∫

ω

nH ◦ ϕ n ∂t∂
2
yη dy dt .

Let us explain how to control the last two integrals in the above. By the trace theorem,
smoothness of Aη0 , Bη0 and ϕ as well as interpolation we have

∫

I

∫

ω

n
(
Aη0∇u

) − Bη0π
) ◦ ϕ n ∂t∂

2
yη dy dt

≤
∫

I
‖n(

Aη0∇u
) − Bη0π

) ◦ ϕ n‖W 1/2,2(ω)‖∂t∂2yη‖W−1/2,2(ω) dt

≤ c
∫

I

(‖∇u‖W 1/2,2(∂�) + ‖π‖W 1/2,2(∂�)

)‖∂tη‖W 3/2,2(ω) dt

≤ c
∫

I

(‖∇u‖W 1,2(�η) + ‖π‖W 1,2(�)

)‖∂tη‖1/2
W 1,2(ω)

‖∂tη‖1/2
W 2,2(ω)

dt

≤ κ

∫

I

(‖∇u‖2
W 1,2

x
+ ‖π‖2

W 1,2
x

)
dt + κ

∫

I
‖∂tη‖2

W 2,2
y

dt

+ c(κ)

∫

I
‖∂tη‖2

W 1,2
y

dt .
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In order to control the pressure we write similarly to (2.22)

π = π0 + cπ ,

where (π0)� = 0 and cπ is a function of time only. The latter satisfies

cπ (t)
∫

ω

nBη0 ◦ ϕn dy =
∫

ω

n
(
Aη0∇u − Bη0π0

) ◦ ϕn dy

−
∫

ω

nH ◦ ϕn dy +
∫

ω

∂2t η dy −
∫

ω

g dy

due to Eq. (4.10). Noticing that Bη0 is uniformly elliptic we infer from Poincaré’s
inequality

∫

I
‖π‖2

W 1,2
x

dt �
∫

I
‖∇π‖2L2

x
dt +

∫

I
c2π dt

�
∫

I
‖∇π‖2L2

x
dt +

∫

I

∫

ω

|∂2t η|2 dy dt +
∫

I

∫

ω

|g|2 dy dt

+
∫

I
‖H‖2L2(∂�)

dt +
∫

I
‖π0‖2L2(∂�)

dt +
∫

I
‖∇u‖2L2(∂�)

dt .

By the trace theorem and (π0)� = 0 we obtain

∫

I
‖∇u‖2W 1/2,2(�)

dt �
∫

I ∗
‖∇u‖2

W 1,2
x

dt,
∫

I
‖H‖2W 1/2,2(�)

dt �
∫

I
‖H‖2

W 1,2
x

dt,
∫

I
‖π0‖2L2(∂�)

dt �
∫

I
‖π0‖2W 1,2

x
dt �

∫

I
‖∇π0‖2L2

x
dt =

∫

I
‖∇π‖2L2

x
dt .

Similarly, it holds

−
∫

I

∫

ω

nH ◦ ϕ n ∂t∂
2
yη dy dt ≤

∫

I
‖H‖2

W 1,2
x

dt + κ

∫

I
‖∂tη‖2

W 2,2
y

dt

+ c(κ)

∫

I
‖∂tη‖2

W 1,2
y

dt

We conclude

sup
I

∫

ω

|∂t∂yη|2 dy + sup
I

∫

ω

|∂3yη|2 dy +
∫

I

∫

ω

|∂t∂2yη|2 dy dt

≤ c(κ)

( ∫

ω

|∂yη1|2 dy +
∫

ω

|∂3yη0|2 dy +
∫

I

∫

ω

|g|2 dy dt + E(0)

)

+ c
∫

I
‖H‖2

W 1,2
x

dt + κ

(∫

I
‖∇u‖2

W 1,2
x

dt +
∫

I
‖∇π‖2L2

x
dt

)
,

where κ > 0 is arbitrary. Nowwe consider the fluid equation (4.8)–(4.9) and transform
it by means of �−1

η0
, that is, we set π = π ◦ �−1

η0
and u = u ◦ �−1

η0
. Arguing as in
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1522 D. Breit

the beginning of the proof of Lemma 4.2 and noticing that this transformation is
independent of time we get

∂tu + ∇π − �u = J−1
η0

(
h ◦ �−1

η0
− (divH) ◦ �−1

η0

)
, div u = 0, (4.17)

in I × �η0 together with

u ◦ ϕη0
= ∂tηn on I × ω. (4.18)

Maximal regularity theory for the classical Stokes problem (and smoothness of ϕη0
)

yields

∫

I

∫

�η0

(|∇2u|2 + |∂tu|2 + |∇π |2) dx dt

�
∫

I

∫

�η0

(|h ◦ �−1
η0

|2 + |(divH) ◦ �−1
η0

|2) dx dt

+
∫

I
‖∂tη‖2W 3/2,2(ω)

dt

such that, for κ > 0 arbitrary,

∫

I

∫

�

(|∇2u|2 + |∂tu|2 + |∇π |2) dx dt

≤ c
∫

I

∫

�

(|h|2 + |∇H|2) dx dt + c(κ)

∫

I

∫

ω

|∂t∂yη|2 dy dt

+ κ

∫

I

∫

ω

|∂t∂2yη|2 dy dt

using again interpolation and transforming back to �.

Collecting all the estimate and choosing κ small enough proves the claim for h = 0.
Let us now explain how to remove this restriction. We consider the steady Stokes-type
system

div
(
Bη0 p

) − div
(
Aη0∇v

) = 0, Bη0 : ∇v = h, v|∂� = 0, (4.19)

in � for a given function h : � → R. We denote the solution operator, which maps h
to v, by A−1

η0
and We claim that the estimates

∫

�

|∇A−1
η0

h|2 dx �
∫

�

|h|2 dx,
∫

�

|∇2A−1
η0

h|2 dx �
∫

�

|∇h|2 dx, (4.20)

hold. Indeed, transforming (4.19) by means of �−1
η0

(that is, setting p = p ◦ �−1
η0

and

v = v ◦ �−1
η0

) we obtain the system

∇ p − �v = 0, div v = h ◦ �−1
η0

, v|∂�η0
= 0, (4.21)
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Regularity results in 2D fluid–structure interaction 1523

in �η0 . The estimates

∫

�

|∇v|2 dx �
∫

�

|h ◦ �−1
η0

|2 dx,
∫

�

|∇2v|2 dx �
∫

�

|∇(h ◦ �−1
η0

)|2 dx, (4.22)

are classical and yield (4.20) by transformation (and smoothness of �η0 ). If u sat-
isfies (4.8)–(4.9) for a given function h, then u − A−1

η0
h satisfies the problem with

homogenous constraint (note that (4.10) and (4.11) do not change as A−1
η0

h vanishes
at the boundary) with the additional term Jη0∂tA−1

η0
h on the right-hand side of the

momentum equation. Applying the previously proved estimate for the problem with
homogeneous constraint we obtain the additional term

∫

I

∫

�

(|∂tA−1
η0

h|2 + |∇2A−1
η0

h|2) dx dt �
∫

I

∫

�

|∇h|2 dx dt +
∫

I
‖∂t h‖2W−1,2(�)

dt

sup
I

∫

�

|∇A−1
η0

h|2 �
∫

I

∫

�

(|∂tA−1
η0

h|2 + |∇2A−1
η0

h|2) dx dt

�
∫

I

∫

�

|∇h|2 dx dt +
∫

I
‖∂t h‖2W−1,2(�)

dt

using also (4.20) and h(·, 0) = 0. The proof is now completed. ��

4.3 The fixed point argument

We consider now for (ζ,w, q) given the problem

Jη0∂tu + div
(
Bη0π

) − div
(
Aη0∇u

) = hζ (w) − divHζ (w, q), (4.23)

Bη0 : ∇u = hζ (w), (4.24)

∂2t η − ∂t∂
2
yη + ∂4yη = −n

(
Aη0∇u − Bη0π

) ◦ ϕ n (4.25)

+ nHζ (w, q) ◦ ϕ n,

u ◦ ϕ = ∂tηn on I × ω. (4.26)

We consider the solution map Tη0 which maps (ζ,w, q) to the solution (η,u, π) of
(4.23)–(4.26) (existence of which follows from Lemma 4.3). Setting I ∗ = (0, T ∗) for
some small T ∗ > 0 we must prove that it is a contraction on the space

Y ∗ := W 1,∞(
I∗;W 1,2(ω)

) ∩ W 1,2(I∗;W 2,2(ω)
) ∩ L∞(

I∗;W 3,2(ω)
) ∩ W 2,2(I∗; L2(ω))

× L∞(
I∗;W 1,2(�)

) ∩ W 1,2(I∗; L2(�)
) ∩ L2

(
I∗;W 2,2(�)

) × L2
(
I∗;W 1,2(�)

)

complemented with the norm
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1524 D. Breit

‖(η,u, π)‖2Y ∗ := sup
I ∗

∫

�
|u|2 dx +

∫

I ∗

∫

�
|∇u|2 dx dt + sup

I ∗

∫

�
|∇u|2 dx

+
∫

I ∗

∫

�

(|∇2u|2 + |∂tu|2 + |π |2 + |∇π |2) dx dt

+ sup
I ∗

∫

ω

(|∂tη|2 + |∂2yη|2) dy +
∫

I ∗

∫

ω
|∂t∂yη|2 dy dt

+ sup
I ∗

∫

ω

(|∂t∂yη|2 + |∂3yη|2) dy +
∫

I ∗

∫

ω

(|∂t∂2yη|2 + |∂2t η|2) dy dt

given by the energy estimate from Lemma 4.3. This is the content of the following
lemma in which we denote by BY ∗

R (0) the ball inY ∗ with radius R around the origin.

Lemma 4.4 Suppose that (f, g, η0,u0, η1) satisfies (2.21)and (2.25).There are R � 1
and T ∗ � 1 such that

Tη0 : BY ∗
R (0) ∩ {η(0) = η0} → BY ∗

R (0) ∩ {η(0) = η0}

is a contraction.

Proof First of all, we choose R sufficiently large compared to the dataset
(f, g, η0,u0, η1). We intend to control the Lipschitz constants of the mappings

Y ∗ � (ζ,w, q) �→ hζ (w) ∈ L2(I ∗; L2(�)),

Y ∗ � (ζ,w, q) �→ Hζ (w, q) ∈ L2(I ∗;W 1,2(�)),

Y ∗ � (ζ,w, q) �→ hζ (w) ∈ L2(I ∗;W 1,2(�)) ∩ W 1,2(I ∗,W−1,2(�)). (4.27)

Since all of them map (η0, 0, 0) to the origin, this will also imply that

Tη0 : BY ∗
R (0) ∩ {η(0) = η0} → BY ∗

R (0).

As far as H is concerned, we have6

∫

I ∗
‖Hζ1(w1, q1) − Hζ2(w2, q2)‖2W 1,2

x
dt

�
∫

I ∗
‖(Aη0 − Aζ1)(∇w1 − ∇w2)‖2W 1,2

x
dt +

∫

I ∗
‖(Aζ1 − Aζ2)∇w2‖2W 1,2

x
dt

+
∫

I ∗
‖(Bζ1 − Bη0)(q1 − q2)‖2W 1,2

x
dt +

∫

I ∗
‖(Bζ1 − Bζ2)q2‖2W 1,2

x
dt,

where, by the embeddings W 1,2(I ∗; L∞(ω)) ↪→ L∞(I ∗; L∞(ω)) and W 1,2(ω) ↪→
L∞(ω) as well as (2.11)–(2.13),

∫

I ∗
‖(Aη0 − Aζ1)(∇w1 − ∇w2)‖2W 1,2

x
dt +

∫

I ∗
‖(Aζ1 − Aζ2)∇w2‖2W 1,2

x
dt

6 Here and in the remainder of this proof the hidden constants depend on R but are independent of T ∗.
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� T ∗ sup
I ∗

‖∂2yζ1 − ∂2yη0‖2L∞
y
sup
I ∗

‖∇w1 − ∇w2‖2L2
x

+ sup
I ∗

‖∂yζ1 − ∂yη0‖2L∞
y

∫

I ∗
‖∇2w1 − ∇2w2‖2L2

x
dt

+ T ∗ sup
I ∗

‖∂2yζ1 − ∂2yζ2‖2L∞
y
sup
I ∗

‖∇w2‖2L2
x

+ sup
I ∗

‖∂yζ1 − ∂yζ2‖2L∞
y

∫

I ∗
‖∇2w2‖2L2

x
dt

� T ∗ sup
I ∗

‖∇w1 − ∇w2‖2L2
x
+ T ∗

∫

I ∗
‖∇2w1 − ∇2w2‖2L2

x
dt

+ T ∗ sup
I ∗

‖∂3yζ1 − ∂3yζ2‖2L2
y
+ T ∗

∫

I ∗
‖∂t∂2yζ1 − ∂t∂

2
yζ2‖2L2

y
dt

� T ∗‖(ζ1,w1, q1) − (ζ2,w2, q2)‖2Y ∗

as well as

∫

I ∗
‖(Bζ1 − Bη0)(q1 − q2)‖2W 1,2

x
dt +

∫

I ∗
‖(Bζ1 − Bζ2)q2‖2W 1,2

x
dt

� sup
I ∗

‖∂2yζ1 − ∂2yη0‖2L4
y

∫

I ∗
‖q1 − q2‖2L4

x
dt

+ sup
I ∗

‖∂yζ1 − ∂yη0‖2L∞
y

∫

I ∗
‖∇q1 − ∇q2‖2L2

x
dt

+ sup
I ∗

‖∂2yζ1 − ∂2yζ2‖2L4
y

∫

I ∗
‖q2‖2L4

x
dt

+ sup
I ∗

‖∂yζ1 − ∂yζ2‖2L∞
y

∫

I ∗
‖∇q2‖2L2

x
dt

� sup
I ∗

‖ζ1 − η0‖2
W 5/2,2

y
‖q1 − q2‖2W 1,2

x
dt

+ sup
I ∗

‖∂2yζ1 − ∂2yη0‖2L2
y

∫

I ∗
‖∇q1 − ∇q2‖2L2

x
dt

+ sup
I ∗

‖ζ1 − ζ2‖2
W 5/2,2

y

∫

I ∗
‖q2‖2W 1,2

x
dt

+ sup
I ∗

‖∂2yζ1 − ∂2yζ2‖2L2
y

∫

I ∗
‖∇q2‖2L2

x
dt

�
√
T ∗

∫

I ∗
‖q1 − q2‖2W 1,2

x
dt + T ∗

∫

I ∗
‖∇q1 − ∇q2‖2L2

x
dt

+ √
T ∗

(
sup
I ∗

‖∂3yζ1 − ∂3yζ2‖2L2
y
+

∫

I ∗
‖∂t∂2yζ1 − ∂t∂

2
yζ2‖2L2

y
dt

)

+ T ∗
∫

I ∗
‖∂t∂2yζ1 − ∂t∂

2
yζ2‖2L2

y
dt

�
√
T ∗‖(ζ1,w1, q1) − (ζ2,w2, q2)‖2Y ∗ .
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Note that we also used the embedding

W 1,2(I ∗;W 2,2) ∩ L∞(I ∗;W 3,2(�)) ↪→ C1/4(I ∗;W 5/2,2(ω))

↪→ C1/4(I ∗;W 2,4(ω)).

Similarly, it holds

∫

I ∗
‖hζ1(w1) − hζ2(w2)‖2W 1,2

x
dt

�
∫

I ∗
‖(Bζ0 − Bζ1) : (∇w1 − ∇w2)‖2W 1,2

x
dt

+
∫

I ∗
‖(Bζ1 − Bζ2) : ∇w2‖2W 1,2

x
dt

� T ∗ sup
I ∗

‖∇w1 − ∇w2‖2L2
x
+ T ∗

∫

I ∗
‖∇2w1 − ∇2w2‖2L2

x
dt

+ T ∗ sup
I ∗

‖∂3yζ1 − ∂3yζ2‖2L2
y
+ T ∗

∫

I ∗
‖∂t∂2yζ1 − ∂t∂

2
yζ2‖2L2

y
dt

� T ∗‖(ζ1,w1, q1) − (ζ2,w2, q2)‖2Y ∗ .

As far as the W 1,2
t W−1,2

x -norm is concerned, we use the embeddings

L2(I ∗;W 3,2(ω)) ∩ W 2,2(I ∗; L2(ω)) ↪→ W 1,2(I ∗;W 1,4(ω)),

W 1,2(I ∗;W 2,2(ω)) ∩ L∞(I ∗;W 3,2(ω)) ↪→ C1/8(I ∗;W 11/4,2(ω)),

and obtain
∫

I ∗
‖∂t (hζ1(w1) − hζ2(w2))‖2W−1,2

x
dt

�
∫

I ∗
‖∂tBζ1 : (∇w1 − ∇w2)‖2W−1,2

x
dt

+
∫

I ∗
‖∂t (Bζ1 − Bζ2) : ∇w2‖2W−1,2

x
dt

+
∫

I ∗
‖(Bη0 − Bζ1) : ∂t (∇w1 − ∇w2)‖2W−1,2

x
dt

+
∫

I ∗
‖(Bζ1 − Bζ2) : ∇∂tw2‖2W−1,2

x
dt

� sup
I ∗

‖∇w1 − ∇w2‖2L2
x

∫

I ∗
(1 + ‖∂t∂yζ1‖2L4

y
) dt

+ sup
I ∗

‖∇w2‖2L2
x

∫

I ∗
‖∂t∂y(ζ1 − ζ2)‖2L4

y
dt

+ sup
I ∗

‖∂2y (ζ0 − ζ1)‖L∞
y

∫

I ∗
‖∂t (w1 − w2)‖2L2

x
dt
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+ sup
I ∗

‖∂2y (ζ1 − ζ2)‖L∞
y

∫

I ∗
‖∂tw2‖2L2

x
dt

�
√
T ∗ sup

I ∗
‖∂3y (ζ1 − ζ2)‖L2

y

(∫

I ∗
‖∂t∂2y (ζ1 − ζ2)‖2L2

y
dt

) 1
2

+ √
T ∗ sup

I ∗
‖∇w1 − ∇w2‖2L2

x
+ 4

√
T ∗ sup

I ∗
‖∂t (w1 − w2)‖2L2 dt

+ 4
√
T ∗

(
sup
I ∗

‖∂3yζ1 − ∂3yζ2‖2L2
y
+

∫

I ∗
‖∂t∂2yζ1 − ∂t∂

2
yζ2‖2L2

y
dt

)

� 4
√
T ∗‖(ζ1,w1, q1) − (ζ2,w2, q2)‖2Y ∗ .

Moreover, we gain using again (2.12) and (2.13)

∫

I ∗
‖hζ1(w1, q1) − hζ2(w2, q2)‖2L2

x
dt

�
∫

I ∗
‖(Jζ1 − Jη0)(∂tw1 − ∂tw2)‖2L2

x
dt +

∫

I ∗
‖(Jζ2 − Jζ1)∂tw2‖2L2

x
dt

+
∫

I ∗
‖Jζ1∇�−1

ζ1
◦ �ζ1(∇w1 − ∇w2)∂t�

−1
ζ1

◦ �ζ1‖2L2
x
dt

+
∫

I ∗
‖(Jζ1∇�−1

ζ1
◦ �ζ1 − Jζ2∇�−1

ζ2
◦ �ζ2

)∇w2∂t�
−1
ζ1

◦ �ζ1‖2L2
x
dt

+
∫

I ∗
‖Jζ2∇�−1

ζ2
◦ �ζ2∇w2

(
∂t�

−1
ζ1

◦ �ζ1 − ∂t�
−1
ζ2

◦ �ζ2

)‖2L2
x
dt

+
∫

I ∗
‖Jζ1∇�−1

ζ1
◦ �ζ1(∇w1w1 − ∇w2w2)‖2L2

x
dt

+
∫

I ∗
‖(Jζ1∇�−1

ζ1
◦ �ζ1 − Jζ2∇�−1

ζ2
◦ �ζ2)∇w2w2‖2L2

x
dt

+
∫

I ∗
‖Jζ1(f ◦ �ζ1 − f ◦ �ζ2)‖2L2

x
dt +

∫

I ∗
‖(Jζ1 − Jζ2)f ◦ �ζ2‖2L2

x
dt

� sup
I ∗

‖∂yζ1 − ∂yη0‖2L∞
y

∫

I ∗
‖∂tw1 − ∂tw2‖2L2

x
dt

+ sup
I ∗

‖∂yζ2 − ∂yζ1‖2L∞
y

∫

I ∗
‖∂tw2‖2L2

x
dt

+ T ∗ sup
I ∗

(
1 + ‖∂yζ1‖2L∞

y

)
sup
I ∗

(
1 + ‖∂tζ1‖2L∞

y

)
sup
I ∗

‖∇w1 − ∇w2‖2L2
x

+ T ∗ sup
I ∗

‖∂yζ1 − ∂yζ2‖2L∞
y
sup
I ∗

(
1 + ‖∂tζ1‖2L∞

y

)
sup
I ∗

‖∇w2‖2L2
x

+ T ∗ sup
I ∗

(
1 + ‖∂yζ2‖2L∞

y

)
sup
I ∗

‖∂tζ1 − ∂tζ2‖2L∞
y
sup
I ∗

‖∇w2‖2L2
x

+ sup
I ∗

(
1 + ‖∂yζ1‖2L∞

y

)
sup
I ∗

‖w1 − w2‖2L4
x

∫

I ∗
‖∇w1‖2L4

x
dt

+ sup
I ∗

(
1 + ‖∂yζ1‖2L∞

y

)
sup
I ∗

‖w1‖2L4
x

∫

I ∗
‖∇w1 − ∇w2‖2L4

x
dt
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+ sup
I ∗

‖∂yζ1 − ∂yζ2‖2L∞
y
sup
I ∗

‖w2‖2L4
x

∫

I ∗
‖∇w2‖2L4

x
dt

+ T ∗ sup
I ∗

‖∇f‖2L2
x
sup
I ∗

‖ζ1 − ζ2‖2L∞
y

.

Finally, using the parabolic embeddings

L∞(I ∗, L2(�)) ∩ L2(I ∗;W 1,2(�)) ↪→ L4(I ∗; L4(�)),

W 1,2(I ∗; L∞(ω)) ↪→ L∞(I ∗; L∞(ω)),

we obtain

∫

I ∗
‖hζ1(w1, q1) − hζ2(w2, q2)‖2L2

x
dt

� T ∗‖∂tw1 − ∂tw2‖2L2
x
dt + T ∗

∫

I ∗
‖∂t (∂2yζ2 − ∂2yζ1)‖2L2

y
dt

+ T ∗ sup
I ∗

‖∇w1 − ∇w2‖2L2
x
+ T ∗ sup

I ∗
‖∂2yζ1 − ∂2yζ2‖2L∞

y

+ T ∗ sup
I ∗

‖∂tζ1 − ∂tζ2‖2L∞
y

+ √
T ∗ sup

I ∗
‖w1 − w2‖2W 1,2

x

+ √
T ∗

( ∫

I ∗
‖∇2w1 − ∇2w2‖2L2

x
dt + sup

I ∗
‖∇w1 − ∇w2‖2L2

x

)

+ T ∗ sup
I ∗

‖ζ1 − ζ2‖2L∞
y

�
√
T ∗‖(ζ1,w1, q1) − (ζ1,w2, q2)‖2Y ∗ .

In conclusion, the Lipschitz constants of themappings in (4.27) can bemade arbitrarily
small if we choose T ∗ appropriately. Combining this observation with the estimate
from Lemma 4.3 gives the claim. ��
Proof of Proposition 4.1 Combining Lemmas 4.2–4.4 yields the claim by a standard
fixed point argument. ��

5 Regularity estimates

This section is devoted to the proof of Theorem 2.5 for the fluid–structure-interaction
problem (1.1)–(1.2). With the local strong solution from Proposition 4.1 at hand we
have a sufficiently smooth object such that the following computations are well-
defined. The heart of our analysis is an acceleration estimate in Proposition 5.1. It
implies that there is no blow-up in finite time such that the global solution can be
constructed by gluing local solutions together.

Let us start with the standard energy estimate (which is even satisfied by weak
solutions). Let (η,u, π) be the unique local strong solution from Proposition 4.1. We
choose (u, ∂tη) as a test-function in the weak formulation, cf. Definition 2.3(c). This
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yields

E(t) +
∫ t

0

∫

�η

|∇u|2 dx dσ +
∫ t

0

∫

ω

|∂t∂yη|2 dy dσ

≤ E(0) +
∫ t

0

∫

�η

u · f dx dσ +
∫ t

0

∫

ω

g ∂tη dy dσ,

E(t) = 1

2

∫

�η(t)

|u(t)|2 dx + 1

2

∫

ω

|∂tη(t)|2 dy + 1

2

∫

ω

|∂2yη(t)|2 dy (5.1)

and hence

sup
I ∗

E(t) +
∫

I ∗

∫

�η

|∇u|2 dx dt +
∫

I ∗

∫

ω

|∂t∂yη|2 dy dt

� E(0) +
∫

I ∗

∫

�η

|f |2 dx dt +
∫

I ∗

∫

ω

|g|2 dy dt =: C0

for all t ∈ I ∗ = (0, T ∗). This implies

sup
I ∗

‖u‖2L2
x
+

∫

I ∗
‖∇u‖2L2

x
dt � C0, (5.2)

sup
I ∗

‖∂tη‖2L2
y
+ sup

I ∗
‖∂2yη‖2L2

y
+

∫

I ∗
‖∂t∂yη‖2L2

y
dt � C0. (5.3)

5.1 The acceleration estimate

The acceleration estimate is the heart of our analysis. It heavily relies on the elliptic
estimate for the Stokes system in irregular domains given in Theorem 3.2. A further
difference to [10] is that we cannot work with a solenoidal extension operator (as
explained in Sect. 1.3). Hence we must estimate the pressure function.

Proposition 5.1 Suppose that the assumptions of Theorem 2.5 hold and let (η,u, π)

be the unique local strong solution from Proposition 4.1. Then we have the estimate

sup
I ∗

∫

�η

|∇u|2 dx +
∫

I ∗

∫

�η

(|∇2u|2 + |∂tu|2 + |∇π |2) dx dt

+ sup
I ∗

∫

ω

(|∂t∂yη|2 + |∂3yη|2) dy +
∫

I ∗

∫

ω

(|∂t∂2yη|2 + |∂2t η|2) dy dt (5.4)

�
∫

�η0

|∇u0|2 dx +
∫

ω

(|∂3yη0|2 + |∂yη1|2
)
dy +

∫

I ∗

∫

ω

|∂yg|2 dy dt + 1,

where the hidden constant depends on C0.
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1530 D. Breit

Proof We aim at testing the structure equation with ∂2t η and seek for an appropriate
test-function for the momentum equation. Due to the condition u(t, x + ηn) = ∂tηn
at the boundary we have

D

Dt
u = ∂tu(t, x + ηn) + u(t, x + ηn) · ∇u(t, x + ηn)

= ∂tu(t, x + ηn) + ∂tηn · ∇u(t, x + ηn)

such that the material derivative of the velocity field is the corresponding test-function
for the momentum equation. We use

φ = ∂tu + Fη(∂tηn) · ∇u

andφ = ∂2t η as test-function.HereFη is the extension operator introduced inSect. 2.5.
Note that we have

‖Fη(∂tηn)‖L2
x

� ‖∂tη‖L2
y
, ‖Fη(∂tηn)‖W 1,2

x
� ‖∂tη‖W 1,2

y
, (5.5)

as a consequence of Lemma 2.2. From the momentum equation in the strong form
(2.23) we obtain

∫

I ∗

∫

�η

(
∂tu + u · ∇u

) · (
∂tu + Fη(∂tηn) · ∇u

)
dx dt

=
∫

I ∗

∫

�η

div τ · (∂tu + Fη(∂tηn) · ∇u
)
dx dt

+
∫

I ∗

∫

�η

f · (
∂tu + Fη(∂tηn) · ∇u)

)
dx dt,

where τ = ∇u + ∇u� − πI2×2 is the Cauchy stress. On the other hand, from the
structure equation (2.24) multiplied by ∂2t η, and the formal computation

∫ t

0

∫

ω

∂2yη ∂2t ∂2yη dy dσ = −
∫ t

0

∫

ω

∂t (∂
3
yη ∂t∂yη) dy dσ +

∫ t

0

∫

ω

|∂t∂2yη|2 dy dσ

≤ 1
2 sup

I ∗

∫

ω

|∂t∂yη|2 dy + 2 sup
I ∗

∫

ω

|∂3yη|2 dy

+
∫

I ∗

∫

ω

|∂t∂2yη|2 dy dσ

we obtain
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∫

I ∗

∫

ω
|∂2t η|2 dy dt + sup

I ∗

∫

ω
|∂t∂yη|2 dy dt

�
∫

ω
|∂yη1|2 dy + sup

I ∗

∫

ω
|∂3yη|2 dy

+
∫

I ∗

∫

ω
|∂t∂2yη|2 dy +

∫

I ∗

∫

ω
(g + F) ∂2t η dy dt

withF = −nτ◦ϕη∂yϕ
⊥
η .Combining both, usingReynold’s transport theorem (applied

to
∫
�η(t)

|∇u(t)|2 dx) and Young’s inequality and writing

Fη(∂tηn) · ∇u = u · ∇u + Fη(∂tηn) · ∇u − u · ∇u

gives

sup
I ∗

∫

�η

|∇u|2 dx +
∫

I ∗

∫

�η

|∂tu + u · ∇u|2 dx dt

+
∫

I ∗

∫

ω

|∂2t η|2 dy dt + sup
I ∗

∫

ω

|∂t∂yη|2 dy dt

�
∫

I ∗

∫

�η

|u · ∇u|2 dx dt +
∫

I ∗

∫

∂�η

(∂tηn) ◦ ϕ−1
η · nη ◦ ϕ−1

η |∇u|2dH1 dt

−
∫

I ∗

∫

�η

(
∂tu + u · ∇u

) · (
Fη(∂tηn) · ∇u

)
dx

−
∫

I ∗

∫

�η

∇u : (
Fη(∂tηn)�∇2u + ∇Fη(∂tηn)∇u�)

dx dt

+
∫

I ∗

∫

�η

π div
(
Fη(∂tηn)∇u

)
dx dt +

∫

I ∗

∫

�η

|f |2 dx dt +
∫

�η0

|∇u0|2 dx

+
∫

ω

|∂yη1|2 dy + sup
I ∗

∫

ω

|∂3yη|2 dy +
∫

I ∗

∫

ω

|∂t∂2yη|2 dy dt +
∫

I ∗

∫

ω

|g|2 dy dt
=: I + · · · + XI. (5.6)

In order to control the first term we make use of Theorem 3.2. Due to (5.3) its
application can be justified by Remark 3.4. We estimate for κ > 0 arbitrary by
Ladyshenskaya’s inequality (recalling that ∂�η is Lipschitz uniformly in time by
(5.3)) and (5.2)
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I ≤
∫

I ∗
‖u‖2L4

x
‖∇u‖2L4

x
dt ≤ c

∫

I ∗
‖u‖L2

x
‖u‖2

W 1,2
x

‖∇u‖W 1,2
x

dt

≤ c
∫

I ∗
‖u‖2

W 1,2
x

(‖∂tu + u · ∇u‖L2
x
+ ‖f‖L2

x
+ ‖∂tη‖

W 3/2,2
y

)
dt

≤ κ

∫

I ∗

(‖∂tu + u · ∇u‖2L2
x
+ ‖f‖2L2

x
+ ‖∂tη‖2

W 3/2,2
y

)
dt

+ c(κ)

(∫

I ∗
‖∇u‖4L2

x
dt + 1

)
,

(5.7)

where the first part of the κ-term can be absorbed in the left-hand side of (5.6). Note
that we also used the estimate

‖∂tηn ◦ ϕ−1
η ‖

W 3/2,2
y

� ‖∂tη‖
W 3/2,2

y
, (5.8)

which is a consequence of (5.3) and the definition ϕη = ϕ + ηn. In fact, ϕ−1
η is

uniformly bounded in time in the space of Sobolev multipliers onW 3/2,2(ω) by (2.3),
(2.4) and (3.7) (together with the assumption ∂yϕη �= 0) such that the transformation
rule (2.5) applies. Similarly to (5.7) we obtain

III ≤ κ

∫

I ∗
‖∂tu + ∇u · ∇u‖2L2

x
dt + c(κ)

∫

I ∗
‖∇u‖2L4

x
‖Fη(∂tηn)‖2L4

x
dt

≤ κ

∫

I ∗
‖∂tu + ∇u · ∇u‖2L2

x
dt

+ c(κ)

∫

I ∗
‖∇u‖L2

x
‖∇u‖W 1,2

x
‖Fη(∂tηn)‖L2

x
‖Fη(∂tηn)‖W 1,2

x
dt .

Due to (5.3), (5.5) and Theorem3.2 (which applies by (5.3), cf. Remark 3.4) the second
term can be estimated by

∫

I ∗
‖∇u‖L2

x
‖∇u‖W 1,2

x
‖Fη(∂tηn)‖W 1,2

x
dt

≤ c(κ ′)
( ∫

I ∗
‖∇u‖4L2

x
dt +

∫

I ∗
‖Fη(∂tηn)‖4

W 1,2
x

dt

)
+ κ ′

∫

I ∗
‖∇u‖2

W 1,2
x

dt

≤ c(κ ′)
( ∫

I ∗
‖∇u‖4L2

x
dt +

∫

I ∗
‖∂tη‖4

W 1,2
y

dt

)

+ κ ′
∫

I ∗

(‖∂tu + u · ∇u‖2L2
x
+ ‖f‖2L2

x
+ ‖∂tη‖2

W 3/2,2
y

)
dt,

where κ ′ > 0 is arbitrary (recall also (5.8)). Furthermore, we have by the trace theorem
(recall that the boundary of �η is Lipschitz continuous uniformly in time by (5.3)),

123



Regularity results in 2D fluid–structure interaction 1533

Sobolev’s embedding and interpolation7

II ≤
∫

I ∗
‖∂tη ◦ ϕ−1

η ‖L∞(∂�η)‖∇u‖2L2(∂�η)
dy

≤ c
∫

I ∗
‖∂tη‖1/2

L2(ω)
‖∂tη‖1/2

W 1,2(ω)
‖∇u‖2W 3/4,2(�η)

dy

≤ c
∫

I ∗
‖∂tη‖1/2

W 1,2
y

‖u‖1/2
W 1,2

x
‖u‖3/2

W 2,2
x

dy

≤ c
∫

I ∗
‖∂tη‖1/2

W 1,2
y

‖u‖1/2
W 1,2

x

(‖∂tu + u · ∇u‖L2
x
+ ‖f‖L2

x
+ ‖∂tη‖

W 3/2,2
y

)3/2 dy

≤ κ

∫

I ∗

(‖∂tu + u · ∇u‖2L2
x
+ ‖f‖2L2

x
+ ‖∂tη‖2

W 3/2,2
y

)
dt

+ c(κ)

(∫

I ∗
‖∇u‖4L2

x
dt +

∫

I ∗
‖∂tη‖4

W 1,2
y

dt

)
.

Note that we used again Theorem 3.2 and (5.8). Similarly, it holds

IV ≤ κ

∫

I ∗

(‖∂tu + u · ∇u‖2L2
x
+ ‖f‖2L2

x
+ ‖∂tη‖2

W 3/2,2
y

)
dt

+ c(κ)

( ∫

I ∗
‖∇u‖4L2

x
dt +

∫

I ∗
‖∂tη‖4

W 1,2
y

dt + 1

)
.

For V we write

V = −
∫

I ∗

∫

�η

∇π · Fη(∂tηn)∇u dx dt

+
∫

I ∗

∫

∂�η

π Fη(∂tηn)∇u nη ◦ ϕ−1
η dH1 dt,

where∫

I ∗

∫

�η

∇π · Fη(∂tηn)∇u dx dt

≤
∫

I ∗
‖∇π‖L2

x
‖Fη(∂tηn)‖L4

x
‖∇u‖L4

x
dt

≤ c
∫

I ∗
‖∇π‖L2

x
‖Fη(∂tηn)‖

W 1/2,2
x

‖∇u‖
1
2
L2
x
‖∇u‖

1
2

W 1,2
x

dt

≤ c
∫

I ∗
‖∇π‖L2

x
‖Fη(∂tηn)‖1/2

L2
x
‖Fη(∂tηn)‖1/2

W 1,2
x

‖∇u‖
1
2
L2
x
‖∇u‖

1
2

W 1,2
x

dt

≤ κ

∫

I ∗
‖∇π‖2L2

x
dt + κ

∫

I ∗
‖∇u‖2

W 1,2
x

dt

+ c(κ)

∫

I ∗
‖∇u‖4L2

x
dt + c(κ)

∫

I ∗
‖∂tη‖4

W 1,2
y

dt

7 Analogously to (5.8) one can show ‖∂tηn ◦ ϕ−1
η ‖

W1,2
y

� ‖∂tη‖
W1,2

y
.
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by (5.5) and (5.3). Note that we used again interpolation, the trace theorem as well as
Sobolev’s embedding W 1/2,2(�η) ↪→ L4(�η) (recall again that the boundary ∂�η is
uniformly Lipschitz by (5.3)). As far as the second term in IV is concerned we estimate

∫

I ∗

∫

∂�η

π Fη(∂tηn)∇u nη ◦ ϕ−1
η dH1 dt

≤
∫

I ∗
‖π‖L4(∂�η)‖Fη(∂tηn)‖L2(∂�η)‖∇u‖L4(∂�η) dt

≤ c
∫

I ∗
‖π‖W 1/4,2(∂�η)‖∇u‖W 1/4,2(∂�η) dt

≤ c
∫

I ∗
‖π‖W 3/4,2(�η)‖∇u‖W 3/4,2(�η) dt

≤ c
∫

I ∗
‖π‖W 1,2(�η)‖∇u‖3/4

W 1,2(�η)
‖∇u‖1/4

L2(�η)
dt

≤ κ

∫

I ∗
‖π‖2

W 1,2
x

dt + κ

∫

I ∗
‖∇u‖2

W 1,2
x

dt + c(κ)

∫

I ∗
‖∇u‖2L2

x
dt

using Sobolev’s embedding W 1/4,2(∂�η) ↪→ L4(∂�η), (5.5) and (5.3) and the trace
embedding W 3/4,2(�η) ↪→ W 1/4,2(∂�η). Different to first term in V above we must
estimate here also the L2-norm of the pressure, for which we use (2.22) (noticing that∫
ω
n ·nη|∂yϕη| dy is strictly positive by our assumption of non-degeneracy). We have

∫

I ∗
‖π‖2

W 1,2
x

dt �
∫

I ∗
‖∇π‖2L2

x
dt +

∫

I ∗
c2π dt

�
∫

I ∗
‖∇π‖2L2

x
dt +

∫

I ∗

∫

ω

|∂2t η|2 dy dt +
∫

I ∗

∫

ω

|g|2 dy dt

+
∫

I ∗
‖π0‖2L2(∂�η)

dt +
∫

I ∗
‖∇u‖2L2(∂�η)

dt,

where the last term can be estimated by

∫

I ∗
‖∇u‖2W 1/2,2(�η)

dt �
∫

I ∗
‖∇u‖W 1,2(�η)‖∇u‖L2(�η) dt

�
∫

I ∗
‖∇u‖2

W 1,2
x

dt +
∫

I ∗
‖∇u‖2L2

x
dt .

Similarly, we infer from Poincaré’s inequality

∫

I ∗
‖π0‖2L2(∂�η)

dt �
∫

I ∗
‖∇π0‖2L2

x
dt +

∫

I ∗
‖π0‖2L2

x
dt

�
∫

I ∗
‖∇π0‖2L2

x
dt =

∫

I ∗
‖∇π‖2L2

x
dt

using that (π0)�η = 0 by definition. As for the estimates for I − III the κ terms in
the above can now be controlled by means of Theorem 3.2. Combining everything,
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choosing κ small enough and using (5.3) once more we conclude that

sup
I ∗

∫

�η

|∇u|2 dx +
∫

I ∗

∫

�η

|∂tu + u · ∇u|2 +
∫

I ∗

∫

ω

|∂2t η|2 dx dt

�
∫

I ∗
‖∇u‖4L2

x
dt +

∫

I ∗
‖∂t∂yη‖4L2

y
dt +

∫

I ∗
‖f‖2L2

x
dt + ‖∇u0‖2L2

x

+ sup
I ∗

‖∂3yη‖2L2
y
dt +

∫

I ∗
‖∂t∂2yη‖2L2

y
dt + ‖∂yη1‖2L2

y
+ 1. (5.9)

Testing the structure equation by ∂t∂
2
yη yields

1

2
sup
I ∗

∫

ω

|∂t∂yη|2 dy dt +
∫

I ∗

∫

ω

|∂t∂2yη|2 dy + 1

2
sup
I ∗

∫

ω

|∂3yη|2 dy

= 1

2

∫

ω

|∂yη1|2 dy + 1

2

∫

ω

|∂3yη0|2 dy +
∫

I ∗

∫

ω

(g + F) ∂t∂
2
yη dy dt,

where (arguing as in (5.8) to control F by τ and arguing as for I− III and V to estimate
τ )

∫

I ∗

∫

ω
F · ∂t∂

2
yη dy dt ≤

∫

I ∗
‖F‖

W 1/2,2
y (ω)

‖∂t∂2yη‖W−1/2,2(ω) dt

≤ c
∫

I ∗
‖τ‖W 1/2,2(∂�η)‖∂tη‖W 3/2,2(ω) dt

≤ c
∫

I ∗
(‖∂tu + u · ∇u‖L2

x
+ ‖f‖L2

x
+ ‖∂tη‖

W 3/2,2
y

+ ‖∂2t η‖L2
y
+ ‖g‖L2

y

)‖∂tη‖
W 3/2,2

y
dt

≤ κ

∫

I ∗
(‖∂tu + u · ∇u‖2L2

x
+ ‖f‖2L2

x
+ ‖∂2t η‖2L2

y
+ ‖g‖2L2

y

)
dt + c(κ)

∫

I ∗
‖∂tη‖2

W 3/2,2
y

dt

≤ κ

∫

I ∗
(‖∂tu + u · ∇u‖2L2

x
+ ‖∂2t η‖2L2

y
+ ‖∂tη‖2

W 2,2
y

+ ‖f‖2L2
x

)
dt

+ c(κ)

∫

I ∗
‖∂tη‖2

W 1,2
y

dt + c(κ)

∫

I ∗
‖g‖2L2

y
dt

using interpolation in the last step. Hence we have

sup
I ∗

∫

ω

|∂t∂yη|2 dx dt +
∫

I ∗

∫

ω

|∂t∂2yη|2 dy + sup
I ∗

∫

ω

|∂3yη|2 dy

≤ κ

∫

I ∗

(‖∂tu + u · ∇u‖2L2 + ‖∂t∂2yη‖2L2
y
+ ‖∂2t η‖2L2

y

)
dt + c(κ)C̃0 (5.10)

by (5.3). Here we denoted

C̃0 = C0 +
∫

ω

|∂yη1|2 dy +
∫

ω

|∂3yη0|2 dy.
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Combining (5.9) and (5.10) implies

sup
I ∗

∫

�η

|∇u|2 dx +
∫

I ∗

∫

�η

|∂tu + u · ∇u|2 +
∫

I ∗

∫

ω

|∂2t η|2 dy dt

+ sup
I ∗

∫

ω

|∂t∂yη|2 dx dt +
∫

I ∗

∫

ω

|∂t∂2yη|2 dx + sup
I ∗

∫

ω

|∂3yη|2 dy

≤ c

( ∫

I ∗

(‖∇u‖2L2
x
+ ‖∂t∂yη‖2L2

y

)2 dt + 1

)
.

ByGronwall’s lemma, using that
∫
I ∗

(‖∇u‖2
L2
x
+‖∂t∂yη‖2

L2
y

)
dt ≤ c by (5.2) and (5.3)

we obtain

sup
I ∗

∫

�η

|∇u|2 dx +
∫

I ∗

∫

�η

|∂tu + u · ∇u|2 dx +
∫

I ∗

∫

ω

|∂2t η|2 dy dt ≤ c,

sup
I ∗

∫

ω

|∂t∂yη|2 dy dt +
∫

I ∗

∫

ω

|∂t∂2yη|2 dy + sup
I ∗

∫

ω

|∂3yη|2 dy ≤ c. (5.11)

We can now use the momentum equation and Theorem 3.2 again to obtain (recall
(5.8))

∫

I ∗

∫

�η

|∇2u|2 dx dt +
∫

I ∗

∫

�η

|∇π |2 dx dt

≤ c
∫

I ∗

∫

�η

|∂tu + u · ∇u|2 dx dt +
∫

I ∗
‖f‖2L2

x
dt

+
∫

I ∗
‖∂tη‖2

W 3/2,2
y

dt ≤ c, (5.12)

which completes the proof. ��
Proof of Theorem 2.5 By Propositions 5.1 and 4.1 we can obtain a strong solution in
the interval (T ∗, 2T ∗) with initial data u(T ∗), η(T ∗), ∂tη(T ∗) with a corresponding
regularity estimate. This procedure can now be repeated until the moving boundary
approaches a self-intersection or degenerates (that is ∂yϕη(T , y) = 0 for some y ∈ ω).
In the latter case Theorem 3.2 is not applicable anymore, cf. Remark 3.4. ��
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