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Abstract

We study the interaction of an incompressible fluid in two dimensions with an elastic
structure yielding the moving boundary of the physical domain. The displacement of
the structure is described by a linear viscoelastic beam equation. Our main result is
the existence of a unique global strong solution. Previously, only the ideal case of
a flat reference geometry was considered such that the structure can only move in
vertical direction. We allow for a general geometric set-up, where the structure can
even occupy the complete boundary. Our main tool—being of independent interest—
is a maximal regularity estimate for the steady Stokes system in domains with minimal
boundary regularity. In particular, we can control the velocity field in W2 in terms
of a forcing in L? provided the boundary belongs roughly to W3/22_ This is applied
to the momentum equation in the moving domain (for a fixed time) with the material
derivative as right-hand side. Since the moving boundary belongs a priori only to the
class W22, known results do not apply here as they require a C>-boundary.

Mathematics Subject Classification 35B65 - 35Q30 - 74F10 - 74K25 - 76D03

1 Introduction
1.1 The fluid-structure interaction problem

The interactions of fluids with elastic structures are important for many applications
ranging from hydro- and aero-elasticity over bio-mechanics to hydrodynamics. We are
interested in the case, where a viscous incompressible fluid interacts with a flexible
shell which is located at one part of the boundary (or even describes the complete
boundary) of the underlying domain  C R? denoted by w. The shell, described by
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Fig.2 Domain transformation in the general set-up

a function n : (0, T) x w — R, reacts to the surface forces induced by the fluid and

deforms the domain 2 to €2;,(;), where the function @iy describes the coordinate

transform (see Figs. 1and 2below) and n;, is the normal at the deformed boundary.
The motion of the fluid is governed by the Navier—Stokes equations

or(du+ (u-Viu) = pAu—Vr +f, divu=0, (1.1

in the moving domain 2,, where u : (0,7) x ©, — RR? is the velocity field and
w:(0,T) x 2, — R the pressure function. The function f : (0, T') x R? > R?is
a given volume force. The equations are supplemented with initial conditions and the
boundary condition u o ¢, = 9;nn at the flexible part of the boundary with normal n
(see Sect. 2.6 for the precise definition of a solution). There exist various models in
literature to model the behaviour of the shell and a typical example is given by

05070 — yd,0;n + @dyn = g —nT 0 ,m, dyn, (1.2)

on w supplemented with initial and boundary conditions. Here o, ¥ and « are positive
constants and the function g : (0, T) x @ — is a given forcing term. The quantity
T denotes the Cauchy stress of the fluid given by Newton’s rheological law, that is
T= /L(Vu + VuT) — I 2. The model (1.1)—(1.2) has been suggested, in particular,
for blood vessels (where the 2D geometry is often sufficient), see [8, 15].

There exists already results concerning the existence of local-in-time strong solu-
tions to the coupled system (1.1)—(1.2), see [5,6, 11, 13, 14].l Rather recently, even the
existence of a global-in-time strong solution has been shown in [10]. All these papers
are concerned with a simplified geometrical set-up, where the domain €2 is given by a
rectangle and the flexible part of the boundary is flat, see Fig. 1. In this case the trans-
formation between the reference domain and the moving domain is particularly easy,

1 Some of these results are concerned with the 3D case, where global existence of strong solutions is out
of reach.
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which simplifies the mathematical analysis significantly. While it is natural to start
the investigation which such an idealised model, this model is not suitable for most
real-world applications such as blood vessels. In the case of a more realistic non-flat
geometry as in Fig. 2 only the existence of weak solutions to (1.1)—(1.2) is known,
see [12, 17, 18]1. For a weak solution, the kinetic energy |ju|| L2(2,) is bounded, the

velocity gradient belongs to L? and we have
ne Whe(I; L2 (@) N WH(1; W) N L®(1; W22 (). (1.3)

This can be seen formerly by testing the momentum equation by u and the shell
equation by 9;1 (note that the boundary terms cancel due to the condition u o ¢, =
drnm). With a weak solution at our disposal we are confronted with the question
whether it enjoys additional regularity properties (in this case we speak about strong
solutions) and is, in fact, unique. These properties are not only of theoretical interest
but also crucial for robust numerical simulations. The analysis of regularity properties
of solutions to (1.1)—(1.2) in the framework of Fig. 2 is the purpose of the present
paper. Our main result shows that under natural assumptions on the data there is a
unique global-in-time strong solution to (1.1)—(1.2), see Theorem 2.5 for the precise
statement. Here strong means that both equations hold in the strong sense, that is,
all quantities exist as measurable functions. In particular, all terms in the momentum
equation (1.1) belong, in fact, to L? and we have

ne Whe(1; Wh2(w)) n WhA(1; w2 (w)) N W22(1; L* ()
NL®(1; W2 (w)) N L2 (1; W (). (1.4)

1.2 Stokes systems in irregular domains

As in [10] the crucial tool in our analysis of (1.1)—(1.2) is an elliptic estimate for the
Stokes system

uAu— Vg =—g, diva=0, (1.5)

in a bounded domain O C R", n = 2, 3, (supplemented with homogeneous boundary
conditions). To be more precise, we require an inequality of the form

lallwzr o) + I llwrr o) S lgllLr©o) (1.6)

for p € (1, 00) (in fact, p = 2 is sufficient for the application to (1.1)—(1.2)). Such
an estimate is well-known if the boundary of the underlying domains belongs to the
class C2. We will apply (1.6) to (1.1) with g = o (d;u+ (u- V)u) and O = Q) for
a fixed . Hence the regularity of O is determined by 1 which only belongs to W2,
see (1.3). A version of (1.6) for the simplified framework from Fig. 1 is proved in
[10]. Itis, however, based on some cancellations which are not available in the general
case. On the other hand, the question about minimal assumptions on the regularity
of 90 for (1.6) is of independent interest and seems to be missing in literature. The
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only comparable result can be found in [3] (which is, in turn, based on results from
[71), where an estimate for Lipschitz domains (that is, 90 € W12 is shown, which
controls fractional derivatives (of order 3/2 for u and 1/2 for 7). The method from
[3] is, unfortunately, designed specifically for Lipschitz domains and does not seem
to apply in a more general framework.

In Theorem 3.2 we offer an exhaustive picture concerning the maximal regularity
theory for the Stokes system (1.5) in irregular domains in the framework of fractional
Sobolev spaces. This is based on the theory of Sobolev multipliers from [16] which has
not been used in fluid mechanics before. Our assumptions on the boundary coincide
with those made in [16, Chapter 14] for the Laplace equation which are known to be
optimal. As a special case we obtain estimate (1.6) for p = 2 provided the Lipschitz
constant of 3O is small and d© belongs—roughly speaking—to the class W3/%2 (we
will make these concepts precise in Sect. 3.1). The relation between both spaces is
that W3/2:2 is the trace-space of W22 (the space for the velocity field in (1.6)) in the
sense that the linear mapping

W2Z[R") 5 ¢ — (-, 0) € W/22@R'T (1.7)

is continuous.

1.3 The acceleration estimate

With estimate (1.6) at our disposal we return to the fluid—structure interaction problem
(1.1)—=(1.2). We aim at testing the structure equation (1.2) with 3;271 and seek for an
appropriate test-function for the momentum equation. Due to the condition u o ¢, =
d;nn at the boundary we have

D
Eu = o;u(t, x + nn) + (u(t, x + nn) - Vyu(z, x + nn)

= dyu(t,x +nn) + o,yn - Vu(z, x +nn) on 9<2,.

Hence the material derivative of the velocity field is the corresponding test-function
for the momentum equation. To be precise we use

du + (£, (3;nm) - V)u, (1.8)
where .#, is an appropriate extension operator, see Sect. 2.5. The drawback with the
function in (1.8) is that it is not solenoidal. This problem is overcome in [10] by using
instead

8w + (F (3m) - V)u — (u - V), (). (1.9)

In fact, in the simplified geometric set-up used in [10] it is possible to construct an
extension which is at the same time solenoidal and satisfies

V.F(3m) -n=0 ondQ,. (1.10)
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In conclusion, the function in (1.9) is solenoidal and equals to 3;277 at the boundary. In
the general case, some elementary calculations based on Fourier expansion reveal that
both conditions cannot hold simultaneously. Therefor, the existing extension operators
from [12, 18] are solenoidal but do not satisfy (1.10). In Sect. 5.1 we propose an
alternative approach which is based on (1.8) and an elementary extension operator
introduced in Sect. 2.5. It is not solenoidal but, different to those from [12, 18], has
the usual regularisation property (which is inverse to the trace embedding from (1.7)).
Accordingly, me must introduce the pressure function and estimate it. This can be
done with the help of (1.6), see the proof of Proposition 5.1 for details.

In order to implement these ideas rigorously we first prove the existence of a local-
in-time strong solution in Sect. 4. As in previous papers, where the flat geometry is
considered, we follow a standard approach based on a transformation of (1.1) to the
reference geometry, linearisation and a fixed point argument. Our situation is, however,
technically more complicated due to the non-trivial transformation map between the
reference and moving geometry.

2 Preliminaries
2.1 Conventions

For notational simplicity we set all physical constants in (1.1)—(1.2) to 1. The analysis
isnot effected as long as they are strictly positive. We write f < g for two non-negative
quantities f and g if there is a ¢ > 0 such that f < cg. Here c is a generic constant
which does not depend on the crucial quantities. If necessary we specify particular
dependencies. We write f ~ g if f < g and g < f. We do not distinguish in the
notation for the function spaces between scalar- and vector-valued functions. How-
ever, vector-valued functions will usually be denoted in bold case. For simplicity we
supplement (1.2) with periodic boundary conditions and identify w (which represents
the complete boundary of €2) with the interval (0, 1). We consider periodic function
spaces for zero-average functions. It is only a technical matter to consider instead (1.2)
on a nontrivial subset of d€2 together with zero boundary conditions for 5 and 9,7,
see, e.g., [12] or [2] for the corresponding geometrical set-up. We shorten the time
interval (0, T) by 1.

2.2 Classical function spaces

Let O C R™, m > 1, be open. Function spaces of continuous or e-Holder-continuous
functions, @ € (0, 1), are denoted by C (O) or CO*(O) respectively. Similarly, we
write C1(©) and C1*(O) for spaces of functions which are («¢-Holder) continu-
ously differentiable. We denote as usual by L?(O) and W57 (0O) for p € [1, co]
and £ € N Lebesgue and Sobolev spaces over O. For a bounded domain O the
space L‘i((’)) denotes the subspace of L”(O) of functions with zero mean, that is
(No = fo fdx = L"O)! [, fdx = 0. We denote by Wy¥(O) the clo-
sure of the smooth and compactly supported functions in W* 7 (). If 9O is regular
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enough, this coincides with the functions vanishing " ~!-a.e. on 0. We also denote
by WkP(0O) the dual of Wg "P(0). Finally, we consider subspaces W;i’vp (©) and
Wol”(ﬁv((’)) of divergence-free vector fields which are defined accordingly. The space
LgiV(O) is defined as the closure of the smooth and compactly supported solenoidal

functions in L? (©). We will use the shorthand notations L? and W)]f "7 in the case of
n-dimensional domains (typically spaces defined over @ C R" or 2, C R") and Lif

and W;{ "? for (n — 1) dimensional sets (typically spaces of periodic functions defined
over  C R).

For a separable Banach space (X, || - ||x) we denote by L”(0,T; X) the set
of (Bochner-) measurable functions u : (0,7) — X such that the mapping
t — Jlu@®|lx € LP(0,T). The set C([0, T]; X) denotes the space of functions
u : [0, T] — X which are continuous with respect to the norm topology on (X, |- || x).
For a € (0, 1] we write C%%([0, T]; X) for the space of Holder-continuous func-
tions with values in X. The space WLP(0, T; X) consists of those functions from
L?(0, T; X) for which the distributional time derivative belongs to L?(0, T; X) as
well. The space WXP(0, T; X) is defined accordingly. We use the shorthand L” X
for L?(0, T; X). For instance, we write L{’le’p for LP(0, T; WP (©)). Similarly,
Wtk’pX stands for W2 (0, T; X).

2.3 Fractional differentiability and Sobolev multipliers

For p € [1, 0o) the fractional Sobolev space (Sobolev—Slobodeckij space) with dif-
ferentiability s > 0 with s ¢ N will be denoted by W*-?(O). For s > 0 we write
s = |s] + {s} with |s] € Ny and {s} € (0, 1). We denote by W;'”(O) the closure of
the smooth and compactly supported functions in W7 (0). For s > % this coincides

with the functions vanishing H"~!-a.e. on O provided 9O is regular enough. We
also denote by W=7 (0O) for s > 0 the dual W* 7 (Q). Similar to the case of unbro-
ken differentiabilities above we use the shorthand notations Wy and W;,’p . We will
denote by B, ,(R™) the standard Besov spaces on R™ with differentiability s > 0,
integrability p € [1, oo] and fine index g € [1, oco]. They can be defined (for instance)
via Littlewood-Paley decomposition leading to the norm || - || By ,(R™)- We refer to
[19-21] for an extensive picture. The Besov spaces B‘I‘,, q (O) for a bounded domain
O C R™ are defined as the restriction of functions from B;’ q (R™), that is

B} ,(O):=(flo: f € B} ,(R™)},
181l ©) = nf{ll f 5y, @m : flo = g}

1200

If s ¢ Nand p € (1, co) we have B;,p(O) = WSP(0).
In accordance with [16, Chapter 14] the Sobolev multiplier norm is given by

lellmowsroy = sup Ve - Vllys-1.r©). 2.1)

v ”Vllw.r—],p(o):l
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where p € [1,00] and s > 1. The space M(W*?(O)) of Sobolev multipliers is
defined as those objects for which the M (W*?(Q))-norm is finite. By mathematical
induction with respect to s one can prove for Lipschitz-continuous functions ¢ that
membership to M(W*?(Q)) in the sense of (2.1) implies that

sup le wllws.ro) < 0. (2.2)
w: [wllws.po)=1

The quantity (2.2) also serves as customary definition of the Sobolev multiplier norm
in the literature but (2.1) is more suitable for our purposes. Note that in our applications
we always assume that the functions in question are Lipschitz continuous such that
the implication above is given.

Let us finally collect some useful properties of Sobolev multipliers. By [16,
Corollary 14.6.2] we have

Pl pmews.r®myy S V@I Lo @y, (2.3)

provided that one of the following conditions holds:
e p(s—1) <mand¢ € By ,(R") withg € %5, ool

e p(s—1)=mand ¢ € Bg,p(Rm) with ¢ € (p, 00].

Note that the hidden constant in (2.3) depends on the Bg, p(R’”)-norm of ¢. By [16,
Corollary 4.3.8] it holds

Pl mews.p@myy = IV PIlws—1.0gem) 2.4

for p(s — 1) > m. Finally, we note the following rule about the composition with
Sobolev multipliers which is a consequence of [16, Lemma 9.4.1]. For open sets
01,0, C R™, u € W5P(0,) and a Lipschitz continuous function ¢ : O — O,
with Lipschitz continuous inverse and ¢ € M(W*P(O))) we have

luo@llwsrop S lullws.ro,) (2.5)

with constant depending on ¢. Using Lipschitz continuity of ¢ and ¢!, estimate (2.5)
is obvious for s € (0, 1]. The general case can be proved by mathematical induction
with respect to s.

2.4 Function spaces on variable domains

The spatial domain €2 is assumed to be an open bounded subset of R”, n = 2, 3, with
smooth boundary and an outer unit normal n. Wee assume that €2 can be parametrised
by an injective mapping ¢ € C*(w; R") for some sufficiently large k € N. If n = 3
we suppose for all points y = (y1, y2) € w that the pair of vectors d;¢(y), i = 1,2,
are linearly independent. If n = 2 the corresponding assumption simply asks for d,¢
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1502 D. Breit

not to vanish. For a point x in the neighborhood or d$2 we can define the functions y
and s by

yx) = arglyneiar)l X =M, s(&) = x—yx)) nly)).

Moreover, we define the projection p(x) = @(y(x)). We define L > 0 to be the largest
number such that s, y and p are well-defined on S;, where

S; = {x e R": dist(x, 02) < L}. (2.6)
Due to the smoothness of 9€2 for L small enough we have [s(x)| = minye, [x —@(y)]

for all x € Sr. This implies that S; = {sn(y) +y : (s,y) € (—L,L) X w}. For a
given function 1 : I X @ — R we parametrise the deformed boundary by

0, y) =) +n@, y)ny), yew, rel.

By possibly decreasing L, one easily deduces from this formula that €2, does not
degenerate, that is

Oy, y) #0 ifn=2, 019, X e, y)#0 ifn=3,
n(y) -mn(y) >0, ycw,tel, 2.7

provided |[n|| e < L. Here ny ) is the normal of the domain €2,,(;) defined through

02 ={e() +n(, yn(y) : y € w}. (2.8)

With some abuse of notation we define deformed space-time cylinder

I xQ,= U{t} X Q) C R

rel
The corresponding function spaces for variable domains are defined as follows.

Definition 2.1 (Function spaces) For I = (0,T), T > 0, and n € C(I x ) with
1l Lo (rxe) < L we define for 1 < p,r < 0o

,)ELT (2 fora.e.t,
L2 L @) = {o e L1 x 2 e Sy ]

@Il Lr (@, €LP (D
LP(I; W () i={v € LP(I; L' () : Vv e LP(I; L™ ()}
For various purposes it is useful to relate the time dependent domain and the fixed
domain. This can be done by the means of the Hanzawa transform. Its construction

can be found in [12, pages 210, 211]. Note that variable domains in [12] (see also
[1]) are defined via functions ¢ : €2 — R rather than functions n : w — R (clearly,
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Regularity results in 2D fluid-structure interaction 1503

one can link them by setting ¢ = 1o @~ !). Forany n :  — (—L, L) we define the
Hanzawa transform ¥, : Q — Q, by

P + (500 + PG (), if distx, 09 < L,

X, elsewhere.

W, (x)= { (2.9)

Here ¢ € C*®°(R) is such that ¢ = 0 in neighborhood of —L and ¢ = 1 in a
neighborhood of 0. Due to the size of L, we find that ¥, is a homomorphism such
that W, |o\s; is the identity. We clearly have for k € N and p € [1, 00]

¥yl yer S 1+ Inlyer. 1€ WEP (@), (2.10)
as well as
19 = Wellyir < = Cllyrr, 1.8 € WoP (@), 2.11)

where the hidden constant only depends on the reference geometry.
If ||77||Lg° < a < Land ||[Vn|le < R for some o, R > O the inverse? \11,71 :
Q, — Q satisfies for k € Nand p € [1, oo]

1 whr S T4 Inlhyer, ne Wk (w), (2.12)
as well as
195 = e Sl =i, 1.6 € WP (@), (2.13)

if |¢]lLee < o and ||V§||Loo < R.In (2.12) and (2.13) the hidden constant depends
on the reference geometry (Wthh is assumed to be sufficiently smooth), on L — « and
R. Similarly, we obtain fractional estimates, that is

1y lysr S U+ lnllyer, 1€ WP (@), (2.14)
I e S L linllysr, 1€ WP (o), (2.15)

fors > 0 with s ¢ N and

19, = Wellyer Sl =Cllyer. 1.5 € WP (@), (2.16)

I = e S =&llysrs 1.6 € WP (). (2.17)

Finally, itholds

2 Tt exists provided we choose ¢ such that |¢'| < L/a.
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1504 D. Breit

180y llysr S U180l ysr, 1€ WHIT WP (@), (2.18)
uniformly in time.

2.5 Extensions on variable domains
In this subsection we construct an extension operator which extends functions from
w to the moving domain €2, for a given function n defined on w, where n = 2, 3. We
follow [2, Section 2.3]. Since €2 is assumed to be sufficiently smooth, it is well-known
that there is an extension operator .#q which extends functions from 92 to R” and
satisfies

Fq: WOP@HQ) — wotl/rr(rr (2.19)
forall p € [1,00] and o > 0, as well as Fqv|yq = v. Now we define .%#, by

Fyb = Fo((bn) o N oW 1 be W (o), (2.20)

where ¢ is the function in the parametrisation of €2. If  is regular enough, .%,, behaves
as a classical extension. To be more precise, we can use the formula

V.Fyb = V.Zo((bn)op~ ") o W V¥, 1,
estimate (2.12) and (2.19) to obtain the following.

Lemma2.2 Let n € C%Y(w) with InllLee < a < L. The operator Iy defined in
(2.20) satisfies for all p € (1,0],> o € (0,1 — é] and s € (0, %),

Ty WOP(w) — WOTVPP(QUS,), i LP(w) — WP (QU Sy)
and (F,b) o ¢, =bnonw forallb € L?(w). In particular, we have

|Fnbllwo+iip.r@us,) S 1PIlworwy,  [1Fpbllwsr@usy S 101Lrw),

where the hidden constant depends only on 2, p, o, |Vl L and L — c.

2.6 The concept of solutions and the main results

In this section we introduce the framework for the system (1.1)—(1.2) and present our
main results concerning the regularity of solutions. We start with the definition of a
weak solution. Note that different to the previous subsection we assume again that
n=2.

3 Itis possible to obtain a theory for any ¢ > 0 provided 7 is sufficiently regular.
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Definition 2.3 (Weak solution) Let (f, g, no, ug, 1) be a dataset such that

fel*(I; Li, (RY), geL*(I;L*®), noe€ W**(w) with [lnollzow) < L,

loc

ug € L(zﬁv(Qno) is such that ug o @, =mnonw, n € L2(a)). (2.21)

We call the tuple (n,u) a weak solution to the system (1.1)-(1.2) with data
(£, g, no, n1, ug) provided that the following holds:

(a) The structure displacement 7 satisfies

ne Whoo(I; LA () N W2 (1; Wh2(w)) N L2(1; W2 (w))
with||n]l Lo (s xw) < L,

as well as n(0) = no and 9;n(0) = n;.
(b) The velocity field u satisfies

ue L°°(I; LZ(Q,])) N LZ(I; W(;i’VZ(Qn)) with wog, =9nn on I x w,
as well as u(0) = uy.

(c) Forall (¢, ¢) € C®(I x w) x C(I x R%; R?) with ¢(T,-) =0, ¢(T,) =0
and @ og, =¢nonl x w, we have

/%(/ u~¢dx+/8m¢dy)dt
1 Qy 19}

2/1/9 (u-3¢ +u®u: Ve)drds

—// (Vu:V(b—f-qS)dxdt
1Je,
+f[/ (3 01 — 3,0,m 0y — g 8) dy dt

—/[8)2,173§¢dydt.
1 Jo

The existence of a weak solution can be shown as in [12]. The term 0o; 8}21] is not
included there, but it does not alter the arguments. Note that we use a pressure-free
formulation (that is, with test-function satisfying additionally div ¢ = 0) here. If the
solution possess more regularity, the pressure can be recovered by setting

o= Ay div(Vww), 7o == 7o — (Fo)g,-

For O C R" open and bounded with normal np we denote by Aél div the solution
operator to the equation

Ah =divg inO, nop-(Vh—g)=0 ondO.
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1506 D. Breit

We must complement 7 by a function depending on time only being uniquely deter-
mined by the structure equation. Setting 7 (1) = 7 (¢) 4 ¢ (¢) and testing the structure
equation with 1 we obtain

cﬂ(t)/ n-n,|dye,|dy = f n(Vu +Vu' — no]szz) o @,ny|dye,|dy
w w

+/ 8,2ndy—fgdy. (2.22)
w w

Since €2, is Lipschitz uniformly in time the operator A, ,17 div has the usual properties.
In particular, it is continuous L? — W2 such that

/f |Vn|2dxdt§// |(Vwu)|? dx dr
179, 179,
</||u||L4(Q )) </”Vu”L4(Q) )

by Ladyshenskaya’s inequality (using again that €2, is Lipschitz uniformly in time).
Hence we have 7 € L2(1 Wl'z(Qn)) provided the right-hand side is finite (which is
the case if u and Vu belong to L* in space-time). This is the case for a strong solution
which is defined as follows.

Definition 2.4 (Strong solution) We call the triple (7, u, ) a strong solution to (1.1)—
(1.2) provided (5, u) is a weak solution to (1.1)—(1.2), it satisfies

ne Whoo(1; Wh2(w)) n Wh2(1; W 2(w)) N L®(1; W32 (w)) N W21 L (),
ue WhA(1 L2(Qy)) N L2 (1 WHA(Qy)), 7 e LY (1; Wh(Qy)).
and we have Vr = VA&; div((Vu)u).

For a strong solution (7, u, ) the momentum equation holds in the strong sense,
that is we have

ou+ (Vo)u = Au— Vr +f (2.23)
a.a.in I x €,. The beam equation together with the regularity properties above yield
n € L?(I; W*2(w)). Hence the beam equation holds in the strong sense as well, that
is we have

O — 0,0+ dyn =g —nto0g,d0; (2.24)
a.a.in I x . Note that for a strong solution the Cauchy stress T = Va+Vu ' — 7l

possesses enough regularity to be evaluated at the moving boundary (this is due to the
trace theorem and the uniform Lipschitz continuity of €2;).
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We are finally ready to state our main result concerning the existence of a unique
strong solution to (1.1)—(1.2).

Theorem 2.5 Letn = 2. Suppose that the dataset (f, g, no, ug, n1) satisfies in addition
to (2.21) that

ge LW ), noe W), m e Wh(w), upe WiZ(Qy). (2.25)

Then there is a unique strong solution to (1.1)—(1.2) in the sense of Definition 2.4.
The interval of existence is of the form I = (0,t), where t < T only in case
Qy(s) approaches a self-intersection when s — t or it degenerates* (namely, if
limg_; ay(pn(s, w) = 0 orlimg_; n(y) - ny ) (y) = 0 for some y € w).

The proof of Theorem 2.5 can be found in Sect. 5.

Remark 2.6 The result of Theorem 2.5 heavily hinges on the dissipative term —8,8‘2,77
in the shell equation. It is a difficult open problem to understand if a similar result
can be achieved in the purely elastic case (that is, ¥y = 0 in (1.2)) even for the flat
geometry studied in [10].

Remark 2.7 A drawback of Theorem 2.5 compared to the corresponding statement for
the flat geometry from [10] is that we can currently not exclude a self-intersection
of the moving domain for arbitrary times. It would be a of great interest to prove a
distance estimate as in [10, Section 4.2] in the present set-up.

3 The Stokes equations in non-smooth domains

This section is devoted to the study of the Stokes equations in a domain O C R”,
n = 2, 3, with minimal regularity. We start by introducing the necessary framework to
parametrise the boundary of the underlying domain by local maps of a certain regular-
ity. This yields, in particular, a rigorous definition of a B;, ,-boundary. In Sect. 3.2 we
consider the steady Stokes system. This will be crucial for the acceleration estimate for
the fluid—structure problem in Sect. 5.1 (we explain in Remark 3.4 how to parametrise
the sets €2, introduced in Sect. 2.4 by local maps).

3.1 Parametrisation of domains

Let O C R” be a bounded open set. We assume that 9O can be covered by a finite
number of open sets U L. u* for some £ € N, such that the following holds. For
each j € {1, ..., £} there is a reference point y/ € R” and a local coordinate system
{e{, ..., €)} (which we assume to be orthonormal and set Q; = (e{| . lel) e Ry,
a function ¢; : R*~! — Randr 7 > 0 with the following properties:

4 Self-intersection and degeneracy are excluded if ||17||L§>o)C < L, cf. (2.6) and (2.7).
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(A1) There is j > 0 such that
U ={x= sz—i—yj eR": z=(Z z0) eR", |2 <rj, lzn — 9j ()| < hj}.

(A2) For x € U/ we have with z = Q;.r(x —y))

e x € 90 if and only if z, = ¢;(2');
e x € Oifandonlyif 0 <z, —¢;(z') < hj;
e x ¢ Oifandonlyif 0 > z, — ¢;(z') > —h;.

(A3) We have that

14
90 c | Jul.
j=1

In other words, for any xo € 9O there is a neighborhood U of xp and a function
¢ : R"=! — R such that after translation and rotation’

UNO=UNG, G={(x"x)eR": x' eR" ! x,> &) 3.1

The regularity of 9O will be described by means of local coordinates as just described.

Definition 3.1 Let @ C R” be a bounded domain, s > O and 1 < p,gq < co. We
say that 9O belongs to the class Bz’q if there is £ € N and functions ¢, ..., ¢ €

—1 . .
Bf)’q(R” ) satisfying (A1)—(A3).

Clearly, a similar definition applies for a Lipschitz boundary (or a C'**-boundary
with « € (0, 1)) by requiring that ¢1,...,¢; € whooRr=1y (or Oly...,Qp €
cle@R"1y). We say that the local Lipschitz constant of O, denoted by Lip(dO),
is (smaller or) equal to some number L > 0 provided the Lipschitz constants of
@1, ..., @ are not exceeding L. Our main result depends on the assumption of a
sufficiently small local Lipschitz constant. While this seems rather restrictive at first
glance, it appears quite natural when looking closer. Indeed, it holds, for instance, if
the regularity of dQ is better than Lipschitz (such as C'** for some & > 0). By means
of the transformations Q; introduced above, we can assume that the reference point
y/ in question is the origin and that Vg;(0) = 0. Choosing r; in (A1) small enough
(which can be achieved simply by allowing more sets in the cover ', ..., U') we
have

IVe; ()l = V() = Vo0 < r{[Ve;lc« < 1

for all z’ with || < ;.

5 By translation via y; and rotation via Q; we can assume that xo = 0 and that the outer normal at x is
pointing in the negative x,-direction.
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In order to describe the behaviour of functions defined in O close to the bound-
ary we need to extend the functions ¢, ..., ¢ from (A1)-(A3) to the half space
H := {z = (Z/, z4) : zn > 0}. Hence we are confronted with the task of extending a
function ¢ : R"~! — R to a mapping ® : H — R” that maps the 0-neighborhood
in H to the xg-neighborhood in O. The mapping (z’, 0) — (z/, ¢(z')) locally maps the
boundary of H to the one of 9. We extend this mapping using the extension operator
of Maz’ya and Shaposhnikova [16, Section 9.4.3]. Let { € C2°(B;(0')) with ¢ > 0
and fp,1 £(x))dx’ = 1. Let & (x") := t~"~D¢(x'/t) denote the induced family of
mollifiers. We define the extension operator

TOE w0 = [ @ =000, aeE

where ¢ : R” — R is a Lipschitz function with Lipschitz constant K. Then the
estimate

IVTP)lps wny ZcllVOI 1 (3.2)
Bﬂ‘q(R ) B’ﬂ‘qP (R"’I)

follows from [16, Theorem 8.7.2]. Moreover, [16, Theorem 8.7.2] yields
||T¢||M(WS,P(H)) f, ||¢||M(st1/p,p(wfl))- (3.3)

It is shown in [16, Lemma 9.4.5] that (for sufficiently large N, i.e., N > c({)K + 1)
the mapping

oy (zp) = Nzy + (T(b)(zl’ Zn)

is for every 7/ € R"~! one to one and the inverse is Lipschitz with its gradient bounded
by (N — K)~!. Now, we define the mapping ® : H — R” as a rescaled version of
the latter one by setting

(7, z0) = (. ax(zn) = (s 20 + (TP 20/ K)). (3.4)

Thus, ® is one-to-one (for sufficiently large N = N (K)) and we can define its inverse
¥ := &~ !, The mapping ® has the Jacobi matrix of the form

L—1)x(n—-1) 0
J=Vod = . 3.5
( 0.(T¢) 1+1/No, T ©-3)
Since |3, T ¢| < K, we have

1
5 <1—K/N<det()| <1+K/N <2 (3.6)
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using that N is large compared to K. Finally, we note the implication
®c M(WHP(H)) = ¥ e MW" P(H)), 3.7

which holds, for instance, if @ is Lipschitz continuous, cf. [16, Lemma 9.4.2]. In fact,
one can prove (3.7) with the help of (2.5) and (3.6).

3.2 The steady Stokes problem
In this section we consider the steady Stokes system

Au— Vg =—f, divu=0, ulyo =uy, (3.8)
in a domain @ C R" with unit normal n. The result given in the following theorem is

a maximal regularity estimate for the solution in terms of the right-hand side and the
boundary datum under minimal assumption on the regularity of 0O.

Theorem3.2 Letn =2,3. Let p € (1,00), s > 1+ % and

e=p ifps—D=n o= FT ifps—1) <n, (3.9)

such thatn(% — %) + 1 < s. Suppose that O is a Bg’p-domainfor some6 >s—1/p

with locally small Lipschitz constant, f € W3S=2P(O) and uy € WS~VP-P(30) with
faO wy - ndH"~! = 0. Then there is a unique solution to (3.8) and we have

lallws.r ) + I llws-10(0) S Ifllws—200) + 103l ws—1/0.030)- (3.10)

The constant in (3.10) depends on the local Lipschitz constant of 0O as well as the
Bg’ p-horms of the local charts in the parametrisation of 20.

Remark 3.3 The theorem holds under the slightly weaker assumption that 00 €
MWS=1P.ry(§) for § sufficiently small. This means that the functions ¢y, ..., ¢,
from the parametrisation of (© belong to the multiplier space M (W*?(R"~1)) with
norm bounded by é. This is a sharp assumption for the corresponding theory for the
Laplace equation, cf. [16, Chapter 14]. The relationship between M(W*~1/P:P)(8)
and Besov spaces can be seen from (2.3) and (2.4).

Proof By use of a standard extension operator we can assume that uy = 0. Otherwise
we can solve the homogeneous problem with solution 1 and set

u =1+ Epuy — Bogy(divEpuy)
where

Eo : WHPP@QO) - WP (0)
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is a continuous linear extension operator and Bog, the Bogovskii-operator. The latter
solves the divergence equation (with respect to homogeneous boundary conditions on
00) and satisfies

Bogp div: WP N {w: / w-ndH" ' = 0} - Wyt (0) (3.11)
00

forall s > 1 and p € (1, 00). See [9, Section III.3] for the case s € Ny, the case of
fractional s follows by interpolation.

Our assumption (4 — ) + 1 < s implies

Wi2P(0) &> W2(0), WP p0) - WA200),

such that a unique weak solution (u, 7) € W(}”dziv((’)) X Li((’)) to (3.8) exists. Fur-
thermore, let us suppose that u and 7 are sufficiently smooth. We will remove this
restriction at the end of the proof. By assumption there is £ € N and functions
Oly s Pt € Bz,p(R”_l) satisfying (A1)—(A3). We clearly find an open set U eo

such that O C uf.:oui . Finally, we consider a decomposition of unity (& j)‘;':O with

respect to the covering Uuo, ... .Ut of O. For j €{1,..., £} weconsider the extension
®; of ¢; given by (3.4) with inverse ¥ ;.
Letus fix j € {1, ..., £} and assume, without loss of generality, that the reference

point y; = 0 and that the outer normal at 0 is pointing in the negative x,-direction
(this saves us some notation regarding the translation and rotation of the coordinate
system). We multiply u by &; and obtain foru; :=&;u, I1; := &§;7 and f; := §;f the
equation

SAu; — VII; = [A,§;lu — [V, &1 — f},
divuj = V&j-u, ujlo =0, (3.12)

with the commutators [A, §;] = A§; +2VE; - Vand [V, §;] = V&;. Finally, we set
Vji=1ujo ‘I)j, 9]' =1II;0 <I>j, g = det(V<I>j)([A,§j]u - [V,Sj]l'[ — j) o ‘I’j,
hj = det(V®;)(VE; -u) o ®; and obtain the equations

div (A;Vv;) —div(B;6;) =g;, B] :Vv;=hj, vjlm=0, (3.13)

where A = det(V<I>j)V\Il—/.r 0®;VW¥;o0®; and B; := det(V®;)V¥; o ®; (note
that we have divB; = 0 due to the Piola identity). This can be rewritten as

AVj — V@j = div ((]Inxn — Aj)VVj) +diV((Bj — an,,)ej) +g;,
divv; = (lyxn —B;) " : Vv +hj, v,lom=0. (3.14)

Setting
S(v,0) = S1(v) + 5:2(0),
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S1(v) = div ((lyxn — Aj)VV),
$2(6) = div((Bj — L)),
5(V) = (lyxn —Bj) " 1 Vv,

we can finally write (3.14) as
AVj — V@j = S(Vj,@j) +g;, diVVj =5(Vj) +hj, Vj|3]1-]1 =0, (3.15)

in H. Estimates for the Stokes system on the half space are well-known: We apply [9,
Thm. IV 2.1] to (3.15) which yields

IVVille +10llp SIS, 60)) +gjlly 10 + 15V + hjll e (3.16)

Similarly, we obtain from [9, Thm. IV 3.3] for k > 2

IVl + IVE10501 e S IVE2(S v, 6)) + gl e
F IV ) + Rl (3.17)

Since v; is compactly supported (with support included in &§; o @ ;) we conclude by
Poincaré’s inequality

1Villyer +10j 11 S NSO, 05) + 8jllyr-2 +15(v;) +hjlli-rp (3.18)
for all k > 1. Interpolation implies
1Villwsr + 16l ys-1p S NS}, 0)) + gjllys—2 + 15(V)) + hjllys-1p - (3.19)

for all s > 1. Our remaining task consists in estimating the right-hand side. In order
to estimate ||S(v, 9)||W§‘2"’ and ||5(V)||W,;_1,,, we use the Sobolev multiplier norm
introduced in (2.1). By our assumptions on ¢ ; we infer from (2.3) and (2.4) that
¢ € MWs=1/p.P(H)). Thus ®; ¢ M(W%P(H)) by (3.4), (3.3), and (3.9) and
¥, € M(W?P(H)) by (3.7). Hence we obtain by (3.5), (2.5) and the definitions of
Aj and (I>j

”SI(V)HWS*Z’P(H)
S oosuwp N @uxn = APWls-1r @ lIVVIe-1

w _1.p<1
I HW; 1L,p=

S sup (1 — det(V® ;) Wllyys—t.p g VIl s

”w”stl,p(H)fl

+ sup ”det(v¢j)(ﬂn><n - V‘I’;r o q)j)W”WSfl,p(H)”V”‘,V;,P

w 1.p<1
IWhys-1.p<

+  sup [ det(Ve@ )V 0 ®;(Lyxn — V) 0 @)W yys—tpn [Vl s

w _1.p=<1
I ”W; Lp=
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STl mewsr amy 1VIysp
1@l wsrayy  SUP NTasn — V¥ 0 @ )Wllyys—tp a1V I ysr

Wil s—1,p=<1
I HW; Lp=

+ ||<I>j ”n/\/[(Ws,p(H)) ”\I’j | M ws-p ) sup ([P

wil s—1,p,=<1
” ”W)AC 1L.p=

— VW0 ®)Wllys—1pamlIVIlysr

S (”T(bj”./\/l(WSvP(H)) +  sup  |Ipxn — V¥ 0 (I>j)w||W511P(H)> IvIllyser,

Wl 515 <1
where

sup | (Muscn — V¥ 0 @)Wyt

Wl e1,p=<1
H ”W; ILLp=

= sup |y — det(VW j)cof (V@ o q’j))w”stl,p(H)

wil s—1,=1
I ”ch Lp=

=< sup ||(1 — det(v‘l’j))W”WS—I,p(H)

w _1.p<1
Wl 1.0 =

+ sup [det(V¥ ;) (Tnxn — cof (V@ o @ ;)W |l ys—1.p g

w _1,p<I
Wl s-1.p <

STl aewsramy 1 i gy S N7 @51 acws.p .-

So we finally have

IStV lws—2.p@ny S N7 G5 I Awse @) 1V ITws-p )

and, similarly,

12 lws—20 @) S sup 1B — L) Wllwys—1.p iy 116l ws—1.p ey
”w”stl,p(H)fl

STl mewsr @y 10l ws—1.0 @y

as well as

||5(V)||stl.p(H) S sup (B, — ]Inxn)W”WS*l-P(H)”vv”Wb'*lvP(H)

”W”WJ*I.IJ(H)SI

STl amews IV T ws.p y »

By (3.3) we have
17l mewsrayy S M@l pews—170.0 @) - (3.20)
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Finally, in the case p < n the right-hand side can be bounded by the Lipschitz constant
due to by (2.3) and the embedding BY , < B, , /7 for@ > s — 1/p and g satisfying
(3.9). Hence it is conveniently small by our assumptlon If p > n we have by (2.4)

”T(pj”M(vaI’(H)) S ”V(T(bj)”WS*l,p(H) < ”(pj”W.Yfl/p,p(Rn—l)
1—
1011 0 nty 1951y % n, (3.21)

S 1051550, gn1, 1905 1y 0 1
for an appropriate choice of ¢ € (0, 1). This is again suitably small. We conclude that
ISV 0D ys—2p + sl st < S(IIvjlwsran + 10jlws-—1ra)  (3.22)
for some small § > 0. On the other hand, we have

g llys—2p S wo @jllyerp + 1170 @)l ye2p + 10 @l

Sl 17 o2 + [Ell 2,

where the hidden constant depends ondet(V® ;) and || @ ; || A1(ws.» (Hy) being controlled
by (3.6), (3.20) and (3.21) (see (2.5) for the composition with Sobolev multipliers).
Similarly, we obtain

1Rl ys-re S lall et
Plugging this and (3.22) into (3.19) shows for all j € {1, ..., ¢}
Vi llwsr + 10711 ys-1p S lallys-r 4 117 1y 4 11y (3.23)

provided § is sufficiently small. Clearly, the same estimate (even without the first two
terms on the right-hand side) holds for j = 0 by local regularity theory for the Stokes
system. Choosing so € R such that W!-2(0) < W*0-P(0), there is « € (0, 1) such
that

[l -1 < flull spllllll sop < lullf, vaIllII

S lullfs PN S i, 5 P

Y2p

—|2N

by the assumption n(% — ) +1 < s and the standard energy estimate for the Stokes

system. Hence we obtain
lull v < KNl + G IE] (3.24)
for any x > 0. Similarly,

71l ys—2p < Kl llysrp + GOl ys2p (3.25)
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using that || ”L,zv < I£lly,—1.2 as well. Plugging (3.24) and (3.25) into (3.23) summing
over j = 0,1,...,¢ and choosing « small enough proves the claim provided u
and mw are sufficiently smooth. Let us finally remove this assumption which is not
a priori given. Applying a standard regularisation procedure (by convolution with
mollifying kernel) to the functions ¢, .. ., ¢y from (A1)—(A3) in the parametrisation
of 0O we obtain a smooth boundary. Classically, the solution to the corresponding
Stokes system is smooth. Such a procedure is standard and has been applied, for
instance, in [4, Section 4]. It is possible to do this in a way that the original domain
is included in the regularised domain to which we extend the function f by means of
an extension operator. The regularisation applied to the go’/.s converges on all Besov

spaces with p < oo. It does not converge on W!*°(R"~1), but the regularisation
does not expand the W!*°(R”~1)-norm, which is sufficient. Following the arguments
above we obtain (3.10) for the regularised problem with a uniform constant. The limit
passage is straightforward since (3.8) is linear. O

Remark 3.4 In Sect. 5.1 we have to apply Theorem 3.2 in the case n = 2 to the
domain O = ;) for a fixed . We exclude self-intersection and degeneracy by
assumption. In the framework of Theorem 2.5 we have n € L*°(I; Wz*z(a))) and
() is defined in accordance with (2.8). We must argue that 2, € B‘2Y,2((9) (in the

sense of Definition 3.1) for some s > % and has a small local Lipschitz constant (both
uniformly in time). While the Besov regularity is initially clear, we have to introduce
local coordinates to control the Lipschitz constant appropriately. Eventually, we must
check the Besov regularity again. Given xo € 92y for some ¢t € I fixed we can
rotate the coordinate system such that n,)(y(xo)) = (0, 1)—r (recall that n, ) is
well-defined since dy@, # 0 by assumption). Accordingly, it holds

By (¥ (x0)) 1
0@y (vxo) = |, 47 =(>
Y 3y§0,%(,)(y(XO)) 0
Hence the function (pé(t) is invertible in a neighborhood U of y(xp). We define in
(p}’(t>(1/{) the function

~ _ z _ d
(0 = (sifxo (z))) = (so,%(,)(«p;(,))—l(z))) '

It describes the boundary 9€2,(;) close to xg. One easily checks with zg = <p71] o (y(x0))
that 8.@y,(z0) = O such that 9,¢ is small close to zo. Also, we obtain from the
chain rule and the one-dimensional Sobolev embedding that @y, € W22 and hence
Py € WS2 = B3, forall s € (1,2) in a neighborhood of zo.

Remark 3.5 A resultin the spirit of Theorem 3.2 is proved in [5, Lemma 3.1]. However,
it only applies in spaces of high regularity with s > 3 (and only the case p = 2 is
considered) which is too restrictive for our application in Sect. 5. Moreover, it is
assumed that the global parametrisation is a small perturbation of a smooth reference
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domain (such as the half space). First of all, the assumption of a global parametrisation
restricts the result to applications in fluid—structure interaction as generally only local
charts are available on bounded domains. Second, global smallness is a small data
assumption, while local smallness (as the small Lipschitz constant) can be achieved
by local re-parametrisation as in Remark 3.4.

4 Local strong solutions

In this subsection we prove the existence of a unique strong solution to (1.1)—(1.2)
which exists locally in time. We consider again only the case n = 2.

Proposition 4.1 Let n = 2. Suppose that the assumptions of Theorem 2.5 hold. There
is T* > 0 such that there is a unique strong solution to (1.1)-(1.2) in I'* = (0, T*) in
the sense of Definition 2.4.

The strategy to prove Proposition 4.1 is rather standard and similar to previous
papers [10, 11, 13]:

e We transform the system to the reference domain, cf. Lemma 4.2.

e We linearise the system from Lemma 4.2 and obtain estimates for the linearised
system, cf. Lemma 4.3.

e We construct a contraction map for the linearised problem in Lemma 4.4 (by
choosing the end-time small enough) which gives the local solution to (1.1)—(1.2).

4.1 The transformed problem

For a solution (1, u, i) to (1.1)-(1.2) we define ¥ = 7 o ¥, and u = u o ¥,,, where
W, is defined in (2.9). We also introduce

h, (@) = —(J, = Jy)du— (V¥ oW, V) (3,9, o W, + 1) + Jyf o W,
Ay =1, (V¥ oW, VoW, B, =, V¥, oW,
H,(W,7) = (A), — AV — (B,, — B,)7, h,@ = By, —B,) : V1,

where J,, = |detVW, |. We see that (1, u, 77) is a strong solution to the coupled system

Jno 00 + div (B, ) — div (A, V) = h, @) — divH, (@, 7), 4.1)
B,, : VU = h, (W), (4.2)

P — 8,93 + djn = —n(A,, Vi — B, T) opn
+nH,(@,7)ogn, (4.3)

in I x € and we have

o =0;mn onl X w. “4.4)
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Here Egs. (4.1) and (4.3) are understood in the strong sense (satisfied a.a. in I x
and I x w respectively).
We call (n, u, @) a strong solution to (4.1)—(4.4) provided

ne Who (1 wh2() n W2 (1 w22 () N L®(1; W2 () N W22(1; L2 (),
e L wh2@) n L2 (5 w22 @) nwh2(1; L2@), 7 e L2(1; wh(9).

4.5)
Note that we construct a weak solution to Eq. (4.3) meaning we have
/f dn dp — 3,9yn dyp — g p)dydr — /f 3;n 93¢ dy dt
= / n(A,,Vu) — B,,) o png dy dt
w
+ / nH, (0, 7) o ¢ n¢ dy dt (4.6)
o

for all ¢ € C*®°(I x w). However, one can use the regularity properties (4.5) to infer
that n € L2(1; W*?(w)) such that all quantities in (4.6) are, in fact, L2-functions and
we have indeed a strong solution.

We obtain the following characterisation regarding (4.1)—(4.18).

Lemma 4.2 Suppose that the dataset (£, g, no, wo, n1) satisfies (2.21) and (2.25). Then
(n, u, ) is a strong solution to (1.1)—(1.2) (in the sense of Definition 2.4) if and only
if (n,u, ) is a strong solution to (4.1)—(4.4).

Proof Transforming the momentum equation to the reference domain we obtain
Jy0i0 + div (B, ) — div (A, V)

= —Jy (V¥ oW, Vi) (3, ¥, o W, 1) + Jyf o W,

while the incompressibility constraint gives B;’r : Vu = 0. Reordering terms and
recalling the definitions of B;, Ay, f; and H,, yields

1038 + div (B, T) — div (A, V&) = h, @) — divH, (@, 7) 4.7)

and
By, : Vu = hy ().

Allowing now a couple of test-functions (¢, ¢) € C®(I x w) x C®(I x R3) and
¢ 0@, = ¢n, see Definition 2.3 (c), rewriting the terms for the fluid equation as above

(that is, setting ¢ = ¢ o W) and integrating by parts yields

// (8,178,(1)—8;8yn8y¢—g¢)dydt—//8y2n8y2¢dydt
1 Jo I Jo
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= —/ n(A,,Vu) — B, 7) o pnp dyds
w
+/an(ﬁ,ﬁ)o¢n¢dydt
w

due to (4.7). Note that the terms on the right-hand side are the boundary terms which
arise due to the integration by parts. This finishes the proof as all the manipulations
can be reversed for strong solutions given the regularity of u and 7 assumed in (4.5).

O

4.2 The linearised problem

We will now consider solutions to the linearised problem for a given right-hand side,
that is we analyse for given functions h, H and & the system

Jno 0/ + div (B,,T) — div (A, V) = h — divH, (4.8)

B,, : Vu=n, 4.9)
a,zn — 8;8}2,17 + 8377 =g— n(A,mVﬁ— Bnoﬁ) ogn
+nHo ¢n, 4.10)
o =0;nmn onl X w, 4.11)
u0) =1, 70 =mno, 9n0)=ni. (4.12)

Note that (4.8)—(4.12)is linearin (), U, ) such that we expect strong solutions globally
in time belonging to the regularity class specified in (4.5).

Lemma 4.3 Suppose that the dataset (h, H, h, g, no, Uo, n1) satisfies

he L*(I; L*(Q), He L*(I; W'(Q),

he L*(1; W) n wh2(1; w2(@)) N {k(0, ) = 0},

g e L(I; W), no € W () with InollLow) < L, m € W"*(w),

Uy € WH2(Q) is such that @y o ¢ = nin and By, : Vg = 0. (4.13)

Then there is a strong solution to (4.8)—(4.12) satisfying the estimate
sup/ |Vﬁ|2dx+// (IVA? + |9u* + [7* + |V7|?) dx dr
1 Q 1JQ
+sup/(|afayn|2+|83n|2)dy+//(|ata§n|2+|a,2n|2)dydt
1 w 1 Jow
< [ |vup)*d h|?> + [VH]> + |Vh[*) dx d ah|> d
~ [Vug|“dx + (| [“ + | [+ |) x dr + I3 ”W—I,Z(Q) t
Q 1JQ 1

+/(|a§’no|2+|aym|2)dy+/1/ 10,1 dy de
w w
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+E(0)+// |H|2dxdt+// lg|>dydr, (4.14)
1JQ 1 Jow

where the energy € is given by

g = /|u<r>| dr 4+ /|am| dy + 2 /|82n| dy.

Proof Let us initially suppose that & = 0, that is we have B, : Vi = 0. We proceed
formally; a rigorous proof can be obtained by working with a Galerkin approximation.
Testing with (u, d;1), using By, : Vu = 0, ellipticity of A, (which follows from
Inollee < L) as well as the cancellation of the boundary terms due to (4.11) yields

5(t)+f / |Vu| dxd0+f /|a,a‘n| dydo
(0)+/ fu hdxdo—l—/ /Vu deda—i—/ /gamdyda.

This implies

sup/ |ﬁ|2dx+// |Va|? dx dr
1 Q 1JQ
wsup [ oy +sup [ 03P ay+ [ [ adnPaye
1 0] 1 w 1 Jow
E(O)+// (|h|2+|H|2)dxdt+//|g|2dydz. (4.15)
1JQ IJo

Similarly, we can test by (9,u, 8?77) noticing that the coefficients in (4.8) and (4.9) are
independent of time and that d,u and 8,277 match again at the boundary due to (4.11).
We obtain

1 1
/ /|Blu| dxdo—i-Z/ |Vu| dx+2f|8, dyn| dy—i—/ f|a nl? dydo
f|Vu0| dx+/ /8tu hdxdcr—/ /B,u divHdx do

+/nHo<pn8,2ndydt+—f |8yn1|2dy+/ /gatzndydo
3} 2 3} 0 Jo

t
—/ /83n33ndydo,
0 Jo ~

such that, using

t t
/ /a“na ndydo—/ /a,(a_ina,aymdydmr/o /|818§n|2dydo
w w
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< bsup [ 0,02 dy+2s0p [ 103 ay + [ [ 1a@20P ayao.
1 w 1 1) I Jo

we have

// |8,l_l|2dxdt+sup/ |Vﬁ|2dx+sup/ |3,8y77|2dy+// 192n|* dy dr
1JQ 1 Q 1 0] I Jow
5/ |Vﬁo|2dx+/ |8y171|2dy+// (h* + |[VH|?) dx dr
Q w 1JQ
+ff |H|2dH1dt+// |g|2dydt+sup/|a;n|2dy
1J0Q I Jow 1 w

+ [ [1aazaray. (4.16)
IJow

Now we differentiate the structure equation in space by testing with 9; 8)2,

to

n which leads

1 1 !
3 [ waataye s [1oray+ [ [ asieaydo
w 5} 0 Jo
1 2 1 3.2 ! 2
=5 [ 1yml7dy+ 3 [ [oynol~dy + gdy9mdydo
10} w 0 Jo

+//n(AnOVﬁ)—Bnoﬁ)otpna,ayzndydt
IJo

—f/nHo<pn8,8§ndydt.
IJow

Let us explain how to control the last two integrals in the above. By the trace theorem,

smoothness of A;,, B;, and ¢ as well as interpolation we have

// n(A,mVﬁ) — B,mﬁ) ) (pn8,8y2n dydr
I Jo

< / ||n(A,70Vﬁ) - Bm)f) ° (0n||W1/z,z(w) ||3z3§nllw—1/z,z(w) dr
1

A

<ec / (19812200 + 1T w1200 10l wsa ) dr
1
_ _ 1/2 1/2
c / (V812 + 1T w2 1801y 2 ) 18011y, A2
1
[ (val? . + 173, dt+l</||8m||2 2 dr
‘/I( Wy Wy ) 1 Wy

+ c(x)/ 13emlI3, 1. dr.
1 y

IA

IA
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In order to control the pressure we write similarly to (2.22)

T =70+ cx,

where (To)q = 0 and ¢ is a function of time only. The latter satisfies
Cﬁ(t)/ nB,, o gpndy = / n(A,mVﬁ - Bnoﬁo) oendy
w w

—anowndy+/8t2ndy—/gdy
w w w

due to Eq. (4.10). Noticing that By, is uniformly elliptic we infer from Poincaré’s
inequality

/Inﬁn%@z dtS/IHVﬁHi% dt+/1c%dt

s [uvai;ars [ [1@aPavar+ [ [ 1ePavar
1 x IJow IJo
+ /1 5 5 df + /1 170125 d + /I VA2 d-

By the trace theorem and (7)o = 0 we obtain

/ VTN 1/20 g 4 S / Va2, dr, / I 1/20 g 4 S / IHI2 5 dr,
1 I* X 1 1 X
— 2 — 12 — 12 _ — 2
[ 10l sgy S [l a5 [avmora = [ iveiz an

Similarly, it holds

~ [ [ osognaainayar < [ 2 ar etk [ 1o ar
I Jo 1 X 1 y

+c(x>/||a nl% 1, dt
/ t W;Z

We conclude
sup/ |8,8yn|2dy+sup/ |a§n|2dy+// |8;05m1* dy dt
I Jo I Jo I Jo

< c(x)<f|aym|2dy+/|8§no|2dy+//|g|2dydt+3(0)>
) w 1 Jo

2 —2 —12
+C/;||H”WX1’2dt+K(/]||Vu”W,\!'2dt+/]”V7T”L% dt),

where k > (1is arbitrary. Now we consider the fluid equation (4.8)—(4.9) and transform

it by means of \Iln_ol, that is, we set m = T o \II,]_O1 andu =uo \II,,_OI. Arguing as in
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the beginning of the proof of Lemma 4.2 and noticing that this transformation is
independent of time we get

du+Vr —Au=J, ' (hoW, ' — (divH) o ¥, '), divu=0, (4.17)
in I x 2y, together with
uog, =dnn onl X w. (4.18)

Maximal regularity theory for the classical Stokes problem (and smoothness of ¢, )
yields

/ f (IV?ul® + [9ul* + |Vx*) dx ds
1 JQy,
< /,/Q (IhoWw, '+ |(divH) o ¥, '|*) dx dr
0

+ / 19133722y A
1

such that, for « > 0 arbitrary,
// (IVA* + |9a)* + |V7|?) dx dr
1JQ

< c// (|h|2+|VH|2)dxdt+c(/<)// 19,0,n|* dy dr
1JQ 1 Jo

+x//|a,a§n|2dydt
1 Jo

using again interpolation and transforming back to €.

Collecting all the estimate and choosing x small enough proves the claim for 2 = 0.
Let us now explain how to remove this restriction. We consider the steady Stokes-type
system

div (By,P) — div (A, V¥) =0, By, :VV=h, ¥V]ze=0, (4.19)

in Q2 for a given function & : 2 — R. We denote the solution operator, which maps &
to v, by 'An_ol and We claim that the estimates

/|VA,7—01h|2dx§/ |h)? dx, /|V2A,;)1h|2dx§/ |Vh|? dx, (4.20)
Q Q Q Q

hold. Indeed, transforming (4.19) by means of \II,”O] (thatis, setting p =p o ql;ol and
vV=Vo \Iln_ol) we obtain the system

Vp—Av=0, divi=hoW,', Vo, =0, (4.21)
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Regularity results in 2D fluid-structure interaction 1523

in y,. The estimates

/|Vg|2dx§/ |h oW, !> dx, /|vzg|2dx§/ IV(h oW, H*dx, (422)
Q Q Q Q

are classical and yield (4.20) by transformation (and smoothness of ¥, ). If u sat-
isfies (4.8)—(4.9) for a given function &, then u — A,;Olh satisfies the problem with

homogenous constraint (note that (4.10) and (4.11) do not change as .A;OIh vanishes

at the boundary) with the additional term J, 8;./4;01}1 on the right-hand side of the

momentum equation. Applying the previously proved estimate for the problem with
homogeneous constraint we obtain the additional term

—172 2 1—17,12 2 2
/1/9(|8’A”"h| +V2A; | )dxdt5/1/9|Vh| dxdt+/1||a,h||w_],2(mdt

Sup/ |VAn‘01h|2§// (19 A B> + V24 h|?) dx de
1 Q 1JQ

5f/9|wz|2dxdr+/||a,h||3v_1,2(mdz
1 I

using also (4.20) and 4 (-, 0) = 0. The proof is now completed. O

4.3 The fixed point argument

We consider now for (¢, W, g) given the problem

T80 + div (B, 7) — div (A,, Vi) = h (W) — div H (W, ), (4.23)
By, Vi = he (W), (4.24)
07 — 8,03 + 9y = —n(A,, Vil — B, T) o pn (4.25)
+nH;(W,g) ogn,
Uo@ =0mn on [ X w. (4.26)

We consider the solution map .7;,, which maps (£, W, g) to the solution (1, w, ) of
(4.23)—(4.26) (existence of which follows from Lemma 4.3). Setting I* = (0, T*) for
some small 7* > 0 we must prove that it is a contraction on the space

¥ = Whoo (w2 ) n W21 w22 () 0 L2 (1% W32() N W22 (1*; L ()
x L(1r*; wh2(@)) n wh2(1*; L2(@) n L2(1%; W22(Q) x L2 (1*; w2(@))

complemented with the norm
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1, 0, 7) 15 :=sup/ |ﬁ|2dx+/ /|Vﬁ|2dxdr+sup/ |Va|? dx
I* JQ I*JQ I+ JQ
+/ /(|V2ﬁ|2+|8tﬁ|2+|f|2+|Vﬁ|2)dxdt
I* JQ
+sup/ (|am|2+|a§n|2)dy+/ /wtaymzdydr
I* Jo I*Jo

+s1up/ (|azayn|2+|a§n|2)dy+/l /(I3z3§n|2+|3¢2n|2)dydl
* Jo *Jw

given by the energy estimate from Lemma 4.3. This is the content of the following
lemma in which we denote by B?* (0) the ball in #"* with radius R around the origin.

Lemma 4.4 Supposethat (f, g, no, ug, n1) satisfies (2.21) and (2.25). There are R > 1
and T* <« 1 such that

Ty = BR(0) N {n(0) = no} — BE (0) N {1(0) = no}

is a contraction.

Proof First of all, we choose R sufficiently large compared to the dataset
(£, g, no, ug, n1). We intend to control the Lipschitz constants of the mappings

Y* 5 (5, W, ) > he (W) € L2(I*; L*()),
V* 5 (¢, W, q) > H,(W.q) € L*(I*; WH(Q),
D* 5 (L, W, Q) = he(W) € LEUI*; W2 @) n wh2as, w=h2(Q).  (4.27)

Since all of them map (79, 0, 0) to the origin, this will also imply that
T+ BY () N {n(0) = o} — BF " (0).
As far as H is concerned, we have®
RS AE SUSATET
s f] 1Ay = Ae) (VW1 = V)7 10 dr + /1 Ay = Ae) VW, 1 dr

+ [ 1B = B @ =D+ [ 1B~ BTl ar
1* X I* X

where, by the embeddings W12(I*; L®(w)) — L®(I*; L®(w)) and W'?(w) —
L*®(w) as well as (2.11)—(2.13),

/ Ay — Ag ) (VW1 = V)12 d + / I(Ag, — Aey) Va2 di
I* X I* X

6 Here and in the remainder of this proof the hidden constants depend on R but are independent of T*.
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< T*sup|95¢1 — 050l 7 sup VW1 — VWall7,
I* Yo *
+sup 3,1 — dynoll 7 f VW1 — V2Wa |12, dt
I* Y x
+ T*sup 0781 — 95021700 sup VW27
I* Yo *
2 2— 12
+sup 1,1 — 3y all7 f IV2W2 2, dt
I* I* 8
S T*sup [VW — VWa |7, + T*/ IVW) — V2Wal[7, dt
I* X I* X
+ T swp 33— el + 1 [ a0 - aotall, o
& y I* 4
STH@. W1, 7)) — (62, W2, §2) 15y
as well as
[ 1B =)@ =TI+ [ 1By~ BTl e
I* X I* X
< sup 13361 — 2wl / 17, — Tl dr
I* I* *
+ sup 13,61 — Bymoll7 f IVg, — Vs, dt
I* T x
+supla3n =3l [ 1ml @
+supl,er = el [ VT IR, o
I* e *
2 — — 12
N S}l*P 1 — 7)0||W}§/2,2 llg; — qZHle'Z dr
+sup 330 = ool /1 IV, — Vg, ) dr
+sup 181 — 8212 5120 f 172112 1> dt
I* Wy I* Wx
+sup 1951 — 33(2”2% [1 V7, dr
SVT [ g =@ a4 7 [ 198, - ValE, 0
I* X I* X
ST (swp s sl + [ 1o - adkal, o)
I* ) I* y

+T* / 19,9501 — 0052217, dr
I* y

SVTH1, W1, G1) — (82, Wa, G Iy
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Note that we also used the embedding

— cV4r*; wHt(w)).

Similarly, it holds
[ e @0 = e @1
I* X
</ By —Bgy) : (VW —VW)H2 dr
~ 0 &1 1 212
I* X
4 [ 1By —Be s VIR, ar
l* X
< T* <. _ T2 * 2= _ T2w. 112
ST sup VW) — Va2, + 7% | V2w — V2w 2, dr
I* x I* x
+ T*sup 8,21 — 952217, + T*/ 19,951 — 8,07 0217, dt
I* y I* y
ST Wi g) — (2. W2, G017y
As far as the W,I’ZWX_ L2 _norm is concerned, we use the embeddings

LA W) N WA L2 (@) = WHAIH W @),
W21 W22(@) N LO U W2 () = CVA1s w2 (),

and obtain
/ 19 (hey (W1) = hey W) 17,12 dt
1* X
S / 18:Bg, : (VW1 — VW)I? 15 di
I* X
+ / 13:(By, — Bgy) : VW27 y5 dt
]* X
+ / I(Byy — Be,) : 8, (VW1 — VW) |2 1, dr
1* X
+ f I(Bey, —Bey) : Vo, W22 5 di
I* X
< sup [|VW1 — Vwa|l7, / (L4 18:9y81117.4) de
I* X I* y
+ sup [|[ VW27, / 10,61 = &2) 74 dr
I* “Jrx

+ sup 1330 — 1)l ee / 13, (W1 — Wa) |7, dt
I* CJI x
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sup 19761 = &)l /1 N2, dr
1
2
ST sup 19361 — ;2>||Lg.< fl N8035 = &)1 df)
+/T*sup VW) — VWa |7, + /T sup [|3,(W1 — W) |7, dt
I* ! ~
+ T*(sup ||83§1 - 3;4“2”%5 +/ ||8;8y2§1 - 818542”%; dt)
1* I*
S VT W1, ) — (2. W2, G 1y

Moreover, we gain using again (2.12) and (2.13)

/I lhg (W1.71) — he, (W2, ) 7 d
S /1 N = Tng) @1 = 8 W2) 17, de + /1 N = Je)aWall7, dr
+ /1 ||J;1W’;‘ o Wy, (VW — VWz)at\Il;] oWy, ||i§ dt
+ /1 1(Je, VO, oWy — T, V! o Wp, ) VW20, W, o W, ||i% dr
+ /1 ||J;2V\It;21 o ‘IIQVWQ(BI\IIQ__Il oW, — a,\p;; ° \Itgz)ui% dr
+ /1 ||J;1V\II;1 o W, (VW1 W) — vwzwz)niﬁ dr
+ fl |0, VU, 0 Wy — T, V! 0 W) VW, |13, di
+ /1 1 Jey (oW —fo \1142)”2% dr + /1 I(Je; — Je)f o ‘1'42”%% dr
Ssupllcy = aymole [ 10 — ol dr
o sup llye2 = Byl /1 19w, de
77 sup (1+ 1351 75e) sup (1 -+ 13:8a5¢) sup VW1 = VW2l
+ T sup 13y — oyeallz e P (1+ 185111 750) sup VW27
+ T sup (1+18y8207) sup 41— dr2ll7ee sup Vw2172
sup (1+ 19,41 IZs) sup [ W1 — Wall74 /I Vw7, de

+sup (1 + 113111 720) sup [ W1l 7 / VW1 — VW27, dt
I* I* Jr *
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2 = 112 = 112
+sup [[9y81 — 3y8al7e sup [[W2ll74 f VW27 4 dr
I* Yo “Jr x

+ T*sup | VE|I 72 sup |61 — &2l
I* Xorx y
Finally, using the parabolic embeddings

L®(I*, L*(Q)) N L2(1%; Wh2(Q) — L*(I*; LY()),
W21 L®(w)) < L®I*; L®(w)),

we obtain

f Ilhe, (W1, 1) — e, (W2, @) I3 d
I* X
< TH0,W1 — oWl 2o dt + T* | 19,0202 — 02¢)|)%, dt
N (W1 — 0 w272 1 (0582 — 93¢ 172
X I* y
+ T*sup [ VW1 — VW27, + T* sup 0721 — 9,217
I* X I* y

+T*sup 8,51 — B &alliee + VT sup W1 = Wall} 1
I* I* X

+ «/T*( IV2W1 — V2Wa |7, dr + sup [|[ VW) — vwzniz>
I* X & X
+T*sup |51 — &2z
I* )
SVTHI@L W1, §1) — (€1, W2, §2) 1 -

In conclusion, the Lipschitz constants of the mappings in (4.27) can be made arbitrarily
small if we choose T* appropriately. Combining this observation with the estimate
from Lemma 4.3 gives the claim. O

Proof of Proposition 4.1 Combining Lemmas 4.2-4.4 yields the claim by a standard
fixed point argument. O

5 Regularity estimates

This section is devoted to the proof of Theorem 2.5 for the fluid—structure-interaction
problem (1.1)—(1.2). With the local strong solution from Proposition 4.1 at hand we
have a sufficiently smooth object such that the following computations are well-
defined. The heart of our analysis is an acceleration estimate in Proposition 5.1. It
implies that there is no blow-up in finite time such that the global solution can be
constructed by gluing local solutions together.

Let us start with the standard energy estimate (which is even satisfied by weak
solutions). Let (1, u, 7) be the unique local strong solution from Proposition 4.1. We
choose (u, d;1) as a test-function in the weak formulation, cf. Definition 2.3(c). This
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yields

t t
5(z)+/ / |Vu|2dxda+/ /|a,ayn|2dyda
0 JQ, 0 Jow

t t
55(0)+/ / u-fdxda—l—/ /gatndyda,
0 Ja, 0 Jo

1 1 1
Et) = 5/ |u<r>|2dx+5f |am<r>|2dy+§/ losn@Pdy (5.0
Q w w

and hence

(1)

supe(t)+// |Vu|2dxdt+/ /|a,ayn|2dydt
I* 1% JQ, I*Jo

55(0)+// |f|2dxdt+/ f|g|2dydt=:co
*JQ, I* Jo

forallt € I* = (0, T*). This implies

sup [[ufl7, + / IVul?,dt < Co. (5.2)
I* x I* *

sup [13,nll7 -+ sup 87 nll7; + / l:d,nll7; de S Co. (5.3)
I* I* I*

5.1 The acceleration estimate

The acceleration estimate is the heart of our analysis. It heavily relies on the elliptic
estimate for the Stokes system in irregular domains given in Theorem 3.2. A further
difference to [10] is that we cannot work with a solenoidal extension operator (as
explained in Sect. 1.3). Hence we must estimate the pressure function.

Proposition 5.1 Suppose that the assumptions of Theorem 2.5 hold and let (n, u, )
be the unique local strong solution from Proposition 4.1. Then we have the estimate

sup/
I Ja,
+S}1P/(|313y77|2+|3377|2)d)’+/1 [ 0+ 1208 avar .

= Jo * Jw

5f |Vuo|2dx+f (|aino|2+|ayn1|2)dy+/ /|ayg|2dydt+1,
w I* Jw

Qg

|Vu|2dx+/ / (IV*ul? + |9ul* + [Vr|?) dx dr
1+ JQ,

where the hidden constant depends on Cy.
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Proof We aim at testing the structure equation with 8,217 and seek for an appropriate
test-function for the momentum equation. Due to the condition u(¢, x + nn) = d;nn
at the boundary we have

D
D_tu = d;u(t, x + nn) +u(t, x + nn) - Vu(z, x + nn)
= dyu(t, x + nn) 4+ o;nn - Vu(¢, x 4+ nn)

such that the material derivative of the velocity field is the corresponding test-function
for the momentum equation. We use

¢ = ou+ F,(9;mm) - Vu

and¢ = 33 n as test-function. Here .%,, is the extension operator introduced in Sect. 2.5.
Note that we have

17 @)l 2 S 192, 1y @)l S 19l 12, (5.5

as a consequence of Lemma 2.2. From the momentum equation in the strong form
(2.23) we obtain

/ / (dru+u-Vu) - (du+ .%,(3;nn) - Vu) dx dt
*Ja,

= / f div T - (0,u + .%,(0;nm) - Vu) dx dz

+/ / f- (3u+ .%,(0mm) - Vu))dx dr,

where T = Vu + Vu! — 7l is the Cauchy stress. On the other hand, from the
structure equation (2.24) multiplied by Btzn, and the formal computation

t t t
/ /8y2n838§ndyda=—/ fat(af,natayn)dyda+f f|a,a§,n|2dydo
0 Jo 0 Jo 0 Jw
< %sup/ |8,ayn|2dy+2supf 8301 dy
I* Jow I* Jo
+/ f|a,33n|2dyda
I*Jo :
we obtain
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/ /lBtznlzdydl—l—sup/ 19,8y 7]? dy dr
1*Jo I* Jo

§/ |3y771|2dy+sup/ |8_3n|2dy
w I* Jo

+/ /|a,a§n|2dy+/ /(g—I—F)atzndydt
I*Jo I*Jo

withF = —nzog, 0, <ﬂ# . Combining both, using Reynold’s transport theorem (applied
to fgn o |Vu(r)|? dx) and Young’s inequality and writing

Fp(@m) - Vu=u-Vu+ Z,(9;mm) - Vu—u-Vu

gives

sup/ |Vu|2dx+// |0;u +u - Vu)? dx dr
I Jo, *JQ,

+/ /|afn|2dydt+su /|8;8yn|2dydt
I*Jo I* Jo

gff |u-Vu|2dxdt+/ @) o @, -y 09, ! |VuPdH! dr
*JQ, 1+ JaQ,

_ ‘/I* /;2 (3zll +u- Vu) . (ﬁn(amn) . Vu) dox

_/ / Vu: (Z,(@mm) " Vu+ V.Z, @) Vu') dx dr
1+ Jo,

+f/ ndiv(ﬁn(amn)Vu)dxdt+// |f|2dxdt+/ [Vug|* dx
1+ JQ, 1+ Jg, Qo

+ [omPayesw [@nkay+ [ [ asteaya [ [ iePayar
w ¥ Jo I*Jo I*Jo

=1+ - +XL (5.6)

In order to control the first term we make use of Theorem 3.2. Due to (5.3) its
application can be justified by Remark 3.4. We estimate for k > 0 arbitrary by
Ladyshenskaya’s inequality (recalling that 92, is Lipschitz uniformly in time by
(5.3)) and (5.2)
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2 2 2
< <
1< /I Jull2 Va2, dr < C/I* lullzz a2 [ Vully, 2 de

IA

c/ i, (10w + w - Va2 4 [Fl2 + 19ml]y322) di
o ' ' (5.7)

IA

K /1 (13w +w- Vull2, + If]17; + ||3t77||%4,3/2.2) dt

+c(/<)</ IVull}, dt + 1),
I* x

where the first part of the x-term can be absorbed in the left-hand side of (5.6). Note
that we also used the estimate

13m0 @ sz S ol sz, (5.8)

which is a consequence of (5.3) and the definition ¢, = ¢ + nn. In fact, (pn_l is

uniformly bounded in time in the space of Sobolev multipliers on W3/22(w) by (2.3),
(2.4) and (3.7) (together with the assumption Bygon # 0) such that the transformation
rule (2.5) applies. Similarly to (5.7) we obtain

<« [ [3u+Vu-Vul?,d+cl) / Va2, 1.7, @ m)|17,
I* X I* X X
<« | ldu+Vu-Vu|?,ds
I* *

+c(/<)/ IVullzz Vully 12117 @mm) [l .2 |7 (@) [l 1.2 di.
I* ~ X X

Due to (5.3), (5.5) and Theorem 3.2 (which applies by (5.3), cf. Remark 3.4) the second
term can be estimated by

/ IVullzz Vully 12117, @)l 1.2 d
I* X X

sc(x/)( [ IVuly, dr + / ||%,<amn>||¢vl,2dt)+x’ / IVull?, - dr
I* X I* X I* X

< c(x’>( / IVal, dr + f ||am||‘;vl,2dt)
I* x I* y

+K// (13w +w - VullZy + €17, + 18,7017 512.) dr.
I* X X y

where K’ > 01is arbitrary (recall also (5.8)). Furthermore, we have by the trace theorem
(recall that the boundary of €2, is Lipschitz continuous uniformly in time by (5.3)),
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Sobolev’s embedding and int