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Abstract
The Moreau envelopes of nonconvex functions on a real Hilbert space have points of
nondifferentiability called singularities. For the first time in an infinite-dimensional
space, the propagation of singularities along intrinsic characteristic curves x(t) is stud-
ied. The properties of the intrinsic characteristics are investigated in some detail. It is
proved that singularities propagate along intrinsic characteristics not only locally but
globally in t . Actually, this paper distinguishes between “singularities” and “strong
singularities,” two concepts that agree for distance functions but disagree for Moreau
envelopes, in general. Along intrinsic characteristics, propagating singularities instan-
taneously transform into strong singularities. Concerning the distance function to a
closed nonempty set E , it is demonstrated that the singular set and �E are homotopy
equivalent provided E satisfies a certain condition which is weaker than the bound-
edness of �E . The notion of intrinsic characteristics was introduced by Cannarsa and
Cheng (Calc Var Part Differ Equ 56, 2017).

Mathematics Subject Classification 49J50 · 49J52 · 35A21 · 41A65

1 Introduction

This paper examines in a real Hilbert space H the motion of the singularities of the
Moreau envelopes [35, 36] of a lower semicontinuous function f : H → R ∪ {∞},
i.e.,

ft (x) = inf
y∈H

(
f (y)+ 1

2t
‖x − y‖2

)
, t > 0, x ∈ H . (1)
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1120 T. Strömberg

In the absence of convexity of f , we prove that singularities, in a sense made pre-
cise below, propagate along intrinsic characteristic curves, a notion introduced for
Hamilton–Jacobi equations in a finite-dimensional context by Cannarsa and Cheng in
[13]. The accompanying set of minimizers

Pt f (x) = arg min
y∈H

(
t f (y)+ 1

2
‖x − y‖2

)

defines the proximal mapping Pt f : H ⇒ H of index t . Assuming

inf
x∈H

(
f (x)+ α‖x‖2

)
∈ R for all α > 0, (2)

ft is a semiconcave (see Lemma 2 below) real-valued function for all t ∈ (0,∞) such
that limt↓0 ft (x) = f (x) for all x ∈ H . The distance function dE appears when f
is the indicator function IE of a closed nonempty subset E of H (i.e., IE (x) = 0 if
x ∈ E while IE (x) = ∞ otherwise). Indeed, then

ft (x) = 1

2t
d2

E (x) and Pt f = PE ,

where the distance function and the associatedmetric projection to E send each x ∈ H
to

dE (x) = inf
y∈E

‖x − y‖ and

PE (x) = arg min
y∈E

‖x − y‖ = {y ∈ E : ‖x − y‖ = dE (x)},

respectively.
In general, ft is nondifferentiable; in fact, ft is everywhere Fréchet differentiable in

H when 0 < t < T if and only if f +(2T )−1‖·‖2 is a convex function. (The definitions
of Fréchet and Gâteaux differentiability are recalled in Section 2.) In the literature, the
functions (1) are also known as the Moreau–Yosida approximations of f in particular
in the presence of convexity. For general functions f , an application of Asplund’s [7]
results on generic differentiability of convex functions shows that (t, x) �→ ft (x) is
Fréchet differentiable on a dense Gδ . The connection to the Hamilton–Jacobi equation

∂S

∂t
+ 1

2
‖dx S‖2 = 0 in (0,∞)× H , (3)

lim
t↓0 S(t, x) = f (x) in H , (4)

is classical and well understood in particular when H = R
n . The Moreau envelope

S(t, x) = ft (x) is a viscosity solution of the Cauchy problem (3)–(4) also in infinite
dimensions [37, 38]; see Proposition 7.

If H is finite-dimensional, then the infimum (1) is always attained and the following
conditions are equivalent:
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Propagation of singularities... 1121

(i) ft is Fréchet differentiable at x ;
(ii) ft is Gâteaux differentiable at x ;
(iii) Pt f (x) is a singleton.

Adopting a term from Hamilton–Jacobi theory, a point (t, x) ∈ (0,∞)×R
n is called

singular or a singularity if ft fails to be differentiable at x . We conclude that (t, x) is
a singularity if and only if there exists more than one minimizer y in (1).

The situation is less clear-cut and, in fact, intricate when dim H = ∞. First, the
infimum (1) need not be attained. Still, it is true that (ii)⇐ (i)⇒ (iii) but no other
implication holds true between any other pair of these conditions. We choose to dis-
tinguish between two kinds of singularities one of which is stronger than the other
when dim H = ∞.

Definition 1 A point (t, x) is called singular or a singularity for S(t, x) = ft (x) if ft

fails to be Fréchet differentiable at x . The set of all singular points in (0,∞)× H is
denoted by �.

Definition 2 A point (t, x) is called strongly singular or a strong singularity for
S(t, x) = ft (x) if either ft fails to be Gâteaux differentiable at x or Pt f (x) = ∅.
The set of all strongly singular points in (0,∞)× H is designated by �s.

On the one hand, � and �s are nonempty unless f is a convex function and on the
other �s ⊆ �; see Proposition 6. Theorem 10 and Example 3 shed light on subtleties
regarding � and �s for Moreau envelopes ft showing in particular that � and �s
disagree in general. When E is nonconvex and f = IE , ft (·) = d2

E (·)/(2t) is not
a globally differentiable function. Clearly, the question of differentiability of ft is in
this case independent of t . With a slight abuse of notation, we therefore understand
that

� = {x ∈ H : d2
E is not Fréchet differentiable at x}

and

�s = {x ∈ H : PE (x) = ∅ or d2
E is not Gâteaux differentiable at x}.

Needless to say, � and E are disjoint sets. It follows from Fitzpatrick’s paper [23]
that actually � = �s in this case; see Theorem 11. The following fundamental result
on singular dynamics for distance functions in a Hilbert space has been an inspiration
for this work.

Theorem 1 (Frerking and Westphal [24]) Suppose that x0 ∈ �. Then, unless it is an
isolated singularity, x0 lies on a nonconstant Lipschitz arc each point of which is a
member of �. Furthermore, x0 is an isolated singularity if and only if PE (x0) =
S(x0, dE (x0)), the sphere about x0 of radius dE (x0).

There is a substantial, highly successful and fast expanding literature on singular
dynamics for Hamilton–Jacobi equations set in R

n covering (3) when dim H < ∞;
see, e.g., the survey articles [14, 15] byCannarsa andCheng. At the heart of this branch
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1122 T. Strömberg

of research there are twomain concepts of characteristics as well as some refinements.
It has been established when dim H <∞ that singularities propagate along Lipschitz
continuous arcs X(t) that are characterized as generalized characteristics. This notion
was first defined and studied inRn byAlbano andCannarsa in [4], although it agrees for
n = 1 with Dafermos’ concept of generalized characteristics for scalar conservation
laws in one space variable [22]. For the Cauchy problem (3)–(4), assuming H = R

n

and denoting by d+ ft the Fréchet superdifferential of ft (see (7) for the definition),
for any (t0, x0) ∈ (0,∞)× R

n there exists a unique locally Lipschitz continuous arc
X(t) such that

X(t0) = x0 and Ẋ(t) ∈ d+ ft (X(t)) a.e. t ∈ [t0,∞). (5)

It satisfies (t, X(t)) ∈ � for all t ∈ [t1,∞) if t1 ≥ t0 and (t1, X(t1)) ∈ �. The
fact that the singular propagation continuous without interruption was established by
Cannarsa, Mazzola and Sinestrari in [19] (see Theorem 2 below). For a viscosity
solution S(t, x) of a general Hamilton–Jacobi equation ∂S/∂t +H(t, x,∇S) = 0 in,
say, (0,∞)×R

n , a generalized characteristic refers to a locally Lipschitz continuous
curve X(t) satisfying

Ẋ(t) ∈ co∇pH(t, X(t), d+x S(t, X(t))) for a.e. t .

It is well-known that the singularities of S(t, x) propagate along generalized charac-
teristics locally in time t ; consult, e.g., the seminal paper [4] or the subsequent articles
[17, 43] by Cannarsa andYu or themonograph [16] on semiconcavity by Cannarsa and
Sinestrari. In certain special cases research has revealed that the propagation continues
for all later times without stopping, see, e.g., [19] and Albano’s paper [3]. However,
the extent to which the propagation is global in time t remains to this day a vital and
central research problem for general Hamilton–Jacobi equations [14, 15]. Neverthe-
less, Albano actually proved in [2] for a broad class of Hamilton–Jacobi equations
that (t, X(t)) remains in the closed hull of the singular set (i.e., in the C1 singular
support) for all later times. This is an important achievement especially in the presence
of some degree of smoothness. In certain nonsmooth cases, however, there might be
a considerable difference between � and �, inasmuch as int� = ∅ whereas � may
contain interior points. Santilli [39] has in his investigations of distance functions to
C1 or C1,1 hypersurfaces in R

n obtained several striking results on the denseness of
the singular set.

While the propagation of singularities along arcs may be viewed as a kind of
a lower bound on the structure and connectedness of the singular set, rectifiability
results constitute upper bounds. The fine estimates obtained by Alberti, Ambrosia
and Cannarsa in [6] for general convex functions on R

N apply to �. Furthermore,
significant results on the rectifiability of � including sharp bounds for the Hausdorff
measure of �\� for smooth initial-value problems for Hamilton–Jacobi equations
appear in the article [18] by Cannarsa, Mennucchi and Sinestrari. A recent paper by
Miura and Tanaka [34] on distance functions of closed sets states that � is not only
covered by but is equal to an at most countable union of Lipschitz hypersurfaces save
an exceptional set of codimension two.
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Propagation of singularities... 1123

Singular dynamics has also been studied for general semiconcave functions on
Banach spaces as notably in the paper [1] by Albano and Cannarsa.

In this paper we take a different path and study the motion of singularities in an
infinite-dimensional setting by means of so-called intrinsic characteristics. This class
of relevant curves was singled out by Cannarsa and Cheng in [13] and was used for
topological studies in [20, 21]. It is not based on a differential inclusion but has a
purely variational definition.

Definition 3 (Intrinsic characteristic) For any x0 ∈ H and any t0 > 0 we define the
intrinsic characteristic x(t) for t ∈ [t0,∞) by x(t0) = x0 and

{x(t)} = arg max
x∈H

(
ft (x)− 1

2(t − t0)
‖x0 − x‖2

)
, t0 < t <∞.

Equivalently,

x(t)− x0
t − t0

∈ d+ ft (x(t)), t0 < t <∞. (6)

In (5) and (6), ft (x) serves as a nonsmooth velocity potential, for momentaneous and
average velocities, respectively, and the superdifferential d+ ft is defined by (7). The
results of this paper are not stated in the introduction except for the main propagation
theorem (which reappears as Theorem 4 below). This backbone asserts that singulari-
ties, once they come into existence, propagate along intrinsic characteristics instantly
transforming into strong singularities.

Theorem. For a given lower semicontinuous function f : H → R ∪ {∞} meeting
(2), let x(t) be the intrinsic characteristic emanating from (t0, x0).

(i) If t1 ≥ t0 and (t1, x(t1)) ∈ �, then (t, x(t)) ∈ �s for every t ∈ (t1,∞).

(ii) If (t0, x0) ∈ � and 0 /∈ d+ ft0(x0), then ẋ+(t0) �= 0 and (t, x(t)) ∈ �s for all
t ∈ (t0,∞).

Outline of the paper. Section 2 contains some background material mainly on rel-
evant concepts of differentiation, including sub- and superdifferentials. The definition
of Asplund’s function and some of its basic properties are given in Sect. 3. A major
previous result on singular propagation for Moreau envelopes in Rn is briefly recalled
in Sect. 4 where also some remarks are made about the problem of extensions to
infinite dimensions. In Sects. 5 through 8 we state without proofs our most important
principal results, namely Theorems 3 through 9, on singular dynamics along intrinsic
characteristics. Sections 5–6 state the basic results for Moreau envelopes and distance
functions. The generation of singularities for distance functions and an application to
homotopy equivalence is the subject of Sect. 7. Section 8 examines weak limit points
of bounded singular arcs x(t) as t → ∞ showing that every such limit point is sin-
gular too. This stability property entails that the singular propagation along intrinsic
characteristics has a truly global character.

After that point the paper is devoted to a detailed study of Moreau envelopes and
intrinsic characteristics including proofs. Sects. 9–10 investigate the differentiability
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1124 T. Strömberg

properties of S(t, x) = ft (x) partly from the perspective of viscosity solution theory.
Sections 11–13 define and analyze intrinsic characteristics for Moreau envelopes and
distance functions with a focus on singular dynamics. Section 14 adds a further tool for
prolonging the singular propagation. Section 15 compiles and completes the postponed
proofs of themain results contained in Sects. 5–8. Finally, some examples are gathered
in Section 16.

2 Prerequisites

Throughout the paper H stands for a real Hilbert space whose scalar product and norm
are denoted by 〈·, ·〉 and ‖ · ‖, respectively. The open and closed balls with center at x
and of radius R are signified by B(x, R) and B(x, R), respectively, while the sphere is
denoted by S(x, R). Let g : H → (−∞,∞] be a proper function which means that its
essential domain dom g = {x ∈ H : g(x) <∞} is nonvoid. The Fréchet and Gâteaux
differential at a point x ∈ dom g are denoted by dg(x) and ∇g(x), respectively. We
recall the definitions. The function g is a said to be Fréchet differentiable at x ∈ dom g
if there exists a vector dg(x) ∈ H such that

g(x + h)− g(x) = 〈dg(x), h〉 + o(h) as h → 0,

where as usual o(h)/‖h‖ → 0 as h → 0. The function is Gâteaux differentiable at
x ∈ dom g if the directional derivative

g′(x, v) = lim
λ→0

g(x + λv)− g(x)

λ

exists in any direction v ∈ H , and for a certain ∇g(x) ∈ H it holds that g′(x, v) =
〈∇g(x), v〉 for all v ∈ H .

The Fréchet superdifferential of g is the multivalued mapping d+g : H ⇒ H
defined by

d+g(x) =
{

p ∈ H : lim sup
‖h‖→0

g(x + h)− g(x)− 〈h, p〉
‖h‖ ≤ 0

}
(7)

when x ∈ dom g while d+g(x) = ∅ if g(x) = ∞. The Fréchet subdifferential d− f is
defined by replacing “lim sup" and “≤ 0" in (7) by “lim inf" and “≥ 0", respectively.
The sets d±g(x) are convex and closed and they are simultaneously nonempty exactly
when g is Fréchet differentiable at x , in which case d+g(x) = d−g(x) = {dg(x)}.
Kruger’s survey paper [31] furnishes an overview of generalized differentiation.

The Legendre–Fenchel transform g∗ : H → (−∞,∞] of g is the convex and lower
semicontinuous function which assigns to each y ∈ H the value

g∗(y) = sup
x∈H

(〈x, y〉 − g(x)).
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Propagation of singularities... 1125

If g is itself convex and lower semicontinuous, then d−g agrees with the Fenchel
subdifferential ∂g which is defined by

∂g(x) = {y ∈ H : ∀z ∈ H g(z) ≥ g(x)+ 〈z − x, y〉} for every x ∈ dom g,

while ∂g(x) = ∅ otherwise. In this case, g∗∗ = g and ∂g∗ = (∂g)−1, i.e., y ∈ ∂g(x)

⇔ x ∈ ∂g∗(y).
Let g be continuous and locally semiconcave in an open nonempty subset � of H ,

i.e., for any point x ∈ � let there exist a ball B ⊆ � centered at x and a constant
c ≥ 0 such that g − c‖ · ‖2/2 is concave in B. Then, for any x ∈ �, d+g(x) is a
bounded convex closed nonempty subset of H , which reduces to a singleton if and
only if g is Gâteaux differentiable at x ; and d−g(x) is empty unless g is Fréchet
differentiable at x . A reachable gradient p ∈ H of g at x , in symbols p ∈ d•g(x), is
by definition a weak limit of a sequence of Fréchet gradients dg(xk) where xk → x
strongly; d•g(x) is a nonvoid subset of d+g(x) and d+g(x) = cod•g(x). While
Fréchet differentiability is a stronger notion than Gâteaux differentiability in general,
it is a property of semiconcave functions in finite dimensions that dg(x) exists if and
only if ∇g(x) exists. The main object of this paper, namely S(t, x) = ft (x), is locally
semiconcave in (0,∞)× H , an open subset of the Hilbert space R× H .

We next recall Asplund’s characterization of Fréchet differentiability of g∗ for
general proper functions g.We denote by� the set of all convex, lower semicontinuous
functions γ : [0,∞) → [0,∞] such that γ (0) = 0 and consider the subsets

�U = {γ ∈ � : γ (r) > 0 if r > 0} and �L = {γ ∈ � : γ (r)/r → 0 as r → 0}.

In defining the conjugate to γ ∈ � by

γ ∗(s) = sup
r≥0

(rs − γ (r)), 0 ≤ s <∞,

γ ∈ �U if and only if γ ∗ ∈ �L ; see Lemma 1 in [7].

Lemma 1 (Asplund [7]) Let g be a lower semicontinuous proper function on H and
consider a pair (x0, y0) ∈ H × H. Then the following conditions are mutually
equivalent.

(i) g∗ is finite and Fréchet differentiable at y0 with x0 = dg∗(y0).
(ii) For some γ ∗ ∈ �L ,

g∗(y) ≤ g∗(y0)+ 〈x0, y − y0〉 + γ ∗(‖y − y0‖) for all y ∈ H ,

and g∗(y0) ∈ R.

(iii) For some γ ∈ �U ,

g(x) ≥ g(x0)+ 〈x − x0, y0〉 + γ (‖x − x0‖) for all x ∈ H ,

and g(x0) ∈ R.
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1126 T. Strömberg

(iv) g∗ is finite at y0 and dom g∗ is radial at y0; and if

lim
j→∞(〈x j , y0〉 − g(x j )) = g∗(y0),

then x j → x0 in norm.

Any single one of these four conditions implies 〈x0, y0〉 = g(x0)+g∗(y0) and g(x0) =
g∗∗(x0).

3 Asplund’s function

The following is a version of Asplund’s function [8].

Lemma 2 The associated function A : (0,∞)× H → R defined by

A(t, x) = 1

2
‖x‖2 − t S(t, x), (t, x) ∈ (0,∞)× H ,

is convex. In terms of the Legendre–Fenchel transform, A(t, x) = (
t f + 1

2‖ · ‖2
)∗

(x).

Proof Indeed, A can be represented as the pointwise supremum of a family of affine
functions of (t, x) in the following way:

A(t, x) = sup
y∈dom f

(〈x, y〉 − t f (y)− ‖y‖2/2).

��
In the case of the distance function to a set E , A is independent of t , namely,

A(x) = 1
2‖x‖2− 1

2d2
E (x). In his paper onChebyshev sets,Asplund [8]made significant

use of the fact that A is a convex continuous function such that PE ⊆ ∂ A (see
Proposition 6).We give a brief review of the relation between PE and ∂ A. The equality
PE (x) = ∂ A(x) holds if and only if x /∈ �, in which case PE (x) = {d A(x)}. If
dim H <∞, then co PE (x) = ∂ A(x). However, coPE (x) and ∂ A(x) do not coincide
in general if dim H = ∞. Example 5 (Example 4, respectively) furnishes a case where
PE (x) = ∅ while ∂ A(x) is a singleton (PE (x) is a singleton while ∂ A(x) has more
than one element, respectively). In fact, Godini [25] has in any infinite-dimensional
Hilbert space H uncovered a proximinal set E (i.e., PE (x) �= ∅ for all x ∈ H ) such
that coPE (x) is a strict subset of ∂ A(x) for some x ∈ H\E . Klee [30] obtained a few
years earlier an example of this nature for nonseparable Hilbert spaces.

Lemma 3 (Berens [10] and Veselỳ [42]) At every x ∈ H ,

∂ A(x) =
⋂

R>dE (x)

co
(

E ∩ B(x, R)
)
⊆ B(x, dE (x)) ∩ coE

and PE (x) = ∂ A(x) ∩ S(x, dE (x)).
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Propagation of singularities... 1127

We collect a few elementary observations concerning the extreme case when
PE (x) = S(x, dE (x)) which occurs exactly when E ∩B(x, dE (x)) = S(x, dE (x)). A
proof can easily be constructed on the basis of Lemma 3.

Lemma 4 The following conditions are equivalent for any x ∈ H :
(i) PE (x) = S(x, dE (x));
(ii) ∂ A(x) = B(x, dE (x));
(iii) The boundary of ∂ A(x) is equal to S(x, dE (x));
(iv) The boundary of ∂ A(x) is included in PE (x).

The following properties of A∗ were elegantly exploited in [7].

Lemma 5 A∗ = (IE + 1
2‖ · ‖2)∗∗ is the supremum of all closed convex functions

minorizing 1
2‖ · ‖2 on E. In particular, A∗(x) = ∞ and hence ∂ A∗(x) = ∅ for any x

in the complement of coE, i.e.,

dom ∂ A∗ ⊆ dom A∗ ⊆ coE .

4 Remarks on extension from finite to infinite dimensions

The time global propagation results for generalized characteristics X(t) (defined by
(5)) obtained in [3, 19, 41] are directly applicable to Moreau envelopes inRn . Regard-
less of dimension, as confirmed in Proposition 7 below, singularities of S(t, x) = ft (x)

can be detected from the following dichotomy:

min{ω + ‖v‖2/2 : (ω, v) ∈ d+S(t, x)}
{

< 0 if (t, x) ∈ �,

= 0 if (t, x) /∈ �.

We present a version of the global-in-time propagation result in R
n obtained by

Cannarsa, Mazzola and Sinestrari [19]. Albano’s paper [3] examines more general
equations successfully.

Theorem 2 Assume that f : Rn → R ∪ {∞} is a lower semicontinuous function
satisfying (2) and set S(t, x) = ft (x). Consider the generalized characteristic
X : [t0,∞) → R

n emanating from the point (t0, x0) ∈ (0,∞)× R
n . Then

m(t) := t2 ·min{ω + ‖v‖2/2 : (ω, v) ∈ d+S(t, X(t))}

is a right-continuous, nonincreasing and nonpositive function of t ∈ [t0,∞) such that
m(t) < 0 exactly if (t, X(t)) ∈ �. In particular, if t1 ≥ t0 and (t1, X(t1)) ∈ �, then
(t, X(t)) ∈ � for all t ∈ [t1,∞).

Proof We sketch the proof of the monotonicity presented in [41] leaving out most
details. The task is to prove that m(t) ≤ m(t1) for any fixed t0 ≤ t1 and any t > t1.
First, A(t, x) is approximated by C∞ convex functions Aε(t, x) by means of integral
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1128 T. Strömberg

convolution with a nonnegative mollifier and then Sε(t, x) is defined from Aε(t, x) =
1
2‖x‖2 − t Sε(t, x). Consider the solution Xε(t) to dx/dt = ∇x Sε(t, x) satisfying
Xε(t1) = X(t1). Then Xε(t) → X(t) locally uniformly as ε ↓ 0. A calculation
reveals that the derivative of

mε(t) := t2
(

∂Sε

∂t
(t, Xε(t))+ 1

2
‖∇x Sε(t, Xε(t))‖2

)

satisfies

ṁε(t) = −t
〈
D2Aε(Yε(t))Ẏε(t), Ẏε(t)

〉
≤ 0.

Here, D2Aε(t, x) denotes the (positive semidefinite) full Hessian matrix of Aε(t, x)

and Yε(t) = (t, Xε(t)). We find that mε(t) ≤ mε(t1) for every t > t1. By virtue of
the specific mollification lemma of [17] the mollifier can be chosen so as to obtain
mε(t1)→ m(t1) as ε ↓ 0 making it possible to conclude that m(t) ≤ m(t1). ��

As this proof sketch shows, the approximation lemmaof [17, 43] is a vital tool for the
analysis inRn . It is a difficultywhen attempting to derive results in infinite-dimensional
spaces that this tailor-made regularization technique is no longer available. For distance
functions, the article [5] proves the indefinite propagation of singularities inRn as well
as in manifolds. The proofs revolve around relevant ordinary differential equations
interpreted in a clever way. The major hurdle in extending propagation results to H is
the lack of compactness of bounded sets in H or the lack of weak lower semicontinuity
of relevant functions. The choice of this paper is the intrinsic characteristics approach
of Cannarsa and Cheng [13] which works well owing to the semiconcavity of ft (as
expressed in Lemma 2) yielding well-behaved global concave maximization problems
in H . For instance, this is true of the very definition of the arcs (see Definition 3). The
analysis relies on weak convergence and the weak lower semicontinuity that convex
closed functions enjoy.

5 Principal results for Moreau envelopes

We proceed by presenting a selection of our most central results about intrinsic char-
acteristics introduced in Definition 3. We define (ω◦(t, x), v◦(t, x)) as the unique
element of d+S(t, x) minimizing ω + 1

2‖v‖2, i.e.,

ω◦(t, x)+ 1

2
‖v◦(t, x)‖2 ≤ ω + 1

2
‖v‖2 for all (ω, v) ∈ d+S(t, x).

We observe that v◦(t, x) ∈ d+ ft (x).

Theorem 3 Assume that f : H → R∪ {∞} is a lower semicontinuous function satis-
fying (2). Let x(t) signify the intrinsic characteristic emanating from a point x0 ∈ H
at time t0 > 0. Then the following assertions are fulfilled:
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Propagation of singularities... 1129

(i) x(t) = d Ft0→t (x0) when t ≥ t0 where

Ft0→t =
(

t − t0
t

A(t, ·)+ t0
2t
‖ · ‖2

)∗

or, setting J t0→t = d Ft0→t , x(t) = J t0→t (x0) where

J t0→t =
(

t − t0
t

∂x A(t, ·)+ t0
t

I

)−1
= (

I − (t − t0)d
+ ft

)−1
.

The convex function Ft0→t : H → R is Fréchet differentiable and J t0→t =
d Ft0→t is globally Lipschitz continuous of rate t/t0.

(ii) t �→ x(t) is Hölder continuous with exponent 1/2 in [t0, T ] for every t0 < T <∞.

(iii) The right derivative ẋ+(t0) exists and ẋ+(t0) = v◦(t0, x0); in particular, ẋ+(t0) �=
0 if 0 /∈ d+ ft0(x0).

Corollary 1 (Lipschitz and monotone dependence on initial data) Let t0 > 0 and
consider the intrinsic characteristics x(t) and y(t) issuing from (t0, x0) and (t0, y0),
respectively. Then

1

t
‖x(t)− y(t)‖ ≤ 1

t0
‖x0 − y0‖ and 〈x(t)− y(t), x0 − y0〉 ≥ 0

for all t ∈ [t0,∞).

The following is our principal result on singular dynamics for Moreau envelopes.

Theorem 4 (Propagation of singularities) For a given lower semicontinuous function
f : H → R∪{∞}meeting (2), let x(t) be the intrinsic characteristic emanating from
(t0, x0).

(i) If t1 ≥ t0 and (t1, x(t1)) ∈ �, then (t, x(t)) ∈ �s for every t ∈ (t1,∞).

(ii) If (t0, x0) ∈ � and 0 /∈ d+ ft0(x0), then ẋ+(t0) = v◦(t0, x0) �= 0 and (t, x(t)) ∈
�s for all t ∈ (t0,∞).

Remark 1 Example 6 manifests that generalized characteristics and intrinsic charac-
teristics are different concepts and that, in general, J t1→t2 ◦ J t0→t1 �= J t0→t2 when
t0 < t1 < t2.

Remark 2 As an alternative to x(t) = J t0→t (x0) we could construct a singular curve
by choosing a sequence 0 < t0 < t1 < · · · < tk → ∞, setting ξ(t0) = x0 and
proceeding recursively by defining

ξ(t) = J tk→t (ξ(tk)) for t ∈ (tk, tk+1], k = 0, 1, 2, . . . .

Cf. Example 6.
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1130 T. Strömberg

6 Basic results for distance functions

We turn to the spreading of singularities of distance functions. We remind the reader
that � = �s in this case (Theorem 11). For any x0 ∈ H\E and any t0 > 0, the
intrinsic characteristic x(t) satisfying the initial condition x(t0) = x0 is in this case
given by

{x(t)} = arg max
x∈H

(
1

2t
d2

E (x)− 1

2(t − t0)
‖x0 − x‖2

)
, t0 < t <∞. (8)

Equivalently,

x(t) = J t0→t (x0) where J t0→t =
(

t − t0
t

∂ A + t0
t

I

)−1
, t0 ≤ t <∞, (9)

where Asplund’s function is A(x) = 1
2‖x‖2− 1

2d2
E (x) [8]. We remark that the choice

of t0 > 0 is arbitrary because Jμt0→μt = J t0→t for any μ > 0.

Definition 4 A point x0 ∈ H is termed critical if 0 ∈ d+d2
E (x0).

A trivial consequence of (6) is that x(t) = x0 for all t ∈ [t0,∞) if x0 is a critical
point.

Proposition 1 In terms of Asplund’s function A(x) = 1
2‖x‖2− 1

2d2
E (x), x0 is a critical

point if and only x0 ∈ ∂ A(x0) if and only if x0 ∈ ∂ A∗(x0).

Proposition 2 Let E be a closed nonempty subset of H . If x0 is a critical point, then
x0 ∈ dom ∂ A∗ ⊆ coE . In particular, there exists no critical point outside of coE .

Proof Let x0 be a critical point. Then x0 ∈ ∂ A∗(x0) and hence x0 ∈ dom ∂ A∗ ⊆ coE
by Lemma 5. The conclusion also follows from Lemma 3 applied to x0 ∈ ∂ A(x0). ��

We let r(x) denote the norm minimal element of d+d2
E (x)/2. As d+d2

E/2 =
dE d+dE and dE is Lipschitz continuous with constant 1, we have ‖r(x)‖ ≤ dE (x).
If x /∈ �, then r(x) = x − y where y is the closest point to x in E , thus,
‖r(x)‖ = dE (x). By contrast, if x ∈ �, then ‖r(x)‖ < dE (x) as d+dE (x) is a convex
closed subset of B(0, 1) with more than one element. On account of Theorem 3(iii),
ẋ+(t0) = v◦(t0, x0) = r(x0)/t0.

The crude Hölder estimate of Theorem 3(ii) can be radically improved for distance
functions.

Theorem 5 (Lipschitz continuity) Let E be a closed nonempty subset of H . For any
t0 < s < t <∞ consider the initial velocity v0 = r(x0)/t0 and the average velocities

vt0→s = x(s)− x0
s − t0

and vs→t = x(t)− x(s)

t − s
.
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Propagation of singularities... 1131

Then

‖vs→t‖2 ≤ ‖vt0→s‖2 − ‖vs→t − vt0→s‖2; (10)

in particular, ‖vs→t‖ < ‖vt0→s‖ unless vs→t = vt0→s . Furthermore,

‖vt0→t‖2 ≤ ‖v0‖2 − ‖vt0→t − v0‖2 (11)

as well as

‖vs→t‖2 ≤ ‖v0‖2 − ‖vt0→s − v0‖2 − ‖vs→t − vt0→s‖2; (12)

in particular, ‖vs→t‖ < ‖v0‖ unless vs→t = vt0→s = v0.

Theorem 6 The intrinsic characteristic emanating from a noncritical point x0 pos-
sesses the following properties.

(i) x(t) �= x0 for all t ∈ (t0,∞) and the initial velocity ẋ+(t0) is given by

ẋ+(t0) = v0 := v◦(t0, x0) = r(x0)/t0 �= 0.

In particular, ‖ẋ+(t0)‖ = ‖v0‖ ∈ (0, dE (x0)/t0].
(ii) ‖x(t)− x(s)‖ ≤ ‖v0‖(t − s) for all t0 ≤ s < t <∞.

(iii) The distances dE (x(t)) and ‖x0 − x(t)‖ are nondecreasing functions of t ∈
[t0,∞). In fact, if t0 ≤ t1 < t2, then

dE (x(t1)) < dE (x(t2)) and ‖x0 − x(t1)‖ < ‖x0 − x(t2)‖

unless x(t1) = x(t2). Furthermore, the functions dE (x(t)) and ‖x0 − x(t)‖ are
either simultaneously bounded or simultaneously unbounded.

(iv) (Propagation of singularities) If x0 ∈ �, then 0 < ‖ẋ+(t0)‖ < dE (x0)/t0 and
x(t) ∈ �\{x0} for all t ∈ (t0,∞).

Similar results were derived for generalized characteristics of distance functions in
Riemannian manifolds in the article [5] by Albano, Cannarsa, Nguyen and Sinestrari.

7 Generation of singularities for distance functions and homotopy
equivalence

If PE (x0) is a singleton {y0}, then we can extend x(·) to [0,∞) by setting,

for t ∈ [0, t0), x(t) = y0 + tv0 where v0 = x0 − y0
t0

. (13)

Our next theorem asserts that if x(t) starts from a nonsingular point x0 ∈ �E , whose
nearest point in E is y0, then x(t)will eventually become singular unless E is supported
at the boundary point y0 by the hyperplane whose normal vector is r(x0) = x0 − y0.
(Since x0 /∈ �, PE (x0) = {d A(x0)} = {y0}.)
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1132 T. Strömberg

Theorem 7 (Generation and propagation of singularities) Let E be a closed nonempty
subset of H and suppose that x0 ∈ �(� ∪ E). Let x(·) be extended to [0,∞) by (13)
where PE (x0) = {y0}. Then, either

(i) x(t) remains nonsingular for all t ∈ (0,∞), PE (x(t)) = {y0} and x(t) = y0 +
tv0 = x0 + (t − t0)v0 for all t ∈ [0,∞), or

(ii) there exists a t∗ ∈ [t0,∞) such that x(t) is nonsingular and x(t) = x0+(t− t0)v0
for all t ∈ (0, t∗) whereas x(t) is singular for all t ∈ (t∗,∞).

Case (i) happens if and only if

E ⊆ {x ∈ H : 〈x − y0, v0〉 ≤ 0}.

In case (ii), the cut point x(t∗) lies on the ray from y0 through x0, y0 ∈ PE (x(t∗))
while y0 /∈ PE (x(t)) for every t > t∗.

Theorem 7 has topological implications. While �E and � are clearly not homeo-
morphic (as �E is an open set while the interior of � is empty), it was proved by
Lieutier in [33] that they still are homotopy equivalent if �E is a bounded nonvoid
subset of Rn . Lieutier’s theorem was extended to Riemannian manifolds in [5]. In our
Hilbert space setting we shall construct the required homotopy drawing on Theorem 7,
assuming a weaker condition than the boundedness of �E , namely that ρ(�E) < ∞
where

ρ(�E) := sup
x∈�E

dE (x) = sup
x∈H

dE (x). (14)

Equivalently,

ρ(�E) = sup{R > 0 : B(x, R) ⊆ �E for somex ∈ �E}.

The first step states that x(t) will be trapped in � for all times t such that t/t0 >

ρ(�E)/dE (x0) provided (14) is finite.

Corollary 2 Assume that the complement of E is open, nonempty and such that
ρ(�E) < ∞. Let x0 ∈ �(� ∪ E). Then alternative (ii) in Theorem 7 is in force.
Moreover, x(t∗) = y0 + t∗v0 and t∗/t0 ≤ ρ(�E)/dE (x0).

Proof Alternative (i) is ruled out by dE (x(t)) ≤ ρ(�E) <∞.We have x(t) = y0+tv0
when t ∈ [t0, t∗] and

ρ(�E) ≥ dE (x(t∗)) = ‖x(t∗)− y0‖ = t∗‖v0‖ = t∗dE (x0)/t0.

It ensues that t∗/t0 ≤ ρ(�E)/dE (x0). ��
The second step summarizes what we know about the Lipschitz continuity of

J t0→t (x0) = J 1→t/t0(x0). A direct combination of Theorem 5 and Corollary 1 yields
the following conclusion.
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Propagation of singularities... 1133

Proposition 3 The mapping  : [1,∞)× H → H defined by (τ, x) = J 1→τ (x) is
Lipschitz continuous:

‖(τ1, x)−(τ0, x)‖ ≤ ‖r(x)‖|τ1 − τ0| ≤ dE (x)|τ1 − τ0| (15)

as well as

‖(τ, x1)−(τ, x0)‖ ≤ τ‖x1 − x0‖ (16)

for all τ and τ j in [1,∞) and all x and x j in H.

We next generalize Lieutier’s result to the Hilbert space H . Since � ⊂ �E , the
proof amounts to exhibiting a continuous mapping F : [0, 1] × �E → �E such that
F(0, ·) is the identity mapping on �E while F(1, ·) maps �E into � and F(θ, ·) maps
� into � for every θ ∈ [0, 1].
Theorem 8 (Homotopy equivalence) Assume that the complement of E is an open
nonempty set such that ρ(�E) < ∞. Then �E and � are of the same homotopy type
because the mapping F : [0, 1] × �E → �E defined by

F(θ, x) = J 1→1−θ+θ R/dE (x)(x) for all (θ, x) ∈ [0, 1] × �E,

for any fixed R > ρ(�E), is continuous and satisfies, on the one hand, F(0, x) = x
and F(1, x) ∈ � for all x ∈ �E and, on the other, F(θ, x) ∈ � whenever (θ, x) ∈
[0, 1] × �. In fact, the homotopy F is Lipschitz continuous away from the boundary
of E .

8 Weak limit points as t → ∞ for distance functions

This section investigates the behavior of x(t) as t →∞ assuming that the initial point
x0 ∈ �E be noncritical. Being a nondecreasing function, the distance ‖x0 − x(t)‖
either approaches ∞ or remains bounded as t tends to ∞. Let us assume the latter
alternative, i.e., that x(t) stays in some ball B(x0, R) for all t ≥ t0. Under these
circumstances, x(t) ∈ � for all sufficiently large t by virtue of Theorem 7. By the
weak sequential compactness of closed balls, for any t j →∞ the bounded sequence
x(t j ) possesses a weakly convergent subsequence. It turns out that each weak limit
point belongs to ∂ A∗(x0) (see Lemma 5 for basic properties of this set). Moreover,
it holds that ∂ A∗(x0) ⊆ �\{x0}. Thus, each weak limit point is singular. By basic
convex function theory, x0 ∈ int dom A∗ ⇔ A∗ is finite and continuous at x0 ⇔ A∗
is Lipschitz continuous on some neighborhood of x0 (see, e.g., [12, Sect. 4.1]). Either
of these conditions implies that ∂ A∗(x0) is bounded and nonempty.

Theorem 9 (Weak limit points) For the distance function dE to a closed nonempty
set E ⊂ H , let x(t) be the intrinsic characteristic emanating at time t0 > 0 from a
noncritical point x0 ∈ �E . Assume that ‖x0 − x(t)‖ stays bounded as t tends to ∞.
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Then, the set of weak limit points

W = {x̄ ∈ H : x̄ is the weak limit of x(t j ) for some sequence t j →∞}

is a weakly closed nonempty subset of �\{x0}. In fact,

∅ �= W ⊆ ∂ A∗(x0) ⊆ �\{x0}. (17)

In particular, x0 ∈ coE .

Corollary 3 Under the hypotheses of Theorem 9, the following assertions hold true.

(a) If ∂ A∗(x0) is a bounded set, then W is weakly compact.
(b) If A∗ is Gâteaux differentiable at x0, then W = {∇A∗(x0)} and x(t)→ ∇A∗(x0)

weakly as t →∞.
(c) If A∗ is Fréchet differentiable at x0, then x(t)→ d A∗(x0) strongly as t →∞.

Corollary 4 Every intrinsic characteristic x(t) with an initial point x0 /∈ coE is
unbounded, i.e., ‖x0 − x(t)‖ → ∞ and dE (x(t))→∞ as t →∞.

Proof By contraposition of Theorem 9, we conclude that ‖x0 − x(t)‖ is unbounded
when x0 /∈ coE . Theorem 6 (or Proposition 15) asserts that dE (x(t)) is unbounded
too. ��
Corollary 5 Every singular intrinsic characteristic x(t) with an initial point x0 /∈ coE
carries singularities to infinity, i.e., if t1 ≥ t0 and x(t1) ∈ �, then x(t) ∈ � for all
t ∈ [t1,∞), ‖x0 − x(t)‖ → ∞ and dE (x(t))→∞ as t →∞.

Proof See Theorem 4 or Corollary 7 for the singular propagation. ��
Cf. Examples 6–7 at the end of the paper. The following remark addresses the

important question of the global character of the singular dynamics.

Remark 3 The stability property presented in Theorem 9 can be utilized to exclude that
a singular intrinsic characteristic merely is a rescaled or reparameterized purely local
singular arc. To explain this, suppose that ξ : [0,∞) → H is a continuous nonconstant
curve such that, for some τ̄ > 0, ξ(τ ) ∈ � when τ ∈ [0, τ̄ ) but ξ(τ̄ ) /∈ �. In this
hypothetical situation, ξ(·) propagates singularities locally but not globally in τ as ξ(τ )

exits � at τ = τ̄ . Let φ : [0,∞) → [0, τ̄ ) be an increasing homeomorphism (e.g.,
φ(σ) = τ̄ (1− e−σ ) when σ ∈ [0,∞)) and set χ = ξ ◦ φ. Clearly, χ(σ) ∈ � for all
σ ∈ [0,∞) yet the propagation is not genuinely global as χ(∞) := limσ→∞ χ(σ) =
ξ(τ̄ ) /∈ �.

By Theorem 9, if it exists, the strong (or weak) limit x(∞) is a member of � for
any singular bounded intrinsic characteristic x(·). Hence, x(·) is not merely a rescaled
local singular arc in the above sense. Furthermore, if x̄ = x(∞) is noncritical, then
the singular propagation can be genuinely prolonged by using x̄ as a new initial point.
Indeed, the curve ξ(s) = J s0→s(x̄), defined for some fixed s0 > 0 and all s ≥ s0,
is a nonconstant singular arc such that dE (ξ(s)) is nondecreasing with dE (ξ(s)) >

dE (x̄) ≥ dE (x(t)) for all t > t0 and all s > s0 (see Theorem 6).
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Propagation of singularities... 1135

Let us take a look at the exceptional case where x(t)moves inside a “spherical cav-
ity" (see Theorem 1 and Lemma 4). This is the only way that an intrinsic characteristic
can reach an isolated singularity.

Example 1 Assume that E ∩ B(z0, R) = S(z0, R) and select an initial point x0 in
B(z0, R), x0 �= z0. Then x(t)moves with constant velocity to the center z0 of the ball,
i.e.,

x(t) = x0 + (t − t0)v0 when t ∈ [t0, t∗]

where

t∗ = t0R

R − ‖z0 − x0‖ , t∗ − t0 = t0‖z0 − x0‖
R − ‖z0 − x0‖ and v0 = z0 − x0

t∗ − t0
.

Moreover, x(t) = z0 for all t ∈ [t∗,∞) and z0 is an isolated singularity because
dE (x) = R − ‖z0 − x‖ for all x ∈ B(z0, R).

9 Differentiability of Moreau envelopes

This section is concerned with the differentiability properties of the Moreau–Yosida
approximations (1) of a lower semicontinuous function f subject to condition (2).
Clearly, at a point x , the differentiability of ft is equivalent to that of A(t, ·); see
Lemma 2. From now on proofs will be included.

Proposition 4 Assume that S(t0, ·) = ft0(·) is Fréchet differentiable at x0. Then the
infimum (1) for t = t0 is achieved at a unique point y0, i.e., Pt0 f (x0) = {y0} and

dx S(t0, x0) = d ft0(x0) = x0 − y0
t0

.

Moreover, at (t0, x0), the partial derivative ∂S/∂t exists too and the Hamilton–Jacobi
equation ∂S/∂t + 1

2‖dx S‖2 = 0 is satisfied.

Proof By Lemma 2, likewise as S(t, x) = ft (x), the convex function A : (t, x) �→
(t f + 1

2‖ · ‖2)∗(x) is locally Lipschitz continuous. Since ft0 is Fréchet differentiable
at x0, owing to (6), so is A(t0, ·), say, y0 = dx A(t0, x0). By Lemma 1, therefore,

〈x0, y0〉 =
(

t0 f + 1

2
‖ · ‖2

)∗
(x0)+ t0 f (y0)+ 1

2
‖y0‖2 (18)

which converts to

t0 ft0(x0) = 1

2
‖x0‖2 −

(
t0 f + 1

2
‖ · ‖2

)∗
(x0) = t0 f (y0)+ 1

2
‖x0 − y0‖2, (19)
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demonstrating that the infimum (1) for t = t0 is attained at y0. In order to investigate
the derivative of ft (x0) at t = t0 we consider t �= t0 close to t0 and select yt ∈ H such
that

f (yt )+ 1

2t
‖x0 − yt‖2 < ft (x0)+ (t − t0)

2, (20)

which translates to

〈x0, yt 〉 − t f (yt )− 1

2
‖yt‖2 >

(
t f + 1

2
‖ · ‖2

)∗
(x0)− t(t − t0)

2. (21)

We claim that yt → y0 in norm as t → t0. On the basis of (21) we find that

lim inf
t→t0

(
〈x0, yt 〉 − t0 f (yt )− 1

2
‖yt‖2

)
= lim inf

t→t0

(
〈x0, yt 〉 − t f (yt )− 1

2
‖yt‖2

)

≥ lim inf
t→t0

(
t f + 1

2
‖ · ‖2

)∗
(x0) =

(
t0 f + 1

2
‖ · ‖2

)∗
(x0). (22)

By virtue of (18), (22) and the Fréchet differentiability of (t0 f + 1
2‖ · ‖2)∗ at x0, by

invoking Lemma 1, we may now infer that yt → y0 in norm, as claimed.
On account of (19) and (20) it holds that

f (yt )+ 1

2t
‖x0 − yt‖2 − (t − t0)

2 −
(

f (yt )+ 1

2t0
‖x0 − yt‖2

)

≤ ft (x0)− ft0(x0)

≤ f (y0)+ 1

2t
‖x0 − y0‖2 −

(
f (y0)+ 1

2t0
‖x0 − y0‖2

)

which reduces to

− t − t0
2t t0

‖x0 − yt‖2 − (t − t0)
2 ≤ ft (x0)− ft0(x0) ≤ − t − t0

2t t0
‖x0 − y0‖2;

hence,

lim
t→t0

ft (x0)− ft0(x0)

t − t0
= − 1

2t20
‖x0 − y0‖2 = −1

2
‖d ft0(x0)‖2.

��
Example 2 Differentiability of t �→ S(t, x0) = ft (x0) at t = t0 does not imply that of
x �→ S(t0, x) at the point x0. Indeed, consider f = −‖ · ‖ and ft (x) = −t/2 − ‖x‖
at x0 = 0.

Remark 4 The hypothesis of Fréchet differentiability in Proposition 4 cannot be
relaxed to Gâteaux differentiability. Indeed, let f be the indicator function of a closed
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Propagation of singularities... 1137

nonconvex set E ⊂ H such that d2
E is Gâteaux but not Fréchet differentiable at a point

x0 ∈ H\E . Then, by virtue of Theorem 11, PE (x0) = ∅, ‖∇dE (x0)‖ < 1 and, thus,

∂S

∂t
(t, x0)+ 1

2
‖∇x S(t, x0)‖2 = −d2

E (x0)

2t2
+ d2

E (x0)

2t2
‖∇dE (x0)‖2 < 0.

A closed subset E of H = �2 such that dE (0) = 1 and ∇dE (0) = 0 is furnished by
Example 5. See Corollary 6 below for a more general statement.

Proposition 5 Suppose that y0 ∈ Pt0 f (x0). Then, at each point of the form X(t) =
y0 + (t/t0)(x0 − y0) where 0 < t < t0, ft is Fréchet differentiable with

d ft (X(t)) = X(t)− y0
t

= x0 − y0
t0

.

In particular, Pt f (X(t)) = {y0} when t ∈ (0, t0).

Proof We notice that the supremum for A(t0, x0) = (t0 f + 1
2‖ · ‖2)∗(x0) is attained

at the same point, y0, i.e.,

〈x0, y〉 − t0 f (y)− 1

2
‖y‖2 ≤ 〈x0, y0〉 − t0 f (y0)− 1

2
‖y0‖2 (23)

for all y ∈ H . It suffices to verify that x �→ A(t, x) is differentiable at X(t) with
dx A(t, X(t)) = y0 for fixed 0 < t < t0. To this end, we set

D(y) := t f (y)+ 1

2
‖y‖2 − t f (y0)− 1

2
‖y0‖2 − 〈X(t), y − y0〉.

We take (23) into account to derive the inequality

D(y) = t

t0
(t0 f (y)− t0 f (y0))+ 1

2
‖y‖2 − 1

2
‖y0‖2 − 〈X(t), y − y0〉

≥ t

t0

(
−1

2
‖y‖2 + 1

2
‖y0‖2 + 〈x0, y − y0〉

)
+ 1

2
‖y‖2 − 1

2
‖y0‖2 − 〈X(t), y − y0〉

= t0 − t

2t0
‖y − y0‖2,

which shows thatD(y) ≥ γ (‖y− y0‖) for a quadratic function γ ∈ �U . By appealing
to Lemma 1 we may conclude that ft is Fréchet differentiable at X(t). ��

We recall that, for every x ∈ H , Pt f (x) is included in the closed convex nonempty
set ∂x A(t, x) of subgradients. In particular, Pt f is a cyclically monotone mapping.

Proposition 6 Let f : H → R ∪ {∞} be a lower semicontinuous function satisfying
(2). Then the following statements are fulfilled.

(i) coPt f (x) ⊆ ∂x A(t, x) for every t > 0 and x ∈ H .
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(ii) A point (t, x) is not strongly singular if and only if ft is Gâteaux differentiable at
x and Pt f (x) �= ∅.

(iii) �s ⊆ � when dim H = ∞ while �s = � when dim H <∞.

(iv) If (t, x) is not a strong singularity, then Pt f (x) is a singleton {y}, ∇ ft (x) =
(x − y)/t and Pt f (x) = ∂x A(t, x) = {∇x A(t, x)}.

Proof (i) Let y ∈ Pt f (x); then f (y) <∞ and

ft (x + h)− ft (x)

≤ f (y)+ 1

2t
‖x + h − y‖2 −

(
f (y)+ 1

2t
‖x − y‖2

)

=
〈

x − y

t
, h

〉
+ ‖h‖

2

2t
.

It ensues that (x − y)/t ∈ d+ ft (x) which translates to y ∈ ∂x A(t, x). Part (ii) is a
trivial consequence of the definition.

(iii)–(iv) The Gâteaux differential ∇ ft (x), if it exists and if y ∈ Pt f (x), must be
equal to (x − y)/t whence Pt f (x) = {y} = ∂x A(t, x). By Proposition 4, if (t, x) /∈ �

then the infimum defining ft (x) is uniquely attained and so (t, x) /∈ �s. ��

10 Viscosity solution

We next confirm that S(t, x) = ft (x) is a viscosity solution of (3) based on d±S.

Proposition 7 The following assertions are true for the Moreau envelopes of any lower
semicontinuous function f : H → R ∪ {∞} subject to (2).

(i) S(t, x) = ft (x) is a viscosity solution of (3), i.e., for any (t, x) ∈ (0,∞) × H ,

ω+ 1
2‖v‖2 ≤ 0 if (ω, v) ∈ d+S(t, x) while ω+ 1

2‖v‖2 ≥ 0 if (ω, v) ∈ d−S(t, x).

(ii) A point (t, x) ∈ (0,∞)× H belongs to � if and only if ω+ 1
2‖v‖2 < 0 for some

(ω, v) ∈ d+S(t, x).

Proof (i) By the convexity of (ω, v) �→ ω + 1
2‖v‖2 and d+S(t, x) = cod•S(t, x), it

suffices to demonstrate the subsolution inequality assuming that (ω, v) ∈ d•S(t, x). In
this case, there exists a sequence� �� (tk, xk) → (t, x) such that d S(tk, xk) converges
weakly to (ω, p). Proposition 4 ensures that the Hamilton–Jacobi equation is satisfied
at each (tk, xk); hence, ω + 1

2‖v‖2 ≤ 0 is obtained in the limit as k →∞. Second, if
(ω, v) ∈ d−S(t, x), then S is Fréchet differentiable at (t, x) and the Hamilton–Jacobi
equation ω + 1

2‖v‖2 = 0 is satisfied.
(ii) Fixing the point (t, x), the task amounts to showing the implication (a)⇒ (b)

where

(a) ω + 1
2‖v‖2 = 0 for all (ω, v) ∈ d+S(t, x);

(b) S is Fréchet differentiable at (t, x).
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It is elementary to verify, for any two points (ωk, vk) ∈ R × H , that the system of
equations

0 = ω0 + 1

2
‖v0‖2 = ω1 + 1

2
‖v1‖2 = ω0 + ω1

2
+ 1

2

∥∥∥∥v0 + v1

2

∥∥∥∥
2

(24)

implies (ω0, v0) = (ω1, v1). Assume (a) and choose (ωk, vk) ∈ d+S(t, x), k =
0, 1, arbitrarily. Then also 1

2 (ω0 + ω1, v0 + v1) belongs to d+S(t, x). By (a), (24)
is fulfilled forcing (ω0, v0) = (ω1, v1). Thus d+S(t, x) is a singleton {(ω, v)} which
means that S is Gâteaux differentiable at (t, x)with gradient (ω, v). Then d•S(t, x) =
{(ω, v)}. Thus, for any sequence (t j , x j ) /∈ � converging strongly to (t, x), we have
(ω j , v j ) := d S(t j , x j ) → (ω, v) weakly. Owing to (a) we have ω + 1

2‖v‖2 = 0 and
using ω j + 1

2‖v j‖2 = 0 we find that ‖v j‖2 → ‖v‖2 as j → ∞ since ω j → ω.
This observation elevates the weak convergence v j → v to strong convergence. By
Šmulian’s theorem on Fréchet differentiability [40], [12, Thm. 4.2.10] (which extends
from convex to semiconvex and semiconcave functions) we may conclude that S is
Fréchet differentiable at (t, x). ��
Theorem 10 Let f be a proper lower semicontinuous function on H such that (2) is
fulfilled. Then the following conditions are equivalent for any (t0, x0) ∈ (0,∞)× H .

(i) S(t0, ·) is Fréchet differentiable at x0.
(ii) S is Fréchet differentiable at (t0, x0).
(iii) S is Gâteaux differentiable at (t0, x0) and Pt0 f (x0) is a singleton.
(iv) S is Gâteaux differentiable at (t0, x0) and Pt0 f (x0) �= ∅.
(v) S is Gâteaux differentiable at (t0, x0) and the Gâteaux gradient (ω, p) satisfies

ω + 1
2‖v‖2 = 0.

(vi) ω + 1
2‖v‖2 = 0 for all (ω, v) ∈ d+S(t, x).

Proof Proposition 4 ensures that (ii) ⇒ (iii) while the implication (iii) ⇒ (iv) is
immediate. The implication (iv)⇒ (v) follows since, at (t0, x0), the Gâteaux gradient
(∂S/∂t,∇S) is equal to (−‖x0 − y0‖2/(2t20 ), (x0 − y0)/t0) if (iv) holds and y0 ∈
Pt0 f (x0) (the proof is similar to that of Proposition 6). Furthermore, (v)⇒ (vi) holds as
d+S(t0, x0) is a singleton when S is Gâteaux differentiable at (t0, x0). The implication
(vi)⇒ (ii) was a key step in the proof of Proposition 7. As (ii)⇒ (i) holds trivially,
we shall close the circle by demonstrating that (i) implies (vi). Assuming (i), pick
any (ω, v) ∈ d+S(t0, x0). Then v ∈ d+x S(t0, x0) and ω ∈ d+t S(t0, x0). It follows
that v = dx S(t0, x0) and taking into account Proposition 4 we also find that ω =
(∂S/∂t)(t0, x0) and ω + 1

2‖v‖2 = 0. ��
The equation ω + 1

2‖v‖2 = 0 may not hold for any (ω, v) ∈ d+S(t, x).

Corollary 6 If S is Gâteaux but not Fréchet differentiable at (t0, x0), then Pt0 f (x0) = ∅
and

∂S

∂t
(t0, x0)+ 1

2
‖∇x S(t0, x0)‖2 < 0.
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Example 3 shows in particular that � and �s are different in general and that the
condition

• “S(t0, ·) is Gâteaux differentiable at x0 and Pt0 f (x0) is a singleton"

is not equivalent to any of the conditions presented in Theorem 10.
Theorem 10 is a generalization to Moreau envelopes of Fitzpatrick’s characteriza-

tion of Fréchet differentiability of distance functions.

Theorem 11 (Fitzpatrick [23]) Let E be a nonvoid closed subset of H . The following
conditions are equivalent for any x0 ∈ H\E .

(i) dE is Fréchet differentiable at x0.
(ii) dE is Gâteaux differentiable at x0 and PE (x0) is nonempty.
(iii) dE is Gâteaux differentiable at x0 and PE (x0) is a singleton.
(iv) dE is Gâteaux differentiable at x0 and ‖∇dE (x0)‖ = 1.
(v) The metric projection PE is continuous at x0 in the sense that PE (x0) is a singleton

and y j → PE (x0) whenever x j → x0 and y j ∈ P(x j ).

In particular, � = �s.

For more on the theme of differentiability of Moreau envelopes, see [26].

11 Basic analysis of intrinsic characteristics for Moreau envelopes

We are now in the position to apply, on a detailed level, the ideas and methods set forth
by Cannarsa and Cheng in [13] to the viscosity solution S(t, x) = ft (x) of (3)–(4). A
formal time reversal motivates the definition

gs(x) = sup
y∈H

(
g(y)− 1

2s
‖x − y‖2

)
.

In [32], Lasry and Lions introduced a regularization and approximation scheme for
lower semicontinuous functions f on a Hilbert space by defining ft,s = ( ft )

s for
0 < s < t . These double indexed approximations of f enjoy remarkable properties.
For instance, if (2) is met, ft,s → f pointwise as 0 < s < t ↓ 0 and ft,s is
differentiable with a globally Lipschitz continuous differential d ft,s . Reconnecting to
the approach of [13] we consider, for a fixed initial point (t0, x0) and any t > t0, the
maximization problem

arg max
x∈H

(
ft (x)− 1

2(t − t0)
‖x0 − x‖2

)
, (25)

which is well-behaved since the objective function is uniformly concave by virtue of
the expansion

x �→ ft (x)− 1

2(t − t0)
‖x0 − x‖2 = a concave function −

(
1

t − t0
− 1

t

)
‖x‖2/2.
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It ensues that there exists a unique maximizer in (25), which we shall denote by
x = x(t), i.e.,

{x(t)} = arg max
x∈H

(
ft (x)− 1

2(t − t0)
‖x0 − x‖2

)
, t0 < t <∞.

Clearly, x(t) is characterized as the unique solution x of

x − x0
t − t0

∈ d+ ft (x) (26)

and it is straightforward to show that x(t0) := limt↓t0 x(t) = x0. The mapping
x : [t0,∞) → H is referred to as the intrinsic characteristic emanating from x0
(thus repeating Definition 3).

We expect that minimizing straight arcs are intrinsic characteristics.

Proposition 8 Suppose y1 ∈ Pt1 f (x1). Consider a point of the form

x0 = y1 + t0v where 0 < t0 < t1 and v = x1 − y1
t1

.

Then the intrinsic characteristic x(t) with x(t0) = x0 is given by

x(t) = x0 + (t − t0)v = y1 + tv when t ∈ [t0, t1]. (27)

Moreover, ft is Fréchet differentiable at x(t) and

ẋ(t) = d ft (x(t)) = v when t ∈ [t0, t1).

Proof By Proposition 5, ft is Fréchet differentiable along the straight line (27) with
d ft (x(t)) = v for every t ∈ [t0, t1). The intrinsic characteristic is characterized as the
unique solution x of (26) which is x = x0 + (t − t0)v when t ∈ (t0, t1). ��

If the intrinsic characteristic (t, x(t)) that starts at (t0, x0) passes through a non-
singular point at (t1, x(t1)) then it has to agree with a nonsingular line segment when
t ∈ [t0, t1].
Theorem 12 Consider the intrinsic characteristic x(t) issuing from an arbitrary point
(t0, x0) ∈ (0,∞)× H . Assume that (t1, x(t1)) is not a strong singularity for a certain
t1 > t0, which means on the one hand that Pt1 f (x(t1)) = {y1} for some y1 ∈ H
and, on the other, that the Gâteaux differential ∇ ft1(x(t1)) exists and equals v :=
(x(t1)− y1)/t1. Then

x(t) = y1 + tv = x0 + (t − t0)v when t ∈ [t0, t1],

while ft is Fréchet differentiable at x(t) with d ft (x(t)) = v = ẋ(t) for every t ∈
[t0, t1). Furthermore, Pt f (x(t)) = {y1} for all t ∈ [t0, t1].
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Proof Let 0 < t0 < t1 and assume that (t1, x(t1)) is not a strong singularity. The point
x = x(t1) is characterized by (26), i.e.,

∇ ft1(x(t1)) = x(t1)− x0
t1 − t0

. (28)

As regards ∇ ft1(x(t1)), Proposition 6 ensures that Pt1 f (x(t1)) is a singleton {y1} and

∇ ft1(x(t1)) = x(t1)− y1
t1

. (29)

It follows from (28) and (29) that

x(t1)− x0
t1 − t0

= x(t1)− y1
t1

which expresses that (t0, x0) is an interior point of the straight line segment

(
t, y1 + t

x(t1)− y1
t1

)
= (t, y1 + tv), 0 ≤ t ≤ t1,

connecting (0, y1) with (t1, x(t1)). Thus, on account of Propositions 5 and 8, first,

x(t) = y1 + tv = x0 + (t − t0)v whent ∈ [t0, t1],

and, secondly, ft is Fréchet differentiable at x(t) with d ft (x(t)) = v for every t ∈
[t0, t1). ��

We may now conclude that singularities propagate forward in time along intrinsic
arcs turning immediately into strong singularities.

Corollary 7 (Propagation of singularities) Let x(t) be the intrinsic characteristic ema-
nating from (t0, x0). If t1 ≥ t0 and (t1, x(t1)) ∈ �, then (t, x(t)) ∈ �s for every
t ∈ (t1,∞).

Proof The conclusion follows from Theorem 12 by contraposition. ��
A complementary observation concerning the points of �s of vacuous proximal

mapping reads as follows:

Corollary 8 Suppose that Pt1 f (x(t1)) = ∅. Then there exists some τ ∈ [t0, t1) such
that (t, x(t)) ∈ �s for all t ∈ (τ,∞).

Proof Devising the proof by contraposition, assume that (t, x(t)) /∈ �s for all
t ∈ [t0, t1). Owing to Corollary 7, the task at hand boils down to inferring that
Pt1 f (x(t1)) �= ∅. Let t0 < τ < t1. By Theorem 12 applied to the point (τ, x(τ )) /∈ �s,
we deduce that x(t) agrees with a straight line segment of the form y(τ )+ tv(τ) and
that Pt f (x(t)) = {y(τ )} when t ∈ [t0, τ ]. We claim that y(τ ) and v(τ) are in fact
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Propagation of singularities... 1143

independent of τ ∈ (t0, t1). To this end, pick t0 < τ0 < τ1 < t1 arbitrarily. Then, in
particular,

x(t) = y(τ0)+ tv(τ0) = y(τ1)+ tv(τ1) when t ∈ [t0, τ0],

forcing y(τ0) = y(τ1) and v(τ0) = v(τ1), and the claim follows. We conclude that
there exist constant vectors y ∈ H and v ∈ H such that x(t) = y+tv and Pt f (x(t)) =
{y} for all t ∈ [t0, t1). Taking the limit as t ↑ t1 in the inequality

∀z ∈ H f (y)+ 1

2t
‖x(t)− y‖2 ≤ f (z)+ 1

2t
‖x(t)− z‖2,

which is in force when t0 < t < t1, using the continuity of x(t) proved in
Proposition 11, implies y ∈ Pt1 f (x(t1)). ��

Wenext examine the intersection of intrinsic characteristics noticing that the inverse
multivalued mapping (J t0→t )−1 : H ⇒ H , given by

(J t0→t )−1 = I − (t − t0)d
+ ft ,

maps points to bounded convex nonempty sets.

Proposition 9 The mapping J t0→t1 : H → H is surjective for any 0 < t0 < t1. In
other words, through any given point (t1, x1) ∈ (0,∞) × H with 0 < t0 < t1 there
passes at least one intrinsic characteristic issuing at t = t0 from some initial point
x0; more precisely,

J t0→t1(x0) = x1

if and only if

x0 ∈ (J t0→t1)−1(x1) = x1 − (t1 − t0)d
+ ft1(x1).

Furthermore, the intrinsic characteristic starting at t = t0 passing through (t1, x1)
is unique exactly if ft1 is Gâteaux differentiable at x1. In this case, it is given by
x(t) = x1 + (t − t1)∇ ft1(x1) when t ∈ [t0, t1] and (t, x(t)) /∈ � when t ∈ [t0, t1)
if, in addition, Pt1 f (x1) �= ∅. If, on the other hand, ft1 is Gâteaux differentiable at x1
while Pt1 f (x1) = ∅, then (t, x(t)) ∈ �s when t ∈ (τ,∞) for some τ ∈ (t0, t1).

Proof Owing toTheorem3, the descriptionof the inversemappingof J t0→t1 is straight-
forward. The inverse mapping is single-valued at x1 if and only if the convex function
A(t1, ·) isGâteauxdifferentiable at x1. In this case, let the unique intrinsic characteristic
be denoted by x(t), t0 ≤ t ≤ t1. On account of Theorem 12, it is given by x(t) =
x1 + (t − t1)∇ ft1(x1) when t ∈ [t0, t1] if, in addition, Pt1 f (x1) �= ∅. The conclusion
about the case when Pt1 f (x1) = ∅ comes from Corollary 8. ��
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12 Regularity of intrinsic characteristics

We recall that (ω◦(t, x), v◦(t, x)) ∈ d+S(t, x) satisfies

ω◦(t, x)+ 1

2
‖v◦(t, x)‖2 ≤ ω + 1

2
‖v‖2 for all (ω, v) ∈ d+S(t, x).

In the terminology of [27, 28], v◦(t, x) is the admissible velocity. In H = R
n , the

following result was obtained for certain Hamilton–Jacobi equations of the form
H(x,∇S(x)) = 0 in the seminal paper [13, Prop. 3.4] on intrinsic characteristics.
The initial velocity is the right derivative

ẋ+(t0) = lim
t↓t0

x(t)− x0
t − t0

at the initial point.

Proposition 10 The right derivative ẋ+(t0) exists and ẋ+(t0) = v◦(t0, x0).

Proof Let tk ↓ t0 and consider

vk = x(tk)− x0
tk − t0

, k = 1, 2, . . . .

The task is to establish that vk → v◦(t0, x0) strongly. Choose δ > 0 so large that
(tk, x(tk)) ∈ � = [t0, t0+ δ]×B(x0, δ) for all k ≥ 1. The function S(t, x) = ft (x) is
Lipschitz continuous and semiconcave in�. From (26)we see that vk ∈ d+x S(tk, x(tk))
and, thus, (vk) is a bounded sequence possessing a weakly convergent subsequence,
still labelled by (vk), i.e., vk → v0 weakly. In fact, the semiconcavity of S ensures
that (ωk, vk) ∈ d+S(tk, x(tk)) for some bounded real sequence (ωk). By extracting a
further subsequence, we may assume that ωk → ω0 as k → ∞. On account of the
semiconcavity,

S(t0, x0) ≤ S(tk, x(tk))+ ωk(t0 − tk)+ 〈vk, x0 − x(tk)〉
+C((t0 − tk)

2 + ‖x0 − x(tk)‖2) (30)

Similarly, for any (ω, v) ∈ d+S(t0, x0) it holds that

S(tk, x(tk)) ≤ S(t0, x0)+ ω(tk − t0)+ 〈v, x(tk)− x0〉
+C((tk − t0)

2 + ‖x(tk)− x0‖2). (31)

In (30) and (31), C is a constant of semiconcavity of S on �. Inequalities (30) and
(31) add to

0 ≤ (ω − ωk)(tk − t0)+ 〈v − vk, x(tk)− x0〉 + 2C((tk − t0)
2 + ‖x(tk)− x0‖2)
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Propagation of singularities... 1145

or, dividing through by tk − t0 > 0, to

0 ≤ ω − ωk + 〈v − vk, vk〉 + 2C(1+ ‖vk‖2)(tk − t0).

Rearranging terms and passing to the limit yields

‖v0‖2 ≤ lim inf
k→∞ ‖vk‖2 ≤ lim sup

k→∞
‖vk‖2

≤ lim sup
k→∞

(
ω − ωk + 〈v, vk〉 + 2C(1+ ‖vk‖2)(tk − t0)

)
= ω − ω0 + 〈v, v0〉.

(32)

Thus, we have demonstrated that

ω − ω0 + 〈v − v0, v0〉 ≥ 0 for all (ω, v) ∈ d+S(t0, x0). (33)

Owing to the outer semicontinuity of the multivalued mapping d+S, the weak limit
(ω0, v0) belongs to d+S(t0, x0); this conclusion is confirmed in Lemma 6 below. To
prove that actually vk → v0 in norm it is sufficient to notice that each inequality in
(32) is an equality when (ω, v) = (ω0, v0). Indeed, this choice shows that

lim
k→∞‖vk‖2 = ‖v0‖2

which together with vk → v0 weakly implies that vk → v0 in norm.
Finally, inequality (33) implies that (ω0, v0) = (ω◦(t0, x0), v◦(t0, x0)). Indeed, by

expansion of ‖v − v0‖2 the following inequality holds for all (ω, v) ∈ R × H with
v �= v0:

ω + 1

2
‖v‖2 −

(
ω0 + 1

2
‖v0‖2

)
> ω − ω0 + 〈v − v0, v0〉,

which combined with (33) yields (ω0, v0) = (ω◦(t0, x0), v◦(t0, x0)). ��
Lemma 6 Let B be an open ball in a Hilbert space H. Let F : H → R be such that
F(X)− C‖X‖2/2 is concave and continuous in the closed ball B for some constant
C. If X j → X̄ ∈ B in norm, Pj ∈ d+F(X j ) and Pj → P̄ weakly, then P̄ ∈ d+F(X̄).

Proof We convert to the convex function defined as G(X) = C‖X‖2/2− F(X) in the
closed ball B and as G(X) = ∞ otherwise. We set Q j = C X j − Pj which converges
weakly to Q̄ = C X̄ − P̄ . Then, Q j ∈ ∂G(X j ) in the sense of convex analysis which
means that

G(X) ≥ G(X j )+ 〈X − X j , Q j 〉 for all X ∈ H.

Sending j →∞ yields

G(X) ≥ G(X̄)+ 〈X − X̄ , Q̄〉 for all X ∈ H,
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which says that Q̄ ∈ ∂G(X̄) and, thus, that P̄ ∈ d+F(X̄). ��

Remark 5 The generalized characteristic defined by (5) actually satisfies Ẋ
+
(t) =

v◦(t, X(t)) for all t ∈ [t0,∞) owing to its uniqueness [17, Cor. 3.4].

We proceed to the regularity of x(t). We base the proof partly on the regularity of
A(t, x). The most advantageous case is when f = IE since then A is independent of
t .

Proposition 11 The intrinsic characteristic x(t) issuing from (t0, x0) is locally Hölder
continuous with exponent 1/2. It is locally Lipschitz continuous if ∂ A/∂t exists and is
a locally Lipschitz continuous function of (t, x) ∈ [t0,∞)× H . Moreover, if f is the
indicator function of a closed nonempty set E ⊂ H , or if ∂ A/∂t is a constant, then
x(t) satisfies the Lipschitz estimates of Theorem 5.

Proof For any t0 < s < t we set

pt = x(t)− t(x(t)− x0)

t − t0
and ps = x(s)− s(x(s)− x0)

s − t0

noting that pt ∈ ∂x A(t, x(t)) and ps ∈ ∂x A(s, x(s)) on account of (49). Since A is
convex there exist real numbers αt , αs such that (αt , pt ) ∈ ∂ A(t, x(t)), (αs, ps) ∈
∂ A(s, x(s)), and hence

(αt − αs)(t − s)+ 〈pt − ps, x(t)− x(s)〉 ≥ 0. (34)

We next expand

Q := ‖x(t)− x(s)‖2 (35)

to

Q = − (t − t0)〈pt − ps, x(t)− x(s)〉
t0

+
〈
x(s)− x0

s − t0
, x(t)− x(s)

〉
(t − s). (36)

Taking into account (34) and

x(s)− x0
s − t0

∈ d+ fs(x(s))

we can derive upper bounds for (36) as follows

Q ≤ (t − t0)(αt − αs)(t − s)

t0
+

〈
x(s)− x0

s − t0
, x(t)− x(s)

〉
(t − s) (37)

≤
(

(t − t0)(αt − αs)

t0
+ M(s)‖x(t)− x(s)‖

)
(t − s) (38)
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where

M(s) = sup
v∈d+ fs (x(s))

‖v‖.

Using that |αt − αs | and M(s) are bounded when t0 ≤ s < t ≤ T we infer, from (35)
and (37)–(38), the Hölder estimate ‖x(t) − x(s)‖ ≤ CT (t − s)1/2 for t0 ≤ s < t ≤
T <∞.

Let us now add the hypothesis that ∂ A/∂t be locally Lipschitz continuous when
t ≥ t0. We claim that the average velocity

vs→t = x(t)− x(s)

t − s

is then bounded when t0 ≤ s < t ≤ T . Observing that

αt − αs = ∂ A

∂t
(t, x(t))− ∂ A

∂t
(s, x(s)) ≤ CT ((t − s)+ ‖x(t)− x(s)‖)

when t0 ≤ s < t ≤ T we find, by means of (38), that

‖vs→t‖2 ≤ CT (t − t0)

t0
(1+ ‖vs→t‖)+ MT ‖vs→t‖.

We may now infer the speed bound ‖vs→t‖ ≤ LT when t0 ≤ s < t ≤ T < ∞ for
some constant LT depending on T .

Finallywe assume instead thatαt ≤ αs , which certainly holds if ∂ A/∂t is a constant.
For instance, if f = IE , then A(t, x) is independent of t and αt = 0 = αs . In this
special case we can derive the inequality

‖vs→t‖2 ≤ 〈vt0→s, vs→t 〉 (39)

for the average velocities

vt0→s = x(s)− x0
s − t0

and vs→t = x(t)− x(s)

t − s
.

Indeed, combining (35) with (37) yields

‖x(t)− x(s)‖2 ≤
〈
x(s)− x0

s − t0
, x(t)− x(s)

〉
(t − s)

and (39) ensues by division with (t − s)2. Inequality (39) is equivalent to (10), i.e., to

‖vs→t‖2 − ‖vt0→s‖2 ≤ −‖vs→t − vt0→s‖2, (40)

which is confirmed by an expansion of the right-hand side of (40); in particular,
‖vs→t‖ < ‖vt0→s‖ unless vs→t = vt0→s . ��
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13 A few propositions about distance functions

We recall that �s = � in the case of distance functions by Theorem 11. In this case,
x(t) is given by (8) or, equivalently, in setting

θ(t) = t

t − t0
, t0 < t <∞,

x = x(t) if and only if

θ(t)(x − x0) ∈ d+d2
E (x)/2.

The function θ(·) is decreasing and its range is (1,∞). The intrinsic characteristic
x(t) does not return to the initial point x0 unless x(t) ≡ x0. Recall that a point x0 ∈ H
is called critical if 0 ∈ d+d2

E (x0).

Proposition 12 If x0 is a critical point then x(t) = x0 for all t ∈ [t0,∞). Otherwise,
x(t) �= x0 for all t ∈ (t0,∞) and ẋ+(t0) = v◦(t0, x0) = r(x0)/t0 �= 0.

Proposition 13 Assume that x0 is not a critical point, t0 < t1 < t2 and x(t1) = x(t2).
Then x(t j ) ∈ � and x is constant on [t1, t2].
Proof Setting x̄ = x(t1) = x(t2) we have x̄ �= x0 and θ(t j )(x̄ − x0) ∈ d+d2

E (x̄)/2
for j = 1, 2, implying x̄ ∈ �. Let t1 < t < t2; then also θ(t)(x̄ − x0) ∈ d+d2

E (x̄)/2,
and hence x(t) = x̄ , because θ(t2) < θ(t) < θ(t1) and d+d2

E (x̄)/2 is a convex set. ��
If x(t) reaches a critical point, then it will come to a stop there.

Proposition 14 Assume that x(t1) is a critical point for some t1 ∈ (t0,∞). Then
x(t) = x(t1) for all t ∈ [t1,∞).

Proof The point x(t1) is characterized by

θ(t1)(x(t1)− x0) ∈ d+d2
E (x(t1))/2;

hence

co {0, θ(t1)(x(t1)− x0)} ⊂ d+d2
E (x(t1))/2. (41)

In order to demonstrate that x(t) = x(t1) for any t > t1 it suffices to show that

θ(t)(x(t1)− x0) ∈ d+d2
E (x(t1))/2. (42)

To this end we need only observe that the left-hand side of (42) is an element of the
left-hand side of (41). Indeed,

θ(t)(x(t1)− x0) = (1− λ)0+ λθ(t1)(x(t1)− x0)

for the scalar λ = θ(t)/θ(t1) ∈ (0, 1). ��
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Proposition 15 The distances dE (x(t)) and ‖x0− x(t)‖ are nondecreasing functions
of t ∈ [t0,∞). In fact, if t0 ≤ t1 < t2, then

dE (x(t1)) < dE (x(t2)) and ‖x0 − x(t1)‖ < ‖x0 − x(t2)‖

unless x(t1) = x(t2). Moreover, the functions dE (x(t)) and ‖x0 − x(t)‖ are either
simultaneously bounded or simultaneously unbounded.

Proof For arbitrary fixed t0 < t1 < t2 we set F(x) = d2
E (x)/2, G(x) = ‖x0 − x‖2/2

and, for j = 1, 2, x j = x(t j ) and θ j = θ(t j ). Then θ2 < θ1 and

{x j } = arg max
x∈H

(F(x)− θ j G(x)).

Suppose that x1 �= x2; then

F(x1)− θ1G(x1) > F(x2)− θ1G(x2)

as well as

F(x2)− θ2G(x2) > F(x1)− θ2G(x1),

which combine to

θ2(G(x2)− G(x1)) < F(x2)− F(x1) < θ1(G(x2)− G(x1)). (43)

Taking into account that θ1 > θ2 > 0 it follows that each membrum of (43) is positive.
Thus, F(x2) > F(x1) and G(x2) > G(x1). To prove the boundedness assertion, we
start by recalling that by (8), for any fixed t > t0, x(t) is the maximizer of

�(x) = 1

2t
d2

E (x)− 1

2(t − t0)
‖x0 − x‖2.

As �(x(t)) = sup� ≥ �(x0) we must have

1

2t
d2

E (x(t))− 1

2(t − t0)
‖x0 − x(t)‖2 ≥ 1

2t
d2

E (x0)

implying

‖x0 − x(t)‖2 ≤ (t − t0)(d2
E (x(t))− d2

E (x0))

t
≤ d2

E (x(t))− d2
E (x0).

In particular, if dE (x(t)) is a bounded function of t ∈ [t0,∞) then so is ‖x0 − x(t)‖.
Conversely, it is easily verified that the boundedness of ‖x0 − x(t)‖ implies that of
dE (x(t)). ��

123



1150 T. Strömberg

14 A further tool for propagation of singularities

The propagation results of Theorems 4–7 have the strength of being global in time t .
Even if x(t) eventually becomes constant, the propagation still persists along (t, x(t));
see Example 8 in the final section for an elementary illustration. In the case of distance
functions, we also know that the speed of propagation along x(t) does not exceed the
initial speed. Still there is a flaw in this picture. We are primarily interested in the
propagation along x(t) in �E , thinking of t as a parameter. It may happen that x(t)
becomes constant after some time while singularities may continue propagating along
some other arc. Suppose, for the sake of argument, that an intrinsic characteristic x(t)
is nonsingular when t < t1 but x(t1) = J t0→t1(x0) is a critical point implying that
x(t) = x(t1) for all t ∈ [t1,∞), as confirmed by Proposition 14. It is clear that the arc
t �→ J t1→t (x(t1)), with x(t1) as the new initial point, is constant as well when t ≥ t1.
Still there exists a nonconstant singular Lipschitz arc emanating from x(t1) provided
PE (x(t1)) �= S(x(t1), dE (x(t1))) (which rules out the situation of Example 1); see
Theorem 1. In our next theorem we use the operator J t0→t1 again to construct such a
singular arc by letting it act on a certain straight line segment rather than the point x0
alone.

Theorem 13 Let E be a closed nonempty subset of H . Assume that x(t1) =
J t0→t1(x0) ∈ � where t0 < t1 and PE (x(t1)) �= S(x(t1), dE (x(t1))). Then a singular
Lipschitz arc X(s) ∈ �, 0 ≤ s ≤ s0, satisfying X(0) = x(t1) and X(s) �= x(t1) for
all s ∈ (0, s0] is obtained by defining

X(s) = J t0→t1

(
t0
t1
x(t1)+ t1 − t0

t1
(y0 + su)

)
, 0 ≤ s ≤ s0,

where y0 ∈ B(x(t1), dE (x(t1))) is a boundary point of ∂ A(x(t1)), 0 < s0 <

dE (y0)/2, while u is any unit vector such that y0 + su /∈ ∂ A(x(t1)) for all s > 0.

Proof Wemodify the proof in [24]. Abbreviating J t0→t1 to J , Theorem 3 tells us that

x(t1) = J (x0) = ((1− λ)∂ A + λI )−1 (x0)

for λ = t0/t1. On account of Lemmas 3–4, while included in B(x(t1), dE (x(t1))), the
boundary of ∂ A(x(t1)) intersects the open ball B(x(t1), dE (x1)). We may therefore
select a boundary point y0 of ∂ A(x(t1)) and a unit vector u satisfying ‖x(t1)− y0‖ <

dE (x(t1)) and ys := y0 + su /∈ ∂ A(x(t1)) for all s > 0. In particular, y0 /∈ E , and
choosing 0 < s0 < dE (y0)/2, we find that, for any s ∈ [0, s0],

|dE (ys)− dE (y0)| ≤ ‖ys − y0‖ = s ≤ s0 < dE (y0)/2

forcing

s < dE (ys). (44)
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On the sole basis of the definition of J , for any x ∈ H and y ∈ H it holds that

J (λx + (1− λ)y) = x ⇔ y ∈ ∂ A(x) (45)

as well as

x − λJ (x) ∈ (1− λ)∂ A(J (x)). (46)

We set

zs = λx(t1)+ (1− λ)ys, ws = zs − λJ (zs)

1− λ
,

and examine the Lipschitz continuous curve X(s) = J (zs) for s ∈ [0, s0]. The
equivalence (45) ensures that X(0) = x(t1) and X(s) �= x(t1) for every s ∈ (0, s0].
Thus X(·) does not reduce to a single point. It remains only to prove that X(s) is a
singular arc. On the one hand, (46) ensures that ws ∈ ∂ A(X(s)) and, on the other,
taking into account the Lipschitz continuity of J (with constant 1/λ by Theorem 3)
and (44),

‖ys − ws‖ = λ

1− λ
‖J (zs)− J (z0)‖ ≤ λ

1− λ

1

λ
‖(1− λ)(ys − y0)‖ = s < dE (ys)

implyingws /∈ E . Hence, A is not Fréchet differentiable at X(s), because if itwere then
ws = d A(X(s)) = PE (X(s)) ∈ E by Proposition 6. Thereby, we have demonstrated
that X(s) ∈ � for every s ∈ [0, s0], concluding the proof. ��
Remark 6 In Example 9 in the final section � is a hyperplane consisting of critical
points. If the initial point x0 is nonsingular, then x(t) reaches � in a finite time and
comes to a stop in �. By contrast, X(s) is a nonconstant singular arc.

A version of Theorem 13 for Moreau envelopes concludes this section. It asserts
the existence of a nonconstant singular arc in {t1}× H starting from a strictly singular
point (t1, x1). By Proposition 6, Pt f (x) ⊆ ∂x A(t, x).

Theorem 14 Given a lower semicontinuous function f : H → R ∪ {∞} fulfilling
(2), let (t1, x1) be a strictly singular point such that some point of the boundary of
∂x A(t1, x1) is not a member of Pt1 f (x1). Then there exists a Lipschitz curve X(s)
defined for s ∈ [0, s0] such that X(0) = x1 while X(s) �= x1 and (t1, X(s)) ∈ �s for
all s ∈ (0, s0].
Proof Fix 0 < t0 < t1, set λ = t0/t1 and J = J t0→t1 . Then, for any x ∈ H and y ∈ H
it holds that

J (λx + (1− λ)y) = x ⇔ y ∈ ∂x A(t1, x) (47)

as well as

x − λJ (x) ∈ (1− λ)∂x A(t1, J (x)). (48)
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Let y0 be a boundary point of ∂x A(t1, x1) such that y0 /∈ Pt1 f (x1) and select a unit
vector u such that y0 + su /∈ ∂x A(t1, x1) for all s > 0. We set

zs = λx1 + (1− λ)(y0 + su), ws = zs − λJ (zs)

1− λ
,

and investigate the Lipschitz continuous arc X(s) = J (zs) for s ∈ [0, s0] where
the value of s0 is specified below. The equivalence (47) ensures that X(0) = x1 and
X(s) �= x1 for every s ∈ (0, s0]. To prove that X(s) is a strictly singular arc, first, (48)
shows that ws ∈ ∂x A(t1, X(s)). Furthermore,

m(s) = inf
y∈H

(
f (y)+ 1

2t1
‖X(s)− y‖2

)

is an upper semicontinuous function and, as w0 = y0 /∈ Pt1 f (x1),

m(0) = inf
y∈H

(
f (y)+ 1

2t1
‖x1 − y‖2

)
< f (w0)+ 1

2t1
‖x1 − w0‖2 =: M .

Hence, lim sups↓0 m(s) ≤ m(0) < M and so, for some ε > 0 and some s0 > 0,
m(s) < M − ε for all s ∈ [0, s0]. Moreover, by lower semicontinuity,

M ≤ lim inf
s↓0

(
f (ws)+ 1

2t1
‖X(s)− ws‖2

)
;

making s0 smaller if necessary, it ensues thatws /∈ Pt1 f (X(s)) for all s ∈ [0, s0].Hence
(t1, X(s)) ∈ �s, otherwise ws = ∇x A(t1, X(s)) = Pt1 f (X(s)) by Proposition 6. ��

15 Proofs of Theorems 3–9 and Corollary 3

We are now ready to present complete proofs of our most central results. We may
convert (11) to the uniformly convex minimization problem

{x(t)} = arg min
x∈H

(
1

t
A(t, x)− 1

2t
‖x‖2 + 1

2(t − t0)
‖x0 − x‖2

)
. (49)

Proof of Theorem 3 (i) From (49) we infer that x(t) is given by

{x(t)} =
(

t − t0
t

∂x A(t, ·)+ t0
t

I

)−1
(x0)

= ∂

(
t − t0

t
A(t, ·)+ t0

2t
‖ · ‖2

)∗
(x0) = ∂ F(x0).

We notice that F = G∗ where G−α‖ ·‖2/2 is a convex function for α = t0/t . Hence,
by the duality theory for the Legendre–Fenchel transform, F is Fréchet differentiable
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Propagation of singularities... 1153

and d F = dG∗ is Lipschitz continuous with constant 1/α = t/t0. Parts (ii)–(iii) are
covered by Propositions 10–11. ��
Proof of Theorem 4 Statement (i) is identical to Corollary 7. To demonstrate (ii) we
need only recall that ẋ+(t0) = v◦(t0, x0) ∈ d+ ft0(x0) by Proposition 10. ��
Proof of Theorem 5 Proposition 11 covers this case. Estimate (10) implies (11) in the
limit as s ↓ t0 while (12) is obtained when (11) is substituted into (10). ��
Proof of Theorem 6 Parts (i) and (ii) are covered by Propositions 10–11. For (iii) see
Proposition 15. Fort part (iv) see Corollary 7. ��
Proof of Theorem 7 See Proposition 8 and Theorem 12. Case (i) is equivalent to

‖x − (y0 + tv0)‖2 > t2‖v0‖2 for all t > 0, x ∈ E, x �= y0,

which is fulfilled if and only if

〈x − y0, v0〉 <
1

2t
‖x − y0‖2 for all t > 0, x ∈ E, x �= y0,

or, equivalently, exactly when 〈x − y0, v0〉 ≤ 0 for all x ∈ E . Assuming alternative
(ii), Proposition 8 implies that PE (x(t)) cannot contain y0 for any t > t∗. ��
Proof of Theorem 8 As R/dE (x) > 1 for all x ∈ �E (owing to R > ρ(�E)) it follows
from Proposition 3 that the composite mapping

F(θ, x) = (1− θ + θ R/dE (x), x) where (τ, x) = J 1→τ (x)

is well-defined on [0, 1] × �E and continuous. In addition, Proposition 15 ensures
that F(θ, x) ∈ �E for all (θ, x) ∈ [0, 1] × �E . Obviously, F(0, ·) is the identity
mapping while F(θ, ·) maps � into � for every θ ∈ [0, 1] by Corollary 7. As regards
F(1, ·), F(1, x) = J 1→R/dE (x)(x) ∈ � for any x ∈ �E owing to Corollary 2 as
t∗/t0 < R/dE (x) when x /∈ �.

To derive Lipschitz estimates for F , we invoke Proposition 3. First, for any θ j ∈
[0, 1] and any x ∈ �E , by virtue of (15),

‖F(θ1, x)− F(θ0, x)‖
≤ dE (x)

∣∣∣∣(1− θ1)+ θ1R

dE (x)
−

(
(1− θ0)+ θ0R

dE (x)

)∣∣∣∣ = (R − dE (x))|θ1 − θ0|.

Secondly, for arbitrary θ ∈ [0, 1] and x j ∈ �E , owing to (15)–(16),

‖F(θ, x1)− F(θ, x0)‖ ≤ ‖(1− θ + θ R/dE (x1), x1)−(1− θ + θ R/dE (x1), x0)‖
+‖(1− θ + θ R/dE (x1), x0)−(1− θ + θ R/dE (x0), x0)‖
≤

(
1− θ + θ R

dE (x1)

)
‖x1 − x0‖ + dE (x0)

∣∣∣∣ θ R

dE (x1)
− θ R

dE (x0)

∣∣∣∣
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=
(
1− θ + θ R

dE (x1)

)
‖x1 − x0‖ + θ R

|dE (x0)− dE (x1)|
dE (x1)

≤
(
1− θ + 2θ R

dE (x1)

)
‖x1 − x0‖ ≤ 2R

dE (x1)
‖x1 − x0‖.

Taking into account the symmetry of the left-hand side, the denominator on the last
lines may be replaced by dE (x0) or by max(dE (x1), dE (x0)). ��

Proof of Theorem 9 By (9),

x0 − t0
t
x(t) ∈ t − t0

t
∂ A(x(t))

which yields

yt := t x0 − t0x(t)

t − t0
∈ ∂ A(x(t)).

We note that yt → x0 strongly as t → ∞ since x(·) is bounded by hypothesis.
Consider a weakly convergent sequence x(t j ) → x̄ where t j → ∞ as j → ∞.
Passing to the limit along the sequence t = t j in the subgradient inequality

A(x) ≥ A(x(t))+ 〈x − x(t), yt 〉 for all x ∈ H ,

yields, owing to the weak lower semicontinuity of the convex function A,

A(x) ≥ A(x̄)+ 〈x − x̄, x0〉 for all x ∈ H ,

telling us that x0 ∈ ∂ A(x̄). From convex analysis we know that x0 ∈ ∂ A(x̄) is
equivalent to x̄ ∈ ∂ A∗(x0). In particular, x0 ∈ coE because dom ∂ A∗ ⊆ coE by
Lemma 5. We claim that ∂ A∗(x0) ⊆ �\{x0}. Let y0 ∈ ∂ A∗(x0). Then y0 must be a
singular point. Indeed, if A were Fréchet differentiable at y0, then x0 = d A(y0) and
PE (y0) = {x0} (see Proposition 6) violating the assumption that x0 ∈ �E . We also
note that y0 �= x0, otherwise x0 would be a critical point by Proposition 1, establishing
∂ A∗(x0) ⊆ �\{x0} and (17). Being the set of weak limit points, W is weakly closed.
��

Proof of Corollary 3 (a) W and ∂ A∗(x0) are weakly compact because ∂ A∗(x0) is a
closed convex and bounded set in this case. To demonstrate part (b) it suffices to
note that ∂ A∗(x0) consists of ∇A∗(x0) alone when ∇A∗(x0) exists. As regards (c),
returning to the proof of Theorem 9 above, x(t j ) ∈ ∂ A∗(yt j )where yt j → x0 strongly
and x(t j ) → x̄ weakly. By Šmulian’s theorem [12, Thm. 4.2.10], if A∗ is Fréchet
differentiable at x0, then x(t j )→ x̄ = d A∗(x0) strongly. ��

123



Propagation of singularities... 1155

16 Examples

We return to the logical relations between the following conditions when dim H = ∞:

(i) ft is Fréchet differentiable at x ;
(ii) ft is Gâteaux differentiable at x ;
(iii) Pt f (x) is a singleton.

While it is correct that (ii)⇐ (i)⇒ (iii), no other implication is valid between any
other pair of these conditions. To justify this assertion we give three examples, two
of which are imported from [23]. In Example 3, for a certain t , (ii) and (iii) are in
force for all x ∈ H yet (i) fails for some x ∈ H . In Example 4, only condition (iii) is
satisfied. Example 5 displays a situation where only (ii) is fulfilled.

Example 3 Assuming dim H = ∞, we select a Gâteaux differentiable continuous
convex function g : H → Rwhich is not everywhere Fréchet differentiable and which
satisfies c‖ · ‖2/2 ≤ g(·) ≤ ‖ · ‖2/2 for some constant 0 < c < 1. We may actually
choose g as the square of a certain equivalent norm on H ; consult [11] by Borwein
and Fabian for a paper on this topic. Then, ‖ · ‖2/2 ≤ g∗ ≤ ‖ · ‖2/(2c), g∗ is strictly
convex, and the supremum for the bi-conjugate

g∗∗(x) = sup
y∈H

(〈x, y〉 − g∗(y)
)

(50)

is uniquely attained for each x ∈ H . Define, for a fixed t0 > 0,

f (x) =
(

g∗(x)− ‖x‖2/2
)
/t0, x ∈ H .

Then, f is real-valued, f ≥ 0 and ft0 is everywhere Gâteaux differentiable yet fails
to be Fréchet differentiable throughout H . To see this, we need only observe that

t0 ft0(x) = 1

2
‖x‖2 − (t0 f + ‖ · ‖2/2)∗(x) = 1

2
‖x‖2 − g∗∗(x) = 1

2
‖x‖2 − g(x)

since g∗∗ = g. For each x ∈ H , the infimum for ft0(x) is uniquely attained because
it boils down to the supremum (50). To summarize,

�s

⋂
({t0} × H) = ∅ whereas �

⋂
({t0} × H) �= ∅.

By Theorem 10, S(t, x) = ft (x) fails to be jointly Gâteaux differentiable at some
point of {t0} × H .

Remark 7 By Theorem 11, (i)⇔ (ii)∧ (iii) in the case f = IE . This equivalence fails
in general as Example 3 shows.

Example 4 (Fitzpatrick [23]) In the Hilbert space H = �2 let

E = {e1} ∪ {rnen : n = 2, 3, . . .}
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where 1 < rn ↓ 1 as n →∞. Then PE (0) = {e1}, a singleton, yet d2
E is not Gâteaux

differentiable at 0. Indeed,

d2
E (λe1)− d2

E (0) = min

{
(λ− 1)2, inf

n≥2(λ
2 + r2n )

}
− 1 = min{λ2 − 2λ, λ2}

and we conclude that

lim
λ→0

d2
E (λe1)− d2

E (0)

λ
does not exist.

Example 5 (Fitzpatrick [23]) In H = �2, let

E = {rnen : n = 1, 2, . . .}

where rn = (n + 1)/n. Then PE (0) = ∅ yet d2
E is Gâteaux differentiable at 0 with

∇d2
E (0) = 0. In this case, setting I (x) = −2A(x), x = (xk)

∞
k=1 ∈ �2,

I (x) = inf
k≥1(r

2
k − 2rk xk)

is a concave function with its global maximum at x = 0 on account of I (0) = 1 and

I (x) ≤ lim inf
k→∞ (r2k − 2rk xk) = 1 for all x ∈ �2,

owing to 1 < rk → 1 and xk → 0 as k →∞. In particular, if its exists, ∇ I (0) must
be 0. The confirmation of ∇d2

E (0) = 0 amounts to demonstrating that the directional
derivative

lim
λ→0

I (λv)− I (0)

λ
= lim

λ→0

I (λv)− 1

λ
= 0 (51)

in any direction v ∈ �2. To this end, let wk = vk for all 1 ≤ k ≤ N and wk = 0 for
all k > N . The truncated sequence w = wN satisfies I (λw) = 1 for all sufficiently
small |λ|. Indeed,

inf
k>N

(r2k − 2λwkrk) = inf
k>N

r2k = 1

and

min
1≤k≤N

(r2k − 2λwkrk) > 1

for all λ in a neighborhood of 0 (by continuity since the left-hand side is equal to
r2N > 1 when λ = 0). Returning to v we next find that

∣∣∣∣ I (λv)− I (0)

λ

∣∣∣∣ ≤
∣∣∣∣ I (λv)− I (λw)

λ

∣∣∣∣+
∣∣∣∣ I (λw)− I (0)

λ

∣∣∣∣ ≤ C‖v − w‖ + 0
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Propagation of singularities... 1157

when 0 < |λ| is small enough, whence lim supλ→0 |(I (λv)− I (0))/λ| ≤ C‖v −w‖.
Finally, (51) follows when N →∞.

We close the paper by giving four examples of intrinsic characteristics.

Example 6 Let E be the complement of the open first quadrant in H = R
2 and hence

� = {(x1, x2) ∈ H : x2 = x1 > 0}. The intrinsic characteristic subject to the initial
condition x(t0) = x0 = (ξ0, ξ0) ∈ � is given by

x(t) = 2t

t0 + t
x0, t0 ≤ t <∞, (52)

Indeed, it is a singular arc whose points x = (ξ, ξ) are calculated by maximizing

R � ξ �→ 1

2t
ξ2 − 1

2(t − t0)
2(ξ0 − ξ)2, t0 < t <∞. (53)

We notice that x(·) traces out only [1, 2)x0 ⊂ � and that x(∞) = 2x0. (By means of
the recursive approach explained in Remark 2 a singular curve ξ(t) can be obtained
which traces out the ray [1,∞)x0 ⊂ �. Such a singular arc can also be constructed
by iterating the step sketched in Remark 3.) By contrast, the unique generalized
characteristic emanating from x0 at time t0 is

X(t) =
√

t

t0
x0, t0 ≤ t <∞. (54)

Indeed, if t > 0 and x = (ξ, ξ), then the norm minimal element of d+d2
E (x)/2 =

co{(ξ, 0), (0, ξ)} is 1
2 (ξ, ξ) and, thus, v◦(t, x) = (2t)−1x . Solving dξ/dt = (2t)−1ξ

with initial condition ξ(t0) = ξ0 yields (54). Obviously, x and X are distinct.
Furthermore, J t1→t2 ◦ J t0→t1(x0) �= J t0→t2(x0) when t0 < t1 < t2.

Example 7 Again in H = R
2, let E be the L-shaped set defined for some a > 0 as

E = [0, 2a] × {0}
⋃
{0} × [0, 2a],

whose singular set is � = {(x1, x2) ∈ H : x2 = x1 > 0}. We set z0 = (a, a). For the
initial point x0 = (ξ0, ξ0) ∈ � we distinguish between three cases:

(a) x0 ∈ co E , i.e., 0 < ξ0 ≤ a. In this case, x(t) is given by (52) and its limit is
x(∞) = 2x0. We observe that x(∞) remains in co E only if ξ0 ≤ a/2.

(b) x0 /∈ co E and a < ξ0 < 2a. The intrinsic characteristic x(t) agrees with (52)
until it reaches the point 2z0 at time t1 = at0/(ξ0 − a). After that, when t ≥ t1,
x(t) coincides with (55).

(c) x0 /∈ co E and ξ0 ≥ 2a. Similarly as is in (53), the singular arc is obtained by
maximizing

ξ �→ 1

2t

(
(ξ − 2a)2 + ξ2

)
− 1

2(t − t0)
2(ξ0 − ξ)2, t0 < t <∞.
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A calculation results in

x(t) = x0 + (t − t0)v0, t0 ≤ t <∞, (55)

where the constant velocity is v0 = (x0 − z0)/t0.

Clearly, the singular arcs of (b) and (c) are unbounded which is consistent with
Theorem 9. In case (c), the arc has constant nonzero velocity.

Example 8 Let f (x) = exp(−‖x‖2/2). Then it can be checked that � = �s =
(1,∞)×{0}. If t0 > 0 and x0 = 0 then (t, x(t)) = (t, 0) for all t ∈ [t0,∞). Assuming
0 < t0 < 1, this shows that x(t) can be constant even though (t, x(t)) starts off as
nonsingular and later becomes singular (when t > 1). If we extend each intrinsic
characteristic to [0,∞), then the resulting family of curves can be parameterized by
their initial points x(0) = y. This procedure results in the general form

x y(t) =
{

(1− te−‖y‖2/2)y if 0 ≤ t < e‖y‖2/2,
0 if t ≥ e‖y‖2/2.

Indeed, (t, x y(t)) stays nonsingular with constant velocity d f (y) = −e−‖y‖2/2y when

0 ≤ t < e‖y‖2/2 until entering � at time t = e‖y‖2/2. After that it will remain in
� = �s, hence, x y(t) = 0 when t ≥ e‖y‖2/2. Furthermore, x y(t) coincides in this
case with the unique generalized characteristic for any y ∈ H although x y(t) switches
from nonsingular to singular and ẋ+y (t) is not a constant for any y �= 0.

Example 9 Let f be the indicator function of the following union of two half-spaces

E = {x ∈ H : 〈x, z〉 ≥ 1 or 〈x, z〉 ≤ −1}

for a certain fixed z ∈ H with ‖z‖ = 1. Then

d2
E (x) = min{(〈x, z〉 − 1)2, (〈x, z〉 + 1)2} when− 1 < 〈x, z〉 < 1.

Note, first, that d2
E fails to be Gâteaux differentiable on the orthogonal complement

{z}⊥ on account of

(〈x, z〉 − 1)2 = (〈x, z〉 + 1)2 ⇔ 〈x, z〉 = 0

and, secondly, that d2
E = 1 on {z}⊥ but d2

E < 1 elsewhere. Hence, if x0 ∈ {z}⊥, then
x0 is a critical point and x(t) = x0 for all t ≥ t0. Still, assuming dim H > 1, there
emanates from x0 a variety of nonconstant singular Lipschitz arcs in the orthogonal
complement of {z}. In fact, every curve X with X(t) ∈ {z}⊥ for all t is a singular
curve.
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