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Abstract
Sharp affine fractional L p Sobolev inequalities for functions on R

n are established.
The new inequalities are stronger than (and directly imply) the sharp fractional L p

Sobolev inequalities. They are fractional versions of the affine L p Sobolev inequalities
of Lutwak, Yang, and Zhang. In addition, affine fractional asymmetric L p Sobolev
inequalities are established.

Mathematics Subject Classification 46E35 (35R11, 52A40)

1 Introduction

Sharp fractional L2 Sobolev inequalities are receiving increasing attention in the last
decades. They are central in the study of solutions of equations involving the fractional
Laplace operator (−�)1/2 which arises naturally in many non-local problems such
as the stationary form of reaction-diffusion equations [9], the Signorini problem (and
its equivalent formulation as the thin obstacle problem) [2], and the Dirichlet-to-
Neumann operator of harmonic functions in the half-space [29]. Also, the general
operators (−�)s for s ∈ (0, 1) arise in stochastic theory, associated with symmetric
Levy processes (see [29] and the references therein).

Let 0 < s < 1 and 1 ≤ p < n/s. The fractional L p Sobolev inequalities state that

‖ f ‖p
np

n−ps
≤ σn,p,s

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+ps

dx dy (1)
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1092 J. Haddad, M. Ludwig

for f ∈ Ws,p(Rn), the fractional L p Sobolev space of functions f ∈ L p(Rn) with
finite right side in (1) (see, for example, [27]). In general, the optimal constants σn,p,s

and extremal functions are not known (see [7] for a conjecture). Equality is always
attained in (1). For p = 1, the extremal functions of (1) are multiples of indicator
functions of balls, and the constants are explicitly known. The only further known
case is p = 2, where the constants σn,2,s can be obtained by duality from Lieb’s sharp
Hardy–Littlewood–Sobolev inequalities [18] (see, for example, [10]). The asymptotic
behavior of σn,p,s as s → 1− was studied in [5]. Almgren and Lieb [1] and Frank and
Seiringer [12] showed that the extremal functions of (1) are radially symmetric and
of constant sign.

By a result of Bourgain, Brezis, and Mironescu [4],

lim
s→1− p(1 − s)

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+ps

dx dy = αn,p

∫
Rn

|∇ f (x)|p dx

for f ∈ W 1,p(Rn), the Sobolev space of L p functions f with weak L p gradient ∇ f ,
where

αn,p =
∫
Sn−1

|〈ξ, η〉|p dξ (2)

for any η ∈ S
n−1. Here, integration on the unit sphere S

n−1 is with respect to the
(n − 1)-dimensional Hausdorff measure, ωn is the volume of the n-dimensional unit
ball and 〈·, ·〉 is the inner product on R

n . For p = 1 and p = 2, this allows to deduce
the sharp L p Sobolev inequalities from (1) by calculating the limit of σn,p,s/(1 − s)
as s → 1−.

Zhang [32] and Lutwak, Yang, and Zhang [24] obtained the following sharp affine
L p Sobolev inequality that is significantly stronger than the classical L p Sobolev
inequality:

‖ f ‖p
np
n−p

≤ σn,p
nω

n+p
n

n

αn,p
|�∗

p f |− p
n ≤ σn,p

∫
Rn

|∇ f (x)|p dx (3)

for f ∈ W 1,p(Rn) and 1 < p < n, where the inequality between the first and
third terms is the classical L p Sobolev inequality and the optimal constants σn,p were
determined by Aubin [3] and Talenti [30]. We have rewritten the explicit constant for
the first inequality from [24] using (2). Here �∗

p f is the L p polar projection body of
f , a convex body associated to f that was introduced with different notation in [24]
(see Sect. 2.5), and |·| is the n-dimensional Lebesgue measure.

The main aim of this paper is to establish affine fractional L p Sobolev inequalities
that are stronger than the Euclidean fractional L p Sobolev inequalities from (1) and
are fractional counterparts of (3). The case p = 1 was studied in [16], so from now
on, let p > 1.
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Affine fractional Lp Sobolev inequalities 1093

Theorem 1 Let 0 < s < 1 and 1 < p < n/s. For f ∈ Ws,p(Rn),

‖ f ‖pnp
n−ps

≤ σn,p,snω
n+ps
n

n

(
1

n

∫
Sn−1

(∫ ∞
0

t ps−1
∫
Rn

| f (x + tξ) − f (x)|p dx dt
)− n

ps
dξ

)− ps
n

≤ σn,p,s

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+ps dx dy.

There is equality in the first inequality if and only if f = hs,p ◦φ for some φ ∈ GL(n),
where hs,p is an extremal function of (1). There is equality in the second inequality if
f is radially symmetric.

In order to prove Theorem 1, we introduce the s-fractional L p polar projection
body �

∗,s
p f associated to f , defined as the star-shaped set whose gauge function for

ξ ∈ S
n−1 is

‖ξ‖ps
�

∗,s
p f

=
∫ ∞

0
t−ps−1

∫
Rn

| f (x + tξ) − f (x)|p dx dt

(see Section 3 for details). The affine fractional Sobolev inequality can now be written
as

‖ f ‖p
np

n−ps
≤ σn,p,snω

n+ps
n

n |�∗,s
p f |− ps

n . (4)

Since both sides of (4) are invariant under translations of f , and for volume-preserving
linear transformations φ : Rn → R

n ,

�∗,s
p ( f ◦ φ−1) = φ�∗,s

p f ,

it follows that (4) is an affine inequality. In Theorem 10, we will show that

lim
s→1− p(1 − s)|�∗,s

p f |− ps
n = |�∗

p f |−
p
n ,

which establishes the connection to the L p polar projection bodies introduced by
Lutwak, Yang and Zhang [24].

In Sect. 4, we introduce fractional asymmetric L p polar projection bodies as frac-
tional counterparts of the asymmetric L p polar projection bodies of Haberl and
Schuster [14], which in turn are functional versions of the asymmetric L p polar
projection bodies of convex bodies introduced in [19]. We obtain affine fractional
asymmetric L p Sobolev inequalities for non-negative functions that are stronger than
the inequalities for the symmetric fractional L p polar projection bodies.

In the proofs of themain results,we use anisotropic fractional Sobolev norms,which
were introduced in [20, 21] and depend on a star-shaped set K ⊂ R

n . In Sect. 10, we
discuss which choice of K (with given volume) gives the minimal fractional Sobolev
norm and connect it to the corresponding quest for an optimal L p Sobolev norm solved
by Lutwak, Yang, and Zhang [25].
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1094 J. Haddad, M. Ludwig

2 Preliminaries

We collect results on function spaces, Schwarz symmetrization, star-shaped sets,
anisotropic Sobolev norms, and L p polar projection bodies that will be used in the
following.

2.1 Function spaces

For p ≥ 1 and measurable f : Rn → R, let

‖ f ‖p =
( ∫

Rn
| f (x)|p dx

)1/p
.

We set { f ≥ t} = {x ∈ R
n : f (x) ≥ t} for t ∈ R and use similar notation for level

sets, etc. We say that f is non-zero, if { f �= 0} has positive measure, and we identify
functions that are equal up to a set of measure zero. For p ≥ 1, let

L p(Rn) =
{
f : Rn → R : f is measurable, ‖ f ‖p < ∞

}
.

Here and below, when we use measurability and related notions, we refer to the n-
dimensional Lebesgue measure on R

n .
For 0 < s < 1 and p ≥ 1, we define the fractional Sobolev space Ws,p(Rn) as

Ws,p(Rn) =
{
f ∈ L p(Rn) :

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+ps

dx dy < ∞
}

.

For p ≥ 1, we set

W 1,p(Rn) = {
f ∈ L p(Rn) : |∇ f | ∈ L p(Rn)

}
,

where ∇ f is the weak gradient of f .

2.2 Symmetrization

For a set E ⊂ R
n , the indicator function 1E is defined by 1E (x) = 1 for x ∈ E and

1E (x) = 0 otherwise. Let E ⊆ R
n be a Borel set of finite measure. The Schwarz

symmetral of E , denoted by E
, is the closed centered Euclidean ball with the same
volume as E .

Let f : R
n → R be a non-negative measurable function with super-level sets

{ f ≥ t} of finite measure. The layer cake formula states that

f (x) =
∫ ∞

0
1{ f ≥t}(x) dt
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Affine fractional Lp Sobolev inequalities 1095

for almost every x ∈ R
n and allows us to recover the function from its super-level

sets. The Schwarz symmetral of f , denoted by f 
, is defined by

f 
(x) =
∫ ∞

0
1{ f ≥t}
 (x) dt

for x ∈ R
n . Hence, f 
 is determined by the properties of being radially symmetric,

decreasing, and having super-level sets of the same measure as those of f . Note that
f 
 is also called the symmetric decreasing rearrangement of f .
The proofs of our results make use of the Riesz rearrangement inequality, which is

stated in full generality, for example, in [6].

Theorem 2 (Riesz’s rearrangement inequality) For f , g, k : Rn → R non-negative,
measurable functions with super-level sets of finite measure,

∫
Rn

∫
Rn

f (x)k(x − y)g(y) dx dy ≤
∫
Rn

∫
Rn

f 
(x)k
(x − y)g
(y) dx dy.

We will use the characterization of equality cases of the Riesz rearrangement
inequality due to Burchard [8].

Theorem 3 (Burchard) Let A, B and C be sets of finite positive measure in R
n and

denote by α, β and γ the radii of their Schwarz symmetrals A
, B
 and C
. For
|α − β| < γ < α + β, there is equality in

∫
Rn

∫
Rn

1A(y)1B(x − y)1C (x) dx dy ≤
∫
Rn

∫
Rn

1A
 (y)1B
 (x − y)1C
 (x) dx dy

if and only if, up to sets of measure zero,

A = a + αD, B = b + βD, C = c + γ D,

where D is a centered ellipsoid, and a, b and c = a + b are vectors in Rn.

2.3 Star-shaped sets and star bodies

A set K ⊆ R
n is star-shaped (with respect to the origin) if the interval [0, x] ⊂ K for

every x ∈ K . The gauge function ‖ · ‖K : Rn → [0,∞] of a star-shaped set is defined
as

‖x‖K = inf{λ > 0 : x ∈ λK },

and the radial function ρK : Rn \ {0} → [0,∞] as

ρK (x) = ‖x‖−1
K = sup{λ ≥ 0 : λx ∈ K }.
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1096 J. Haddad, M. Ludwig

The n-dimensional Lebesgue measure or volume of a star-shaped set K in R
n with

measurable radial function is given by

|K | = 1

n

∫
Sn−1

ρK (ξ)n dξ.

We call a star-shaped set K ⊂ R
n a star body if its radial function is strictly positive

and continuous in R
n \ {0}. On the set of star bodies, the q-radial sum for q �= 0 of

K , L ⊂ R
n is defined by

ρq(K +̃q L, ξ) = ρq(K , ξ) + ρq(L, ξ)

for ξ ∈ S
n−1 (cf. [28, Section 9.3]). The dual Brunn–Minkowski inequality (cf. [28,

(9.41)]) states that for star bodies K , L ⊂ R
n and q > 0,

|K +̃−q L|−q/n ≥ |K |−q/n + |L|−q/n, (5)

with equality precisely if K and L are dilates, that is, there is λ > 0 such that K = λL .
Letα ∈ R\{0, n}. For star-shaped sets K , L ⊆ R

n withmeasurable radial functions,
the dual mixed volume is defined as

Ṽα(K , L) = 1

n

∫
Sn−1

ρK (ξ)n−αρL(ξ)α dξ.

Note that

Ṽα(K , K ) = |K |

and that

Ṽα(K , L1+̃αL2) = Ṽα(K , L1) + Ṽα(K , L2)

for star-shaped sets K , L1, L2 ⊆ R
n with measurable radial functions.

For star-shaped sets K , L ⊆ R
n of finite volume and 0 < α < n, the dual mixed

volume inequality states that

Ṽα(K , L) ≤ |K |(n−α)/n|L|α/n . (6)

Equality holds if and only if K and L are dilates, where we say that star-shaped sets
K and L are dilates if ρK = λ ρL almost everywhere on S

n−1 for some λ > 0. The
definition of dual mixed volume for star bodies is due to Lutwak [22], where also
the dual mixed volume inequality is derived from Hölder’s inequality (also see [28,
Section 9.3] or [13, B.29]).
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Affine fractional Lp Sobolev inequalities 1097

2.4 Anisotropic fractional Sobolev norms

Let 0 < s < 1 and p ≥ 1. For K ⊂ R
n a star body and f ∈ Ws,p(Rn), the anisotropic

fractional L p Sobolev norm of f with respect to K is

∫
Rn

∫
Rn

| f (x) − f (y)|p
‖x − y‖n+ps

K

dx dy. (7)

It was introduced in [21] for K a convex body (also, see [20]). For K = Bn , the
Euclidean unit ball, we obtain the classical s-fractional L p Sobolev norm of f . The
limit as s → 1− was determined in [4] in the Euclidean case and in [21] in the
anisotropic case. We will also consider the following asymmetric versions of (7),

∫
Rn

∫
Rn

( f (x) − f (y))p+
‖x − y‖n+ps

K

dx dy,
∫
Rn

∫
Rn

( f (x) − f (y))p−
‖x − y‖n+ps

K

dx dy,

where a+ = max{a, 0} and a− = max{−a, 0} for a ∈ R. The limits as s → 1− were
determined in [26].

2.5 Lp polar projection bodies

For p ≥ 1 and f ∈ W 1,p(Rn), the L p polar projection body is defined as the star
body with gauge function given by

‖ξ‖p
�∗

p f
=

∫
Rn

|〈∇ f (x), ξ 〉|p dx

for ξ ∈ S
n−1, were 〈·, ·〉 denotes the inner product. It is the polar body of a convex

body. The definition is due to Lutwak, Yang, and Zhang [24]. For a convex body
K ⊂ R

n , they defined the L p polar projection body (with a different normalization)
in [23] by

‖ξ‖p
�∗

pK
=

∫
Sn−1

|〈ξ, η〉|p dSp(K , η), (8)

where Sp(K , ·) is the L p surface area measure of K (for the definition of L p surface
area measures, see, for example, [28, Section 9.1]).

Asymmetric L p polar projection bodies of convex bodies were introduced in [19].
For f ∈ W 1,p(Rn), the asymmetric L p polar projection bodies of f are defined as
the star bodies with gauge function given by

‖ξ‖p
�∗

p,± f =
∫
Rn

〈∇ f (x), ξ 〉p± dx

for ξ ∈ S
n−1.
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1098 J. Haddad, M. Ludwig

3 Fractional Lp polar projection bodies

Let 0 < s < 1 and 1 < p < n/s. For a measurable function f : Rn → R, define the
s-fractional L p polar projection body �

∗,s
p f as the star-shaped set given by the gauge

function

‖ξ‖ps
�

∗,s
p f

=
∫ ∞

0
t−ps−1

∫
Rn

| f (x + tξ) − f (x)|p dx dt (9)

for ξ ∈ R
n . Note that ‖ · ‖�

∗,s
p f is a one-homogeneous function on Rn .

Let K ⊂ R
n be a star body. The following simple calculation turns out to be useful.

For f ∈ Ws,p(Rn),

∫
Rn

∫
Rn

| f (x) − f (y)|p
‖x − y‖n+ps

K

dx dy

=
∫
Rn

∫
Rn

| f (y + z) − f (y)|p
‖z‖n+ps

K

dz dy

=
∫
Sn−1

∫ ∞

0
‖tξ‖−n−ps

K

∫
Rn

| f (y + tξ) − f (y)|p tn−1 dy dt dξ

=
∫
Sn−1

∫ ∞

0
‖ξ‖−n−ps

K t−ps−n ‖ f (· + tξ) − f ‖p
p t

n−1 dt dξ

=
∫
Sn−1

ρK (ξ)n+ps
∫ ∞

0
t−ps−1 ‖ f (· + tξ) − f ‖p

p dt dξ

=
∫
Sn−1

ρK (ξ)n+psρ�
∗,s
p f (ξ)−psdξ.

Hence, ∫
Rn

∫
Rn

| f (x) − f (y)|p
‖x − y‖n+ps

K

dx dy = n Ṽ−ps(K ,�∗,s
p f ) (10)

in this case.
Next, we establish basic properties of fractional L p polar projection bodies.

Proposition 4 For non-zero f ∈ Ws,p(Rn), the set �
∗,s
p f is an origin-symmetric star

body with the origin in its interior. Moreover, there is c > 0 depending only on f and
p such that �∗,s

p f ⊆ c Bn for every s ∈ (0, 1).

Proof First, note that since for ξ ∈ R
n and t > 0,

∫
Rn

| f (x − tξ) − f (x)|p dx =
∫
Rn

| f (x) − f (x + tξ)|p dx,

the set �∗,s
p f is origin-symmetric.

Next, we show that �
∗,s
p f is bounded. We take r > 1 large enough so that

‖ f ‖L p(r Bn) ≥ 2
3‖ f ‖p and easily see that for t > 2r ,

‖ f (· + tξ) − f (·)‖p ≥ ‖ f (· + tξ) − f (·)‖L p(r Bn−tξ)
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Affine fractional Lp Sobolev inequalities 1099

= ‖ f (·) − f (· − tξ)‖L p(r Bn)

≥ ‖ f ‖L p(r Bn) − ‖ f (· − tξ)‖L p(r Bn)

≥ 2

3
‖ f ‖p − 1

3
‖ f ‖p.

Hence,

∫ ∞

0
t−ps−1

∫
Rn

∣∣ f (x + tξ) − f (x)
∣∣p dx dt ≥ ‖ f ‖p

p

3p

∫ ∞

r
t−ps−1 dt

≥ ‖ f ‖p
p

3p
r−ps

ps
≥ c,

which implies that �∗,s
p f ⊆ c Bn for c > 0 independent of s.

Now, we show that �∗,s
p f has the origin in its interior. First observe that for ξ, η ∈

R
n , by the triangle inequality and a change of variables,

‖ξ + η‖ps
�

∗,s
p f

=
∫ ∞

0
t−ps−1‖ f (· + tξ + tη) − f (·)‖p

p dt

≤
∫ ∞

0
t−ps−1 (‖ f (· + tξ + tη) − f (· + tξ)‖p + ‖ f (· + tξ) − f (·)‖p

)p dt

≤
∫ ∞

0
t−ps−12p−1(‖ f (· + tη) − f (·)‖p

p + ‖ f (· + tξ) − f (·)‖p
p) dt

= 2p−1‖ξ‖ps
�

∗,s
p f

+ 2p−1‖η‖ps
�

∗,s
p f

. (11)

Using the relation (10) with K = Bn , we get

∫
Sn−1

‖ξ‖ps
�

∗,s
p f

dξ = 1

n

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+ps

dx dy,

which is finite since f ∈ Ws,p(Rn). We choose r > 0 large enough so that the
set A = {ξ ∈ S

n−1 : ‖ξ‖s
�

∗,s
p f

< r} has positive (n − 1)-dimensional Hausdorff

measure and contains a basis {ξ1, . . . , ξn} ⊆ A ofRn . Applying (if necessary) a linear
transformation to �

∗,s
p f , we may assume without loss of generality that ξi = ei are

the canonical basis vectors. For every x ∈ R
n , writing x = ∑

xi ei and using (11), we
get

‖x‖�
∗,s
p f ≤

(
2n(p−1)

n∑
i=1

|xi |ps‖ei‖ps
�

∗,s
p f

) 1
ps ≤ d |x |, (12)

where d > 0 is independent of x . This shows that �
∗,s
p f has the origin as interior

point.
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1100 J. Haddad, M. Ludwig

Finally, we show that ‖ · ‖�
∗,s
p f is continuous. For ξ, η ∈ R

n , by the triangle
inequality and (12), we have

‖ξ + η‖ps
�

∗,s
p f

=
∫ ∞
0

t−1−ps‖ f (· + tξ + tη) − f (·)‖pp dt

≤
∫ ∞
0

t−1−ps(‖ f (· + tη) − f (·)‖p + ‖ f (· + tξ) − f (·)‖p
)p dt

≤ (
1 + |η| s2

p
p−1

)p−1
∫ ∞
0

t−1−ps

(‖ f (· + tη) − f (·)‖pp
|η| ps2

+ ‖ f (· + tξ) − f (·)‖pp
)

dt

= (
1 + |η| s2

p
p−1

)p−1(|η|− ps
2 ‖η‖ps

�
∗,s
p f

+ ‖ξ‖ps
�

∗,s
p f

)

≤ (
1 + |η| s2

p
p−1

)p−1(d |η| ps2 + ‖ξ‖ps
�

∗,s
p f

)
,

where we used the inequality a + b ≤ (1 + r p/(p−1))(p−1)/p((r−1a)p + bp)1/p for
a, b, r > 0, which is a consequence of Hölder’s inequality.

We obtain

‖ξ + η‖ps
�

∗,s
p f

≤ (
1 + |η| s2 p

p−1
)p−1(

d |η| ps
2 + ‖ξ‖ps

�
∗,s
p f

)
. (13)

Applying inequality (13) to the vectors ξ + η and −η, we get

‖ξ‖ps
�

∗,s
p f

= ‖ξ + η − η‖ps
�

∗,s
p f

≤ (
1 + | − η| s2 p

p−1
)p−1(

d | − η| ps
2 + ‖ξ + η‖ps

�
∗,s
p f

)
,

which implies

‖ξ + η‖ps
�

∗,s
p f

≥ (
1 + |η| s2 p

p−1
)p−1‖ξ‖ps

�
∗,s
p f

− d |η| ps
2 . (14)

The continuity of ‖ · ‖�
∗,s
p f now follows from (13) and (14). ��

4 Fractional asymmetric Lp polar projection bodies

Let 0 < s < 1 and 1 < p < n/s. For a measurable function f : Rn → R, define
the asymmetric s-fractional L p polar projection bodies �

∗,s
p,+ f and �

∗,s
p,− f as the

star-shaped sets given by the gauge functions

‖ξ‖ps
�

∗,s
p,± f

=
∫ ∞

0
t−ps−1

∫
Rn

( f (x + tξ) − f (x))p± dx dt

for ξ ∈ R
n . We have �

∗,s
p,− f = �

∗,s
p,+(− f ) = −�

∗,s
p,+ f and state our results just for

�
∗,s
p,+ f . Note that, as in the symmetric case, ‖·‖ps

�
∗,s
p,+ f

is a one-homogeneous function
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Affine fractional Lp Sobolev inequalities 1101

on Rn . Also, note that

‖ξ‖ps
�

∗,s
p f

= ‖ξ‖ps
�

∗,s
p,+ f

+ ‖ξ‖ps
�

∗,s
p,− f

(15)

for ξ ∈ R
n .

Let K ⊂ R
n be a star body and f ∈ Ws,p(Rn). As in (10), we obtain that

∫
Rn

∫
Rn

( f (x) − f (y))p+
‖x − y‖n+ps

K

dx dy = n Ṽ−ps(K ,�
∗,s
p,+ f ). (16)

In the following proposition, we derive the basic properties of fractional asymmetric
L p polar projection bodies.

Proposition 5 For non-zero f ∈ Ws,p(Rn), the set �
∗,s
p,+ f is a star body with the

origin in its interior. Moreover, there is c > 0 depending only on f and p such that
�

∗,s
p,+ f ⊆ c Bn for every s ∈ (0, 1).

Proof Since the functions (a)
p
+ and (a)

p
− are convex, the inequalities (a + b)p+ ≥

(a)
p
+ + p(a)

p−1
+ b and (a + b)p− ≥ (a)

p
− + p(a)

p−1
− b hold for a, b ∈ R.

If
∫
Rn ( f (x))

p
+ dx > 0, take ε > 0 so small that ε + pε1/p ‖ f ‖p−1

p ≤
1
2

∫
Rn ( f (x))

p
+ dx , and take r > 0 so large that

∫
Rn\r Bn | f (x)|p dx < ε. For

z ∈ R
n \ 2r Bn , we obtain by Hölder’s inequality that

∫
r Bn

( f (x) − f (x + z))p+ dx

≥
∫
r Bn

( f (x))p+ − p ( f (x))p−1
+ f (x + z) dx

≥
∫
r Bn

( f (x))p+ dx − p
( ∫

r Bn
( f (x))p+ dx

) p−1
p

( ∫
r Bn

| f (x + z)|p dx
) 1

p

≥
∫
r Bn

( f (x))p+ dx − p
( ∫

Rn
| f (x)|p dx

) p−1
p

( ∫
Rn\r Bn

| f (x)|p dx
) 1

p

≥
∫
Rn

( f (x))p+ dx − ε − p ‖ f ‖p−1
p ε

1
p

≥ 1

2

∫
Rn

( f (x))p+ dx .

In case
∫
Rn ( f (x))

p
+ dx = 0 the previous inequality holds trivially for any r > 0.

By an analogous calculation and eventually increasing the value of r , we obtain
that

∫
r Bn−z

( f (x) − f (x + z))p+ dx =
∫
r Bn

( f (x) − f (x − z))p− dx

≥ 1

2

∫
Rn

( f (x))p− dx .
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1102 J. Haddad, M. Ludwig

It follows that
∫
Rn ( f (x) − f (x + z))p+ dx ≥ 1

2‖ f ‖p
p for every z ∈ R

n \ 2r Bn with
r > 0 depending only on f . Finally,

‖ξ‖ps
�

∗,s
p,+ f

≥
∫ ∞

2r
t−1−ps

∫
Rn

( f (x) − f (x + z))p+ dx dt

≥
∫ ∞

2r
t−1−ps dt

1

2

∫
Rn

| f (x)|p dx

≥ (2r)−ps

ps

1

2

∫
Rn

| f (x)|p dx

≥ (2r)−p

2p
‖ f ‖p

p.

Note that �
∗,s
p f ⊂ �

∗,s
p,+ f . Hence, it follows from Proposition 4 that �

∗,s
p,+ f

contains the origin in its interior, that is, there is d > 0 such that

‖x‖�
∗,s
p,+ f ≤ d |x | (17)

for every x ∈ R
n .

Finally,we show that ‖·‖�
∗,s
p,+ f is continuous.Observe that the inequality (a+b)p+ ≤

(a+ + b+)p holds for any a, b ∈ R. Hence, for ξ, η ∈ R
n , we obtain that

∫
Rn

( f (x + tξ + tη) − f (x))p+ dx

=
∫
Rn

( f (x + tξ + tη) − f (x + tξ) + f (x + tξ) − f (x))p+ dx

≤
∫
Rn

(
( f (x + tξ + tη) − f (x + tξ))+ + ( f (x + tξ) − f (x))+

)p dx

≤
∫
Rn

(1 + |η| s2
p

(p−1) )p−1
( ( f (x + tξ + tη) − f (x + tξ))

p
+

|η| ps2
+ ( f (x + tξ) − f (x))p+

)
dx

≤ (1 + |η| s2
p

(p−1) )p−1
(‖( f (· + tη) − f (·))+‖pp

|η| ps2
+ ‖( f (· + tξ) − f (·))+‖pp

)
,

where we used the inequality a + b ≤ (1 + r p/(p−1))(p−1)/p((r−1a)p + bp)1/p for
a, b, r > 0, which is a consequence of Hölder’s inequality. Thus, integrating and using
(17), we obtain

‖ξ + η‖ps
�

∗,s
p,+ f

≤ (1 + |η| s2 p
p−1 )p−1(d |η| ps

2 + ‖ξ‖ps
�

∗,s
p,+ f

). (18)

Applying inequality (18) to the vectors ξ + η and −η, we get

‖ξ‖ps
�

∗,s
p,+ f

= ‖ξ + η − η‖ps
�

∗,s
p,+ f

≤ (1+ | − η| s2 p
p−1 )p−1(d | − η| ps

2 + ‖ξ + η‖ps
�

∗,s
p,+ f

),
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Affine fractional Lp Sobolev inequalities 1103

which implies

‖ξ + η‖ps
�

∗,s
p,+ f

≥ (1 + |η| s2 p
p−1 )−(p−1)‖ξ‖ps

�
∗,s
p,+ f

− d |η| ps
2 . (19)

The continuity of ‖ · ‖�
∗,s
p,+ f now follows from (18) and (19). ��

5 The limit of fractional Lp polar projection bodies

We establish the limiting behavior of s-fractional L p polar projection bodies for 1 <

p < n/s as s → 1− in the symmetric and asymmetric case. For p = 1, a corresponding
result was proved in [16].

Let 0 < s < 1 and 1 < p < n/s. Set p′ = p/(p−1). We say that fk → f weakly
in L p(Rn) if

∫
Rn

fk(x)g(x) dx →
∫
Rn

f (x)g(x) dx

for every g ∈ L p′
(Rn) as k → ∞. Set Bp′,+ = {g ∈ L p′

(Rn) : g ≥ 0, ‖g‖p′ ≤ 1}.
We require the following lemmas.

Lemma 6 The following statements hold.

(1) For f ∈ L p(Rn),

‖ f+‖p = sup
g∈Bp′,+

∫
Rn

f (x)g(x) dx .

(2) Let fk, f ∈ L p(Rn). If fk → f weakly in L p(Rn) as k → ∞, then

lim inf
k→∞ ‖( fk)+‖p ≥ ‖ f+‖p.

(3) Assume fk is a bounded sequence in L p(Rn). If

lim
k→∞

∫
Rn

fk(x)g(x) dx =
∫
Rn

f (x)g(x) dx

for every g in a dense subset D ⊆ L p′
(Rn), then fk → f weakly in L p(Rn) as

k → ∞.

Proof First, we prove (1). Let g ∈ Bp′,+ and write f = f+ − f−. Since f− and g are
non-negative, it follows from Hölder’s inequality that

∫
Rn

f (x)g(x) dx ≤
∫
Rn

f+(x)g(x) dx ≤ ‖ f+‖p.
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1104 J. Haddad, M. Ludwig

For the opposite inequality, take g = ‖ f+‖−p/p′
p f p/p

′
+ and note that g ∈ Bp′,+ and

∫
Rn

f (x)g(x) dx = ‖ f+‖− p
p′

p

∫
Rn

f (x) f+(x)
p
p′ dx ≤ ‖ f+‖− p

p′
p

∫
Rn

f+(x)p dx

= ‖ f+‖p.

Next, we prove (2). Fix k0 and g0 ∈ Bp′,+. By (1), we have

∫
Rn

fk0(x)g0(x) dx ≤ sup
g∈Bp′,+

∫
Rn

fk0(x)g(x) dx = ‖( fk0)+‖p.

Since this inequality holds for every k0,

∫
Rn

f (x)g0(x) dx = lim
k→∞

∫
Rn

fk(x)g0(x) dx ≤ lim inf
k→∞ ‖( fk)+‖p.

Thus, by (1),

‖ f+‖p = sup
g∈Bp′,+

∫
Rn

f (x)g(x) dx ≤ lim inf
k→∞ ‖( fk)+‖p.

Finally, we prove (3). Take c ≥ max{‖ fk‖p, ‖ f ‖p}. Let ε > 0 and g ∈ L p′
(Rn).

Take h ∈ D such that ‖g − h‖p′ < ε/(2c). Then

∣∣∣
∫
Rn

fk(x)g(x) dx −
∫
Rn

f (x)g(x) dx
∣∣∣

≤
∣∣∣
∫
Rn

fk(x)(g(x) − h(x)) dx
∣∣∣ +

∣∣∣
∫
Rn

fk(x)h(x) dx −
∫
Rn

f (x)h(x) dx
∣∣∣

+
∣∣∣
∫
Rn

f (x)(g(x) − h(x)) dx
∣∣∣

≤ cε/(2c) +
∣∣∣
∫
Rn

fk(x)h(x) dx −
∫
Rn

f (x)h(x) dx
∣∣∣ + cε/(2c)

and the statement follows. ��
Lemma 7 For f ∈ W 1,p(Rn) and fixed ξ ∈ S

n−1,

lim
t→0

∥∥∥
( f (· + tξ) − f (·)

t

)
+

∥∥∥p

p
=

∫
Rn

〈∇ f (x), ξ 〉p+ dx .

Proof Let g : Rn → R be a smooth function with compact support. Write divx for the
divergence taken with respect to the variable x . Using integration by parts, we obtain
for ξ ∈ S

n−1 and t > 0,

123



Affine fractional Lp Sobolev inequalities 1105

∫
Rn

g(x)
f (x + tξ) − f (x)

t
dx =

∫
Rn

f (x)
g(x − tξ) − g(x)

t
dx

= −
∫
Rn

f (x)
∫ 1

0
〈∇g(x − r tξ), ξ 〉 dr dx

= −
∫
Rn

f (x)divx
( ∫ 1

0
g(x − r tξ) dr ξ

)
dx

=
∫
Rn

( ∫ 1

0
g(x − r tξ)dr

)
〈∇ f (x), ξ 〉 dx .

By Minkowski’s integral inequality ‖ ∫ 1
0 g(· − r tξ) dr‖p′ ≤ ‖g‖p′ , and we deduce

∥∥∥ f (· + tξ) − f (·)
t

∥∥∥
p

≤ ‖〈∇ f (·), ξ 〉‖p < ∞.

Hence, f (·+tξ)− f (·)
t is uniformly bounded in L p(Rn) on (0,∞).

By Lemma 6(3),

lim
t→0

∫
Rn

g(x)
f (x + tξ) − f (x)

t
dx =

∫
Rn

g(x)〈∇ f (x), ξ 〉 dx

for every g ∈ L p′
(Rn). Hence, f (·+tξ)− f (·)

t converges weakly to 〈∇ f (·), ξ 〉 as t → 0.
By Lemma 6(2),

lim inf
t→0

∥∥∥
( f (· + tξ) − f (·)

t

)
+

∥∥∥
p

≥ ‖〈∇ f (·), ξ 〉+‖p.

For the opposite inequality, we recall that for any g ∈ Bp′,+, the function x �→∫ 1
0 g(x − r tξ) dr is in Bp′,+ as well. Hence,

∫
Rn

g(x)
f (x + tξ) − f (x)

t
dx =

∫
Rn

( ∫ 1

0
g(x − r tξ) dr

)
〈∇ f (x), ξ 〉 dx

≤ ‖〈∇ f (x), ξ 〉+‖p.

Again by Lemma 6(1),

∥∥∥
( f (· + tξ) − f (·)

t

)
+

∥∥∥
p

≤ ‖〈∇ f (·), ξ 〉+‖p

for each t > 0. ��
The following result is Lemma 4 in [16].

Lemma 8 If ϕ : [0,∞) → [0,∞) be a measurable function with limt→0+ ϕ(t) =
ϕ(0) and such that

∫ ∞
0 t−s0ϕ(t) dt < ∞ for some s0 ∈ (0, 1), then
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1106 J. Haddad, M. Ludwig

lim
s→1−(1 − s)

∫ ∞

0
t−sϕ(t) dt = ϕ(0).

We are now able to prove the main result of this section.

Theorem 9 Let f ∈ W 1,p(Rn). For ξ ∈ S
n−1,

lim
s→1−(p(1 − s))

1
p ‖ξ‖�

∗,s
p,+ f = ‖ξ‖�∗

p,+ f .

Moreover,

lim
s→1− p(1 − s)|�∗,s

p,+ f |− ps
n = |�∗

p,+ f |− p
n ,

and
lim
s→1− p(1 − s)Ṽ−ps(K ,�

∗,s
p,+ f ) = Ṽ−p(K ,�∗

p,+ f )

for every star body K ⊂ R
n.

Proof Define ϕ : [0,∞) → [0,∞) by

ϕ(t) =
∥∥∥
( f (· + tξ) − f (·)

t

)
+

∥∥∥p

p
,

and note that ϕ(t) ≤
(
2‖ f ‖p

t

)p
for t > 0. By Lemma 8 and Lemma 7,

lim
s→1− p(1 − s)

∫ ∞

0
t p(1−s)−1

∥∥∥
( f (· + tξ) − f (·)

t

)
+

∥∥∥p

p
dt =

∫
Rn

〈∇ f (x), ξ 〉p+ dx .

By Proposition 4, we can use the dominated convergence theorem to obtain

lim
s→1− n |(p(1 − s))−

1
ps �

∗,s
p,+ f |

= lim
s→1−

∫
Sn−1

(
p(1 − s)

∫ ∞

0
t p(1−s)−1

∥∥∥
( f (· + tξ) − f (·)

t

)
+

∥∥∥p

p
dt

)− n
ps
dξ

=
∫
Sn−1

( ∫
Rn

〈∇ f (x), ξ 〉p+ dx
)− n

p
dξ

= n |�∗
p,+ f |,

and

lim
s→1− np(1 − s)Ṽ−ps(K ,�

∗,s
p,+ f ) = lim

s→1− p(1 − s)
∫
Sn−1

‖ξ‖n+ps
K ‖ξ‖ps

�
∗,s
p,+ f

dξ

=
∫
Sn−1

‖ξ‖nK ‖ξ‖p
�∗

p,+ f dξ

= n Ṽ−p(K ,�∗
p,+ f ),

which completes the proof of the theorem. ��
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The following result is an immediate consequence of Theorem 9 and (15).

Theorem 10 Let f ∈ W 1,p(Rn). For ξ ∈ S
n−1,

lim
s→1−(p(1 − s))

1
p ‖ξ‖�

∗,s
p f = ‖ξ‖�∗

p f .

Moreover,

lim
s→1− p(1 − s)|�∗,s

p f |− ps
n = |�∗

p f |−
p
n ,

and
lim
s→1− p(1 − s)Ṽ−ps(K ,�∗,s

p f ) = Ṽ−p(K ,�∗
p f ) (20)

for every star body K ⊂ R
n.

6 Anisotropic fractional Pólya–Szegő inequalities

We will establish anisotropic Pólya–Szegő inequalities for fractional L p Sobolev
norms and their asymmetric counterparts.

Theorem 11 If f ∈ L p(Rn) is non-negative and K ⊂ R
n a star body, then

∫
Rn

∫
Rn

( f (x) − f (y))p+
‖x − y‖n+ps

K

dx dy ≥
∫
Rn

∫
Rn

( f 
(x) − f 
(y))p+
‖x − y‖n+ps

K 


dx dy. (21)

Equality holds for non-zero f ∈ Ws,p(Rn) if and only if K is a centered ellipsoid and
f is a translate of f 
 ◦ φ for some φ ∈ SL(n).

Proof Writing

‖z‖−n−ps
K =

∫ ∞

0
kt (z) dt

where kt (z) = 1t−1/(n+ps)K (z), we obtain

∫
Rn

∫
Rn

( f (x) − f (y))p+
‖x − y‖n+ps

K

dx dy =
∫ ∞

0

∫
Rn

∫
Rn

( f (x) − f (y))p+kt (x − y) dx dy dt .

Note that

( f (x) − f (y))p+ = p
∫ ∞

0
( f (x) − r)p−1

+ 1{ f<r}(y) dr .

Hence, for t > 0, it follows from Fubini’s theorem that
∫
Rn

∫
Rn

( f (x) − f (y))p+ kt (x − y) dx dy
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1108 J. Haddad, M. Ludwig

= p
∫ ∞

0

∫
Rn

∫
Rn

( f (x) − r)p−1
+ kt (x − y)1{ f<r}(y) dx dy dr

= p
∫ ∞

0

∫
Rn

∫
Rn

( f (x) − r)p−1
+ kt (x − y)(1 − 1{ f ≥r}(y)) dx dy dr .

Let r , t > 0. Note that
∫
Rn ( f (x) − r)p−1

+ dx < ∞ and that

∫
Rn

∫
Rn

( f (x) − r)p−1
+ kt (x − y)(1 − 1{ f ≥r}(y)) dx dy

= p ‖kt‖1
∫
Rn

( f (x) − r)p−1
+ dx

− p
∫
Rn

∫
Rn

( f (x) − r)p−1
+ kt (x − y)1{ f ≥r}(y) dx dy.

The first term is finite since { f > r} has finite measure, f ∈ L
np

n−ps (Rn) and np
n−ps >

p−1. Clearly, the first term is invariant under Schwarz symmetrization. For the second
term, by the Riesz rearrangement inequality, Theorem 2, we have

∫
Rn

∫
Rn

( f (x) − r)p−1
+ kt (x − y)1{ f≥r}(y) dx dy

≤
∫
Rn

∫
Rn

( f 
(x) − r)p−1
+ k


t (x − y)1{ f 
≥r}(y) dx dy

for r , t > 0. Note that

( f (x) − r)p−1
+ = (p − 1)

∫ ∞

0
(r̃ − r)p−2

+ 1{ f ≥r̃}(x) dr̃ ,

and that the corresponding equation holds for f 
. Hence, if there is equality in (21),
then, for (r̃ , r , t) ∈ (0,∞)3\M with |M | = 0, we have

∫
Rn

∫
Rn

1{ f ≥r̃}(x)1t−1/(n+ps)K (x − y)1{ f≥r}(y) dx dy

=
∫
Rn

∫
Rn

1{ f 
≥r̃}(x)1t−1/(n+ps)K 
 (x − y)1{ f 
≥r}(y) dx dy.

For almost every (r̃ , r) ∈ (0,∞)2, we have (r̃ , r , t) ∈ (0,∞)3\M for almost every
t > 0. For such (r̃ , r) with r̃ ≤ r and t > 0 sufficiently large, the assumptions of
Theorem 3 are fulfilled and therefore there are a centered ellipsoid D and a, b ∈ R

n

(depending on (r̃ , r , t)) such that

{ f ≥ r̃} = a + αD, t−1/(n+ps)K = b + βD, { f ≥ r} = c + γ D

where c = a + b. Since K = t1/(n+ps)b + (|K |/|D|)1/nD, the centered ellipsoid D
does not depend on (r̃ , r , t) and also a, c do not depend on t . It follows that b = 0
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and that K is a multiple of D. Hence, a = c is a constant vector, which concludes the
proof. ��

The following result is a variation of [17, Theorem 3.1].

Theorem 12 If f ∈ L p(Rn) is non-negative and K ⊂ R
n a star body, then

∫
Rn

∫
Rn

| f (x) − f (y)|p
‖x − y‖n+ps

K

dx dy ≥
∫
Rn

∫
Rn

| f 
(x) − f 
(y)|p
‖x − y‖n+ps

K 


dx dy.

Equality holds for non-zero f ∈ Ws,p(Rn) if and only if K is a centered ellipsoid and
f is a translate of f 
 ◦ φ for some φ ∈ SL(n).

Proof Since

∫
Rn

∫
Rn

( f (x) − f (y))p−
‖x − y‖n+ps

K

dx dy =
∫
Rn

∫
Rn

( f (x) − f (y))p+
‖x − y‖n+ps

−K

dx dy,

the result follows from Theorem 11 for K and −K . ��

7 Affine fractional Pólya–Szegő inequalities

We establish affine Pólya–Szegő inequalities for fractional asymmetric and symmetric
L p polar projection bodies.

Theorem 13 If f ∈ Ws,p(Rn) is non-negative, then

|�∗,s
p,+ f |−ps/n ≥ |�∗,s

p,+ f 
|−ps/n . (22)

Equality holds if and only if f is a translate of f 
 ◦ φ for some φ ∈ SL(n).

Proof By Theorem 11, (16) and the dual mixed volume inequality, we obtain for
K ⊂ R

n a star body that

Ṽ−ps(K ,�
∗,s
p,+ f ) ≥ Ṽ−ps(K


,�
∗,s
p,+ f 
)

≥ |K 
|(n+ps)/n|�∗,s
p,+ f 
|−ps/n

= |K |(n+ps)/n|�∗,s
p,+ f 
|−ps/n .

Setting K = �
∗,s
p,+ f , we see that

|�∗,s
p,+ f | = Ṽ−ps(�

∗,s
p,+ f ,�∗,s

p,+ f ) ≥ |�∗,s
p,+ f |(n+ps)/n|�∗,s

p,+ f 
|−ps/n,

which completes the proof of the inequality. By Theorem 11, there is equality in (7)
if and only if f is a translate of f 
 ◦ φ for some φ ∈ SL(n). ��
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1110 J. Haddad, M. Ludwig

The following result is obtained in the same way as Theorem 13 by replacing
Theorem 11 with Theorem 12.

Theorem 14 If f ∈ L p(Rn) is non-negative, then

|�∗,s
p f |−ps/n ≥ |�∗,s

p f 
|−ps/n .

Equality holds for f ∈ Ws,p(Rn) if and only if f is a translate of f 
 ◦ φ for some
φ ∈ SL(n).

We remark that by Theorem 10 we obtain from Theorem 14 in the limit as s → 1−
that

|�∗
p f |−p/n ≥ |�∗

p f

|−p/n,

which is equivalent to the Pólya–Szegő inequality for L p projection bodies byCianchi,
Lutwak, Yang, and Zhang [11, Theorem 2.1]. Similarly, by Theorem 9 we obtain from
Theorem 13 in the limit as s → 1− that

|�∗
p,+ f |−p/n ≥ |�∗

p,+ f 
|−p/n,

which is equivalent to the Pólya–Szegő inequality for asymmetric L p projection bodies
by Haberl, Schuster and Xiao [15, Theorem 1].

8 Affine fractional asymmetric Lp Sobolev inequalities

We establish the following affine fractional asymmetric L p Sobolev inequalities and
show that they are stronger than Theorem 1.

Theorem 15 Let 0 < s < 1 and 1 < p < n/s. For non-negative f ∈ Ws,p(Rn),

‖ f ‖p
np

n−ps
≤ 2 σn,p,snω

n+ps
n

n |�∗,s
p,+ f |− ps

n ≤ 2σn,p,s

∫
Rn

∫
Rn

( f (x) − f (y))p+
|x − y|n+ps

dx dy.

There is equality in the first inequality if and only if f = hs,p ◦φ for some φ ∈ GL(n)

where hs,p is an extremal function of (1). There is equality in the second inequality if
f is radially symmetric.

Proof By Theorem 13,

|�∗,s
p,+ f |−ps/n ≥ |�∗,s

p,+ f 
|−ps/n,

with equality if f is a translate of f 
 ◦ φ for some φ ∈ SL(n). Since f 
 is radially
symmetric, �∗,s

p,+ f 
 = �
∗,s
p,− f 
 is a ball. Hence, it follows from (16) that

2nω
n+ps
n

n |�∗,s
p,+ f 
|− ps

n = 2
∫
Rn

∫
Rn

( f 
(x) − f 
(y))p+
|x − y|n+ps

dx dy
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=
∫
Rn

∫
Rn

| f 
(x) − f 
(y)|p
|x − y|n+ps

dx dy.

The fractional Sobolev inequality (1) shows that

σn,p,s

∫
Rn

∫
Rn

| f 
(x) − f 
(y)|p
|x − y|n+ps

dx dy ≥ ‖ f 
‖p
np

n−ps
.

Combining these inequalities and their equality cases, we complete the proof of the
first inequality of the theorem.

For the second inequality, we set K = Bn in (16) and apply the dual mixed volume
inequality (6) to obtain

∫
Rn

∫
Rn

( f (x) − f (y))p+
|x − y|n+ps

dx dy = nṼ−ps(B
n,�

∗,s
p,+ f ) ≥ nω

n+ps
n

n |�∗,s
p,+ f |− ps

n .

There is equality precisely if �
∗,s
p,+ f is a ball, which is the case for radially symmetric

functions. ��
Note that it follows from the definition of fractional symmetric and asymmetric L p

polar projection bodies that

�∗,s
p f = �

∗,s
p,+ f +̃−ps�

∗,s
p,− f .

We use the dual Brunn–Minkowski inequality (5) and obtain that

|�∗,s
p f |− ps

n ≥ |�∗,s
p,+ f |− ps

n + |�∗,s
p,− f |− ps

n ,

with equality precisely if the star bodies �
∗,s
p,+ f and �

∗,s
p,− f are dilates. Thus, it

follows that for non-negative f , Theorem 15 implies Theorem 1, and it is, in general,
substantially stronger than Theorem 1. Of course, they coincide for even functions.

9 Affine fractional Lp Sobolev inequalities: Proof of Theorem 1

For non-negative f , the first inequality in Theorem 1 follows from Theorem 15, as
mentioned before. For general f and x, y ∈ R

n , we use

| f (x) − f (y)| ≥ ∣∣| f (x)| − | f (y)|∣∣,
where equality holds if and only if f (x) and f (y) are both non-negative or non-
positive. We obtain

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+sp

dx dy ≥
∫
Rn

∫
Rn

∣∣| f (x)| − | f (y)|∣∣p
|x − y|n+sp

dx dy,
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with equality if and only if f has constant sign for almost every x, y ∈ R
n . Using the

result for | f |, we obtain the first inequality of the theorem and its equality case.
For the second inequality, we set K = Bn in (10) and apply the dual mixed volume

inequality (6) as in the proof of Theorem 15.

10 Optimal fractional Lp Sobolev bodies

The following important question was asked by Lutwak, Yang and Zhang [25] for a
given f ∈ W 1,p(Rn) and 1 ≤ p < n: For which origin-symmetric convex bodies
K ⊂ R

n is

inf

{∫
Rn

‖∇ f (x)‖p
K ∗ dx : K origin-symmetric convex body, |K | = ωn

}
(23)

attained? An optimal L p Sobolev body of f is a convex body where the infimum is
attained.

Lutwak, Yang and Zhang [25] showed that the infimum in (23) is attained (up to
normalization) at the unique origin-symmetric convex body 〈 f 〉p in Rn such that

∫
Sn−1

g(ξ) dSp(〈 f 〉p, ξ) =
∫
Rn

g(∇ f (x)) dx (24)

for every even g ∈ C(Rn) that is positively homogeneous of degree p, where Sp(K , ·)
is the L p surface area measure of K . Setting g = ‖ · ‖K ∗ , they obtain from the
L p Minkowski inequality that

1

n

∫
Rn

‖∇ f (x)‖p
K ∗ dx = Vp(〈 f 〉p, K ) ≥ |〈 f 〉p|(n−p)/n|K |p/n, (25)

with equality precisely if K and 〈 f 〉p are homothetic (see [28, Section 9.1] for the
definition of the L p mixed volume Vp(·, ·) and the L p Minkowski inequality). Hence,
they obtain from their solution to their functional version (24) of the L p Minkowski
problem that 〈 f 〉p is the optimal L p Sobolev body associated to f . Tuo Wang [31]
obtained corresponding results for f ∈ BV (Rn) and p = 1.

Let 0 < s < 1 and 1 < p < n/s. The results by Lutwak, Yang and Zhang [25]
suggest the following question for a given f ∈ Ws,p(Rn): For which star bodies
L ⊂ R

n is

inf

{∫
Rn

∫
Rn

| f (x) − f (y)|p
‖x − y‖n+ps

L

dx dy : L star body, |L| = ωn

}
(26)

attained? An optimal s-fractional L p Sobolev body of f is a star body where the
infimum is attained.
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By (10) and the dual mixed volume inequality (6),

1

n

∫
Rn

∫
Rn

| f (x) − f (y)|p
‖x − y‖n+ps

L

dx dy = Ṽ−ps(L,�∗,s
p f ) ≥ |L|(n+ps)/n|�∗,s

p f |−(ps)/n,

and there is equality precisely if L is a dilate of �
∗,s
p f . Hence, �

∗,s
p f is the unique

optimal s-fractional L p Sobolev body associated to f .
To understand how the solutions to (23) and (26) are related, we use the following

result: For f ∈ W 1,p(Rn) and L ⊂ R
n a star body,

lim
s→1− p(1 − s)

∫
Rn

∫
Rn

| f (x) − f (y)|p
‖x − y‖n+ps

L

dx dy =
∫
Rn

‖∇ f (x)‖Z∗
p L dx, (27)

where the convex body ZpK , defined for ξ ∈ S
n−1 by

hZp L(ξ)p =
∫
Sn−1

|〈ξ, η〉|pρL(η)n+p dη,

is a multiple of the L p centroid body of L . This can be proved as in [21], where the cor-
responding result was established for a convex body L (with a different normalization
of ZpL). It also follows from Theorem 10. Indeed, by (10) and (20),

lim
s→1− p(1 − s)

∫
Rn

∫
Rn

| f (x) − f (y)|p
‖x − y‖n+ps

L

dx dy = Ṽ−p(L,�∗
p f ).

Using that
�∗

p f = �∗
p〈 f 〉p (28)

for f ∈ W 1,p(Rn), which follows from (24) by setting g = |〈·, η〉|p for η ∈ S
n−1 and

using (8) and (9) (cf. [25]), and that

Vp(K ,ZpL) = Ṽ−p(L,�∗
pK ) (29)

for K a convex body and L a star body, a well-known relation that follows from
Fubini’s theorem, we now obtain (27) from the first equation in (25).

Using (27), we obtain from (26) in the limit as s → 1− for a given f ∈ W 1,p(Rn),

the following question: For which star bodies L ⊂ R
n is

inf
{ ∫

Rn
‖∇ f (x)‖Z∗

p L dx : L star body, |L| = ωn

}
(30)

attained? By (25) and the dual mixed volume inequality (6), we have

1

n

∫
Rn

‖∇ f (x)‖p
Z∗
p L

dx = Vp(〈 f 〉p,ZpL) = Ṽ−p(L,�∗
p f ) ≥ |L|(n+p)/n|�∗

p f |−p/n,
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1114 J. Haddad, M. Ludwig

with equality precisely if L and �∗
p f are dilates, where we have used (28) and (29).

From Theorem 10, we obtain that a suitably scaled sequence of optimal s-fractional
Sobolev bodies converges to a multiple of the optimal body for (30) as s → 1−.
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