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Abstract
We show that Artin groups of extra-large type, and more generally Artin groups of
large and hyperbolic type, are hierarchically hyperbolic. This implies in particular that
these groups have finite asymptotic dimension and uniform exponential growth. We
prove these results by using a combinatorial approach to hierarchical hyperbolicity,
via the action of these groups on a new complex that is quasi-isometric both to the
coned-off Deligne complex introduced by Martin–Przytycki and to a generalisation
due to Morris-Wright of the graph of irreducible parabolic subgroups of finite type
introduced by Cumplido–Gebhardt–González-Meneses–Wiest.
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Introduction

Hyperbolic features of Artin groups

The geometry of Artin groups has seen an explosion of results in the last decade.While
Artin groups remain in general much less understood than their Coxeter relatives, a
driving theme behind current research has been to show that these groups are as well-
behaved as Coxeter groups, and this has indeed been verified for several classes of
Artin groups. On the geometric side, a popular theme has been to understand the
“hyperbolic features” of groups, and Artin groups are conjectured to display such
hyperbolic features. This rather vague notion comes in many flavours, a first one
being the notion of acylindrically hyperbolic group. Loosely speaking, such groups
can be described as having “hyperbolic directions” (see [50] for the precise definition
and its many consequences). It is conjectured that for an irreducible Artin group A� ,
its central quotient A�/Z(A�) is acylindrically hyperbolic.

This question has been answered positively for most standard classes of Artin
groups, such as right-angled Artin groups [19], Artin groups of finite type [17], Artin
groups of Euclidean type [16], Artin groups whose underlying presentation graph is
not a join [22], and two-dimensional Artin groups [55].

While acylindrical hyperbolicity guarantees the existence of some hyperbolic direc-
tions, it does not provide much control on the overall geometry of the group. For
instance, the free product A ∗ B, where A, B are the worst infinite groups you can
think of, is acylindrically hyperbolic.

A notion of non-positive curvature that provides a much stronger control over the
coarse geometry of the group is the notion of hierarchically hyperbolic group (or
HHG). This notion was introduced by Behrstock–Hagen–Sisto [8, 9] and inspired by
work ofMasur–Minsky [45, 46] as a framework that unifies and generalises the geome-
try ofmapping class groups of hyperbolic surfaces and that of (all known) cocompactly
cubulated groups [33]. The idea of hierarchical hyperbolicity is to describe the coarse
geometry of a group/space using a “coordinate system” where the coordinates take
values in various hyperbolic spaces.
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Since this notion givesmuchbetter control than acylindrical hyperbolicity, it implies
many results expected of non-positively curved groups that are not true for more
general notions of non-positive curvature; for example, it gives quadratic isoperimetric
inequality [9, 13], solubility of the word and conjugacy problem [9, 31], the Tits
alternative [27, 28], finite asymptotic dimension [7], semi-hyperbolicity [29, 31], etc.
In particular, since both braid groups and right-angled Artin groups belong to this
family [8, 9], the following is a natural question that was for instance raised byCalvez–
Wiest [18].

Question Which Artin groups are hierarchically hyperbolic?

The above question is also prefigured by a very prescient comment by Kapovich–
Schupp [40, p. 155], which predates the notion of hierarchical hyperbolicity: “It seems
plausible that most Artin groups satisfy some sort of ‘nested’ version of the bounded
coset penetration property…”.

Building new examples of hierarchically hyperbolic groups is nontrivial; there
are combination theorems [9, 11], and theorems about persistence of hierarchical
hyperbolicity under various quotients [6, 7], but the examples coming from“nature” are
dominated by compact special groups, mapping class groups, and fundamental groups
of certain 3-manifolds. The preceding question has only been previously answered
positively for right-angled Artin groups and braid groups.

In this article, we add a large class of Artin groups to the “naturally occurring”
hierarchically hyperbolic groups:

Theorem A Artin groups of large and hyperbolic type are hierarchically hyperbolic.

Note that Artin groups of large and hyperbolic type contain in particular all Artin
groups of extra-large type (see Sect. 2.1 for precise definitions of these classes). We
refer to Theorem 6.15 for a description of the HH structure.

The following results are new for Artin groups of large and hyperbolic type, and
follow from the cited results about hierarchically hyperbolic groups:

Corollary B Let A� be an Artin group of large and hyperbolic type, with � connected
and not a single vertex. Then:

(1) A� has finite asymptotic dimension [7, Thm. A],
(2) A� has uniform exponential growth [3, Cor. 1.3],
(3) A finitely generated subgroup of A� is stable if and only if the orbit maps to the

coned-off Deligne complex are quasi-isometric embeddings [1, Thm. B].

Items 2 and 3 require a short argument to link the cited results to Theorem A; this
appears at the end of Sect. 6.3. The coned-off Deligne complex—which is one of our
most important tools—was defined and extensively studied in [44]. As a consequence
of our construction, this complex is (equivariantly quasi-isometric to) the maximal
hyperbolic space in our HHG structure, see Theorem 6.15.

Regarding asymptotic dimension, it follows from Theorem 6.15 and [7, Theorem
5.2, Corollary 3.3] that the asymptotic dimension of the coned-off Deligne complex
D̂� is finite (with no explicit bound) and that the asymptotic dimension of A� is at
most asdim(D̂�) + 3. In view of this, it is natural to ask:
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Question Given �, what is (a good bound on) the asymptotic dimension of the coned-
off Deligne complex?

Note that our main Theorem also allows us to recover from a unified perspec-
tive several other known results for these groups, such as the above-mentioned Tits
alternative (see [44, Corollary B]; this was proved in the extra-large case in [49]),
the solubility of the conjugacy problem (also proved in [36, Corollary 1.3] for any
two-dimensional Artin group), and control over their quasi-flats (see [35, Theorem
1.1] for the statement about two-dimensional Artin groups, and the closely-related
[10, Theorem A] about HHGs). Moreover, we recover the fact that these groups are
semi-hyperbolic, as they are coarsely Helly by [31, Thm. A, Cor. F], see also [29].
(The semi-hyperbolicity also follows from the fact that these groups are systolic [37],
hence biautomatic [39, 53], hence semi-hyperbolic [4].)

A curve complex for Artin groups

There are earlier results in the direction of hierarchical hyperbolicity for Artin groups,
see e.g. [18] for a detailed discussion. The first step in such a result is to introduce
an analogue of the curve graph, to play the role of the “maximal” hyperbolic space
in the HHS structure, i.e. a space quasi-isometric to the space obtained from the
group by coning off the standard product regions. There are various significant results
about actions of Artin groups on hyperbolic complexes, notably those of Calvez-
Wiest for spherical type Artin groups [17], Calvez in the Euclidean-type case [16],
and Martin–Przytycki in the two-dimensional case [44].

A candidate for such a curve complex for Artin groups of finite type has been
proposed recently by Cumplido-Gebhardt–Gonzales-Meneses–Wiest [24], and gener-
alised to all Artin groups byMorris-Wright [48] who studied this complex extensively
for Artin groups of type FC. This is the notion of graph of irreducible proper parabolic
subgroups of finite type of an Artin group.

It is conjectured that this complex is an infinite-diameter hyperbolic space (except
in degenerate cases) for Artin groups of finite type [24, Conjecture 2.4] and type FC
[48, Conjecture 5.6]. We prove the analogous result for Artin groups of large and
hyperbolic type as a corollary of Proposition 3.16 and Theorem A.

Corollary C Let A� an Artin group of large and hyperbolic type on at least three
generators. Then A� admits an HHG structure whose maximal hyperbolic space is
the graph of irreducible proper parabolic subgroups of finite type.

Note that the action of A� on this graph is acylindrical. This can be seen by combin-
ing the above corollary with [8, Theorem K], or by combining Proposition 3.16 with
[44, Theorem A]. This corollary gives hope that this complex not only is hyperbolic
for larger classes of Artin groups but also is the maximal hyperbolic space in an HHG
structure.
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Combinatorial approach to HHS, and strategy of proof

Wewill not strictly need the full definition of hierarchical hyperbolicity but, roughly, a
hierarchically hyperbolic space (HHS) is a spaceX that comes with a family of hyper-
bolic spaces and projections fromX to the various hyperbolic spaces satisfying various
conditions [9, Definition 1.1]. Additionally, a group is hierarchically hyperbolic if it
acts geometrically on an HHS preserving the HHS structure, in a way expressed most
simply in [52, p. 4].

We will not need the full definition because we will verify a more combinatorial
criterion from [6] for a group G to be hierarchically hyperbolic. We state this as Theo-
rem 1.4, but for this discussion it suffices to know that criterion involves a hyperbolic
simplicial complex X on which G acts, and maximal simplices of X are in bijection
with the vertices of a graph quasi-isometric to G. The links of simplices in X give the
hyperbolic spaces in the HHS structure, so the fine geometry of X is relevant for this
purpose.

We now explain how to come up with a candidate X for a large-type Artin group
A� of hyperbolic type. The strategy makes sense more generally and potentially could
be applied to other classes of groups as well. First, we need a little more discussion on
hierarchical hyperbolicity. An HHS contains a family of so-called standard product
regions,which areHHS themselves and (coarsely) split as a product ofHHS.Moreover,
the standard product regions are “arranged hyperbolically” meaning that coning them
off yields a hyperbolic space. (This is the “hierarchical structure” that gives the name.)
In the context of the combinatorial criterion, said coned-off space is quasi-isometric
to the hyperbolic simplicial complex X .

In view of this, a natural candidate for an action of a given group on a simplicial
complex to which Theorem 1.4 can be applied is constructed as follows.
Step 1: Consider the family of subgroups that are maximal virtual products (these
should give the standard product regions if the group is hierarchically hyperbolic). For
our Artin groups, the tools to identify these subgroups come from the acylindricity of
the action of A� on its coned-off Deligne complex and CAT(−1) geometry [44], see
Sect. 2.4.
Step 2: Isolate the subgroups arising as minimal infinite intersections between such
virtual product subgroups. Coarse intersections of standard product regions in an
HHS are again coarse products of HHS, which are “smaller” than the original product
subgroups. This should identify the simplest sub-HHS, if the group is to be hierarchi-
cally hyperbolic. For our Artin groups, here we have the cyclic subgroups conjugate to
either the subgroup generated by a standard generators or centres of dihedral parabolic
subgroups. See Sect. 3.1 for more discussion.
Step 3: To construct a hyperbolic space that the group acts on, it is natural to consider
the graph encoding the intersections of candidates for the standard product regions.
This graph is quasi-isometric to the commutation graph of the minimal subgroups
above, see Sect. 3.1. This graph has a vertex for each such minimal subgroup and
we put an edge when two such subgroups commute. In the case of right-angled Artin
groups, we recover the extension graph, which is indeed hyperbolic [41]. In our case,
there is a natural map between the commutation graph and the coned-off Deligne
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complex. This map is a quasi-isometry with very nice local properties, and this is
crucial for our arguments in Sect. 5.
Step 4:The commutation graph as above is expected to have the right coarse geometry,
but not the right local geometry, because stabilisers of maximal simplices are usually
infinite. We remedy this by a blow-up construction, where we replace each vertex
of the commutation graph by a quasi-isometric copy of the corresponding subgroup,
preserving the A�-action. In our situation, the vertices of the commutation graph need
to be blown up to quasi-lines. This creates a somewhat delicate situation where, for a
certain cyclic subgroup H , we need to construct an action of N (H) on a quasiline with
certain properties. Remarkably, this difficulty is circumvented using quasimorphisms
(which are related to actions on quasilines by [2]), in a similar way as in [32].

Once we have our hyperbolic complex X , we can build our quasi-isometry model
W of A� . As mentioned above, the vertex set of W is the set of maximal simplices
of X . The adjacency relation is defined in such a way as to guarantee that orbit maps
A� → W are quasi-isometries (Sect. 5.1). The remainingwork is to verify the technical
conditions of Theorem 1.4, and here we once again rely on the CAT(−1) geometry of
the coned-off Deligne complex.

In the end, we get an HHS structure on A� where the maximal hyperbolic space—
the HHS analogue of the curve graph in the mapping class group setting—is quasi-
isometric to X and hence to the commutation graph.

As a final remark, our results do not cover the more general case of 2-dimensional
Artin groups of hyperbolic type (that is, the case where edges with label 2 are allowed).
In this case, the combinatorics of the commutation graph and associated spaces are
more complex, with several statements in Sect. 3 and beyond needing more nuance
since more cases have to be considered. However, we still believe that with more
sophisticated arguments one can deal with the more general case using the same
combinatorial HHS approach.

Outline of the paper

Section 1 contains the definitions and results from [6] that we will need. Section 2
contains background on Artin groups, and in particular the subclass of Artin groups
considered in this paper, along with the coned-off Deligne complex. Section 3 is about
the commutation graph, and also contains the discussion relating the commutation
graph and the graph of irreducible parabolics. Section 4 contains the construction of
the simplicial complex X—the blow-up of the commutation graph—along with some
purely combinatorial facts about X , and the relationship between maximal simplices
in X and coarse points in A� . In Sect. 5, we define the graph of maximal simplices of
X , prove that it is quasi-isometric to A� , and study its combinatorial structure. Finally,
in Sect. 6, we verify the remaining hypotheses of Theorem 1.4. The final subsection
of Sect. 6 assembles the pieces into a proof of Theorem A and Corollary B.
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1 A combinatorial criterion for hierarchical hyperbolicity

In this section, we recall the main combinatorial criterion introduced in [6] to show
that a group is hierarchically hyperbolic by means of a map to a hyperbolic simplicial
complex. We will not require these notions until Sect. 4, but we introduce them now
to motivate the constructions in earlier sections. We refer the reader to [6, Section
1.2,1.5] for a more informal discussion of the various hypotheses in the definition of
a combinatorial HHS.

Definition 1.1 (X -graph, augmented complex) Let X be a flag simplicial complex. An
X -graph is a graph W whose vertex set is the set of maximal simplices of X . We say
that two maximal simplices �,�′ of X are W -adjacent if the corresponding vertices
of W are adjacent in W .

We denote by X+W the complex obtained from the 1-skeleton of X by adding edges
between vertices that belong to W -adjacent maximal simplices. For a subcomplex X0
of X , we denote by X+W

0 the full subcomplex of X+W induced by X0. We refer to
these various objects X+W , X+W

0 , etc. as being augmented complexes.

Definition 1.2 (Link, star, saturation of a simplex) Let X be a flag simplicial complex,
and let � be a simplex of X .

The star of �, denoted StX (�), is the union of all the simplices of X containing
�.

The link of �, denoted LkX (�), is the full subcomplex of StX (�) induced by
StX (�) − �.

The saturation of � is

SatX (�) =
⋃

{�:LkX (�)=LkX (�)}
�(0).

The following is Definition 1.8 in [6].

Definition 1.3 (Combinatorial HHS) A combinatorial HHS is a pair (X , W ), where
X is a simplicial complex and W is an X -graph, such that all of the following hold for
some δ < ∞, n ∈ N:

(I) If �0, . . . ,�m are simplices of X and LkX (�i ) � LkX (�i+1) for 0 ≤ i ≤
m − 1, then m ≤ n. This condition will be called finite complexity.

(II) Let � be a non-maximal simplex of X . Let C(�) = LkX (�)+W and let Y� =
(X (0) − Sat(�))+W . Then C(�) is δ-hyperbolic and the inclusion C(�) ↪→ Y�

is a (δ, δ)-quasi-isometric embedding. We will call this condition hyperbolic
links.

(III) Let � be a non-maximal simplex of X and let v,w ∈ LkX (�) be distinct
non-adjacent vertices. Suppose that v,w are contained in W -adjacent maximal
simplices of X . Then there exist maximal simplices�v,�w of LkX (�), respec-
tively containing v,w, such that �v�� and�w�� are W -adjacent. We will call
this condition fullness of links.

(IV) Let �,� be non-maximal simplices of X such that there exists a non-maximal
simplex� with LkX (�) ⊆ LkX (�)∩LkX (�) and diam(C(�)) > δ. Then there
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exists a non-maximal simplex � ⊂ LkX (�) such that LkX (���) ⊆ LkX (�)

and all � as above satisfy LkX (�) ⊂ LkX (���). We call this condition the
intersection condition.

The following criterion is immediate from [6, Theorem 1.18, Remark 1.19] and
the fact that hierarchical hyperbolicity is a quasi-isometry invariant property [9,
Proposition 1.10].

Theorem 1.4 Let (X , W ) be a combinatorial HHS. Then any quasigeodesic space
quasi-isometric to W is a hierarchically hyperbolic space. Moreover, suppose that the
group G acts by simplicial automorphisms on X, and that the resulting G-action on
the set of maximal simplices of X extends to a proper cobounded action of G on W .
Suppose moreover that X contains finitely many G-orbits of subcomplexes of the form
LkX (�), for � a simplex. Then G is a hierarchically hyperbolic group.

(In the statement, the notion of properness used is sometimes called metric proper-
ness, and what we mean is that given a ball in X there are only finitely many elements
of G that do not map the ball to a disjoint ball.)

Note that in addition to the properties of combinatorial HHS, Theorem 1.4 requires
another condition, namely that there are finitely many orbits of links of simplices. For
readers familiar with HHS terminology, we mention that this is so that the action of
A� on the index set of the eventual HHG structure is cofinite, as the elements of the
index set correspond to the links of the non-maximal simplices.

We will apply the above theorem to an Artin group of large and hyperbolic type A�

by explicitly constructing (X , W ) with W quasi-isometric to A� , and then verifying
each of the properties from Definition 1.3.

2 Background on Artin groups and Deligne complexes

2.1 Artin groups

A presentation graph is a finite simplicial graph � such that every edge between
vertices a, b ∈ V (�) is labelled by an integer mab ≥ 2. The Artin group associated
to � is the group A� given by the following presentation:

A� := 〈a ∈ V (�) | aba · · ·︸ ︷︷ ︸
mab

= bab · · ·︸ ︷︷ ︸
mab

whenever a, b are connected by an edge of �〉.

An Artin group is of large type if all coefficients mab are at least 3, and of extra-
large type if they all are at least 4. An Artin group on two generators a, b with
mab < ∞ is a dihedral Artin group.

Given an Artin group A� , the associated Coxeter group W� is obtained by further
requiring that each generator a ∈ V (�) satisfies the relation a2 = 1. An Artin group
is said to be of hyperbolic type if the associated Coxeter group is hyperbolic, and of
finite type if the associated Coxeter group is finite.
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For a (possibly empty) full subgraph �′ ⊂ �, the subgroup of A� generated by
the vertices of �′ is called a standard parabolic subgroup. Such a subgroup is
isomorphic to the Artin group A�′ by a result of Van der Lek [54], and moreover we
have A�1 ∩ A�2 = A�1∩�2 for full subgraphs �1, �2 of �. Conjugates of standard
parabolic subgroups are called parabolic subgroups.

2.2 Structure of dihedral Artin groups

Since dihedral Artin groups appear as stabilisers of vertices of dihedral type in the
modified Deligne complex and its cone-off, we mention some structural results that
will be needed in this article.

A dihedral Artin group on two standard generators a, b will be denoted Aab for
simplicity, even though the group depends on the coefficient mab. Dihedral Artin
groups come into two types: If mab = 2, the group is a copy of Z

2. The rest of this
subsection focuses on the structure of dihedral Artin groups with mab ≥ 3. We start
by recalling the following definition:

Definition 2.1 For a dihedral Artin group with mab ≥ 3, the Garside element �ab ∈
Aab is defined as follows:

�ab := aba · · ·︸ ︷︷ ︸
mab

= bab · · ·︸ ︷︷ ︸
mab

.

Lemma 2.2 ([15]) The centre of a dihedral Artin group Aab with mab ≥ 3 is infinite
cyclic and generated by the element

zab := �ab if mab is even, and zab := �2
ab if mab is odd.

Lemma 2.3 Let Aab be a dihedral Artin group with mab ≥ 3. The central quotient
Aab/〈zab〉 is virtually a finitely generated non-trivial free group. In particular, Aab

contains a finite-index subgroup that splits as a direct product of the form 〈zab〉 × K ,
where K is a finitely generated free subgroup of Aab.

This virtual splitting is well-known to experts, see for instance [23]. We give here
a geometric proof of this result that uses objects that will be needed in Sect. 5.

Definition 2.4 (Atoms, left-weighted form) An atom of Aab is a strict subword of
aba · · ·︸ ︷︷ ︸

mab

or bab · · ·︸ ︷︷ ︸
mab

, that is, an alternating product of a and b with strictly fewer than

mab letters. We denote by M the set of all atoms of Aab. A product of the form
m1 · · · mk , with each mi ∈ M , is said to be left-weighted if for each i the last letter
of mi coincides with the first letter of mi+1.

It follows from the existence and uniqueness of Garside normal forms (see for
instance [42]) that elements of the quotient Aab/〈�ab〉 are in bijection with left-
weighted elements of the free monoid M• on M , where 〈�ab〉 acts on Aab by right
multiplication.
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Fig. 1 A portion of the quasi-tree Tab for mab = 3. In red, the full subgraph spanned by the 〈a〉-orbit of e.
In blue, the full subgraph spanned by the 〈b〉-orbit of e

Definition 2.5 Wedenote byTab the full subgraph of theCayley graphCayley(M•, M)

spanned by left-weighted elements. The action of Aab on Aab/〈�ab〉 by left
multiplication induces an action of Aab on Tab (seen as an unlabelled graph).

Since M• is a free monoid, the graph Tab is a quasi-tree, as already explained in
[12]. More precisely, the flag completion of Tab has a structure of tree of simplices of
dimension mab − 1 glued along vertices (see Fig. 1), where the simplices are either
in the Aab-orbit of the simplex spanned by

e, a, ab, . . . , aba · · ·︸ ︷︷ ︸
mab−1

,

or in the Aab-orbit of the simplex spanned by

e, b, ba, . . . , bab · · ·︸ ︷︷ ︸
mab−1

.

Proof of Lemma 2.3 The group Aab acts by left multiplication on Tab. Since the ele-
ment zab is central and is a power of �ab, it follows that 〈zab〉 acts trivially on that
graph, hence the quotient Aab/〈zab〉 acts by left multiplication on Tab. The action is
cocompact and proper, thus Aab/〈zab〉 is virtually free, and hence Aab is virtually a
direct product of the form 〈zab〉× K , where K is a finitely-generated free group. Note
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that a and b define elements of infinite order in Aab/〈zab〉 since their orbits in Tab

span embedded lines (see Fig. 1). ��
We recall that the syllabic length of an element g ∈ Aab is the smallest non-

negative integer n such that g can be written as a product of the form g = xk1
1 · · · xkn

n
with ki ∈ Z and xi ∈ {a, b} for all 1 ≤ i ≤ n.

Lemma 2.6 ([55, Proposition 4.6]) Let g be an element of Aab that can be written only
with positive letters and that has syllabic length greater than 1. If mab ≥ 3, then the
syllabic length of gn goes to infinity as n goes to infinity.

Corollary 2.7 In a dihedral Artin group Aab with mab ≥ 3, no non-trivial power of
zab is equal to a power of a standard generator.

Proof ByLemma 2.6, the syllabic length of zn
ab explodes as n grows, while the syllabic

length of an and bn is always equal to one. ��
Lemma 2.8 In a dihedral Artin group Aab with mab ≥ 3, two distinct conjugates of
standard generators never generate a subgroup isomorphic to Z

2.

Proof Let us consider a dihedral Artin group Aab with mab ≥ 3. Up to conjugation,
we can assume that the element a and a conjugate x := gcg−1, with c ∈ {a, b},
commute. Since the centraliser of a in Aab is 〈a, zab〉 by [23, Lemma 7], it follows
that there exist integers 	, k such that x = ak z	

ab. We claim that necessarily 	 = 0.
Indeed, if that were not the case, then the syllabic length of the powers of z	

ab would
go to infinity by Lemma 2.6, and since ak and z	

ab commute, so would the syllabic
length of the powers of x (since the powers of a all have syllabic length 1). But since
x is conjugate to a power of a generator, its powers have a uniformly bounded syllabic
length, a contradiction. We thus have x = ak . By using the homomorphism Aab → Z

sending both generators to 1, we get that k = 1, hence x = a.
By taking the contrapositive, distinct conjugates of standard generators of Aab do

not commute. ��

2.3 Themodified Deligne complex

Parabolic subgroups of finite type of an Artin group are used to define a simplicial
complex as follows:

Definition 2.9 (Modified Deligne complex [21]) The cosets g A�′ of standard parabolic
subgroups of finite type of A� form a partially ordered set, for the partial order given
by

g A�′ < g A�′′ if g ∈ A� and �′
� �′′ are full subgraphs of �.

The modified Deligne complex (or Charney–Davis complex) D� of an Artin group
A� is the geometric realisation of this poset. That is, vertices of D� correspond to
cosets g A�′ of standard parabolic subgroups of finite type, and for every chain of the
form
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g A�0 < g A�1 < · · · < g A�n ,

we add an n-simplex spanned by the vertices g A�0 , g A�1 , . . . , g A�n . The group A�

acts on its modified Deligne complex by left multiplication on left cosets.

Convention 2.10 From now on, we fix a large-type Artin group A� of hyperbolic type.
This implies that its only parabolic subgroups of finite type are its parabolic subgroups
on at most two generators, and hence the Deligne complex of A� is a 2-dimensional
simplicial complex.

It was shown in [21] that for an Artin group of large and hyperbolic type, there
exists an A�-invariant piecewise hyperbolic metric that turns D� into a CAT(−1)
space. From now on, we will assume that D� is endowed with such a metric.

Notation 2.11 For simplicity, we will often omit the ‘modified’ from the name and
call D� the Deligne complex.

The vertex of D� corresponding to the standard dihedral parabolic subgroup Aab

will be denoted vab. Vertices of D� corresponding to cosets of dihedral parabolic
subgroups are said to be of dihedral type.

Remark 2.12 We describe the stabilisers of vertices of the Deligne complex. Since
a vertex of D� is a left coset of the form g A�′ (with �′ ⊂ �), its stabiliser is the
conjugate g A�′ g−1. In particular, we get the following description, for each type of
vertices of D�:

• A vertex that corresponds to a left coset of the trivial subgroup has trivial stabiliser.
• A vertex that corresponds to a left coset of the form g〈a〉, with a ∈ V (�), has a
stabiliser that is infinite cyclic.

• A vertex of dihedral type has a stabiliser that is isomorphic to a dihedral Artin
group.

2.4 Standard trees and the coned-off Deligne complex

The structure of fixed-point sets of parabolic subgroups of A� play a crucial role. We
start by a useful result:

Lemma 2.13 The fixed-point set in D� of a parabolic subgroup on two generators of
A� is a single vertex. In particular, such parabolic subgroups are self-normalising.

Proof If a parabolic subgroup g Aabg−1 were to fix two distinct points of D� , then it
would fix the unique CAT(0) geodesic of D� between them. Since stabilisers of edges
and triangles of D are either trivial or Z, g Aabg−1 would embed in an infinite cyclic
group, which is impossible as Aab is eitherZ

2 or contains a copy ofZ
2 by Lemma 2.3.

Since an element of the normaliser of g Aabg−1 stabilises Fix(g Aabg−1), hence
fixes the vertex gvab, it follows that g Aabg−1 is self-normalising. ��

The fixed-point sets of infinite cyclic parabolic subgroup aremuchmore interesting:
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Definition 2.14 (Standard trees [44, Definition 4.1]) For an element g ∈ A� that is a
conjugate of a standard generator, the fixed-point set Fix(g) is a convex subtree of D�

that is contained in the 1-skeleton of D� .
Such subtrees are called standard trees of D� .
Note in particular that all edges of a standard tree have the same infinite cyclic

stabiliser.

We list here a few immediate results:

Lemma 2.15 Two edges of D� have stabilisers that either intersect trivially or are
equal. Moreover, if two edges of D� have the same non-trivial stabiliser, then they
belong to the same standard tree.

Proof Since a non-trivial element of A� stabilising two points fixes pointwise the
unique CAT(0) geodesic between them, this result is a direct consequence of [44,
Lemma 4.3]. ��
Corollary 2.16 For every standard generator a and non-zero integer k ∈ Z − {0}, the
trees Fix(a) and Fix(ak) coincide.

Proof The inclusion Fix(a) ⊆ Fix(ak) is clear, so let us show the other inclusion.
Consider any point x in Fix(ak), and any edge e of the tree Fix(a). If x lies in e, we
are done, otherwise we can consider a minimal length geodesic from x to e, which is
ak-invariant. Since triangles of D� have trivial stabilisers, this geodesic is contained
in the 1-skeleton and it intersects an edge e′ in a non-trivial subpath containing x (if
x is not a vertex we cannot say that the geodesic contains the edge). We have that e′
is also ak-invariant, and since k �= 0 we have that the stabilisers of e and e′ intersect
non-trivially, and therefore by Lemma 2.15 e′, whence x , belongs to Fix(a). ��
Corollary 2.17 Two points of D� have stabilisers that intersect non-trivially if and
only if they are contained in a common standard tree.

Proof If two points x, y of D� have a nontrivial common stabiliser H , then H fixes
pointwise the unique CAT(0) geodesic γ between them. The geodesic γ cannot pass
through the interior of a triangle because H is non-trivial, so γ is contained in the
1-skeleton and is contained in a minimal path of edges of the form e1, . . . , en . So H
fixes edges e1, . . . , en , and by Lemma 2.15, it follows that e1, . . . , en , hence x and y,
are contained in the same standard tree. (If n = 1, note that an edge with non-trivial
stabiliser belongs to a standard tree.) ��
Corollary 2.18 Two distinct standard trees intersect in at most one vertex.

Proof This follows directly from Lemma 2.15 and the convexity of standard trees. ��
Definition 2.19 (Coned-off Deligne complex [44, Definition 4.8]) The coned-off
Deligne complex, denoted D̂� , is obtained from D� by coning-off each standard
tree of D� . That is, for every standard tree T of D� we add a new vertex vT , which we
connect by an edge to every vertex of T . The complex D̂� is then the flag completion
of the resulting complex. The action of A� on D� extends to an action on D̂� .
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Fig. 2 A portion of the coned-off Deligne complex D̂� for an Artin group on three generators a, b, c. A
fundamental domain for the action of A� on D� is represented in grey, and is a subdivided triangle with
vertices vab, vbc, vac . A portion of the standard tree Ta is represented in green. In the coned-off Deligne

complex D̂� , this tree is the basis of a cone with apex the vertex va

Notation 2.20 For a standard generator a ∈ �, the standard tree Fix(a) (i.e. the stan-
dard tree containing the vertex 〈a〉 of D�) will be denoted Ta , and the apex of the
cone T̂a over that tree will be denoted va , see Fig. 2 . With this notation, the vertex
gva corresponds to the apex of the cone over the standard tree Fix(gag−1) containing
g〈a〉. The apex of a cone over a standard tree will be called a vertex of tree type.

Remark 2.21 By work of Paris [51, Corollary 4.2], two standard generators are con-
jugated if and only if there is a path in the presentation graph � consisting of edges
with odd labels connecting the corresponding vertices. Since distinct generators may
be conjugated, it may happen that we have an equality of the form gva = hvb for
distinct standard generators a, b. The following result shows that this is the only case
where such an equality happens.

Lemma 2.22 Let T be a standard tree of D� , let a, b be two standard generators, and
let g, h ∈ A� . If the two vertices g〈a〉 and h〈b〉 of D� are contained in T , then a and b
are connected in � by a path with odd labels. (In particular, a and b are conjugated.)

Proof Since T is a connected tree, we consider a geodesic path e1, . . . , ek of T from
g〈a〉 to h〈b〉. Each edge ei joins a coset of a cyclic standard parabolic subgroup and a
coset of parabolic subgroup of dihedral type. For each i , let ai be the unique standard
generator such that ei contains a vertex that is a coset of 〈ai 〉. It is enough to show
that for every 1 ≤ i < k, ai and ai+1 are either equal or connected by an edge of �

with odd label. Consider the vertex v of D� where ei and ei+1 meet. If v corresponds
to a coset of cyclic standard parabolic subgroup, then ai = ai+1. If v is a vertex of
dihedral type, then it follows from [44, Lemma 4.3] that either ai = ai+1, or ai and
ai+1 are adjacent in � (since ei and ei+1 meet along a vertex that is a coset of Aai ,ai+1 ,
which must be an Artin group of finite type by construction of D�) and the label of
that edge is odd. This concludes the proof. ��
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Remark 2.23 It was shown in [44, Proposition 4.8] that there exists an A�-invariant
piecewise hyperbolic metric that turns D̂� into a CAT(−1) space. From now on, we
will assume that D̂� is endowed such a metric from [44].

It should be noted that this metric depends on a constant ε > 0 that can be chosen
arbitrary small, see [44, Definition 4.7]. This constant is such that for an edge e of D�

contained in a standard tree, the triangle of D� over e has angles at least π/2 − ε at
the two vertices of e. In this article, the choice of ε will be mostly irrelevant. We will
only need to consider this constant in Lemma 2.25 below, where ε needs to be smaller
than a certain constant depending only on the group A� .

We mention here a slight generalisation of the CAT(−1)-ness of D̂� , which will be
used in Sect. 5.

Lemma 2.24 Let Z be the full subcomplex of D̂� whose vertex set is obtained from
D̂� by removing some vertices of tree type. Then Z is also CAT(−1) for the induced
metric.

Proof The complex Z can be thought of as being obtained from the simply connected
complex D� by coning-off only certain (contractible) standard trees of D� , so Z is
also simply connected. Moreover, for a point x ∈ Z , the link LkZ (x) is a subgraph
of Lk D̂�

(x), since D̂� is a two-dimensional complex. Since D̂� is CAT(−1), links
of points are graphs with a systole of at least 2π , so the same is true for the sub-
graph LkZ (x). Thus, Z is locally CAT(−1). Since Z is simply-connected and locally
CAT(−1), it is CAT(−1). ��

The standard trees of D� are convex in D� but become bounded in D̂� . Wemention
the following intermediate result, which will be used in Sect. 5.1.

Lemma 2.25 We can choose the constant ε > 0 from Remark 2.23 small enough so that
the following holds: Let T be a standard tree of D� , and let Z be the full subcomplex
of D̂� obtained by removing the vertex of tree type associated to T . Then T is convex
in Z for the induced metric.

Proof It follows from Lemma 2.25 that Z is CAT(−1) for the induced metric. Since
T is a subtree of the CAT(−1) complex Z , it is enough to show that two edges of
T that share a vertex v make an angle of at least π at v. (This follows from the
local characterisation of geodesics in a CAT(0) space) This amounts to showing that
for distinct vertices w,w′ of T ∩ LkZ (v), their distance in LkZ (v) is at least π . By
construction, the simplicial graph LkZ (v) is obtained from LkD� (v) by coning-off
the sets T ′ ∩ LkD� (v) for each standard tree T ′ other than T , i.e. by constructing a
simplicial cone over every such sets T ′ ∩LkD� (v). Moreover, each of these new edges
has length at least π/2 − ε by construction, see Remark 2.23. Since the action of A�

on D� is cocompact, there is a uniform lower bound on the length of edges in the
link of an arbitrary vertex of D� , and we can choose the constant ε < π/10 smaller
than half this uniform lower bound, which we now assume. We now claim that the
distance in LkZ (v) between w and w′ is at least π . Indeed, assume that this were not
the case. Since T is a convex subtree of D� by construction, two distinct points w,w′
of LkD� (v) that belong to T are at distance at least π in LkD� (v).
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Therefore, if therewas a geodesic of length less thanπ betweenw andw′ in LkZ (v),
it would have to go through at least two of the additional edges of length ≥ π/2 − ε

coming from the cone-off procedure. Moreover, since w and w′ are not in the same
standard tree (Corollary 2.18), said geodesic should also contain another edge, which
has length at least 2ε. Therefore, the geodesic would have length at least

2ε + 2(π/2 − ε) ≥ π,

a contradiction. Thus, T is convex in Z . ��
Convention 2.26 From now on, we will assume that D̂� is endowed with a CAT(−1)
metric from [44] such that Lemma 2.25 holds.

Moreover, since we are considering a fixed Artin group A� , we will from now on
simply denote by D and D̂ the complexes D� and D̂� .

We now describe the stabiliser of the vertices of D̂ of tree type:

Lemma 2.27 The stabiliser of the vertex of tree type va is exactly the centraliser (and
normaliser) of the cyclic subgroup 〈a〉. Moreover, this centraliser splits as a direct
product of the form

〈a〉 × K ,

where K is a finitely-generated free group. More precisely, the subgroup 〈a〉 acts
trivially on Ta, while K acts cocompactly on it with trivial edge stabilisers.

Proof Let us first note that the normaliser and centraliser of 〈a〉 coincide. Indeed, if
g ∈ A� is such that g−1ag ∈ 〈a〉, we apply the homomorphism A� → Z sending
every generator to 1 and deduce that g−1ag = a, hence g centralises 〈a〉.

The stabiliser of va coincides with the global stabiliser of the standard tree Ta . Let
us show that an element g ∈ A� stabilises Ta if and only if it normalises 〈a〉.

If g stabilises Ta , then it sends the vertex 〈a〉 ∈ Ta to the vertex g〈a〉 ∈ Ta , so in
particular we have

a · g〈a〉 = g〈a〉,

or in other words g−1ag ∈ 〈a〉, hence g normalises 〈a〉. Conversely, let us assume that
g normalises 〈a〉, and let x be a point of Ta . Let us show that gx ∈ Ta . We have

a · gx = g(g−1ag)x = gx,

the last equality following from the fact that x is fixed by 〈a〉 by definition of Ta . Thus,
gx is fixed by a, and it follows that g stabilises Ta .

The decomposition of the stabiliser of Ta as a direct product as in the statement is
a consequence of [44, Lemma 4.5]. Observe that Stab(va) acts cocompactly on Ta .
Indeed, D contains finitely many A� orbits of edges, and no edge is contained in
distinct translates of a standard tree by Corollary 2.18.
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The quotient K was defined in the proof of [44, Lemma 4.5] as the fundamental
group of a graph of groups over the graph Ta/Stab(va), with trivial edge stabilisers
and vertex stabilisers that are trivial or infinite cyclic. Since Ta/Stab(va) is a finite
graph by the above, it follows that K is finitely generated. ��

Regarding vertices of dihedral type, we have the following similar result:

Lemma 2.28 The stabiliser Aab of the vertex of dihedral type vab is exactly the cen-
traliser of the cyclic subgroup 〈z p

ab〉 for all p �= 0, which further coincides with the
normaliser.

Proof Since the stabiliser of vab is equal to Aab by construction, and z p
ab is central in

Aab, it is enough to show that an element in the normaliser of z p
ab fixes vab. Suppose

that we have an element h such that h ∈ N (z p
ab). Then zq

ab = hz p
abh−1 (for some

q �= 0) also fixes the vertex hvab, so zq
ab fixes pointwise the unique CAT(0) geodesic

of D joining vab to hvab. If this geodesic is nontrivial, then zq
ab fixes an edge of

D containing vab, since triangles in D have trivial stabilisers. This is impossible, as
otherwise zq

ab would be contained in an edge stabiliser, hence would be conjugate in
Aab to a power of a or b (since the edge in question contains vab). Hence zq

ab would
be equal to a power of a or b since zab is central in Aab, contradicting Corollary 2.7.
So, hvab = vab, as required. ��

We will also mention the following lemma about centralisers, which will be used
later in this article (see Lemma 4.5):

Lemma 2.29 Let c ∈ A� and suppose that either c is a standard generator, or c = zab

for some standard generators a and b generating a dihedral Artin group. Then the
centraliser C(c) satisfies C(c) = C(cp) for all p ∈ Z − {0}.
Proof There are two cases, according to whether c is a standard generator or c = zab

for standard generators a, b.
First consider the casewhere c = zab, where a, b are standard generators generating

a dihedral type Artin subgroup Aab. Recall that 〈zab〉 fixes a point in D̂, namely the
vertex vab. Suppose that, for some p ∈ Z − {0}, we have an element h such that
h ∈ C(z p

ab). By Lemma 2.28, we have that hvab = vab, whence h ∈ Aab, and this
subgroup is equal to C(zab) by Lemma 2.28.

Next consider the case where c is a standard generator c = a, and let e be an edge
of the corresponding standard tree Ta , which has 〈a〉 as stabiliser. Suppose that, for
some p ∈ Z − {0}, we have an element h such that h ∈ C(a p). Then the stabiliser
of the edge he is Stab(he) = h〈a〉h−1 ⊃ 〈a p〉. In particular, the stabilisers of e and
he intersect non-trivially, and it follows from Lemma 2.15 that they are in the same
standard tree Ta . From Corollary 2.18, we get that hTa = Ta , so h ∈ C(a). ��

2.5 Links of vertices

The local structure of Deligne complexes will play an important role in this article, so
we now describe it in further detail.
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Lemma 2.30 Let va be a vertex of tree type. The link Lk D̂(va) is the standard tree Ta,
and the action of Stab(va) on it is cocompact.

Proof The description of the link follows from the construction of the cone-off, and
the cocompactness follows from Lemma 2.27. ��

Throughout the rest of this subsection, we fix a vertex of D of dihedral type of the
form vab. Before describing the link in the cone-off D̂, we start by describing the link
in the original Deligne complex D. The link LkD(vab) of that vertex has a simple
description, which is a direct consequence of the construction of D:

Lemma 2.31 The link LkD(vab) is Aab-equivariantly isomorphic to the the geometric
realisation of the poset of cosets of strict standard parabolic subgroups of Aab. That
is, vertices of LkD(vab) correspond to cosets of the form g〈a〉, g〈b〉, or g{1}, and for
every g ∈ Aab, we add an edge between g{1} and g〈a〉, as well as an edge between
g{1} and g〈b〉.

In particular, the action of Stab(vab) on LkD(vab) is cocompact. ��
This link is a particular case of a general construction that we will use again in

Sect. 5.

Definition 2.32 (Graph of orbits) Let G be a graph with an Aab-action, such that the
subgroups 〈a〉 and 〈b〉 act freely on it. We define a new graph encoding the pattern of
intersections of orbits of 〈a〉 and 〈b〉 as follows: We put a vertex for every 〈a〉-orbit
and one vertex for every 〈b〉-orbit. If two such orbits have a non-empty intersection,
we put an edge between them. The graph of orbits Orbita,b

(
G
)
is defined as the first

barycentric subdivision of the graph obtained in this way.

Remark 2.33 With that terminology, the link LkD(vab) is Aab-equivariantly isomor-
phic to the graph of orbits Orbita,b

(
Cayleya,b(Aab)

)
, where Cayleya,b(Aab) denotes

the Cayley graph of Aab for the standard generators a, b.

The action of Aab on LkD(vab) has been studied by Vaskou in [55]. In particular,
the following result, which is a geometric counterpart of Lemma 2.6 will be useful in
Sect. 5.

Lemma 2.34 ([55, Proposition 4.7]) Let g be an element of Aab that can be written
only with positive letters and that has syllabic length greater than 1. If mab ≥ 3, then
the 〈g〉-orbit maps to LkD(vab) are quasi-isometric embeddings. ��

Since the Garside element �ab either conjugates the generators a, b (when mab

is odd) or centralises each of them (when mab is even), the action of 〈�ab〉 by right
multiplication induces an action on the left cosets. Indeed, we have

g〈a〉�ab = g�ab〈b〉 and g〈b〉�ab = g�ab〈a〉 if mab is odd,

g〈a〉�ab = g�ab〈a〉 and g〈b〉�ab = g�ab〈b〉 if mab is even.

We now describe the link of vab in the coned-off Deligne complex. There is a simple
characterisation of the trace of a standard tree on the link of a vertex of dihedral type.
The following is a reformulation of [44, Lemma 4.3].
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Lemma 2.35 Two vertices of the link LkD(vab) correspond to edges in the same stan-
dard tree of D if and only if the corresponding cosets are in the same 〈�ab〉-orbit (for
the multiplication on the right).

Moreover, two vertices of the link LkD(vab) that are in the same Aab-orbit corre-
spond to edges in the same standard tree of D if and only if the corresponding cosets
are in the same 〈zab〉-orbit (for the multiplication on the right). ��

This local characterization of standard trees allows us to simply describe the links
of vertices in the coned-off space D̂:

Corollary 2.36 The link Lk D̂(vab) is obtained from LkD(vab) by coning-off every
〈�ab〉-orbit of vertices corresponding to cosets of the form g〈a〉 or g〈b〉.

In particular, the action of Stab(vab) on Lk D̂(vab) is cocompact.

Proof The description of the link is a consequence of Lemma2.35. The cocompactness
of the action of Stab(vab) on LkD(vab) follows from Lemma 2.31. Moreover, since
there are finitely many Stab(vab)-orbits of edges of D containing vab, there are in
particular finitely many orbits of standard trees containing vab, and hence finitely
many orbits of apices of standard trees containing vab. The cocompactness of the
action of Stab(vab) on Lk D̂(vab) now follows. ��

3 The commutation graph of an Artin group

From now on, in line with Convention 2.10, all Artin groups under consideration are
assumed to be of large hyperbolic type. In particular, mab ≥ 3 for all generators a, b;
we will occasionally emphasise this assumption in the sequel to remind the reader.

3.1 The commutation graph

Wenowconstruct a complex towhichTheorem1.4will be applied, andwhich turns out
to be quasi-isometric to the coned-off Deligne complex D̂. This complex is obtained
via a general construction that encodes the commutation of certain chosen subgroups
of a given group that we now describe.

Definition 3.1 (Commutation graph) Let G be a group, and letH be a set of subgroups
of G. We define a simplicial graph, called the commutation graph ofH and denoted
YH, as follows. The vertex set of YH is

⊔

H∈H
G/N (H),

and we put an edge between gN (H) and hN (H ′) if gHg−1 and h H ′h−1 commute,
that is, every element of one subgroup commutes with every element of the other
subgroup. Note that this is independent of the choice of coset representatives g and h.
The group G acts on this graph by left multiplication.
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Remark 3.2 Commutation graphs have already been considered in the work of Kim–
Koberda on right-angledArtin groups under the nameof extension graphs [41]. Indeed,
for a right-angled Artin group G on generators g1, . . . , gn , the extension graph they
study is exactly the commutation graph for the familyH = {〈g1〉, . . . , 〈gn〉

}
.

We now discuss the family of subgroups of A� that yield the correct commutation
graph for our purposes.

First, the motivation. The acylindricity of the action of A� on its coned-off Deligne
complex and the CAT(0) geometry of this complex can be shown to imply that the
maximal subgroups of A� that virtually split as products are the dihedral parabolic
subgroups (stabilisers of vertices of dihedral type), which are virtual products by
Lemma 2.2, and the normalisers of standard generators, which are products by Lemma
2.27. It is an exercise, left to the reader as it is not needed in this article, to identify the
minimal infinite subgroups obtained by taking arbitrary intersections of such maximal
virtual products. They come in two families:

• The cyclic subgroups generated by a conjugate of a standard generator: These sub-
groups are obtained by taking the intersection of stabilisers of vertices of dihedral
type contained in a common standard tree.

• The centres of dihedral parabolic subgroups with mab ≥ 3: These subgroups are
obtained by taking the intersection of the stabilisers of two standard trees that share
a vertex.

Remark 3.3 We know from the work of Paris [51, Corollary 4.2] that two standard
generators are conjugate if and only if there is a path in the presentation graph �

consisting of edges with odd labels connecting the corresponding vertices. We can
thus choose a set of representatives of conjugacy classes of elements of V (�), which
defines a subset Vodd(�) of V (�).

This motivates the following definition:

Definition 3.4 Wedefine the following collection of subgroups of the Artin group A�:

H := {〈a〉 | a a standard generator in Vodd(�)
}

∪{〈zab〉 | a, b span an edge of � with mab ≥ 3
}
.

We will simply denote by Y = Y� = YH the commutation graph of H.

Lemma 3.5 Distinct elements ofH are in different conjugacy classes. Moreover, if two
conjugates of elements of H intersect non-trivially, then they are equal.

Proof We have to show that for two distinct elements x, y of the form zab or a ∈
Vodd(�), no non-trivial power of x is conjugate to a non-trivial power of y. We treat
several different cases.

Let a, b be two standard generators of Vodd(�). If non-trivial powers ak and b	 were
conjugate, then using the homomorphism A� → Z sending every generator to 1 we
would obtain that k = 	. By [51, Corollary 5.3] (which says that an element conjugates
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ak to bk if and only if it conjugates a to b), we get that a and b are conjugate, which
is excluded by construction of Vodd(�).

The centraliser of a standard generator a has the form K ×〈a〉 for some free group
K by Lemma 2.27, while the centraliser of an element of the form za′b′ is the dihedral
Artin group Aa′b′ by Lemma 2.28. These are not isomorphic for example because the
abelianisations can be isomorphic only if K is trivial (consider the cases of ma′b′ odd
or even), but Aa′b′ is not isomorphic to Z by Lemma 2.3.

Finally, suppose that non-trivial powers of zab and za′b′ are conjugate. Then their
centralisers are also conjugate. By Lemma 2.28, these centralisers are Aab and Aa′b′ .
In turn, by Lemma 2.13, these have fixed-point sets respectively consisting of vab

and va′b′ only, so that these fixed point sets are not translates of each other. There-
fore, the centralisers cannot be conjugate, and the powers of zab and za′b′ cannot be
conjugate. ��
Notation 3.6 For a standard generator a ∈ �, we denote by ua the vertex of Y cor-
responding to N (〈a〉). The A�-translates of such vertices are said to be of tree type.
Analogously, for standard generators a, b spanning an edge of � with mab ≥ 3, we
denote by uab the vertex of Y corresponding to N (〈zab〉). The A�-translates of such
vertices are said to be of dihedral type.

In the rest of this section, we construct an equivariant quasi-isometry between the
commutation graph Y and the coned-off Deligne complex D̂. We start by defining
such a map at the level of vertices:

Lemma 3.7 We define a map ι : Y (0) → D̂(0) as follows:

• For a vertex of Y of dihedral type of the form guab, we set ι(guab) := gvab.
• For a vertex of Y of tree type of the form gua, we set ι(gua) := gva.

Then ι is well-defined, is injective, and realises bijections between the vertices of Y of
dihedral type and the vertices of D̂ of dihedral type, as well as between the vertices
of Y of tree type and the vertices of D̂ of tree type.

Proof We have to show the following properties:

• if gN (〈zab〉) = hN (〈zab〉), then gvab = hvab.
• if gN (〈a〉) = hN (〈a〉), where a ∈ Vodd(�), then gva = hva .

If gN (〈zab〉) = hN (〈zab〉), then g−1h ∈ N (〈zab〉) = Aab, the latter equality
following from Lemma 2.28, and we know from Lemma 2.28 that N (〈zab〉) stabilises
vab. It thus follows that hvab = g(g−1h)vab = gvab, so ι is well defined on vertices
of dihedral type. Moreover, it in fact realises a bijection on vertices of dihedral type
as we just saw that in both Y and D̂ these vertices are cosets of the Aab.

If gN (〈a〉) = hN (〈a〉), then g−1h ∈ N (a), and we know from Lemma 2.27 that
N (a) stabilises va . It thus follows that hva = g(g−1h)va = gva , so ι is well defined
on vertices of tree type.

Let us show that ι is surjective on vertices of tree type. Let gva be a vertex of D̂
of tree type. By construction, there exists a standard generator b ∈ Vodd(�) and an
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element x ∈ A� such that xbx−1 = a. It thus follows that xvb = va , and in particular
gva = gxvb = ι(gxub).

Let us now show that ι is injective on vertices of tree type. Consider a, b ∈ Vodd(�)

and g, h ∈ A� such that gva = hvb.Wewant to show that gua = hub. By construction
of vertices of tree type, thismeans that the standard tree of D containing the vertex g〈a〉
and the standard tree of D containing the vertex h〈b〉 coincide. In particular, the vertices
g〈a〉 and h〈b〉 of D are in the same standard tree, and it follows from Lemma 2.22
that a and b are connected by a path of � with odd labels. By definition of Vodd(�),
this implies that a = b. We thus have gva = hva , and so g−1h ∈ Fix(va) = N (a),
the latter equality following from Lemma 2.27. We thus have gN (a) = hN (a), hence
gua = hua = hub, which shows injectivity.

Note that the injectivity of ι : Y (0) → D̂(0) is now straightforward, since the sets
of vertices of tree type and dihedral type of D̂ are disjoint. ��
Lemma 3.8 The map ι is well-defined, is injective, and realises bijections between the
vertices of Y of dihedral type and the vertices of D̂ of dihedral type, as well as between
the vertices of Y of tree type and the vertices of D̂ of tree type.

Moreover, two vertices v, v′ of Y are adjacent if and only if the following occurs:
One of them (say v) is of dihedral type, the other (say v′) is of tree type, and ι(v) is
contained in the standard tree having ι(v′) as apex.

In particular, Y is a bipartite graph with respect to the type of vertices.

Proof The first statement is exactly Lemma 3.7. Let us now characterise the edges of
Y .

Consider two vertices v = gN (H), v′ = hN (H ′) of Y that are connected by an
edge. The subgroups gHg−1, h H ′h−1 are infinite cyclic, and we denote by zv, zv′ the
associated generators. The elements zv, zv′ commute by definition of Y , and they gen-
erate a Z

2 subgroup of A� by Lemma 3.5. Since the action of A� on D̂ is acylindrical
and D̂ is CAT(0), this subgroup must fix a point. In particular, the fixed-point sets in D̂
of zv and zv′ have a non-trivial intersection. We will need the following standard result
from group actions on trees, whose proof we omit, to show that certain configurations
are impossible:

Claim: Let G be a group acting on a simplicial tree T by isometries, let w,w′ be
two distinct vertices of T , and let g, g′ be two elements of G such that for all non-zero
k ∈ Z, we have FixT (gk) = {w} and FixT ((g′)k) = {w′}. Then g, g′ generate a
non-abelian free subgroup.

We now consider several cases, depending on the type (dihedral or tree) of the
corresponding vertices.

Case 1: Suppose by contradiction that v and v′ are adjacent vertices of Y of dihedral
type. Recall that for an element of the form zab, we have FixD(zab) = {vab} by
Lemma 2.28. Since FixD̂(zv)∩FixD̂(zv′) is non-empty, these fixed-point sets intersect
along at least (at least) one vertex w, which must be of tree type since FixD(zv) ∩
FixD(zv′) = ∅. This vertex correspond to a standard tree T stabilised by 〈zv, zv′ 〉.
Moreover, T contains both vertices ι(v) and ι(v′): Indeed, zv stabilises the unique
CAT(0) geodesic between ι(v) and T , and since zv is not conjugate to a power of a
standard generator by Lemma 3.5, zv cannot stabilise an edge of D, and it follows
that this geodesic is reduced to a point (and similarly for zv′). Thus, 〈zv, zv′ 〉 acts on
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T , and since no non-trivial power of zv or zv′ is conjugate to a standard generator
by Lemma 3.5, it follows that for all non-zero k ∈ Z, we have FixT (zk

v) = {ι(v)}
and FixT ((zv′)k) = {ι(v′)}. It now follows from the Claim that zv and zv′ generate a
non-abelian free subgroup, a contradiction.

Case 2: Let us now assume that v, v′ are two adjacent vertices of Y of tree type. By
the above argument, zv and zv′ fix a vertex w of D̂.

If w is a vertex of D, then it belongs to FixD(zv) ∩ FixD(zv′) = Tι(v) ∩ Tι(v′).
Since distinct standard trees of D meet in at most one vertex by Corollary 2.18, we
can assume that w is that common vertex. Up to conjugation, we can thus assume that
zv and zv′ are two distinct commuting conjugates of standard generators of a dihedral
Artin group Aab, which contradicts Lemma 2.8.

Case 3: Finally, we assume that v is of dihedral type and v′ of tree type. Since
FixD̂(zv) ∩ FixD̂(zv′) is non-empty, let w be a vertex of D̂ in that intersection. If w

belongs to D, then in particular w belongs to FixD(zv) ∩ FixD(zv′) = {ι(v)} ∩ Tι(v′),
so ι(v) is contained in FixD(zv′) = Tι(v′), as required.

Let us show that this is the only possibility. By contradiction, if FixD̂(zv)∩FixD̂(zv′)
does not contain any vertex of D, then these fixed-point sets intersect along (at least)
one vertex, which must be of tree type since FixD(zv) ∩ FixD(zv′) = ∅. This vertex
corresponds to a standard tree T .Moreover, the same reasoning as in the previous cases
shows that T contains ι(v) and intersects Tι(v′). We thus have that 〈zv, zv′ 〉 induces
an action on T , zv fixes the vertex w := ι(v), zv′ fixes the vertex w := Tι(v′) ∩ T ,
w,w′ are distinct since FixD(zv) ∩ FixD(zv′) is empty by assumption. Moreover, for
every non-zero integer k, we have FixT (zk

v) = {w} since no non-trivial power of an
element of the form zab is conjugate to a standard generator by Lemma 3.5, and for
every non-zero integer k, we have that FixT (zk

v′) = {w′} by Lemma 2.15 since T
is a standard tree distinct from Tι(v′). It now follows from the Claim that zv and zv′
generate a non-abelian free subgroup, a contradiction. ��

The previous lemma is useful in understand the structure of the graph Y . In
particular, we have the following results:

Lemma 3.9 The graph Y does not contain any triangle or square.

Proof Since Y is bipartite with respect to the type of vertices by Lemma 3.8, it does
not contain triangles.

Let us now show by contradiction that Y does not contain squares. Since Y is
bipartite with respect to the type of vertices by Lemma 3.8, such a square would
contain exactly two opposite vertices of dihedral type and two opposite vertices of
tree type.

In D� , this would correspond to two distinct standard trees intersecting in at least
two different vertices, which contradicts Corollary 2.18. ��
Lemma 3.10 If � is connected, then the commutation graph Y is connected.

Proof Let us first show that any two vertices of Y of tree type are connected by a path
of Y . Since A� is generated by its standard generators, it is enough to show that every
pair of vertices of tree type of the form ua and ub are connected by a path of Y . Let
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a, b be two vertices of �. Since � is connected, let c1 = a, . . . , cn = b be a sequence
of vertices of � such that ci and ci+1 are adjacent for every i . Then the sequence of
vertices

uc1 , uc1,c2 , uc2 , . . . , uci , uci ,ci+1 , uci+1 , . . . , ucn

defines a combinatorial path of Y between ua and ub.
Moreover, since every vertex of dihedral type of Y is connected by an edge to some

vertex of Y of tree type, it follows that Y is connected. ��
Lemma 3.11 The action of A� on Y is cocompact.

Proof There are finitely many orbits of vertices of Y by construction, since the family
H is finite. It follows from Lemma 3.8 and the characterisation of the edges of Y that
the set of edges of Y equivariantly embeds into the set of edges of D̂. Since the action
of A� on D̂ is cocompact, it follows that there are only finitely many A�-orbits of
edges of Y , hence the result. ��

Lemma 3.8 allows us to extend the map ι to a map from Y to D̂:

Definition 3.12 We extend the map ι : Y (0) → D̂(0) into a simplicial and A�-
equivariant map ι : Y → D̂ as follows: An edge between a vertex u of dihedral
type and a vertex u′ of tree type is sent to the corresponding edge of D̂ between ι(u)

and ι(u′).

Lemma 3.13 Suppose that the graph � is connected. Then the map ι : Y → D̂ is
an A�-equivariant quasi-isometry. More precisely, ι embeds Y as a coarsely dense
subgraph of D̂.

Proof We construct a quasi-inverse ι : D̂ → Y as follows. First notice that since D̂
has finitely many isometry types of simplices, it is enough to define ι at the level of
vertices, where the distance between vertices is defined as the length of a minimal
path in the 1-skeleton.

By Lemma 3.8, for a vertex v of D̂ that is either of dihedral or tree type, we define
ι(v) to be the unique vertex u ∈ Y such that ι(u) = v. Let us define ι on the remaining
vertices. A vertex v of D̂ corresponding to the coset of a cyclic group generated by a
standard generator belongs to a unique standard tree T , and we set ι(v) = ι(v′), where
v′ is the vertex of D̂ that is the apex corresponding to T . For a vertex v corresponding
to a coset of the trivial subgroup, we pick a vertex v′ of dihedral type of D adjacent
to it, and we set ι(v) = ι(v′).

Lemma 3.8 implies that ι ◦ ι is the identity on the vertices of Y , and that ι ◦ ι is
the identity on the vertices of D̂ that are either of dihedral type or of tree type. For a
vertex v of D̂ corresponding either to the coset of a trivial, cyclic, or Z

2-subgroup, the
construction implies that ι ◦ ι(v) and v are at distance 1 in the 1-skeleton of D, which
concludes the proof. ��

Note that if � is disconnected and can be written as the disjoint union of two full
subgraphs �1, �2, then A� splits as the free product A�1 ∗ A�2 . In particular, since
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a free product of hierarchically hyperbolic groups is itself hierarchically hyperbolic
(see [9, Corollary 8.24] or [9, Theorem 9.1]), it is enough to consider the case of a
connected graph �. This motivates the following convention:

Convention 3.14 In the rest of this article (except the proof of TheoremA in Sect. 6.3),
we will assume that the underlying presentation graph � is connected and not a single
vertex.

3.2 The graph of proper irreducible parabolic subgroups of finite type

As an aside, we highlight the connection between the commutation graph Y and the
graph of proper irreducible parabolic subgroups of finite type introduced by Morris-
Wright [48], and generalizing a construction in the spherical type of Cumplido et al.
[24] . This graph was proposed as an analogue of the curve graph for all Artin groups.
We show that this indeed the case for Artin groups of large and hyperbolic type. We
emphasise that this subsection is not needed in the rest of the paper and can be omitted
in a first reading.

Definition 3.15 ([48]) The graph of irreducible proper parabolic subgroups of
finite type P of A� is the simplicial graph defined as follows. Vertices correspond to
the proper parabolic subgroups of finite type that are irreducible (that is, they do not
decompose as a direct product of proper standard parabolic subgroups). Two vertices
H , H ′ are connected by an edge when either:

• There is a strict inclusion H � H ′, or
• We have H ∩ H ′ = {1} and H , H ′ commute.

The Artin group A� acts on P by conjugation.

While this definition makes sense for all Artin groups, we recall that we are only
dealing in this article (and in particular in this section) with the case of Artin groups
A� that are large-type and of hyperbolic type.

Proposition 3.16 Assume that � is a connected graph not reduced to a single edge.
Then the graph of irreducible parabolic subgroups of finite type of A� is equivariantly
isomorphic to the commutation graph.

Under such conditions on �, the action of A� on the coned-off Deligne com-
plex is acylindrical and universal by [44, Theorem A]. The following is thus a direct
consequence of Lemma 3.13.

Corollary 3.17 Assume that � is a connected graph not reduced to a single edge. Then
the graph of irreducible proper parabolic subgroups of finite type of A� is hyperbolic
of infinite diameter, and the action of A� on it is acylindrical and universal. ��

In order to prove Proposition 3.16, we will need the following result:

Lemma 3.18 Assume that � is a connected graph not reduced to a single edge. Then
distinct elements of H have normalisers that are in different conjugacy classes.
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Proof The normaliser of a standard generator is of the form Z × Fk for Fk a finitely-
generated free group by Lemma 2.27, while the normaliser of an element of the form
zab is equal to the dihedral Artin group Aab by Lemma 2.28. We show that these
groups are non-isomorphic. This is clear if k = 1 as a dihedral Artin group with
mab ≥ 3 is not isomorphic to Z

2 since it virtually contains a non-abelian free group
by Lemma 2.3. For k ≥ 2, this follows for instance from the description of their
abelianisations: The abelianisation ofZ× Fk is a free abelian group of rank k +1 ≥ 3,
while the abelianisation of Aab is generated by two elements since Aab is. Thus, the
normaliser of a standard generator and the normaliser of an element of the form zab

are not conjugated.
Let zab, za′b′ be two elements associated to two distinct edges of �, and let g ∈ A� .

By Lemma 2.28, the normalisers of zab and gza′b′ g−1 are the dihedral Artin groups
Aab and g Aa′b′ g−1 and their fixed-point sets in D are vab and gva′b′ respectively.
As these points are in different A�-orbits, it follows that N (zab) and N (za′b′) are not
conjugate.

Finally, let a, b two distinct standard generators in Vodd(�), and suppose by con-
tradiction that N (a) = gN (b)g−1 for some g ∈ A� . By Lemma 2.27, the normalisers
a and b have the form 〈a〉 × Fk and 〈b〉 × Fk respectively (note that the rank of the
free group factors need to coincide since the subgroups are conjugated). If k ≥ 2,
then since N (a) and N (b) are conjugated, so are their centres 〈a〉 and 〈b〉. Using the
homomorphism A� → Z sending each standard generator to 1, it follows that a and
b are conjugated. By construction of Vodd(�), it follows that a = b, a contradiction.

Assume now that k ≤ 1. We thus have two standard generators a, b such that
N (a), N (b) are isomorphic to Z or Z

2. We will use the following general claim:
Claim: Let x be a standard generator. If the normaliser N (x) is isomorphic to Z,

then x corresponds to an isolated vertex of �. If the normaliser N (x) is isomorphic to
Z
2, then x corresponds to a leaf of �.
Let us prove the Claim. By Lemma 2.27, the normaliser N (x) is of the form 〈x〉× F

for somefinitely-generated group F . An explicit basisB of F was given in [44, Remark
4.6]. In particular, the following holds:

(i) If x is an isolated vertex of �, then F is trivial.
(ii) The basis B contains the element zxy for every vertex y of � adjacent to x .
(iii) Suppose that y is adjacent to x and the edge of � between them has an odd label.

If w is a vertex of � adjacent to y and distinct from x , then B contains a suitable
conjugate of zyw. We note that such an element cannot be equal to an element
described in (i i) by Lemma 3.5.

If N (x) is isomorphic toZ, then F is trivial, and by item (i i) in the above description
of a basis of F , x must be an isolated vertex. If N (x) is isomorphic to Z

2, then F is
isomorphic to Z, and by item (i i) in the above can have at most one neighbour in �. It
cannot be an isolated vertex for otherwise F would be trivial by item (i) above. Thus
x is a leaf of �. This proves the Claim.

Since N (a), N (b) are isomorphic to Z or Z
2, it follows from the above Claim

that a and b are leaves of � (since � is connected by assumption). Moreover, since
N (a), N (b) ∼= Z

2 and � is not reduced to a single edge, item (i i i) above implies that
the corresponding edges of � containing a and b have even labels.
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By Lemma 2.27, N (a) = gN (b)g−1 stabilises the standard tree containing the
vertex 〈a〉 and the standard tree containing g〈b〉. Because a, b are leaves of � with
corresponding edges having even labels, the corresponding standard trees Ta and gTb

have a very simple structure, which is a direct consequence of [44, Lemma 4.3] (see
also [44, Example 4.7] for a concrete example): Let a′ be the unique neighbour of a
in �, and let e be the edge of D between the parabolic subgroups 〈a〉 and Aaa′ . Then
Ta is the union of the 〈zaa′ 〉-translates of e (such a description was for instance given
in [44, Example 4.7]). In particular, Ta (and similarly for gTb) is isomorphic to a cone
over a countably infinite discrete set.

Let us show that the standard trees Ta and gTb intersect. If these two convex trees
were disjoint, then N (a) = gN (b)g−1 would also stabilise the unique CAT(−1)
geodesic of D between them, and so both normalisers would be contained in an edge-
stabiliser or triangle-stabiliser. This is impossible as such stabilisers do not contain
Z
2, as they are infinite cyclic or trivial respectively.
Thus these two standard trees meet. The vertices in Ta that are not the central

vertex of dihedral type correspond to cosets of 〈a〉 (and we have an analogous result
for b). Since 〈a〉 �= 〈b〉 by assumption, the trees Ta and gTb necessarily meet at the
central vertex of dihedral type. Let a′ (respectively b′) be the unique neighbour of a
(respectively b) in �. The unique vertex of Ta of dihedral type corresponds to a coset
of Aaa′ . Similarly, the unique vertex of gTb of dihedral type corresponds to a coset of
Abb′ . As these vertices agree, it follows that {a, a′} = {b, b′}, and since a �= b this
implies a and b are adjacent in�. Since a and b are leaves of � by the above, it follows
that � is a single edge, contradicting our assumption on �. ��
Lemma 3.19 Assume that � is a connected graph not reduced to a single edge.
Consider the map ϕ : Y (0) → P(0) defined as follows:

• For a vertex g Aab of Y of dihedral type, we set ϕ(g Aab) = g Aabg−1.
• For a vertex gN (a) of Y of tree type, we set ϕ(gN (a)) = g〈a〉g−1.

Then ϕ is well-defined and realises an A�-equivariant bijection between the vertex
sets of Y and P.

Proof The map ϕ is well-defined on vertices of dihedral type, but we need to check
that the definition makes sense for vertices of tree type. It is enough to show that if a, b
are standard generators in Vodd(�) with N (a) = N (b), then a = b. This is a direct
consequence of Lemma 3.18.

Let us show that ϕ is surjective. It is clear from the construction that every conjugate
of the form g Aabg−1 = ϕ(g Aab) is in the image of ϕ. Let a be a standard generator
of A� . By construction of Vodd(�), there exists a standard generator b ∈ Vodd(�) and
an element h ∈ A� such that a = hbh−1. Thus, any conjugate of the form g〈a〉g−1

can be written as g〈a〉g−1 = (gh)〈b〉(gh)−1 = ϕ(ghN (b)). Thus, ϕ is surjective.
Let us show that ϕ is injective. For a given standard generator a ∈ V (�), the map

ϕ induces a bijection between the conjugates of 〈a〉 and the cosets of N (a). Similarly,
since dihedral parabolic subgroups of A� are self-normalizing by Lemma 2.13, we
have that for a given edge a, b of � with mab ≥ 3, the map ϕ induces a bijection
between the conjugates of Aab and the cosets of Aab. To show that ϕ is injective, it
remains to show that for H , H ′ different elements ofH, we cannot have an equality of

123



894 M. Hagen et al.

the form ϕ(gN (H)) = ϕ(g′N (H ′)) for g, g′ ∈ A� . Such an equality would amount to
an equality between parabolic subgroups. Note that a conjugate of the form g〈a〉g−1,
which is isomorphic to Z, cannot be isomorphic to a conjugate of a dihedral parabolic
subgroup by Lemma 2.3. There are thus two cases to consider:

If H , H ′ correspond to cyclic subgroups of the form 〈a〉, 〈a′〉 respectively, then
the equality ϕ(gN (H)) = ϕ(g′N (H ′)) yields the equality g〈a〉g−1 = g′〈a′〉(g′)−1.
Since a �= a′, this equality is impossible by Lemma 3.5.

If H , H ′ correspond to cyclic subgroups of the form 〈zab〉, 〈za′b′ 〉 respectively,
then the equality ϕ(gN (H)) = ϕ(g′N (H ′)) and the fact that Aab = N (zab) by
Lemma 2.28 yield the equality gN (zab)g−1 = g′N (za′b′)(g′)−1. Since H �= H ′, this
equality is impossible by Lemma 3.18. ��

Proof of Proposition 3.16 We know from Lemma 3.19 that the map ϕ realises an A�-
equivariant bijection between the vertex sets of Y and P . Let us show that this bijection
extends to an equivariant isomorphism between P and Y .

First, it follows from Lemma 3.8 that two vertices that are adjacent in Y are also
adjacent in P , and we now show the converse.

Let Q and Q′ be two proper irreducible parabolic subgroups of finite type, i.e.
parabolic subgroups on one or two generators with mab ≥ 3, and assume that Q and
Q′ are connected in P . There are two cases to consider, depending on the two types
of edges of P:

Let us first assume that Q, Q′ intersect trivially and commute. Since A� is of
cohomological dimension 2 by [21] and dihedral parabolic subgroups contain a copy
of Z

2, this can only happen if both Q and Q′ are infinite cyclic, in which case there is
a Y -edge between them by construction of Y .

Suppose now that Q � Q′. First notice that Q and Q′ cannot be both dihedral
parabolic subgroups by Lemma 2.13. We can thus assume that Q is infinite cyclic. Let
e be an edge in the standard tree T associated to Q, and let σ ′ be a maximal simplex of
Fix(Q′) (i.e. σ ′ is a vertex or an edge depending on whether Q′ is of dihedral type or
infinite cyclic respectively). Since Q fixes both v and σ ′ by assumption, Lemma 2.17
implies that v and σ ′ are contained in a common standard tree, namely the standard
tree T .

Let us show by contradiction that Q′ cannot be infinite cyclic. Let T ′ be the standard
tree corresponding to Q′. Then since T and T ′ both contain e, it follows from Corol-
lary 2.18 that T = T ′. Since Q, Q′ is the pointwise stabiliser of T , T ′ respectively by
construction, we get Q = Q′, contradicting the assumption that Q � Q′.

Thus, Q′ is a parabolic subgroup of dihedral type.We thus have that the vertex of D
corresponding to Q′ is contained in the standard tree associated to Q. By Lemma 3.8,
this implies that Q and Q′ are connected by an edge of Y . ��

Remark 3.20 We note that the alternative description of P given by Proposition 3.16
provides an alternative characterisation of the edges of P: Two proper irreducible
parabolic subgroups of finite type are joined by an edge of P if and only if their
centres commute. This generalises results known for Artin groups of finite type [24,
Theorem 2.2] and of FC type [48, Lemma 4.2].

123



Extra-large type Artin groups are hierarchically… 895

3.3 Adjacency in the commutation graph and intersection of neighbourhoods of
cosets

In this section, we study the interactions between cosets associated to adjacent vertices
of the commutation graph Y . Namely, we show that two such adjacent cosets have
neighbourhoods that intersect along a quasi-flat (see Lemma 3.23). We start with the
following result:

Lemma 3.21 Let H1, H2 ∈ H and suppose that gN (H1), hN (H2) are adjacent
vertices of Y for some g, h ∈ A� . Then we have

gN (H1)g
−1 ∩ hN (H2)h

−1 = 〈gH1g−1, h H2h−1〉.

Moreover, 〈gH1g−1, h H2h−1〉 is naturally isomorphic to gH1g−1 × h H2h−1 ∼= Z
2.

Proof By Lemma 3.8, we can assume that gN (H1) is mapped under ι to the apex of a
standard tree T1 and hN (H2) is mapped under ι to a vertex of dihedral type contained
in T1. Notice that, up to a conjugation, it is enough to prove the desired equality when
h is trivial, so we will assume that this is the case in the rest of the proof. The subgroup
H2 ∈ H is of the form 〈zab〉 for some standard generators a, b, and so the vertex v

corresponds to the trivial coset Aab by construction of ι. Since the standard tree T1
contains the vertex Aab, it also contains a vertex of the form x〈a〉 or x〈b〉 for some
x ∈ Aab. Without loss of generality, we can assume that T1 contains a vertex of the
form x〈a〉 for some chosen x ∈ Aab.

We have hN (H2)h−1 = N (zab) = Aab by Lemma 2.28. Moreover, since two
edges of T1 have the same stabiliser by construction, we have gH1g−1 = x〈a〉x−1,
hence gN (H1)g−1 = x N (a)x−1 = xC(a)x−1, the latter equality following from
Lemma 2.27. Thus, the intersection gN (H1)g−1 ∩ hN (H2)h−1 can be identified with

the centraliser of the element xax−1 in Aab. By [23, Lemma 7.(i i)], this is equal to
〈xax−1, zab〉 = 〈gH1g−1, h H2h−1〉.

For the “moreover” part, note that the intersection is naturally isomorphic to the
product by definition of edges of Y and Lemma 3.5. ��
Definition 3.22 Let B(e, r) denote the closed ball of radius r in the standard Cayley
graph of A� .

We fix a constant r ≥ 0 so that whenever a, b are conjugate standard generators
there exists x ∈ B(e, r) so that xax−1 = b. The r -neighbourhood N (H)+r of N (H)

is defined as

N (H)+r :=
⋃

c∈B(e,r)

N (H)c.

Lemma 3.23 There exists a constant 	 ≥ 0 such that the following holds:
Let H1, H2 ∈ H and suppose that gN (H1), hN (H2) are adjacent vertices of Y for

some g, h ∈ A� .
Then gN (H1)

+r ∩ hN (H2)
+r is nonempty. Also, the subgroup gN (H1)g−1 ∩

hN (H2)h−1 (which is isomorphic to Z
2 by Lemma 3.21) acts coboundedly on the
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intersection gN (H1)
+r ∩ hN (H2)

+r , and the quotient of this action has diameter at
most 	.

Remark 3.24 We advise the reader to focus on the case of even Artin groups (i.e. mab

is even for all standard generators) in a first reading. In that particular case, we have
Vodd(�) = V (�) and we can take r = 	 = 0 in the above statement. In particular, we
are simply looking at intersections of cosets.

Let us explain briefly the need to consider neighbourhoods of cosets in the general
case. If x and y are two standard generators connected by an edge of � with an
odd label, then we have �xy x�−1

xy = y, where �xy is the Garside element of Axy . In
particular, we have g�xy N (x)�−1

xy = gN (y), and so the cosets g�xy N (x) and gN (y)

are at boundedHausdorff distance of one another (they are in a sense “parallel”). Let us
assume that we are looking at vertices gN (H) and hN (H ′) where H , H ′ correspond
to standard generators a, b. As we saw in the proof of Lemma 3.21, the intersection
gN (H)g−1 ∩ hN (H ′)h−1 stabilises a vertex of dihedral type. However, while H , H ′
correspond to standard generators a, b in Vodd(�), it may happen that this vertex of
dihedral type correspond to two different standard generators a′, b′ that are conjugated
to a, b respectively. Thus, while it may not be clear how to study the intersection
gN (a)∩ hN (b), it is much simpler to study the corresponding intersection of parallel
copies corresponding to cosets of N (a′) and N (b′). This is why we do not simply
consider the cosets gN (a), hN (b) but consider suitable neighbourhoods that contain
those parallel copies corresponding to cosets of N (a′) and N (b′).

Proof of Lemma 3.23 Let H1, H2 ∈ H and let gN (H1), hN (H2) be cosets correspond-
ing to adjacent vertices of Y .

By Lemma 3.8, we can assume that H1 correspond to a standard generator a1,
H2 corresponds to an element of the form zb1b2 , and the standard tree T1 with apex
ι(gN (H1)) contains the vertex of dihedral type ι(hN (H2)). This vertex corresponds to
a coset of the form h Ab1b2 . Since the tree T1 contains the vertex h Ab1b2 , it also contains
a vertex corresponding to a coset of the form hx〈b1〉 or hx〈b2〉 for some x ∈ Ab1b2 ,
so without loss of generality we will assume that it contains a vertex corresponding
to a coset of the form hx〈b1〉. Since N (H2) = Ab1b2 by Lemma 2.28, we have that
hx N (H2) = hN (H2), so without loss of generality we will assume, up to replacing
the element h by hx , that T1 contains the vertex h〈b1〉. Moreover, since T1 contains
vertices corresponding to cosets of 〈a1〉 and 〈b1〉, it follows from Lemma 2.22 that a1
and b1 are conjugated: By construction of r , we choose an element x1 ∈ B(e, r) so
that x1a1x−1

1 = b1.
By construction of x1, we have hx1va1 = hvb1 . Thus, the apex of the standard tree

T1 is the coset gN (a1) = hx1N (a1), so we can assume without loss of generality
that g = hx1. We thus have gN (H1) = hx1N (a1) and hN (H2) = h Ab1b2 . Since
x1 ∈ B(e, r), the intersection gN (H1)

+r ∩hN (H2)
+r = hx1N (a1)+r ∩hN (zb1b2)

+r

contains the intersection

hx1N (a1)x−1
1 ∩ hN (zb1b2) = hN (b1) ∩ hN (zb1b2) = h〈b1, zb1b2〉,

the latter equality following from Lemma 3.21.
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Since B(e, r) contains only finitely many elements of A� andH is finite, it follows
from [34, Proposition 9.4] that there exists a constant 	 > 0 (that does not depend on
the choice of standard generators a1, b1, b2 and element x1) such that

x1N (a1)
+r ∩ N (zb1b2)

+r ⊂ (
N (x1a1x−1) ∩ N (zb1b2)

)+	

= (
N (b1) ∩ N (zb1b2)

)+	 = 〈b1, zb1b2〉+	,

and in particular

gN (H1)
+r ∩ hN (H2)

+r = hx1N (a1)
+r ∩ hN (zb1b2)

+r ⊂ h〈b1, zb1b2〉+	.

Thus, the intersection gN (H1)
+r ∩hN (H2)

+r is at Hausdorff distance at most 	 from
h〈b1, zb1b2〉.

The conjugate h〈b1, zb1b2〉h−1 is equal to 〈ga1g−1, hzb1b2h−1〉 = gN (H1)g−1 ∩
hN (H2)h−1 by Lemma 3.21. Since k〈b1, zb1b2〉k−1 acts coboundedly on k〈b1, zb1b2〉
and gN (H1)

+r ∩ hN (H2)
+r is at Hausdorff distance at most 	 from k〈b1, zb1b2〉, it

follows that gN (H1)g−1∩hN (H2)h−1 acts coboundedly on gN (H1)
+r ∩hN (H2)

+r

and the quotient space has diameter at most 	. ��
Definition 3.25 Let gN (H) be a vertex of the commutation graph Y . For each Y -
adjacent coset hN (H ′), the h H ′h−1-orbit of a point of gN (H)+r ∩ hN (H ′)+r is
called an incident direction at gN (H).

Fixing gN (H) and letting hN (H ′) vary over the vertices of Y that are adjacent to
gN (H), we denote by I(gN (H)) the set of all such incident directions.

We advise the reader to look at Fig. 3 for an illustration of this notion. For later use,
we observe:

Lemma 3.26 For each vertex gN (H) of the commutation graph Y , there are finitely
many gN (H)g−1-orbits of incident directions at gN (H).

Proof By Lemma 2.30 and Corollary 2.36, there are finitely many gN (H)g−1-orbits
of vertices of Y adjacent to the vertex gN (H). Thus, it is enough to show that for a
fixed vertex hN (H ′) adjacent to gN (H), there are only finitely many gN (H)g−1-
orbits of incident directions corresponding to h H ′h−1-orbits. This is indeed the case,
since gN (H)g−1 contains gN (H)g−1∩hN (H ′)h−1, which acts coboundedly, hence
cofinitely (since theCayleygraphof A� is locallyfinite) on the intersection gN (H)+r ∩
hN (H ′)+r by Lemma 3.23. ��

For later purposes we also note the following consequence:

Corollary 3.27 There are finitely many orbits of edges in Y .

4 The blown-up commutation graph

We now introduce a variant of the commutation graph of a group. This is this complex
X to which we apply Theorem 1.4 for Artin groups of large and hyperbolic type.
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Fig. 3 A simplified picture illustrating two adjacent edges of Y , with above each vertex a depiction of the
corresponding cosets N (H), N (H ′), N (H ′′). Each such coset is quasi-isometric to a product of a tree with
a line, and the directions H , H ′, H ′′ are represented vertically in each coset. Two cosets N (H) and N (H ′)
that are adjacent in Y have uniform neighbourhoods that meet along a subset with a cobounded action of the
Z
2-subgroup H × H ′ (shaded regions in the picture). The H ′- and H ′′-orbits in the corresponding shaded

regions have a certain “slope” when seen inside N (H). The action of N (H) on the quasiline �N (H) from
the blow-up data is chosen so that H acts with unbounded orbits on it, but H ′ and H ′′ act with bounded
orbits on �N (H)

Recall that we have already introduced the standing assumption that our Artin groups
are of large hyperbolic type.

Moreover, as per Convention 3.14, we are considering an Artin group (of large and
hyperbolic type) A� with � connected, and we letH be as in Definition 3.4. For each
H ∈ H, let N (H) denote its normaliser. Recall that

⊔
H∈H A�/N (H) is the vertex

set of the commutation graph Y . Our goal is to produce X by modifying Y . Roughly
speaking, each vertex of Y will be “blown up” to a cone on a certain discrete space
quasi-isometric to Z, and each edge of Y will be blown up to the simplicial join of
the blow-ups of its vertices. Figure 4and the discussion following Definition 4.7 may
help the reader visualise the construction.

In what follows, we equip A� with the word metric dA� coming from the standard
generating set given by the vertices of �. When we refer to distances in subspaces
of A� (e.g. cosets of subgroups), we are using the subspace metric inherited from
(A�, dA� ).

4.1 Blow-up data

The action of A� on the commutation graph Y hides too much information to use it
as the underlying simplicial complex in a combinatorial HHS structure. For example,
subgroups of the form N (H), H ∈ H, fix vertices in the commutation graph, so by
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Fig. 4 A portion of the blow-up
X over an edge of Y . The fibres
Xv and Xv′ span a simplicial
join in X . The figure illustrates
how an edge of Xv and an edge
of Xv′ span a tetrahedron of X

Lemma 3.21, edges have Z
2 stabilisers. By Lemma 3.9, edges are maximal simplices.

Thus any Y -graph (see Definition 1.1) has Z
2 vertex stabilisers, and so it is not a

quasi-isometry model for A� . We remedy this by replacing the commutation graph by
a complex X in which the vertices of the commutation graph have been “blown up”.

We now describe the geometric data necessary to perform such a blow-up con-
struction and show that it exists in the case of Artin groups of large and hyperbolic
type.

Definition 4.1 (Blow-up data) Let B0, L0 ∈ N be fixed constants, and let r be as in
Definition 3.22. Then blow-up data for A� and Y consists of the following:

• (Quasilines associated to cosets.) For each coset gN (H), H ∈ H, g ∈ A� , let
�gN (H) be a discrete metric space that is (B0, B0)-quasi-isometric toZ. Moreover,
gN (H)g−1 acts by isometries on �gN (H) with at most B0 orbits of points, fixing
the Gromov boundary of �gN (H) pointwise.

• (Projections to quasilines.) For each coset gN (H), H ∈ H, g ∈ A� , let

φgN (H) : gN (H)+r → �gN (H)

be a gN (H)g−1-equivariant, (L0, L0)-coarsely Lipschitz map.

Blow-up data must satisfy the following additional conditions:

(A) (Equivariance.) For each g ∈ A� and each coset hN (H), there is an isometry g :
�hN (H) → �ghN (H) such that φghN (H)(gx) = g ·φhN (H)(x) for all x ∈ �hN (H).

(B) (Unbounded orbits.) For each coset gN (H), the action of gHg−1 on�gN (H) has
unbounded orbits.

(C) (Bounded incident directions.) For each incident direction h H ′h−1 · x ∈
I(gN (H)), we have diam(φgN (H)(h H ′h−1 · x)) ≤ B0. (Incident directions are
defined in Definition 3.25.)

Some intuition for the definition of blow-up data is provided by Fig. 3.
The reader may want to read the statement of Lemma 4.19 already, in order to

understand the importance of the previous conditions, especially condition (C). While
the equivariance condition (A) will be necessary for our constructions, it is slightly
redundant in the previous definition, as we can start from a “non-equivariant” blow-up
data and extend it equivariantly:
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Lemma 4.2 Suppose that for every H ∈ H, we have:

• a discrete metric space �N (H) that is (B0, B0)-quasi-isometric to Z, with an action
of N (H) on it by isometries with at most B0 orbits of points and which fixes the
Gromov boundary pointwise.

• a N (H)-equivariant, (L0, L0)-coarsely Lipschitz map

φN (H) : N (H)+r → �N (H)

that satisfy the following additional conditions:

(B′) For each H ∈ H, the action of H on �N (H) has unbounded orbits.
(C′) For each coset k H ′k−1 · x ∈ I(N (H)), we have diam(φN (H)(k H ′k−1 · x)) ≤ B0.

Then it is possible to extend equivariantly this data into a blow-up data for Y .

Proof Fix a favourite representative g of the coset gN (H). Let �gN (H) be a copy of
�N (H).We define φgN (H)(gx) = φ(x) for x ∈ N (H)+r , and the action of gN (H)g−1

on �gN (H) is defined as gng−1 · λ = nλ for n ∈ N (H) and λ ∈ �gN (H). (Note that
the coset representative g is fixed throughout.)

We have that �gN (H) is (B0, B0)-quasi-isometric to Z, gN (H)g−1 acts by isome-
tries, it has at most B0 orbits, and the orbits of gHg−1 are unbounded. The fact that
φgN (H) is coarsely Lipschitz is also straightforward.

Let us check equivariance (which is not immediate aswe chose coset representatives
to define the φ maps). Let g ∈ A� , and consider a coset hN (H). We can assume that
h is the favourite representative of its coset, and let ghn be the favourite representative
of ghN (H), where n ∈ N (H). The isometry g : �hN (H) → �ghN (H) is defined as
g(x) = n−1x (so that we are using the action of N (H) on �N (H)). For x ∈ �hN (H)

we have

φghN (H)(gx) = φghN (H)(ghn n−1h−1x)

= φN (H)(n
−1h−1x)

= n−1φN (H)(h
−1x)

= n−1φhN (H)(hh−1x)

= n−1φhN (H)(x),

as required.
To show C, we note that by equivariance, for x ∈ gN (H)+r and hN (H ′) adjacent

to gN (H) in Y , we have φgN (H)(h H ′h−1 · x) = gφN (H)(g−1(h H ′h−1 · x)).
Note that g−1(h H ′h−1 · x) = g−1h H ′h−1g · (g−1x) ∈ N (H)+r and g−1h H ′h−1g

commutes with H , so that N (H) is adjacent to g−1hN (H ′). In particular g−1h H ′h−1 ·
x is in I(N (H)), so that φN (H)(g−1(h H ′h−1 · x)) has diameter at most B0. Since g
is an isometry, the same holds for φgN (H)(h H ′h−1 · x), as required. ��
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Existence of blow-up data. We now verify that blow-up data exists for A� and Y .
The rest of this subsection is independent of the rest of the article, as the arguments in
the next sections rely on the existence of blow-up data, but not on the specific choice
of blow-up data. The reader may thus want to skip the rest of this subsection in a first
reading.

As we will see, the key idea is to transform quasimorphisms into actions on quasi-
lines. We use a lemma from [2] to do so (the idea behind it can be traced further back,
see e.g. [43, Proposition 4.4]). We need the following two general lemmas, which also
underpin the strategy followed in the forthcoming paper [32].

Lemma 4.3 (Initial quasimorphism) Let 1 → Z
ι−→ G

π−→ F → 1 be a cen-
tral extension corresponding to a bounded class in H2(F, Z). Then there exists a
quasimorphism φ : G → Z which is unbounded on ι(Z).

Proof Since the central extension corresponds to a bounded class, there is a set-
theoretic section s : F → G of π such that the element s( f1)s( f2)s( f1 f2)−1

takes finitely many values as f1, f2 vary in F . Since s is a section of π , we have
s( f1)s( f2)s( f1 f2)−1 ∈ ker(π) = ι(Z) for all f1, f2 ∈ F , so for each f1, f2 ∈ F we
can choose an integer c( f1, f2) such that ι(c( f1, f2)) = s( f1)s( f2)s( f1 f2)−1. Note
that |c( f1, f2)| is bounded independently of f1, f2, because s( f1)s( f2)s( f1 f2)−1

takes only finitely many possible values.
We now define φ. Let x ∈ G. Then there exist unique fx ∈ F, tx ∈ Z such that

x = s( fx )ι(tx ). We set φ(x) = tx . We first verify that φ is a quasimorphism. Indeed,
let x, y ∈ G. Then, since ι(Z) is central, we have

xy = s( fx )ι(tx )s( fy)ι(ty) = s( fx )s( fy)ι(tx + ty) = s( fx ty)ι(c( fx , fy) + tx + ty).

So

φ(xy) = tx + ty + c( fx , fy) = φ(x) + φ(y) + c( fx , fy),

whence φ is a quasimorphism because of the uniform bound on |c( fx , fy)|.
Finally, observe that for all t ∈ Z, we have φ(ι(t)) = t , proving the last part of the

lemma. ��
Lemma 4.4 (Action on a quasiline) Let 1 → Z

ι−→ G
π−→ F → 1 be a central

extension with F a hyperbolic group. Let {Cα}α∈I be a finite collection of infinite
cyclic subgroups of G such that {π(Cα)}α∈I is a malnormal collection of infinite
cyclic subgroups of F. Then G has an (infinite) generating set S such that:

• Cay(G,S) is quasi-isometric to Z;
• ι(Z) is unbounded in Cay(G,S);
• there exists D ≥ 0 so that for each x, g ∈ G and each α the diameter of gCαg−1x

is bounded by D.

Proof By Lemma 4.15 in [2], it suffices to produce a quasimorphism ψ : G → R

such that ψ is unbounded on ι(Z), and each ψ(gCαg−1x) is contained in an interval
of uniformly bounded size.
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For each α ∈ I , let aα generate the infinite cyclic group π(Cα). So, {〈aα〉}α∈I is a
malnormal collection in F , and each aα has infinite order.

We now construct a collection of quasimorphisms; the quasimorphism ψ will be a
linear combination of these.

First, let φ : G → Z be the quasimorphism provided by Lemma 4.3, which applies
since F is hyperbolic and therefore every cohomology class is bounded [47, Theorem
15]. Let ψ0 be the homogenisation of φ.

Second, for each α ∈ I , we can choose a homogeneous quasimorphism ψ ′
α : F →

R such thatψ ′
α(aα) = 1 andψ ′

α(aα′) = 0 for α′ ∈ I −{α}. This is possible because of
malnormality of the collection {〈aα〉}α∈I of infinite cyclic subgroups (using either the
construction in [30] or combining [38, Theorem 4.2] with [25, Corollary 6.6, Theorem
6.8]). So, ψα = ψ ′

α ◦ π : G → R is a quasimorphism for each α.
Now let

ψ = ψ0 −
∑

α∈I

ψ0(aα) · ψα.

Then we claim that ψ is a quasimorphism on G with the required properties. Indeed,
ψ |ι(Z) = ψ0|ι(Z), soψ is unbounded on ι(Z). Next, note that ψ(Cα) = {0}, so that for
any c ∈ Cα and g, x ∈ G we have that |ψ(gcg−1x) − ψ(x)| is bounded by 3 times
the defect of ψ , showing that ψ(gCαg−1x) is contained in an interval of uniformly
bounded size. ��

We now use the two preceding lemmas to produce blow-up data.

Lemma 4.5 (Existence of blow-up data) There exists blow-up data for A� and Y .

Proof Fix H ∈ H. We have a central extension H
ι−→ N (H)

π−→ F , where H ∼= Z

and F is virtually free (and in particular, hyperbolic). This follows fromDefinition 3.4
and either Lemma 2.27 or Lemma 2.3, according to whether H is generated by a
standard generator or by an element of the form zab.

Choose one element of each N (H)-orbit in I(N (H)); there are finitely many by
Lemma 3.26. Each of these is an orbit gi Hi g

−1
i · xi in N (H)+r .

Each gi Hi g
−1
i is infinite cyclic. Moreover, gi Hi g

−1
i ∩ H = {1} by Lemma 3.21,

so π(gi Hi g
−1
i ) is again infinite cyclic.

Observe that {π(gi Hi g
−1
i ) : α ∈ I } is a malnormal collection of subgroups of F .

Indeed, suppose not, so that for distinct i, j , the following holds. Choose elements
c, ci , c j (either standard generators or elements of the form zab) generating H , Hi , Hj

respectively. Then, for some k ∈ N (H), there exist positive integers p, q and an integer
r such that kcp

j k−1 = cq
i cr . Now, cq

i cr centralises ci , whence kcp
j k−1 centralises ci .

So, ci centralises kc j k−1, by Lemma 2.29. Hence ci , kc j k−1, and c pairwise commute,
contradicting Lemma 3.9.

So, Lemma 4.4 yields a generating set S of N (H). Recall that N (H)+r is a finite
disjoint union of right cosets N (H)ci of N (H). We can then consider the graph with
vertex set N (H)+r with vertices g, h connected by an edge if g−1h or h−1g belong to
S ∪ {ci }. By [20, Theorem 5.1] (or a direct argument) the vertex set �N (H) endowed
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with the induced metric is N (H)-equivariantly quasi-isometric to to the quasiline
Cay(G,S).

We can define φN (H) : N (H) → �N (H) to be the identity map, and we observe
that �N (H) and φN (H) satisfies the conditions in Lemma 4.2.

Since there are finitely many subgroups H ∈ H, we can choose constants B0, L0
such that each �N (H) is (B0, B0)-quasi-isometric to Z, the maps �N (H) are (L0, L0)-
coarsely lipschitz (where N (H) carries thewordmetric from the fixed finite generating
set of A�), and each element of I(N (H)) maps to a set in �N (H) of diameter at most
B0, for all H . By construction, there are boundedly many N (H)-orbits in �N (H).

We thus have that {(�N (H), φN (H)} satisfies conditions (B′) and (C′) from
Lemma 4.2. By Lemma 4.2, it possible to extend the construction equivariantly to
obtain condition (A). ��

4.2 The blown-up commutation graph

We now define the simplicial complex X . Fix a blow-up data as in Definition 4.1.

Definition 4.6 (Blown-up commutation graph) We define a simplicial graph, called
the blown-up commutation graph, as follows:

• The graph has a vertex for each element of

⊔

H∈H
G/N (H),

and for each coset gN (H) in the above set, we add �gN (H) to the vertex set.
• For every g ∈ G and H ∈ H, we put an edge between gN (H) and each vertex of

�gN (H). Moreover, whenever g, h ∈ G and H , H ′ ∈ H are such that gHg−1 and
h H ′h−1 are distinct and commute (i.e. when gN (H) and hN (H ′) are Y -adjacent),
we join every vertex in {gN (H)}∪�gN (H) to every vertex of {hN (H ′)}∪�hN (H ′).

We denote by X the flag completion of this graph.

Observe that A� acts on X by simplicial automorphisms, because of Defini-
tion 4.1.(A).

Definition 4.7 (Projection, fibre, roots and leaves) There is a natural A�-equivariant
simplicial projection p : X → Y obtained as follows. At the level of vertices, for
H ∈ H and g ∈ G, we set

p(gN (H)) = gN (H), p(�gN (H)) = gN (H).

Note that two adjacent vertices of X are either sent to the same vertex or to two adjacent
vertices of Y . Thus, this definition extends to a map from X to Y . For a simplex � of
X , we denote by � the image simplex p(�) ⊂ Y .

Note that for each vertex v := gN (H) ∈ Y , the preimage Xv := p−1(v), called
the fibre of v, is a tree that is the simplicial cone over �gN (H):

Xv = {gN (H)} ∗ �gN (H),
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where “∗” denotes the simplicial join between two sub-complexes. The root of Xv

will be the vertex gN (H), while the other vertices of Xv will be called leaves.

Thus, X can be thought of as being obtained from Y by blowing-up each vertex
gN (H) of Y into a cone over a quasiline, in such a way that fibres Xv and Xv′ over
adjacent vertices v, v′ of Y span a simplicial join Xv ∗ Xv′ in X .

Definition 4.8 We define the map q : X → D̂ as q := ι ◦ p, where ι : Y → D̂ is the
map to the coned-off Deligne complex defined in Lemma 3.7 and Definition 3.12.

Lemma 4.9 The map q : X → D̂ is an A�-equivariant simplicial quasi-isometry.

Proof The map q is simplicial, being a composition of simplicial maps, and is equiv-
ariant by construction. We have that p is a surjective simplicial whose fibres have
uniformly bounded diameter (the bound being 2), so that p is a quasi-isometry. Also,
ι is a quasi-isometry by Lemma 3.13, and hence q is also a quasi-isometry. ��

4.3 Simplices of the blow-up and their links

In this subsection, we describe the simplices of X and their links, and prove that X
satisfies several of the properties fromDefinition 1.3 and conditions fromTheorem1.4.

Definition 4.10 (Join decomposition of simplices) A simplex� of X naturally decom-
poses as a join as follows. For each vertex v ∈ �, we define the fibre of � at v by
�v := � ∩ Xv ⊂ �, which is either a single vertex or a single edge of �. Then � is
naturally the join of all its fibres:

� = ∗v∈V (�)�v.

Lemma 4.11 Let � be a simplex of X. Then its projection � is either a vertex or an
edge. In particular, X is a 3-dimensional simplicial complex. ��
Proof Note that the projection � is a simplex of Y . It thus follows from Lemma 3.9
that � is either a vertex or an edge. Since the simplices of Xv are either vertices or
edges, the result follows. ��
Lemma 4.12 Let � be a simplex of X. The link LkX (�) decomposes as the following
simplicial join:

LkX (�) = p−1(LkY (�)
) ∗ ( ∗v∈V (�) LkXv (�v)

)
.

Proof A vertex in LkX (�) is adjacent to every vertex of � by definition. Since edges
of X either project to vertices or edges of Y , we have that p

(
LkX (�)

) ⊂ StY (�). For
two adjacent vertices v, v′ of Y , every vertex of Xv is adjacent to every vertex of Xv′ .
It follows that for v ∈ StY (�), a vertex w ∈ Xv is in LkX (�) if and only if it is in
LkXv (� ∩ Xv). The result follows. ��
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Theorem 1.4 requires that the action of A� on X has finitely many orbits of links,
which we now verify.

Lemma 4.13 (Finite index set) The action of A� on X has finitely many orbits of
subcomplexes of the form LkX (�), where � is a simplex of X.

In the proof of the lemma we will give a classification of links which will also be
useful later on.

Proof Let � be a non-maximal simplex of X and let �̄ be the simplex of Y to which
� projects. We divide into cases according to �̄ and the fibers in � over the vertices
of �̄.

(1) �̄ is a vertex gN (H), and � is the single vertex gN (H). There are finitely many
A� orbits of such�, sinceH is finite. Hence there are finitely many orbits of links
of such �.

(2) �̄ is a vertex gN (H), and � is a vertex λ ∈ �gN (H). There are boundedly many
gN (H)g−1 orbits of λ for the given gN (H), by Definition 4.1, so there are finitely
many orbits of such �.

(3) �̄ is a vertex gN (H), and � is spanned by {gN (H), λ} for some λ ∈ �gN (H).
Since gN (H)g−1 acts on �gN (H) with boundedly many orbits, and there are
finitely many orbits of vertices gN (H), there are finitely many orbits of such
simplices �.

(4) �̄ is an edge joining gN (H) to hN (H ′), and � is the 1-simplex spanned by
{gN (H), hN (H ′)}. By Corollary 3.27, there are finitely many orbits of such
simplices.

(5) �̄ is an edge joining gN (H) to hN (H ′), and� joins gN (H) to someμ ∈ �hN (H ′).
Observe that all simplices that join gN (H) to a point in �hN (H ′) have the same
link, so there are at most as many A� orbits of links of such � as there are orbits
of edges in Y , i.e. finitely many by Corollary 3.27.

(6) �̄ is an edge joining gN (H) to hN (H ′), and� joins λ ∈ �gN (H) toμ ∈ �hN (H ′).
Then LkX (�) is the edge joining gN (H), hN (H ′); there are finitely many orbits
of these.

(7) �̄ is an edge joining gN (H), hN (H ′) and� is spanned by {gN (H), λ, hN (H ′)},
where λ ∈ �gN (H). Then LkX (�) = �hN (H ′), and there are finitely many orbits
of such subcomplexes since there are finitely many orbits of vertices in Y .

(8) �̄ is an edge joining gN (H), hN (H ′), and� is spanned by {gN (H), λ, μ}, where
λ ∈ �gN (H) and μ ∈ �hN (H ′). Then LkX (�) = hN (H ′), and there are finitely
many orbits of such links because Y has finitely many orbits of vertices.

(9) � = ∅, in which case LkX (�) = X , and there is a single orbit.

This exhausts all the cases. ��
The list in the previous proof allows to prove that the blow-up X satisfies the finite

complexity condition from Definition 1.3.

Proposition 4.14 (Finite complexity) There exists N such that the following holds.
Let �1, . . . ,�n be non-maximal simplices of X such that LkX (�i ) � LkX (�i+1) for
1 ≤ i ≤ n − 1. Then n ≤ N.
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Proof Suppose that �,� are non-maximal simplices with LkX (�) � LkX (�). Con-
sidering the nine types of simplex explained in the proof of Lemma 4.13, we see that
links of the same type cannot be properly contained in each other. Hence the length
of a chain as in the statement is at most 9. ��

In the rest of this subsection is to prove the following:

Proposition 4.15 (Lattice-ness of links) The poset of links of simplices of X, ordered
by inclusion, has finite height. Moreover, this poset satisfies the following.

For all simplices �1,�2 of X such that there exists a simplex � of X with unbounded
link and with the property that LkX (�) ⊂ LkX (�1) ∩ LkX (�2) the following holds.
There exists a simplex � of X containing �1, and such that for every simplex � of
X with unbounded link and such that LkX (�) ⊂ LkX (�1) ∩ LkX (�2), we have
LkX (�) ⊂ LkX (�).

Proof The finite height condition follows from Proposition 4.14.
Note that Lk(�) is unbounded if and only if � is either the empty simplex, an

edge contained in a fibre of X , or a triangle of X containing exactly two roots, by the
classification given in the proof of Lemma 4.13.

Let �1,�2, � be as in the statement.
The case � = ∅ is immediate since in that case LkX (�) = LkX (�1) =

LkX (�2) = X , and we can take � = ∅. We thus focus on the other two cases.
Case 1:Suppose that there exists such a simplex� such that LkX (�) ⊂ LkX (�1)∩

LkX (�2), and such that � is an edge contained in a fibre of X . Then its projection
is a single vertex v ∈ Y , and by Lemma 4.12 we have LkX (�) = p−1

(
LkY (v)

)
.

Since LkX (�) is contained in LkX (�1) ∩ LkX (�2), it follows from Lemma 3.9 that
�1,�2 are also contained in Xv . Since �1 is either a vertex or an edge of Xv , we can
choose an edge � contained in StXv (�1). We thus have LkX (�) = p−1

(
LkY (v)

)
by

Lemma 4.12, and LkX (�) satisfies the required property. Indeed, any link contained
in LkX (�1) ∩ LkX (�2) and strictly larger than LkX (�) must contain a vertex of Xv ,
and so this link is a simplicial join, hence bounded.

Case 2: Suppose that for every simplex � such that LkX (�) ⊂ LkX (�1) ∩
LkX (�2), � is a triangle of X with exactly two roots. Choose such a simplex �.
Then there exists a vertex v ∈ Y such that LkX (�) consists of all the leaves of Xv .
Moreover, it follows from Lemma 3.9 that for every other simplex�′ with unbounded
augmented link such that LkX (�1) ∩ LkX (�2), we have LkX (�′) ⊂ Xv , and in par-
ticular LkX (�′) = LkX (�). Now since LkX (�) ⊂ LkX (�1), then �1 is either a
vertex or an edge of StY (v).

If �1 = {v}, then we choose a vertex u adjacent to v, an edge fu of Xu , and
we define � as the triangle of X spanned by fu and the root of Xv . We thus have
� ⊂ StX (�1), and � satisfies the required conditions.

If �1 is an edge containing v, we denote by u the other vertex of �1. We choose
an edge fu of Xu that belongs to StXu ((�1)u), and we define � as the triangle of X
spanned by fu and the root of Xv . We thus have � ⊂ StX (�1), and � satisfies the
required conditions. ��
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4.4 Frommaximal simplices to elements of A0

In this subsection, we associate to each maximal simplex of X a uniformly bounded
subset of A� . We first describe the maximal simplices of X :

Remark 4.16 (Description of maximal simplices) Let � be a maximal simplex of X .
Then � has the following form. First, � is an edge of Y joining a vertex gN (H) to a
vertex hN (H ′). Then, there are vertices λ ∈ �gN (H) and μ ∈ �hN (H ′) such that � is
the join of the edges {gN (H), λ} and {hN (H ′), μ}.
Definition 4.17 For simplices σ1, σ2 of X projecting to vertices of Y and spanning a
simplex of X , we denote that simplex by �(σ1, σ2).

Recall that one of our goals is to define an X -graph W quasi-isometric to A� , and
whose vertex set is the set of maximal simplices of X , see Definition 1.3. We start by
defining the vertices of this graph and we construct a map to A� . The edges of W and
the quasi-isometry W → A� will be constructed in Sect. 5.

Definition 4.18 We denote by W (0) the set of maximal simplices of X .

The blow-up data was constructed to obtain the following crucial lemma:

Lemma 4.19 (Bounded sets in A�) There exists B1 ≥ 0 such that the following holds
for all B ≥ B1. Let gN (H), hN (H ′) be Y -adjacent cosets. Let λ ∈ �gN (H), μ ∈
�hN (H ′). Then the subset

φ−1
gN (H)(NB(λ)) ∩ φ−1

hN (H ′)(NB(μ))

of A� is nonempty and has diameter bounded in terms of B. Moreover,
φgN (H)(gN (H)+r ∩ hN (H ′)+r ) is B1-dense.

We prove the lemma after the following two auxiliary lemmas (coboundedness in
the first lemma will only be needed in the next section).

Lemma 4.20 Suppose C0, C1 are infinite cyclic groups and �0 and �1 are quasilines.
Suppose that C0 × C1 acts on both �i with the property that Ci acts with unbounded
orbits on �i and with bounded orbits on �i+1 (where the action of Ci is the restriction
of the action to the subgroup Ci of C0 × C1). Then the diagonal action of C0 × C1 on
�0 × �1 is proper and cobounded (where the product is given the 	1 metric).

Proof Fixμ0 ∈ �0, μ1 ∈ �1. Let L ≥ 0 be given and suppose that (c0, c1), (d0, d1) ∈
C0 × C1 have the property that d�0×�1((c0, c1) · (μ0, μ1), (μ0, μ1)) ≤ L, i.e.

d�0((c0, c1) · μ0, μ0) + d�1((c0, c1) · μ1, μ1) ≤ L.

Let B be the bound on Ci orbits in �i+1. Then d�0((c0, c1) · μ0, (c0, 1) · μ0) ≤ B
and d�1((c0, c1) · μ1, (1, c1) · μ1) ≤ B. So

d�0((c0, 1) · μ0, μ0) ≤ L + B
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and

d�0((1, c1) · μ1, μ1) ≤ L + B.

Since Ci has unbounded orbits on the quasiline �i , there are finitely many such ci ,
for i ∈ {0, 1}. So (c0, c1) is one of finitely many elements of C0 × C1, as required.

Regarding coboundedness, the action of the cyclic group Ci on the quasiline �i

is, say, Bi -cobounded, which easily implies that the action of C0 × C1 is (B0 + B1 +
2B)-cobounded. ��
Lemma 4.21 Let X and Y be metric spaces, and let f : X → Y be a coarsely Lipschitz
map. Suppose that a group G acts metrically properly on Y and coboundedly on X,
and that f is G-equivariant. Then f is uniformly metrically proper, that is, for every
L there exists D such that the preimage under f of any ball of radius L in Y has
diameter at most D.

Proof Let K be such that f is (K , K )-coarsely lipschitz. Fix x ∈ X and R ≥ 0 such
that G · B X

R (x) = X . Let L ≥ 0. By properness, there exists a finite set FL ⊂ G such
that dY (h f (x), f (x)) ≤ L + 2(K R + K ) implies h ∈ FL .

We will show that if two points of X map L-close in Y then they are D(L)-close
in X ; this is easily seen to imply the lemma (after increasing D).

Suppose x0, x1 ∈ X satisfy dY ( f (x0), f (x1)) ≤ L . Choose g0, g1 ∈ G such that
dX (xi , gi x) ≤ R for i ∈ {0, 1}. Then dY (g0 f (x), g1 f (x)) ≤ L + 2(K R + K ), so
dY (g−1

1 g0 f (x), f (x)) ≤ L + 2(K R + K ). Thus g−1
1 g0 ∈ FL , so

dX (x0, x1) ≤ 2R + dX (g0x, g1x) ≤ 2R + max
h∈FL

dX (x, hx),

as required. ��
Proof of Lemma 4.19 Fix Y -adjacent cosets gN (H), hN (H ′). Recall from Lemma
3.21 that 〈gHg−1, h H ′h−1〉 is naturally isomorphic to gHg−1 × h H ′h−1. By
definition of the blow-up data, we have a gHg−1 × h H ′h−1-equivariant map

φgN (H) × φhN (H ′) : gN (H)+r ∩ hN (H ′)+r → �gN (H) × �hN (H ′).

Equipping gN (H)+r ∩ hN (H ′)+r with the word metric and �gN (H) × �hN (H) with
the 	1-metric, we see that φgN (H) × φhN (H ′) is (2L0, 2L0)-coarsely lipschitz.

Since gHg−1 stabilises hN (H ′)+r (because it is contained in hN (H ′)h−1 by def-
inition of the edges of Y ), we have that it also acts on gN (H)+r ∩ hN (H ′)+r . Since
gHg−1 has unbounded orbits in �gN (H) by Condition (B), we have that φgN (H)

restricts to a B1-coarsely surjective map on gN (H)+r ∩ hN (H ′)+r for some B1
(proving the moreover part). By equivariance (Condition (A) ) and the fact that there
are finitely many orbits of edges of Y (Corollary 3.27), the constant B1 can be chosen
independently of the cosets in question.

Let us prove the “nonempty” part. Fixλ ∈ �gN (H) andμ ∈ �hN (H ′). By coarse sur-
jectivity, there exists x ∈ gN (H)+r ∩ hN (H ′)+r such that d�gN (H)

(φgN (H)(x), λ) ≤
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B1. In view of Condition (C), the h H ′h−1-orbit of φgN (H)(x) is contained in the
(B0 + B1)-neighbourhood of λ. Since the action of h H ′h−1 on �hN (H) is cobounded
(with uniform constant), up to enlarging B1 we can find an element in h H ′h−1-orbit
of x in gN (H)+r ∩ hN (H ′)+r that maps B1-close to both λ and μ, as required.

We now make the following claim, which will also be used later.

Claim 4.22 Fix Y -adjacent cosets gN (H), hN (H ′). Then the map

φgN (H) × φhN (H ′) : gN (H)+r ∩ hN (H ′)+r → �gN (H) × �hN (H ′)

is proper. More precisely, there exists f0 : R≥0 → R≥0 independent of
gN (H), hN (H ′) such that, for all s ∈ R≥0, the preimage under φgN (H) × φhN (H ′) of
any s-ball in �gN (H) × �hN (H ′) has diameter at most f0(s). Moreover, the action of
〈gHg−1, h H ′h−1〉 on �gN (H) × �hN (H ′) is cobounded.

Proof By Lemma 4.20 and Conditions (B) and (C), the action of gHg−1 × h H ′h−1

on �gN (H) × �hN (H ′) is proper and cobounded. Then, by Lemma 4.21 (with f =
φgN (H) × φhN (H ′)) and Lemma 3.23 we have there exists f0 : R≥0 → R≥0 such that,
for all s ∈ R≥0, the preimage under φgN (H) × φhN (H ′) of any s-ball in �gN (H) ×
�hN (H ′) has diameter at most f0(s). Finiteness ofH and condition (A) imply that this
f0 can be chosen independently of the cosets gN (H), hN (H ′). ��
Now, if x, y ∈ gN (H)+r ∩ hN (H ′)+r map B-close to the image of x under both

φgN (H) and φhN (H ′), then dA� (x, y) ≤ f0(2B), yielding the required bound on the
diameter of φ−1

gN (H)(NB(λ)) ∩ φ−1
hN (H ′)(NB(μ)). ��

We are almost ready to fix constants for the rest of the paper, but we first need
lemma about the geometry of quasilines.

Lemma 4.23 Given a quasiline �, there exists a constant M0 such that for all M ≥ M0
the following holds. There exists a partial order ≺ on � with the following properties:

• whenever d�(x, y) ≥ M then x and y are ≺-comparable.
• for each z there exist z′

1 and z′
2 such that for all zi with d�(z′

i , zi ) ≤ M/10 we
have z1 ≺ z ≺ z2 and d�(z, zi ) ∈ [M, 2M].

• if x ≺ y ≺ z and d�(x, y), d�(y, z) ≥ M then any geodesic from x to z passes
within M/10 of y.

Proof Consider a quasi-isometry f : � → R and define x ≺ y if f (x) < f (y). The
details are left to the reader. ��
Convention 4.24 We fix B0 as in the definition of blow-up-data, then choose B1 as in
Lemma 4.19, with the following additional properties:

• for each Y -adjacent pair gN (H), hN (H ′) the action of each gHg−1 on �gN (H)

is B1-cobounded (see Claim 4.22),
• φgN (H)(gN (H)+r ∩ hN (H ′)+r ) is B1/100-dense,
• B1 ≥ 10M0, where M0 satisfies Lemma 4.23 for all quasilines �gN (H).

When B = B1, we denote by B2 the bound provided by Lemma 4.19.
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Fix gN (H). Recall that any k H ′k−1 · x ∈ I(gN (H)) has image in �gN (H)

of diameter bounded by B0 (and B0 does not depend on H , H ′, g, k, x), by
Definition 4.1.(C).

Let δ ∈ W (0) be a maximal simplex spanned by vertices gN (H), hN (H ′) and
λ ∈ �gN (H), μ ∈ �hN (H ′). Recall from Lemma 4.19 that

φ−1
gN (H)(NB1(λ)) ∩ φ−1

hN (H ′)(NB1(μ))

is a nonempty subset of A� , and the corresponding subset with B1 replaced by B1+ B0
has diameter (in the word metric) at most B2.

Definition 4.25 Let δ ∈ W (0) be a maximal simplex spanned by vertices
gN (H), hN (H ′) and λ ∈ �gN (H), μ ∈ hN (H ′). Let

σ(λ) = φ−1
gN (H)(NB1(λ))

and

w(δ) = σ(λ) ∩ σ(μ).

This defines a coarse map w : W (0) → A� .

Lemma 4.26 (Basic properties of w) The coarse map w is A�-equivariant and sends
each maximal simplex to a nonempty subset of A� of diameter at most B2. Moreover,
if δ ∈ W (0) projects to the edge of Y joining cosets gN (H), hN (H ′), then w(δ) ⊂
gN (H)+r ∩ hN (H ′)+r .

Proof Let δ be a maximal simplex, as above. By construction, w(δ) is

φ−1
gN (H)(NB1(λ)) ∩ φ−1

hN (H ′)(NB1(μ)),

which is nonempty by our choice of B1 (which we made in Convention 4.24).
Also, by the choice of B2, w(δ) has diameter at most B2.
The “moreover” assertion holds by construction, as does A�-equivariance (see

Condition A). ��

We also have:

Lemma 4.27 (Surjection W → A�) Each x ∈ A� satisfies x ∈ w(δ) for some
δ ∈ W (0).

Proof This follows since w is A�-equivariant and the action of A� on itself has one
orbit. ��
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5 The augmented complex

We are considering an Artin group A� of large and hyperbolic type; as per Convention
3.14, we assume � is connected. We work with the commutation graph Y and blow-up
X constructed in the preceding sections. In this section we construct a combinatorial
HHS with underlying simplicial complex X .

5.1 Construction of the augmented complex

Let r1, r2 ≥ 0 be constants to be determined. The first step is to define a graph Wr1,r2
whose vertex set is the set W (0) of maximal simplices of X ; recall that Remark 4.16
and Definition 4.17 describe maximal simplices. The edges of Wr1,r2 are as follows.

Definition 5.1 (Wr1,r2 -edges) Let δ0, δ1 be maximal simplices of X , where δi =
�(αi , βi ). Here, αi is an edge joining gi N (Hi ) to λi ∈ �gi N (Hi ) and βi is an edge
joining hi N (H ′

i ) to μi ∈ �hi N (H ′
i )
.

• W -edges of type 1: Suppose g0N (H0) = g1N (H1) and h0N (H ′
0) = h1N (H ′

1),
and μ0 = μ1. We declare δ0 to be Wr1,r2 -adjacent to δ1 if

d�g0N (H0)
(λ0, λ1) ≤ r1.

Note that simplices joined by an edge of type 1 differ on a single vertex and project
to the same edge of Y .

• W -edges of type 2: In this case, h0N (H ′
0) = h1N (H ′

1) and μ0 = μ1, while
g0N (H0) �= g1N (H1). (So, p(δ0 ∪ δ1) is the union of two distinct edges of Y that
share a vertex.) In this case, we declare δ0 and δ1 to be Wr1,r2 -adjacent if

dA� (σ (λ0), σ (λ1)) ≤ r2.

Note that simplices joined by an edge of type 2 intersect in an edge of the fibre
over h0N (H ′

0) = h1N (H ′
1).

The action of A� onW (0) extends to an action of A� onW by graph automorphisms.
The (finitelymany) conditions needed on r1, r2 for our constructions towork appear

in the proofs of the various results below.
Morally, the definition ofW -edges of type 2 should be the inequality in the following

lemma. However, we need the definition exactly as stated to show fullness of links
(see Proposition 5.6).

Lemma 5.2 For every r2 there exists r3 with the following property. Fix the notation
of the “W -edges of type 2” part of Definition 5.1. Then

dA� (w(δ0), w(δ1)) ≤ r3.

Proof We first make two preliminary claims.
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Claim 5.3 There exists a function s such that the following holds. Given cosets
g0N (H0), hN (H), and g1N (H1) that, as vertices of Y , form a path, and xi ∈
gi N (Hi )

+r we have

dA� (x0, g1N (H1)
+r ∩ hN (H)+r ) ≤ s

(
dA� (x0, x1)

)
.

Proof Set d = dA� (x0, x1). Up to multiplying all objects on the left by x−1
0 , we can

assume that x0 is the identity. Note that there are N = N (d) < +∞ cosets gN (H ′)
with H ′ ∈ H within distance d + r of x0. Therefore, it suffices to consider fixed
cosets g0N (H0), g1N (H1) as in the statement, and prove the claimed inequality for xi

in those particular gi N (Hi )
+r . Note that since Y does not contain triangles (Lemma

3.9), for each pair g0N (H0), g1N (H1) there is at most one hN (H) at distance 1 in Y
from both. In particular, there are at most finitely many hN (H) that can occur, so that
once again we can fix one. But at this point, the left hand side is a number, so we are
done. ��

Claim 5.4 There exists a function t such that the following holds. Suppose that
gN (H ′), hN (H) are adjacent vertices of Y and λ ∈ �gN (H ′). Given x ∈ σ(λ) there
exists y ∈ σ(λ)∩hN (H)+r such that dA� (x, y) ≤ t(dA� (x, gN (H ′)+r ∩hN (H)+r )).

Proof Similarly to the proof of the previous claim, we can assume that x is the iden-
tity and that gN (H ′), hN (H) are fixed. However, λ is not; there are infinitely many
possible ones. To overcome this, we will find two candidates for y, and we will see
that at least one of them is in σ(λ) ∩ hN (H)+r , which suffices.

Towards this, recall the order≺ from Lemma 4.23. FromConvention 4.24 we know
that the lemma applies with M = B1/10, and that φgN (H ′)(gN (H ′)+r ∩ hN (H)+r )

is B1/100-dense. Hence, we can find y1, y2 ∈ gN (H ′)+r ∩ hN (H)+r such that
zi = φgN (H ′)(yi ) ∈ �gN (H ′) satisfy the following:

• d�gN (H ′) (z, zi ) ∈ [B1/10, B1/5] where z = φgN (H ′)(x),
• z1 ≺ z ≺ z2.

There are now two cases. If d�gN (H ′) (z, λ) ≤ B1/2, then either zi lies in NB1(λ),
that is, either yi lies in σ(λ), and we are done. If not, any two points λ, z, z1, z2 are
either ≺-comparable by construction, or at distance at least B1/10, whence, again,
≺-comparable. If λ ≺ z1, then it is readily seen from the last item of Lemma 4.23 that
z1 ∈ NB1(λ), since z lies in said ball and a geodesic from λ to z passes within distance
B1/100 of z1, so that

d�gN (H ′) (λ, z1) ≤ d�gN (H ′) (λ, z) − d�gN (H ′) (z, z1)

+2B1/100 ≤ B1 − B1/10 + B1/50 ≤ B1.

Similarly, if z2 ≺ λ then z2 ∈ NB1(λ). On the other hand, we cannot have z1 ≺ λ ≺ z
or z ≺ λ ≺ z2, for otherwise we would have d�gN (H ′) (z, λ) < B1/2. We now covered
all cases. ��
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We now argue that for every r2 there exists r2.5 so that if dA� (σ (λ0), σ (λ1)) ≤ r2
then

dA� (σ (λ0) ∩ h0N (H ′
0)

+r , σ (λ1) ∩ h0N (H ′
0)

+r ) ≤ r2.5

(That is, if the σ come close, then they come close in the subspace of A� corresponding
to the middle vertex h0N (H ′

0) = p(δ0) ∩ p(δ1).)
Indeed, for xi ∈ σ(λi ) such that dA� (x0, x1) ≤ r2, we can find yi as in the second

claim above, and in view of both claims we have dA� (y1, y2) ≤ 2t(s(r2)) + r2.
Pick p ∈ σ(λ0)∩h0N (H ′

0)
+r and q ∈ σ(λ1)∩h0N (H ′

0)
+r )with dA� (p, q) ≤ r2.5.

By translating the pair p, q by an element h0H ′
0h−1, we find points p′, q ′ so that

• dA� (p′, q ′) ≤ r2.5 (since we multiplied by an element of A� ,
• d�g0N (H0)

(φg0N (H0)(p), φg0N (H0)(p′)) ≤ B0 and d�g1N (H1)
(φg1N (H1)(q), φg1N (H1)

(q ′)) ≤ B0 (Condition C),
• d�h0N (H ′

0)
(μ0, φh0N (H ′

0)
(p′)) ≤ B1 (Convention 4.24, coboundedness property of

B1).
Furthermore, by Definition 4.1 (blow-up data), the first and third items yield
d�h0N (H ′

0)
(μ0, φh0N (H ′

0)
(q)) ≤ L0r2.5 + L0 + B1.

Pick p′′ ∈ w(δ0) and q ′′ ∈ w(δ1). The we see that p′ and p′′ are both points in
g0N (H0)

+r ∩h0N (H ′
0)

+r thatmapwithin bounded distance of (λ0, μ0) ∈ �g0N (H0)×
�h0N (H ′

0)
under φg0N (H0) × φh0N (H ′

0)
. By the properness part of Claim 4.22, there is a

bound on dA� (p′′, p′). A similar argument applies to q ′′, and therefore we get a bound
on dA� (p′′, q ′′), as required. ��

To use Theorem 1.4, we will need the following:

Proposition 5.5 There exist R1, R2 ≥ 0 such that the following holds for all r1 ≥
R1, r2 ≥ R2. Let W = Wr1,r2 . Then W is connected and the action of A� on W is
proper and cobounded. In particular, any orbit map A� → W is a quasi-isometry.

Proof The action is proper. Recall the A�-equivariant coarse map w : W (0) → A�

from Definition 4.25. Using Lemma 4.27, choose δ0 ∈ W (0) such that 1 ∈ w(δ0).
We show that w is coarsely Lipschitz, for any r1, r2, which proves properness of the
action since it provides a bound on dA� (w(γ1δ0), w(γ2δ0)) ≥ dA� (γ1, γ2)−2B2 when
dW (γ1δ0, γ2δ0) is bounded.

Let r1, r2 ≥ 0. Let δ0, δ1 be W -adjacent maximal simplices of X , where δi =
�(αi , βi ) and αi , βi are as in Definition 5.1.

First suppose that δ0, δ1 are joined by a W -edge of type 2. Then, by Lemma 5.2,
we have dA� (w(δ0), w(δ1)) ≤ r3.

Second, suppose that δ0, δ1 are joined by aW -edge of type 1. Then, by definition,we
have the following: associated to the coset h0N (H ′

0) = h1N (H ′
1), we have μ0 = μ1,

and associated to the coset g0N (H0) = g1N (H1), we have λ0, λ1 ∈ �gn N (H0) with
d�g0N (H0)

(λ0, λ1) ≤ r1.
Consider the map φg0N (H0) × φh0N (H ′

0)
: g0N (H0) ∩ h0N (H ′

0) → �g0N (H0) ×
�h0N (H ′

0)
, and let f0 : R≥0 → R≥0 be the (properness) function as in Claim 4.22

(which says that φg0N (H0) × φh0N (H ′
0)
is proper).
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Letting x ∈ w(δ0) and y ∈ w(δ1), we have by Lemma 4.26:

d�g0N (H0)
(φg0N (H0)(x), λ0) ≤ B1 + B0

and

d�g0N (H0)
(φg0N (H0)(y), λ1) ≤ B1 + B0.

In �h0N (H ′
0)
, the images of x, y are both (B1 + B0)-close to μ0 = μ1.

So,

dA� (x, y) ≤ f0(4B1 + 4B0 + r1).

This completes the proof that w is coarsely lipschitz. As a side remark, the constants
depend on A� , the blow-up data, and the choice of r1, r2, but we have not yet needed
to impose any restriction on r1, r2.

Connectedness and coboundedness. We will show at the same time that, for
sufficiently large r1, r2, Wr1,r2 is connected and the action of A� is cobounded. Note
that a set of representatives for the A�-orbits can be taken to be {δ′

i = �(αi , βi )}
where

• the set {p(δ′
i )} of edges of Y is finite (we can arrange this since there are finitely

many orbits of edges of Y by Corollary 3.27), and
• there exists a constantC so that if p(δ′

i ) = p(δ′
j ) then the following holds. Suppose

that the endpoints of p(δ′
i ) are gN (H) and hN (H ′) then d�gN (H)

(λi , λ j ) ≤ C ,
where αk = {gN (H), λk}, and similarly in �hN (H ′).

The second item can be arranged because the action of 〈gHg−1, h H ′h−1〉 on
�gN (H) × �h′ N (H ′) is cobounded by Claim 4.22 (“moreover” part).

Since Y is connected by Lemma 3.10 (recalling that we are assuming that � is
connected throughout), to show connectedness and coboundedness it suffices to show
that there is a path in Wr1,r2 connecting δ0 to δ1 when either

(1) δ0, δ1 are maximal simplices with p(δ0) = p(δ1), or
(2) δ0, δ1 are maximal simplices such that p(δ0) intersects p(δ1) at a vertex gN (H),

and that moreover in the first case the length of the path is bounded if we are in the
situation of the second bullet point above.

In the first case, it is easily seen that we can in fact connect the maximal simplices
only using edges of type 1 (roughly, changing one vertex at a time moving a bounded
amount in one of the relevant quasilines). This requires r1 to be sufficiently large to
move in the quasilines.

Since there are only finitely many gN (H)g−1-orbits of edges of Y emanating
from gN (H) and N (H) is finitely generated, there is a sequence of edges p(δ0) =
e0, . . . , en = p(δn) emanating from gN (H) so that the possible pairs (ei , ei+1) belong
to a fixed set of A�-orbits of pairs of edges of Y . From here, we see that we can change
the orders of quantifiers, meaning that it suffices to show that given maximal simplices
δ0, δ1 of X as in case 2, there exist r1 and r2 such that δ0 and δ1 are Wr1,r2 -adjacent.
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To show that this holds, denote hi N (H ′
i ) the other endpoint of p(δi ), and observe

that since the distance between the sets gN (H)+r ∩ hi N (H ′
i )

+r is at most some R2,
for any r2 ≥ R2 there is a W -edge of type 2 connecting maximal simplices δ′

0, δ
′
1 with

p(δi ) = δ′
i . We know already that δi can be connected to δ′

i , so we are done. ��
To save notation, we often denote Wr1,r2 by W , even though we will not fix r1, r2

until later.

5.2 Fullness of links

Onourway to proving that (X , W ) is a combinatorialHHS, so as to applyTheorem1.4,
we need to verify condition (3) from Definition 1.3, which we do in the following
proposition.

Proposition 5.6 (W -fullness of links) Let � be a non-maximal simplex of X, and
let v1, v2 be two distinct non-adjacent vertices of LkX (�) that are contained in
W -adjacent maximal simplices. Then v1, v2 are contained in W -adjacent maximal
simplices of StX (�).

Since W -edges come in two types, we split Proposition 5.6 in two.

Lemma 5.7 (Type 1 fullness) Let � be a non-maximal simplex of X, and let v1, v2
be two distinct non-adjacent vertices of LkX (�). Suppose that there exist maximal
simplices �1,�2 of X such that v1 ∈ �1, v2 ∈ �2, and �1,�2 are connected by
a W -edge of type 1. Then v1, v2 are contained in W -adjacent maximal simplices of
StX (�).

Proof Recall that W -edges of type 1 connect maximal simplices with the same projec-
tion in Y . Let e = �̄1 = �̄2 be the edge of Y to which �1,�2 project, and denote the
endpoints of e by u and v. Then�i = �( f i

u , f i
v ), where f i

u is an edgewith an endpoint
λ1u ∈ �u , and similarly for v. Also, we have say, f 1u = f 2u and d�v (λ

1
v, λ

2
v) ≤ r1.

Since v1, v2 are not adjacent in X , we have v1 = λ1v and v2 = λ2v , since those are
the only non-common vertices of �1 and �2. Since v1, v2 ∈ LkX (�), Lemma 4.12
implies that there exist a vertex u′ of Y adjacent to v and an edge fu′ of Xu′ such that
fu′ is contained in StX (�). By Definition 5.1, the maximal simplices �( f 1v , fu′) and
�( f 2v , fu′) are joined by a type 1 edge in W . These simplices respectively contain
v1, v2 and lie in the star of �, as required. ��
Lemma 5.8 (Type 2 fullness) Let � be a non-maximal simplex of X, and let v1, v2
be two distinct non-adjacent vertices of LkX (�). Suppose that there exist maximal
simplices �1,�2 of X such that v1 ∈ �1, v2 ∈ �2, and �1,�2 are connected by
a W -edge of type 2. Then v1, v2 are contained in W -adjacent maximal simplices of
StX (�).

Proof Since �1 and �2 are connected by a W -edge of type 2, the edges �1 and
�2 share exactly one vertex u of Y . Let us denote by u1, u2 the vertices of �1,�2,
respectively, that differ from u.
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By the definition of W -edges of type 2, there is an edge fu of Xu and edges fu1 , fu2
of Xu1 , Xu2 such that �i = �( fui , fu), for i = 1, 2. Letting λi be the endpoint of fui

which is not ui , we also have dA� (σ (λ1), σ (λ2)) ≤ r2.
Candidate simplices: Now, since v1, v2 are not adjacent in X , we have vi ∈ fui

for i = 1, 2. Since Y does not contain triangles, by Lemma 3.9, the vertices u1, u2 are
at distance 2 in Y . Since v1, v2 ∈ LkX (�), we therefore have by Lemma 4.12 that �
is a vertex. Since, by Lemma 3.9, Y does not contain squares, it follows that � = u.

Let f ′
u be an edge of Xu containing �. Let δi = �( f ′

u, fui ) for i = 1, 2. So, δ1, δ2
are maximal simplices that share the edge f ′

u of Xu and project to �̄1, �̄2 respectively.
Note that δ1 and δ2 contain f ′

u and hence contain �. Thus δ1, δ2 ⊂ StX (�).
W --adjacency: We are only left to observe that there is a W -edge of type 2 con-

necting δ1 and δ2, since the σ sets associated to δi and �i coincide. (That is, roughly,
in the definition of edges of type 2 the “middle” edge does not play a role.) ��

Now the proposition is immediate:

Proof of Proposition 5.6 Combine Lemmas 5.7 and 5.8. ��

5.3 Maps between augmented complexes

Recall that the augmented complex X+W was defined in Definition 1.1. We will also
use a corresponding construction in Y :

Definition 5.9 We define the augmented graph Y +W which is obtained from Y by
adding a W -edge between two vertices v, v′ of Y whenever their fibres Xv, Xv′ contain
vertices that are connected by a W -edge. In that case, we say that v, v′ are connected
by a W -edge. Similarly, for a full subgraph Y0 of Y , we denote by Y +W

0 the full
subgraph of Y +W induced by Y0.

Remark 5.10 Note that vertices of Y connected by a W -edge lie at distance at most 2
from each other, by definition of the W -edges.

The simplicialmap pmentioned below is defined inDefinition 4.7,while ι is defined
in Lemma 3.7 and Definition 3.12. Recall from Lemma 3.13 that ι is a simplicial
quasi-isometry, and recall also that q is just the composition of p and ι.

Definition 5.11 The simplicial maps

p : X → Y , q : X → D̂, ι : Y → D̂

extend to maps that we still denote by

p : X+W → Y +W , q : X+W → D̂, ι : Y +W → D̂.

The extended map p : X+W → Y +W is still simplicial, while the other two can be
taken to 2-Lipschitz by Remark 5.10

Again by Remark 5.10 the inclusion Y ↪→ Y +W is an A�-equivariant quasi-
isometry, so ι : Y +W → D̂ is an A�-equivariant quasi-isometry. Similarly, p :
X+W → Y +W is an A�-equivariant quasi-isometry. Hence, so is q : X+W → D̂.
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We will need the following preliminary lemma, in a similar spirit to Proposition
5.5.

Lemma 5.12 For any sufficiently large r2 the following holds. Let v be a vertex of Y
and let � be an edge of X contained in a fibre Xv . Then the augmented linksLkY (v)+W

and LkX (�)+W are connected, and p restricts to a quasi-isometry of said augmented
links.

Proof Connectedness: We start by showing that LkY (v)+W is connected.
Set v′ := ι(v). By Lemmas 2.30 and 2.31 , the action of Stab(v′) on Lk D̂(v′)

is cocompact. We choose a finite connected subcomplex K of Lk D̂(v′) such that its
Stab(v′)-orbits cover Lk D̂(v′). We can further assume that K satisfies the following
additional property: Whenever K contains a vertex w that is not of tree or dihedral
type, then it also contains every vertex of tree or dihedral type adjacent to it. Indeed,
vertices of D̂ that are not of dihedral or tree type are cosets of the form g{1} or g〈a〉,
and they have only finitely many neighbours in D that are vertices of dihedral type
by construction of the modified Deligne complex. Moreover, the cone-off procedure
adds no additional neighbour for vertices of the form g{1} and add only one additional
neighbour for vertices of the form g〈a〉 (namely, the apex of the standard tree gTa).
Without loss of generality, we can thus assume that K contains all such neighbours.

Let S be the set of vertices of K that are of dihedral or tree type. The set ι−1(S)

forms a finite set of vertices of Y that are adjacent to v by Lemma 3.8. Let us choose
an edge e of Xv . For each w ∈ ι−1(S), we choose a maximal simplex �w of X above
the edge vw of Y and whose fibre over v is the edge e. Since the action of A� on Y
is cocompact by Lemma 3.11, we can now require the constant r2 in the definition
of W -edges (see Definition 5.1) to be large enough so that for every distinct w,w′ in
ι−1(S), we have that �w and �w′ are connected by a W -edge of type 2. In particular,
all pairs of vertices of ι−1(S) are connected by an edge of Y +W .

Let us now show that LkY (v)+W is connected. Indeed, if x, x ′ are two vertices
of LkY (v)+W , then by definition of the subcomplex K we can find a finite sequence
of elements g1, . . . , gn ∈ A� such that ι(x) ∈ g1K , ι(x ′) ∈ gn K and for every
1 ≤ i < n, gi K ∩ gi+1K �= ∅. By the additional property imposed on K , it follows
that each such gi K ∩ gi+1K contains a vertex v′

i of D̂ that is either of tree or dihedral
type. By Lemma 3.8, we can define vi := ι−1(v′

i ). We thus have a sequence of vertices
v0 := x, v1, . . . , vn−1, vn := x ′ and by construction, for every 0 ≤ i < n we have that
g−1

i+1vi and g−1
i+1vi+1 are in ι−1(S), hence vi and vi+1 are either equal or connected by

an edge of Y +W . This show that LkY (v)+W is connected.
Let us now show that LkX (�)+W is connected. Since � is an edge contained in

the fibre Xv , it follows from Lemma 4.12 that LkX (�) is the disjoint union of all the
fibres Xw for w ∈ LkY (v). For every vertex w of LkY (v), the fibre Xw is connected
by construction. Since in addition LkY (v)+W is connected by the above, it is now
straightforward to check that LkX (�)+W is also connected.

Quasi-isometry: By construction of Y +W , for every e edge of LkY (v)+W , there
exists an edge e′ in LkX (�)+W such that p(e′) = e. Thus, we can construct a set-
theoretic section p : LkY (v)+W → LkX (�)+W by choosing for every point x ∈
LkY (v)+W a point in p−1(x). Let us show that p is a quasi-inverse of p.
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Wehave p◦p = I d by construction. Since all fibres of the form Xw are connected of
diameter 2 by construction, it follows that for every vertexw ∈ LkY (v) and every point
x ∈ Xw, we have d(x, p◦ p(x)) ≤ 2.Moreover, for every other point x ∈ LkX (�)+W ,
x is thus contained in an edge with endpoints in two distinct fibres Xw and Xw′ , so
we have that p ◦ p(x) is contained in a possibly different edge between Xw and Xw′ .
It follows that

d(x, p ◦ p(x)) ≤ 2 + diam(Xw) ≤ 4.

Moreover, both p and p are coarsely Lipschitz. That p is coarsely Lipschitz follows
from the fact that it sends an edge of LkX (�)+W to an edge or a vertex of LkY (v)+W .
A similar argument as above shows that if x, y are two points belonging to some edge
of Y , then d(p(x), p(y)) ≤ 4. Thus, p is coarsely Lipschitz, and it then follows that
p is a quasi-isometry. ��

The following lemma is crucial as it allows us to compare links in X (which are the
ones we are interested in) to links in D̂ (which are the ones we understand).

Lemma 5.13 For any sufficiently large r1, r2 the following holds for W = Wr1,r2 : Let
v be a vertex of Y . Then the quasi-isometry

ι : Y +W → D̂

induces a quasi-isometry between LkY (v)+W and Lk D̂(ι(v)).
Moreover, let � be an edge of X contained in a fibre Xv , for some vertex v of Y .

Then the quasi-isometry

q : X+W → D̂

restricts to a quasi-isometry q : (LkX (�)+W )(0) → Lk D̂(ι(v)).

Proof Using the actions of A� , we can and will assume that v = N (H) for some
H ∈ H. We first notice that the map ι induces a Stab(v)-equivariant bijection between
the vertices of LkY (v)+W and the vertices of Lk D̂(ι(v)) of tree or dihedral type. Indeed,
this follows from Lemma 3.8, the fact that the bijection between tree-type/dihedral-
type sets of vertices of Y and D̂ stated in Lemma 3.8 passes to links is a direct
consequence of the characterisation of edges of Y therein.

We remark that Lk D̂(ι(v)) is connected, since it is either a tree when v is of tree
type or we can use Remark 2.33 and Corollary 2.36. We can thus extend the restriction
ι : LkY (v) → Lk D̂(ι(v)) into a map ι : LkY (v)+W → Lk D̂(ι(v)) by sending a W -
edge between two distinct vertices w,w′ ∈ LkY (v) to a geodesic path between ι(w)

and ι(w′). Let us show that this extension is coarsely Lipschitz.
Since ι is Stab(v)-equivariant, it suffices to show that there arefinitelymanyStab(v)-

orbits of W -edges in LkY (v)+W (note that a G-equivariant map between graphs�1 →
�2 is coarsely Lipschitz provided that �2 is connected and there are finitely many G-
orbits of edges in�1). Since there are finitelymanyStab(v)-orbits of vertices in LkY (v)

(Lemma 3.26), it suffices to fix a vertex z = h1N (H1) ∈ LkY (v) and show that there
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are finitely many (Stab(v) ∩ Stab(z))-orbits of W -edges in LkY (v)+W containing
z. Consider some vertex z′ = h2N (H2) ∈ LkY (v) connected by a W -edge to z, and
notice that the W -edge needs to be of type 2 (since W -edges of type 1 connect maximal
simplices that project to the same edge in Y ). By definition of W -edges, we must have

dA� (N (H)+r ∩ h1N (H1)
+r , N (H)+r ∩ h2N (H2)

+r ) ≤ r2. (∗)

Since K = Stab(v)∩Stab(z) = N (H)∩h1N (H1)h
−1
1 acts coboundedly on N (H)+r ∩

h1N (H1)
+r (Lemma 3.23) and H is finite, there are finitely many K -orbits of cosets

h2N (H2) satisfying (∗), theremust be finitelymany K -orbits of vertices z′ as required.
Let us now construct a coarsely Lipschitz quasi-inverse. By Lemma 2.31 or

Lemma 2.30, the action of Stab(ι(v)) on Lk D̂(ι(v)) has finitely many orbits of edges
and LkY (v) is connected by Lemma 5.12, and as above this suffices.

It thus follows that ι : LkY (v)+W → Lk D̂(ι(v)) is a quasi-isometry.
Regarding the moreover clause, in view of Lemma 5.12, q = ι ◦ p restricts to a

composition of quasi-isometries of the relevant links. ��
In this section we will often make the following abuse of notation:

Convention 5.14 Let A be a subcomplex of a simplicial complex B. Then by B − A
we mean the full subcomplex of B with vertex set B(0) − A(0). Note for example that
with this abuse we have

(
X − SatX (�)

)+W = (
X (0) − SatX (�)

)+W .

We also mention the following related result that will be needed in the Sect. 6.2.

Lemma 5.15 For any sufficiently large r1, r2 the following holds. Let � be an edge
of X contained in a fibre Xv , for some vertex v of Y . If the presentation graph � is a
single edge, we have X − SatX (�) = LkX (�). Otherwise, X − SatX (�) is the full
subcomplex of X spanned by X − Xv , and the restriction

q : X − SatX (�) → D̂ − ι(v)

is well-defined and extends to a coarsely Lipschitz map

q : (X − SatX (�))+W → D̂ − ι(v).

Proof Case where � is a single edge: Let us first consider the case where � is a single
edge between the two standard generators a, b. Then by construction, Y contains a
unique vertex of dihedral type, namely uab.

Let us first assume that � is contained in the fibre of a vertex of tree type. Since Y
is bipartite with respect to the vertex type (tree or dihedral) by Lemma 3.8, it follows
that for every vertex u of Y of tree type, its link consists of the single vertex uab. It
now follows from Lemma 4.12 that the link of any edge contained in the fibre of a
vertex of tree type is equal to the fibre Xuab . Moreover, no vertex of Xuab has Xuab in
its link, so we get that

X − SatX (�) = Xuab = LkX (�).
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Let us now assume that� is contained in the fibre Xuab . It follows fromLemma 4.12
that the link of any edge of Xuab is exactly X − Xuab . It also follows from the above
discussion that no other simplex of X has link X − Xuab , hence

X − SatX (�) = X − Xuab = LkX (�).

General case:Let us now consider the case where� is not a single edge. Let us first
show that no other vertex of Y has the same link as v. Assume by contradiction that
there exists another such vertex v′. Since Y does not contain squares by Lemma 3.9,
we have that LkY (v) = LkY (v′) is a single vertex. Since a vertex of Y of dihedral type
gvab contains at least two vertices in its link, namely gva and gvb by Lemma 3.8, it
follows that v and v′ are of tree type, say v = gva and v′ = hvb. This now forces a and
b to be leaves of �: Indeed, if a had at least two neighbours c, d in �, then LkY (gva)

would contain the two distinct vertices gvac and gvad . Thus, a and b are leaves of
�. Moreover, since gva and hvb have a common neighbour that is of dihedral type,
this implies that this common neighbour is of the form kvab, and in particular a and
b are adjacent in �. Since � is connected and a and b are two adjacent leaves of �,
it follows that � is a single edge, a contradiction. Thus, no other vertex of Y has the
same link as v.

By Lemma 4.12, the link of � is the disjoint union of all the fibres of the form Xw

for w a vertex of LkY (v). Moreover, since distinct vertices of Y do not have the same
link by the above, a simplex of X has the same link as � if and only if it is an edge of
Xv . Thus, X − SatX (�) is the full subcomplex of X obtained by removing the fibre
Xv .

It follows from the above description of X − SatX (�) that the restriction map

q : X − SatX (�) → D̂ − ι(v)

is well-defined (recall that q is simplicial on X , so it is enough to check that the
restriction is well-defined on the 0-skeleton).

Since D̂ − ι(v) is connected (since the link of ι(v) is connected as explained in the
proof of Lemma 5.13), we extend this map to a map

q : (X − SatX (�))+W → D̂ − ι(v)

by sending edges to geodesics in D̂ − ι(v).
To show that this map is coarsely Lipschitz, it is enough to find a uniform constant

C such that for two distinct vertices w,w′ of Y − v connected by a W -edge, we have
dD̂−ι(v)(ι(w), ι(w′)) ≤ C . Note that since w and w′ are distinct, this W -edge must
be of type 2, and in particular w and w′ are at distance at most 2 in Y . Since Y does
not contain triangles and squares by Lemma 3.9, this distance is exactly 2 and we can
consider the midpoint w′′.

If w′′ ∈ Y − v, then ι(w′′) ∈ D̂ − ι(v) since ι is injective by Lemma 3.8, and we
thus have dD̂−ι(v)(ι(w), ι(w′)) ≤ 2.

Otherwise, w′′ = v and so w,w′ are adjacent vertices of LkY (v)+W . It fol-
lows from Lemma 5.13 that the maps p : LkX (�)+W → LkY (v)+W and q :
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LkX (�)+W → Lk D̂(ι(v)) are quasi-isometries. Since w,w′ are adjacent vertices
of LkY (v)+W , it follows that there exists a constant C (depending only on A�) such
that dLk D̂(ι(v))(ι(w), ι(w′)) ≤ C , and hence dD̂−ι(v)(ι(w), ι(w′)) ≤ C . This shows

that the map q̄ : (X − SatX (�))+W → D̂ − ι(v) is coarsely Lipschitz. ��
We will later prove a similar statement for simplices � that are triangles of X , see

Lemma 6.11.

6 The geometry of the augmented complex

In this section we finish the proof of Theorem A, by verifying that all conditions of
Theorem 1.4 apply to the pair (X , W ) where X is the blown-up commutation graph
(Definition 4.6) and W = Wr1,r2 is described in Sect. 5.1. Up until Sect. 6.3 (the final
argument) we work under Convention 3.14, that is, we work with an Artin group of
large and hyperbolic type A� with � connected and not a single vertex.

6.1 Hyperbolicity of the augmented links

The goal of this section is to prove the following proposition, verifying part of
condition (2) from Definition 1.3 for the candidate combinatorial HHS (X , W ):

Proposition 6.1 For all sufficiently large r1, r2 the following holds. The augmented
links LkX (�)+W of all non-maximal simplices � of X are connected and hyperbolic.

Before the proof, we assemble the ingredients.
Let� be a simplex of�. If LkX (�) is connected and of bounded diameter, so is its

augmented link and there is nothing to prove. Thus, we only need focus on unbounded
links.

Lemma 6.2 Let � be a non-maximal simplex of X. Then its link (and hence its aug-
mented link) is connected and of bounded diameter, except possibly when � is one of
the following:

• the empty simplex,
• an edge of X contained in a fibre,
• a triangle of X containing exactly two roots.

Proof Let � be a non-empty simplex of X . Note that if a link decomposes as a non-
trivial join, it is automatically connected andbounded. In viewofLemma4.12,LkX (�)

is connected and bounded, by virtue of decomposing non-trivially as a join, except
possibly in one of the following two situations.

Case 1: LkY (�) �= ∅ and all the links of fibres are empty. In that case, � is a
single vertex v of Y , and its associated fibre �v = � is an edge (and this case is listed
in the statement).

Case 2: LkY (�) = ∅ and exactly one of the fibres of � has an empty link. In that
case, � is an edge, and � is a triangle (since it is non-maximal). If � contains only
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one root, then LkX (�) is a single vertex, so it is bounded. (The remaining case of two
root is listed in the statement.) ��

We now treat the remaining cases separately.

Lemma 6.3 The augmented link of the empty simplex of X is equivariantly quasi-
isometric to D̂, and in particular is hyperbolic.

Proof By definition, the link of the empty simplex of X is X itself, which is quasi-
isometric to D̂ by Lemma 4.9. Note that X+W is quasi-isometric to X since W -edges
connect vertices at distance at most 2 in X by Definition 5.1. ��
Lemma 6.4 Suppose r1 ≥ 1. Let � be a triangle of X containing exactly two roots.
Then its augmented link LkX (�)+W is hyperbolic, and in fact quasi-isometric to Z.

Proof Let v be the vertex of Y such that �v is a single root. By Lemma 4.12, the
link of � is the disjoint union of the leaves of Xv . By Proposition 5.6, the augmented
link LkX (�)+W is obtained from LkX (�) by adding an edge between all vertices of
LkX (�) that are connected by a W -edge coming from maximal simplices of StX (�).
By construction of W -edges of type 1, this graph is connected and quasi-isometric
to Z, provided r1 ≥ 1. Indeed, given a graph and C ≥ 1, the graph with the same
vertex set and edges connecting pairs of vertices within distance C of each other in
the original graph is quasi-isometric to the original graph. ��
Lemma 6.5 Let � be an edge of X contained in a fibre Xv for some vertex v of Y . Then
its augmented link LkX (�)+W is a connected quasi-tree. Moreover, it is unbounded
except when v corresponds to a standard generator of A� that comes from a leaf of �

contained in an edge of � with even label.

Proof ByLemma 5.13we have that LkX (�)+W is quasi-isometric to Lk D̂(ι(v))where
v := �. Therefore, we have to prove that Lk D̂(ι(v)) is a quasi-tree. There are two
cases.

Tree type: Suppose that v is a vertex of Y of tree type. By construction of D̂ (or
Lemma2.30)we have that Lk D̂(ι(v)) is a standard tree of D, and the characterisation of
when standard trees are unbounded follows directly from the graph of groups structure
given in [44, Remark 4.6]. In particular, it follows from that description that when v

corresponds to a standard generator of A� that comes from a leaf of � contained in
an edge of � with even label, then the corresponding standard tree has diameter 2.

Dihedral type: Suppose that v is the vertex vab of Y of dihedral type for some
a, b ∈ �.

By Corollary 2.36, the action of Stab(v) = Aab on Lk D̂(ι(v)) is cocompact. Let us
describe the maximal stabilisers for this action. Since the action is without inversion,
it is enough to describe vertex stabilisers. By Lemma 2.31, the stabiliser of a vertex
of LkD(ι(v)) is either trivial or conjugate to 〈a〉 or 〈b〉. Moreover, it follows from
Lemma 2.27 that the stabiliser of the vertex of tree type corresponding to the standard
tree Ta is equal to Aab ∩ C(a), i.e. equal to the centraliser of a in Aab. By [23,
Lemma 7], this subgroup is equal to 〈a, zab〉. Thus, the stabilisers of vertices of tree
type in Lk D̂(ι(v)) are conjugate (again in Aab) to 〈a, zab〉 or 〈b, zab〉.
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It follows from the above that the maximal stabilisers for the cocompact action
of Aab on Lk D̂(ι(v)) are the conjugates of 〈a, zab〉 and 〈b, zab〉. It now fol-
lows from [20, Thm 5.1] that Lk D̂(ι(v)) is quasi-isometric to the Cayley graph
Cayley(Aab; 〈a, zab〉, 〈b, zab〉). Note that this Cayley graph is quasi-isometric to
Cayley(Aab/〈zab〉; 〈a〉, 〈b〉). Moreover, since Aab contains a finite-index subgroup
isomorphic to 〈zab〉 × F with F a finitely-generated free group by Lemma 2.3, the
central quotient Aab/〈zab〉 is virtually free. By [5, Theorem 2.19] (which applies
since 〈a〉 and 〈b〉 are quasiconvex in the Cayley graph of Aab/〈zab〉), the Cayley graph
Cayley(Aab/〈zab〉; 〈a〉, 〈b〉) is a quasitree, hence so are Lk D̂(ι(v)) and LkX (�)+W .

Unboundedness follows from [50, Lemma 5.12] and results in [25] using the same
argument as in [5, Corollary 3.22]. ��
Corollary 6.6 The simplices of X that have an unbounded augmented link are exactly:

• the empty simplex of X,
• the triangles of X containing exactly two roots.
• the edges contained in a fibre Xv of X, except when v corresponds to a standard

generator of A� that comes from a leaf of � contained in an edge of � with even
label.

All other simplices of X have an augmented link of diameter at most 3. ��

6.2 Quasi-isometric embeddings of augmented links

It remains to verify that (X , W ) satisfies the quasi-isometric embedding part of
condition (2) from Definition 1.3. This is achieved by the following proposition:

Proposition 6.7 For every non-maximal simplex � of X, the augmented link
LkX (�)+W is quasi-isometrically embedded in the augmented complex

(
X (0) −

SatX (�)
)+W

.

Theproposition is clearwhen the augmented link is bounded.We treat the remaining
cases, listed in Corollary 6.6, separately. Note that there is nothing to do in the case of
the empty simplex, as the inclusion LkX (∅)+W ↪→ (

X −SatX (∅)
)+W is the identity

map of X+W .
Overview. Let us give an overview of the general strategy. We will use the quasi-

isometries between X+W , Y +W and D̂ (see Lemma 3.13 and Definition 5.11) to
construct models for LkX (�)+W and

(
X −SatX (�)

)+W that are easier to work with.
More precisely, we will construct a diagram of the form

LkX (�)+W U�

(
X − SatX (�)

)+W
V�

where
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• the complexes U�, V� are built out of subcomplexes of D̂,
• the top horizontal map is a quasi-isometry (in the spirit of Lemma 5.13),
• the bottom horizontal map is coarsely lipschitz (in the spirit of Lemma 5.15).
• both horizontal maps coincide with the map q when restricted to vertex sets,
• the diagram commutes up to bounded error. This is due to some bounded choices
appearing when constructing the various horizontal arrows (and more precisely
extending the map q to W -edges), see the proof of Lemma 5.13, 5.15, and 6.11.

Then, it will be enough to show that U� ↪→ V� is a quasi-isometric embedding.
This in turn will be done using either the CAT(0) geometry of D̂ to construct a coarsely
Lipschitz retraction V� → U� (in Lemma 6.10), or by using additional properties of
dihedral Artin groups when the complexes U�, V� are defined using neighbourhoods
of vertices of dihedral type (in Lemmas 6.12 and 6.13).

We start by introducing themain tool for constructing coarsely Lipschitz retractions
in D̂, and more generally in CAT(0) complexes:

Definition 6.8 (Combinatorial neighbourhood) Let C be a subcomplex of a complex
X . The combinatorial neighbourhood of C , denoted N (C), is the subcomplex con-
sisting of the union of all the simplices ofX intersectingC . The combinatorial sphere
around C , denoted ∂ N (C), is the full subcomplex with vertex set N (C)(0) − C (0).
Finally, we let N̊ (C) = N (C) − ∂ N (C).

For C a subcomplex of a metric complex X , note that X − N̊ (C) is the full sub-
complex spanned by X − C , meaning the full subcomplex with vertex set the vertices
of X that are not contained in C .

In the statement below we regard X − N̊ (C) as endowed with its intrinsic path
metric, and similarly for ∂ N (C).

Lemma 6.9 Let X be a CAT(0) simplicial complex with finitely many isometry types of
simplices, and let C be a convex subcomplex ofX . Then there exists a coarsely Lipschitz
retraction from X − N̊ (C) to ∂ N (C). In particular, ∂ N (C) is quasi-isometrically
embedded in X − N̊ (C).

Proof We construct a projection from X − N̊ (C) to ∂ N (C) as follows. Since the
CAT(0) space X has finitely many isometry types of simplices, we can choose a
number ε > 0 such that the closed metric neighbourhood N (C, ε) (for the CAT(0)
metric) is contained in N (C). Since C , whence N (C, ε), is convex for the CAT(0)
metric, the closest-point projection π : X − N̊ (C) → N (C, ε) is well-defined and
1-Lipschitz. Given a point x ∈ X − N̊ (C), we first compute the projection π(x), we
choose a simplex � of N (C) containing π(x) (such a simplex cannot be contained
in C), and we define π ′(x) to be any vertex of � not in C . This defines the map
π ′ : X − N̊ (C) → ∂ N (C).

Let x, y ∈ X − N̊ (C) be two points at distance at most ε/3 in X − N̊ (C), and
therefore in X . Their closest-point projections π(x), π(y) are also at distance at most
ε/3. Thus, the CAT(0) geodesic γ between π(x) and π(y) is of length at most ε/3,
and in particular γ does not intersect C since its endpoints are at distance ε from
C . Also, γ is contained in the combinatorial neighbourhood N (C) since it is even
contained in the convex subspaceN (C, ε). By [14, Corollary 7.30], there is a uniform
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bound k depending only on X and ε but not on x, y such that γ intersects at most k
simplices of N (C) (none of them contained in C). This now implies that there is a
path in ∂ N (C) connecting π ′(x) and π ′(y) consisting of a concatenation of at most
k paths each contained in a simplex of ∂ N (C) (indeed, note that simplices �1,�2 of
N (C) that intersect outside of C also satisfy �1 ∩ �2 ∩ ∂ N (C) �= ∅). Since X has
finitely many isometry types of simplices, the k paths can be taken to have uniformly
bounded length, and this implies that the map π ′ : X − N̊ (C) → ∂ N (C) is coarsely
Lipschitz.

Moreover, again since X has finitely many isometry types of simplices, a similar
reasoning implies that there exists a constant k′ such that for any vertex v of ∂ N (C),
the CAT(0) geodesic between v and π(v) meets at most k′ simplices, which implies
that v and π ′(v) lie within bounded distance in X − N̊ (C). Thus, π ′ is a coarse
retraction. ��
Lemma 6.10 Let � be an edge of X contained in the fibre of a vertex of Y . Then the
augmented link LkX (�)+W is quasi-isometrically embedded in

(
X − SatX (�)

)+W
.

Proof If � is a single edge, then we have LkX (�) = X − SatX (�) by Lemma 5.15,
hence LkX (�)+W = (

X − SatX (�)
)+W , and the inclusion is a quasi-isometric

embedding.
Let us now consider the case where � is not reduced to a single edge. The

edge � is contained in the fibre over a vertex that we call u ∈ Y , and we set
v := ι(u) ∈ D̂. It follows from Lemma 5.15 that X − SatX (�) is the full sub-
complex of X obtained by removing the fibre Xu . Recall also from the same lemma
themap q̄ : (X −Sat(�))+W → D̂−{v}. Also, Lemma 5.13 gives us a quasi-isometry
q ′ : LkX (�)+W → Lk D̂(v) (note that, in the statement of the lemma, the map q is
restricted to the 0-skeleton of LkX (�)+W , and q ′ here is an extension of q across all
edges).

Consider now the following diagram:

LkX (�)+W q ′
∂ N (v)

(
X − SatX (�)

)+W

q̄
D̂ − {v}

Note that the diagram commutes at the level of vertices, so that it commutes up to
bounded arrow since all maps are coarsely Lipschitz.

By Lemma 6.9, there exists a coarsely Lipschitz retraction π : D̂ − {v} → ∂ N (v).
Thus, the inclusion ∂ N (v) ↪→ D̂ − {v} is a quasi-isometric embedding. Since the
top and right arrows are quasi-isometric embeddings, so is their composition. Since
the left arrow is coarsely Lipschitz, and so is the bottom arrow, the left arrow is a
quasi-isometric embedding because the diagram commutes up to bounded error. In
other words, LkX (�)+W ↪→ (

X −SatX (�)
)+W is also a quasi-isometric embedding.

��

123



926 M. Hagen et al.

Before considering the final two cases where � is a triangle of X , we prove the
following result that will allow us to show that the bottommap of our (almost) commu-
tative diagram is coarsely Lipschitz. Recall that we have simplicial maps p : X → Y ,
and ι : Y → D̂, and we set q = ι ◦ p.

Lemma 6.11 Let � be a triangle of X that contains an edge in the fibre of a vertex of
Y and an additional root u. Then we have

X − SatX (�) = p−1(Y − StY (u))
) � �u .

Moreover, let Z = Zu be the graph obtained from the disjoint union

(
D̂ − St D̂(ι(u))

) � �+W
u

as follows: We add an edge between a vertex λ ∈ �u and a vertex v ∈ D̂ − St D̂(ι(u))

if there exists a W -edge of X+W between λ and a vertex of Xv .
Then the restriction

q : X − SatX (�) → Z

is well-defined and extends to a coarsely Lipschitz map

q ′ : (X − SatX (�))+W → Z .

Proof It follows from Lemma 4.12 that SatX (�) consists of all the triangles �′ of
X such that (�′)u = �u (that is, �′ is the join of the root u and some edge). The
structure of X − SatX (�) follows immediately. Since ι is injective by Lemma 3.8, as
well as simplicial, we have ι−1(St D̂(ι(u)) ⊆ StY (u), and therefore q−1(St D̂(ι(u)) ⊆
p−1(StY (u)). Therefore, the restriction of q as in the statement is well-defined.

The required coarsely Lipschitz extension exists provided that any two distinct
vertices v, v′ ∈ X − SatX (�) joined by an edge get mapped to vertices of Z that lie
within uniformly bounded (in particular, finite) distance.

First notice that, by construction, edges that are not W -edges between two distinct
vertices of X − SatX (�) are either mapped to an edge of Z or collapsed to a point.
Moreover, if v ∈ X −SatX (�)−�u and a point λ ∈ �u are joined by a W -edge, then
their images under q are joined by an edge in Z by definition of Z . Thus, it is enough
to show that there exists a uniform constantC such that if v, v′ ∈ (

X −SatX (�)
)−�u

are distinct vertices joined by a W -edge, then dZ (q(v), q(v′)) ≤ C .
Let v, v′ ∈ (

X −SatX (�)
)−�u be two distinct vertices joined by a W -edge. First

notice that p(v), p(v′) belong to Y − StY (u) by the first part of the statement. It is
enough to consider the case where p(v) and p(v′) are not connected by an edge in Y .
Since p(v) and p(v′) are connected by a W -edge, they are either equal (for W -edges
of type 1) or at distance 2 in Y (for W -edges of type 2). It is enough to consider the
second case, so let δ, δ′ be maximal simplices of X , containing v, v′ respectively, that
are connected by a W -edge of type 2.
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Let u′ be the midpoint between p(v) and p(v′). If u′ ∈ Y − StY (u), then
q(v), ι(u′), q(v′) is a combinatorial path of length 2 in Z , so dZ (q(v), q(v′)) ≤ 2.

Otherwise, u′ must be a vertex of LkY (u) (since u′ �= u for otherwise v and v′ would
lie in Sat(�)). Up to the action of A� , we can assume that u, u′ are of the form ua, uab

(up to permutation) and in particular there are finitely many possible pairs to consider.
Hence, it suffices to fix u, u′ and produce a constant for those. By construction, we have
that w(δ),w(δ′) are contained in the “thickened” coset N (zu′)+r . Moreover, since δ

and δ′ are connected by a W -edge, it follows fromLemma 5.2 that dA� (w(δ), w(δ′)) ≤
r3.

To show that q(v), q(v′) are at uniformly bounded distance in Z , it will be enough
to show that they are at uniformly bounded distance in the full subgraph Z ′ of Z
spanned by (Lk D̂(ι(u′)) − St D̂(ι(u))) ∪ �u .

Wemodify the complex Z ′ in an equivariant way to obtain a graph on which N (zu′)
acts naturally. Let Z ′′ be the full subcomplex of X+W spanned by the quasi-lines�+W

w

for w ∈ LkY (u′). By construction of the augmented link LkY (u′)+W , the projection
p : X+W → Y +W induces a surjective simplical map p : Z ′′ → LkY (u′)+W .
Moreover, since the link LkY (u′)+W is connected by Lemma 5.12 and the quasi-lines
�+W

w (that is, the fibers of p over the vertices) are connected by Lemma 6.4, it follows
that Z ′′ is connected. Since StabY (u′) = N (zu′) stabilises LkY (u′)+W and preserves
the family of quasi-lines�w by construction of the action A� � X+W , it follows that
there is an induced action of N (zu′) on the connected graph Z ′′.

In particular, for x ∈ Z ′′, the orbit map

ωx : N (zu′) → Z ′′, g �→ g · x

is coarsely Lipschitz (with respect to any given word metric on N (zu′)), and the
Lipschitz constant does not depend on x ∈ Z ′′ since the action is cobounded, see
Lemmas 3.26 and 4.5.

We can extend ωx to a map ω̂x : N (zu′)+2r → Z ′′ which is still N (zu′)-equivariant
and coarsely Lipschitz when N (zu′)+2r is endowed with the metric inherited from A� .

Moreover, by construction of Z , the projection q : X+W → D̂+W induces a
Lipschitzmapq : Z ′′ → Z ′ obtained by collapsing eachquasi-line�+W

w other than�u

to the corresponding vertex ι(w). Thus, the composition map N (zu′)
ωx−→ Z ′′ q−→ Z ′

is coarsely Lipschitz, where the coarse Lipschitz constant can be chosen to be uniform.
Let us now bound above the distance dZ ′(q(v), q(v′)). After perturbing w(δ) up to

distance r , we can assume that it is contained in yN (z) ∩ N (zu′)+2r , where yN (z) =
q(v) for some element z belonging to the finite set of elements of the form a or zab (for
some a, b ∈ �). Similarly, we perturb w(δ′) and define y′, z′ analogously for δ′. We
pick as basepoint for the orbit map the point x := N (z). The coarsely Lipschitz map
q ◦ ω̂x sends w(δ) to a set (uniformly bounded by 4.26) containing yN (z) = q(v).
Moreover, if we denote by k a uniform upper bound on the distance in LkY (u′) between
vertices of the form N (z1) and N (z2), for z1, z2 of the form a or zab (a, b ∈ �), then
the map q ◦ ω̂x sends w(δ′) to a set (again uniformly bounded by 4.26) containing
y′N (z), which is at distance at most k from y′N (z′) = q(v′). Moreover, since q ◦ ω̂x

is coarsely Lipschitz and dA� (w(δ), w(δ′)) ≤ r3 + 4r (recall the r -perturbation),

123



928 M. Hagen et al.

it follows that there exists a constant C ′ such that dZ ′(q(v), q(v′)) ≤ C ′, hence
dZ (q(v), q(v′)) ≤ C ′. This constant C ′ depends on k, r , r3 and the coarse Lipschitz
constant for ω̂x (in particular, it is independent of v, v′, u′).

We thus have that dZ (q(v), q(v′)) is uniformly bounded above, and it follows that
the map q ′ is coarsely Lipschitz. ��
Lemma 6.12 Let � be a triangle of X that contains two roots, and an edge in the fibre
of a vertex of tree type of Y . Then the augmented linkLkX (�)+W is quasi-isometrically
embedded in the augmented complex

(
X − SatX (�)

)+W
.

Proof Up to the action of A� , we can assume that there exist adjacent generators
a, b ∈ � such that � is the edge between ua and uab. It follows from Lemma 4.12
that SatX (�) consists of all the triangles �′ of X such that (�′)uab = �uab (that is,
�′ is a join of uab and some edge). Moreover, by Proposition 5.6, the augmented link
LkX (�)+W consists of the quasi-line�uab , equippedwith itsW -edges (this augmented
link is still quasi-isometric to Z by Lemma 6.4).

Let q ′ : (X − SatX (�))+W → Z be the coarsely Lipschitz map constructed in
Lemma 6.11.

We have the following diagram that commutes up to bounded error (as it commutes
exactly on vertices and all maps are coarsely Lipschitz):

LkX (�)+W =
�uab

(
X − SatX (�)

)+W

q ′ Z

In particular, to show that LkX (�)+W ↪→ (
X − SatX (�)

)+W is a quasi-isometric
embedding, it is enough to show that the inclusion �uab ↪→ Z is a quasi-isometric
embedding. By construction of the W -edges, the inclusion �uab ↪→ Z is a quasi-
isometric embedding provided the 〈zab〉-orbits are quasi-isometrically embedded in
Z .

Let Z ′ be the full subcomplex of D̂ generated by Z ∪ {vab}. By construction of
Z (see Lemma 6.11), the subcomplex Z ′ is obtained from D̂ by removing the apices
of all the standard trees containing vab. Since Z ′ is obtained from D̂ by removing
a family of open cones, it is still CAT(0) for the induced metric by Lemma 2.24. In
particular, it follows from Lemma 6.9 that there is a coarsely Lipschitz retraction

Z = Z ′ − {vab} → LkZ ′(vab).

Thus, it is enough to show that the 〈zab〉-orbits are quasi-isometrically embedded in
LkZ ′(vab). But by construction of Z ′, LkZ ′(vab) is Aab-equivariantly isomorphic to
LkD(vab). Thus, it is enough to show that the 〈zab〉-orbits are quasi-isometrically
embedded in LkD(vab), where D is the original Deligne complex. Since Aab is of
large type, this now follows from Lemma 2.34 applied to g = zab. ��
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Lemma 6.13 Let � be a triangle of X that contains two roots, and an edge in the fibre
of a dihedral vertex of Y . Then the augmented link LkX (�)+W is quasi-isometrically
embedded in the augmented complex

(
X − SatX (�)

)+W
.

The proof of this lemma is rather long, but follows a similar strategy of reduction.
The rest of this section will be devoted to it.

Up to the action of the group, we can assume that the projection � is an edge of
Y between the vertices ua and uab. Since the fibre of �ua is the apex of Xua , the
saturation SatX (�) consists of the union of all the triangles of X that have the same
fibre at ua as �. In particular, we have

X − Sat(�) = �ua � q−1(D̂ − T̂a
)
,

and
(
X − Sat(�)

)+W is obtained from the previous graph by adding all the W -edges
whose endpoints are in X − Sat(�).
Step 1: Let q ′ = π1 : (

X − SatX (�)
)+W → Z be the coarsely Lipschitz map

constructed in Lemma 6.11. The the following diagram commutes up to bounded
error:

LkX (�)+W =
�a

(
X − SatX (�)

)+W
π1

Z

In particular, to show that the inclusion

LkX (�)+W ↪→ (
X − SatX (�)

)+W

is a quasi-isometric embedding, it is enough to show that the inclusion

�a ↪→ Z

is a quasi-isometric embedding.
We reduce the problem further, by using the CAT(0) geometry of D̂ to show that Z

coarsely retracts onto a neighbourhood of T̂a . Consider the combinatorial neighbour-
hood ∂ N (T̂a) = N (Ta) − va . We define the complex Za as the full subcomplex of Z
spanned by �a � ∂ N (T̂a).
Step 2: There exists a coarsely Lipschitz retraction π2 : Z → Za such that the
following diagram commutes:

�a
=

�a

Z
π2

Za
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In particular, to show that the inclusion �a ↪→ Z is a quasi-isometric embedding, it
is enough to show that the inclusion �a ↪→ Za is a quasi-isometric embedding.

Proof of Step 2 Since Ta is convex in D̂ − va by Lemma 2.25, there exists a coarse
retraction of D̂ − T̂a on ∂ N (T̂a) by Lemma 6.9. We define the map π2 : Z → Za as
follows: π2 is the identity on Za and is the coarse retraction D̂ − T̂a → ∂ N (T̂a) on
Z −�a . This definition makes sense as Za ∩ (Z −�a) = ∂ N (T̂a) and π2 is defined as
the identity on ∂ N (T̂a) in both cases. To conclude that this defines a coarse retraction
Z → Za , let us check that an edge between a vertex x of Z −�a and a vertex y of Za

is either contained in Z − �a or in Za . If y /∈ �a , then x, y belong to Z − �a , and
so does the edge between them. If y ∈ �a , then by construction the edge e between
x and y comes from a W -edge of type 2 of X+W . But by construction of W -edges of
type 2, this forces x to belong to ∂ N (Ta), and thus x, y, and e belong to Za . ��

We nowwant to show that the inclusion�a ↪→ Za is a quasi-isometric embedding.
For a vertex v of Ta , we denote by Zv the subgraph of Za spanned by�a and ∂ N (T̂a)∩
N (v). In particular, Za is the union of all the Zv , where v runs among the vertices
of Ta . For a generator b ∈ � adjacent to a, we simply denote by Zab the graph Zvab .
To show that the inclusion �a ↪→ Za is a quasi-isometric embedding, we will first
show that each inclusion �a ↪→ Zv is a quasi-isometric embedding (Steps 3 and
4) and then combine these quasi-isometric embeddings to show that �a ↪→ Za is a
quasi-isometric embedding (Step 5).

Before reducing the situation further, we need further information about the graph
of orbits introduced in Definition 2.32 and some variants. As the graphs we are looking
at have been obtained from LkD(vab) by removing the vertices corresponding to the
tree Ta , we introduce a variant of the graph of orbits:

Definition 6.14 Let G be either Cayleya,b(Aa,b) or Cayleya,b(Aa,b)/〈�ab〉 (where as
usual, 〈�ab〉 acts by multiplication on the right). We define a new graph, called the
blown-up graph of orbits and denoted Orbit∗a,b

(
G
)
as follows.

We denote by La the simplicial line in G spanned by the 〈a〉-orbit of the identity
element. We put a vertex for every 〈a〉-orbit of G except the one corresponding to La ,
one vertex for every 〈b〉-orbit in G, and one vertex for each vertex of La . If two such
subsets of G have a non-empty intersection, we put an edge between them. Moreover,
for every vertex v of La , we also put an edge between v and av.

This construction can be thought of as obtained from the original graph of orbits
Orbit∗a,b

(
G
)
by blowing up the vertex corresponding to the coset 〈a〉, and replacing it

with a copy of La .
Step 3: There exists a coarsely Lipschitz map

π3 : Zab → Orbit∗a,b

(
Cayleya,b(Aa,b)

)
/ 〈�ab〉
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and a quasi-isometry �a → La such that the following diagram commutes up to
bounded error and the inclusion �a ↪→ Zab coarsely Lipschitz:

�a
∼=

La

Zab π3
Orbit∗a,b

(
Cayleya,b(Aa,b)

)
/〈�ab〉

In particular, to show that the inclusion�a ↪→ Zab is a quasi-isometric embedding,
it is enough to show that the inclusion

La ↪→ Orbit∗a,b

(
Cayleya,b(Aa,b)

)
/〈�ab〉

is a quasi-isometric embedding.

Proof of Step 3 First notice that one can identify the subgraph Zab − �a with the
subgraph Lk D̂(vab) − Lk D̂∩Ta

(vab).
Now consider the (coarsely Lipschitz) quotient map Zab → Zab/〈�ab〉 for the

action of 〈�ab〉 on the right. The image in that quotient of the apex of a standard tree
is a vertex of valence 1. The graph Zab/〈�ab〉 thus retracts via a Lipschitz map onto
the subgraph obtained by removing all these valence 1 vertices. Using the identifica-
tion of LkD(vab) with the graph of orbits Orbita,b

(
Cayley(Aab)

)
, one sees that the

graph obtained is the blown-up graph of orbits Orbit∗a,b

(
Cayleya,b(Aa,b)

)
/〈�ab〉. The

composition

π3 : Zab → Zab/〈�ab〉 → Orbit∗a,b

(
Cayleya,b(Aa,b)

)
/〈�ab〉

satisfies the required property. Moreover, π3 is 〈a〉-equivariant.
Pick a bounded set B whose 〈a〉-translates cover�a containing exactly one element

of each orbit. There is a unique 〈a〉-equivariant map �a → La that sends B to the
identity element. This is a quasi-isometry since 〈a〉 acts coboundedly on both �a and
La . We use this as the top arrow in the diagram. Since the other three maps are also
〈a〉-equivariant, the diagram commutes up to bounded error.

Note that the map �a ↪→ Zab is simplicial, hence coarsely Lipschitz. ��
Step 4: The inclusion

La ↪→ Orbit∗a,b

(
Cayleya,b(Aa,b)

)
/〈�ab〉

is a quasi-isometric embedding.

Proof of Step 4 Let us start with a preliminary remark. Starting from the Cayley graph
of Aab, there are two operations one can perform: We can mod out by the right-
action of 〈�ab〉, or we can construct the aforementioned blown-up graph of orbits
Orbit∗a,b

(
Cayleya,b(Aa,b)

)
. These two constructions commute. More precisely, there
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exists an isomorphism (in dotted lines below) that makes the following diagram
commute:

Orbit∗a,b

(
Cayleya,b(Aa,b)/〈�ab〉

)

∼=La

Orbit∗a,b

(
Cayleya,b(Aab)

)
/〈�ab〉

Thus, it is enough to show that the inclusion

La ↪→ Orbit∗a,b

(
Cayleya,b(Aa,b)/〈�ab〉

)

is a quasi-isometric embedding. The graph Cayleya,b(Aa,b)/〈�ab〉 (for the action
of 〈�ab〉 on the right) is a tree, as it is obtained from the quasi-tree Tab defined
in Sect. 2.2 by removing the edges of Tab labelled by an atom on more than
one generator. Moreover, the various gLa and gLb are quasi-lines in the tree
Cayleya,b(Aa,b)/〈�ab〉 that are g〈a〉g−1-invariant and g〈b〉g−1-invariant respectively.
Moreover, for any r ≥ 0 there is a constant f (r) such that the intersection of the
r -neighbourhoods of any two such distinct quasi-lines has diameter at most f (r).
The fact that La ↪→ Orbit∗a,b

(
Cayleya,b(Aa,b)/〈�ab〉

)
is a quasi-isometric embed-

ding is now a consequence of Step 3 and the following Claim, applied to the case
Z = Cayleya,b(Aa,b)/〈�ab〉, Li0 = La , and the Li are the gLb and the gLa other
than La .
Claim. For all δ, κ and functions f : R+ → R+, there exists D ≥ 0 such that the fol-
lowing holds. Let Z be a δ-hyperbolic space and let {Li } be a family of (κ, κ)-quasilines
in Z such that for all distinct i, j and all r , the intersection of the r -neighbourhoods
of Li and L j has diameter at most f (r). Then the following holds for all Li0 . Let Ẑ
be obtained from Z by coning off each Li , i �= i0. Then the image of Li0 under the
inclusion Z → Ẑ is a (D, D)-quasi-line.

Proof of Claim. The closest-point projection proj : Z → Li0 has the property that
the image of all Li , i �= i0 is uniformly bounded. Therefore, proj gives a coarsely
Lipschitz coarse retraction of Ẑ onto the image of Li0 in Ẑ . The existence of a coarse
retraction implies that Li0 is quasi-isometrically embedded in Ẑ , as required. ��

This concludes the proof of Step 4. ��
It follows from Steps 3 and 4 that the various inclusions �a ↪→ Zv are quasi-

isometric embeddings, for vertices v of Ta . Note that because the action of Stab(Ta)

on Ta is cocompact by Lemma 2.30, we can choose a constant K ≥ 0 such that all
such inclusions �a ↪→ Zv are (K , K )-quasi-isometric embeddings. We now want
to combine these various quasi-isometric embeddings into a global quasi-isometric
embedding �a ↪→ Za .
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Step 5: The inclusion �a ↪→ Za is a quasi-isometric embedding.

Proof of Step 5 For every distinct vertices v,w of Ta , notice that vertices in Zv ∩
Zw are at (combinatorial) distance at most 1 from �a . In particular, given a finite
combinatorial geodesic γ in Za between two points x, x ′ of �a , there exist points
x0 := x, x1, . . . , xn := x ′ of �a , and distinct points y0 := x, y1, . . . , yn := x ′ of
γ ⊂ Za such that the portion of γ between yi and yi+1 is contained in some Zv ,
and each yi is either equal or adjacent to xi . From Steps 3 and 4 and the definition
of the xi and yi , it follows that for each i , we get the following inequality between
combinatorial length:

d�a (xi , xi+1) ≤ KdZv (yi , yi+1) + K + 2 ≤ (2K + 2)dZv (yi , yi+1),

the last inequality following from the fact that dZv (yi , yi+1) ≥ 1. We thus have

d�a (x, x ′) ≤
∑

i

d�a (xi , xi+1) ≤ (2K + 2)
∑

i

dZv (yi , yi+1) = (2K + 2)dZa (x, x ′).

This shows that the inclusion �a ↪→ Za is a quasi-isometric embedding. ��
Combining all the previous steps, it follows that the inclusion LkX (�)+W ↪→(

X−Sat(�)
)+W is a quasi-isometric embedding,which concludes the proof of Lemma

6.13.

Proof of Proposition 6.7 The preceding sequence of Lemmas 6.10, 6.12, 6.13, together
with Corollary 6.6, imply the proposition. ��

6.3 Obtaining hierarchical hyperbolicity

We are now ready to prove the main theorem of this article, Theorem A, which says
that Artin groups of large and hyperbolic type are hierarchically hyperbolic. First, we
just prove that a structure exists, and later on we give a more detailed description for
the interested reader.

Proof of TheoremA There are three cases to consider.
Single vertex: If � is a single vertex, then A� is isomorphic to Z, which is an HHG.
Connected case: We consider the case where � is connected and contains at least
two vertices, so that we are in the case covered by Convention 3.14. Let us first check
that (X , W ) satisfy the conditions of Definition 1.3: It satisfies (I) by Proposition
4.14, condition (II) by Propositions 6.1 and 6.7, condition (III) by Proposition 5.6,
and condition (IV) by Proposition 4.15 and Corollary 6.6. Moreover, the action of
A� is proper and cobounded by Proposition 5.5 and there are finitely many orbits of
links by Proposition 4.13. It thus follows from Theorem 1.4 that A� is hierarchically
hyperbolic.
General case: In general, A� is the free product of Artin groups on connected graphs,
which are hierarchically hyperbolic by the above. Taking free products preserves the
property of being a hierarchically hyperbolic group, by [9, Corollary 8.24] or [9,
Theorem 9.1]. ��
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Description of the HHG structure We will now describe the HHG structure, and we
introduce some notation to this end; we will use standard HHS terminology from [9,
Definition 1.1].

Given an HHS (X ,S), we can write S = S f in � S∞, where S∞ is the set of
indices for which the corresponding hyperbolic space is unbounded.We typically have
various bounded hyperbolic spaces in anHHS structurewhich need to be there because
of the orthogonality axiom, but do not otherwise play a major role. The interesting
part of the structure is S∞.

Recall from Definition 3.4 that given an Artin group A� we denote

H := {〈a〉 | a a standard generator of A�

} ∪ {〈zab〉 | a, b span an edge of � with mab ≥ 3
}
.

We denote two distinct copies of
⊔

H∈H G/N (H) by Sline and Stree. We denote

the copy of gN (H) in Sline by gN (H)line, and similarly for Stree.
Finally, we denote bySlea f the subset ofStree consisting of all cosets of the form

gN (〈a〉)tree, where a is a standard generator corresponding to a valence-1 vertex of
� whose incident edge has even label.

Theorem 6.15 Let A� be an Artin group of large and hyperbolic type, with � connected
and not a single vertex. Then there is an HHG structure S on A� with the following
properties. We have S∞ = {S} � Sline � (

Stree − Slea f
)
, and all of the following

hold:

(1) S is the �-maximal element of S and C(S) can be taken to be either the coned-off
Deligne complex or the complex of irreducible parabolics of finite type.

(2) For each gN (H) ∈ Sline, C(gN (H)) is a quasiline on which gN (H)g−1 acts,
with gHg−1 having unbounded orbits.

(3) For each gN (H) ∈ Stree−Slea f , the spaceC(gN (H)) is an unbounded quasitree.
(4) For each gN (H), we have gN (H)line⊥gN (H)tree.
(5) gN (H)line is nested in hN (H ′)tree if and only if gHg−1 and h H ′h−1 are distinct

and commute.
(6) gN (H)line is orthogonal to hN (H ′)line if and only if gHg−1 and h H ′h−1 are

distinct and commute.
(7) The items above completely determine the nesting and orthogonality relation

within S∞.
(8) No element of S is orthogonal to any of its A�-translates.

Proof The HHG structure can be obtained from the description of the HHS structure
for a combinatorial HHS [6, Theorem 1.18, Remark 1.19]. The index set of the HHS
structure is in bijection with the set of links of simplices, and the hyperbolic spaces
in the HHS structure are the augmented links. The identification of the unbounded
augmented links is done in Corollary 6.6, with the (equivariant quasi-isometry types
of the) augmented links being described in Lemma 6.3 (see also Proposition 3.16),
6.4, and Lemma 6.5.

Orthogonality and nesting of a combinatorial HHS are described in [6, Definition
1.11], and they correspond to links that form joins and links that are nested into
each other. The link of the empty simplex will be the �-maximal element, and a
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straightforward case-by-case analysis with the other two types of links yields the
relations are in our case (in view of how adjacency in the commutation graph is
defined).

Finally, let us prove the last item; for this we argue with the HHS structure of
the combinatorial HHS (X , W ) that we used throughout the section. Consider by
contradiction non-maximal simplices�, h� such that their links form a join. Consider
any x ∈ Lk(�); in particular, x and hx are adjacent in X . There are two cases. If
x = gN (H) for some H ∈ H and g ∈ A� , then x and hx are also adjacent vertices of
the commutation graph Y . However, Y is bipartite (with respect to dihedral and tree
type vertices, see Lemma 3.8) and no adjacent vertices are in the same orbit. On the
other hand, if x ∈ �gN (H), then we can repeat the same argument with gN (H). ��
Remark 6.16 The last item of Theorem 6.15 implies that the HHG structure is A�-
colourable in the sense of [29, Definition 2.8].

Remark 6.17 In the dihedral case, it does not suffice to simply observe that A� is
virtually free-times-Z to show that it is a hierarchically hyperbolic group. Indeed,
while the property of being a hierarchically hyperbolic space is preserved by quasi-
isometries, the extra equivariance properties needed to be a hierarchically hyperbolic
group fail badly to be preserved even by commensurability. Indeed, while Z

2 is a
hierarchically hyperbolic group, there are virtuallyZ

2 groups, like the (3, 3, 3) triangle
group, that are not [52, Corollary 4.5].

We now turn to the consequence of hierarchical hyperbolicity stated in Corollary B.

Proof of Corollary B Assertion 1 follows directly from [7, Thm. A].
All of the assertions follow fromTheoremAand general results about hierarchically

hyperbolic groups, asmentioned in the statement, except (uniformexponential growth)
and (3) (on stable subgroups).

We now handle assertion (2) (uniform exponential growth). In the case where A� is
not dihedral, we have that A� is torsion-free by [21] and acylindrically hyperbolic by
[44], so by Corollary 1.3 of [3], A� has uniform exponential growth. The remaining
case is where A� is dihedral, i.e. � is a single edge (and we are assuming that the
label is not 2). In this case, Lemma 2.3 implies that A� fits into an exact sequence
1 → Z → A� → F → 1, where F is virtually a finite-rank non-abelian free
group. Hence A� has uniform exponential growth by [26, Proposition 2.3]. This proves
assertion (2).

Next, we deal with assertion (3) (stable subgroups). Here, we use two additional
facts about the hierarchically hyperbolic structureS. Thefirst one is that the hyperbolic
space associated to the�-maximal element is A�-equivariantly quasi-isometric to the
coned-off Deligne complex D̂, as stated in Theorem 6.15. Also, we will use the fact
that for each non-�-maximal V ∈ S with unbounded CV there exists U ∈ S with
U⊥V and unbounded CU . This readily follows from Theorem 6.15.

According to [1, Theorem B], there is an HHS structure on A� such that a subgroup
H ≤ A� is stable if and only if H -orbit maps to the �-maximal hyperbolic space
are quasi-isometric embeddings. We observe below (Lemma 6.18) that under our
assumptions the �-maximal hyperbolic space constructed in [1] is A�-equivariantly
quasi-isometric to D̂, which proves the assertion. ��
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In [1], Theorem B follows combining [1, Corollary 6.2], which characterises sta-
bility for any HHS satisfying an additional condition (having unbounded products),
and [1, Theorem 3.7], which says that says that one can change an HHG structure into
one satisfying the additional condition.

What we used in the proof of Corollary B is that this change does not affect the
equivariant quasi-isometry type of the�-maximal hyperbolic space, as we now justify.

Lemma 6.18 Let (G,S) be an HHG with the property that for each non-�-maximal
V ∈ S with unbounded CV there exists U ∈ S with U⊥V and unbounded CU. Then
G admits an HHG structure (G,T) with unbounded products where the �-maximal
hyperbolic space is G-equivariantly quasi-isometric to that of (G,S).

Proof We claim that the HHG structure (G,T) constructed in the second paragraph of
the proof of [1, Theorem 3.7] has �-maximal hyperbolic space TS with the required
property; we now recall the construction. First, for a constant M letSM be the set of all
U ∈ S for which there exist U � V and V ⊥W with diam CV > M and diam CW >

M . We can choose M such that diam CV > M is equivalent to diam CV = ∞
(because the G-action on S is cofinite by definition of HHG). Then TS is defined as
the factored space ĜSM . As a set, this is G, however it is endowed with a different
metric. Roughly, we start with G and cone-off certain product regions corresponding
to the elements of SM , but we will not need the exact definition here.

By [7, Proposition 2.4], ĜSM is an HHSwith index setS−SM , and with the same
associated hyperbolic spaces and projections as in (G,S). By the distance formula
for HHS [9, Theorem 4.5], for any suitably large constant L there are constants K , C
so that for all x, y ∈ ĜSM we have.

dĜSM
(x, y) ≈K ,C

∑

Y∈S−SM

[dCY (πY (x), πY (y))]L ,

where ≈K ,C denotes quantities that differ by multiplicative constant at most K and
additive constant at most C , and [A]L denotes A if A ≥ L and 0 otherwise.

Now it is time to use our hypothesis. In our case SM contains all U ∈ S with
diamCU > M except the�-maximal element S. If we take the threshold L to be larger
than M , the distance formula states that πS is a quasi-isometry from TS = ĜSM to
CS. Since πS is G-equivariant by definition of HHG, we are done. ��
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