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Abstract
An Einstein manifold is called scalar curvature rigid if there are no compactly
supported volume-preserving deformations of the metric which increase the scalar
curvature. We give various characterizations of scalar curvature rigidity for open
Einstein manifolds as well as for closed Einstein manifolds. As an application, we
construct mass-decreasing deformations of the Riemannian Schwarzschild metric and
the Taub–Bolt metric.
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454 M. Dahl, K. Kröncke

1 Introduction andmain results

We call a Riemannian metric ĝ on a manifold M scalar curvature rigid (or SCR for
short) if it can not be deformed to a metric g such that g agrees with ĝ outside a
compact set and such that scalg ≥ scalĝ everywhere and scalg > scalĝ somewhere.

Euclidean space is well known to be SCR due to the rigidity part of the positive
mass theorem for asymptotically Euclidean manifolds [42, 46]. Similarly, a version
of the positive mass theorem for asymptotically hyperbolic manifolds implies that
hyperbolic space [11, 35] is SCR. Inspired by these examples, it was expected that
the upper half of the round sphere would be SCR as well but this conjecture was
surprisingly disproved by Brendle–Marques–Neves [7].

Concepts of mass exist also for other asymptotics such as asymptotically locally
Euclidean (ALE) and asymptotically (locally) flat (AF/ALF) and it is natural to ask
about consequences for scalar curvature rigidity in these cases. In fact, the assertion
of the positive mass theorem does not hold for ALE manifolds in general [31] but
there is a version for ALE spin manifolds by the first author which implies that ALE
manifolds with parallel spinors [13] are SCR. A version of the positive mass theorem
also exists for AF/ALF metrics which implies that Rn−1 × S1 is SCR [34].

The purpose of this paper is to systematically characterize scalar curvature rigidity
of Einsteinmanifolds. It is natural to restrict to the class of Einsteinmetrics as the scalar
curvature of a non-Einstein metric can (at least in the compact case) be increased, for
example by evolving it along the (normalized) Ricci flow. If the scalar curvature of the
Einstein metric is nonzero, we will impose a volume constraint on the deformations
of the metric.

We will state and prove equivalent characterizations of scalar curvature rigidity on
closed aswell as on openEinsteinmanifolds. In particular, ourmanifolds do not need to
be complete and our results also allow to detect which subsets of compact or complete
noncompact Einstein manifolds are SCR. Scalar curvature rigidity is characterized
by means of positivity of the Einstein operator which is an elliptic operator closely
related to the well-known Lichnerowicz Laplacian.

Our results imply that Ricci-flat manifolds with parallel spinors are SCR. This fits
well with Witten’s proof of the positive mass theorem which does also work in the
ALE case and asmentioned before, implies that Ricci-flat ALEmanifoldswith parallel
spinors are SCR. In contrast, the Riemannian Schwarzschild metric and the Taub–Bolt
metric are Ricci-flat ALF metrics which do not have parallel spinors and we prove
in this paper that both metrics are not SCR. This allows us additionally to show that
a positive mass theorem does not hold for these metrics: There are small scalar-flat
perturbations of these metrics which decrease the mass.

1.1 Closed Einstein manifolds

In the following we give equivalent characterizations of scalar curvature rigidity of
closed Einstein manifolds. In the Ricci-flat case, many implications between the dif-
ferent conditions (stated in Theorem 1.1 below) were shown in the literature. However,
we could not find a formulation in this complete form. Before stating the theorem,
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Local and global scalar curvature... 455

let us recall that the (conformal) Yamabe invariant of a conformal class of metrics is
given by

Y (M, [g]) := inf
g̃∈[g]

vol(M, g̃)
2
n−1

∫
M
scalg̃ dV g̃.

In the following we think of the conformal Yamabe invariant as the functional Y :
M � g �→ Y (M, [g]), where M is the space of smooth Riemannian metrics on the
manifold M . The topology we use for the locality statements in the remainder of the
section is the C2,α-topology on the space of metrics.

Theorem 1.1 Let (M, ĝ) be a closed Ricci-flat manifold. Then the following are
equivalent.

(i) ĝ is a local maximizer of the conformal Yamabe invariant.
(ii) Close to ĝ, there is no metric g with scalg ≥ 0 and scalg > 0 somewhere.
(iii) Close to ĝ, there is no metric of constant positive scalar curvature.
(iv) Any scalar-flat metric close to ĝ is also Ricci-flat.
(v) ĝ is dynamically stable under the Ricci flow.

The equivalence (i)⇔(ii) follows from the solution of the Yamabe problem [40]. The
implication (ii)⇒(iii) is trivial and the converse implication (iii)⇒(ii) follows from
the structure of the space of constant scalar curvature metrics, see [25, Theorem 2.5]
and again [40]. A central ingredient from the Yamabe problem used here is the fact
that the sign of the Yamabe invariant of a conformal class is the same as the sign of
any constant scalar curvature metric in it.

The implication (ii)⇒(iv) is widely attributed to Bourguignon and is carried out in
detail in [17, Proposition 2.1]. The converse implication (iv)⇒(ii) is less straightfor-
ward and requires some more work. We will carry out the arguments for the Einstein
case stated below. Finally, the equivalence (i)⇔(v) follows from using Perelman’s
λ-functional, and more precisely, the assertion

(vi) ĝ is a local maximizer of the λ-functional.

In fact, (v)⇒(vi) follows from the monotonicity of λ along the Ricci-flow [37] and
(vi)⇒(v) is Theorem 1 in [23]. The remaining equivalence (i)⇔(vi) is Theorem 1.1
in [29] by the second author.

A criterion for all these conditions to hold can be formulated in terms of the Einstein
operator which we introduce now. Recall that a symmetric two-tensor is called a
transverse traceless tensor, or TT-tensor, if its trace and its divergence both vanish
identically. The space of TT-tensors is denoted by T T , if we do not specify any
regularity.

Definition 1.2 The Einstein operator �E : C∞(S2M) → C∞(S2M) is defined by
�E = ∇∗∇ − 2R̊, where R̊hi j = hkl Rikl j , where we use the Einstein summation
convention. A closed Einstein manifold is called linearly stable if all eigenvalues of
�E |T T are nonnegative and linearly unstable otherwise. We call an Einstein manifold
integrable, if all h ∈ ker(�E |T T ) are tangent to smooth families of Einstein metrics.
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456 M. Dahl, K. Kröncke

Remark 1.3 The equivalent conditions in Theorem 1.1 do hold if (M, ĝ) is linearly
stable and integrable [41]. Linear stability and integrability are satisfied by closed
Ricci-flat manifolds whose universal cover admits a parallel spinor [1, 17, 44]. This
is a large class of closed Ricci-flat manifolds, which contains all known examples of
such manifolds. It is a major open problem whether examples outside this class exist.

It is natural to ask for an analogue of Theorem 1.1 for closed Einstein manifolds. In
this case, it is essential to impose a volume constraint in order to avoid rescalings of
metrics which obviously just rescale the scalar curvature. To formulate the theorem,
letMc be the set of smooth Riemannian metrics on M of volume c > 0.

Theorem 1.4 Let (M, ĝ) be a closed Einstein manifold and c = vol(M, ĝ). Then the
following are equivalent.

(i) ĝ is a local maximizer of the Yamabe invariant.
(ii) Close to ĝ, there is no metric g ∈Mc such that scalg ≥ scalĝ and scalg > scalĝ

somewhere.
(iii) Close to ĝ, there is no constant scalar curvature metric g ∈ Mc such that

scalg > scalĝ .
(iv) Any metric g ∈Mc close to ĝ with scalg = scalĝ is also Einstein.

If scalĝ ≤ 0, then (i)–(iv) are also equivalent to

(v) ĝ is dynamically stable under the volume-normalized Ricci flow.

The equivalence (i)⇔ (v) is [29, Theorem 1.2] by the second author. We will prove
the equivalence of (i)–(iv) in Sect. 6. In contrast to Theorem 1.1, the results on the
Yamabe problem can not be used to show equivalence of (i), (ii) and (iii) as the sign
of the Yamabe invariant does not play any role here. Two ingredients are essential: On
the one hand, we use a parameter-dependent generalization of the λ-functional. On
the other hand, we provide a new structure theorem of the space of metrics close to ĝ
which extends both Koiso’s structure theorem [25] and Ebin’s slice theorem [18].

Remark 1.5 In Theorem 1.4, (v) ⇒ (i) does hold when scalg > 0 as well, but the
converse then false. The complex projective space is a prominent counterexample
[29, Corollary 1.8]. However, it seems reasonable to believe that if (i) holds, ĝ is
dynamically stable with respect to an adapted version of the Ricci flow, for example
the Ricci-Bourguignon flow [10] or the conformal Ricci flow [20].

Remark 1.6 As in theRicci-flat case, the conditions (i)–(iv) do hold if (M, ĝ) is linearly
stable and integrable. If scalĝ < 0, all known examples satisfy both conditions [14].
In contrast, there are many known unstable closed Einstein manifolds with scalĝ > 0,
see [12] for examples.

1.2 Open Einstein manifolds

For the characterization of scalar curvature rigidity of open Einstein manifolds, we
need an appropriate definition of linear stability in this setting. Let C∞c (T T ) be the
space of compactly supported TT-tensors on the manifold M .
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Local and global scalar curvature... 457

Definition 1.7 An open Einstein manifold (M, g) is called linearly stable, if the
number

μ1(�E |T T , M) := inf
{
(�Eh, h)L2 | h ∈ C∞c (T T ), ‖h‖2L2 = 1

}

is nonnegative and linearly unstable otherwise.

The number μ1(�E |T T , M) is the bottom of the L2-spectrum of of the Einstein
operator acting on TT-tensors. If M is the interior of a compact manifold M with
smooth boundary, μ1(�E |T T , M) coincides with the smallest Dirichlet eigenvalue
of �E |T T on M . This follows from the nontrivial fact that C∞c (T T ) is H1-dense in
H̊1(S2M) ∩ T T . The proof of this fact follows from results of Delay [15], and is
carried out in detail in Section 3.3.

The theorem in the Ricci-flat case can be now formulated as follows:

Theorem 1.8 Let (M, ĝ) be an open Ricci-flat manifold which does not admit a linear
function, that is, there is no nonconstant function f with∇2 f ≡ 0. Then the following
are equivalent:

(i) (M, ĝ) is linearly stable.
(ii) Close to ĝ, there is nometric g with g− ĝ|M\K ≡ 0 for some compact set K ⊂ M

which additionally satisfies

scalg ≥ 0, scalĝ(p) > 0 for some p ∈ M .

(iii) If g is a metric close to ĝ with scalg ≡ 0 and g − ĝ|M\K ≡ 0 for some compact
set K ⊂ M, then g is isometric to ĝ.

Conditions (i),(ii) and (iii) can be seen as respective replacements of the conditions
(i), (ii) and (iv) in Theorem 1.1. Conditions (iii) and (v) in Theorem 1.1 do not have
appropriate replacements in the present situation. We cannot construct perturbations
with larger constant scalar curvature ifwe just allowcompactly supportedperturbations
of ĝ. Finally, dynamical stability does not make sense in this context either as there is
no canonical Ricci flow on an incomplete manifold.

The proof of theorem 1.8 will not be carried out in detail as it follows, up to minor
modifications, along the lines of the proof of the corresponding theorem in the general
Einstein case. There, we have to additionally assume a spectral inequality and to
impose a volume constraint on the support of the perturbations. The theorem reads as
follows:

Theorem 1.9 Let (M, ĝ) be an open Einstein manifold satisfying the following two
assumptions:

(A) (M, ĝ) is not locally isometric to a warped product.
(B) If scalĝ > 0, M is the interior of a compact manifold M with smooth boundary

whose first nonzero Neumann eigenvalue satisfies

μNM
1 (�ĝ, M) >

scalĝ

n − 1
. (1)
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458 M. Dahl, K. Kröncke

Then the following are equivalent:

(i) (M, ĝ) is linearly stable.
(ii) Close to ĝ, there is no metric g with

g − ĝ|M\K ≡ 0, vol(K , g) = vol(K , ĝ)

for some compact set K ⊂ M which additionally satisfies

scalg ≥ scalĝ, scalg(p) > scalĝ(p) for some p ∈ M .

(iii) If g is a metric close to ĝ with scalg ≡ scalĝ and

g − ĝ|M\K ≡ 0, vol(K , g) = vol(K , ĝ)

for some compact set K ⊂ M, then g is isometric to ĝ.

Remark 1.10 The two implications (i)⇒(ii) and (i)⇒(iii) do also hold without
Assumption (A), as it does not appear in the proof. Conversely, the two implications
(ii)⇒(i) and (iii)⇒(i) do also hold without Assumption (B).

Remark 1.11 Regarding the assumptions in Theorem 1.9:

(i) If (M, ĝ) is an open subset of a closed Einstein manifold (N , ĝ), Assumption (A)
is satisfied unless (M, ĝ) is of constant nonzero curvature or (N , ĝ) is a Ricci-flat
product manifold with a flat factor.

(ii) Assumption (B) holds wheneverM is a compact manifold with a convex boundary,
see [19, Theorem 4.3].

The implications (i)⇒(ii) and (i)⇒(iii) are proven together. As in the closed case,
we use a parameter-dependent generalization of Perelman’sλ-functionalwhichwe call
λα . In the closed case, λα assigns to every metric the smallest eigenvalue of an elliptic
operator. To recover a similar variational structure in the presence of a nonempty
boundary it turns out to be convenient to impose Neumann boundary conditions for
this functional. Assumption (B) will give us the right sign for the second variation
of λα . A detailed discussion of λα is carried out in Sects. 5 and 7, cumulating in
Theorem 7.1.

The other part of the proof consists in proving the implications ¬(i)⇒ ¬(ii) and
¬(i)⇒ ¬(iii). Assuming that (M, ĝ) is linearly unstable, we will construct volume-
preserving perturbations of the metric ĝ with larger scalar curvature respectively with
the same scalar curvature but which are not Einstein. Linear instability enters in an
essential way since the crucial term in D2

g scal(h, h) is given by −1/2〈�Eh, h〉. The
construction of these perturbations follows from a carefully executed second order
implicit function argument using the solution theory of underdetermined elliptic equa-
tions onmanifolds as developed by Delay [15]. Assumption (A) guarantees solvability
of the equations that appear. The details of this construction is carried out in Sect. 4.
All the arguments outlined in these two paragraphs are brought together at the end of
Sect. 7.
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The typical example towhichTheorem1.9 applies is an open subset� of a complete
EinsteinmanifoldM . To simplify the following discussion, let us assume in this remark
that � does satisfy the Assumptions (A) and (B).

By domain monotonicity of μ1(�E ,�) and the fact that μ1(�E ,�) → ∞ as
� shrinks to a point, we see that sufficiently small open subsets of a given Einstein
manifold M are SCR.

If M is linearly unstable, open subsets � ⊂ M are SCR whenever they are so
small that μ1(�E ,�) > 0. If � is so large that μ1(�E ,�) = 0, it is still SCR
because we restrict to perturbations with compact support in �. Each such per-
turbation will then be supported in a slightly smaller domain �′ ⊂ � where we
have μ1(�E ,�′) > 0 by monotonicity. If � is taken only slightly larger, we will
immediately have μ1(�E ,�) < 0 and scalar curvature rigidity fails.

It is open at the moment whether in the case μ1(�E ,�) = 0, we also get scalar
curvature rigidity with respect to perturbations whose supports do hit the boundary of
�. This question presumably depends on the integrability of elements h ∈ ker(�E |T T )

with Dirichlet boundary conditions on ∂� and will be subject of further investigations.

Example 1.12 Anyopen non-product Ricci-flatmanifoldwhose universal cover carries
a parallel spinor, is linearly stable and therefore SCR by Theorem 1.8. This applies to
all known examples of Ricci-flat manifolds which are either closed or ALE. Examples
of Ricci-flat AF/ALF manifolds with parallel spinors are provided by Rn−1 × S1 and
the Taub-NUT metric.

There are alsoRicci-flatmanifoldswhich are linearly stable but do not admit parallel
spinors. In [28], the second author showed that Ricci-flat cones over Sn × Sm are
linearly stable if n + m ≥ 9.

Example 1.13 In other geometric situations than closed or ALE, there are many
examples of unstable Ricci-flat manifolds which by Theorem 1.8 are not SCR:

• The Riemannian Schwarzschild metic and the Taub–Bolt metric are both linearly
unstable AF/ALF Ricci-flat metrics.
• A Ricci-flat cone over a product Einstein manifold is linearly unstable if n < 10
[22].
• Böhm constructed complete noncompact Ricci-flat manifolds which are asymp-
totic to such cones [8]. These examples are linearly unstable as well.

Similarly, in constrast to the closed case, there are many examples of noncompact
linearly unstableEinsteinmanifolds of negative scalar curvaturewhich byTheorem1.9
are not SCR:

• The AdS Riemannian Schwarzschild metric and the AdS–Taub–Bolt metric are
both linearly unstable for certain parameters [39, 45].
• A hyperbolic cone over a product Einstein manifold is linearly unstable if n < 10,
see [28, Theorem 4.7] by the second author.

Remark 1.14 There is an interesting analogy of this to geodesics and minimal sur-
faces which are minimizers of the respective area and energy functionals if they are
small, until they may reach a critical size at which the respective smallest Dirichlet
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460 M. Dahl, K. Kröncke

eigenvalues change sign. In that sense, the boundary ∂� of a domain � ⊂ M with
μ1(�E ,�) = 0 is an analogue of a pair of conjugate points. The present problem is
muchmore complicated however, aswe do not onlywant to increase a single functional
such as area or energy but a function on the domain.

2 Notation, conventions, and formulas

Throughout the paper, any Riemannian metric will be smooth, unless stated other-
wise. The Riemann curvature tensor of a Riemannian metric g is defined by the sign
convention that Ri jkl = g(∇∂i∇∂ j ∂k − ∇∂ j∇∂i ∂k, ∂l). The Ricci curvature and the
scalar curvature of a metric g are denoted by Ricg, scalg , respectively. The Laplacian
on functions is defined by �g f = ∇∗∇ f = −gi j∇2

i j f , where we use the Einstein
summation convention. The volume element is denoted by dV g .

The bundle of symmetric two-tensors is denoted by S2M while the subbundle of
tracefree symmetric two-tensors (with respect to a given metric) is denoted by S20M .
For the space of sections of a vector bundle E with regularity for example C∞, Ck,α ,
we write C∞(E), Ck,α(E) etc. Although TT-tensors do not form a bundle, we write
for notational convenience C∞(T T ) or Ck,α(T T ) for the TT-tensors with respective
regularity.

The divergence of a symmetric two-tensor and of a one-form are defined by δhk =
−gi j∇i h jk and δω = −gi j∇iω j , respectively. The formal adjoint δ∗ : C∞(T ∗M)→
C∞(S2M) is given by (δ∗ω)i j = 1

2 (∇iω j + ∇ jωi ). For h, k ∈ C∞(S2M), we
define another two-tensor h ◦ k by (h ◦ k)i j = himgmlkl j . Furthermore, we define
the Lichnerowicz Laplacian �L : C∞(S2M)→ C∞(S2M) by

�Lh = ∇∗∇h + Ric ◦h + h ◦ Ric−2R̊h.

Note that in the Einstein case �L = �E + 2σ , if σ is the Einstein constant.
The following well-known variation formula is essential for our main results. For

the proof see [6, Theorem 1.174].

Lemma 2.1 The first variation of the scalar curvature is given by

Dg scal(h) = d

dt
scalg+th |t=0 = � tr h + δ(δh)− 〈Ric, h〉.

In particular, if g is Einstein with Ric = σ g, we have

Dg scal(h) = d

dt
scalg+th |t=0 = � tr h + δ(δh)− σ tr h.

For the purposes of this paper, we have to go beyond the first variation formula and
compute the second variation formula of the scalar curvature.
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Lemma 2.2 The second variation of the scalar curvature is given by

D2
g scal(h, h) = d2

dt2
scalg+th |t=0 = 〈h,∇2 tr h〉 −

〈
δh + 1

2
∇ tr h,∇ tr h

〉
−�|h|2

+〈h,∇δh〉 − |δh|2 − 1

2
〈∇ tr h, δh〉 + δ(δ′h)

−
〈
1

2
�Lh − δ∗(δh)− 1

2
∇2 tr h, h

〉
+ 2〈Ric, h ◦ h〉.

where the prime ′ is shorthand notation for the first variation in the direction of h. In
particular, if g is Einstein such that Ric = σ g and h is a TT-tensor, we have

D2
g scal(h, h) = −�(|h|2)+ δ(δ′h)− 1

2
〈�Eh, h〉 + σ |h|2.

Remark 2.3 The precise form of δ′h is irrelevant for our purposes which is why we do
not write it out explicitly.

Proof of Lemma 2.2 From Lemma 2.1 we have

D2
g scal(h, h) = d

dt
(� tr h + δ(δh)− 〈Ricg, h〉)|t=0

= �′(tr h)+�(tr′ h)+ δ′(δh)+ δ(δ′h)− 〈Ric′, h〉 − 〈Ric, h〉′
= �′(tr h)−�(|h|2)+ δ′(δh)+ δ(δ′h)− 〈Ric′, h〉 + 〈Ric, h ◦ h〉,

where we used standard variational formulas for the trace and the scalar product. The
proof of the lemma is completed by using the variational formulas

Ric′ = Dg Ric(h) = 1

2
�Lh − δ∗(δh)− 1

2
∇2 tr h,

�′ f = Dg�(h) f = 〈h,∇2 f 〉 −
〈
δh + 1

2
∇ tr h,∇ f

〉
,

δ′ω = Dgδ(h)ω = 〈h,∇ω〉 − 〈δh, ω〉 − 1

2
〈∇ tr h, ω〉,

where f is a function and ω a one-form. For more details on these formulas, see for
example [6, Section 1.K] or the appendix of the second author’s PhD thesis [27]. ��

3 Underdetermined elliptic equations

In our constructionwewill need to find solutions of underdetermined elliptic equations
whose supports are contained in a prescribed compact set. In this section we review
constructions and results from the work of Delay [15] as we will apply them.
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462 M. Dahl, K. Kröncke

3.1 Weighted function spaces

We begin by introducing the weighted function spaces used by Delay in [15]. Let �

be a precompact open set with smooth boundary, and let x be a smooth nonnegative
defining function for the boundary, so that ∂� = x−1({0}) and dx �= 0 on ∂�. For
a ∈ N and s ∈ R, s �= 0, define the functions

φ := x2, ψ := x2(a−n/2)e−s/x , ϕ := x2ae−s/x .

Define the weighted Sobolev spaces H̊ k
φ,ψ , the weighted Hölder spaces C

k,α
φ,ϕ , and the

weighted Fréchet space C∞φ,ϕ as in [15], that is

‖u‖Hk
φ,ψ
=

(∫
�

k∑
i=0

φ2i |∇ i u|2ψ2 dV

) 1
2

.

As the choice of norm depends on the parameters s and a in an essential way, we intro-
duce an alternative notation, which better fits in the framework of other conventions
for weighted Sobolev spaces. Let θ = e− 1

x . For δ, s ∈ R, we set

‖u‖Hk
δ,s
=

(∫
�

k∑
i=0
|φ(i−δ)∇ i u|2θ−2sφ−n dV

) 1
2

and define H̊ k
δ,s to be the closure of C∞c with respect to this norm. Comparing these

two notions, we easily see that

‖u‖Hk
φ,ψ
= ‖u‖Hk−a,−s .

Note also that H̊ k
δ := H̊ k

δ,0 a standard example of a weighted Sobolev space. A
convenient reference for their properties are the lecture notes [3] of Bär.

Let us collect a few properties of these spaces. At first, if δ1 ≤ δ2, s1 ≤ s2 and
k, l ∈ N0, we have

H̊ k+l
δ2,s2
⊂ H̊ k

δ1,s1 .

Furthermore for k, l ∈ N0, δ, δ1, s, s1 ∈ R, we have bounded maps

∇l : H̊ k+l
δ,s → H̊ k

δ−l,s, φδ1 : H̊ k
δ,s → H̊ k

δ+δ1,s, θ s1 : H̊ k
δ,s → H̊ k

δ,s+s1 ,

where the latter two are of course isomorphisms. The Hölder inequality in this setting
states that

‖uv‖Lrδ1+δ2
≤ C ‖u‖L p

δ1
‖v‖L p

δ2
, if

1

r
= 1

p
+ 1

q
, δ1, δ2 ∈ R
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and the Sobolev embedding theorem tells us that

‖u‖
Wk+l,p

δ

≤ C ‖u‖
Wk,q

δ

, if
1

p
>

1

q
− l

n
.

The following lemma is a straightforward consequence.

Lemma 3.1 If k > n/2 we have a continuous multiplication

H̊k
δ1
× H̊ k

δ2
→ H̊ k

δ1+δ2
.

In particular H̊ k
δ is then an algebra for δ ≥ 0.

Proof For 0 ≤ j ≤ l ≤ k, choose p, q such that 1
2 = 1

p + 1
q and 1

p > 1
2 − l− j

n ,
1
q > 1

2 − j
n . This is possible since k > n/2. For 0 ≤ l ≤ k we estimate

∥∥∥∇l(uv)

∥∥∥
L2

δ1+δ2−l
≤ C

l∑
j=0

∥∥∥∇l− j u ⊗∇ jv

∥∥∥
Hk

δ1+δ2−l

≤ C
l∑

j=0

∥∥∥∇l− j u
∥∥∥
L p

δ1−(l− j)

∥∥∥∇ jv

∥∥∥
Lq

δ1− j

≤ C
l∑

j=0
‖u‖

Wl− j,p
δ1

‖v‖
W j,q

δ1

≤ C
l∑

j=0
‖u‖Hk

δ1
‖v‖Hk

δ2
.

��
Corollary 3.2 If k > n/2 we have a continuous multiplication

H̊k
δ1,s1 × H̊ k

δ2,s2 → H̊ k
δ1+δ2,s1+s2 .

In particular H̊ k
δ,s is then an algebra for δ, s ≥ 0.

Proof This follows directly from the above lemma, since

H̊ k
δ1,s1 = θ s1 H̊ k

δ1,0 = θ s1 H̊ k
δ1

,

H̊ k
δ2,s2 = θ s2 H̊ k

δ2,0 = θ s2 H̊ k
δ2

,

H̊ k
δ1+δ2,s1+s2 = θ s1+s2 H̊ k

δ1+δ2,0 = θ s1+s2 H̊ k
δ1+δ2

. ��
Theorem 3.3 Let H̊ k

φ,ψ = H̊ k−a,−s where s > 0, a ≥ n, and k > n
2 . Then for

u, v ∈ ψ2φ2 H̊ k+2
φ,ψ ,
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we have that

∇ i u ⊗∇ jv ∈ ψ2 H̊ k
φ,ψ

for 0 ≤ i, j ≤ 2.

Remark 3.4 This assertion extends easily to an arbitrary number of tensor products of
the form ∇ i1u1⊗ · · ·⊗∇ iN uN . In particular, the scalar curvature map g �→ scalg can
be extended as a map between these spaces.

Proof Note that

ψ2φ2 H̊ k+2
φ,ψ = θ2sφ2+2a−n H̊ k+2−a,−s = H̊ k+2

a+2−n,s,

ψ2 H̊ k
φ,ψ = θ2sφ2a−n H̊ k−a,−s = H̊ k

a−n,s,

and that

∇ i u,∇ jv ∈ H̊ k
a−n,s .

Since k > n
2 and a − n ≥ 0 the result follows by the above corollary. ��

Note that s < 0 gives spaces of sections which vanish to all orders at the boundary,
whereas s > 0 gives spaces of sections which blow up to all orders.

Assumption 3.5 From now on, we assume s < 0.

3.2 Trace-free symmetric two-tensors with prescribed double divergence

Wewill now state the main result of [15] in the case of the double divergence operator
δ2 acting on trace-free symmetric two-tensors. This will be applied in Sect. 4

Let P := δ2 considered as a map from trace-free symmetric two-tensors to func-
tions. The formal adjoint is then the trace-free part of the Hessian, P∗ = ∇̊2. Wemake
the following assumption.

Assumption 3.6 Weassume that the kernelK of P∗ consists only of constant functions.
This assumption is equivalent to the metric not being locally a warped product (see
Theorem 4.3.3 of [38]).

Since P = δ ◦ δ acting on trace-free symmetric two-tensors, we have P∗ = D ◦ d
where d is the differential acting on functions andD is the conformal Killing operator
acting on 1-forms. By Sections 9.1 and 9.4 in [15], the conditions (API) and (KRC)
hold for d and D and we conclude that these conditions hold for P∗ as well.

Define the operator

Lφ,ψ := ψ−2Pψ2φ4P∗.

LetK⊥ be the orthogonal complement ofKwith respect to the L2
ψ inner product. Then

K⊥ consists of all functions f̃ such that
∫
�

f̃ ψ2 dV = 0. Let πK⊥ be the orthogonal
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projection onto K⊥ with respect to the L2
ψ inner product. By Theorem 3.8 of [15] we

have that

πK⊥Lφ,ψ : K⊥ ∩ H̊ k+4
φ,ψ → K⊥ ∩ H̊ k

φ,ψ

is an isomorphism. By (10.3) in [15] we further have that

φ2P∗ : H̊ k+4
φ,ψ → H̊ k+2

φ,ψ

is a bounded map, which means that also

ψ2φ4P∗ : H̊ k+4
φ,ψ → ψ2φ2 H̊ k+2

φ,ψ

is bounded. Define the operator Q by

Q( f ) = ψ2φ4P∗
(
(πK⊥Lφ,ψ)−1

(
ψ−2 f

))
. (2)

By the above, this is a bounded map

Q : ψ2
(
K⊥ ∩ H̊ k

φ,ψ

)
→ ψ2φ2 H̊ k+2

φ,ψ .

Let f ∈ ψ2C∞φ,ϕ be such that
∫
�

f dV = 0. The trace-free symmetric two-tensor
U := Q( f ) is a solution to the equation P(U ) = f and Theorem 5.1 of [15] tells us
that U ∈ ψ2φ2C∞φ,ϕ so that U is smooth and U and all its derivatives vanish on ∂�.
This theorem is formulated with the assumption that f smooth with compact support
in �, but the proof only uses that f ∈ ψ2C∞φ,ϕ .

We summarize the above discussion in the following theorem.

Theorem 3.7 (Delay) Let (M, g) be a Riemannian manifold for which Assumption
3.6 holds. For any f ∈ ψ2C∞φ,ϕ(M) with

∫
�

f dV = 0, the trace-free two-tensor
U := Q( f ) is a solution to

δ(δU ) = f

with U ∈ ψ2φ2C∞φ,ϕ(S20M) so that U is smooth and U and all its derivatives vanish
on ∂�. Further, for any nonnegative integer k there is a constant C so that

‖U‖
ψ2φ2 H̊ k+2

φ,ψ
≤ C‖ f ‖

ψ2 H̊ k
φ,ψ

(3)

for all such f .
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3.3 Density of TT-tensors

We will now apply the results of [15] to conclude that the compactly supported TT-
tensors are dense in spaces of TT-tensors of some specific regularity. This will be
applied in Sects. 4 and 7.

Lemma 3.8 Let (M, g) be a compact manifold with boundary. Then the
space C∞c (T T ) of compactly supported T T -tensors is ψ2φ2Hk

φ,ψ -dense in

ψ2φ2 H̊ k
φ,ψ(T T ).

Proof Let h ∈ T T ∩ ψ2φ2 H̊ k
φ,ψ(S20M). By definition, there is a sequence hi ∈

C∞c (S20M) such that hi → h in the ψ2φ2Hk
φ,ψ -norm. Now we would like to find

correction tensors ki ∈ C∞c (S20M) such that hi − ki → h in the ψ2φ2Hk
φ,ψ -norm and

δ(hi − ki ) = 0. We therefore need to solve the equation

δki = δhi = δ(hi − h).

Let a ∈ N and s > 0 be the parameters such that H̊ k−a,−s = H̊ k
φ,ψ . Thenψ2φ2 H̊ k

φ,ψ =
H̊ k
a+2−n,s and δ(hi − h)→ 0 in the Hk−1

a+1−n,s-norm.

We now apply Delay’s results with P̂ = δ acting on trace-free symmetric two-
tensors, so that P̂∗ = D whereD is the conformal Killing operator acting on 1-forms.
The kernel K of D consists of the 1-forms dual to conformal Killing fields. Let K⊥
be the orthogonal complement of K with respect to the L2

ψ inner product and let πK⊥
be the orthogonal projection onto K⊥. Define the operator

Lφ,ψ := ψ−2 P̂ψ2φ2 P̂∗ : H̊ k+1
−b,−s → H̊ k−1

−b,−s .

By Theorem 3.8 of [15] we know that

πK⊥Lφ,ψ : K⊥ ∩ H̊ k+1
−b,−s → K⊥ ∩ H̊ k−1

−b,−s

is an isomorphism for each b ∈ N whose inverse we denote by Q̂.
Since hi − h vanishes on the boundary of M we have ψ−2δ(hi − h) ∈ K⊥. The

solution ki of the equation

δki = δ(hi − h)

is thus given by

ki = ψ2φ2 P̂∗ Q̂ψ−2δ(hi − h). (4)

Wehaveψ−2δ(hi−h)→ 0 in Hk−1
−a+1,−s . Ifwe setb = a−1 in the above isomorphism,

we get Q̂ψ−2δ(hi − h)→ 0 in Hk+1
−a+1,−s and P̂∗ Q̂ψ−2δ(hi − h)→ 0 in Hk−a,s =
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Hk
φ,ψ so that finally

ki = ψ2φ2 P̂∗ Q̂ψ−2δ(hi − h)→ 0

in ψ2φ2Hk
φ,ψ which is what we wanted to prove.

To ensure that the ki are compactly supported in the interior of M , we refine the
argument as follows. Take a sequence of diffeomorphisms �i : M → �i ⊂ M con-
verging uniformly in all derivatives to the identity map on M , where the precompact
subsets �i are such that supp(hi ) is compactly supported in the interior of �i . Such
diffeomorphisms can be constructed by choosing a tubular neighborhood of ∂M and
deforming the identity map in the radial direction. We then get that gi := �∗i g con-
verges to g smoothly in all derivatives. Let h̃i = �∗i hi . We define k̃i , similar to ki in
(4), by

k̃i := ψ2φ2 P̂∗i Q̂iψ
−2δgi (h̃i −�∗i h̃), (5)

where the operators P̂i and Q̂i are now defined with respect to the metric gi . Note
that with the same parameters a, s as above, we have �∗i h /∈ ψ2φ2 H̊ k

φ,ψ = H̊ k
a+2−n,s ,

because h is not supported in �i . However, since δgi (�∗i h̃) = 0 and the h̃i are sup-
ported in the interior of M , we still have δgi (h̃i − �∗i h̃) ∈ Hk−1

a+1−n,s , which is what

we need to make sense of k̃i in (5). By construction, δgi (h̃i − k̃i ) = 0. Since gi → g
smoothly, δgi (h̃i−�∗i h̃)→ 0 in Hk−1

a+1−n,s and k̃i → 0 inψ2φ2 H̊ k
φ,ψ . Now the tensors

ki = (�i )∗k̃i are supported in �i , and so are hi − ki . By diffeomorphism invariance
of the divergence, we get δg(hi − ki ) = 0 and because �i converges to the identity,
we also get ki → 0 in ψ2φ2 H̊ k

φ,ψ . Therefore, hi − ki → h in ψ2φ2 H̊ k
φ,ψ , as desired.��

Lemma 3.9 Let (M, g) be a compact manifold with boundary. Then the space
C∞c (T T ) of compactly supported T T -tensors is H1-dense in H̊1(T T ).

Proof We deduce this density lemma from Lemma 3.8 and a trick. Consider δ as a
map C∞(S20M)→ C∞(T ∗M) and consider its formal adjoint

D =
(
1− 1

n
g · tr

)
◦ δ∗ : C∞(T ∗M)→ C∞(S20M).

Then we have the L2-orthogonal decomposition

ψ2φ2 H̊ k
φ,ψ(S20M) = D(C∞c (T ∗M))

ψ2φ2Hk
φ,ψ ⊕ ψ2φ2 H̊ k

φ,ψ(T T )

and by Lemma 3.8, we actually have

ψ2φ2 H̊ k
φ,ψ(S20M) = D(C∞c (T ∗M))

ψ2φ2Hk
φ,ψ ⊕ C∞c (T T )

ψ2φ2Hk
φ,ψ .
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Now if we take the closure of this decomposition in the H1-norm, we get

H̊1(S20M) = D(C∞c (T ∗M))
H1 ⊕ C∞c (T T )

H1

.

Let us justify this statement: letU ⊂ H̊1(S20M) be a dense subspace which admits the

L2-orthogonal decomposition U = V ⊕ W . Further, let u ∈ U
H1 = H̊1(S20M) and

ui be a sequence in U , uniquely decomposed as ui = vi + wi with vi ∈ V , wi ∈ W .
since the L2-orthogonal projections

πV : H̊1(S20M)→ V
H1

, πW : H̊1(S20M)→ W
H1

are H1-continuous, πV (ui ) = vi and πW (ui ) = wi converge in H1 to limits v ∈ V
H1

and w ∈ W
H1

respectively and we have u = v + w. Clearly V
H1

and W
H1

have
trivial intersection as they are L2-orthogonal as well. Thus

U
H1 = H̊1(S20M) = V

H1 ⊕W
H1

,

which is what we stated. Since we of course also have the decomposition

H̊1(S20M) = D(C∞c (T ∗M)
H1 ⊕ H̊1(T T ),

we may conclude

C∞c (T T )
H1 = H̊1(T T ),

as desired. ��
Note that if (M, g) is an Einstein manifold with Einstein constant σ , we have the

standard commutation formulas (see for example [32] and [27, p. 15])

tr ◦�E = (�− 2σ) ◦ tr,
δ ◦�E = (�H − 2σ) ◦ δ,

�E ◦ δ∗ = δ∗ ◦ (�H − 2σ),

�E ( f g) = (� f − 2σ f )g,

where �H is the Hodge Laplacian on one-forms and f is a function. Hence, �E is
diagonal with respect to the L2-orthogonal splitting

H̊1(S2M) =
(
H̊1(M) · g + δ∗(C∞c (T ∗M))

H1
)
⊕ H̊1(T T ).

Thus, it makes sense to speak about the lowest (Dirichlet) eigenvalue of �E on TT-
tensors.
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Corollary 3.10 Let M be a compact Einstein manifold with boundary. Then its interior
is linearly stable in the sense of Definition 1.7 if and only if the smallest Dirichlet
eigenvalue of �E on TT-tensors is negative.

Proof By Lemma 3.9 and continuity, we have

inf
{
(�Eh, h)L2 | h ∈ C∞c (T T ), ‖h‖2L2 = 1

}

= inf
{
(�Eh, h)L2 | h ∈ H̊1(T T ), ‖h‖2L2 = 1

}
,

which immediately implies the result. ��

Lemma 3.11 Let h ∈ C∞c (T T ) satisfy h �= 0 and suppose that

∫
M
〈�Eh, h〉 dV = 0.

Then there exist tensors h± ∈ C∞c (�) ∩ T T such that

∫
M
〈�Eh±, h±〉dV = ±1,

∫
M
〈�Eh+, h−〉dV = 0. (6)

and h = 1
2 (h+ + h−).

Remark 3.12 This result reflects the following elementary fact: a null vector for a
non-degenerate quadratic form can be written as the sum of normalized orthogonal
spacelike and timelike vectors. This fact is needed in an essential way in a construction
in the next chapter.

Proof Consider the symmetric bilinear form Q : C∞c (T T ) × C∞c (T T )→ R, given
by

Q(k1, k2) =
∫
M
〈�Ek1, k2〉dV.

Observe that it is non-degenerate since �E : C∞c (T T ) → C∞c (T T ) does not have
a kernel. We first prove that there exists a k ∈ C∞c (T T ) such that Q(k, k) = 0
and Q(h, k) = 1

2 . To find this k, let k0 be such that α := Q(k0, h) �= 0. If β :=
Q(k0, k0) = 0, we set k = 1

2α k0. If β �= 0, we observe that k1 = − 2α
β
k0 + h satisfies

Q(k1, k1) = 0 and Q(k1, h) = − 2α
β
Q(k0, h) = − 2α2

β
. Then k = − β

4α2 k1 has the
required properties. It is then easy to see that the tensors h± = h±k have the properties
stated in the lemma. ��
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4 Prescribing scalar curvatures

In our next theorem we will construct 1-parameter deformations of a metric g with
prescribed scalar curvature and volume form, and a symmetric two-tensor h prescribed
as the first derivative of the deformation.

Theorem 4.1 Assume that (M, g) is a compactEinsteinmanifoldwith boundary,which
is not locally a warped product. Let ft be a 1-parameter family of smooth functions,
with C3-regularity in the parameter t . Assume that the ft are supported in the open
set � which is relatively compact in the interior of M. Further, assume that h �= 0 is
a smooth TT-tensor with support in � satisfying

∫
M
〈�Eh, h〉 dV = −2

∫
M

f0 dV . (7)

Then there exists a 1-parameter family gt of metrics with g0 = g and d
dt gt |t=0 = h

such that

scalgt = scalg + t2

2
ft , (8)

dV gt = dV g, (9)

and gt = g outside of �.

Remark 4.2 A famous result by Kazdan and Warner [30] (with an improvement by
Bérard Bergery [5]) asserts that closed manifolds divide into three disjoint classes
according to which functions can be the scalar curvature of a Riemannian metric:

(i) Any smooth function is the scalar curvature of a smooth metric.
(ii) A smooth function is the scalar curvature of a smooth metric if and only if it is

either identically zero or strictly negative somewhere. In this case, any scalar-flat
metric is Ricci-flat.

(iii) A smooth function is the scalar curvature of a smooth metric if and only if it is
strictly negative somewhere.

Similarly, Theorem 4.1 gives us a dichotomy for perturbations of the scalar curvature:

(i)’ If (M, g) is linearly unstable, anyC∞c -function is a second order scalar curvature
perturbation of a C∞c (T T )-perturbation of g.

(iii)’ If (M, g) is linearly stable, a C∞c -function is a second order scalar curvature
perturbation of aC∞c (T T )-perturbation of g if and only if it has negative integral.

An analogue of (ii) does not exist: This would correspond to the neutrally lineary
stable case where μD

1 (�E , T T ) = 0. However, the infimum in μD
1 (�E , T T ) can

then not be realized by a C∞c -tensor.

Proof of Theorem 4.1 The assertion can be regarded as a kind of second order implicit
function theorem. As in the standard implicit function theorem, the proof is based on
a contraction argument, but in this case, it is for second order perturbations. We work
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in Delay’s function spaces ψ2φ2 H̊ k+2
φ,ψ we introduced in Sect. 3. To carefully execute

the arguments, we have divided the proof into seven steps. Throughout the proof, the
Einstein constant of g is be denoted by σ .

Step 1: Solving to second order at t = 0. Let h be a smooth TT-tensor such that
(7) holds and let k be a symmetric two-tensor. Set gt := g + th + t2

2 k. Since h is a
TT-tensor we have

d

dt
scalgt |t=0 = Dg scal(h) = 0

and

d

dt
dV gt |t=0 = DgdV (h) =

(
1

2
trg h

)
dV g = 0.

We want to choose k such that

d2

dt2
scalgt |t=0 = Dg scal(k)+ D2

g scal(h, h) = f0, (10)

and

d2

dt2
dV gt |t=0 = DgdV (k)+ D2

gdV (h, h) = 0, (11)

so that scalgt = scalg + t2
2 f0 + O(t3) and dV gt = dV g + O(t3). First, set k

= 1
n |h|2g + k̊, where k̊ is a trace-free two-tensor. Then,

DgdV (k)+ D2
gdV (h, h) =

(
1

2
trg k + 1

4
(trg h)2 − 1

2
|h|2g

)
dV g = 0,

and (11) holds. To solve (10), we recall from Lemmas 2.1 and 2.2 that

Dg scal(k) = �(trg k)+ δ(δk)− σ trg k,

D2
g scal(h, h) = −�(|h|2)+ δ(δ′h)− 1

2
〈�Eh, h〉 + σ |h|2,

where the operator δ′ also depends linearly on h. We now have

Dg scal(k)+ D2
g scal(h, h) = δ

(
δ′h − 1

n
d|h|2 + δk̊

)
− 1

2
〈�Eh, h〉.

The function

−δ

(
δ′h − 1

n
d|h|2

)
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has vanishing integral, and by assumption the same holds for

1

2
〈�Eh, h〉 + f0,

so from Theorem 3.7 we get a trace-free symmetric two-tensor k̊ with support in �

such that

δδk̊ = −δ

(
δ′h − 1

n
d(|h|2)

)
+ 1

2
〈�Eh, h〉 + f0.

With this choice of k̊, our tensor k ∈ C∞(S2M) satisfies (10) and the first step is
finished.

Step 2: Setting up an iteration. Using an iteration argument, we are going deform
the family gt to a solution of (8) and (9).

For integers i ≥ 0 set

g(i)
t := g + h(i)

t +
1

2
k(i)
t ,

where h(i)
t , k(i)

t are families of symmetric two-tensors depending on t , and we assume
that the h(i)

t are TT-tensors. The iteration begins with h(0)
t := th and k(0)

t := t2k so
that g(0)

t = gt . We will then find h(i)
t , k(i)

t iteratively from the equations

Dg scal(k
(i+1)
t − k(i)

t )+ D2
g scal(h

(i+1)
t , h(i+1)

t )− D2
g scal(h

(i)
t , h(i)

t )

= scal(g)+ t2

2
ft − scal(g(i)

t )
(12)

and

DgdV (k(i+1)
t − k(i)

t )+ D2
gdV (h(i+1)

t , h(i+1)
t )− D2

gdV (h(i)
t , h(i)

t )

= dV (g)− dV (g(i)
t )

= (1−U (i)
t )dV g,

(13)

where U (i)
t dV (g) := dV (g(i)

t ).
Step 3: Solving the iteration. We now explain how to determine h(i)

t , k(i)
t .

For the TT-tensor h(i)
t , we use two slightly different constructions depending on

whether F0 :=
∫
N f0 dV vanishes or not. If F0 �= 0 we set

h(i)
t := t(1+ λ

(i)
t )h, (14)
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where λ
(i)
t is a function of t only. In the case F0 = 0 we set

h(i)
t := t

(
1

2
(h+ + h−)+ λ

(i)
t (h+ − h−)

)
, (15)

where λ
(i)
t is a function of t , and the compactly supported TT-tensors h+ and h− are

given by Lemma 3.11. The right choice of λ
(i)
t will guarantee the solvability of (12).

Further, we write k(i)
t = 1

n (trg k(i)
t )g + k̊(i)

t where trg k̊(i)
t = 0. Suppose now that h(i)

t

and k(i)
t are already obtained. Demanding (13) yields

1

2

(
trg k(i+1)

t − |h(i+1)
t |2g

)
− 1

2

(
trg k(i)

t − |h(i)
t |2g

)
= 1−U (i)

t . (16)

Let us assume for the moment that this relation holds. Then by integrating equation
(12) and using (16) we get

∫
M

(
t2

2
ft − scal(g(i)

t )

)
dV g

=
∫
M

(
Dg scal(k

(i+1)
t − k(i)

t )+ D2
g scal(h

(i+1)
t , h(i+1)

t )− D2
g scal(h

(i)
t , h(i)

t )
)
dV g

=
∫
M

(
(�− σ)

(
trg k(i+1)

t − |h(i+1)
t |2g

)
+ δ(δk(i+1)

t + δ′h(i+1)
t )− 1

2
〈�Eh

(i+1)
t , h(i+1)

t 〉
)

dV g

−
∫
M

(
(�− σ)

(
trg k(i)

t − |h(i)
t |2g

)
+ δ(δk(i)

t + δ′h(i)
t )− 1

2
〈�Eh

(i)
t , h(i)

t 〉
)

dV g

=
∫
M

(
2(�− σ)

(
1−U (i)

t

)
− 1

2

(
〈�Eh

(i+1)
t , h(i+1)

t 〉 − 〈�Eh
(i)
t , h(i)

t 〉
))

dV g,

so

∫
M

(
t2

2
ft − scal(g(i)

t )− 2(�− σ)
(
1−U (i)

t

))
dV g

= −1

2

∫
M

(
〈�Eh

(i+1)
t , h(i+1)

t 〉 − 〈�Eh
(i)
t , h(i)

t 〉
)
dV g

=
⎧⎨
⎩
F0t2

(
(1+ λ

(i+1)
t )2 − (1+ λ

(i)
t )2

)
, if F0 �= 0,

−t2
(
λ

(i+1)
t − λ

(i)
t

)
, if F0 = 0.

(17)

Provided that the involved quantities are sufficiently small, this yields a unique choice
for λ

(i+1)
t and hence for h(i+1)

t . Then, trg k(i+1)
t is defined by (16).
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Now it remains to determine the tracefree part k̊(i+1)
t of k(i+1)

t . For this, we consider
Eq. (12) which becomes

t2

2
ft − scal(g(i)

t )

= Dg scal(k
(i+1)
t − k(i)

t )+ D2
g scal(h

(i+1)
t , h(i+1)

t )− D2
g scal(h

(i)
t , h(i)

t )

= 2(�− σ)
(
1−U (i)

t

)
− 1

2

(
〈�Eh

(i+1)
t , h(i+1)

t 〉 − 〈�Eh
(i)
t , h(i)

t 〉
)

+ δ(δk(i+1)
t + δ′h(i+1)

t )− δ(δk(i)
t + δ′h(i)

t )

or

δδ
(
k̊(i+1)
t − k̊(i)

t

)
= f̊ (i+1)

t ,

where

f̊ (i+1)
t := t2

2
ft − scal(g(i)

t )− 2(�− σ)
(
1−U (i)

t

)

+ 1

2

(
〈�Eh

(i+1)
t , h(i+1)

t 〉 − 〈�Eh
(i)
t , h(i)

t 〉
)

− δ

(
1

n
d trg k(i+1)

t + δ′h(i+1)
t

)
+ δ

(
1

n
d trg k(i)

t + δ′h(i)
t

)
.

By the previous choices, f̊ (i+1)
t integrates to zero. We define k̊(i+1)

t to be the trace-free
symmetric two-tensor with support in � satisfying

k̊(i+1)
t − k̊(i)

t = Q( f̊ (i+1)
t ), (18)

where the operator Q is defined in (2).
Summingup,weusedEqs. (16), (17) and (14), (15), followedbyEq. (18) to compute

h(i+1)
t and k(i+1)

t in terms of h(i)
t and k(i)

t . We will show that for small t , this iteration
procedure defines a contraction.

Step 4: Rewriting the iteration. We continue by rewriting Eqs. (12) and (13). By
exploiting the Taylor expansion formula, we will sum up some of the terms in these
equations to small integral error term which are more convenient for establishing the
contraction property. For this purpose, set

g(i)
t,s := g + sh(i)

t +
s2

2
k(i)
t .

Then

d

ds
g(i)
t,s |s=0 = h(i)

t ,
d2

ds2
g(i)
t,s |s=0 = k(i)

t ,
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and

d

ds
scal(g(i)

t,s)|s=0 = 0,

since h(i)
t is a TT-tensor. Next,

d2

ds2
scal(g(i)

t,s)|s=0 = Dg scal(k
(i)
t )+ D2

g scal(h
(i)
t , h(i)

t ).

Taylor expansion gives us that the scalar curvature term in Eq. (12) is

scal(g(i)
t ) = scal(g(i)

t,1)

= scal(g)+ Dg scal(k
(i)
t )+ D2

g scal(h
(i)
t , h(i)

t )

+ 1

2

∫ 1

0
(1− s)2

d3

ds3
scal(g(i)

t,s) ds,

so Eq. (12) can be written as

Dg scal(k
(i+1)
t )+ D2

g scal(h
(i+1)
t , h(i+1)

t ) = t2

2
ft − 1

2
S(i)
t , (19)

where

S(i)
t :=

∫ 1

0
(1− s)2

d3

ds3
scal

(
g + sh(i)

t +
s2

2
k(i)
t

)
ds.

In the same way, we have

d

ds
dV (g(i)

t,s)|s=0 = 0,

and

d2

ds2
dV (g(i)

t,s)|s=0 = DgdV (k(i)
t )+ D2

gdV (h(i)
t , h(i)

t ),

so Taylor expansion gives us

dV (g(i)
t ) = dV (g(i)

t,1)

= dV (g)+ DgdV (k(i)
t )+ D2

gdV (h(i)
t , h(i)

t )

+ 1

2

∫ 1

0
(1− s)2

d3

ds3
dV (g(i)

t,s) ds,
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and Eq. (13) can be written as

DgdV (k(i+1)
t )+ D2

gdV (h(i+1)
t , h(i+1)

t ) = −1

2
V (i)
t dV (g), (20)

where

V (i)
t dV (g) :=

∫ 1

0
(1− s)2

d3

ds3
dV

(
g + sh(i)

t +
s2

2
k(i)
t

)
ds.

Let us now turn these formulas into definitions for k(i+1) and h(i+1), where we again
use the splitting k(i)

t = 1
n (trg k(i)

t )g + k̊(i)
t into the pure trace part and the tracefree

part.
For this purpose, observe first that (20) tells us that

DgdV (k(i+1)
t )+ D2

gdV (h(i+1)
t , h(i+1)

t ) =
(
1

2
trg k(i+1)

t − 1

2
|h(i+1)

t |2g
)
dV (g)

= −1

2
V (i)
t dV (g),

and we find that

trg k(i+1)
t = |h(i+1)

t |2g − V (i)
t . (21)

Let us assume that this holds for the moment. Then by integrating Eq. (19) and using
(21) we get

∫
M

(
t2

2
ft − 1

2
S(i)
t

)
dV g

=
∫
M

(
Dg scal(k

(i+1)
t )+ D2

g scal(h
(i+1)
t , h(i+1)

t )
)
dV g

=
∫
M

(
(�− σ)

(
trg k(i+1)

t − |h(i+1)
t |2g

)
+ δ(δk(i+1)

t + δ′h(i+1)
t )− 1

2
〈�Eh

(i+1)
t , h(i+1)

t 〉
)

dV g

=
∫
M

(
σV (i)

t −
1

2
〈�Eh

(i+1)
t , h(i+1)

t 〉
)

dV g,

and using (6) we have

∫
M

(
t2

2
ft − 1

2
S(i)
t − σV (i)

t

)
dV g =

{
F0t2(1+ λ

(i+1)
t )2, if F0 �= 0,

−t2λ(i+1)
t , if F0 = 0.

(22)

We see that (22) defines λ
(i+1)
t and hence h(i+1)

t . We determine then trg k(i+1)
t from

(21).
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Finally, with k(i)
t = 1

n (trg k(i)
t )g + k̊(i)

t where trg k̊(i)
t = 0, Eq. (19) becomes

(�− σ)
(
trg k(i+1)

t − |h(i+1)
t |2g

)
+ δ

(
1

n
d trg k(i+1)

t + δk̊(i+1)
t + δ′h(i+1)

t

)

− 1

2
〈�Eh

(i+1)
t , h(i+1)

t 〉 = t2

2
ft − 1

2
S(i)
t

or with (21),

δ
(
δk̊(i+1)

t

)
= t2

2
ft − 1

2
S(i)
t + (�− σ)V (i)

t

+ 1

2
〈�Eh

(i+1)
t , h(i+1)

t 〉 − δ

(
1

n
d trg k(i+1)

t + δ′h(i+1)
t

)
.

Therefore,

k̊(i+1)
t = Q

(
t2

2
ft − 1

2
S(i)
t + (�− σ)V (i)

t

+ 1

2
〈�Eh

(i+1)
t , h(i+1)

t 〉 − δ

(
1

n
d trg k(i+1)

t + δ′h(i+1)
t

) )
.

(23)

Using (21), (22), (23) we will continue the estimates for a contraction.
Step 5: Estimates for convergence. We will now find estimates for the functions

S(i)
t and V (i)

t . We set w(i) := sh(i)
t + s2

2 k
(i)
t so that g(i)

t,s = g + w(i). Further, set

g̃(i+1)
r := g + rw(i+1) + (1− r)w(i). We have

scal(g(i+1)
t,s )− scal(g(i)

t,s) = scal(g + w(i+1))− scal(g + w(i))

=
∫ 1

0

d

dr
scal(g̃(i+1)

r ) dr

=
∫ 1

0
D
g̃(i+1)
r

scal(w(i+1) − w(i)) dr .

This gives us

d3

ds3

(
scal(g(i+1)

t,s )− scal(g(i)
t,s)

)

= d3

ds3

∫ 1

0
D
g̃(i+1)
r

scal(w(i+1) − w(i)) dr

=
∫ 1

0

d3

ds3

(
D
g̃(i+1)
r

scal
)

(w(i+1) − w(i)) dr

+3
∫ 1

0

d2

ds2

(
D
g̃(i+1)
r

scal
) (

d

ds
(w(i+1) − w(i))

)
dr
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+3
∫ 1

0

d

ds

(
D
g̃(i+1)
r

scal
) (

d2

ds2
(w(i+1) − w(i))

)
dr

=
∫ 1

0

d3

ds3

(
D
g̃(i+1)
r

scal
) (

s(h(i+1)
t − h(i)

t )+ s2

2
(k(i+1)

t − k(i)
t )

)
dr

+3
∫ 1

0

d2

ds2

(
D
g̃(i+1)
r

scal
) (

(h(i+1)
t − h(i)

t )+ s(k(i+1)
t − k(i)

t )
)
dr

+3
∫ 1

0

d

ds

(
D
g̃(i+1)
r

scal
) (

k(i+1)
t − k(i)

t

)
dr . (24)

For the three terms here we have

d3

ds3

(
D
g̃(i+1)
r

scal
) (

s(h(i+1)
t − h(i)

t )+ s2

2
(k(i+1)

t − k(i)
t )

)

= d2

ds2

(
D2
g̃(i+1)
r

scal
) (

d

ds
g̃(i+1)
r , s(h(i+1)

t − h(i)
t )+ s2

2
(k(i+1)

t − k(i)
t )

)

= d2

ds2

(
D2
g̃(i+1)
r

scal
) (

r(h(i+1)
t + sk(i+1)

t )+ (1− r)(h(i)
t + sk(i)

t ), s(h(i+1)
t − h(i)

t )+ s2

2
(k(i+1)

t − k(i)
t )

)

and

d2

ds2

(
D
g̃(i+1)
r

scal
) (

(h(i+1)
t − h(i)

t )+ s(k(i+1)
t − k(i)

t )
)

= d

ds

(
D2
g̃(i+1)
r

scal
) (

d

ds
g̃(i+1)
r , (h(i+1)

t − h(i)
t )+ s(k(i+1)

t − k(i)
t )

)

= d

ds

(
D2
g̃(i+1)
r

scal
) (

r(h(i+1)
t + sk(i+1)

t )+ (1− r)(h(i)
t + sk(i)

t ), (h(i+1)
t − h(i)

t )+ s(k(i+1)
t − k(i)

t )
)

and

d

ds

(
D
g̃(i+1)
r

scal
) (

k(i+1)
t − k(i)

t

)

= D2
g̃(i+1)
r

scal

(
d

ds
g̃(i+1)
r , k(i+1)

t − k(i)
t

)

= D2
g̃(i+1)
r

scal
(
r(h(i+1)

t + sk(i+1)
t )+ (1− r)(h(i)

t + sk(i)
t ), k(i+1)

t − k(i)
t

)
.

The operator D2
g̃(i+1)
r

scal has the schematic form

D2
g̃(i+1)
r

scal(h1, h2) = ∇2h1 ∗ h2 + ∇h1 ∗ ∇h2 + h1 ∗ ∇2h2

+ S ∗ ∇h1 ∗ h2 + T ∗ h1 ∗ ∇h2 + R ∗ h1 ∗ h2,

see for example Lemma A.3 in [29]. Here the “∗” denotes product of tensors in
coordinates, followed by a combination of index raising, (anti-)symmetrizing, and
contractions. The expressions S, T involve the metric g̃(i+1)

r and its first derivatives.
The expression R involves the metric g̃(i+1)

r and its first and second derivatives. The
first order terms come from the fact that we change from the covariant derivative
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of g̃(i+1)
r to the covariant derivative ∇ of g. The operators d

ds

(
D2
g̃(i+1)
r

scal

)
and

d2

ds2

(
D2
g̃(i+1)
r

scal

)
have similar schematic forms. From (24)we thus find from standard

estimates that

∣∣∣∣
∫
M

(
S(i+1)
t − S(i)

t

)
dV g

∣∣∣∣
≤

∫
M

∫ 1

0
(1− s)2

∣∣∣∣ d
3

ds3

(
scal(g(i+1)

t,s )− scal(g(i)
t,s )

)∣∣∣∣ ds dV g

≤ C

(∥∥∥h(i)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

)

·
(
‖(h(i+1)

t − h(i)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k(i+1)

t − k(i)
t ‖ψ2φ2Hk+2

φ,ψ

)
,

(25)

as long as the h(i)
t , h(i+1)

t , k(i)
t , k(i+1)

t are bounded in the ψ2φ2Hk+2
φ,ψ norm. From (24)

together with Theorem 3.3 we have

∥∥∥S(i+1)
t − S(i)

t

∥∥∥
ψ2Hk

φ,ψ

≤ C

(∥∥∥h(i)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

)

·
(
‖(h(i+1)

t − h(i)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k(i+1)

t − k(i)
t ‖ψ2φ2Hk+2

φ,ψ

)
.

(26)

Next, we have

(
V (i+1)
t − V (i)

t

)
dV (g) =

∫ 1

0
(1− s)2

d3

ds3

(
dV (g(i+1)

t,s )− dV (g(i)
t,s)

)
ds,

and we get similar estimate as above, but with no decrease in derivatives. First,

∣∣∣∣
∫
M

(
V (i+1)
t − V (i)

t

)
dV g

∣∣∣∣
≤ C

(∥∥∥h(i)
t

∥∥∥
ψ2φ2Hk

φ,ψ

+
∥∥∥h(i+1)

t

∥∥∥
ψ2φ2Hk

φ,ψ

+
∥∥∥k(i)

t

∥∥∥
ψ2φ2Hk

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk

φ,ψ

)

·
(
‖(h(i+1)

t − h(i)
t )‖ψ2φ2Hk

φ,ψ
+ ‖k(i+1)

t − k(i)
t ‖ψ2φ2Hk

φ,ψ

)
,

(27)
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and second
∥∥∥V (i+1)

t − V (i)
t

∥∥∥
ψ2Hk

φ,ψ

≤ C

(∥∥∥h(i)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

)

·
(
‖(h(i+1)

t − h(i)
t )‖ψ2φ2Hk

φ,ψ
+ ‖k(i+1)

t − k(i)
t ‖ψ2φ2Hk

φ,ψ

)
.

(28)

Step 6: Convergence. From (22) we get

−
∫
N

(
1

2

(
S(i+1)
t − S(i)

t

)
+ σ

(
V (i+1)
t − V (i)

t

))
dV g

=
⎧⎨
⎩
F0t2

(
(1+ λ

(i+2)
t )2 − (1+ λ

(i+1)
t )2

)
, if F0 �= 0,

t2
(
λ

(i+2)
t − λ

(i+1)
t

)
, if F0 = 0.

Thus by (25) and (27) we find

t2|λ(i+2)
t − λ

(i+1)
t |

≤ C
(
‖(h(i+1)

t − h(i)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k(i+1)

t − k(i)
t ‖ψ2φ2Hk+2

φ,ψ

)
.

Therefore,

∥∥∥h(i+2)
t − h(i+1)

t

∥∥∥2
ψ2φ2Hk+2

φ,ψ

≤ Ct2
∣∣∣λ(i+2)

t − λ
(i+1)
t

∣∣∣
≤ C

(∥∥∥h(i)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

)

·
(
‖(h(i+1)

t − h(i)
t )‖2

ψ2φ2Hk+2
φ,ψ

+ ‖k(i+1)
t − k(i)

t ‖2ψ2φ2Hk+2
φ,ψ

)
,

(29)

which is valid as long as the h(i)
t , k(i)

t are uniformly bounded in ψ2φ2 H̊ k+2
φ,ψ . Note that

the first estimate of the ψ2φ2Hk+2
φ,ψ norm follows since the h(i)

t are in a 1-dimensional
family.

Next, we find a contraction bound for trg k(i)
t . From (21) we have

trg k(i+2)
t − trg k(i+1)

t

= |h(i+2)
t |2g − |h(i+1)

t |2g −
(
V (i+1)
t − V (i)

t

)

=
〈
h(i+2)
t + h(i+1)

t , h(i+2)
t − h(i+1)

t

〉
−

(
V (i+1)
t − V (i)

t

)
,
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so by (29) and (28) we have
∥∥∥trg k(i+2)

t − trg k(i+1)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

≤ C

(∥∥∥h(i)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

)

·
(
‖(h(i+1)

t − h(i)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k(i+1)

t − k(i)
t ‖ψ2φ2Hk+2

φ,ψ

)
.

(30)

Finally, we prove a contraction bound for k̊(i)
t . For this, we write (23) as

k̊(i+1)
t := Q( f (i+1)

t ),

where

f (i+1)
t := t2

2
ft − 1

2
S(i)
t + (�− σ)V (i)

t

+ 1

2
〈�Eh

(i+1)
t , h(i+1)

t 〉 − δ

(
1

n
d trg k(i+1)

t + δ′h(i+1)
t

)
.

Thus k̊(i+2)
t − k̊(i+1)

t = Q( f (i+2)
t − f (i+1)

t ), where

f (i+2)
t − f (i+1)

t := −1

2

(
S(i+1)
t − S(i)

t

)
+ (�− σ)

(
V (i+1)
t − V (i)

t

)

+ 1

2

(
〈�Eh

(i+2)
t , h(i+2)

t 〉 − 〈�Eh
(i+1)
t , h(i+1)

t 〉
)

− δ

(
1

n
d

(
trg k(i+2)

t − trg k(i+1)
t

)
+ δ′h(i+2)

t − δ′h(i+1)
t

)
.

To apply the estimate (3), we need to estimate the ψ2Hk
φ,ψ -norm of the above. The

first two terms on the left hand side can be estimated using (26) and (28) and the
remaining terms can be estimated using (29) and (30). We thus get

‖k̊(i+2)
t − k̊(i+1)

t ‖
ψ2φ2Hk+2

φ,ψ

≤ C

(∥∥∥h(i)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

)

·
(
‖(h(i+1)

t − h(i)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k(i+1)

t − k(i)
t ‖ψ2φ2Hk+2

φ,ψ

)
.

(31)

Finally, there exists an ε > 0 such that if

∥∥∥h(i)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

< ε,

(32)
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we get from (29), (30) and (31) the contraction property

‖(h(i+2)
t − h(i+1)

t )‖
ψ2φ2Hk+2

φ,ψ
+ ‖k(i+2)

t − k(i+1)
t ‖

ψ2φ2Hk+2
φ,ψ

≤ 1

3

(
‖(h(i+1)

t − h(i)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k(i+1)

t − k(i)
t ‖ψ2φ2Hk+2

φ,ψ

)
.

By a standard induction argument we show that (32) holds for all i . By the first step
of the proof, we can choose t so small that

∥∥∥h(0)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(0)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

<
ε

5
,

(33)

and (32) is shown for i = 0. Suppose that it holds for i , then the triangle inequality,
the contraction property and (33) yield

∥∥∥h(i+1)
t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(i+2)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(i+2)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

≤
∥∥∥h(0)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(0)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
i∑

j=0

(
‖(h( j+1)

t − h( j)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k( j+1)

t − k( j)
t ‖ψ2φ2Hk+2

φ,ψ

)

+
i∑

j=0

(
‖(h( j+2)

t − h( j+1)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k( j+2)

t − k( j+1)
t ‖

ψ2φ2Hk+2
φ,ψ

)

≤
∥∥∥h(0)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥h(1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(0)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
∥∥∥k(1)

t

∥∥∥
ψ2φ2Hk+2

φ,ψ

+
i∑

j=0

(
1

3 j
+ 1

3 j+1

) (
‖(h(1)

t − h(0)
t )‖

ψ2φ2Hk+2
φ,ψ
+ ‖k(1)

t − k(0)
t ‖ψ2φ2Hk+2

φ,ψ

)

<
ε

5
+

i∑
j=0

(
1

3 j
+ 1

3 j+1

)
· 2ε
5

< ε,

so (32) does also hold for i + 1. The contraction property implies that the sequences
h(i)
t , k(i)

t converge in ψ2φ2Hk+2
φ,ψ to limits h(∞)

t , k(∞)
t . From (12) and (13) we see

that the metric g(∞)
t := g + h(∞)

t + 1
2k

(∞)
t satisfies (8) and (9). It is clear from the

construction that g(∞)
0 = g, d

dt g
(∞)
t |t=0 = h, and g(∞)

t = g outside of �.

Step 7: Regularity. The last step of the proof is to show that the metric g(∞)
t is

smooth. By construction we have that h(∞)
t is smooth. From (9) we have

dV

(
g + h(∞)

t + 1

2n
(trg k(∞)

t )g + 1

2
k̊(∞)
t

)
= dV (g).
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Let {ei } be an oriented orthonormal frame for the metric g on an open setU . Then the
matrix-valued function

γt := g(∞)
t (ei , e j ) =

(
1+ 1

2n
trg k(∞)

t

)
δi j + h(∞)

t (ei , e j )+ 1

2
k̊(∞)
t (ei , e j )

satisfies det(γt ) = 1, so it gives a curve of maps γt : U → SL(n,R). Note that the
second and the third term in γt are both trace-free. Let � : SL(n,R)→ sl(n,R) be
the projection of a matrix on its trace-free part, that is �(A) = A − 1

n tr(A)I . Since
sl(n,R) = TI SL(n,R) and DI� = Id, there is a neighbourhood VI of I ∈ SL(n,R)

and a neighbourhood V0 of 0 ∈ sl(n,R) such that � : VI → V0 is a diffeomorphism.
Since the curve γt has γ0 = I we thus find that if h(∞)

t + 1
2 k̊

(∞)
t is small enough we

have

γt = �−1
(
h(∞)
t (ei , e j )+ 1

2
k̊(∞)
t (ei , e j )

)

and

n + 1

2
trg k(∞)

t = tr(γt ) = tr

(
�−1

(
h(∞)
t (ei , e j )+ 1

2
k̊(∞)
t (ei , e j )

))
.

We conclude that trg k(∞)
t has at least the same order of regularity as k̊(∞)

t . From (23)
we have

k̊(∞)
t = Q

(
t2

2
ft − 1

2
S(∞)
t + (�− σ)V (∞)

t

+ 1

2
〈�Eh

(∞)
t , h(∞)

t 〉 − δ

(
1

n
d trg k(∞)

t + δ′h(∞)
t

) )
,

so by (3), the regularity of k̊(∞)
t is two orders higher than the argument of Q in the

left hand side. By bootstrapping, we see that trg k(∞)
t and k̊(∞)

t are both smooth.
This finishes the proof of Theorem 4.1. ��

Remark 4.3 If (M, g) is Ricci-flat and we drop the assumption of preserving the vol-
ume element, we can weaken the warped product assumption in Theorem 4.1. In this
case, we may not allow (M, g) to be locally a pure product but it can be a Ricci-flat
cone. The reason is the extension of the domain of definition of P = δ2 from trace-free
symmetric two-tensors to all symmetric two-tensors. Then the formal adjoint P∗ of
P is the Hessian ∇2 and not its trace-free part ∇̊2 and the assumption ker(P∗) = {0}
leads to weaker geometric conclusions.
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5 A generalized �-functional

Let (M, ĝ) be a compact Riemannian manifold with smooth (but possibly empty)
boundary and let M∞

ĝ be the set of smooth metrics on M such that g − ĝ vanishes
to every order at ∂M . Let C∞(M) be the set of smooth functions on M . For α > 0,
define

Fα :M∞
ĝ × C∞(M)→ R, Fα(g, f ) :=

∫
M

(
scal+α|∇ f |2

)
e− f dV ,

and

λα(g) := inf

{
Fα(g, f ) | f ∈ C∞(M),

∫
M
e− f dV = 1

}
.

For closed manifolds and with α = 1, this is the λ-functional introduced by Perelman
[37]. The parameter-dependent version has been used in different contexts, see for
example [4, 33].

The substitution ω = e−
f
2 shows that

λα(g) = inf

{
Gα(g, ω) | ω ∈ C∞+ (M),

∫
M

ω2 dV = 1

}
,

where

G(g, ω) :=
∫
M

(4α|∇ω|2 + scalω2) dV .

By standard theory, λα(g) is the smallest (Neumann) eigenvalue of the Schrödinger
operator 4α�+ scal. Moreover, the minimizing function ωg is the unique eigenfunc-
tion of constant positive sign satisfying the normalization condition

∫
M ω2 dV = 1.

Therefore, the minimizer fg = −2 log(ωg) of Fα(g, f ) satisfies

− 2α� fg − α|∇ fg|2 + scal = λα(g), ∇ν fg = 0. (34)

Remark 5.1 If one works on manifolds with boundary, one could either consider the
smallest Dirichlet or the smallest Neumann eigenvalue of 4α� + scal. It turns out
that if we consider the smallest Neumann eigenvalue, the variational theory of the
functional is much simpler and in fact almost parallel to the case of closed manifolds.

The following lemma is elementary, but we use it later in an essential way.

Lemma 5.2 Let (M, g) be a compactmanifoldwith orwithout boundary and letα > 0.
If scal ≥ c for some constant c ∈ R, we have λα(g) ≥ c. Moreover, if scal �≡ c, then
λα(g) > c.
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Proof Let ω be the positive eigenfunction of the operator 4α�+ scal with eigenvalue
λα(g) and the normalization condition

∫
M ω2 dV = 1. Then

λα(g) =
∫
M

(4α|∇ω|2 + scalω2) dV ≥
∫
M
scalω2 dV ≥ c.

Suppose now that scal �≡ c. We may assume that c = minM scal. Then scal is non-
constant so ω has to be nonconstant as well. Consequently, the function |∇ω|2 does
not vanish identically and the first of the two inequalities above is strict. This proves
the lemma. ��
Throughout the following sections, we write f instead of fg for the minimizer fg in
the definition of λα(g), whenever it is clear from the context whichmetric we consider.

5.1 The first variation formula

Proposition 5.3 The first variation of λα(g) is given by

Dgλα(h) = −
∫
M
〈Ric+∇2 f − (α − 1)∇ f ⊗∇ f , h〉e− f dV

+
∫
M

〈
1

2

(
1− 1

α

)
(scal−λα(g))g + 1

2
(α − 1)|∇ f |2g, h

〉
e− f dV .

This formula implies three assertions:

(i) Constant scalar curvature metrics are critical points with respect to volume-
preserving conformal deformations.

(ii) Einstein metrics are critical points with respect to volume-preserving deforma-
tions.

(iii) Ricci-flat metrics are critical points in full generality.

Proof We first compute

∫
M

� tr h · e− f dV =
∫
M
tr h(−� f − |∇ f |2)e− f dV ,

∫
M

δ(δh) · e− f dV =
∫
M
〈h,∇2e− f 〉 dV

=
∫
M

(
h(∇ f ,∇ f )− 〈h,∇2 f 〉

)
e− f dV ,

2
∫
M
〈∇v,∇ f 〉e− f dV = 2

∫
M

v(� f + |∇ f |2) dV ,

wherewe use that h vanishes to any order at ∂N and∇ν f = 0.Wedenote the derivative
with respect to t at t = 0 by a prime. We get

d

dt
Fα(g + th, f + tv)|t=0
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=
∫
M

(
(scal′)+ α(|∇ f |2)′

)
dV +

∫
M

(scal+α|∇ f |2)(e− f dV )′

=
∫
M

(� tr h + δ(δh)− 〈Ric, h〉 − αh(∇ f ,∇ f )+ 2α〈∇v,∇ f 〉) e− f dV

+
∫
M

(scal+α|∇ f |2)
(
1

2
tr h − v

)
e− f dV

=
∫
M
tr h(−� f − |∇ f |2)e− f dV +

∫
M

(
h(∇ f ,∇ f )− 〈h,∇2 f 〉

)
e− f dV

−
∫
M
〈Ric, h〉e− f dV − α

∫
M
h(∇ f ,∇ f )e− f dV

+ 2α
∫
M

v(� f + |∇ f |2)e− f dV +
∫
M

(scal+α|∇ f |2)
(
1

2
tr h − v

)
e− f dV

= −
∫
M
〈Ric+∇2 f , h〉e− f dV + (1− α)

∫
M
h(∇ f ,∇ f )e− f dV

+
∫
M
tr h(−� f − |∇ f |2)e− f dV + α

∫
M

v(2� f + 2|∇ f |2) dV

−
∫
M

(scal+α|∇ f |2)ve− f dV + 1

2

∫
M
tr h(scal+α|∇ f |2)e− f dV

= −
∫
M
〈Ric+∇2 f − (α − 1)∇ f ⊗∇ f , h〉e− f dV

+
∫
M

(2α� f + α|∇ f |2 − scal)ve− f dV

+
∫
M
tr h

(
−� f +

(
α

2
− 1

)
|∇ f |2 + 1

2
scal

)
e− f dV

= −
∫
M
〈Ric+∇2 f − (α − 1)∇ f ⊗∇ f , h〉e− f dV − λα(g)

∫
M

ve− f dV

+ 1

2α

∫
M
tr h(−2α� f − α|∇ f |2 + scal)e− f dV

+ 1

2

(
1− 1

α

) ∫
M
trg h · scal e− f dV + 1

2
(α − 1)

∫
M
tr h|∇ f |2e− f dV

= −
∫
M
〈Ric+∇2 f − (α − 1)∇ f ⊗∇ f , h〉e− f dV

− 1

2
λα(g)

∫
M
tr h · e− f dV + λα(g)

1

2α

∫
M
tr h · e− f dV

+ 1

2

(
1− 1

α

) ∫
M
tr h · scal e− f dV + 1

2
(α − 1)

∫
M
tr h|∇ f |2e− f dV

= −
∫
M
〈Ric+∇2 f − (α − 1)∇ f ⊗∇ f , h〉e− f dV

+
∫
M
〈1
2

(
1− 1

α

)
(scal−λα(g))g + 1

2
(α − 1)|∇ f |2g, h〉e− f dV ,
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which is the first variation formula. Let us denote the weighted L2-gradient of λα by
grad λα , that is

grad λα = −
(
Ric+∇2 f − (α − 1)∇ f ⊗∇ f

)

+ 1

2

(
1− 1

α

)
(scalg −λα(g))g + 1

2
(α − 1)|∇ f |2g.

(35)

If g has constant scalar curvature then scal = λα(g) so f is constant as well and∫
M e− f dV = e− f vol(M, g) = 1. Then grad λα = −Ric. If h = ug, we get

Dgλα(ug) = −
∫
M
scal ue− f dV = − scal

vol(M, g)

∫
M
u dV ,

and the right hand side vanishes if h = ug is volume-preserving. If moreover Ric =
σ g, then

Dgλα(h) = −
∫
M
〈σ g, h〉e− f dV = −σ

∫
M
tr he− f dV = − σ

vol(M, g)

∫
M
tr h dV

and the right hand side vanishes if h is a volume-preserving deformation of g. If σ = 0,
it vanishes for all h. ��

5.2 The second variation formula

Proposition 5.4 Let (M, g) be an Einstein manifold, Ric = σ g. Then, the second
variation of λα in the direction of volume-preserving deformations h is given by

D2
gλα(h, h) = − 1

vol(M, g)

∫
M

〈
1

2
�Eh − δ∗(δh)− 1

2
δ(δh)g, h

〉
dV

− 1

vol(M, g)

∫
M

vδ(δh) dV

+ 1

vol(M, g)

∫
M

((α − 1)�v + σv) tr h dV ,

where v is a solution of the boundary value problem

2α�v = �(tr h)+ δ(δh)− σ tr h, ∇νv = 0.
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Proof Consider a curve gt of metrics of constant volume with g0 = g and d
dt gt |t=0 =

h. Let v := d
dt fgt |t=0 and k := d2

dt2
gt |t=0. We compute

d2

dt2
λα(gt )|t=0 = d

dt

∫
M
〈grad λα(gt ), h〉e− f dV |t=0

=
∫
M
〈(grad λα)′, h〉e− f dV +

∫
M
〈grad λα(g), k〉e− f dV

− 2
∫
M
〈grad λα, h ◦ h〉e− f dV

+
∫
M
〈grad λα(gt ), h〉

(
1

2
tr h − v

)
e− f dV .

By differentiating (34) and using that f is constant, we see that v satisfies

2α�v = �(tr h)+ δ(δh)− 〈Ric, h〉, (36)

and since the vector ν is an outward-pointing normal for all themetrics gt , we conclude
that v vanishes on the boundary. Again since f is constant we have

(grad λα)′ = −Ric′ −∇2v + 1

2

(
1− 1

α

)
scal′ g

= −
(
1

2
�Lh − δ∗(δh)− 1

2
∇2 tr h

)
−∇2v

+ 1

2

(
1− 1

α

)
(�(tr h)+ δ(δh)− 〈Ric, h〉) g

= −
(
1

2
�Lh − δ∗(δh)− 1

2
∇2 tr h

)
−∇2v + (α − 1)�vg,

where we used (36) in the last equation. Since the volume is constant along gt we get

0 = d2

dt2
vol(M, gt )|t=0 = 1

2

d

dt

∫
M
tr ġt dV |t=0

= 1

2

∫
M

(
tr k − |h|2 + 1

2
(tr h)2

)
dV .
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From grad λα = −σ g we thus obtain

d2

dt2
λα(gt )|t=0 =

∫
M
〈(grad λα)′, h〉e− f dV

+ σ

∫
M
tr k · e− f dV + 2σ

∫
M
|h|2e− f dV

− σ

2

∫
M

(tr h)2e− f dV + σ

∫
M
tr h · ve− f dV

=
∫
M
〈(grad λα)′, h〉e− f dV + σ

∫
M
|h|2e− f dV

+ σ

∫
M
tr h · ve− f dV

= −
∫
M
〈1
2
�Eh − δ∗(δh)− 1

2
∇2 tr h, h〉e− f dV

−
∫
M
〈∇2v, h〉e− f dV +

∫
M
tr h

(
(α − 1)�v + σve− f

)
dV .

Finally, recall that the formal adjoint of ∇2 is δ ◦ δ. The result now follows from
integration by parts and the fact that e− f = vol(M, g)−1. ��

Proposition 5.5 Let (M, g) be a manifold of constant scalar curvature. Then the sec-
ond variation of λα in the direction of volume-preserving conformal deformations ug
is given by

D2
gλα(ug, ug) = − 1

vol(M, g)

∫
M

((n − 1)�u − scal u) u dV

+ 1

vol(M, g)

∫
M

((nα − (n − 1))�v + scal v)u dV ,

where v is a solution of the Neumann boundary value problem

2α�v = (n − 1)�u − scal u, ∇νv = 0.

Remark 5.6 We may choose the function v as

v = (2α�)−1 ((n − 1)�− scal) u,

where �−1 denotes the inverse of the Laplacian with Neumann boundary conditions
acting on the space of functions with vanishing integral. A careful rearranging of the
terms appearing above shows that the second variation can be written as

D2
gλα(ug, ug) = 1

vol(M, g)

∫
M

(Lu)u dV ,
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where the operator L is defined by

L := ((n − 1)�− scal) (((n − 2)α − (n − 1))�+ scal)�−1.

Proof Let h, k and v as in the proof of Proposition 5.4. As there, we have

d2

dt2
λα(gt )|t=0 =

∫
M
〈(grad λα)′, h〉e− f dV +

∫
M
〈grad λα(g), k〉e− f dV

− 2
∫
M
〈grad λα, h ◦ h〉e− f dV

+
∫
M
〈grad λα(gt ), h〉

(
1

2
tr h − v

)
e− f dV .

Again due to the volume constraint,

0 = 1

2

∫
M

(
tr k − |h|2 + 1

2
(tr h)2

)
dV .

Since we only consider conformal variations, we have h = 1
n (tr h)g and k = 1

n (tr k)g.
Since g is of constant scalar curvature, grad λα(g) = −Ric. Using these facts, we see
that

∫
M
〈grad λα(g), k − 2h ◦ h + 1

2
tr h · h〉e− f dV

= − scal
n

∫
M

(
tr k − 2|h|2 + 1

2
(tr h)2

)
e− f dV = scal

n

∫
M
|h|2e− f dV ,

and

d2

dt2
λα(gt )|t=0 =

∫
M
〈(grad λα)′, h〉e− f dV + scal

n

∫
M

(
|h|2 + tr hv

)
e− f dV .

Let us nowconsider the terms here inmore detail.As in the previous proof,we compute

(grad λα)′ = −
(
1

2
�Lh − δ∗(δh)− 1

2
∇2 tr h

)
− ∇2v + (α − 1)�v · g.

With h = ug we get

(grad λα)′ = −
(
1

2
(�u)g + (1− n

2
)∇2u

)
−∇2v + (α − 1)�v · g,

which yields

∫
M
〈(grad λα)′, ug〉e− f dV

123



Local and global scalar curvature... 491

= −(n − 1)
∫
M

(�u)u + (nα − (n − 1))
∫
M

(�v)ue− f dV .

Furthermore,

scal

n

∫
M

(
|h|2 + tr hv

)
e− f dV = scal

∫
M

(
u2 + uv

)
e− f dV .

Recall that e− f ≡ vol(M, g)−1 since the scalar curvature is constant. Adding up
and rearranging the terms yields the desired formula. The formula for v follows from
inserting h = ug in (36). ��

5.3 Estimates on variations

Lemma 5.7 For all g ∈M∞
ĝ , we have the estimates

|D2
gλα(h, k)| ≤ C ‖h‖H1 ‖k‖H1 ,

|D3
gλα(h, h, h)| ≤ C ‖h‖C2,α ‖h‖H1 ,

where the constant C can be chosen uniformly for all g in a given small C2,α-
neighborhood around some fixed metric ĝ.

Proof The proof of these lemmas is almost identical to the proofs of Propositions 4.3
and 4.5 in [29] which build on Lemmas 4.2 and 4.4 in the same paper. The only slight
difference is how elliptic regularity is applied. Let

g̃t = g̃ + th, ft = fg̃t , v = d

dt
|t=0 fgt , w = d2

dt2
|t=0 fgt , h = d

dt
|t=0gt .

By differentiating (34) once and twice, we get equations of the form

� f v := �v + 〈∇ f ,∇v〉 = (∗),
� f w := �w + 〈∇ f ,∇w〉 = (∗∗),

where the right hand sides do not contain derivatives of v,w respectively. Since all ft
satisfy the Neumann boundary condition with respect to a unit normal which is the
same for all gt , we see that v and w satisfy the same Neumann boundary condition.
By differentiating the constraint on the minimizers f = fg , we get

∫
M

(
v − 1

2
tr h

)
e− f dV = 0,

∫
M

(
w + 1

2
|h|2 −

(
v − 1

2
tr h

)2
)
e− f dV = 0.
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Now consider the space

V :=
{
u : M → R |

∫
M
ue− f dV = 0

}
,

which contains the functions

ṽ = v − 1

2

∫
M
tr h · e− f dV , w̃ = w +

∫
M

(
1

2
|h|2 −

(
v − 1

2
tr h

)2
)
e− f dV .

From that fact that � f is self-adjoint with respect to the weighted L2(e− f g)-scalar
product together with elliptic regularity, we have isomorphisms

� f : C2,α(M) ∩ V → C0,α(M) ∩ V , � f : Hi (M) ∩ V → Hi−2(M) ∩ V ,

for i = 1, 2. We thus get

‖v‖C2,α ≤ ‖̃v‖C2,α + ‖v − ṽ‖C2,α ≤ ∥∥� f ṽ
∥∥
C0,α + ‖v − ṽ‖C2,α

≤ C ‖(∗)‖C0,α + ‖v − ṽ‖C2,α ,

and similarly forw and the Hi -norms. The rest of the proof follows from computations
and standard estimates as in [29, Section 4]. ��

6 Global scalar curvature rigidity

This section is devoted to the proof of Theorem 1.4. For the case of the round sphere,
it is well-known that the assertions of the theorem all hold. Therefore, we assume
throughout this section that (M, ĝ) is a closed Einsteinmanifold which is not isometric
to the round sphere. After suitable scaling, we also assume that vol(M, ĝ) = 1.

For our proof, we need to use suitable local decomposition of the space of metrics.
An important decomposition is provided by Ebin’s slice theorem [18] which provides
a slice for the action of the diffeomorphism group. Another decomposition is provided
byKoiso [25, Theorem 2.5], who constructs a slice for the action of the groupC∞+ (M),
which acts by pointwise multiplication. In the following we construct a slice which is
a refinement of both of these approaches. In our setting, it is convenient to work with
the C2,α-topology and we will therefore deal with the space of Riemannian metrics of
C2,α-regularity, whichwe denote byC2,α(S2+M). In particular, wewill prove Theorem
1.4 not only for smooth metrics, but also for metrics of C2,α-regularity.

Proposition 6.1 There exists a C2,α-neighborhood U ⊂ C2,α(S2+M) of the Einstein
metric ĝ such that the set

C = U ∩
{
g ∈ C2,α(S2+M) | scalg is constant, vol(M, g) = 1, δĝg = 0

}

is an analytic Banach submanifold with TĝC = C2,α(T Tĝ).
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Proof Let

V k,α :=
{
f ∈ Ck,α(M) |

∫
M

f dV ĝ = 0

}
,

Wk,α :=
{
δĝh | h ∈ Ck+1,α(S2M)

}
=

{
ω ∈ Ck,α(T ∗M) | ω ⊥L2(ĝ) ker((δ

ĝ)∗)
}

,

and consider the map

� : C2,α(S2+M)→ V 0,α ⊕ R+ ⊕W 1,α,

g �→
(
scalg −

∫
M
scalg dV ĝ, vol(M, g), δĝg

)
.

Clearly, � is analytic and C = U ∩ �−1((0, 1, 0)). To prove the proposition, it thus
suffices to show that Dĝ� is surjective and to determine its kernel. Linearizing at ĝ
yields

Dĝ� : C2,α(S2M)→ V 0,α ⊕ R⊕W 1,α,

h �→
(

�ĝ trĝ h + δĝ(δĝh)− σ trĝ h +
∫
M

σ trĝ h dV ĝ,
1

2

∫
M
trĝ h dV ĝ, δĝh

)
,

(37)

where σ = 1
n scal

ĝ is the Einstein constant of ĝ. Define the maps

L1 := (n − 1)�ĝ − nσ : V 2,α → V 0,α,

L2 := δĝ(δĝ)∗ : W 3,α → W 1,α.

For c ∈ R, u ∈ V 2,α , and ω ∈ V 0,α , we compute

Dĝ�((u + c)ĝ + (δĝ)∗ω) =
(
L1(u),

n

2
c,−∇u + L2(ω)

)
.

Since (M, ĝ) is not isometric to the round sphere, we have n
n−1σ /∈ spec+(�ĝ) by

the Lichnerowicz–Obata eigenvalue estimate [36]. Therefore, L1 is an isomorphism.
The operator L2 is also an isomorphism since it is self-adjoint and its domain is
the orthogonal complement of its kernel. Note also that for any f ∈ V 2,α , ∇ f is
orthogonal to ker(L2), as δĝη = − trĝ(δĝ)∗η = 0 for any η ∈ ker(L2). Thus, for

(v, d, w) ∈ V 0,α ⊕ R⊕W 1,α,

we have

Dĝ�((L−11 (v)+ 2

n
d)ĝ + (δĝ)∗(L2)

−1(w +∇(L1)
−1(v)) = (v, d, w),
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which shows that Dĝ� is surjective. Therefore, C is an analytic Banach submanifold.
It remains to determine the kernel of Dĝ�. The inclusion C2,α(T Tĝ) ⊂ ker(Dĝ)�

is clear from (37). Now suppose that Dĝ�(h) = 0. Then by (37), it follows that
δĝh = 0.Again by theObata–Lichnerowicz eigenvalue estimate [36],σ /∈ spec+(�ĝ).
Therefore, trĝ h = 0 and h ∈ C2,α(T Tĝ). ��

Proposition 6.2 Provided that the neighborhood U of ĝ in Proposition 6.1 is chosen
sufficiently small, there exists another C2,α-neighborhood V ⊂ C2,α(M) of 1 such
that

� : V × C → U , �( f , g) = f g,

is a diffeomorphism onto its image. Furthermore, any metric in U is isometric to a
metric in the analytic submanifold

S := �(V × C).

Proof By [6, Lemma 4.57] we have a direct sum

C2,α(M) · ĝ ⊕ C2,α(T Tĝ) = Tĝ(C
2,α
+ (M)ĝ) · ĝ ⊕ TĝC,

which is the injective image of D(1,ĝ)�. The first assertion follows from the implicit
function theorem. For the second assertion, consider the map

� : S × Diff2,α(M)→ C2,α(S2+M), �(g, ϕ) = ϕ∗g.

The differential D(1,ĝ)� corresponds to the decomposition

C2,α(S2M) = C2,α(M) · ĝ ⊕ C2,α(T Tĝ)⊕ δ∗ĝ(C
3,α(T ∗M))

= TĝS ⊕ Tĝ(ĝ · Diff2,α(M))

and thus, it is surjective. Consequently,� is surjective near ĝ which proves the second
assertion. ��

Proposition 6.3 Provided that U is chosen small enough, there exists a real ana-
lytic finite-dimensional submanifold Z ⊂ C whose tangent space is equal to TĝZ =
ker(�E ) ∩ C2,α(T Tĝ) such that

E :=
{
g ∈ C | Ricg = scalg

n
g

}
⊂ Z

is a real analytic subset.
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Proof A similar statement is given in [26, Lemma 13.6] for maps between Hilbert
spaces. The same proof however also works in our more general setting. We give the
proof for the sake of completeness. Consider the real analytic map

� : C → C0,α(S2M), �(g) = Ricg − scalg

n
g.

Clearly, �(ĝ) = 0 and the differential of � at ĝ is

Dĝ� : T Tĝ → C0,α(S2M), Dĝ�(h) = �Eh.

Consider the closed subspace

V := im(Dĝ�) =
{
h ∈ C0,α(T Tĝ) | h ⊥L2(ĝ) ker(�E ) ∩ C2,α(T Tĝ)

}

and the L2(ĝ)-orthogonal projection πV : C0,α(S2M) → V . By construction, the
map πV ◦ � : C → V has surjective differential Dĝ(πV ◦ �). Thus by the implicit
function theorem,

Z := (πV ◦�)−1(0)

is a real analytic submanifold of C such that

TĝZ = ker(�E ) ∩ C2,α(T Tĝ),

in particular, Z is finite-dimensional. Finally,

E = �−1(0) = (πV ◦�)−1(0) ∩ (1− πV ◦�)−1(0) = Z ∩ (1− πV ◦�)−1(0) ⊂ Z

is an analytic subset. ��
Proof of Theorem 1.4 Throughout the proof, we assume that the C2,α-neighborhood s
U , C, and V are chosen so small that the above propositions apply. By Proposition 6.2
and diffeomorphism invariance, the equivalences hold in general if they hold for all
metrics in S. Also by Proposition 6.2, we may write any metric in S as f g with f ∈ V
and g ∈ C. By [9, Theorem C], any g ∈ C is a Yamabe metric. Thus,

Y ( f g) = Y (M, [ f g]) = Y (M, [g]) = scalg (38)

for all f g ∈ S. Now we are ready to prove the desired implications.
(i)⇔(iii): This is an immediate consequence of (38).
(ii)⇒(iii): This is trivial.
(iii)⇒(ii): By the Obata–Lichnerowicz eigenvalue estimate [36], we know that

spec+(�ĝ) >
scalĝ
n−1 . By continuous dependence of eigenvalues, we may therefore
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choose a constant α > 0 such that

(
1− n − 2

n − 1
α

)
spec+(�g) >

scalg
n − 1

(39)

for all g ∈ C, provided that C is sufficiently small around ĝ. We are going to show that
ĝ is a maximum of λα on S ∩M1, which by Lemma 5.2 implies the nonexistence of
metrics g ∈ S ∩M1 with scalg ≥ scalĝ everywhere and scalg > scalĝ somewhere.
Let now f g ∈ S ∩M1. By setting

u := f − ∫
M f dV g∫

M f dV g
, d :=

∫
M

f dV g,

we can write f g = d(1 + u)g, where u is a function with
∫
M u dVg = 0. Next, we

join g and f g through

gt := vol(M, (1+ tu)g)−
n
2 (1+ tu)g, t ∈ [0, 1],

which is a curve of metrics of unit volume. Note that d = vol(M, (1+ u)g)− n
2 since

f g = d(1 + u)g is assumed to be of unit volume. Therefore, g0 = g and g1 = f g.
By Taylor expansion, we have

λα( f g) = λ(g)+ d

dt
λα(gt )|t=0 + 1

2

d2

dt2
λα(gt )|t=0 + R(g, u),

where

R(g, u) := 1

2

∫ 1

0
(1− t)2

d3

dt3
λα(gt )dt .

Since
∫
M u dVg = 0, we get

d

dt
gt |t=0 = ug.

Proposition 5.3 then implies

d

dt
λα(gt )|t=0 = D(λα)g(ug) = 0,

and from Remark 5.6 we know that

d2

dt2
λα(gt )|t=0 = −

∫
M

(Lgu)u dVg,
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where

Lg = (n − 1)
(
(n − 1)�g − scalg

) (
−

(
1− n − 2

n − 1
α

)
�g + scalg

n − 1

)
(�g)−1.

By (39), we may choose C1 so small that

Lg < −2C1�g

for all g ∈ C. This implies

d2

dt2
λα(gt )|t=0 = −

∫
M

(Lgu)u dV g < −2C1 ‖u‖2H1 ,

where C1 > 0 does not depend on g ∈ C. By Lemma 5.7, we have

d3

dt3
λα(gt ) ≤ C2 ‖u‖C2,α ‖u‖2H1 ,

which immediately yields

R(g, u) ≤ C3 ‖u‖C2,α ‖u‖2H1 .

Combining all these estimates we find that

λα( f g) ≤ λα(g)− (C1 − C3 ‖u‖C2,α ) ‖u‖2H1 ≤ λα(g),

provided that f (and hence u) lies in a sufficiently small neighborhood V of 1 in
C2,α(M). Finally, by assuming (iii), we have

λα( f g) ≤ λα(g) = scalg ≤ scalĝ = λα(ĝ),

which is what we needed to show.
(ii)⇒(iv): Suppose that g ∈M1 satisfies scalg = scalĝ but is not Einstein. We then
consider the tracefree tensor h := Ricg − 1

n scal
g g which does not vanish identically.

Since scalg is constant, the contracted second Bianchi identity implies that

δh = δ Ricg̃ = −1

2
∇ scalg̃ = 0,

and h is thus a TT-tensor. Let gt be a solution of the volume-normalized Ricci-de Turck
flow

d

dt
gt = −2Ricgt + 2

n vol(M, gt )

∫
M
scalgt dV gt gt + LV (gt ,g)gt ,

V (gt , g)
k = (gt )

i j (�(gt )
k
i j − �(g)ki j ),
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with reference and initial metric g0 = g. Then, gt is a smooth curve in M1 which
satisfies g0 = g̃ and d

dt gt |t=0 = −2h. Moreover, by parabolic theory, the metrics gt
are smooth for t > 0 and stayC2,α-close to g̃. Since h is a TT-tensor, the first variation
of the scalar curvature is

d

dt
scalgt |t=0 = −2

(
�(tr h)+ δ(δh)− 〈Ricg0 , h〉) = 2〈h + 1

n
scalg g, h〉 = 2|h|2.

Since h �≡ 0, we get a curve gt ∈ M1 such that for small t > 0, we have scalgt ≥
scalg̃ = scalg everywhere and scalgt > scalg somewhere, contradicting (ii).
(iv)⇒(iii): Let us consider the disjoint sets

C> :=
{
g ∈ C | scalg > scalĝ

}
,

C< :=
{
g ∈ C | scalg < scalĝ

}
,

C= :=
{
g ∈ C | scalg = scalĝ

}
.

Recall that TĝC = C2,α(T Tĝ). Since the second variation of the Einstein-Hilbert
functional is unbounded below on T T -tensors (see for example [6, Theorem4.60]), we
always have thatC< �= ∅. By Proposition 6.3, there is a finite-dimensional submanifold
Z ⊂ C which contains E and thus C= by assumption. Assume that (iii) does not hold.
ThenC> andC< are both nonempty open subsets ofC.We thusfindmetrics g+ ∈ C>\Z
and g− ∈ C< \ Z . As Z has infinite codimension in C, C \ Z is connected. Thus, we
can join g+ and g− by a continuous curve gt , t ∈ [0, 1] in C \ Z . On the other hand,
as the scalar curvature of gt is continuous in t , we must have gt0 ∈ C= ⊂ Z for some
t0 ∈ [0, 1] which is a contradiction. ��

7 Local scalar curvature rigidity

For a compact Riemannian manifold (M, ĝ) with boundary, we use the notation

Mk+2
ĝ :=

{
g | g Riemannian metric such that g − ĝ ∈ ψ2φ2 H̊ k+2

φ,ψ (S2M)
}

.

Our first goal in this section is to prove the following theorem.

Theorem 7.1 Let (M, ĝ)bea compact n-dimensionalEinsteinmanifoldwith boundary
and assume that the first nonzero Neumann eigenvalue of the Laplacian satisfies

μNM
1 (M,�ĝ) >

scalĝ

n − 1
. (40)

Choose α > 0 so small that

[
1− n − 2

n − 1
α

]
μNM
1 (M,�ĝ) >

scalĝ

n − 1
.
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Then, if the first Dirichlet eigenvalue of the Einstein operator on TT-tensors satisfies

μD
1 (M,�E |T T ) > 0,

there exists a ψ2φ2Hk+2
φ,ψ -neighbourhood V of ĝ in Mk+2

ĝ such that λα(g) ≤ λα(ĝ)

for every g ∈ V with vol(M, g) = vol(M, ĝ). Further, equality holds if and only if g
is Einstein.

We showed this assertion for closed manifolds in the proof of Theorem 1.4, in the
implication (iii)⇒(ii). There, we used a local decomposition of the space of metrics
which relies on closedness. We are not able to use these arguments here. We compen-
sate this by assuming strict positivity of �E |T T which is a stronger assumption than
(iii) in Theorem 1.4.

To prove Theorem 7.1 we need some preparation. Let us recall that on a compact
manifold with boundary, by compactly supported we mean compactly supported in
the interior. Let

C∞c,0(M) :=
{
f ∈ C∞c (M) |

∫
M

f dV ĝ = 0

}
.

We have a direct sum

C∞c,0(M)ĝ ⊕ δ∗(C∞c (T ∗M))⊕ C∞c (T T ). (41)

Note that all h in this direct sum satisfy the condition
∫
M tr h dVg = 0. That is, as

deformations of the metric they preserve the total volume to first order.

Proposition 7.2 Let (M, ĝ) and α > 0 satisfy the assumptions of Theorem 7.1. Then,
D2
ĝλα is diagonal with respect to the decomposition (41). For h ∈ δ∗(C∞c (T ∗M)), we

have D2
ĝλα(h, h) = 0. Furthermore, there is a constant C > 0 so that

D2
ĝλα(h, h) < −C ‖h‖2H1 (42)

holds for all h ∈ C∞c,0(M)ĝ ⊕ C∞c (T T ).

Proof We first consider the sum

C∞c,0(M)ĝ ⊕ C∞c (T T ). (43)

It is a well-known fact that�E preserves this sum, see for example [6, Theorem 4.60].
Therefore for h ∈ C∞c (T T ) and u ∈ C∞c,0(M)ĝ, Proposition 5.4 directly yields

D2
ĝλα(uĝ + h, uĝ + h) = D2

ĝλα(uĝ, uĝ)+ D2
ĝλα(h, h). (44)

Consequently, D2
ĝλα is diagonal with respect to (43). By diffeomorphism invariance,

D2
ĝλα(δ∗ω, ·) = 0 for all ω ∈ C∞c (T ∗M), since δ∗ω = Lω� ĝ. Thus, D2

ĝ is diagonal
with respect to the splitting (41) and vanishes identically on δ∗(C∞c (T ∗M)).
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Tofinish the proof, it remains to prove the H1-estimate (42). By (44) and the triangle
inequality, it suffices to prove the H1-estimates on the parts of (43) separately. Recall
that for h ∈ C∞c (T T ), we have

D2
ĝλα(h, h) = − 1

2 vol(ĝ)

∫
M
〈�Eh, h〉 dV

and for uĝ ∈ C∞c,0(M)ĝ, we have

D2
ĝλα(uĝ, uĝ) = 1

vol(ĝ)

∫
M
u(Lu) dV ,

where the operator L is

L = [(n − 1)�− scalg] [((n − 2)α − (n − 1))�+ scal]�−1,

see Remark 5.6. In both cases, continuous dependence of eigenvalues tells us that
�E − ε · (�+ 1) resp.−L + ε · (�+ 1) will still be positive on the respective spaces
for a small ε > 0. Consequently, we get

D2
ĝλα(h, h) = − 1

2 vol(ĝ)

∫
M
〈�Eh, h〉 dV

≤ − ε

2 vol(ĝ)

∫
M

(
|∇h|2 + |h|2

)
dV = − ε

2 vol(ĝ)
‖h‖2H1

and

D2
ĝλα(uĝ, uĝ) = 1

vol(ĝ)

∫
M
u(Lu) dV

≤ − ε

vol(ĝ)

∫
M

(
|∇u|2 + |u|2

)
dV = − ε

vol(ĝ)
‖u‖2H1

in the respective cases. This finishes the proof of the proposition. ��
Let us now consider the set of Riemannian metrics

R :=
{
g | g − ĝ ∈ ψ2φ2 H̊ k+2

φ,ψ (S2M), vol(M, g) = vol(M, ĝ)
}

,

which is a manifold (as the volume functional is clearly a submersion) with tangent
space

TĝR =
{
h ∈ ψ2φ2 H̊ k+2

φ,ψ (S2M) |
∫
M
tr h dV = 0

}
.

We define an exponential map

expĝ : TĝR ⊃ B→ R, h �→ f (h)(ĝ + h),
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where the conformal factor f (h) ∈ ψ2φ2Hk+2
φ,ψ (M) is determined by the condition

dVexpĝ(h) =
(
1+ 1

2
tr h

)
dVĝ. (45)

Note that expĝ maps intoR. By differentiating (45), we see that

0 = d

dt

[
dVexpĝ(th) −

(
1+ t

2
tr h

)
dVĝ

]
|t=0

= d

dt
[( f (th))n/2 dVĝ+th]|t=0 − 1

2
tr h dVĝ

= n

2

d

dt
f (th) dVĝ|t=0,

where we used that f (0) = 1. Thus, d
dt expĝ(th)|t=0 = h, so that

D0 expĝ = idTĝR.

In particular, expĝ is a local diffeomorphism in a neighborhood of the origin.
Now, let

S̃ := ψ2φ2 H̊ k+2
φ,ψ (M)ĝ ⊕ ψ2φ2 H̊ k+2

φ,ψ (T T ). (46)

and

S̃ε =
{
h ∈ S̃ | ‖h‖

ψ2φ2Hk+2
φ,ψ

< ε
}

.

For a sufficiently small chosen ε > 0, the set

S := expĝ(Sε)

is a smooth manifold with tangent space

TĝS = S̃.

Proposition 7.3 Let (M, ĝ) and α > 0 satisfy the assumptions of Theorem 7.1. Then,
provided that S was chosen small enough, we have λα(g) ≤ λα(ĝ) for all g ∈ S and
equality holds if and only if g = ĝ.

Proof From Proposition 7.2, we get

D2
ĝλα(h, h) ≤ −C1 ‖h‖2H1 (47)
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for all h ∈ C∞c,0(M)ĝ ⊕ C∞c (T T ). By Lemma 3.8, the ψ2φ2Hk+2
φ,ψ -closure of this

direct sum is exactly (46). Thus by density, (47) also holds for h ∈ S̃. Write g ∈ S as
g = expĝ(h) for h ∈ S̃. Taylor expansion then implies

λα(g) = λα(ĝ)+ 1

2
D2
ĝλα(h, h)+ 1

2

∫ 1

0
(1− t)2

d3

dt3
λα(gt )dt,

where gt := expĝ(th). Now we are estimating the error term in the expansion. By
Lemma 5.7,

∣∣∣∣ d
3

dt3
λα(gt )

∣∣∣∣ =
∣∣∣Dgtλα(g′′′t )+ 3D2

gtλα(g′t , g′′t )+ D3
gtλα(g′t , g′t , g′t )

∣∣∣
≤ C

(∥∥g′′′t
∥∥
L2 +

∥∥g′t
∥∥
H1

∥∥g′′t
∥∥
H1 +

∥∥g′t
∥∥2
H1

∥∥g′t
∥∥
C2,α

)
.

From the construction of the exponential map we get pointwise bounds

|∇kg(m)
t |(p) ≤ C(m, k)

(
sup

0≤l≤k
|∇l h|(p)

)m

for all p ∈ M and m, k ∈ N0. Therefore, we can conclude from standard estimates
that

∣∣∣∣ d
3

dt3
λα(gt )

∣∣∣∣ ≤ C ‖h‖C2,α ‖h‖2H1 ≤ C ‖h‖
ψ2φ2Hk+2

φ,ψ
‖h‖2H1 ,

so that

λα(g) ≤ λα(ĝ)− (C1 − C2 ‖h‖C2,α ) ‖h‖2H1 ≤ λα(ĝ)− 1

2
C1 ‖h‖2H1 , (48)

provided that S is chosen small enough. All the assertions are now immediate. ��

Proof of Theorem 7.1 Let C∞c (T M) be the space of smooth vector fields of compact
support and let Diffc(M) be the group of diffeomorphisms generated by C∞c (T M).
Let S be the set in Proposition 7.3. By this proposition, ĝ is a local maximum of λα

on S. We have a map

� : S × Diffc(M)→Mk+2
ĝ ,

and since λα is diffeomorphism invariant, ĝ is a local maximum of λα on the set

W := �(S × Diffc(M)).
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Let W be the closure of W with respect to the ψ2φ2Hk+2
φ,ψ -norm. By continuity, ĝ is

a local maximum of λα also onW . The tangent space TĝW is then the closure of

TĝW = TĝS ⊕ δ∗(C∞c (T ∗M))

= ψ2φ2 H̊ k+2
φ,ψ (M)ĝ ⊕ ψ2φ2 H̊ k+2

φ,ψ (T T )⊕ δ∗(C∞c (T ∗M))

with respect to the ψ2φ2Hk+2
φ,ψ -norm. We clearly have

TĝW = ψ2φ2 H̊ k+2
φ,ψ (M)ĝ ⊕ ψ2φ2 H̊ k+2

φ,ψ (T T )⊕ δ∗(C∞c (T ∗M))
ψ2φ2Hk+2

φ,ψ

= ψ2φ2 H̊ k+2
φ,ψ (S2M).

In particular,W contains anopenneighbourhoodV of gwith respect to theψ2φ2Hk+2
φ,ψ -

norm. We already know that ĝ is a maximizer of λα on U . To finish the proof, it
suffices to show that the maximum can be only attained by Einstein metrics. To prove
this suppose that g is a metric in V such that λα(g) = λα(ĝ). Let gi be a sequence
in W such that gi → g in the ψ2φ2Hk+2

φ,ψ -norm. By continuity, λα(gi ) → λα(ĝ).
By construction of W , there are metrics ĝi ∈ S isometric to gi . By diffeomorphism
invariance, λα(ĝi )→ λα(ĝ) as well and (48) implies that

ĝi → ĝ in H1.

We thus have

Ricĝi −σ gi → Ricĝ −σ ĝ = 0, in H−1, Ricgi −σ gi → Ricg −σ g, in ψ2φ2Hk
φ,ψ ,

where σ is the Einstein constant of g. Since the ψ2φ2Hk
φ,ψ -norm and the H1-norm

are stronger than the H−1-norm, we also have

gi → g, ĝi → ĝ, Ricgi → Ricg, Ricĝi → Ricĝ = σ ĝ

in H−1. By diffeomorphism invariance of the norm,

∥∥Ricg −σ g
∥∥
H−1(g)←

∥∥Ricgi −σ gi
∥∥
H−1(gi )

=
∥∥∥Ricĝi −σ ĝi

∥∥∥
H−1(ĝi )

→
∥∥∥Ricĝ −σ ĝ

∥∥∥
H−1(ĝ)

= 0.

Therefore, g is Einstein which was to be shown. ��
Remark 7.4 If (M, g) is Ricci-flat, the assertion of Theorem 7.1 holds without the
volume constraint due to Proposition 5.3 (iii). The proof is the same up to a slight
simplification which comes from dropping the volume constraint.
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Proof of Theorem 1.9 This proof is nowa straightforward assembly of the partial results
we have obtained so far.
(i)⇒(ii)&(iii): Let K ⊂ M be a compact subset and let g be a smooth metric on M
which is C2,α-close to ĝ and satisfies

g − ĝ|M\K ≡ 0.

Further, let N be a compact manifold with boundary such that

K ⊂ N ⊂ M .

Then, g|N is ψ2φ2Hk+2
φ,ψ -close to ĝ|N . Choose N so close to M that

μNM
1 (N ,�ĝ) >

scalĝ

n − 1

and choose α > 0 so small that

[
1− n − 2

n − 1
α

]
μNM
1 (N ,�ĝ) >

scalĝ

n − 1
.

From (i), (M, g) is linearly stable, andwe have λD
1 (N ,�E |T T ) > 0. Thus by Theorem

7.1, we get λα(g|N ) ≤ λα(ĝ|N ), provided that g was chosen sufficiently close to ĝ.
Thus byLemma5.2, it can not happen that scalg ≥ scalĝ everywhere and scalg > scalĝ

somewhere. This implies (ii). Now suppose that scalg ≡ scalĝ ≡ constant. Then we
have λα(g|N ) = λα(ĝ|N ) and the rigidity part of Lemma 5.2 implies that g is Einstein
as well. Now, g and ĝ are both Einstein metrics and hence both analytic Thus, since
g and ĝ agree on an open set, they have to be isometric, see [16].
(ii)⇒(i) Suppose that (i) does not hold. Then, we find a nontrivial TT-tensor h with
compact support K := supp(h) ⊂ M such that

∫
M
〈�Eh, h〉 dV < 0.

Let N be a smooth manifold with smooth boundary such that K ⊂ N ⊂ M . Further,
let f ∈ C∞(M) be a nonnegative function with supp( f ) ⊂ N and

∫
M
〈�Eh, h〉 dV = −2

∫
M

f dV < 0.

Then by Theorem 4.1, there exists a family of metrics gt such that

scalgt = scalĝ + t2

2
f .

Since f nonnegative but not identically vanishing, this contradicts (ii).
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(iii)⇒(i) This proof is similar to the previous one. If (i) does not hold, we find a
TT-tensor h− with compact support K := supp(h) ⊂ M such that

∫
M
〈�Eh−, h−〉 dV < 0.

On the other hand, because �E is unbounded from above, we find another TT-tensor
h+ supported in K such that

∫
M
〈�Eh+, h+〉 dV > 0.

By continuity, there exists s ∈ (0, 1) such that h := (1− s)h− + sh+ satisfies

∫
M
〈�Eh, h〉 dV = 0.

Because h− and h+ are linearly independent, h is a nontrivial TT-tensor supported in
K . Thus by Theorem 4.1, there exists a family of metrics gt with d

dt gt |t=0 = h such
that

scalgt = scalĝ .

It remains to show that the metrics gt are not Einstein for small values of t . Since h is
a TT-tensor we have

d

dt

(
Ricgt − scalgt

n
gt )

)
|t=0 = 1

2
�Eh.

However, as h is compactly supported, the unique continuation property for elliptic
equations tells us that h /∈ ker(�E ). Therefore, gt can not be Einstein for small t ,
which contradicts (iii). ��
Proof of Theorem 1.8 Up to taking Remarks 4.3 and 7.4 into account, the proof is the
same. ��

8 Mass-decreasing perturbations

Two well-known complete Ricci-flat manifolds which are linearly unstable are the
Riemannian Schwarzschild manifold and Taub–Bolt manifold.

Letσ be the standard roundmetric on S2. Form > 0, theRiemannianSchwarzschild
metric is defined on S1(8πm)× (2m,∞)× S2 by

gRS =
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2σ, (49)
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where t ∈ S1(8πm) which is the circle of length 8πm, and r ∈ (2m,∞). It extends
to r = 2m to give a complete Ricci-flat metric on R

2 × S2. The metric gRS has an
asymptotically flat end, meaning that the metric approaches the flat product metric on
R
3 × S1 on this end. This metric is known to be linearly unstable, see [2, 21, 43].
Letσ1, σ2, σ3 be the standard left invariant 1-forms on S3. Form > 0, theTaub–Bolt

metric is defined on (2m,∞)× S3

gT B = r2 − m2

r2 − 5
2mr + m2

dr2 + (r2 − m2)(σ 2
1 + σ 2

2 )+ 4m2 r
2 − 5

2mr + m2

r2 − m2 σ 2
3 ,

(50)

where r ∈ (2m,∞). It extends to r = 2m to give a complete Ricci-flat metric on
CP2 \ {point} with an asymptotically locally flat end, which means that the metric
approaches a flat metric on the total space of a non-trivial S1-fibration over R3 \ B3

on the end. The metric gT B is also known to be linearly unstable, see [24, 45, 47].

Proposition 8.1 The Riemannian Schwarzschild and the Taub–Bolt manifolds allow
compactly supported perturbations which strictly increase scalar curvature.

Proof These metrics have a negative bottom of the L2-spectrum of �L on the whole
manifold. This implies that lowest Dirichlet eigenvalue of�L on any sufficiently large
open subset � with smooth boundary is negative. The corresponding eigensection is a
TT-tensor, and from Corollary 3.10 we conclude that gRS and gT B are unstable as in
Definition 1.7 on such �. The existence of compactly supported perturbations which
increase scalar curvature now follows from Theorem 4.1. ��

For asymptotically flat and asymptotically locally flat manifolds there is a mass
invariant defined at infinity, similar to the ADM mass for asympotically Euclidean
manifolds. We will now see that compactly supported deformations from the above
proposition can be transformed to mass-decreasing scalar flat perturbations which
preserve the length of the circle at infinity.

When discussing the mass invariant we restrict attention to manifolds of dimension
four. Let h0 be the standard flat product metric on R

3 × S1, where the circle factor
has length L . Following [34, Section 3.3] we define (M, g) to be asymptotically
flat if outside compact subsets, M is diffeomorphich to R

3 × S1, and under this
diffeomorphism it holds that

g = h0 + O(r−τ ), ∂i g = O(r−τ−1), ∂i∂ j g = O(r−τ−2),

for some τ > 1/2. For such manifolds, the mass is defined by

μD
g :=

1

4πL
lim
R→∞

∫
SR

(
δh0g − d trh0 g

)
� dV h0 .

Using a conformal trick from [42, Lemma 3.3] we can now prove the following.
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Proposition 8.2 The Riemannian Schwarzschild manifold has scalar-flat perturba-
tions which strictly decrease the mass, while keeping the length L at infinity
constant.

Proof Let gt be a family of metrics on M = R
2 × S2 with g0 = gRS , gt = gRS

outside a compact set, and scalgt ≥ 0 with scalgt > 0 somewhere for t > 0.
Let ϕt = 1+ ut be the solution to

0 = −6�gtϕt + scalgt ϕt = −6�gt ut + scalgt u + scalgt

with ut → 0 at infinity. The existence and uniqueness of such a ut can be deduced as
in [34, Section 2]. By the maximum principle we have ϕt > 0. Set g̃t := ϕ2

t gt . Then
(M, g̃t ) is an AF manifold with scalg̃t = 0. The length L of the circle factor at infinity
for g̃t is the same as for gRS .

We compute the mass of (M, g̃t ),

μD
g̃t
= 1

4πL
lim
R→∞

∫
SR

(
δh0 g̃t − d trh0 g̃t

)
� dV h0

= 1

4πL
lim
R→∞

∫
SR

(
δh0(ϕ2

t gt )− d trh0(ϕ2
t gt )

)
� dV h0

= 1

4πL
lim
R→∞

∫
SR

ϕ2
t

(
δh0gt − d trh0 gt

)
� dV h0 − 6

4πL
lim
R→∞

∫
SR

ϕt dϕt� dV h0

= μD
gt −

6

4πL
lim
R→∞

∫
SR

ϕt dϕt� dV h0

= μD
gRS −

6

4πL
lim
R→∞

∫
SR

νh0(ϕt ) dV h0 ,

where νh0 is the outward pointing normal to SR with respect to h0. From the equation
for ϕt we have

0 =
∫
BR

(−6�gtϕt + scalgt ϕt
)
dV gt = −6

∫
SR

νgt (ϕt ) dV gt +
∫
BR

scalgt ϕt dV gt ,

so in the limit R→∞ we find

6 lim
R→∞

∫
SR

νh0(ϕt ) dV h0 = 6 lim
R→∞

∫
SR

νgt (ϕt ) dV gt =
∫
M
scalgt ϕt dV gt .

Together we get

μD
g̃t
= μD

gRS −
1

4πL

∫
M
scalgt ϕt dV gt ,

so the mass of (M, g̃t ) is strictly less than the mass of (M, gRS). ��
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In [34] themass of asymptotically locallyflatmanifolds is defined.A similar compu-
tation shows that the same conformal change produces mass decreasing perturbations
of the Taub–Bolt metric.

Acknowledgements This work was initiated at Institut Mittag-Leffler during the programGeneral Relativ-
ity, Geometry and Analysis in Fall 2019 and completed at Mathematisches Forschungsinstitut Oberwolfach
during the conference Analysis, Geometry and Topology of Positive Scalar Curvature Metrics in Summer
2021. We wish to thank both institutes for their hospitality and for the excellent working conditions they
provide. The work of the second author was supported by the Deutsche Forschungsgemeinschaft (KR
4978/1-1) through the priority program 2026 Geometry at Infinity. We also want to thank the referee for a
very careful reading and many helpful comments to improve the paper.

Funding Open access funding provided by Royal Institute of Technology.

Data availability No data associate for the submission.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ammann, B., Kröncke, K., Weiss, H., Witt, F.: Holonomy rigidity for Ricci-flat metrics. Math. Z.
291(1–2), 303–311 (2019)

2. Allen, B.: Euclidean Schwarzschild negative mode. Phys. Rev. D (3) 30(6), 1153–1157 (1984)
3. Bär, C.: Geometrische Analysis. Skript zur Vorlesung ’Geometrische Analysis’, Wintersemester

2007/08 (2007). https://www.math.uni-potsdam.de/professuren/geometrie/lehre/lehrmaterialien
4. Bär, C., Dahl, M.: Small eigenvalues of the conformal Laplacian. Geom. Funct. Anal. 13(3), 483–508

(2003)
5. Bergery, L.B.: La courbure scalaire des variétés riemanniennes, Séminaire Bourbaki vol. 1979/80

exposés 543-560, pp. 225–245 (1981)
6. Besse, A.L.: Einstein Manifolds, Classics in Mathematics. Springer, Berlin (2008). (Reprint of the

1987 edition)
7. Brendle, S., Marques, F.C., Neves, A.: Deformations of the hemisphere that increase scalar curvature.

Invent. Math. 185(1), 175–197 (2011)
8. Böhm, C.: Non-compact cohomogeneity one Einstein manifolds. Bull. Soc. Math. Fr. 127(1), 135–177

(1999)
9. Böhm, C., Wang, M., Ziller, W.: A variational approach for compact homogeneous Einstein manifolds.

Geom. Funct. Anal. 14(4), 681–733 (2004)
10. Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., Mazzieri, L.: The Ricci-Bourguignon flow. Pac.

J. Math. 287(2), 337–370 (2017)
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