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Abstract
Minimizers of functionals of the type

w �→
∫

�

[|Dw|p − f w] dx +
∫
Rn

∫
Rn

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

with p, γ > 1 > s > 0 and p > sγ , are locally C1,α-regular in � and globally
Hölder continuous.
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1 Introduction

Mixed local and nonlocal problems are a subject of recent, emerging interest and
intensive investigation. Essentially, the main object in question is an elliptic operator
that combines two different orders of differentiation, the simplest model case being
−� + (−�)s , for s ∈ (0, 1). Here, the simultaneous presence of a leading local
operator, and a lower order fractional one, constitutes the essence of the matter. In this
special case, from a variational viewpoint, one is considering energies of the type

w �→
∫

�

|Dw|2 dx +
∫
Rn

∫
Rn

|w(x) − w(y)|2
|x − y|n+2s

dx dy , 0 < s < 1 .

Here, as in all the rest of the paper, � ⊂ R
n denotes at a bounded, Lipschitz regular

domain and n ≥ 2. First results in this direction have been obtained in [22–24, 44],
via probabilistic methods; viscosity methods were pioneered in [3]. More recently,
in a series of interesting papers, Biagi, Dipierro, Valdinoci, and Vecchi [6–9, 38]
started a systematic investigation of problems involving mixed operators, proving
a number of results concerning regularity and qualitative behaviour for solutions,
maximum principles, and related variational principles. Up to now, the literature is
mainly devoted to the study of linear operators. As for nonlinear cases, for instance
those arising from functionals as

w �→
∫

�

[|Dw|p − f w] dx +
∫
Rn

∫
Rn

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy , (1.1)

the study of regularity of solutions has been confined to L∞
loc(�) and C0,α

loc (�) esti-
mates (for small α), that is, the classical De Giorgi–Nash–Moser theory. In this paper,
our aim is to propose a different approach, aimed at proving maximal regularity of
solutions to variational mixed problems in nonlinear, possibly degenerate cases as in
(1.1). Specifically, we are going to prove the local Hölder continuity of the gradient
of minimizers. Moreover, we also provide the first boundary regularity results for
solutions. A sample of our results is indeed
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Regularity in mixed problems 263

Theorem 1 Let u ∈ W 1,p
0 (�) ∩ W s,γ (Rn) be a minimizer of (1.1), with p, γ > 1 >

s > 0 and p > sγ , and such that u ≡ 0 on R
n \ �. If f ∈ Ld(�) for some d > n,

then Du is locally Hölder continuous in �. If ∂� ∈ C1,αb for some αb ∈ (0, 1) and
f ∈ Ln(�), then u ∈ C0,α(Rn) for every α < 1.

Considering the more familiar case of the sum of two p-Laplaceans, we have

Theorem 2 Let u ∈ W 1,p
loc (�) ∩ W s,p(Rn) be a solution to

− �pu + (−�p)
su = f (1.2)

in �, with p > 1 > s > 0 and f ∈ Ld
loc(�) for some d > n. Then Du is locally

Hölder continuous in �.

Our approach is flexible and allows us to consider general functionals of the type

F(w) :=
∫

�

[F(Dw) − f w] dx +
∫
Rn

∫
Rn

�(w(x) − w(y))K (x, y) dx dy

(1.3)

modelled on the one in (1.1), i.e. F(Dw) ≈ |Dw|p in the C2-sense, �(t) ≈ tγ in
the C1-sense and K (x, y) ≈ |x − y|−n−sγ . Notice that, although we specialize to the
variational setting, the regularity estimates we are presenting here actually work for
general mixed equations almost verbatim, as our analysis is essentially based on the
use of the Euler–Lagrange equation of functionals as in (1.3); for this, see Sect. 1.2.
For the correct notion of minimality, and the related functional setting, as well as for
results in full generality, see Sect. 1.1. Theorem 1 achieves the maximal regularity of
minima, namely, the local Hölder continuity of the gradient of minimizers in �. This
is the best possible result already in the purely local case given by the p-Laplacean
equation −�pu = 0, which is covered by Uraltseva–Uhlenbeck theory and related
counterexamples [64, 68, 69, 77, 78]. In addition, the case p �= γ is here considered
for the first time, thereby allowing a full mixing between local and nonlocal terms. In
this respect, the central assumption is

p > sγ , (1.4)

that says, roughly speaking, that the fractional W s,γ -capacity generated by the non-
local term in (1.1) can be controlled by the W 1,p-capacity (the standard p-capacity)
generated by w �→ ∫ |Dw|p dx . This is exactly the point ensuring that the nonlocal
term in (1.1) has less regularizing effects that the local one, as it happens in the basic
case −� + (−�)s , when p = γ = 2, and also in the nonlinear models of the type
−�p + (−�p)

s , where the fractional p-Laplacean operator appears [27, 41, 42, 45,
55, 56, 59, 60]. We also Notice that, as far as we known, allowing the condition p �= γ

is a new, non-trivial feature already when p = 2 and that even the basic De Giorgi–
Nash–Moser theory is not available when p �= γ . As a matter of fact, all our estimates
simplify in the case p = γ .
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264 C. D. Filippis, G. Mingione

Wehave reportedTheorem1 for the sake of exposition but it is actually a very special
case ofmore general results, i.e., Theorems3–5,whose statements are necessarilymore
involved due to their greater generality. Before stating the precise assumptions and
the results in full generality, we spend a few words about the techniques we are going
to use, and on some relevant connections. Up to now, the methods proposed in the
literature to deal with mixed operators are, in a sense, direct. More precisely, both the
local terms and the nonlocal ones stemming from the equations interact simultaneously
via energy methods. These techniques ultimately rely on those used in the nonlocal
case [10–12, 35, 36, 55, 56, 59, 60] for purely nonlocal operators. This approach does
not allow to prove regularity of solutions beyond that allowed by nonlocal operators
techniques, which is not the best one can hope for, as, in mixed operators, the leading
regularizing term is the local one. In this paper we reverse the approach, relying more
on the methods, and, especially, on the estimates available in regularity theory of
local operators. In a sense, we separate the local and nonlocal part combining energy
estimates of Caccioppoli type with a perturbative like approach. The crucial point
is to fit the terms stemming from the nonlocal term in the iteration procedures that
would naturally come up from considering the local part only. For this we have to
consider a complex scheme of quantities, interacting with each other, and controlling
simultaneously both the oscillations of the solution on small balls, and those averaging
the oscillations over their complement (such quantities are detailed in Sect. 3). This
first leads to Hölder regularity of solutions with every exponent (Theorem 3) and then
to the same kind of estimates globally (Theorem 4); combining these ingredients with
a priori regularity estimates from the classical local theory, leads to Theorem 5. We
mention that, due to the assumption p �= γ , functionals as in (1.1)–(1.3) connect to
a large family of problems featuring anisotropic operators and integrands with so-
called nonstandard growth conditions [26, 28, 29, 32, 40, 54, 66], and to some other
classes of anisotropic nonlocal problems [16–20, 33, 67, 73].Wemention that a further
connection has been established in [31], where a class of mixed functionals has been
used to approximate local functionals with (p, q)-growth in order to prove higher
integrability of minimizers. Further approximations via mixed operators occur in the
interesting paper [74].

1.1 Assumptions and results

When considering the functional F in (1.3), the integrand F : Rn → R is assumed to
be C2(Rn \ {0})∩ C1(Rn)-regular and to satisfy the following standard p-growth and
coercivity assumptions (see [63, 68, 69])

⎧⎪⎨
⎪⎩

�−1(|z|2 + μ2)p/2 ≤ F(z) ≤ �(|z|2 + μ2)p/2

|∂z F(z)| + (|z|2 + μ2)1/2|∂zz F(z)| ≤ �(|z|2 + μ2)(p−1)/2

�−1(|z|2 + μ2)(p−2)/2|ξ |2 ≤ ∂zz F(z)ξ · ξ

(1.5)
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Regularity in mixed problems 265

for all z ∈ R
n \ {0}, ξ ∈ R

n , where μ ∈ [0, 1] and � ≥ 1 are fixed constants. The
function � : R → R is assumed to satisfy

{
�(·) ∈ C1(R) , t �→ �(t) is convex

�−1|t |γ ≤ �(t) ≤ �|t |γ , �−1|t |γ ≤ �′(t)t ≤ �|t |γ (1.6)

for all t ∈ R. The kernel K : Rn × R
n → R satisfies

k

�|x − y|n+sγ
≤ K (x, y) ≤ �k

|x − y|n+sγ
, where k ∈ (0, 1] (1.7)

for all x, y ∈ R
n, x �= y. As already mentioned, unless otherwise stated, p, s, γ

are such that p, γ > 1 > s > 0, with p > sγ . We shall consider a boundary datum
g ∈ W 1,p(�)∩W s,γ (Rn). In order to get global continuity ofminimizers, we consider
the following requirements on the boundary ∂�:

⎧⎪⎨
⎪⎩

∂� ∈ C1,αb , αb ∈ (0, 1)

g ∈ W 1,q(�) ∩ W a,χ (Rn)

q > p, a > s, χ > γ, κ := min{1 − n/q, a − n/χ} > 0 .

(1.8)

In particular, this implies that we are assuming q, aχ > n. Interior Hölder estimates,
both for minima and their gradients, need less, and essentially no boundary assump-
tions; for this, we shall replace (1.8) by the weaker

g ∈ L∞(Rn) (1.9)

that in fact will only be needed in when γ > p. Note that W a,χ (Rn) ⊂ L∞(Rn) holds
provided a − n/χ > 0 [37, Theorem 8.2]. Conditions (1.5)–(1.9) lead to consider the
following natural functional setting:

⎧⎨
⎩

Xg(�) :=
{
w ∈ g + W 1,p

0 (�) ∩ W s,γ (Rn) : w ≡ g in R
n \ �

}

X0(�) :=
{
w ∈ W 1,p

0 (�) ∩ W s,γ (Rn) : w ≡ 0 in Rn \ �
}

.

Note that some ambiguity arises in the definition of Xg; in fact, this is actually meant
as the subspace of functions w ∈ W s,γ (Rn) whose restriction on � belongs to g +
W 1,p

0 (�). Compare for instance with the discussion made in [6, 9], where related
functional settings are considered. Under assumptions (1.5)–(1.7) and (1.9), and f ∈
W −1,p′

(�) (the dual of W 1,p
0 (�)), there exists a unique solution u ∈ Xg(�) to

Xg(�) � u �→ min
w∈Xg(�)

F(w) . (1.10)

Moreover
∫

�

[
∂z F(Du) · Dϕ − f ϕ

]
dx
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266 C. D. Filippis, G. Mingione

+
∫
Rn

∫
Rn

�′(u(x) − u(y))(ϕ(x) − ϕ(y))K (x, y) dx dy = 0 (1.11)

holds for every ϕ ∈ X0(�). The proof of these facts is quite standard, and relies on the
application of Direct Methods of the Calculus of Variations. The details can be found
for instance in [31, Sections 3.3–3.5], where actually a more delicate case of mixed
operators is considered. As for the derivation of the Euler–Lagrange equation, this is
standard once (1.5)–(1.7) are assumed, and, for the nonlocal part, proceeds as in [31,
35].

Theorem 3 (Almost Lipschitz local continuity) Under assumptions (1.5)–(1.7) and
(1.9), with f ∈ Ln(�), let u ∈ Xg(�) be as in (1.10). Then u ∈ C0,α

loc (�) for
every α ∈ (0, 1) and, for every open subset �0 � �, [u]0,α;�0 ≤ c holds with
c ≡ c(datah, α, dist(�0, ∂�)). Assumption (1.9) can be dropped when γ ≤ p.

Theorem 4 (Global Hölder continuity) Under assumptions (1.5)–(1.8) with f ∈
Ln(�), let u ∈ Xg(�) be as in (1.10). Then u ∈ C0,α(Rn) for every α < κ and
[u]0,α;Rn ≤ c(data). If, in addition, g ∈ W 1,∞(Rn), then u ∈ C0,α(Rn) for every
α < 1.

Theorem 5 (Gradient local Hölder continuity) Under assumptions (1.5)–(1.7) and
(1.9), with f ∈ Ld(�) for some d > n, let u ∈ Xg(�) be as in (1.10). Then there exists

α ≡ α(n, p, s, γ,�, d) ∈ (0, 1), such that Du ∈ C0,α
loc (�;Rn) and, for every open

subset �0 � �, [Du]0,α;�0 ≤ c holds with c ≡ c(datah, ‖ f ‖Ld (�), dist(�0, ∂�)).
Assumption (1.9) can be dropped when γ ≤ p.

The (shorthand) notation concerning the dependence on the constants used in Theo-
rems 3–5 is
⎧⎪⎨
⎪⎩
datah := (n, p, s, γ,�, ‖ f ‖Ln(�), ‖u‖L p(�), ‖u‖Lγ (Rn)) if γ ≤ p

datah := (n, p, s, γ,�, ‖ f ‖Ln(�), ‖u‖L∞(�), ‖u‖Lγ (Rn)) if γ > p

data := (n, p, s, γ,�, ‖ f ‖Ln(�), ‖g‖W 1,q (�), ‖g‖W s,γ (Rn), ‖g‖W a,χ (Rn), �) .

(1.12)

Notice that none of the above lists contains the parameter k appearing in (1.7). For the
sake of brevity we shall sometimes indicate a dependence of a constant c on one of the
lists in (1.12), also when it will actually occur on a subset of the parameters involved.
For example, a constant c depending only on n, p, s, γ might be still indicated as
c ≡ c(datah).

Remark 1 Le us briefly comment on the previous results.

• Theorem 3 is sharp in the sense it does not hold when only assuming that f ∈ Lt ,
for any t < n. As for Theorem 5, one cannot obtain in general the gradient
Hölder continuity only assuming that f ∈ Ln ; counterexamples arise already in
the purely local (and linear) case −�u = f [25]. See Theorem 7 below for more
in this direction and Sect. 8.1.

• All the a priori estimates in this paper are independent of the constant k ∈ (0, 1]
appearing in (1.7). In particular, everything remains stable when k → 0. In this
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Regularity in mixed problems 267

case the equations covered are of the type −�pu + k(−�γ )su = f , for which
the corresponding estimates are uniform with respect to k ∈ (0, 1]. This is natural
in view of our perturbative approach (we thank the referee for pointing out this
aspect to us).

• When considering the case γ ≤ p, in Theorems 3 and 5 no assumption is put on
the boundary datum g, and, in fact, our results can be formulated in a purely local
fashion. See Remark 3 and Theorem 6 below. Note that, in the case γ ≤ p, on the
contrary of other papers devoted to the subject, we dot not need to prove that u is
bounded to get its Hölder continuity. This is typical in the regularity theory of the
local operators when using perturbative methods.

• As far as we know, Theorem 4 is the first boundary regularity appearing in the
literature for the class of nonlinear problems consideredhere.Assumptions as (1.8),
implying that g ∈ C0,κ (Rn) via higher gradient integrability, are quite common
in the boundary regularity of local problems; see for instance [21, 39] and [48,
Section 7.8]. We further comment on this in Sect. 8 and refer to [43, 51, 52, 75]
for boundary regularity results in the purely nonlocal case, where it is g ≡ 0.

• Ageneral remark concerning the results in this paper. As our approach is ultimately
perturbative, our results and the form of the a priori estimates obtained should not
be directly compared to those available for the (−�γ )s-Laplacean operator (as for
instance those in [35, 36]), but rather with those available in the regularity theory
of the classical p-Laplacean operator. Anyway, the functional setting we adopt
in Theorems 4-8, featuring the space Xg , is in line with some of those typically
used in the setting of nonlocal problems, see for instance [35, 36]. In order to keep
the emphasis on the main points, i.e., on a priori estimates, we prefer the basic
setting adopted here, just using natural energy spaces (see for instance [11, 72]
for related Tail spaces in the purely nonlocal setting and the comments at the end
of Remark 3). Further comments on this point are in Sect. 7. A interesting local
approach, with local solutions, can be found in [46] (see also the comments at the
end of Sect. 1.2).

1.2 Possible extensions

Several extensions are possible. For instance, one can consider more general function-
als of the type

w �→
∫

�

[F(x, Dw) − f w] dx +
∫
Rn

∫
Rn

�(w(x) − w(y))K (x, y) dx dy ,

where this time we assume that z �→ F(x, z) satisfies (1.5) uniformly with respect to
x ∈ �. The assumption regulating coefficients is

|∂z F(x, z) − ∂z F(y, z)| ≤ �ω(|x − y|)(|z|2 + μ2)(p−1)/2 , (1.13)

to hold for every choice x, y ∈ � and z ∈ R
n . Here ω : [0,∞) → [0, 1) is a modulus

of continuity, that is, a continuous and non-decreasing function, such that ω(0) = 0.
Under assumption (1.13), it is then easy to see that Theorems 3 and 4 continue to hold.
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268 C. D. Filippis, G. Mingione

In order to get an analog of Theorem 5 we assume in addition that ω(t) ≤ tσ holds
for some σ ∈ (0, 1), this condition being necessary; then the Hölder exponent of Du
does not exceed σ . We note the proof of these assertions is in fact implicit in the proof
of boundary regularity provided in Proposition 5.1 below.

Another extension, alreadymentioned above, is about general solutions to nonlinear
mixed integroredifferential operators, not necessarily coming from integral function-
als. Moreover, a purely local regularity approach can be considered. For this, we
consider a general vector field A : Rn → R

n such that A ∈ C0(Rn) ∩ C1(Rn \ {0}),
and a functions � ∈ C0(R), f such that

⎧⎪⎨
⎪⎩

|A(z)| + (|z|2 + μ2)1/2|∂z A(z)| ≤ �(|z|2 + μ2)(p−1)/2

�−1(|z|2 + μ2)(p−2)/2|ξ |2 ≤ ∂z A(z)ξ · ξ

�−1|t |γ ≤ �(t)t ≤ �|t |γ , f ∈ W −1,p′
(�) ,

(1.14)

with the samemeaning of (1.5) and (1.6). Note that the classical p-Laplacean operator
given by A(z) ≡ |z|p−2z is covered by (1.14). We consider functions u ∈ W 1,p(�) ∩
W s,γ (Rn), where � ⊂ R

n is as usual a bounded and Lipschitz-regular domain, such
that

∫
�

[A(Du) · Dϕ − f ϕ] dx

+
∫
Rn

∫
Rn

�(u(x) − u(y))(ϕ(x) − ϕ(y))K (x, y) dx dy = 0 (1.15)

holds for every ϕ ∈ X0(�) (see also Sect. 7). Notice that here no boundary datum g
appears and the definition of solution is instead local; we expand on this in Sect. 7. In
this case we have

Theorem 6 Under assumptions (1.7) and (1.14), let u ∈ W 1,p(�) ∩ W s,γ (Rn) be a
solution to (1.15).

• If u ∈ L∞
loc(�) when γ > p, and f ∈ Ln

loc(�), then u ∈ C0,α
loc (�) for every

α ∈ (0, 1).
• If u ∈ Xg(�), f ∈ Ln(�) and conditions (1.8) hold, then u ∈ C0,α(Rn) for every

α < κ .
• If u ∈ L∞

loc(�) when γ > p, and f ∈ Ld
loc(�) for some d > n, then u ∈ C1,α

loc (�)

for some α ∈ (0, 1).

The proof of Theorem 6 follows verbatim the ones for Theorems 3–5 taking into
account the content ofRemark 3 andSect. 7.Again, notice that the assumptionu ∈ L∞

loc
is only neededwhen γ > p. Notice also that Theorem 2 is a special case of Theorem 6.

The methods developed in this paper also yield intermediate Hölder regularity
results. We confine ourselves to give a sample of this in the interior case. Similar
estimates should also hold globally. The following version of Theorem 3 responds to
a question posed by the referee of a first version of the manuscript.
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Regularity in mixed problems 269

Theorem 7 (Quantified Hölder continuity) Under assumptions (1.5)–(1.7) and (1.9),
if u ∈ Xg(�) is as in (1.10) and f ∈ Lq(�), then

{
p ≤ n and q = n

p−α(p−1) , α ∈ (0, 1)

p > n, q = 1 and α = p−n
p−1

�⇒ u ∈ C0,α
loc (�). (1.16)

Assumption (1.9) can be dropped when γ ≤ p.

As expected by themethodswe employ, Theorem 7 reproduces, in terms of the integra-
bility assumptions on f , the same Hölder local regularity results that hold in the local
case −�pu = f ; see [58, Corollary 1] and Sect. 8.1. Note that when p > n solutions
are automatically α-Hölder continuous with exponent α = 1 − n/p by Sobolev–
Morrey embedding. This is smaller that the one appearing in (1.16). Accordingly, a
priori estimates come along:

Theorem 8 (Campanato type estimate for Theorems 3 and 7) Under the assumptions
and the notation of Theorem 7. There exist r∗ > 0 and c ≥ 1 such that

∫
−

B�

|u − (u)B� |p dx + �δ−sγ
∫
−
Rn\B�

|u − (u)B� |γ dλx0

≤ c
(�

r

)α p
[∫
−

Br

|u − (u)Br |p dx + r δ−sγ
∫
−
Rn\Br

|u − (u)Br |γ dλx0

]

+ c�α p‖ f ‖p/(p−1)
Lq (Br )

+ c�α p , dλx0(x) := dx

|x − x0|n+sγ
(1.17)

holds whenever B� ≡ B�(x0) ⊂ Br (x0) ≡ Br ⊂ �0 are concentric balls with
r ≤ r∗ ∈ (0, 1) and for δ ∈ (sγ, p) sufficiently close to p. Both r∗ and c depend on
n, p, s, γ,�, α if γ ≤ p, and also on ‖u‖L∞(�) when γ > p. Assumption (1.9) can
be dropped when γ ≤ p.

When γ ≤ p the constant c in (1.17) only depends on n, p, s, γ,�. Dropping the
terms containing dλx0 arising from the nonlocal part, (1.17) gives back the classical
Campanato type decay estimate for solutions to local non-homogeneous equations
(see for instance [48, Theorem 7.7] or [58]). Estimate (1.17) implies the local C0,α-
regularity of solutions, with related a priori estimates. An additional feature of estimate
(1.17) is a power decay of the term

� �→ �δ−sγ
∫
−
Rn\B�

|u − (u)B� |γ dλx0 ,

which is a manipulation of a quantity called snail, that is of common use in nonlocal
problems (see Sect. 3 for more). In the range γ > p, the nonlocal term exhibits a
growth larger than the local one, and a careful analysis of the proofs, actually reveals
that the constant c appearing in (1.17), depends on n, p, s, γ,� and locally on ‖u‖L∞
(see Remark 3 for details). This typically happens in all those local situations when
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270 C. D. Filippis, G. Mingione

anisotropic operators are considered, especially in the setting of nonuniformly elliptic
problems (see for instance the a priori estimates in [26, 29, 31, 32]).

We finally remark that, after a first draft of this paper was poster on the Arxiv1

and submitted, a related, interesting preprint of Garain and Lindgren [46] appeared,
where results connected to ours are contained for a different range of parameters (in
particular, in [46] it is γ = p) and starting by a slightly weaker notion of solutions.
The techniques in [46] are completely different from those employed here.

2 Preliminaries

2.1 Notation

Unless otherwise specified, we denote by c a general constant larger or equal than 1.
Different occurrences from line to line will be still denoted by c. Special occurrences
will be denoted by c∗, c1 or likewise. Relevant dependencies on parameters will be
as usual emphasized by putting them in parentheses. In the following, given a ∈ R,
we denote a+ := max{a, 0}. We denote by Br (x0) := {x ∈ R

n : |x − x0| < r} the
open ball with center x0 and radius r > 0; we omit denoting the center when it is
not necessary, i.e., B ≡ Br ≡ Br (x0); this especially happens when various balls in
the same context share the same center. With B+

r (x0) we mean the upper half ball
Br (x0) ∩ {x ∈ R

n : xn > 0}; in connection, we denote �r (x0) := Br (x0) ∩ {xn = 0},
whenever x0 ∈ {xn = 0}. With B ⊂ R

n being a measurable subset with respect to a
Borel (non-negative) measure λ0 in Rn , with bounded positive measure 0 < λ0(B) <

∞, and with b : B → R
k , k ≥ 1, being a measurable map, we denote

(b)B :=
∫
−
B

b(x) dλ0(x) := 1

λ0(B)

∫
B

b(x) dλ0(x) .

According to the standard notation, given b : B → R
k , we denote

[b]0,α;B := sup
x,y∈B;x �=y

|b(x) − b(y)|
|x − y|α , osc

B
b := sup

x,y∈B
|b(x) − b(y)|

for 0 < α ≤ 1 and B ⊂ R
n being a set.

2.2 Fractional spaces

For γ ≥ 1 and s ∈ (0, 1), the space W s,γ (Rn) is defined via

W s,γ (Rn) :=
{
w ∈ Lγ (Rn) :

∫
Rn

∫
Rn

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy < ∞
}

,

1 https://arxiv.org/abs/2204.06590v1.
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and it is endowed with the norm

‖w‖W s,γ (Rn) :=
(∫

Rn
|w|γ dx

)1/γ

+
(∫

Rn

∫
Rn

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

.

With w ∈ W s,γ (Rn), we also denote

[w]s,γ ;A :=
(∫

A

∫
A

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

whenever A ⊂ R
n is measurable. In a similar way, by replacingRn by� in the domain

of integration, it is possible to define the fractional Sobolev space W s,γ (�) in an open
domain � ⊂ R

n . Good general references for fractional Sobolev spaces are [1, 37].
For the next result, see also [2] and related references.

Lemma 2.1 (Fractional Poincaré) Let γ ∈ [1,∞), s ∈ (0, 1), B� ⊂ R
n be a ball. If

w ∈ W s,γ (B�), then

(∫
−

B�

|w − (w)B� |γ dx

)1/γ

≤ c�s

(∫
B�

∫
−

B�

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

(2.1)

holds with c ≡ c(n, s, γ ).

Lemma 2.2 (Embedding) Let 1 ≤ γ ≤ p < ∞, s ∈ (0, 1) and B� ⊂ R
n be a ball. If

w ∈ W 1,p
0 (B�), then w ∈ W s,γ (B�) and

(∫
B�

∫
−

B�

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

≤ c�1−s

(∫
−

B�

|Dw|p dx

)1/p

holds with c ≡ c(n, p, s, γ )

Proof By standard rescaling—i.e., passing to B1 � x �→ w(x0 + �x), with x0 being
the center of B�—we can reduce to the case B� ≡ B1(0). The assertion then follows

by [37, Proposition 2.2] and standard Poincaré’s inequality, as w ∈ W 1,p
0 (B1). ��

Using interpolation from [14] (see also [13]),we can also prove the following improved
imbedding:

Lemma 2.3 (Localized interpolation) Let 1 < p < γ ≤ p/s and s ∈ (0, 1), B� ⊂ R
n.

If w ∈ W 1,p
0 (B�) ∩ L∞(B�), then w ∈ W s,γ (B�) and

(∫
B�

∫
−

B�

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

≤ c‖w‖1−s
L∞(B�)

(∫
−

B�

|Dw|p dx

)s/p

(2.2)

holds with c ≡ c(n, p, s, γ ).
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Proof Note that, on the contrary to the rest of the paper, here we are allowing p = sγ ;
this is not really needed in what follows, but we include this case for completeness.
Again we can assume that B�(x0) ≡ B1(0), and, letting w ≡ 0 outside B1(0), we can

assume w ∈ W 1,p
0 (Rn) ∩ L∞(Rn). We first consider the case p > sγ . We shall use

the off-diagonal interpolation results from [14] in Triebel–Lizorkin spaces Fσ
λ,t [76,

2.3.1]. Specifically, we use the following interpolation inequality, that holds whenever
0 ≤ σ1 < σ2 < ∞ and λ1, λ2 ∈ (1,∞) and t, t1, t2 ≥ 1

‖w‖Fσ
λ,t (R

n) ≤ c‖w‖θ

F
σ1
λ1,t1

(Rn)
‖w‖1−θ

F
σ2
λ2,t2

(Rn)
, (2.3)

provided θ ∈ (0, 1) is such that σ = θσ1 + (1− θ)σ2 and 1/λ = θ/λ1 + (1− θ)/λ2,
where c ≡ c(n, σi , λi , ti , θ); see [14, Lemma 3.1]. Note the off-diagonal character of
(2.3), that lies in the fact that t, t1, t2 can be chosen arbitrarily. From [14, Pag. 390]
and [15, Proposition 5.3] we recall the identities F0

λ1,2
(Rn) ≡ Lλ1(Rn), F1

λ2,2
(Rn) ≡

W 1,λ2(Rn) and Fσ
λ,λ(R

n) ≡ W σ,λ(Rn) when σ ∈ (0, 1). This means that (2.3) turns
into

‖w‖W σ,λ(Rn) ≤ c‖w‖1−σ

Lλ1 (Rn)
‖w‖σ

W 1,λ2 (Rn)
, (2.4)

with σ ∈ (0, 1) and 1/λ = (1 − σ)/λ1 + σ/λ2; see also [15]. Now, observe that
1 < p < γ and p > sγ imply (1 − s)γ p/(p − sγ ) > 1, therefore in (2.4), we can
take λ1 = (1 − s)γ p/(p − sγ ), σ = s and λ2 = p; via Poincaré’s inequality this
yields

[w]s,γ ;B1 ≤ c‖w‖1−s
Lλ1 (B1)

‖w‖s
W 1,p(B1)

≤ c‖w‖1−s
L∞(B1)

‖Dw‖s
L p(B1)

,

with c ≡ c(n, p, s, γ ), that is (2.2) when sγ < p. On the other hand, if sγ = p,
we use [14, Corollary 3.2, (c)], that is [w]θσ,λ/θ;Rn ≤ c‖w‖1−θ

L∞(Rn)
‖w‖θ

W σ,λ(Rn)
, that

holds whenever θ ∈ (0, 1), where c ≡ c(n, σ, λ, θ). We use this with σ = 1, λ = p,
θ = s and get

[w]s,p/s;B1 ≤ c‖w‖1−s
L∞(B1)

‖w‖s
W 1,p(B1)

≤ c‖w‖1−s
L∞(B1)

‖Dw‖s
L p(B1)

,

with c ≡ c(n, p, s), and the proof is complete. ��

We find it useful to have a unified reformulation of Lemmas 2.2-2.3. For this, we
introduce, with reference to the exponents p, s, γ considered in Theorems 1-5, the
following quantities:

ϑ :=
{

s if γ > p

1 if γ ≤ p
and

⎧⎪⎨
⎪⎩
Aγ := 1 if γ > p and 0 otherwise

Bγ := 1 if γ < p and 0 otherwise

Cγ := 1 if γ = p and 0 otherwise.

(2.5)
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Note that Aγ + Bγ + Cγ = 1. With this definition we note that (1.4) translates into

p �= γ �⇒ p > ϑγ and p ≥ ϑγ . (2.6)

We can now summarize the parts we need of Lemmas 2.2 and 2.3 in the following:

Lemma 2.4 Let w ∈ W 1,p
0 (B�), with p, γ > 1, s ∈ (0, 1) be such that sγ ≤ p;

assume also that w ∈ L∞(B�), when γ > p. Then w ∈ W s,γ (B�) and

(∫
B�

∫
−

B�

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

≤ c‖w‖1−ϑ
L∞(B�)�

ϑ−s

(∫
−

B�

|Dw|p dx

)ϑ/p

(2.7)

holds with c ≡ c(n, p, s, γ ). In (2.7) we interpret ‖w‖1−ϑ
L∞(B�) = 1 when γ ≤ p and

therefore ϑ = 1.

2.3 Miscellanea

We shall often use the auxiliary vector field Vμ : Rn → R
n , defined by

Vμ(z) := (|z|2 + μ2)(p−2)/4z (2.8)

whenever z ∈ R
n , where p ∈ (1,∞) and μ ∈ [0, 1] are as in (1.5). It follows that

|Vμ(z1) − Vμ(z2)| ≈ (|z1|2 + |z2|2 + μ2)(p−2)/4|z1 − z2|, (2.9)

where the equivalence holds up to constants depending only on n, p. A standard
consequence of (1.5)3 is the following strict monotonicity inequality:

|Vμ(z1) − Vμ(z2)|2 ≤ c(∂z F(z2) − ∂z F(z1)) · (z2 − z1) (2.10)

holds whenever z1, z2 ∈ R
n , where c ≡ c(n, p,�). The two inequalities in the last

two displays are in turn based in on the following one

∫ 1

0
(|z1 + λ(z2 − z1)|2 + μ2)t/2 dλ ≈n,t (|z1|2 + |z2|2 + μ2)t/2 (2.11)

that holds whenever t > −1 and z1, z2 ∈ R
n are such that |z1| + |z2| + μ > 0. As a

consequence of (2.9) and (2.10), it also follows that

|z|p ≤ c ∂z F(z) · z + cμp (2.12)

holds for every z ∈ R
n , where, again, it is c ≡ c(n, p,�); for the facts in the

last four displays see for instance [2, 31, 49] and related references. Finally, three
classical iteration lemmas. The first one can be obtained by [48, Lemma 6.1] after a
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straightforward adaptation. Lemma 2.6 comes via a reading of the proof of (the very
similar) [47, Lemma 2.2]. Finally, Lemma 2.7 is nothing but De Giorgi’s geometric
convergence lemma [48, Lemma 7.1].

Lemma 2.5 Let h : [�0, �1] → R be a non-negative and bounded function, and let
θ ∈ (0, 1), ai , γi , b ≥ 0 be numbers, i ≤ k ∈ N. Assume that

h(t) ≤ θh(s) +
k∑

i=1

ai

(s − t)γi
+ b

holds whenever �0 ≤ t < s ≤ �1. Then

h(�0) ≤ c
k∑

i=1

ai

(�1 − �0)γi
+ c b

holds too, where c ≡ c(θ, γi ).

Lemma 2.6 Let h : [0, r0] → R be a non-negative and non-decreasing function such
that the inequality

h(t) ≤ a

[(
t

�

)n

+ ε

]
h(�) + a�β

holds whenever 0 ≤ t ≤ � ≤ r0, where a > 0 and 0 < β < n. For every positive
b < n, there exists ε0 ≡ ε0(a, n, β,b) such that, if ε ≤ ε0, then

h(t) ≤ c

(
t

�

)b

h(�) + ctβ

holds too, whenever 0 ≤ t ≤ � ≤ r0, where c ≡ c(a, n, β,b).

Lemma 2.7 Let t > 0 and {ṽi }i∈N0 ⊂ [0,∞) be such that ṽi+1 ≤ c∗ai ṽ1+t
i holds for

every i ≥ 0, with c∗ > 0, a ≥ 1 and t > 0. If ṽ0 ≤ c−1/t∗ a−1/t2 , then ṽi ≤ a−i/t ṽ0
holds for every i ≥ 0 and hence ṽi → 0.

2.4 Global boundedness

Instrumental to the proof of Theorems 3–5, is the boundedness of minimizers. This
proceeds via a variation of the classical De Giorgi–Stampacchia iteration scheme (see
for instance [6, Theorem 4.7], [48, Chapter 7]), and we report the full details for
completeness in the subsequent Proposition 2.1. We emphasize that in the rest of the
paper we are going to use Proposition 2.1 only when γ > p.
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Proposition 2.1 Under assumptions (1.5)–(1.7) and (1.9), let u ∈ Xg(�) be as in
(1.10) with

f ∈ Lq(�), where

{
q > n/p if p ≤ n

q = 1 if p > n .
(2.13)

There exists a constant c ≡ c(datab) such that ‖u‖W 1,p(�) +‖u‖L∞(Rn) ≤ c, where

datab := (n, p, s, γ,�, ‖ f ‖Lq (�), ‖g‖W 1,p(�), ‖g‖W s,γ (Rn), ‖g‖L∞(Rn), �) .

The result also holds in the case p ≤ sγ .

Proof Of course we can restrict to the case p ≤ n, otherwise the result follows with
minor modifications by Sobolev–Morrey embedding. In the following we define the
Sobolev conjugate exponent p∗ as p∗ = np/(n − p) as usual when p < n, and
p∗ > qp/(q − 1) = pq ′ when p = n. In any case, note that (2.13) implies

p∗

pq ′ > 1 . (2.14)

By the minimality of u, Sobolev, Morrey and Young’s inequalities, we get, after a few
standard manipulations involving in particular (1.5)1, (1.6)2 and (1.7)

∫
�

|Du|p dx + k

∫
Rn

∫
Rn

|u(x) − u(y)|γ
|x − y|n+sγ

dx dy

≤ c
∫

�

|Dg|p dx + c
∫
Rn

∫
Rn

|g(x) − g(y)|γ
|x − y|n+sγ

dx dy + c

(∫
�

| f |q dx

) p
q(p−1)

,

for c ≡ c(n, p, γ, q,�,�). Note that this still holds for critical points, i.e., solutions
to (1.11), and therefore connects to the setting of Theorem 6; this goes via the use of
(2.12). Using Sobolev inequality of the left-hand side of the inequality in the above
display yields

‖u‖p
L p∗

(�)
≤ c‖ f ‖p/(p−1)

Lq (�) + c(datab) =: M ≡ M(datab), (2.15)

with c ≡ c(n, p, γ, q,�,�). This implies the bound ‖u‖W 1,p(�) ≤ c(datab). It
remains to prove a similar bound for ‖u‖L∞(Rn). We start taking m large enough to
have

m > ‖g‖L∞(Rn) + M1/p + 1 . (2.16)

Eventually, we shall further enlarge the above lower bound on m. For i ∈ N0, define
the increasing sequence {κi }i∈N0 := {2m(1−2−i−1)}i∈N0 so that 2m ≥ κi ≥ m holds
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for all i ∈ N0. By (2.16) and u ∈ Xg(�), we see that vi := (u − κi )+ ∈ X0(�) for all
i ∈ N0. Testing (1.11) against vi+1 we have

0 =
∫

�

[
∂z F(Du) · Dvi+1 − f vi+1

]
dx

+
∫
Rn

∫
Rn

�′(u(x) − u(y))(vi+1(x) − vi+1(y))K (x, y) dx dy

=: (I) + (II) (2.17)

for every i ≥ 0. Using (2.12), Sobolev embedding and Hölder’s inequalities yield

(I) ≥ 1

c
‖vi+1‖p

L p∗
(�)

− c‖ f ‖Ln(�)‖vi+1‖L p∗
(�)|� ∩ {vi+1 > 0}|1/q ′−1/p∗

− c|� ∩ {vi+1 > 0}| (2.18)

for c ≡ c(n, p,�); notice that 1/q ′ − 1/p∗ > 0 by (2.14). To estimate term (II), first
consider the case u(x) > κi+1 and u(y) > κi+1, when we have, via (1.6)2

�′(u(x) − u(y))(vi+1(x) − vi+1(y)) = �′(vi+1(x) − vi+1(y))(vi+1(x) − vi+1(y))

≥ �−1|vi+1(x) − vi+1(y)|γ .

On the other hand, when u(x) > κi+1 and u(y) ≤ κi+1, by (1.6)2 it is

�′(u(x) − u(y))(vi+1(x) − vi+1(y))

= �′((u(x) − κi+1)+ + (κi+1 − u(y))+)(u(x) − κi+1)+

= �′ (vi+1(x) + (κi+1 − u(y))+)

vi+1(x) + (κi+1 − u(y))+
[
vi+1(x) + (κi+1 − u(y))+

]
vi+1(x)

≥ �−1|vi+1(x) + (κi+1 − u(y))+|γ−1vi+1(x)

≥ �−1[vi+1(x)]γ = �−1|vi+1(x) − vi+1(y)|γ .

In the opposite situation, i.e. when u(x) ≤ κi+1 and u(y) > κi+1, again by (1.6)2 we
have

�′(u(x) − u(y))(vi+1(x) − vi+1(y))

= −�′ (− ((u(y) − κi+1)+ + (κi+1 − u(x)+)) vi+1(y)

= �(− (vi+1(y) + (κi+1 − u(x))+))

vi+1(y) + (κi+1 − u(x))+
· (− (vi+1(y) + (κi+1 − u(x))+)) vi+1(y)

≥ �−1|vi+1(y) + (κi+1 − u(x))+|γ−1vi+1(y)

≥ �−1[vi+1(y)]γ = �−1|vi+1(x) − vi+1(y)|γ .
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Finally, when u(x) ≤ κi+1 and u(y) ≤ κi+1, it is �′(u(x) − u(y))(vi+1(x) −
vi+1(y)) = 0. Collecting all the above cases and recalling (1.7), leads to (II) ≥ 0.
Now note that vi ≥ vi+1 and vi ≥ κi+1 − κi = m/2i+1 on {vi+1 ≥ 0}, so that
� ∩ {vi+1 ≥ 0} ⊆ � ∩ {vi ≥ m/2i+1}, therefore we bound

|� ∩ {vi+1 > 0}| ≤ |� ∩ {vi ≥ m/2i+1}| ≤ (2i+1/m)p∗‖vi‖p∗
L p∗

(�)
.

Using these last inequalities in (2.17) and (2.18) together with (II) ≥ 0, yields

‖vi+1‖p
L p∗

(�)
≤ c‖vi‖L p∗

(�)|� ∩ {vi ≥ m/2i+1}|1/q ′−1/p∗ + c|� ∩ {vi ≥ m/2i+1}|
≤ c(2i+1/m)p∗/q ′−1‖vi‖p∗/q ′

L p∗
(�)

+ c(2i+1/m)p∗‖vi‖p∗
L p∗

(�)
(2.19)

with c ≡ c(datab). Setting ṽi := m−p‖vi‖p
L p∗

(�)
, (2.15) and (2.16) imply ṽi ≤ 1,

and (2.19) reads as

ṽi+1 ≤ c2(i+1)(p∗/q ′−1)m1−pṽ
p∗/(pq ′)
i + c2(i+1)p∗

m−pṽ
p∗/p
i

(2.16)≤ c∗2i p∗
ṽ1+t

i

for c∗ ≡ c∗(datab) and t := p∗/(pq ′) − 1 ; note that t > 0 by (2.14). In addition to
(2.16), we increase m in such a way that m p ≥ c1/t∗ 2p∗/t2M that implies, via (2.15),
ṽ0 ≤ c−1/t∗ 2−p∗/t2 . Lemma 2.7 now applies and gives

0 = lim
i→∞ ṽi = lim

i→∞ m−p
(∫

�

v
p∗
i dx

)p/p∗

= m−p
(∫

�

(u − 2m)
p∗
+ dx

)p/p∗

so that |�∩ {u > 2m}| = 0, and therefore u ≤ 2m holds a.e. in �. For a lower bound,
set ĝ := −g ∈ X(ĝ;�), f̂ := − f ∈ Ln(�) and consider functional Xĝ(�) � w �→
F̂(w), where

F̂(w) :=
∫

�

[F̂(Dw) − f̂ w] dx +
∫
Rn

∫
Rn

�̂(w(x) − w(y))K (x, y) dx dy,

F̂(z) := F(−z), �̂(t) := �(−t). F̂(·) and �̂(·) satisfy (1.5) and (1.6) and û := −u is
the unique minimizer of F̂(·) in Xĝ(�). The above argument apply to û and leads to
û ≤ 2m a.e. in �. All in all we have that |u| ≤ 2m a.e. in � and the proof is complete
recalling the way m has been determined. We note that in the above proof we never
used that p > sγ and this justifies the last assertion from the statement. ��
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2.5 Rewriting the Euler–Lagrange equation

Following [59, Section 1.5], let us set

K ′(x, y) :=

⎧⎪⎨
⎪⎩

�′(u(x) − u(y))K (x, y)

|u(x) − u(y)|γ−2(u(x) − u(y))
if x �= y, u(x) �= u(y)

k

|x − y|n+sγ
if x �= y, u(x) = u(y) ,

(2.20)

Ks(x, y) := K ′(x, y) + K ′(y, x)

2
. (2.21)

By (1.6)2, (1.7) and (2.20) and (2.21), it then follows that

Ks(x, y) = Ks(y, x) and Ks(x, y) ≈�

k

|x − y|n+sγ
(2.22)

hold for every x, y ∈ R
n , provided x �= y. Then, changing variables, (1.11) can be

rewritten as

∫
�

[
∂z F(Du) · Dϕ − f ϕ

]
dx

+
∫
Rn

∫
Rn

|u(x) − u(y)|γ−2(u(x) − u(y))(ϕ(x) − ϕ(y))Ks(x, y) dx dy = 0

(2.23)

that holds for every ϕ ∈ X0(�). From now on, we shall use (2.23) instead of (1.11).

3 Integral quantities measuring oscillations

In this section we fix two generic functions w and f , such that, unless otherwise
specified,w ∈ W 1,p(�)∩W s,γ (Rn) and f ∈ Ln(Rn), and an arbitrary ball B�(x0) ⊂
R

n . We are going to list a number of basic quantities that will play an important role
in this paper. In most of the times, such quantities give an integral measure of the
oscillations of a function w in B�(x0) or in its complement. A fundamental tool in the
regularity theory of fractional problems is the nonlocal tail, first introduced in [35],
which, in some sense, keeps track of long range interactions. In [10], a related nonlocal
quantity, called snail, was considered, namely

(
�sγ

∫
Rn\B�(x0)

|w(x)|γ
|x − x0|n+sγ

dx

)1/γ

. (3.1)

The snail can be essentially seen as the Lγ -average of |w| on R
n \ B�(x0) with

respect to the measure defined by dλx0 := |x − x0|−n−sγ dx . We refer to [10–12, 35,
56, 59, 72] for extra details on this matter. In this paper we use a Campanato type
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variation of (3.1), that is

snailδ(�) ≡ snailδ(w, B�(x0))

:=
(

�δ

∫
Rn\B�(x0)

|w(y) − (w)B�(x0)|γ
|x − x0|n+sγ

dy

)1/γ

, δ ≥ sγ. (3.2)

Note that

snailδ(w, B�(x0)) ≤ c(n, s, γ )r δ/γ−s‖w‖L∞(Rn) ∀ � ≤ r < ∞. (3.3)

This clearly involves the oscillations of u and it is a nonlocal version of the more
classical object

avq(w, B�(x0)) :=
(∫

−
B�(x0)

|w − (w)B�(x0)|q dx

)1/q

, q > 0 .

The right notion of excess functional combines the previous two quantities, i.e.,

exsδ(�) ≡ exsδ(w, B�(x0)) := avp(w, B�(x0)) + [
snailδ(w, B�(x0))

]γ /p
.

(3.4)

With θ ∈ (0, 1) and δ ≥ sγ , we further define

[rhsθ (�)]p ≡ [
rhsθ (B�(x0))

]p := �p−θ
(
‖ f ‖p/(p−1)

Ln(B�(x0))
+ 1

)
(3.5)

ccp∗(�) ≡ ccp∗(w, B�(x0))

:= �−p[avp(w, B�(x0))]p + �−sγ [avγ (w, B�(x0))]γ
+ �−δ[snailδ(w, B�(x0))]γ + ‖ f ‖p/(p−1)

Ln(B�(x0))
+ 1 (3.6)

ccp(�) ≡ ccp(w, B�(x0))

:= �−p[avp(�)]p + �−δ[snailδ(�)]γ + ‖ f ‖p/(p−1)
Ln(B�) + 1 (3.7)

[glθ,δ(�)]p ≡ [glθ,δ(w, B�(x0))]p

:= [exsδ(w, B�(x0))]p + [rhsθ (B�(x0))]p . (3.8)

Note that

p ≥ δ, � ≤ 1 �⇒ �p ccp(�) ≤ [glθ,δ(�)]p. (3.9)

Abbreviations above such as avp(�) ≡ avp(w, B�(x0)), ccp∗(�) ≡ ccp∗(w, B�

(x0)), and the like, will be made in the following whenever there will be no ambiguity
on whatw and B�(x0) are. Note also that, although ccp(·) and ccp∗(·) contain terms
depending on δ, all in all, these quantities are actually δ-independent by the very
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definition in (3.2). Of course all the quantities defined above also depend on f , but
this dependence will be omitted as it will be clear from the context. The motivation
for the notation above is that terms of the type rhsθ (·) appear as right-sides quantities
of certain inequalities related to equations as in (1.11). Terms of the type ccp(·) will
instead occur in certain Caccioppoli type inequalities.

Lemma 3.1 Let Bt (x0) ⊂ B�(x0) be two concentric balls, γ ≥ 1, δ ≥ sγ and
w ∈ W s,γ (Rn).

• Whenever 0 < t < � ≤ 1, it holds that

snailδ(w, Bt (x0)) ≤ c

(
t

�

)δ/γ

snailδ(w, B�(x0))

+ ctδ/γ−s
∫ �

t

(
t

ν

)s

avγ (w, Bν(x0))
dν

ν

+ ctδ/γ−s
(

t

�

)s

avγ (w, B�(x0)), (3.10)

with c ≡ c(n, s, γ ).
• With q ≥ 1, if ν > 0 and θ ∈ (0, 1) are such that θ� ≤ ν ≤ �, then

avq(w, Bν(x0)) ≤ 2θ−n/qavq(w, B�(x0)) . (3.11)

Proof In the following all the balls will be centred at x0. Let us first recall the standard
property

(∫
−

B�

|w − (w)B� |q dx

)1/q

≤ 2

(∫
−

B�

|w − w|q dx

)1/q

(3.12)

that holds whenever w ∈ R and q ≥ 1; from this (3.11) follows immediately. For the
proof of (3.10), we shall use a few arguments developed in [59]. Let Bt ⊂ B�, we
then split

snailδ(t) ≤ c

(
t

�

)δ/γ

snailδ(�) + ctδ/γ−s
(

t

�

)s

|(w)Bt − (w)B� |

+ c

(
tδ

∫
B�\Bt

|w(x) − (w)Bt |γ
|x − x0|n+sγ

dx

)1/γ

=: c

(
t

�

)δ/γ

snailδ(�) + cT1 + cT2, (3.13)

where c ≡ c(n, s, γ ). We have used

dλx0(R
n \ Bt ) = ct−sγ , dλx0(x) := dx

|x − x0|n+sγ
, (3.14)
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where c ≡ c(n, s, γ ). If �/4 ≤ t < �, also using this last identity, standard manip-
ulations based on (3.11) ensure that T1 + T2 ≤ ctδ/γ−s(t/�)savγ (�) holds with
c ≡ c(n, s, γ ). We can therefore assume that t < �/4. This means that there exists
λ ∈ (1/4, 1/2) and κ ∈ N, κ ≥ 2 so that t = λκ�. Using triangle and Hölder’s
inequalities, we estimate, using (3.11) and (3.12) repeatedly

T1 ≤ tδ/γ−s
(

t

�

)s

|(w)Bλ� − (w)B� | + tδ/γ−s
(

t

�

)s

|(w)Bλ� − (w)Bλκ �
|

≤ ctδ/γ−s
(

t

�

)s

avγ (�) + tδ/γ−s
(

t

�

)s κ−1∑
i=1

|(w)B
λi �

− (w)B
λi+1�

|

≤ ctδ/γ−s
(

t

�

)s

avγ (�) + ctδ/γ−s
(

t

�

)s κ−1∑
i=1

(∫
−

B
λi �

|w(x) − (w)B
λi �

|γ dx

)1/γ

≤ ctδ/γ−s
(

t

�

)s

avγ (�) + ctδ/γ−s
(

t

�

)s κ−1∑
i=1

∫ λi−1�

λi �

avγ (λi�)
dν

ν

≤ ctδ/γ−s
(

t

�

)s

avγ (�) + ctδ/γ−s
(

t

�

)s κ−1∑
i=1

∫ λi−1�

λi �

avγ (ν)
dν

ν

≤ ctδ/γ−s
(

t

�

)s

avγ (�) + ctδ/γ−s
(

t

�

)s ∫ �

t
avγ (ν)

dν

ν
,

with c ≡ c(n, s, γ ). For T2, we rewrite � = λ−κ t and estimate, by telescoping and
Jensen’s inequality

(∫
−

B
λ−i t

|w(x) − (w)Bt |γ dx

)1/γ

≤ 2n/γ+1
i∑

m=0

avγ (λ−mt), (3.15)

for 0 ≤ i ≤ k. Then, via (3.12), (3.15) and the discrete Fubini theorem, we obtain

T2 ≤ ctδ/γ−s

(
κ−1∑
i=0

λisγ (λ−i t)−n
∫

B
λ−i−1 t \B

λ−i t

|w(x) − (w)Bt |γ dx

)1/γ

≤ ctδ/γ−s
κ∑

i=0

(
λisγ

∫
−

B
λ−i t

|w(x) − (w)Bt |γ dx

)1/γ

≤ ctδ/γ−s
κ∑

i=0

λis
i∑

m=0

avγ (λ−mt)

= ctδ/γ−s
κ∑

m=0

avγ (λ−mt)
κ∑

i=m

λis
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≤ ctδ/γ−s
κ∑

m=0

λmsavγ (λ−mt)

≤ ctδ/γ−s
κ−1∑
m=0

∫ λ−m−1t

λ−m t
λmsavγ (ν)

dν

ν
+ ctδ/γ−s

(
t

�

)s

avγ (�)

≤ ctδ/γ−s
κ−1∑
m=0

∫ λ−m−1t

λ−m t

(
t

ν

)s

avγ (ν)
dν

ν
+ ctδ/γ−s

(
t

�

)s

avγ (�)

≤ ctδ/γ−s
∫ �

t

(
t

ν

)s

avγ (ν)
dν

ν
+ ctδ/γ−s

(
t

�

)s

avγ (�),

for c ≡ c(n, s, γ ). for c ≡ c(n, s, γ ). Merging the estimates found for T1 and T2 to
(3.13), we obtain (3.10). ��
Lemma 3.2 Let w ∈ Lγ

loc(R
n) and Bt (x0) ⊂ R

n be a ball. Then

∫
Rn\Bt

|w(y)|γ−1

|y − x0|n+sγ
dy ≤ c

ts

(∫
Rn\Bt

|w(y)|γ
|y − x0|n+sγ

dy

)1−1/γ

, (3.16)

where c ≡ c(n, s, γ ).

Proof We may of course assume that the right-hand side of (3.16) is finite, otherwise
there is nothing to prove. By (3.14) note that

∫
Rn\Bt

|w(y)|γ−1

|y − x0|n+sγ
dy = c

tsγ

∫
−
Rn\Bt

|w(y)|γ−1 dλx0(y)

and apply Jensen’s inequality with respect to the concave function τ �→ τ 1−1/γ . ��

4 Proof of Theorems 3, 7 and 8

The main steps of the proof of Theorem 3 are contained in Sects. 4.1–4.3 below,
where we permanently assume (1.5)–(1.7) and (1.9) and u is as in (1.10). The proofs
of Theorem 7 and 8 are instead in Sect. 4.4. In the following, all the balls B� ≡
B�(x0) � � considered will be such that � ≤ 1. We yet introduce the notation

dataγ :=
(

n, p, s, γ,�, ‖u‖1−ϑ
L∞(�)

)
, (4.1)

where ϑ is in (2.5), i.e., no dependence on ‖u‖L∞ occurs in dataγ when γ ≤ p and
thereforeϑ = 1.More precisely, in the followingwe shall alway interpret ‖w‖1−ϑ

L∞ ≡ 1
whenever γ ≤ p and w is a measurable function; note that, by Proposition 2.1, we
have that ‖u‖L∞ is finite when γ > p. Notice that, here as in the following, we are
abbreviating as ‖u‖L∞ ≡ ‖u‖L∞(�).
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4.1 Step 1: Basic Caccioppoli inequality

This is in the following:

Lemma 4.1 The inequality

∫
−

B�/2(x0)
(|Du|2 + μ2)p/2 dx

+ k

∫
B�/2(x0)

∫
−

B�/2(x0)

|u(x) − u(y)|γ
|x − y|n+sγ

dx dy ≤ c ccp∗(u, B�(x0)) (4.2)

holds whenever B� ≡ B�(x0) � � with � ∈ (0, 1], where c ≡ c(n, p, s, γ,�).

Proof All the balls will be centred at x0. We denote um := u − (u)B� , fix η ∈ C1
0(B�)

such that 1B�/2 ≤ η ≤ 1B3�/4 and |Dη| � 1/�, and set m := max{p, γ }. Note that
ϕ := ηmum ∈ X0(�), so that it can be used in (2.23); this yields

0 =
∫
−

B�

[
∂z F(Du) · D(ηmum) − ηm f um

]
dx

+ |B�|−1
∫
Rn

∫
Rn

|u(x) − u(y)|γ−2(u(x) − u(y))

· (ηm(x)um(x) − ηm(y)um(y))Ks(x, y) dx dy =: (I) + (II).

The estimation of (I) goes via (2.12) and Young and Sobolev inequalities as follows:

(I) ≥ c
∫
−

B�

ηm(|Du|2 + μ2)p/2 dx − c�−p
∫
−

B�

|um|p dx

− c −
(∫

−
B�

| f |n dx

)1/n (∫
−

B�

|ηmum|p∗
dx

)1/p∗

≥ c
∫
−

B�

ηm(|Du|2 + μ2)p/2 dx − c�−p
∫
−

B�

|um|p dx

− c‖ f ‖Ln(B�)

(∫
−

B�

|D(ηmum)|p dx

)1/p

− c

≥ c
∫
−

B�

ηm(|Du|2 + μ2)p/2 dx − c�−p[avp(�)]p − c‖ f ‖p/(p−1)
Ln(B�) − c

with c ≡ c(n, p,�). Here p∗ is the Sobolev conjugate exponent as described at the
beginning of the proof of Proposition 2.1. Using (2.22) we find

(II) =
∫

B�

∫
−

B�

|um(x) − um(y)|γ−2

· (um(x) − um(y))(ηm(x)um(x) − ηm(y)um(y))Ks(x, y) dx dy

123



284 C. D. Filippis, G. Mingione

+2
∫
Rn\B�

∫
−

B�

|um(x) − um(y)|γ−2(um(x)−um(y))ηm(x)um(x)Ks(x, y) dx dy

=: (II)1 + (II)2 .

We now observe that

(II)1 ≥ k

c

∫
B�

∫
−

B�

|ηm/γ (x)um(x) − ηm/γ (y)um(y)|γ
|x − y|n+sγ

dx dy

− ck
∫

B�

∫
−

B�

max{|um(x)|, |um(y)|}γ |ηm/γ (x) − ηm/γ (y)|γ
|x − y|n+sγ

dx dy (4.3)

where c ≡ c(p, γ ). Indeed, let us set

T (x, y) := |um(x) − um(y)|γ−2(um(x) − um(y))(ηm(x)um(x) − ηm(y)um(y)) .

We first consider the case η(x) ≥ η(y) and rewrite T (x, y) = T1(x, y) + T2(x, y),

where

{
T1(x, y) := |um(x) − um(y)|γ ηm(x)

T2(x, y) := |um(x) − um(y)|γ−2(um(x) − um(y))(ηm(x) − ηm(y))um(y) .

Mean Value Theorem yields

|T2(x, y)| ≤ c|ηm(γ−1)/γ (x)||ηm/γ (x) − ηm/γ (y)||um(x) − um(y)|γ−1|um(y)|

and, by Young’s inequality, we obtain

T1(x, y) ≤ cT (x, y) + c|ηm/γ (x) − ηm/γ (y)|γ |um(y)|γ .

When η(x) < η(y), we note that T (x, y) = T (y, x) and exchanging the role of x
and y in the above argument, in any case we conclude with

|um(x) − um(y)|γ ηm(x) ≤ cT (x, y) + cmax{|um(x)|, |um(y)|}γ |ηm/γ (x) − ηm/γ (y)|γ ,

with c ≡ c(p, γ ). From this, (2.22) and triangle inequality (4.3) follows via easy
manipulations; in turn, (4.3) implies

(II)1 ≥ k

c

∫
B�

∫
−

B�

|ηm/γ (x)um(x) − ηm/γ (y)um(y)|γ
|x − y|n+sγ

dx dy

− ck�−γ

∫
B�

∫
−

B�

max{|um(x)|, |um(y)|}γ
|x − y|n+γ (s−1)

dx dy

≥ k

c

∫
B�

∫
−

B�

|ηm/γ (x)um(x) − ηm/γ (y)um(y)|γ
|x − y|n+sγ

dx dy − ck�−sγ [avγ (�)]γ
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≥ k

c

∫
B�/2

∫
−

B�/2

|u(x) − u(y)|γ
|x − y|n+sγ

dx dy − c ccp∗(�), (4.4)

for c ≡ c(n, p, s, γ,�). For (II)2, note that

x ∈ B3�/4, y ∈ R
n \ B� �⇒ 1 ≤ |y − x0|

|x − y| ≤ 4 (4.5)

and then, recalling that η is supported in B3�/4, we have

|(II)2|
(2.22)≤ ck

∫
Rn\B�

∫
−

B�

|um(x) − um(y)|γ−1|um(x)|ηm(x)

|x − y|n+sγ
dx dy

(4.5)≤ c
∫
Rn\B�

∫
−

B�

max {|um(x)|, |um(y)|}γ−1 |um(x)|
|y − x0|n+sγ

dx dy

≤ c�−sγ
∫
−

B�

|um|γ dx + c
∫
Rn\B�

|um(y)|γ−1

|y − x0|n+sγ
dy

(∫
−

B�

|um|γ dx

)1/γ

(3.16)≤ c�−sγ [avγ (�)]γ + c

(∫
Rn\B�

|um(y)|γ
|y − x0|n+sγ

dy

)1−1/γ

�−savγ (�)

≤ �−sγ [avγ (�)]γ + c�−δ[snailδ(�)]γ
≤ c ccp∗(�),

whenever δ ≥ sγ , and where c ≡ c(n, s, γ,�). Combining the estimates for the terms
(I)-(II), and recalling that η ≡ 1 on B�/2, we arrive at (4.2). ��

4.2 Step 2: Localization

We define h ∈ u + W 1,p
0 (B�/4(x0)) as the (unique) solution to

h �→ min
w∈u+W 1,p

0 (B�/4(x0))

∫
B�/4(x0)

F(Dw) dx . (4.6)

The function h solves the Euler–Lagrange equation

∫
B�/4(x0)

∂z F(Dh) · Dϕ dx = 0 for every ϕ ∈ W 1,p
0 (B�/4) . (4.7)

Moreover, by minimality of h, (1.5)1 and (4.2) we gain

∫
−

B�/4

(|Dh|2 + μ2)p/2 dx ≤ �2
∫
−

B�/4

(|Du|2 + μ2)p/2 dx ≤ c ccp∗(�) (4.8)
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with c ≡ c(n, p, s, γ,�). The standard Maximum Principle gives

‖h‖L∞(B�/4) ≤ ‖u‖L∞(B�/4) . (4.9)

This last inequality is only going to be used when γ > p, that is when we know that
the right-hand side is finite by Proposition 2.1. Finally, we recall the L∞-L p inequality
for p-harmonic type functions (see [68, 69])

‖Dh‖p
L∞(B�/8)

≤ c
∫
−

B�/4

(|Dh|2 + μ2)p/2 dx
(4.8)≤ c ccp∗(�) (4.10)

that holds with c ≡ c(n, p, s, γ,�).

Lemma 4.2 Let h ∈ u +W 1,p
0 (B�/4(x0)) be as in (4.6). There exists σ ≡ σ(p, s, γ ) ∈

(0, 1) such that

∫
−

B�/4(x0)
|u − h|p dx ≤ c�θσ [glθ,δ(u, B�(x0))]p (4.11)

holds for every θ ∈ (0, 1), where c ≡ c(dataγ ) and dataγ is defined in (4.1).

Proof We are going to use Lemma 4.1 with

δ ∈ (sγ, p) (4.12)

in (3.2), which makes sense by p > sγ . We keep this choice until the end of the proof
of Theorem 3; later on, in Step 3, we shall choose δ suitably close to p. We preliminary
observe that

ccp∗(�) ≤ c ccp(�) (4.13)

holds with c ≡ c(dataγ ). Indeed, recalling (3.6) and (3.7), it is sufficient to estimate
the term �−sγ [avγ (�)]γ appearing in the definition ofccp∗(�); for this, still denoting
avq(t) ≡ avq(u, Bt (x0)) for every q > 0 and t ≤ �, observe that

�−sγ [avγ (�)]γ ≤ c‖u‖(1−ϑ)γ

L∞(B�)�
−sγ [avϑγ (�)]ϑγ

≤ c‖u‖(1−ϑ)γ

L∞(B�)�
(ϑ−s)γ [�−p[avp(�)]p]ϑγ/p

≤ c‖u‖(1−ϑ)γ

L∞(B�)�
(ϑ−s)γ [ccp(�)]ϑγ/p ≤ c ccp(�) , (4.14)

from which (4.13) follows, with the required dependence of the constants (recall
Proposition 2.1 in the case γ > p); we have used (2.6) and that ccp(�) ≥ 1 ≥ �. We
now extend h ≡ u outside B�/4, thereby getting, in particular, that h ∈ W 1,p(�), and
in addition, when γ > p, we have h ∈ L∞(Rn) by Proposition 2.1 and (4.9). If we
set w := u − h, then w ∈ W 1,p

0 (B�), and also w ∈ L∞(B�) when γ > p. Lemma 2.4
implies w ∈ W s,γ (B�) and, since w ≡ 0 in B� \ B�/4, by [37, Lemma 5.1] it follows
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that w ∈ W s,γ (Rn). In this way w ∈ X0(�) and can be used as a test function both
in (2.23) and (4.7). Setting V2 := |Vμ(Du) − Vμ(Dh)|2, with Vμ(·) being defined in
(2.8), we have

∫
−

B�/4

V2 dx
(2.10)≤ c

∫
−

B�/4

(∂z F(Du) − ∂z F(Dh)) · Dw dx

(4.7)= c
∫
−

B�/4

∂z F(Du) · Dw dx
(2.23)= c

∫
−

B�/4

f w dx

−c
∫

B�/2

∫
−

B�/2

|u(x) − u(y)|γ−2(u(x) − u(y))(w(x) − w(y))

×Ks(x, y) dx dy

−2c
∫
Rn\B�/2

∫
−

B�/2

|u(x) − u(y)|γ−2(u(x) − u(y))w(x)

×Ks(x, y) dx dy

=: (I) + (II) + (III) , (4.15)

where c ≡ c(n, p,�). Hölder and Sobolev inequalities (as in Lemma 4.1) yield

|(I)| ≤ ‖ f ‖Ln(B�/4)

(∫
−

B�/4

|Dw|p dx

)1/p

(4.8)≤ c‖ f ‖Ln(B�/4)[ccp∗(�)]1/p (4.13)≤ c‖ f ‖Ln(B�/4)[ccp(�)]1/p, (4.16)

with c ≡ c(n, p, s, γ,�). Again by Hölder’s inequality, it is

|(II)| ≤ c

(
k

∫
B�/2

∫
−

B�/2

|u(x) − u(y)|γ
|x − y|n+sγ

dx dy

)1−1/γ

·
(
k

∫
B�/4

∫
−

B�/4

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

(4.2),(4.13)≤ c[ccp(�)]1−1/γ

(∫
B�/4

∫
−

B�/4

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

(2.7)≤ c[ccp(�)]1−1/γ ‖w‖1−ϑ
L∞(B�/4)

�ϑ−s

(∫
−

B�/4

|Dw|p dx

)ϑ/p

(4.9)≤ c[ccp(�)]1−1/γ ‖u‖1−ϑ
L∞(B�/4)

�ϑ−s

(∫
−

B�/4

(|Du|p + |Dh|p) dx

)ϑ/p

(4.8),(4.13)≤ c�ϑ−s[ccp(�)]1−1/γ+ϑ/p , (4.17)

123



288 C. D. Filippis, G. Mingione

with c ≡ c(dataγ ). Note that in the last line we have also used the content of
Proposition 2.1 in the case γ > p; again, no appearance of ‖w‖L∞ , ‖u‖L∞ takes
place when γ ≤ p. For (III) we note that we can replace u by u − (u)B�/2 and use that
x ∈ B�/4, y ∈ R

n \ B�/2 imply |y − x0|/|x − y| ≤ 2. Recalling that w is supported
in B�/4, we then have

|(III)| ≤ ck
∫
Rn\B�/2

∫
−

B�/2

max{|u(x) − (u)B�/2 |, |u(y) − (u)B�/2 |}γ−1|w(x)|
|x − y|n+sγ dx dy

≤ c
∫
Rn\B�/2

∫
−

B�/2

max{|u(x) − (u)B�/2 |, |u(y) − (u)B�/2 |}γ−1|w(x)|
|y − x0|n+sγ dx dy

≤ c�−sγ
∫
−

B�/2

|u − (u)B�/2 |γ−1|w| dx

+c
∫
Rn\B�/2

|u(y) − (u)B�/2 |γ−1

|y − x0|n+sγ dy
∫
−

B�/4

|w| dx

(3.16)≤ c

⎡
⎣�−sγ [avγ (�/2)]γ−1 + �−s

(∫
Rn\B�/2

|u(y) − (u)B�/2 |γ
|y − x0|n+sγ dy

)1−1/γ
⎤
⎦

·
(∫
−

B�/4

|w|γ dx

)1/γ

≤ c

�s

[(
�−sγ [avγ (�/2)]γ )1− 1

γ +
(
�−δ[snailδ(�/2)]γ

)1− 1
γ

](∫
−

B�/4

|w|γ dx

) 1
γ

≤ c

�s

[(
�−sγ [avγ (�)]γ )1− 1

γ +
(
�−δ[snailδ(�)]γ

)1−1/γ
](∫

−
B�/4

|w|γ dx

) 1
γ

(3.6)≤ c�−s [ccp∗(�)]1−1/γ

(∫
−

B�/4

|w|γ dx

)1/γ

(4.13)≤ c[ccp(�)]1−1/γ

(
�−sγ

∫
−

B�/4

|w|γ dx

)1/γ

, (4.18)

for c ≡ c(dataγ ); we have used (3.10) and (3.11) in the third-last line. Similarly to
(4.14), we have

�−sγ
∫
−

B�/4

|w|γ dx ≤ c
(‖u‖L∞(B�/4) + ‖h‖L∞(B�/4)

)(1−ϑ)γ
�(ϑ−s)γ

·
(

�−p
∫
−

B�/4

|w|p dx

)ϑγ/p

≤ c‖u‖(1−ϑ)γ

L∞(B�)�
(ϑ−s)γ

(∫
−

B�/4

|Dw|p dx

)ϑγ/p

,

(4.8),(4.13)≤ c�(ϑ−s)γ [ccp(�)]ϑγ/p . (4.19)
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Combining the content of the last displays we conclude with

|(III)| ≤ c�ϑ−s[ccp(�)]1−1/γ+ϑ/p ,

again with c ≡ c(dataγ ). Using this last estimate with (4.16) and (4.17) in (4.15) we
conclude that

∫
−

B�/4

V2 dx ≤ c‖ f ‖Ln(B�)[ccp(�)]1/p + c�ϑ−s[ccp(�)]1−1/γ+ϑ/p , (4.20)

holds with c ≡ c(dataγ ). To proceed, for the moment we consider the case p �= γ ,
when [p(γ −1)+ϑγ ]/(pγ ) < 1 and [2γ −(p−ϑγ )]/(2γ ) < 1 are implied by (2.6);
these facts will be used in the cases p ≥ 2 and 1 < p < 2, respectively. Now, if p ≥ 2,
we take θ ∈ (0, 1) as in (3.5) and estimate, via Poincaré and Young’s inequality

∫
−

B�/4

|u − h|p dx ≤ c�p
∫
−

B�/4

|Du − Dh|p dx

(2.9)≤ c�p
∫
−

B�/4

V2 dx

(4.20)≤ c�p−1‖ f ‖Ln(B�)

(
�p±θ(p−1)/2ccp(�)

)1/p

+c�
p−sγ

γ

(
�

p± θ(p−ϑγ )
2[p(γ−1)+ϑγ ]ccp(�)

) p(γ−1)+ϑγ
pγ

≤ c

(
�

θ(p−1)
2 + �

θ(p−ϑγ )
2[p(γ−1)+ϑγ ]

)
�pccp(�)

+c�p− θ
2

(
‖ f ‖

p
p−1
Ln(B�) + �

pγ (ϑ−s)
p−ϑγ

)

(3.9)≤ c�θσ [glθ,δ(�)]p, (4.21)

where

σ := 1

2
min

{
p − ϑγ

p(γ − 1) + ϑγ
, 1

}
> 0

and c ≡ c(dataγ ). When p < 2, we instead estimate

∫
−

B�/4

|u − h|p dx ≤ c�p
∫
−

B�/4

|Du − Dh|p dx

(2.9)≤ c�p

(∫
−

B�/4

V2 dx

)p/2

·
(∫

−
B�/4

(|Du|2 + |Dh|2 + μ2)p/2 dx

)1−p/2
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(4.8),(4.20)≤ c�p [‖ f ‖Ln(B�)[ccp(�)]1/p + �ϑ−s [ccp(�)]1−1/γ+ϑ/p]p/2

·[ccp∗(�)]1−p/2

(4.2),(4.13)≤ c�
p(p−1)

2 ‖ f ‖p/2
Ln(B�)

(
�

p± θ(p−1)
2(3−p) ccp(�)

) 3−p
2

+c�
p(p−sγ )

2γ

(
�

p± θ(p−ϑγ )
2[2γ−(p−ϑγ )] ccp(�)

) 2γ−(p−ϑγ )
2γ

≤ c

(
�

θ(p−1)
2(3−p) + �

θ(p−ϑγ )
2[2γ−(p−ϑγ )]

)
�pccp(�)

+c�p− θ
2

(
‖ f ‖

p
p−1
Ln(B�) + �

pγ (ϑ−s)
p−ϑγ

)

(3.9)≤ c�θσ [glθ,δ(�)]p, (4.22)

where this time it is

σ := 1

2
min

{
p − 1

3 − p
,

p − ϑγ

2γ − (p − ϑγ )

}
> 0

and c ≡ c(dataγ ). We have so far proved (4.11) in the case p �= γ . When p = γ we
partially proceed as in (4.21) and (4.22). When p ≥ 2, from (4.20) we directly gain

∫
−

B�/4

|u − h|p dx ≤ c
(
�

θ(p−1)
2 + �1−s

)
�pccp(�) + c�p− θ

2 ‖ f ‖
p

p−1
Ln(B�) (4.23)

with c ≡ c(dataγ ), so that (4.11) follows via (3.9), with σ := (1 − s)/2. If p < 2,
we have

∫
−

B�/4

|u − h|p dx ≤ c

(
�

θ(p−1)
2(3−p) + �

p(1−s)
2

)
�pccp(�) + c�p− θ

2 ‖ f ‖
p

p−1
Ln(B�),

(4.24)

where c ≡ c(dataγ ), so that (4.11) follows with σ := 1
2 min

{
p−1
3−p , p(1 − s)

}
. ��

4.3 Step 3: Hölder integral decay and conclusion

With t ≤ �/8, we bound

avp(t)
(3.12)≤ c

(∫
−

Bt

|h − (h)Bt |p dx

)1/p

+c
(�

t

)n/p
(∫

−
B�/4

|u − h|p dx

)1/p
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Poincaré≤ ct

(∫
−

Bt

|Dh|p dx

)1/p

+ c
(�

t

)n/p
(∫

−
B�/4

|u − h|p dx

)1/p

(4.11)≤ ct‖Dh‖L∞(Bt ) + c�θσ/p
(�

t

)n/p
glθ,δ(�)

(4.10),(4.13)≤ ct[ccp(�)]1/p + c�θσ/p
(�

t

)n/p
glθ,δ(�)

(3.9)≤ c

[(
t

�

)
+ c�θσ/p

(�

t

)n/p
]
glθ,δ(�) (4.25)

with c ≡ c(dataγ ); the same inequality holds in the case �/8 ≤ t ≤ � by (3.11). It
follows

{
avγ (t) ≤ 2‖u‖1−ϑ

L∞(Bt )
[avp(t)]ϑ ≤ c[avp(t)]ϑ

avγ (t) ≤ c[(t/�)ϑ + �ϑθσ/p(�/t)nϑ/p][glθ,δ(�)]ϑ ∀ t ≤ � ,
(4.26)

for c ≡ c(dataγ ). Indeed, (4.26)1 follows as in (4.14), while (4.26)2 follows from
(4.25) and (4.26)1. Taking t ≡ τ� in (4.25) with τ ∈ (0, 1/8), we find, in particular

avp(τ�) ≤ c
(
τ + �θσ/pτ−n/p) glθ,δ(�) (4.27)

with c ≡ c(dataγ ). In order to get a full decay estimate for glθ,δ(·) from (4.27), we
need to evaluate the snail and the rhs terms. For this we use (3.10), that yields

[snailδ(τ�)]γ ≤ cτ δ[snailδ(�)]γ + c(τ�)δ
(∫ �

τ�

avγ (ν)

νs

dν

ν

)γ

+ cτ δ�δ−sγ [avγ (�)]γ =: S1 + S2 + S3 . (4.28)

We now have

S1 ≤ cτ δ[glθ,δ(�)]p

by (3.4) and (3.8). By (4.26)2 and Young’s inequality (recall (2.6)), we have

S2 ≤ cτ δ�δ−ϑγ

(∫ �

τ�

dν

ν1+s−ϑ

)γ

[glθ,δ(�)]ϑγ

+ cτ δ�δ+(θσ+n)ϑγ /p
(∫ �

τ�

dν

ν1+s+nϑ/p

)γ

[glθ,δ(�)]ϑγ

≤ cτ δ�δ−sγ logγ

(
1

τ

)
[glθ,δ(�)]ϑγ + cτ δ−sγ−nϑγ/p�δ−sγ+θσϑγ/p[glθ,δ(�)]ϑγ

≤ c

[
τ δ logp/ϑ

(
1

τ

)
+ �θσ τ−n−sp/ϑ

]
[glθ,δ(�)]p + c(Aγ + Bγ )τ δ �

p(δ−sγ )
p−ϑγ ,

123



292 C. D. Filippis, G. Mingione

where c ≡ c(dataγ ) and Aγ ,Bγ ,Cγ are defined in (2.5). Using again Young’s
inequality, we have

S3
(4.26)1≤ cτ δ�δ−sγ [avp(�)]ϑγ ≤ cτ δ[glθ,δ(�)]p + c(Aγ + Bγ )τ δ�

p(δ−sγ )
p−ϑγ .

(4.29)

Connecting the above inequalities for S1, S2, S3, and gathering terms, leads to

[snailδ(τ�)]γ ≤ c

[
τ δ logp/ϑ

(
1

τ

)
+ �θσ τ−n−sp/ϑ

]
[glθ,δ(�)]p

+ c(Aγ + Bγ )τ δ�
p(δ−sγ )
p−ϑγ . (4.30)

Noting that

[rhsθ (τ�)]p ≤ τ p−θ [rhsθ (�)]p , (4.31)

recalling (3.8), and connecting (4.27) and (4.30), gives

glθ,δ(τ�) ≤ c

[
τ δ/p log1/ϑ

(
1

τ

)
+ τ 1−θ/p + �θσ/pτ−n/p−s/ϑ

]
glθ,δ(�)

+ c(Aγ + Bγ )τ δ/p�
δ−sγ
p−ϑγ (4.32)

with c ≡ c(dataγ ). From now on we consider balls B� ≡ B�(x0) ⊂ Br (x0) ≡ Br �
� with r ≤ r∗ ≤ 1; further restrictions on r∗ will be put in a few lines. We now fix
α such that 0 < α < 1 and set α1 := (1 + α)/2. We then find θ ≡ θ(p, α) ∈ (0, 1)
sufficiently small and then, by (4.12), δ ≡ δ(p, s, γ, α) ∈ (sγ, p) sufficiently close
to p, such that

α < α1 < 1 − θ

p
, α1 <

δ

p
, 1 − θ

p
≤ δ − sγ

p − ϑγ
(4.33)

(this last condition is not required when p = γ ). Also note that (4.33) imply

(Aγ + Bγ )�
δ−sγ
p−ϑγ ≤ �

1− θ
p ≤ rhsθ (�) .

Using this inequality in (4.32), and recalling the definitions in Sect. 3, yields

glθ,δ(τ�) ≤ c1

[
τ δ/p log1/ϑ

(
1

τ

)
+ τ 1−θ/p + �θσ/pτ−n/p−s/ϑ

]
glθ,δ(�)

(4.34)
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and c1 ≡ c1(dataγ ). We eventually determine τ ≡ τ(dataγ , α) ≤ 1/8 such that

⎧⎪⎨
⎪⎩
3c1τ

δ/p−α1 log1/ϑ
(
1

τ

)
≤ 1 , 3c1τ

1−θ/p−α1 ≤ 1

τ (1−α)/2 ≤ 1

2
.

(4.35)

Once τ has been determined as a function of the dataγ and α, we find r∗ ≡
r∗(dataγ , α) such that if � ≤ r ≤ r∗, then 3c1�θσ/pτ−n/p−s/ϑ−α1 ≤ 1. With
such choices (4.34) becomes

glθ,δ(τ�) ≤ τα1glθ,δ(�) , (4.36)

that now holds whenever � ≤ r ≤ r∗. We now introduce the sharp fractional maximal
type operator

M (x0, �) := sup
ν≤�

ν−αglθ,δ(u, Bν(x0)) (4.37)

and its truncated version

Mε (x0, �) := sup
ε�≤ν≤�

ν−αglθ,δ(u, Bν(x0)) , 0 < ε <
1

2
. (4.38)

Multiplying both sides of (4.36) by (τ�)−α , taking the sup with respect to � ∈ (εr , r),
we arrive at

Mε (x0, τr) ≤ τ (1−α)/2 sup
εr≤ν≤r

ν−αglθ,δ(u, Bν(x0))

≤ τ (1−α)/2 sup
ετr≤ν≤r

ν−αglθ,δ(u, Bν(x0))

(4.35)≤ 1

2
Mε (x0, τr) + sup

τr≤ν≤r
ν−αglθ,δ(u, Bν(x0)) ,

that in turn implies, reabsorbing terms (note that Mε is always finite), and recalling that
τ ≡ τ(dataγ , α)

Mε (x0, r) ≤ c

rα
sup

τr≤ν≤r
glθ,δ(u, Bν(x0)) .

Letting ε → 0 yields

M (x0, r) ≤ c

rα
sup

τr≤ν≤r
glθ,δ(u, Bν(x0)) , (4.39)
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with again c ≡ c(dataγ , α). In order to estimate the right-hand side of the last
inequality, we start using (3.10) and (3.11) to get, whenever 0 < � ≤ r ≤ r∗

M (x0, r) ≤ c

rα

[
avp(r) + [snailδ(r)]γ /p + r (δ−sγ )/p[avγ (r)]γ /p + rhsθ (r)

]
.

For the avγ -term we can use (4.14) and Young inequality to get

r (δ−sγ )/p[avγ (r)]γ /p ≤ c‖u‖(1−ϑ)γ /p
L∞(Br )

r (δ−sγ )/p[avp(r)]ϑγ/p

≤ c avp(r) + c(Aγ + Bγ )r
δ−sγ
p−ϑγ ≤ c avp(r) + crα

where c ≡ c(dataγ ) and in the last line we have used also (4.33). Finally, observe
that again (4.33) implies that

rhsθ (r) ≤ crα
(
‖ f ‖1/(p−1)

Ln(Br )
+ 1

)
.

Matching the content of the last three displays, and recalling the definition in (4.37),
yields

glθ,δ(�) ≤ c
(�

r

)α [
avp(r) + [snailδ(r)]γ /p + rα‖ f ‖1/(p−1)

Ln(Br )
+ rα

]
(4.40)

for every 0 < � ≤ r ≤ r∗, where c ≡ c(dataγ , α). Note that this is exactly a version
of (1.17) with the Lq -norm of f replaced by the Ln-one. Further estimating

avp(r∗) + [snailsγ (r∗)]γ /p ≤ c(dataγ , α)

rn/p∗

(
‖u‖L p(Br∗ ) + ‖u‖γ /p

Lγ (Rn)

)

(4.41)

when γ ≤ p, and

avp(r∗) + [snailsγ (r∗)]γ /p ≤ c(dataγ , α)‖u‖L∞(Br∗ )

+c(dataγ , α)

rn/p∗
‖u‖γ /p

Lγ (Rn)
(4.42)

when γ > p, we have proved the following:

Proposition 4.1 Under assumptions (1.5)–(1.7) and (1.9), let u ∈ Xg(�) be as
in (1.10). For every α ∈ (0, 1) there exist r∗ ≡ r∗(datah, α) ∈ (0, 1) and
c ≡ c(datah, α) ≥ 1, such that

∫
−

B�

|u − (u)B� |p dx ≤ c

(
�

r∗

)α p

(4.43)

holds whenever B� � � and � ≤ r∗. Assumption (1.9) can be dropped when γ ≤ p.
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Theorem3nowfollows from(4.43) and the classicalCampanato–Meyers integral char-
acterization of Hölder continuity (via a standard covering argument); see for instance
[48].

Remark 2 When neglecting the presence of the snailδ and rhsθ in the definition
of glθ,δ in (3.8), that is, when considering the purely local, homogenous setting, we
have that (4.37) turns into

M (x0, �) = sup
ν≤�

ν−α

(∫
−

Bν (x0)
|u − (u)Bν (x0)|p dx

)1/p

.

This is nothing but the classical local and fractional variant of the Feffermain–Stein
Sharp Maximal Operator widely used in [34]. Moreover, note that a bound of the type
in (4.40) immediately implies the local Hölder continuity of u as

|u(x) − u(y)| ≤ c

α

[
M (x, �) + M (y, �)

] |x − y|α

holds whenever x, y ∈ B�/4, for every ball B� ⊂ R
n (see [34] and [58, Proposition

1]).

Remark 3 • When γ ≤ p we are directly proving Hölder estimates on u without
using any bound on ‖u‖L∞ and this justifies the claim in Theorem 3 and Propo-
sition 4.1 that we can avoid using assumption (1.9) in this case. For a precise a
priori estimate we refer to Theorem 8 and its proof in Sect. 4.4. When γ > p the
estimates for Proposition 4.1 depend locally on ‖u‖L∞ in the sense that one can
restrict the arguments to any open subset�1 � �, considering balls Br ⊂ �1 (see
also the proof of Theorem 5 below). More precisely, in the statement of Theorem 3
we can define the new lists:

{
datah := (n, p, s, γ,�, ‖ f ‖Ln(�1), ‖u‖L p(�1), ‖u‖Lγ (Rn)) if γ ≤ p

datah := (n, p, s, γ,�, ‖ f ‖Ln(�1), ‖u‖L∞(�1), ‖u‖Lγ (Rn)) if γ > p

(4.44)

replacing (1.12), to get the assertion of Theorem 3 for every open subset�0 � �1.
In this sense, when γ > p, one can replace the boundary assumption (1.9) by
u ∈ L∞

loc(�); this justifies the content of Theorem 6. In any case, when assuming
(1.9), ‖u‖L∞(�) can be bounded via Proposition 2.1.

• By looking at the estimates in (4.41) and (4.42), one can replace ‖u‖Lγ (Rn) appear-
ing in (1.12) and (4.44) with quantities like

(∫
Rn

|u(x)|γ
(1 + |x |)n+sγ

dx

)1/γ

(4.45)

plus local Lγ -norms of u (this time not extended on the whole Rn). Quantities of
this type are related to so called Tail spaces (as implicitly used for instance in [9]).
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Related Tail spaces are considered in [11, 72]. In fact, by using conditions as the
finiteness of the quantity in (4.45) it is possible to define slightly weaker notions of
solutions and to avoid for instance to require that u ∈ W s,γ (Rn) thereby passing
to a local condition. We shall not follow this path here.

4.4 Proof of Theorems 7 and 8

The proof follows the line of the one for Theorem 6 and we report the main modi-
fications. We prefer to do so rather than giving a unified approach as this highlights
a few useful technical differences. We preliminary note that the current assumptions
on f and Proposition 2.1 imply that u is globally bounded when γ > p. The key of
the adaptation relies in replacing, essentially everywhere, quantities like ‖ f ‖Ln(B�)

by �1−n/q‖ f ‖Lq (B�) and indeed, with B� ≡ B�(x0), we use the new definitions

ccp∗(�) := �−p[avp(u, B�)]p + �−sγ [avγ (u, B�)]γ

+ �−δ[snailδ(u, B�)]γ +
(
�1−n/q‖ f ‖Lq (B�)

)p/(p−1) + 1

ccp(�) := �−p[avp(u, B�)]p

+ �−δ[snailδ(u, B�)]γ +
(
�1−n/q‖ f ‖Lq (B�)

)p/(p−1) + 1 .

Lemma 4.1 now works verbatim (by changing the estimate of (I) in the way similar to
that shown in (4.47) below). Instead, Lemma 4.2 changes and asserts that there exists
σ ≡ σ(p, s, γ ) ∈ (0, 1) such that

∫
−

B�/4(x0)
|u − h|p dx ≤ c(�θσ + ε p)[exsδ(u, B�(x0))]p

+cε�
α p(‖ f ‖p/(p−1)

Lq (B�) + 1) (4.46)

holds for every ε ∈ (0, 1), where c ≡ c(dataγ ), cε ≡ c(dataγ , ε) and provided
0 < θ ≤ 2p(1 − α). For this, we start replacing (4.16) by

|(I)| ≤ c�1−n/q‖ f ‖Lq (B�/4)[ccp(�)]1/p (4.47)

where q is as in (1.16). Indeed, when p ≤ n we can estimate by

|(I)| ≤
(∫

−
B�/4

| f |(p∗)′ dx

)1/(p∗)′ (∫
−

B�/4

|w|p∗
dx

)1/p∗

≤ c�

(∫
−

B�/4

| f |q dx

)1/q (∫
−

B�/4

|Dw|p dx

)1/p

.

and conclude with (4.47) using (4.13) as done in the case of (4.16). Here p∗ =
np/(n − p) denotes the usual Sobolev embedding exponent when p < n, otherwise
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we set p∗ = n/[α(n − 1)]. When p > n we instead use Morrey’s embedding as
follows:

|(I)| ≤ c�−n‖ f ‖L1(B�/4)
‖w‖L∞(B�/4)

≤ c�1−n‖ f ‖L1(B�/4)

(∫
−

B�/4

|Dw|p dx

)1/p

,

so that (4.47) follows again via (4.13). With such a replacement, we proceed until
(4.20), that holds with ‖ f ‖Ln(B�) replaced by �1−n/q‖ f ‖Lq (B�). Note that, in the
following, we shall use the identity 1+ (1− n/q)/(p − 1) = α, that holds for all the
values of q and α described in (1.16). To proceed with the proof of (4.46), estimate
(4.21) is now replaced by

∫
−

B�/4

|u − h|p dx ≤ c�p−1
(
�1−n/q‖ f ‖Lq (B�)

) (
�pccp(�)

)1/p

+ c�
p−sγ

γ

(
�

p± θ(p−ϑγ )
2[p(γ−1)+ϑγ ]ccp(�)

) p(γ−1)+ϑγ
pγ

≤ c

(
�

θ(p−ϑγ )
2[p(γ−1)+ϑγ ] + ε p

)
�pccp(�) + cε�

p
(
�1−n/q‖ f ‖Lq (B�)

)p/(p−1)

+ c�p− θ
2+ pγ (ϑ−s)

p−ϑγ

≤ c

(
�

θ(p−ϑγ )
2[p(γ−1)+ϑγ ] + ε p

)
[exsδ(�)]p + cε�

α p‖ f ‖p/(p−1)
Lq (B�) + c�p− θ

2

so that (4.46) follows for a suitable positive number σ , and observing that p − θ/2 ≥
α p. Similar modifications of (4.22)–(4.24) lead to the complete proof of (4.46) in the
cases p < 2 and p = γ . With (4.46) we find the following analogs of (4.26)2 and
(4.27), respectively

avγ (t) ≤ c[(t/�)ϑ + (�ϑθσ/p + εϑ)(�/t)nϑ/p][exsδ(�)]ϑ

+ cε(�/t)nϑ/p�ϑα
(
‖ f ‖ϑ/(p−1)

Lq (B�) + 1
)

∀ t ≤ � , (4.48)

and

avp(τ�) ≤ c[τ + c(�θσ/p + ε)τ−n/p]exsδ(�)

+ cετ
−n/p�α

(
‖ f ‖1/(p−1)

Lq (B�) + 1
)

(4.49)

both valid for c ≡ c(dataγ ), cε ≡ cε(dataγ , ε), the second one for τ ∈ (0, 1/8).
Our next aim is to find a new estimate for the right-hand side in (4.28) by means of
(4.48). We have S1 ≤ cτ δ[exsδ(�)]p by (3.4). By (4.48) we find

S2 ≤ cτ δ�δ−ϑγ

(∫ �

τ�

dν

ν1+s−ϑ

)γ

[exsδ(�)]ϑγ
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+ c(τ�)δ
(
�(θσ+n)ϑγ /p + εϑγ �nϑγ/p

)(∫ �

τ�

dν

ν1+s+nϑ/p

)γ

[exsδ(�)]ϑγ

+ cετ
δ�δ+nϑγ/p

(∫ �

τ�

dν

ν1+s+nϑ/p

)γ

�ϑγα(‖ f ‖ϑγ/(p−1)
Lq (B�) + 1)

≤ cτ δ�δ−sγ logγ

(
1

τ

)
[exsδ(�)]ϑγ

+ cτ δ−sγ−nϑγ/p�δ−sγ [
(�θσϑγ/p + εϑγ )[exsδ(�)]ϑγ

+cε�
ϑγα(‖ f ‖ϑγ/(p−1)

Lq (B�) + 1)
]

≤ c

[
τ δ logp/ϑ

(
1

τ

)
+ (�θσ + ε p)τ−sγ−nϑγ/p

]
[exsδ(�)]p

+ c(Aγ + Bγ )τ−sγ−nϑγ/p�
p(δ−sγ )
p−ϑγ + cετ

−sγ−nϑγ/p�α p
(
‖ f ‖p/(p−1)

Lq (B�) + 1
)

where c ≡ c(dataγ ), cε ≡ cε(dataγ , ε), Aγ ,Bγ ,Cγ are defined in (2.5). Finally,
as in (4.29), we have

S3 ≤ cτ δ[exsδ(�)]p + c(Aγ + Bγ )�
p(δ−sγ )
p−ϑγ .

Connecting the estimates for S1, S2, S3 to (4.28) and then the resulting inequality to
(4.49), we find

exsδ(τ�) ≤ c1

[
τ δ/p log1/ϑ

(
1

τ

)
+ (�θσ/p + ε)τ−sγ /p−nϑγ/p2

]
exsδ(�)

+ cετ
−sγ /p−nϑγ/p2�α

(
‖ f ‖1/(p−1)

Lq (B�) + 1
)

(4.50)

with c1 ≡ c1(dataγ ), cε ≡ cε(dataγ , ε) and that holds provided we start choosing
δ close enough to p in order to have α(p − ϑγ ) ≤ δ − sγ . In this respect, with
α1 := (1 + α)/2, we take δ such that α1 < δ/p holds too. Then, we first choose
τ ≡ τ(dataγ , α) such that c1τα1−α ≤ 1/2 and τ δ/p−α1 log1/ϑ (1/τ) ≤ 1/2 holds.
This fixes the value of τ . Next we again find (small) r∗ ≡ r∗(dataγ , α) ∈ (0, 1)

and ε ≡ ε(dataγ , α) ∈ (0, 1) such that (�θσ/p + ε)τ−α1−sγ /p−nϑγ/p2 ≤ 1/2 holds
whenever � ≤ r∗. This finally fixes the choice of the constant cε as a function of
dataγ , α. Using the above choices in (4.50), and eventually multiplying both sides
by (τ�)−α , leads to

(τ�)−αexsδ(τ�) ≤ 1

2
�−αexsδ(�) + c‖ f ‖1/(p−1)

Lq (B�) + c ,

where we have used that τ ≡ τ(dataγ , α) has been fixed and therefore it is still

c = cετ
−α−sγ /p−nϑγ/p2 ≡ c(dataγ , α). From this inequality we can conclude as
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after (4.36), using this time the fractional maximal operator

M (x0, �) := sup
ν≤�

ν−αexsδ(u, Bν(x0))

and its related truncated version built as in (4.38). In particular, as for (4.40), we find

exsδ(�) ≤ c
(�

r

)α [
avp(r) + [snailsγ (r)]γ /p] + c�α‖ f ‖1/(p−1)

Lq (Br )
+ c�α ,

whenever 0 < � ≤ r ≤ r∗, from which (1.17) follows via elementary manipulations.
We mention that the various dependence on the constants in (1.17) follows as in
Remark 3.

5 Proof of Theorem 4

In this section we permanently work under the assumptions of Theorem 4, that is
(1.5)–(1.7) and (1.8); we shall consider f ∈ Ln(Rn) by simply letting f ≡ 0 outside
�. The proof goes in seven different steps.

5.1 Step 1: Flattening of the boundary and global diffeomorphisms

The classical flattening-of-the-boundary procedure needs to be upgraded here, as we
are in a nonlocal setting. With B+

r (x0) and �r (x0) having been introduced in Sect. 2,
we first recall the standard local procedure, as for instance described in [4, 5, 61, 62],
and summarize its main points. Let us consider x0 ∈ ∂�; without loss of generality
(by translation) we can assume that x0 ∈ {xn = 0} and that � touches {xn = 0}
tangentially, so that its normal at x0 is en , where {ei }i≤n is the standard basis of Rn .
By the assumption ∂� ∈ C1,αb , there exists a radius r0 ≡ rx0 , depending on x0, and
a C1,αb -regular diffeomorphism T ≡ Tx0 : B4r0(x0) �→ R

n such that T (x0) = x0,
B+
2r0

(x0) ⊂ T (�3r0(x0)) ⊂ B+
4r0

(x0), �2�(x0) ⊂ T (∂� ∩ B2r0(x0)) ⊂ �3�(x0) and
|z|/c∗ ≤ |DT (x)z| ≤ c∗|z|, x ∈ B4r0(x0), where c∗ ∈ (1, 10/9) can be chosen close
to 1 at will taking a smaller r0. Moreover, it is

{
‖T ‖C1,αb (B4r0 (x0))

+ ‖T −1‖C1,αb (B4r0 (x0))
< ∞

‖JT̃ ‖L∞(B4r0 (x0)) + ‖JT̃ −1‖L∞(B4r0 (x0)) < ∞ ,
(5.1)

where JT and JT −1 denote the Jacobian determinants of T and T −1, respectively.
We refer for instance to [4, Section 3.2] and [5, pages 306 and 318] for the full details
and for the explicit expression of the map T considered here; see also [61, 62]. We
next extend T to a C1-regular global diffeomorphism of Rn into itself, following a
discussion we found in math stackexchange.2 With η ∈ C∞

0 (B4r0(x0)) being such that

2 https://math.stackexchange.com/questions/148808/the-extension-of-diffeomorphism.
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1B3r0
≤ η ≤ 1B4r0

and |Dη| � 1/r0, we define

{
Tx0(x) := T (x0) + DT (x0) · (x − x0)

T̃x0(x) := (1 − η(x))Tx0(x) + η(x)T (x) .
(5.2)

It follows that T̃x0 is C1,αb -regular and, being DT (x0) invertible, that Tx0 is a smooth
global diffeomorphism of Rn . We now use that the set of C1-diffeomorphisms of
R

n (into itself) is open in the (strong) topology of C1(Rn,Rn) (see [50, Chapter 2,
Theorem 1.6], also for the relevant definitions). For this, we take rx0 > 0, such that
if H ∈ C1(Rn,Rn) and ‖H − Tx0‖C1(Rn ,Rn) < rx0 , then H is a global C1-regular
diffeomorphism. By using (5.4) and mean value theorem, it now easily follows that

‖T̃x0 − Tx0‖C1(Rn) ≤ c‖T ‖C1,αb (B4r0 (x0))
rαb
0 ≡ crαb

0 , (5.3)

with c depending again on x0, so that, by taking r0 such that crαb
0 < rx0 , we obtain

that T̃x0 (from now on also denoted by T ) is a C1-regular global diffeomorphism.
Summarizing, and recalling the explicit expression of T̃x0 in (5.2), we have that for
every x0 ∈ ∂�, there exists a global C1-regular diffeomorphism T ≡ T̃x0 such that

{
‖DT̃ ‖L∞(Rn), ‖DT̃ −1‖L∞(Rn) ≤ c0 < ∞
‖JT̃ ‖L∞(Rn), ‖JT̃ −1‖L∞(Rn) ≤ c0 < ∞ (5.4)

(here we are further enlarging c0) and which is C1,αb -regular diffeomorphism on B2r0 .
A comment needs perhaps to be made here, on the inequalities in (5.4). Since T̃x0
is a C1-regular diffeomorphism, then (5.4) holds when replacing R

n by B4r0(x0) by
compactness, for a suitable constant c0; on the other hand T̃x0 is affine onR

n \ B4r0(x0)
and it is DT̃x0 = DT (x0), which is invertible as T is a local diffeomorphism in B2r0 .
Therefore (5.4) holds as stated, by eventually enlarging c0. Note that, at this stage, the
constant c0 appearing in (5.4) is still depending on the point x0 via the diffeomorphism
T . As we are going to flatten the entire boundary ∂�with maps as T , by compactness
we can assume that r0 and c0 are independent of x0 ∈ ∂�; see also Remark 4 below
for more on this aspect.

5.2 Step 2: The flattened functional around a point x0 ∈ @Ä

We set �̃ := T (�), so that � := T −1(�̃), and also set g̃ := g ◦ T −1. Note that if
w ∈ Xg(�), then w̃ := w ◦ T −1 ∈ Xg̃(�̃); on the other hand, any w̃ ∈ Xg̃(�̃) can
be written as w̃ = w ◦ T −1 where w ∈ Xg(�) is simply defined by w := w̃ ◦ T . By
(1.8) and (5.4) it follows

{
g̃ ∈ W 1,q(�̃) ∩ W s,γ (Rn) ∩ W a,χ (Rn)

‖g̃‖W 1,q (�̃) + ‖g̃‖W s,γ (Rn) + ‖g̃‖W a,χ (Rn) ≤ c(data) .
(5.5)
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We then define the (flattened) functional

Xg̃(�̃) � w̃ �→ F̃(w̃) :=
∫

�̃

c(x)[F̃(x, Dw̃) − f̃ w̃] dx

+
∫
Rn

∫
Rn

�(w̃(x) − w̃(y))K̃ (x, y) dx dy

where
{

F̃(x, z) := F(zDT (T −1(x))), c(x) := |JT −1(x)|,
f̃ (x) := f (T −1(x)), K̃ (x, y) := c(x)c(y)K (T −1(x), T −1(y)) .

Defining ũ := u ◦ T −1, by (1.10) we have

Xg̃(�̃) � ũ �→ min
w̃∈Xg̃(�̃)

F̃(w̃) . (5.6)

By the very definition of ũ, Proposition 2.1, and directly from (5.5), we also find

‖ũ‖L∞(Rn) + ‖g̃‖L∞(Rn) + ‖ f̃ ‖Ln(R̃n)
≤ c(data) . (5.7)

Fromnowon, anydependenceof thevarious constants fromT , that is‖T ‖C1,αb (Br0 (x0))
,

‖T ‖C1(Rn) and the like, will be incorporated in the dependence on �, and therefore
on data (compare with (1.12)4). It follows from the very definitions given, (1.7) and
(5.4) that c(·) is continuous and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|c(x) − c(y)| ≤ �̃|x − y|αb , ∀ x, y ∈ Br0 (x0)

0 <
1

�̃
≤ c(x) ≤ �̃ , ∀ x ∈ R

n

k

�̃|x − y|n+sγ
≤ K̃ (x, y) ≤ k�̃

|x − y|n+sγ , ∀ x, y ∈ R
n , x �= y .

(5.8)

Again by (1.5) and (5.4), as for the new integrand F̃(·), we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z �→ F̃(x, z) ∈ C2(Rn \ {0}) ∩ C1(Rn)

�̃−1(|z|2 + μ2)p/2 ≤ F̃(x, z) ≤ �̃(|z|2 + μ2)p/2

(|z|2 + μ2)|∂zz F̃(x, z)|
+(|z|2 + μ2)1/2|∂z F̃(x, z)| ≤ �̃(|z|2 + μ2)p/2

�̃−1(|z|2 + μ2)(p−2)/2|ξ |2 ≤ ∂zz F̃(x, z)ξ · ξ

|∂z F̃(x, z) − ∂z F̃(y, z)| ≤ �̃|x − y|αb (|z|2 + μ2)(p−1)/2,

(5.9)

for all ξ ∈ R
n , z ∈ R

n \{0}, x, y ∈ Br0(x0). In (5.8) and (5.9) it is �̃ ≡ �̃(data) ≥ 1.
The Euler–Lagrange equation corresponding to (5.6) is now

∫
�̃

c(x)
[
∂z F̃(x, Dũ) · Dϕ̃ − f̃ ϕ̃

]
dx
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+
∫
Rn

∫
Rn

�′(ũ(x) − ũ(y))(ϕ̃(x) − ϕ̃(y))K̃ (x, y) dx dy = 0 , (5.10)

and holds for all ϕ̃ ∈ X0(�̃). Performing the same transformation described in
Sect. 2.5, we can use

∫
�̃

c(x)
[
∂z F̃(x, Dũ) · Dϕ̃ − f̃ ϕ̃

]
dx

+
∫
Rn

∫
Rn

|ũ(x) − ũ(y)|γ−2(ũ(x) − ũ(y))(ϕ̃(x) − ϕ̃(y))K̃s(x, y) dx dy = 0

(5.11)

with the new kernel K̃s(·) that can be obtained by K̃ (·) as explained in (2.22) and
satisfies

K̃s(x, y) = K̃s(y, x) and K̃s(x, y) ≈�̃

k

|x − y|n+sγ
(5.12)

for every x, y ∈ R
n , x �= y.

Remark 4 The various constants generically appealed to as �̃, c0 and c ≡ c(data)

from Sects. 5.1 and 5.2, actually depend on the point x0 via the features of the map
T considered; this dependence has been omitted above, and we will continue to do
so. Indeed, by a standard compactness argument, we can cover and flatten the whole
boundary ∂� by using a finite number of such diffeomorphisms {Ti }i≤k (and points
{xi }≤k), generating the corresponding constants in the estimates. Eventually, we take
the largest constants/lowest and make all the resulting constants independent of the
specific point xi considered. We note that all such dependences will be incorporated in
data, since this last one also depends on �. Similarly, we can assume that the size of
the radius r0, that can be decreased at will, is independent of the point x0; we remark
that such reasoning is standard [4, 5, 61, 62].

5.3 Step 3: Localized regularity

In order to prove Theorem 4 it is now sufficient to show that u ∈ C0,α(�) holds
for every α < κ , with [u]0,α;� ≤ c(data, α), and where κ is defined in (1.8)3.
This follows from the fact that u ∈ g + W 1,p

0 (�) and g ∈ W a,χ (Rn), and therefore
g ∈ C0,a−n/χ (Rn), as W a,χ (Rn) ⊂ C0,a−n/χ (Rn) with ‖g‖C0,κ (Rn) ≤ c‖g‖W a,χ (Rn).
This is implied by (1.8)3 and [37, Theorem 8.2]. The last two estimates also give
[u]0,α;Rn ≤ c(data, α) as claimed in Theorem 4. Finally, to get that u ∈ C0,α(�)

for every α < 1 when g ∈ W 1,∞(Rn), it is then sufficient to note that a careful
reading of the (forthcoming) proof of Theorem 4 reveals that Theorem 4 still holds
when replacing the assumption g ∈ W a,χ (Rn) by g ∈ W a,χ

loc (Rn) and g ∈ C0,κ (Rn)

(or even by taking g ∈ W a,χ (�′) with � � �′). If g ∈ W 1,∞(Rn), then these new
conditions are obviously satisfied. Also taking Remark 4 into account, via a standard
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covering argument, we are left to prove the following fact, from which Theorem 4
follows:

Proposition 5.1 Let ũ ∈ Xg̃(�̃) be the solution to (5.6). Then ũ ∈ C0,α(B̄+
r0/2

(x0))
for every α < κ . Moreover, there exists a constant c ≡ c(data, α) such that
[ũ]0,α;B̄+

r0/2(x0)
≤ c.

For the proof of Proposition 5.1, from now on we shall consider points x̃0 ∈ �r0/2(x0),
radii � ≤ r0/4 ≤ 1/4, and upper balls B� ≡ B+

� (x̃0) ⊂ B+
r0 (x0). Unless otherwise

stated, all the upper balls will be centred at x̃0, and x̃0 will be a fixed, but generic point
as just specified. In analogy to the interior case, with δ being such that sγ < δ < p
(such a choice is allowed by (1.4)), we define the boundary analog of the quantities
introduced in Sect. 3 as follows:

exs+
δ (�) ≡ exs+

δ (ũ, B�(x̃0))

:=
(∫

−
B+

� (x̃0)
|ũ − g̃|p dx

)1/p

+ [
snailδ(ũ, B�(x̃0))

]γ /p
, (5.13)

[rhs+
θ (�)]p ≡ [rhs+

θ (B�(x̃0))]p

:= �p−θ
(
‖ f̃ ‖p/(p−1)

Ln(B+
� (x̃0))

+ 1
)

+
(

�q
∫
−

B+
� (x̃0)

|Dg̃|q dx

)p/q

+
(

�aχ

∫
B�(x̃0)

∫
−

B�(x̃0)

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

)p/(ϑχ)

, (5.14)

where ϑ has been defined in (2.5),

ccp+(�) ≡ ccp+(ũ, B�(x̃0))

:= �−p
∫
−

B+
� (x̃0)

|ũ − g̃|p dx + �−δ[snailδ(ũ, B�(x̃0))]γ

+
(
‖ f̃ ‖p/(p−1)

Ln(B+
� (x̃0))

+ 1
)

+
(∫

−
B+

� (x̃0)
|Dg̃|q dx

)p/q

+
(

�χ(a−s)
∫

B�(x̃0)

∫
−

B�(x̃0)

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

)γ /χ

, (5.15)

and, finally

[gl+
θ,δ(�)]p ≡ [gl+

θ,δ(ũ, B�(x̃0))]p

:=[exs+
δ (ũ, B�(x̃0))]p+[rhs+

θ (B�(x̃0))]p+(Aγ +Bγ )�
p(δ−sγ )
p−ϑγ ,

(5.16)
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304 C. D. Filippis, G. Mingione

whereAγ ,Bγ are defined in (2.5). Thanks to (2.6), by Young’s inequality, δ < p and
� ≤ 1, we find

�p

(
�χ(a−s)

∫
B�

∫
−

B�

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

) γ
χ

≤
(

�aχ

∫
B�

∫
−

B�

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

) p
ϑχ

+ (Aγ + Bγ )�
p(δ−sγ )
p−ϑγ .

The above definitions, and the content of the last display, yield

�pccp+(�) ≤ c[gl+
θ,δ(�)]p (5.17)

with c ≡ c(s, γ, p). We shall often use the inequality

∫
B

∫
−

B

|g̃(x) − g̃(y)|γ
|x − y|n+sγ

dx dy ≤ c

(
|B| χ(a−s)

n

∫
B

∫
−

B

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

) γ
χ

(5.18)

that follows by a simple application of Hölder’s inequality.

5.4 Step 4: Boundary Caccioppoli type inequality

We begin the proof of Proposition 5.1 with

Lemma 5.1 The inequality

∫
−

B+
�/2(x̃0)

(|Dũ|2 + μ2)p/2 dx

+ k

∫
B�/2(x̃0)

∫
−

B�/2(x̃0)

|ũ(x) − ũ(y)|γ
|x − y|n+sγ

dx dy ≤ c ccp+(u, B�(x̃0)) (5.19)

holds with c ≡ c(data).

Proof Fix parameters �/2 ≤ τ1 < τ2 ≤ �, a function η ∈ C1
0(Bτ2) such that 1Bτ1

≤
η ≤ 1B(3τ2+τ1)/4 and |Dη| � 1/(τ2 − τ1). With m := max{γ, p}, set ũm := ũ − (ũ)Bτ2

,
g̃m := g̃ − (ũ)Bτ2

, w̃m := ũm − g̃m = ũ − g̃ and consider ϕ̃ := ηmw̃m. By its very
definition, ϕ̃ vanishes outside B+

τ2
⊂ B+

� ⊂ B+
r0 (x0), so that (5.5) impliesϕ ∈ X0(B+

� ).
Testing (5.11) with ϕ̃ we find

0 =
∫

B+
�

ηmc(x)
[
∂z F̃(x, Dũ) · Dw̃m − f̃ w̃m

]
dx

+ m
∫

B+
�

ηm−1w̃mc(x)∂z F̃(x, Dũ) · Dη dx
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+
∫

Bτ2

∫
Bτ2

|ũ(x) − ũ(y)|γ−2(ũ(x) − ũ(y))

· (ηm(x)w̃m(x) − ηm(y)w̃m(y))K̃s(x, y) dx dy

+ 2
∫
Rn\Bτ2

∫
Bτ2

|ũ(x) − ũ(y)|γ−2(ũ(x) − ũ(y))ηm(x)w̃m(x)K̃s(x, y) dx dy

=: (I) + (II) + (III) + (IV).

Via (2.12), (5.8), (5.9), and Sobolev, Poincaré and Young’s inequalities (as in
Lemma 4.1) we obtain

(I) + (II) ≥ 1

c∗

∫
B+

�

ηm(|Dũ|2 + μ2)p/2 dx − c|B�|
(∫

−
B+

τ2

|Dg̃|q dx

)p/q

− c

(τ2 − τ1)p

∫
B+

�

|ũ − g̃|p dx − c|B�|
(
‖ f̃ ‖p/(p−1)

Ln(B+
� )

+ 1
)

,

where c ≡ c(data). We then write (III) as

(III) =
∫

Bτ2

∫
Bτ2

|ũm(x) − ũm(y)|γ−2(ũm(x) − ũm(y))

· (ηm(x)ũm(x) − ηm(y)ũm(y))K̃s(x, y) dx dy

−
∫

Bτ2

∫
Bτ2

|ũm(x) − ũm(y)|γ−2(ũm(x) − ũm(y))

· (ηm(x)g̃m(x) − ηm(y)g̃m(y))K̃s(x, y) dx dy =: (III)1 + (III)2.

The term (III)1 can be estimated similarly to (4.3) and (4.4), i.e.:

(III)1 ≥ k

c∗

∫
Bτ2

∫
Bτ2

|ηm/γ (x)ũm(x) − ηm/γ (y)ũm(y)|γ
|x − y|n+sγ

dx dy

− ck
∫

Bτ2

∫
Bτ2

max {ũm(x), ũm(y)}γ |ηm/γ (x) − ηm/γ (y)|γ
|x − y|n+sγ

dx dy

≥ k

c∗
[ũ]γs,γ ;Bτ1

− ck�(1−s)γ

(τ2 − τ1)γ

∫
Bτ2

|ũm|γ dx

≥ k

c∗
[ũ]γs,γ ;Bτ1

− c�(1−s)γ

(τ2 − τ1)γ

∫
B�

|u − (u)B� |γ dx,

for c, c∗ ≡ c, c∗(data). As for (III)2, we have
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306 C. D. Filippis, G. Mingione

|(III)2| ≤ k

2c∗
[ũ]γs,γ ;Bτ2

+ c
∫

Bτ2

∫
Bτ2

|η(x)g̃m(x) − η(y)g̃m(y)|γ
|x − y|n+sγ

dx dy

≤ k

2c∗
[ũ]γs,γ ;Bτ2

+ c[g̃]γs,γ ;Bτ2
+ cτ (1−s)γ

2

(τ2 − τ1)γ

∫
Bτ2

|g̃ − (ũ)Bτ2
|γ dx

≤ k

2c∗
[ũ]γs,γ ;Bτ2

+ c[g̃]γs,γ ;Bτ2

+ cτ (1−s)γ
2

(τ2 − τ1)γ

∫
Bτ2

(
|ũ − g̃|γ + |ũ − (ũ)Bτ2

|γ
)
dx

≤ k

2c∗
[ũ]γs,γ ;Bτ2

+ c�(1−s)γ

(τ2 − τ1)γ

∫
B+

�

|ũ − g̃|γ dx

+ c�(1−s)γ

(τ2 − τ1)γ

∫
B�

|ũ − (ũ)B� |γ dx

+ c|B�|
(

�χ(a−s)
∫

B�

∫
−

B�

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

)γ /χ

(5.20)

with c, c∗ ≡ c, c∗(data), and we can assume that the constant c∗ appearing in the
last two displays is the same. Note that in the last line we have also used (3.11) and
(5.18). In order to estimate (IV), we note

x ∈ B(3τ2+τ1)/4, y ∈ R
n \ Bτ2 �⇒ 1 ≤ |y − x̃0|

|x − y|
≤ 1 + 3τ2 + τ1

τ2 − τ1
≤ 4τ2

τ2 − τ1
. (5.21)

Recalling that η is supported in B(3τ2+τ1)/4, and using (5.8) and (5.12), we get

|(IV)| (5.21)≤ cτ n+sγ
2

(τ2 − τ1)n+sγ

∫
Rn\Bτ2

∫
Bτ2

|ũm(x) − ũm(y)|γ−1ηm(x)|w̃m(x)|
|y − x̃0|n+sγ

dx dy

≤ cτ n
2

(τ2 − τ1)n+sγ

∫
Bτ2

|ũm|γ−1|w̃m| dx

+ cτ n+sγ
2

(τ2 − τ1)n+sγ

∫
Rn\Bτ2

|ũm(y)|γ−1

|y − x̃0|n+sγ
dy

∫
B+

τ2

|w̃m| dx

(3.16)≤ cτ n
2

(τ2 − τ1)n+sγ

∫
Bτ2

|ũm|γ dx + cτ n
2

(τ2 − τ1)n+sγ

∫
B+

τ2

|w̃m|γ dx

+ cτ n+s(γ−1)
2

(τ2 − τ1)n+sγ

(∫
Rn\Bτ2

|ũ(y) − (ũ)Bτ2
|γ

|y − x̃0|n+sγ
dy

)1−1/γ ∫
B+

τ2

|w̃m| dx

≤ cτ n
2

(τ2 − τ1)n+sγ

∫
Bτ2

|ũm|γ dx + cτ n
2

(τ2 − τ1)n+sγ

∫
B+

τ2

|w̃m|γ dx
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+ cτ n+sγ
2

(τ2 − τ1)n+sγ
τ

−δ(1−1/γ )
2 |Bτ2 |1−1/γ [snailδ(τ2)]γ−1

·τ−s
2

(∫
B+

τ2

|w̃m|γ dx

)1/γ

≤ c�n

(τ2 − τ1)n+sγ

∫
Bτ2

|ũm|γ dx + c�n

(τ2 − τ1)n+sγ

∫
B+

τ2

|w̃m|γ dx

+ c�n+sγ

(τ2 − τ1)n+sγ
|Bτ2 |τ−δ

2 [snailδ(τ2)]γ .

By further using (3.10) and (3.11), we find

|(IV)| ≤ c�n

(τ2 − τ1)n+sγ

∫
B�

|ũ − (ũ)B� |γ dx + c�n

(τ2 − τ1)n+sγ

∫
B+

�

|ũ − g̃|γ dx

+ c�n+sγ

(τ2 − τ1)n+sγ

(
|B�|�−δ[snailδ(�)]γ + �−sγ

∫
B�

|ũ − (ũ)B� |γ dx

)

for c ≡ c(data). Merging the estimates for terms (I)-(IV), and again using (3.11),
yields

∫
B+

τ1

(|Dũ|2 + μ2)p/2 dx + k[ũ]γs,γ ;Bτ1

≤ k

2
[ũ]γs,γ ;Bτ2

+ c

(τ2 − τ1)p

∫
B+

�

|ũ − g̃|p dx

+ c

[
�n

(τ2 − τ1)n+sγ
+ �(1−s)γ

(τ2 − τ1)γ

](∫
B+

�

|ũ − g̃|γ dx +
∫

B�

|ũ − (ũ)B� |γ dx

)

+ c�n+sγ

(τ2 − τ1)n+sγ
|B�|�−δ[snailδ(�)]γ + c|B�|

(
‖ f̃ ‖p/(p−1)

Ln(B+
� )

+ 1
)

+ c|B�|
(∫

−
B+

�

|Dg̃|q dx

) p
q

+ c|B�|
(

�χ(a−s)
∫

B�

∫
−

B�

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

) γ
χ

with c ≡ c(data). Applying Lemma 2.5 with the choice

h(t) :=
∫

B+
t

(|Dũ|2 + μ2)p/2 dx + k[ũ]γs,γ ;Bt

now yields, after a few manipulations, and recalling the definition in (5.15)

∫
−

B+
�/2

(|Dũ|2 + μ2)p/2 dx + |B�|−1k[ũ]γs,γ ;B�/2
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≤ c�−p
∫
−

B+
�

|ũ − g̃|p dx + c�−sγ
∫
−

B+
�

|ũ − g̃|γ dx + c�−sγ
∫
−

B�

|ũ − (ũ)B� |γ dx

+c�−δ[snailδ(�)]γ + c
(
‖ f̃ ‖p/(p−1)

Ln(B+
� )

+ 1
)

+
(∫

−
B+

�

|Dg̃|q dx

)p/q

+c

(
�χ(a−s)

∫
B�

∫
−

B�

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

)γ /χ

≤ c�−sγ [avγ (�)]γ + c�−sγ
∫
−

B+
�

|ũ − g̃|γ dx + c ccp+(�) . (5.22)

Then we have

�−sγ [avγ (�)]γ (3.11)≤ c�−sγ
∫
−

B+
�

|ũ − g̃|γ dx + c�−sγ
∫
−

B�

|g̃ − (g̃)B� |γ dx

(2.1)≤ c�−sγ
∫
−

B+
�

|ũ − g̃|γ dx + c|B�|−1[g̃]γs,γ ;B�

(5.15)≤ �−sγ
∫
−

B+
�

|ũ − g̃|γ dx

+c

(
�χ(a−s)

∫
B�

∫
−

B�

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

)γ /χ

≤ �−sγ
∫
−

B+
�

|ũ − g̃|γ dx + c ccp+(�) .

On the other hand, proceeding as in the proof of (4.19), we obtain

�−sγ
∫
−

B+
�

|ũ − g̃|γ dx ≤ c
(‖ũ‖L∞(Rn) + ‖g̃‖L∞(Rn)

)(1−ϑ)γ
�(ϑ−s)γ

·
(

�−p
∫
−

B+
�

|ũ − g̃|p dx

)ϑγ/p

(5.7)≤ c�(ϑ−s)γ [ccp+(�)]ϑγ/p ≤ c ccp+(�) , (5.23)

with c ≡ c(data), as ccp+(�) ≥ 1 ≥ � and p ≥ ϑγ , and therefore, from the
content of the last two displays, we conclude with

�−sγ [avγ (�)]γ ≤ c ccp+(�) . (5.24)

Using the last two inequalities in (5.22) finally leads to (5.19). ��
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5.5 Step 5: Boundary p-harmonic functions

Here we have

Lemma 5.2 Let h̃ ∈ ũ + W 1,p
0 (B+

�/4(x̃0)) be the solution to

h̃ �→ min
w̃∈ũ+W 1,p

0 (B+
�/4(x̃0))

∫
B�/4(x̃0)

c(x̃0)F̃(x̃0, Dw̃) dx . (5.25)

Then
∫
−

B+
�/4(x̃0)

|ũ − h̃|p dx ≤ c�θσ̃ [gl+
θ,δ(ũ, B�(x̃0))]p (5.26)

holds for any θ ∈ (0, 1), where c ≡ c(data). Here σ̃ ≡ σ̃ (p, s, γ, αb) ∈ (0, 1) is
given by σ̃ := min{σ, αb, pαb/2} and σ comes from (4.11).

Proof We shall abbreviate, as usual, B+
� ≡ B+

� (x̃0). From (5.25) it follows that

∫
B+

�/4

c(x̃0)∂z F̃(x̃0, Dh̃) · Dϕ dx = 0 for all ϕ ∈ W 1,p
0 (B+

�/4) (5.27)

and, as for (4.8) and (4.9)

⎧⎪⎨
⎪⎩

∫
−

B+
�/4

(|Dh̃|2 + μ2)p/2 dx ≤ �̃2
∫
−

B+
�/4

(|Dũ|2 + μ2)p/2 dx

‖h̃‖L∞(B+
�/4)

≤ ‖ũ‖L∞(B+
�/4)

(5.28)

hold. As h̃ = ũ on ∂ B+
�/4 (in the sense of traces), we define w̃ := ũ − h̃ ∈ W 1,p

0 (B+
�/4)

and extend it to the wholeRn by setting w̃ ≡ 0 inRn \ B+
�/4. This implies w̃ ∈ X0(�̃),

so that w̃ is an admissible test function for both (5.11) and (5.27). Indeed, note that w̃ ∈
W 1,p

0 (B�/2) ∩ L∞(Rn) and therefore by Lemma 2.4 it follows that w̃ ∈ W s,γ (B�/2).
As w̃ ≡ 0 outside B�/4, it follows that w̃ ∈ W s,γ (Rn) by [37, Lemma 5.1], and
therefore w̃ ∈ X0(�̃). This means that w̃ can be used as a test function both in (5.11)
and in (5.27). Moreover, by (5.19) and (5.28), it follows that

∫
−

B+
�/4

(|Dw̃|2 + μ2)p/2 dx ≤ c
∫
−

B+
�/4

(|Dũ|2 + μ2)p/2 dx ≤ c ccp+(�) . (5.29)

With Ṽ2 := |Vμ(Dũ) − Vμ(Dh̃)|2, we estimate (via inequality (2.10) applied to ∂z F̃ ,
as allowed by (5.9)4)

1

c

∫
−

B+
�/4

Ṽ2 dx
(2.10)≤

∫
−

B+
�/4

c(x̃0)(∂ F̃(x̃0, Dũ) − ∂ F̃(x̃0, Dh̃)) · Dw̃ dx
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(5.27)=
∫
−

B+
�/4

c(x̃0)∂ F̃(x̃0, Dũ) · Dw̃ dx

(5.11)=
∫
−

B+
�/4

[c(x̃0) − c(x)]∂ F̃(x̃0, Dũ) · Dw̃ dx

+
∫
−

B+
�/4

c(x)(∂ F̃(x̃0, Dũ) − ∂ F̃(x, Dũ)) · Dw̃ dx

+
∫
−

B+
�/4

c(x) f̃ w̃ dx

− 1

|B+
�/4|

∫
Rn

∫
Rn

|ũ(x) − ũ(y)|γ−2(ũ(x) − ũ(y))

·(w̃(x) − w̃(y))K̃s(x, y) dx dy
(5.9)5≤ c�αb

∫
−

B+
�/4

(|Dũ|2 + μ2)(p−1)/2|Dw̃| dx + c
∫
−

B+
�/4

| f̃ w̃| dx

+ck
∫

B�/2

∫
−

B�/2

|ũ(x) − ũ(y)|γ−1|w̃(x) − w̃(y)|
|x − y|n+sγ

dx dy

+ck
∫
Rn\B�/2

∫
−

B�/2

|ũ(x) − ũ(y)|γ−1|w̃(x)|
|x − y|n+sγ

dx dy

=: (O) + (I) + (II) + (III), (5.30)

where c ≡ c(n, p, �̃); we have also used (5.8). The first two terms can be controlled
via Sobolev inequality

(O) + (I)
(5.19)≤ c

[
�αb [ccp+(�)]1−1/p + ‖ f̃ ‖Ln(B+

�/4)

](∫
−

B+
�/4

|Dw̃|p dx

)1/p

(5.29)≤ c�αbccp+(�) + c‖ f̃ ‖Ln(B+
�/4)

[ccp+(�)]1/p,

with c ≡ c(data) (also recall (4.16)). The term (II) can be estimated as the homonym
term in Lemma 4.2, but this time using (5.7), (5.19) and (5.29); this yields

(II)
(5.19)≤ c[ccp+(�)]1−1/γ

(∫
B�/4

∫
−

B�/4

|w̃(x) − w̃(y)|γ
|x − y|n+sγ

dx dy

)1/γ

(2.7)≤ c�ϑ−s[ccp+(�)]1−1/γ+ϑ/p

where ϑ is in (2.5) and c ≡ c(data). Now, similarly to (4.19), but using (5.7) and
(5.28) and (5.29), we find

(∫
−

B+
�/4

|w̃|γ dx

)1/γ

≤ c‖ũ‖1−ϑ

L∞(B+
�/4)

�ϑ

(∫
−

B+
�/4

|Dw̃|p dx

)ϑ/p
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≤ c�ϑ [ccp+(�)]ϑ/p . (5.31)

We then have

(III) ≤ ck
∫
Rn\B�/2

∫
−

B�/2

max{|ũ(x) − (ũ)B�/2 |, |ũ(y) − (ũ)B�/2 |}γ−1|w̃(x)|
|y − x̃0|n+sγ

dx dy

≤ ck

�sγ

(∫
−

B�/2

|ũ(x) − (ũ)B�/2 |γ dx

)1−1/γ (∫
−

B+
�/4

|w̃|γ dx

)1/γ

+ck
∫
Rn\B�/2

|ũ(y) − (ũ)B�/2 |γ−1

|y − x̃0|n+sγ
dy

∫
−

B+
�/4

|w̃| dx

(2.1),(3.16)≤ c

�s

(
k

∫
B�/2

∫
−

B�/2

|ũ(x) − ũ(y)|γ
|x − y|n+sγ

dx dy

)1−1/γ (∫
−

B+
�/4

|w̃|γ dx

)1/γ

+ c

�s

(∫
Rn\B�/2

|ũ(y) − (ũ)B�/2 |γ
|y − x̃0|n+sγ

dy

)1−1/γ (∫
−

B+
�/4

|w̃|γ dx

)1/γ

(5.19),(5.31)≤ c�ϑ−s [ccp+(�)]1−1/γ+ϑ/p

+c�ϑ−s−δ(γ−1)/γ [snailδ(�/2)]γ−1[ccp+(�)]ϑ/p

(3.10),(3.11)≤ c�ϑ−s [ccp+(�)]1−1/γ+ϑ/p

+c�ϑ−s (�−δ[snailδ(�)]γ )1−1/γ [ccp+(�)]ϑ/p

+c�ϑ−s (�−sγ [avγ (�)]γ )1−1/γ [ccp+(�)]ϑ/p

(5.24)≤ c�ϑ−s [ccp+(�)]1−1/γ+ϑ/p,

with c ≡ c(data). Combining the estimates for the terms (O), (I), (II) and (III) with
(5.30), we obtain

∫
−

B+
�/4

Ṽ2 dx ≤ c�αb ccp+(�) + c‖ f̃ ‖Ln(B+
�/4)

[ccp+(�)]1/p

+ c�ϑ−s[ccp+(�)]1−1/γ+ϑ/p, (5.32)

for c ≡ c(data). This is the boundary analog of (4.20). We can then proceed as in
(4.21)–(4.24), but using (5.32) instead of (4.20), and (5.17) instead of (3.9), to obtain

∫
−

B+
�/4

|ũ − h̃|p dx ≤ c�αb min{1,p/2}+pccp+(�) + c�θσ [gl+
θ,δ(�)]p ,

where σ is as in Lemma 4.2, and from which (5.26) follows again using (5.17). ��
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5.6 Step 6: Completion of the proof Theorem 4

We keep on using half-balls centred at a generic point x̃0 as described in Sect. 5.2. We
start with a further decay estimate satisfied by h̃ defined in (5.25). This is

∫
B+

t

(|Dh̃|2 + μ2)p/2 dx ≤ c

(
t

�

)b ∫
B+

�/4

(|Dh̃|2 + μ2)p/2 dx

+ ctn(1−p/q)

(∫
B+

�/4

|Dg̃|q dx

)p/q

(5.33)

that holds whenever t ≤ �/4 and b such that 0 ≤ b < n and c ≡ c(data, q,b). We
postpone the proof of (5.33) to Sect. 5.7 below. We begin considering positive b such
that

n − b

p
<

n

q
�⇒ b > n

(
1 − p

q

)
. (5.34)

This fixes b as a function of n, p, s, q. For positive t ≤ �/8, recalling that h̃ ≡ g̃ on
�t (x̃0), we have

(∫
−

B+
t

|ũ − g̃|p dx

)1/p

≤
(∫

−
B+

t

|ũ − h̃|p dx

)1/p

+
(∫

−
B+

t

|h̃ − g̃|p dx

)1/p

(5.26)≤ c�θσ̃/p
(�

t

)n/p
gl+

θ,δ(�) + ct

(∫
−

B+
t

(|Dh̃|p + |Dg̃|p) dx

)1/p

(5.28),(5.33)≤ c�θσ̃/p
(�

t

)n/p
gl+

θ,δ(�)

+ct

(
t

�

)b/p−n/p
(∫

−
B+

�/4

(|Dũ|2 + μ2)p/2 dx

)1/p

+c

(
t

�

)1−n/q
(

�q
∫
−

B+
�/4

|Dg̃|q dx

)1/q

(5.19)≤ c�θσ̃/p
(�

t

)n/p
gl+

θ,δ (�)(�)

+c

(
t

�

)1+b/p−n/p

[�pccp+(�)]1/p + c

(
t

�

)1−n/q

rhs+
θ (�) .

By using (5.17) and recalling (5.34), we conclude with

(∫
−

B+
t

|ũ − g̃|p dx

)1/p

≤ c

[(
t

�

)1−n/q

+ �θσ̃/p
(�

t

)n/p
]
gl+

θ,δ(�) (5.35)
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with c ≡ c(data). Next observe that, using (5.18) and recalling the definitions in
Sect. 5.2, we find

(∫
Bt

∫
−

Bt

|g̃(x) − g̃(y)|γ
|x − y|n+sγ

dx dy

)1/γ

≤ c

(
tχ(a−s)

∫
Bt

∫
−

Bt

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

)1/χ

≤ c

(
t

�

)a−s−n/χ
(

�χ(a−s)
∫

B�

∫
−

B�

|g̃(x) − g̃(y)|χ
|x − y|n+aχ

dx dy

)1/χ

≤ c

ts

(
t

�

)a−n/χ

[rhs+
θ (�)]ϑ ≤ c

ts

(
t

�

)a−n/χ

[gl+
θ,δ(�)]ϑ , (5.36)

where ϑ is defined in (2.5). Using (2.1), (3.12) and (5.23) we have

avγ (t) ≤ c

(∫
−

B+
t

|ũ − g̃|γ dx

)1/γ

+ c

(∫
−

B+
t

|g̃ − (g̃)Bt |γ dx

)1/γ

≤ c

(∫
−

B+
t

|ũ − g̃|p dx

)ϑ/p

+ cts
(∫

Bt

∫
−

Bt

|g̃(x) − g̃(y)|γ
|x − y|n+sγ

dx dy

)1/γ

.

(5.37)

This with (5.35) and (5.36) gives

avγ (t) ≤ c

[(
t

�

)1−n/q

+ �θσ̃/p
(�

t

)n/p
]ϑ

[gl+
θ,δ(�)]ϑ

+ c

(
t

�

)a−n/χ

[gl+
θ,δ(�)]ϑ (5.38)

with c ≡ c(data). Estimates (5.36) and (5.37) continue to work when �/8 < t ≤ �,
so that

avγ (�) ≤ c

(∫
−

B+
�

|ũ − g̃|p dx

)ϑ/p

+ c[rhs+
θ (�)]ϑ ≤ c[gl+

θ,δ(�)]ϑ (5.39)

holds and we can conclude that (5.38) takes place in the full range 0 < t ≤ �. Taking
t = τ� in (5.35), with 0 < τ ≤ 1/8, yields

(∫
−

B+
τ�

|ũ − g̃|p dx

)1/p

≤ c
(
τ 1−n/q + �θσ̃/pτ−n/p

)
gl+

θ,δ(�), (5.40)
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for c ≡ c(data). As for the snail, we have

[snailδ(τ�)]γ (3.10)≤ cτ δ[snailδ(�)]γ + c(τ�)δ
(∫ �

τ�

avγ (ν)

νs

dν

ν

)γ

+ cτ δ�δ−sγ [avγ (�)]γ =: S5 + S6 + S7 . (5.41)

We have

S5 ≤ cτ δ[gl+
θ,δ(�)]p

by (5.16). For S6 we use (5.38) to estimate avγ (ν) inside the integral, and in turn
estimate separately the resulting three pieces S6.1, S6.2 and S6.3 generated by the terms
appearing in the right-hand side of (5.38). To estimate S6.1 we first consider the case
s ≤ 1 − n/q; we have

S6.1 ≤ cτ δ�δ−ϑγ (1−n/q)

(∫ �

τ�

dν

ν1+s−ϑ(1−n/q)

)γ

[gl+
θ,δ(�)]ϑγ

≤ cAγ τ δ−sγ n/q�δ−sγ [gl+
θ,δ(�)]sγ

+ c(Bγ + Cγ )τ δ logγ

(
1

τ

)
�δ−sγ [gl+

θ,δ(�)]γ

≤ cτ δ−sγ n/q [gl+
θ,δ(�)]p + c(Aγ + Bγ )τ δ−sγ n/q�

p(δ−sγ )
p−ϑγ

≤ cτ δ−sγ n/q [gl+
θ,δ(�)]p

≤ cτ δ−np/q [gl+
θ,δ(�)]p .

The other case is when s > 1 − n/q, and we have, similarly

S6.1 ≤ cτ δ�δ−ϑγ (1−n/q)

(∫ ∞

τ�

dν

ν1+s−ϑ(1−n/q)

)γ

[gl+
θ,δ(�)]ϑγ

≤ cAγ τ δ−sγ n/q�δ−sγ [gl+
θ,δ(�)]sγ

+ c(Bγ + Cγ )τ δ−sγ+γ (1−n/q)�δ−sγ [gl+
θ,δ(�)]γ

≤ cAγ τ δ−sγ n/q�δ−sγ [gl+
θ,δ(�)]sγ + c(Bγ + Cγ )τ δ−sγ n/q�δ−sγ [gl+

θ,δ(�)]γ
≤ cτ δ−sγ n/q [gl+

θ,δ(�)]p

≤ cτ δ−np/q [gl+
θ,δ(�)]p .

Note that we have used δ − sγ n/q < δ − sγ + γ (1 − n/q), implied by q > n.
Moreover,

S6.2 ≤ cτ δ�δ+ϑγ (θσ̃+n)/p
(∫ �

τ�

dν

ν1+s+ϑn/p

)γ

[gl+
θ,δ(�)]ϑγ

≤ cτ δ−sγ−nϑγ/p�θσ̃ϑγ /p�δ−sγ [gl+
θ,δ(�)]ϑγ
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≤ �θσ̃ϑγ /pτ−nϑγ/p[glθ,δ(�)]p + c(Aγ + Bγ )�θσ̃ϑγ /pτ−nϑγ/p�
p(δ−sγ )
p−ϑγ

≤ c�θσ̃ϑγ /pτ−nϑγ/p[glθ,δ(�)]p

≤ c�θσ̃ϑγ /pτ−n[glθ,δ(�)]p .

For S6.3 we first consider the case a − χ/n ≥ s, and we have

S6.3 ≤ cτ δ�δ−γ (a−n/χ)

(∫ �

τ�

dν

ν1+s−a+n/χ

)γ

[gl+
θ,δ(�)]ϑγ

≤ cτ δ logγ

(
1

τ

)
�δ−sγ [gl+

θ,δ(�)]ϑγ

≤ cτ δ logγ

(
1

τ

)
[gl+

θ,δ(�)]p + c(Aγ + Bγ )τ δ logγ

(
1

τ

)
�

p(δ−sγ )
p−ϑγ

≤ cτ δ logγ

(
1

τ

)
[gl+

θ,δ(�)]p

≤ cτ δ(a−n/χ)[gl+
θ,δ(�)]p .

When a − χ/n < s, using also that δ(a − n/χ) < δ − sγ + γ (a − n/χ) (as it is
δ > sγ ), we instead have

S6.3 ≤ cτ δ�δ−γ (a−n/χ)

(∫ ∞

τ�

dν

ν1+s−a+n/χ

)γ

[gl+
θ,δ(�)]ϑγ

≤ cτ δ−sγ+γ (a−n/χ)�δ−sγ [gl+
θ,δ(�)]ϑγ

≤ cτ δ(a−n/χ)�δ−sγ [gl+
θ,δ(�)]ϑγ

≤ cτ δ(a−n/χ)[gl+
θ,δ(�)]p + c(Aγ + Bγ )τ δ(a−n/χ)�

p(δ−sγ )
p−ϑγ

≤ cτ δ(a−n/χ)[gl+
θ,δ(�)]p .

The last term is dealt with by means of (5.39) as

S7 ≤ cτ δ�δ−sγ [gl+
θ,δ(�)]ϑγ

≤ cτ δ[gl+
θ,δ(�)]p + cτ δ(Aγ + Bγ )�

p(δ−sγ )
p−ϑγ

≤ cτ δ[gl+
θ,δ(�)]p .

Connecting the estimates found for S5, S6 and S7 to (5.41) we obtain

[snailδ(τ�)]γ /p ≤ c
(
τ δ/p−n/q + τ δ(a−n/χ)/p

+�θσ̃ϑγ /p2τ−n/p
)
gl+

θ,δ(�) . (5.42)
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On the other hand, by the very definition in (5.14), we trivially have

rhs+
θ (τ�) ≤

(
τ 1−θ/p + τ 1−n/q + τ a−n/χ

)
gl+

θ,δ(�) . (5.43)

Connecting (5.40), (5.42) and (5.43), and yet keeping (5.34) in mind, we arrive at

gl+
θ,δ(τ�) ≤ c1

(
τ 1−θ/p + τ δ/p−n/q

+τ δ(a−n/χ)/p + �θσ̃ϑγ /p2τ−n/p
)
gl+

θ,δ(�) , (5.44)

where c1 ≡ c1(data). With κ > 0 being defined in (1.8)3, we select a positive α < κ

and then set α1 := (α+κ)/2, so that α < α1 < κ . We can find δ ≡ δ(n, p, q, a, χ, α)

(close enough to p) and θ ≡ θ(n, p, q, a, χ, α) (close enough to zero), such that
min{1− θ/p, δ/p − n/q, δ(a − n/χ)/p} > α1. Then we take τ ≡ τ(data, α) small
enough to have

c1
(
τ 1−θ/p−α1 + τ δ/p−n/q−α1 + τ δ(a−n/χ)/p−α1

)
≤ 1

2
and τ (κ−α)/2 ≤ 1

2
.

With τ being determined, we now select a positive radius r∗∗ ≡ r∗∗(data, α) ≤ r0/4
such that � ≤ r∗∗ implies c1�θσ̃ϑγ /p2τ−n/p−α1 ≤ 1/2. Using this last inequality, and
the one in the last display, in (5.44), implies gl+

θ,δ(τ�) ≤ τα1gl+
θ,δ(�), which is the

boundary analog of (4.36). This leads to consider the maximal operators

⎧⎪⎨
⎪⎩
M+(x̃0, �) := sup

ν≤�
ν−αgl+

θ,δ(u, Bν(x̃0))

M+
ε (x̃0, �) := sup

ε�≤ν≤�
ν−αgl+

θ,δ(u, Bν(x̃0))
for ε < τ .

Proceeding as after (4.37), and taking into account (3.3) and (5.7), we arrive a
M (x0, r) ≤ c(data). From this and the fact that the chosen point x̃0 is arbitrary,
we conclude with

sup
x̃0∈�r0/2

sup
�≤r∗∗

∫
−

B+
� (x0)

|ũ − g̃|p dx ≤ c�α p . (5.45)

Here recall that r∗∗ ≡ r∗∗(data, α). Using Sobolev–Morrey embedding theorem, we
find

∫
−

B+
� (x̃0)

|g̃ − (g̃)B�(x̃0)|p dx ≤
(

osc
B+

� (x0)
g̃

)p

≤ c�(1−n/q)p‖Dg̃‖Lq (B+
� ) ≤ c�κ p ≤ c�α p ,
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where c ≡ c(data). Combining the two inequalities above, and yet using (3.11), we
finally get that

sup
x̃0∈�r0/2

sup
�≤r∗∗

∫
−

B+
� (x̃0)

|ũ − (ũ)B+
� (x̃0)

|p dx ≤ c�α p (5.46)

holdswhenever� ≤ r∗∗, where c ≡ c(data, α). On the other hand, by Proposition 4.1
there exists c ≡ c(data) ≥ 1 and another positive radius r∗ ≡ r∗(data, α) ≤ r0/4,
such that

∫
−

B�(y)

|ũ − (ũ)B�(y)|p dx ≤ c�α p

holds whenever � ≤ r∗ and B�(y) � B+
r0 (x0). Combining the information in the last

two displays in a standardway yields that now (5.46) holds not onlywhen x̃0 belongs to
�r0/2 as in (5.45), but whenever x̃0 ∈ B+

r0/2
(x0) and � ≤ min{r∗, r∗∗}/8 ≤ r0/4. This

implies the validity of Proposition 5.1 viaCampanato-Meyers integral characterization
of Hölder continuity.

5.7 Step 7: Estimate (5.33)

Estimates like (5.33) can be found in various places in the literature under additional
structure conditions and assumptions. We did not find and explicit reference for it and
therefore we offer a rapid derivation here for the sake of completeness. We denote
F0(z) := c(x̃0)F̃(x̃0, z), using the same notation of Sect. 5.5. Note that w̃ = h̃ − g̃
solves

{
− div ∂z F0(Dg̃ + Dw̃) = 0 in B+

�/4

w̃ ≡ 0 on ��/4 .
(5.47)

We denote by ṽ ∈ w̃ + W 1,p
0 (B+

�/4) as the solution to

{
− div ∂z F0(Dṽ) = 0 in B+

�/4

ṽ ≡ w̃ on ∂ B+
�/4 .

(5.48)

By [26, Theorem 2.2] we obtain that

‖Dṽ‖p
L∞(B+

�/8)
≤ c

∫
−

B+
�/4

(|Dṽ|2 + μ2)p/2 dx

≤ c
∫
−

B+
�/4

(|Dw̃|2 + μ2)p/2 dx (5.49)

with c ≡ c(n, p, �̃) (note that [26, Theorem 2.2] is stated for the degenerate case
μ = 0, but the proof applies verbatim in the non-degenerate case μ > 0, which
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is actually simpler). The former inequality in (5.49) follows from a delicate barrier
argument, and the latter is a consequence of minimality of ṽ (it solves an Euler–
Lagrange equation). In turn, also using the minimality of h̃ in (5.25), we find

∫
B+

�/4

(|Dw̃|2 + μ2)p/2 dx ≤ c
∫

B+
�/4

(|Dh̃|2 + |Dg̃|2 + μ2)p/2 dx

≤ c
∫

B+
�/4

(|Dũ|2 + |Dg̃|2 + μ2)p/2 dx

with c ≡ c(n, p, �̃). On the other hand, with V2 := |Vμ(Dṽ) − Vμ(Dw̃)|2, we have
∫

B+
�/4

V2 dx
(2.10)≤ c

∫
B+

�/4

(∂z F0(Dṽ) − ∂z F0(Dw̃)) · (Dṽ − Dw̃) dx

(5.47)= c
∫

B+
�/4

(∂z F0(Dg̃ + Dw̃) − ∂z F0(Dw̃)) · (Dṽ − Dw̃) dx

(2.11),(5.9)3≤ c
∫

B+
�/4

(|Dg̃|2 + |Dw̃|2 + μ2)(p−2)/2|Dg̃||Dṽ − Dw̃| dx .

In the case p ≥ 2, (2.9) implies |Dṽ − Dw̃|p ≤ cV2 and, by repeated use of Young’s
inequality, and reabsorbing terms, we find

∫
B+

�/4

|Dṽ − Dw̃|p dx ≤ ε

∫
B+

�/4

(|Dw̃|2 + μ2)p/2 dx + cε

∫
B+

�/4

|Dg̃|p dx

(5.50)

for every ε ∈ (0, 1), where cε depends on n, p, �̃, ε. In the case 1 < p < 2, as in
(4.22), we instead find

∫
B+

�/4

|Dṽ − Dw̃|p dx ≤ c

(∫
B+

�/4

V2 dx

) p
2
(∫

B+
�/4

(|Dṽ|p + |Dw̃|p) dx

)1− p
2

≤ c

(∫
B+

�/4

|Dg̃|p−1|Dṽ − Dw̃| dx

) p
2
(∫

B+
�/4

|Dw̃|p dx

)1− p
2

≤ c

(∫
B+

�/4

|Dṽ − Dw̃|p dx

) 1
2
(∫

B+
�/4

|Dg̃|p dx

) p−1
2

(∫
B+

�/4

|Dw̃|p dx

) 2−p
2

from which (5.50) follows again via Young’s inequality with conjugate exponents
(1/(p − 1), 1/(2− p)). Combining (5.49) with (5.50) in a standard way, we arrive at

∫
B+

t

(|Dw̃|2 + μ2)p/2 dx ≤ c

[(
t

�

)n

+ ε

] ∫
B+

�/4

(|Dw̃|2 + μ2)p/2 dx
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+ c

(∫
B+

�/4

|Dg̃|q dx

)p/q

�n(1−p/q) ,

for all t ≤ �/4, where c ≡ c(n, p, �̃). By recalling the definition of w̃, the above
inequality holds with w̃ replaced by h̃, so that (5.33) follows applying Lemma 2.6
with the choice h(t) := ‖(|Dw̃|2 + μ2)p/2‖L1(Bt )

.

6 Proof of Theorem 5

In the following we select arbitrary open subsets �0 � �1 � �, and denote d :=
min{ dist(�0,�1),

dist(�1,�), 1}. We take B� ≡ B�(x0) � �1 with x0 ∈ �0 and 0 < � ≤ d/4
and all the balls used in the following will be centred at x0. Moreover, β, λ will be
numbers verifying s < β < 1 and λ > 0; their precise value will depend on the
context they are going to be employed in. We shall often use Theorem 3 in the form
‖u‖C0,β (�1)

≤ c ≡ c(datah, β,d), for every β < 1.

Lemma 6.1 Under the assumptions on Theorem 5

• If s < β < 1, then

∫
B�/2

∫
−

B�/2

|u(x) − u(y)|γ
|x − y|n+sγ

dx dy ≤ c�(β−s)γ (6.1)

holds with c ≡ c(datah,d, β).
• The inequality

t−δ[snailδ(t)]γ ≡ t−δ[snailδ(u, Bt (x0))]γ ≤ c (6.2)

holds whenever 0 < t ≤ �, where c ≡ c(datah,d).
• If λ > 0, then

∫
−

B�/2

(|Du|2 + μ2)p/2 dx ≤ c�−pλ (6.3)

holds with c ≡ c(datah,d, λ).

Proof Estimate in (6.1) follows from Theorem 3 with α ≡ β. To prove (6.2) we
estimate as follows:

t−δ[snailδ(t)]γ ≤ c
∫
Rn\Bd

|u(y) − (u)Bt (x0)|γ
|y − x0|n+sγ

dy

+ c
∫

Bd\Bt

|u(y) − u(x0)|γ
|y − x0|n+sγ

dy

+ c
∫

Bd\Bt

|u(x0) − (u)Bt (x0)|γ
|y − x0|n+sγ

dy
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≤ c

dn+sγ

(
‖u‖γ

Lγ (Rn)
+ ‖u‖γ

L1(�1)

)

+ c
∫

Bd

dy

|y − x0|n+(s−β)γ
[u]γ0,β;�1

+ ctβγ

∫
Rn\Bt

dy

|y − x0|n+sγ
[u]γ0,β;�1

≤ cd−n−sγ + cd(β−s)γ + ct (β−s)γ ≤ c , (6.4)

where c ≡ c(datah,d, β), that is (6.2) if we choose β := (1 + s)/2. Finally, to
prove (6.3) we use (4.2) and estimate the various terms stemming from ccp∗(�) ≡
ccp∗(u, B�(x0)), whose definition is in (3.6). Again by Theorem 3, we have that

�−p[avp(�)]p + �−sγ [avγ (�)]γ ≤ c�p(β−1) + c�γ (β−s) ≤ c�p(β−1)

holds with c ≡ c(datah,d, β). By (6.2) we instead have

�−δ[snailδ(�)]γ + ‖ f ‖p/(p−1)
Ln(B�) + 1 ≤ c ≤ c�p(β−1) .

Choosing β such that 1 − β ≤ λ, we arrive at (6.3). ��
Lemma 6.2 If h ∈ u + W 1,p

0 (B�/4(x0)) is as in (4.6), then

∫
−

B�/4(x0)
|Du − Dh|p dx ≤ c�σ2 p (6.5)

holds where σ2 ≡ σ2(n, p, s, γ, d) ∈ (0, 1) and c ≡ c(datah, ‖ f ‖Ld (�),d).

Proof Wegoback toLemma4.2, estimate (4.15), and, adopting the notation introduced
there, we improve the estimates for the terms (I)–(III). As in (4.16) and in Lemma 4.1,
we find

|(I)| (4.8)≤ c‖ f ‖Ln(B�/4)

(∫
−

B�/4

(|Du|2 + μ2)p/2 dx

)1/p

(6.3)≤ c‖ f ‖Ld (B�/4)
�1−n/d−λ (6.6)

for every λ > 0, where c ≡ c(datah,d, λ). In order to estimate terms (II) and (III),
we recall that a basic consequence of the maximum principle is

osc
B�/4

h ≤ osc
B�/4

u . (6.7)

Recall also that u is Hölder continuous; by the Maz’ya-Wiener boundary regularity
theory, h is continuous on B̄�/4 and therefore

‖w‖L∞(B�/4) = ‖u − h‖L∞(B�/4)

(6.7)≤ 2 osc
∂ B�/4

u ≤ 4[u]0,β;B�/4�
β ≤ c�β , (6.8)
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where c ≡ c(datah,d, β). For (II), as in (4.17), we have, with w = u − h (defined
and extended as in Lemma 4.2, so that w ≡ 0 outside B�/4)

|(II)| (6.1)≤ c�(β−s)(γ−1)

(∫
B�/2

∫
−

B�/2

|w(x) − w(y)|γ
|x − y|n+sγ

dx dy

)1/γ

(2.7)≤ c�(β−s)(γ−1)+ϑ−s‖w‖1−ϑ
L∞(B�/4)

(∫
−

B�/4

|Dw|p dx

)ϑ/p

(4.8),(6.8)≤ c�(β−s)(γ−1)+ϑ−s+β(1−ϑ)

(∫
−

B�/4

(|Du|2 + μ2)p/2 dx

)ϑ/p

(6.3)≤ c�(β−s)(γ−1)−λ (6.9)

whenever s < β < 1 and λ > 0, where c ≡ c(datan,d, β, λ). To estimate (III) we
restart from the fifth line of (4.18), and using also (6.2) and (6.8), we easily find

|(III)| ≤ c
[
�−sγ [avγ (�)]γ−1 + �−s (�−δ[snailδ(�)]γ )1−1/γ

]
‖w‖L∞(B�/4)

≤ c�(β−s)γ + c�β−s ≤ c�β−s . (6.10)

In (6.6), (6.9) and (6.10), the numbers β, λ are arbitrary and such that s < β < 1,
λ > 0 and the constants denoted by c depend on datah,d, β, λ. We then choose β, λ

such that

β := 1 + s

2
, 0 < λ ≤ min

{
(1 − s)(γ − 1)

4
,
1

2

(
1 − n

d

)}

and plug (6.6),(6.9) and (6.10) into (4.15), to obtain

⎧⎪⎪⎨
⎪⎪⎩

∫
−

B�/4

|Vμ(Du) − Vμ(Dh)|2 dx ≤ c�σ1 p

σ1 := 1

p
min

{
1

2

(
1 − n

d

)
,
(1 − s)(γ − 1)

4
,
1 − s

2

}
> 0

(6.11)

for c ≡ c(datah, ‖ f ‖Ld (�),d). Now, we want to finally prove that (6.5) holds with
σ2 = σ1 if p ≥ 2, and σ2 := σ1 p/4 if 1 < p < 2. Indeed, If p ≥ 2, then (6.5) follows
thanks to (2.9) and (6.11). When p ∈ (1, 2), as in (4.22), and using (4.8), we have

∫
−

B�/4

|Du − Dh|p dx ≤
(∫

−
B�/4

|Vμ(Du) − Vμ(Dh)|2 dx

)p/2

·
(∫

−
B�/4

(|Du|2 + μ2)p/2 dx

)1−p/2
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(6.3),(6.11)≤ c�[σ1 p/2−λ(1−p/2)]p .

By choosing λ such that σ1 p/2 − λ(1 − p/2) > σ1 p/4, we finally conclude with
(6.5). ��
Once (6.5) is established, we can conclude with the local Hölder continuity of Du by
means of a by now classical comparison argument (see for instance [69]). We briefly
report it here for the sake of completeness. We recall the following classical decay
estimate, which is satisfied by h

osc
Bt

Dh ≤ c

(
t

�

)α0
(∫

−
B�/4

(|Dh|2 + μ2)p/2 dx

)1/p

, (6.12)

that holds whenever 0 < t ≤ �/8, where c ≡ c(n, p,�) ≥ 1 and α0 ≡ α0(n, p,�) ∈
(0, 1); see [68, 69]. We estimate, also using (3.11)

∫
−

Bt

|Du − (Du)Bt |p dx ≤ c

(
osc
Bt

Dh

)p

+ c
(�

t

)n
∫
−

B�/4

|Du − Dh|p dx

(6.5),(6.12)≤ c

(
t

�

)α0 p ∫
−

B�/4

(|Dh|2 + μ2)p/2 dx + c
(�

t

)n
�σ2 p

(4.8),(6.3)≤ c

(
t

�

)α0 p

�−λp + c
(�

t

)n
�σ2 p, (6.13)

with c ≡ c(datah,d, λ). In the above inequality, we take t = �1+σ2 p/(2n)/8 and
choose λ := σ2 pα0/(4n) in (6.3). We conclude with

∫
−

Bt

|Du − (Du)Bt |p dx ≤ ctα p , α := σ2α0

2σ2 p + 4n

where c ≡ c(datah,d, λ). This holds whenever Bt � � is s ball centred in �0,
with t ≤ d1+σ2 p/(2n)/c(n, p). As the �0 � �1 � � are arbitrary, this implies
the local C1,α-regularity of Du in �, via the classical Campanato-Meyers’ integral
characterization of Hölder continuity together with the estimate for [Du]0,α;�0 , and
the proof is complete.

Remark 5 The content of Remark 3 applies to the above proof as well.

7 Distributional solutions

• In this paper we mainly deal with minimizers. For these the Euler–Lagrange equa-
tion (1.11) holds automatically for everyϕ ∈ X0(�) in the setting of Theorems 3–5
(by the way, notice that no Lipschitz continuity of� is needed for this). This moti-
vates the definition of weak solution in (1.15) with ϕ ∈ X0(�). One might of
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course wonder what happens when taking as tests in (1.15) functions ϕ ∈ C∞
0 (�),

thereby considering classical distributional solutions. This actually gives rise to the
same notion of solution. Indeed, thanks to the Lipschitz regularity of ∂�, we can
use the argument in [12, Proposition B.1] to deduce that, given ϕ ∈ X0(�), there
exists a sequence {ϕk} ⊂ C∞

0 (�) such that ϕk → ϕ in W 1,p(�) and W s,γ (Rn).
A standard application of Lebesgue dominated convergence then implies that a
distributional solution to (1.15) also satisfies (1.15) for every ϕ ∈ X0(�).

• The above point is useful if one wants to connect equations of the type in (1.15)
with minimizers as considered in Theorems 3–5. Of course, when proving interior
regularity, one can also define more local solutions to (1.15) by requiring that
(1.15) is satisfied for every ϕ ∈ C∞

0 (�). In this case one can starts by solutions

u ∈ W 1,p
loc (�) ∩ W s,γ (Rn); no Lipschitz regularity of � is needed in this case.

Moreover, one can assume f ∈ Ln
loc(�) and f ∈ Ld

loc(�) in Theorems 3 and 5,
respectively.

8 Further directions, open problems

The results of this paper pose several questions and problems. Without pretending to
be exhaustive concerning the directions one might take, we give a short list of possible
issues here.

8.1 Optimal assumptions on the data and borderline regularity

In Theorem 7 it should be possible to replace the assumption f ∈ Lq(�) by f ∈
Mq(�), the Marcinkiwicz space, this meaning that

sup
λ>0

λq |{| f | > λ}| < ∞.

As for the borderline regularity in terms of solutions, it is reasonable to conjecture
that, under the assumptions of Theorems 4

{
1 < p < n and f ∈ L

(
n
p , 1

p−1

)
�⇒ u is continuous .

p = n and f ∈ L1 �⇒ u ∈ B M O, locally .

In the first line above there appears the borderline Lorentz space, while in the second
we see John–Nirenberg space of functions with bounded mean oscillations. These
conjectured facts, are, as Theorem 7, in line with the theory of local operators. We
refer to [58, Section 9] for an overview to use as a guide to build parallels with the
local theory, and for the definitions of the above spaces. As for the gradient, under
the assumptions of Theorem 5 the conjectured borderline regularity claims that if
f ∈ L(n, 1), then Du is continuous. This is true in the local case [57], and we expect
it to hold in the mixed one too.
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8.2 Boundary regularity

The assumptions (1.8)2,3 prescribe that the Hölder continuity of g is a consequence of
its higher gradient integrability (both in classical and fractional sense) via Sobolev–
Morrey embedding. As mentioned in Remark 1, this is a common approach in the
literature. It is nevertheless tempting to replace (1.8)2,3 via a direct Hölder continuity
assumption as g ∈ W 1,p(�) ∩ W s,γ (Rn) ∩ C0,κ (�). This brings the problem to the
completely different realm of a quantitative Wiener criterion, that already in the local
case needs completely different approaches and tools. Some of these, are not yet fully
available in the nonlocal case. See for instance the approaches in [65]; se also [53, 72]
for references. We leave these questions as an interesting open issue and we anyway
note that the usually treated boundary regularity problems in the nonlocal literature
deals with the case g ≡ 0 [51, 52, 75].

8.3 The case � > p and boundedness of solutions

By looking at Theorems 3, 5 and especially 6, a question naturally arises concerning
the possibility of removing, when γ > p, the (local) boundedness assumption on u,
or, equivalently via Proposition 2.1, assumption (1.9). The case γ > p is actually the
one where the problem in question resembles, and actually shares a few features with,
those with nonuniform ellipticity (non-standard growth conditions [70, 71]). In fact,
the approach via bounded solutions or boundary data taken here draws a parallel with
the situation observed in nonuniformly elliptic problems; see for instance [32] for an
overview and the basic definitions. In order to fix the ideas, we consider the double
phase integral, that is

w �→
∫

�

(|Dw|p + a(x)|Dw|q) dx , C0,α(�) � a(·) ≥ 0 , 1 < p ≤ q . (8.1)

In this case minima are Hölder regular provided the sharp dimensional condition

q

p
≤ 1 + α

n
(8.2)

is met. Instead, when minimizers are known to be bounded, condition (8.2) improves
in the non-dimensional one

q ≤ p + α , (8.3)

which is also sharp (see [26, 30] and related references, and [40] for the sharpness
of (8.2) and (8.3)). The improvement goes via interpolation estimates of the type for
instance considered in Lemma 2.3 from this paper. The integrand of the functional in
(8.1) is built upon two different elliptic terms,whose interaction is anyway problematic
as conditions (8.2)-(8.3) are indeed necessary to guarantee regularity. In the present
setting the role of the highest exponent q in (8.1) should be played by γ > p, so that
the condition p > sγ plays the role of (8.3). Note that such a bound alone does not
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imply the imbedding W 1,p ⊂ W s,γ (this is in fact fixed via interpolation for bounded
functions as in Lemma 2.3). Moreover, note that both (8.3) and p > sγ are basically
capacitary conditions.

Back to the parallel with local nonuniformly elliptic problems, let us note that the
boundedness assumption on minima is usually satisfied using the maximum principle
in presence of bounded boundary data. This is again in line with what we do in
Proposition 2.1. This discussion then leads to think that, in the spirit of (8.2), a condition
as

γ

p
< 1 + o(n), lim

n→∞ o(n) = 0

could be sufficient to establish the local boundedness of solutions and then to conclude
with Theorems 3-(6) without assuming (1.9). Such conditions are typical and actually
necessary in the setting of nonuniformly elliptic problems with nonstandard growth
conditions [71].
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