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Abstract
We provide the first general result for the asymptotics of the area preserving mean
curvature flow in two dimensions showing that flat flow solutions, starting from any
bounded set of finite perimeter, converge with exponential rate to a finite union of
equally sized disjoint disks. A similar result is established also for the periodic two-
phase Mullins–Sekerka flow.

1 Introduction

In this paper we address the long-time behaviour of two physically relevant area
preserving nonlocal geometric flows in the plane: the area-preserving mean curvature
and the Mullins–Sekerka flow.

We start by recalling that a smooth flow of sets (Et )t∈[0,T ) ⊂ R
2, for some T > 0,

is a solution to the area preserving mean curvature flow if it satisfies

Vt = −κEt + κEt on ∂Et , (1.1)
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where Vt denotes the normal velocity, κEt the curvature and κEt := −∫
∂Et

κEt dH1 the
integral average of the curvature of the evolving boundary ∂Et . Such a geometric flow
has been proposed in the physical literature as a model for coarsening phenomena. For
example, one can consider systems that, after a first relaxation time, can be described
by two subdomains of nearly pure phases far from equilibrium, evolving in a way
to decrease the total interfacial length between the phases while keeping their area
constant (for the physical background see [8, 40, 48, 49]). An important feature of
the flow is that it can be regarded as a gradient flow of the perimeter with respect to a
suitable (formal) L2-type Riemannian structure.

The second geometric evolution we consider, the two-phase Mullins–Sekerka flow
in the flat torus T2, is governed by the law

⎧
⎪⎨

⎪⎩

Vt = [∂νt ut ] on ∂Et ,

−�ut = 0 in T
2\∂Et ,

ut = κEt on ∂Et ,

(1.2)

where νt denotes the external normal to ∂Et , [∂νt ut ] denotes the jump of the normal
derivative of ut at ∂Et , i.e., [∂νt ut ] := ∂νt u

+
t − ∂νt u

−
t , with u+

t and u−
t denoting the

restrictions of ut to T
2\Et and Et respectively, and κEt is as before the curvature of

the evolving boundary. Let us notice that the choice of the flat torus T2 instead of a
bounded domain � is made to avoid in the first place boundary effects. The Mullins–
Sekerka flow is a nonlocal geometric flow arising from physics. It can be seen as a
quasistatic variant of the Stefan problem (see [33]) and it was originally proposed as
an isotropic model for solidification and liquefaction phenomena when the specific
heat is negligible, see [42]. Moreover, it arises as a singular limit of the Cahn–Hilliard
equation, see [3, 44]. Common features with (1.1) are the area preserving character
and the gradient flow structure (this time with respect to a suitable H−1-Riemannian
structure).

It is well-known that, in general, smooth solutions of (1.1)may develop singularities
in finite time, such as disappearance and coalescence of components, pinch-offs and
curvature blow-up, even in two dimensions (see for instance [18, 36, 37]). The same
can be expected for the flow (1.2). The possible singular behaviour of (1.1) and (1.2) is
even wilder than that of the unconstrained mean curvature flow, due to their nonlocal
character and the subsequent lack of a comparison principle. Thus, for a well defined
global-in-time evolution one has to introduce suitable notion of weak solution which
is capable of handling singularities, changes in topology and, possibly, rough initial
data. This is a well-established feature of curvature flows, and for several geometric
motions, different definitions of weak solutions have been introduced in the literature.

Due to the lack of a comparison principle and based on the underlying gradient flow
structure, a natural choice for (1.1) and (1.2) is the minimizing movement approach
proposed for themean curvature flow independently by Almgren, Taylor andWang [4]
and by Luckhaus and Sturzenhecker [34], and adapted to the volume constrained case
in [41]. Note that Luckhaus and Sturzenhecker [34] introduce a similar variational
scheme for (1.2) as well, see also [7, 45] where the same scheme is further analyzed.
Recently, the first author and Niinikoski [29] proved the consistency of the flat flow
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solutions for the volume preserving mean curvature flow with the classical solutions
(see also [32] for a weak–strong uniqueness result). We recall that the minimizing
movement method is based on implicit time-discretization and recursive minimization
of suitable incremental problems. The limiting time-continuous evolutions constructed
in this way are usually referred to as flat flows. We refer to Sects. 3 and 4 for the precise
definition of flat flow solution of (1.1) and (1.2), respectively.

Once a global-in-time weak solution has been constructed, it is a natural problem
to investigate its asymptotics. The focus of the paper is the long-time behaviour of flat
flows in two dimensions. Previous results on the long-time convergence of volume
preserving flows are mostly confined to the case of smooth solutions starting from
specific classes of initial regular sets, see for instance [19, 27, 43] for the volume pre-
serving mean curvature flow and [1, 10, 20, 25] for the Mullins–Sekerka flow. For less
general initial data, the long time behaviour of the volume preserving mean curvature
flow starting from convex and star-shaped sets (see [6, 30]) has been characterized
only up to (possibly diverging in the case of [6]) translations. Finally, concerning flat
flow solutions the most general result is due to [28] where the asymptotic convergence
to finitely many disjoint balls is proven in two and three dimensions for arbitrary
bounded initial sets of finite perimeter, but only up to (possibly diverging) translations
and without a convergence rate.

In our main result we are able to rule out translations and we provide in two
dimensions the first full convergence result for the asymptotics of the area preserving
mean curvature and theMullins–Sekerkaflow.We show that every flat flow solutions of
(1.1) starting fromany set of finite perimeter asymptotically converge,with exponential
rate, to a finite disjoint union of (possibly tangent) equally sized discs. Under the
additional assumption that the perimeter of the initial set is smaller than 2, we establish
a similar result also for (1.2). Note that such an additional condition is assumed for
simplicity to rule out lamellae as possible limiting sets (see Sect. 4 for further details).
We refer to the next section for the precise statements.

Let us finally mention that the analysis of this paper extends in two dimensions
the results proven in [39] (see also [14] for related results in the flat torus) for the
discrete minimizing movements of the volume preserving mean curvature flow to the
time-continuous limiting evolutions.

1.1 Statement of themain results

In the previous work [39] three of the authors prove that in all dimensions the discrete
approximate volume preserving mean curvature flow converges exponentially fast to
a disjoint union of balls with equal size. This is the optimal convergence result but it
leaves open the question of the convergence of the limiting flat flow. On the other hand,
in [28] the first author and Niinikoski prove that the limiting flat flow converges in low
dimensions R2 and R

3 to a disjoint union of balls, up to possible translations of the
components. Again this result does not prove the full convergence nor does it provide
any rate of convergence. In both papers it was observed that a key technical issue
is to prove a quantitative version of the Alexandrov theorem, which in the classical
form states that the only compact smooth hypersurfaces with constant mean curvature
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are union of spheres. In this paper we develop this idea further and observe that we
may prove a geometric inequality, very much related to the quantitative Alexandrov
theorem, which implies the full convergence of the flow and also gives the exponential
rate of convergence.

There has been a lot of recent research on generalizations and quantifications of the
Alexandrov theorem.We refer to [11] for an overview of this challenging problem, and
mention the works [15–17] on the characterization of critical sets of the isoperimetric
problem and [12, 13, 31] on quantification of the Alexandrov theorem.

We state our quantitative version in a form that is suitable for the study of Eq.
(1.1). We denote the length of the boundary or more generally the perimeter of a set
E by P(E) and by |E | its area. We also denote by Pd = 2

√
πmd the perimeter of

the disjoint union of d equally sized disks with total area m. Our first result reads as
follows.

Theorem 1.1 Let m, M > 0 and let E ⊂ R
2 be a bounded open set of class C2, with

|E | = m and P(E) ≤ M. Then there exists a constant C(m, M) > 0 such that

min
d∈N |P(E) − Pd | ≤ C‖κE − κE‖2L2(∂E)

.

Moreover, if δ0 > 0 and d ∈ N, are such that Pd ≤ P(E) ≤ Pd+1 − δ0, then it holds

P(E) − Pd ≤ C0‖κE − κE‖2L2(∂E)
, (1.3)

with C0 = C0(m, M, δ0).

The novelty of the above result is that on the right-hand-side we have quadratic
dependence on the curvaturewhich is optimal (seeRemark 2.2).Onemay compare this
result to the quantification of the Willmore energy [46] or to the optimal quantitative
isoperimetric inequality [24], which both have similar scaling. The inequalities in
Theorem 1.1 are geometric and do not measure how close the set E is to the union of
disks. In the planar case the closeness of E to the union of disks is proven in [23] (see
also Proposition 2.1 in Section 2). The above result is proven in the planar case but it
could be true also in higher dimensions.

As we already mentioned, the motivation for the geometric inequality in The-
orem 1.1 is the proof of the asymptotic convergence of the area-preserving mean
curvature flow equation (1.1).

Theorem 1.2 Let {E(t)}t≥0 be an area-preserving flat flow for (1.1) (see Defini-
tion 3.1) starting from a bounded set of finite perimeter E(0) ⊂ R

2. Then, there exist
d ∈ N disjoint open disks in the plane Dr (x1), . . . , Dr (xd), with πr2d = |E(0)|, and
there exists a constant C > 1 such that, setting E∞ = ⋃d

i=1 Dr (xi ), it holds

sup
x∈E(t)�E∞

dist(x, ∂E∞) + |P(E(t)) − P(E∞)| ≤ Ce− t
C (1.4)

for all t ≥ 0.

The above theorem gives the full characterization and quantitative speed of the
convergence of the asymptotics of Eq. (1.1). We expect the result to be sharp, in the
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sense that the flow may, indeed, converge to a union of tangent disks. In [23, Theorem
1.4] the authors consider the casewhen the initial set is a union of two ellipses and show
that Eq. (1.1) is well defined and smooth for all times and converges to two tangent
disks. In particular, we may not improve the Hausdroff convergence in Theorem 1.2 to
C1-convergence of the sets. The exponential convergence rate is optimal but we note
that the flow may in fact converge to the limiting disks also in finite time. This is the
case when we consider as an initial set a union of two disks D1, D2, which are far apart
and D2 is much smaller than D1. Then along the flow the larger disk grows and the
smaller one shrinks until it vanishes completely and the flow reaches its equilibrium
state in finite time. The same phenomenon occurs when D2 is only slightly smaller
than D1 but the time to reach the equilibrium state tends to infinity when the size of
D2 gets closer to the size of D1. This shows that we cannot bound the constant C by
a universal constant, but it may depend on the initial set in a rather complicated way.

We note that our method can be also used to study asymptotic behavior of other
geometric flows, and to emphasize this we also address the asymptotics of the two-
phase Mullins–Sekerka flow (1.2). To avoid boundary effects we consider periodic
conditions and set the problem in the flat torus T2 and, as a further simplification, we
consider initial configurations with perimeter smaller than that of the single lammella
(alternatively, we can think that the size of the torus is big enough compared to the
perimeter of the initial set).

The main result is the following. We denote the perimeter of a set E in the flat torus
by PT2(E).

Theorem 1.3 Let {E(t)}t≥0 be a flat flow solution to the Mullins–Sekerka flow (1.2) in
the flat torus T2 starting from a set of finite perimeter E(0) ⊂ T

2, with PT2(E) < 2.
Then, there exist d ∈ N disjoint open disks Dr (x1), . . . , Dr (xd), with πr2d = |E(0)|,
and there exists a constant C > 1 such that it holds

|E(t)�E∞| + |P(E(t)) − P(E∞)| ≤ Ce− t
C

for all t ≥ 0, where E∞ either coincides with
⋃d

i=1 Dr (xi ) or with its complement in
T
2.

The proof of Theorem 1.3 is similar to that of the previous theorem. We use Theo-
rem 1.1 and a result by Schätzle [47] to obtain a functional inequality (see Corollary
4.3), which is in the spirit of the quantitative Alexandrov theorem, stated now in terms
of the potential ut .

We remark that one could also consider the one-phase model for the Mullins–
Sekerka as in [9] in the whole R2 and expect the above convergence to hold also in
this case. We also expect the convergence of the sets in Theorem 1.3 to hold with
respect to Hausdorff distance but we do not prove it here.

1.2 Structure of the paper

Section 2 is purely geometric and in Proposition 2.1 we prove our quantitative version
of the Alexandrov theorem which then implies Theorem 1.1 as a corollary. In Sect. 3,
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we first introduce the incremental minimization problem for the minimizing move-
ments scheme, and recall some basic results related to its minimizers. Then we recall
the construction of the flat flow and give the proof of Theorem 1.2 at the end of the
section. In Sect. 4, we introduce the incremental minimization problem and the flat
flow for the Mullins–Sekerka equation. We then state and prove in Proposition 4.2 a
crucial functional inequality which is related to Proposition 2.1. The section concludes
with the proof of Theorem 1.3.

2 A sharp quantitative Alexandrov theorem in two-dimensions

Let us first recall that for measurable sets E ⊂ R
2, the perimeter is defined by

P(E) := sup

{∫

E
divX dx : X ∈ C1

c (R
2,R2), ‖X‖L∞ ≤ 1

}

.

If P(E) < ∞ we say that E is a set of finite perimeter. We also recall that if E is
regular enough, say a domain with Lipschitz boundary, then P(E) = H1(∂E). For
the general properties of sets of finite perimeter we refer to the monographs [5, 35].

In the following we fix the prescribed area m > 0 of a set E and a constant M > 0
representing an upper bound for the perimeter of E . For d ∈ N we denote by Pd the
perimeter of any union of d disjoint disks with equal areas m/d, i.e.,

Pd := 2
√

πmd.

For a set of E ⊂ R
2 of class C2 we denote by κE its curvature (with the sign defined

so that κE is positive for convex sets) and we set

κE := −
∫

∂E
κE dH1 = 1

H1(∂E)

∫

∂E
κE dH1.

In [23] it is proven that if E ⊂ R
2 is a set of class C2 with area |E | = m and

‖κE − κE‖2
L1(∂E)

≤ ε0, for ε0 small enough, then E is C1-diffeomorphic to a disjoint
union of disks D1, . . . , Dd and it holds

|P(E) − Pd | ≤ C‖κE − κE‖L1(∂E).

Our first result improves the above inequality by showing that a similar estimate holds
with quadratic right-hand side, which is the optimal scaling of the quantitative Alexan-
drov theorem. We also consider L2-norms as this is more natural in our variational
framework. We state this in the following proposition.

Proposition 2.1 Let m, M > 0. There exist ε0 = ε0(m, M) ∈ (0, 1) and C0 =
C0(m, M) > 1 with the following property: Let E ⊂ R

2 be a bounded open set of
class C2, with |E | = m and P(E) ≤ M, such that ‖κE − κE‖L2(∂E) ≤ ε0. Then E
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is diffeomorphic to a union of d disjoint disks D1, …, Dd, with equal areas m/d and
dist(Di , Dj ) > 0 for i 	= j , and

|P(E) − Pd | ≤ C0‖κE − κE‖2L2(∂E)
. (2.1)

Moreover, d is bounded from above by a constant depending only on m, M.
Finally, for ε0 sufficiently small, the boundary of every connected component of the

set E can be parametrized as a normal graph over one of the discs Di with C1, 12 norm
of the parametrization vanishing as ε0 → 0.

Proof Let E be as in the statement and let E1,…, Ed be the collection of its connected
components. For each component Ei we denote by
i the outer component of ∂Ei and
by Êi the bounded region enclosed by 
i , i.e., the set obtained by filling the “holes”
of Ei .

We split the proof into several steps. Notice that in what follows m0 ∈ (0, 1) and
M0 > 1 will denote “universal” constants, i.e, constants depending only on m, M ,
which may change from line to line.
Step 1. We claim that

|Êk̄ | ≥ m0 for some k̄ ∈ {1, . . . , d}. (2.2)

Indeed, by translating the components if necessarywemay assume that dist(Êi , Ê j ) >√
2. Setting Q := (0, 1)× (0, 1), we may use [39, Lemma 2.1] to infer that there exist

z ∈ Z
2 such that

|E ∩ (z + Q)| ≥ cmin
{ m2

M2 , 1
}
,

with c > 0 a universal constant. Since z + Q can only intersect one component Êi ,
the claim follows.
Step 2. We claim that

|κE | ≤ M0. (2.3)

To this aim, note that by the Isoperimetric Inequality and by (2.2), we have

H1(∂ Êk̄) ≥ 2
√

πm0. (2.4)

Now,

∫

∂ Êk̄

∣
∣
∣κE − 2π

H1(∂ Êk̄)

∣
∣
∣
2
dH1 ≤

∫

∂E
|κE − κE |2 dH1 ≤ ε20,

where we used the simply connectedness of Êk̄ and Gauss–Bonnet Theorem to
get κ Êk̄

= 2π/H1(∂ Êk̄). Note that here and repeatedly in the sequel we use that
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mina
∫ | f − a|2dH1 = ∫ | f − f̄ |2dH1, with f̄ the average of f . In turn,

1

H1(∂ Êk̄)

∣
∣
∣2π − H1(∂ Êk̄)κE

∣
∣
∣
2 =

∫

∂ Êk̄

∣
∣
∣

2π

H1(∂ Êk̄)
− κE

∣
∣
∣
2
dH1

≤ 2
∫

∂ Êk̄

∣
∣
∣κE − 2π

H1(∂ Êk̄)

∣
∣
∣
2
dH1

+ 2
∫

∂E

∣
∣
∣κE − κE

∣
∣
∣
2
dH1 ≤ 4ε20 ≤ 4.

Hence
∣
∣
∣2π − H1(∂ Êk̄)κE

∣
∣
∣ ≤ 2

√
H1(∂ Êk̄), so that, using also (2.4),

2
√

πm0|κE | ≤ 2π + |2π − H1(∂ Êk̄)κE | ≤ 2π + 2
√
H1(∂ Êk̄) ≤ 2π(1 + √

M),

and the claim follows.
Step 3. We claim that

H1(
) ≥ m0 for any component 
 of ∂E . (2.5)

Indeed, using again Gauss–Bonnet Theorem and Jensen inequality,

M |κE |2 + 1 ≥ H1(
)|κE |2 + ε20 ≥ H1(
)|κE |2 +
∫




|κE − κE |2 dH1

≥ 1

2

∫




|κE |2 dH1 ≥ 1

2H1(
)

( ∫




κE dH1
)2 = 1

2H1(
)
4π2,

and the claim follows taking into account (2.3).
Step 4. We claim that if ε0 is sufficiently small, then E has d ≤ M0 connected
components which are simply connected.

We argue by contradiction. Suppose there exists a connected component Ei which
is not simply connected. Then there exists a component 
 ⊂ ∂E contained in Êi such
that

∫



κE dH1 = −2π . We observe that then it holds

−
∫




κEdH1 = − 2π

H1(
)
and −

∫

∂ Êi

κEdH1 = 2π

H1(∂ Êi )

and therefore
∫




∣
∣
∣κE + 2π

H1(
)

∣
∣
∣
2
dH1 +

∫

∂ Êi

∣
∣
∣κE − 2π

H1(∂ Êi )

∣
∣
∣
2
dH1 ≤

∫

∂E
|κE − κE |2dH1 ≤ ε20 .

We then infer that by (2.5)

16π2

M2 ≤
∣
∣
∣
∣

2π

H1(
)
+ 2π

H1(∂ Êi )

∣
∣
∣
∣

2

≤ 2

∣
∣
∣
∣κE + 2π

H1(
)

∣
∣
∣
∣

2

+ 2

∣
∣
∣
∣κE − 2π

H1(∂ Êi )

∣
∣
∣
∣

2
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≤ 2 −
∫




∣
∣
∣
∣κE + 2π

H1(
)

∣
∣
∣
∣

2

dH1 + 2 −
∫

∂ Êi

∣
∣
∣
∣κE − 2π

H1(∂ Êi )

∣
∣
∣
∣

2

dH1 ≤ 2ε20
m0

.

Therefore, for ε0 sufficiently small we reach a contradiction.
Every component of E is thus simply connected and by (2.5) their perimeter is

bounded from below. Therefore the number d of the components is bounded from
above d ≤ M0. Note that in particular κE = 2πd

H1(∂E)
.

Step 5. Let us show that if ε0 is sufficiently small, then each connected component Ei

is a nearly spherical set, parametrized over a disks Dri (xi ) with |Dri (xi )| = |Ei | and
the C1, 12 norm of the parametrization is infinitesimal with ε0 → 0.

We adapt the argument of [23, Lemma 3.2]. Let us fix a component Ei and denote
its perimeter by li , i.e. H1(∂Ei ) = li . By Gauss–Bonnet it holds κEi = 2π

li
. Since

the boundary ∂Ei is connected we may parametrize it by a unit speed curve γ :
[0, li ] → R

2, γ (s) = (x(s), y(s)) with counterclockwise orientation. Define θ(s) :=∫ s
0 κEi (γ (τ )) dτ so that θ(0) = 0 and θ(li ) = 2π . Then, for every 0 ≤ s1 < s2 ≤ li ,
it holds by Hölder’s inequality

|θ(s2) − s2κE − (θ(s1) − s1κE )| ≤
∫ s2

s1
|κE − κE |

≤ ‖κE − κE‖L2(∂E)|s2 − s1| 12
≤ ε0|s2 − s1| 12 .

(2.6)

In particular, applying (2.6) to s1 = 0 and s2 = s ∈ [0, li ] generic (recall that M0 > 1
denote “universal” constants depending only on m, M , which may change from line
to line)

∣
∣θ(s) − sκE

∣
∣ ≤ M0‖κE − κE‖L2(∂E) ≤ M0ε0, (2.7)

and for s2 = li it yields

|2π − liκE | ≤ M0‖κE − κE‖L2(∂E) ≤ M0ε0. (2.8)

By possibly rotating the set Ei we have

x ′(s) = − sin θ(s) and y′(s) = cos θ(s) for all s ∈ (0, li ).

We obtain by (2.7) and (2.8) that

∣
∣
∣x ′(s) + sin

(
2πs

li

) ∣
∣
∣ +

∣
∣
∣y′(s) − cos

(
2πs

li

) ∣
∣
∣ ≤ M0‖κE − κE‖L2(∂E)

≤ M0ε0 (2.9)
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for all s ∈ [0, li ]. Integrating (2.9) we deduce that there are numbers a and b such that

∣
∣
∣x(s) − a − li

2π
cos

(
2πs

li

) ∣
∣
∣ +

∣
∣
∣y(s) − b − li

2π
sin

(
2πs

li

) ∣
∣
∣

≤ M0‖κE − κE‖L2(∂E) ≤ M0ε0 (2.10)

for all s ∈ [0, li ]. We set xi = (a, b) and note that from (2.10) we infer that

D li
2π −M0‖κE−κE‖L2(∂E)

(xi ) ⊂ Ei ⊂ D li
2π +M0‖κE−κE‖L2(∂E)

(xi ). (2.11)

In particular, if ri is chosen in such a way that |Ei | = πr2i = |Dri (xi )|, then (2.11)
yields

li
2π

− M0‖κE − κE‖L2(∂E) ≤ ri ≤ li
2π

+ M0‖κE − κE‖L2(∂E), (2.12)

and

∣
∣
∣x(s) − a − ri cos

(
2πs

li

) ∣
∣
∣ +

∣
∣
∣y(s) − b − ri sin

(
2πs

li

) ∣
∣
∣

≤ M0‖κE − κE‖L2(∂E) ≤ M0ε0 ∀ s ∈ [0, li ]. (2.13)

By (2.9) and (2.13) the boundary of the component Ei is parametrized by a small
perturbation of the boundary of the disc ∂Dri (xi ) given by c : [0, li ] → R

2 with
c(s) = ri (cos( 2πsli ), sin( 2πsli )):

γ (s) = c(s) + σ(s)

‖σ‖L∞ + ‖σ ′‖L∞ ≤ M0‖κE − κE‖L2(∂E) ≤ M0ε0. (2.14)

Now it is a simple consequence of (2.6), (2.9) and (2.14) to verify that ∂Ei is as nearly
spherical sets over Dri (xi ), with |Dri (xi )| = |Ei |, by functions fi ∈ C1,1/2(∂Dri (xi ))
with

‖ fi‖C1,1/2 ≤ ω(‖κE − κE‖L2) ,

for suitable increasing modulus of continuity ω, with ω(0+) = 0.
Step 6. Quantitative Alexandrov Theorem.

We use the quantitative Alexandrov theorem proven in [39] to infer that, if fi is the
parametrization of the component Ei , then

‖ fi‖2H1(∂Dri (xi ))
≤ C‖κEi − κEi ‖2L2(∂Ei )

.
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Recall that ri is such that |Ei | = |Dri (xi )|. By the area formula, see e.g. [39, (1.3)],
and a simple linearization we infer that

0 ≤ P(Ei ) − P(Dri (xi )) ≤ C‖ fi‖2H1(∂Dri (xi ))
.

Summing over the connected components yields

‖κE − κE‖2L2(∂E)
≥

d∑

i=1

‖κEi − κEi ‖2L2(∂Ei )
≥ c

d∑

i=1

‖ fi‖2H1(∂Dri (xi ))

≥ c
∣
∣

d∑

i=1

P(Ei ) − P(Dri (xi ))
∣
∣.

(2.15)

Step 7. Conclusion.
Let r > 0 be such that the disk Dr (xi ) has area |Dr (xi )| = m/d , where m = |E |.

In other words
∑d

i=1 P(Dr (xi )) = 2π rd = Pd . Recall that the disks Dri (xi ) are
defined such that |Dri (xi )| = |Ei | for every component Ei and thus

d∑

i

r2i = dr2. (2.16)

Recall also that by the previous estimates it holds m0 ≤ ri , r , d ≤ M0. By (2.11) and
(2.12) we infer that

Dri−M0‖κE−κE‖L2(∂E)
(xi ) ⊂ Ei ⊂ Dri+M0‖κE−κE‖L2(∂E)

(xi ). (2.17)

and therefore

|r − ri | ≤ M0‖κE − κE‖L2(∂E). (2.18)

Thus, by simple algebra, by (2.16) and by (2.12), if d > 1 we deduce

∣
∣
∣
∣
∣
Pd −

d∑

i=1

P(Dri (xi ))

∣
∣
∣
∣
∣
= 2π

∣
∣
∣
∣
∣
d r −

d∑

i=1

ri

∣
∣
∣
∣
∣
= 2π

∣
∣
∣
∣
∣
∣
∣

√
d

(
d∑

i=1

r2i

) 1
2

−
d∑

i=1

ri

∣
∣
∣
∣
∣
∣
∣

≤ M0

⎛

⎝d
d∑

i=1

r2i −
(

d∑

i=1

ri

)2⎞

⎠

= M0

∑

1≤i< j≤d

(ri − r j )
2

≤ C
d∑

i=1

(ri − r)2
(2.18)≤ M0‖κE − κE‖2L2(∂E)

.
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Hence, the inequality (2.1) then follows by combining the above estimate with (2.15).
Finally, by the very same argument of step 5 and by (2.18)we deduce that the connected
components Ei can be parametrized as nearly spherical sets over the discs Dr (xi ). ��

Proposition 2.1 immediately implies the sharp geometric inequality in the plane
stated in Theorem 1.1.

Proof of Theorem 1.1 Let ε0 > 0 be from Proposition 2.1. If ‖κE − κ̄E‖L2(∂E) ≤ ε0
then the inequality holds by Proposition 2.1. If ‖κE − κ̄E‖L2(∂E) ≥ ε0, then the
inequality holds trivially as

|P(E) − Pd | ≤ 3M ≤ 3M

ε20
‖κE − κ̄E‖2L2(∂E)

.

The inequality (1.3) follows similarly. ��
Remark 2.2 The exponent 2 in Theorem 1.1 is optimal. Indeed, let E f be a nearly
spherical set with same area and barycenter of the disc, parametrized (on the unitary
circle) by a smooth function f : ∂D1 → R with C1 norm small enough; then, by
Fuglede inequality [22]

P(E f ) − P(D1) ≥ c‖ f ‖2H1(∂D1)
.

If in addition f is in the second eigenspace of the Laplace–Beltrami operator on the
circle, as pointed out in [39, Remark 1.5] we have

‖ f ‖2H1(∂D1)
≥ c‖HE f − H̄E f ‖2L1(∂D1)

.

Combining the above inequalities, the optimality of the exponent follows.

3 The asymptotics of the area preserving curvature flow in the plane

Let us first introduce the setting for the construction of the flat flows. We use the
notation from [39] and refer to [39, 41] for a more detailed introduction. We denote
the signed distance function by dE and define it as

dE (x) = dist(x, E) − dist(x,R2\E).

Then clearly |dE (x)| = dist(x, ∂E).
We fix the volume m > 0 and the time step h > 0, and given a bounded set E we

consider the minimization problem

min
{
P(F) + 1

h

∫

F
dE dx + 1√

h

∣
∣|F | − m

∣
∣
}

(3.1)
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and note that the minimizer exists but might not be unique. We define the dissipation
of a set F with respect to a set E as

D(F, E) :=
∫

F�E
dist(x, ∂E) dx (3.2)

and observe that we may write the minimization problem (3.1) as

min
{
P(F) + 1

h
D(F, E) + 1√

h

∣
∣|F | − m

∣
∣
}
.

Let us then recall the construction of the flat flow for the volume preserving mean
curvature flow (1.1) from [41]. Let E(0) ⊂ R

2 be a bounded set of finite perimeter
which coincides with its Lebesgue representative. We fix a minimizer of (3.1), with
E = E(0), denote it by E (h)

1 and consider its Lebesgue representative. We construct

the discrete-in-time evolution {E (h)
k }k∈N by recursion such that assuming that E (h)

k is

defined we set E (h)
k+1 to be a minimizer of (3.1) with E = E (h)

k . By [41, Lemma 3.1]
it holds for all k = 0, 1, . . .

P(E (h)
k+1) + 1√

h

∣
∣|E (h)

k+1| − m
∣
∣ + 1

h
D

(
E (h)
k+1, E

(h)
k

)
≤ P(E (h)

k ) + 1√
h

∣
∣|E (h)

k | − m
∣
∣.

(3.3)

Also the set E (h)
k+1 is C

2,α-regular and satisfies the Euler–Lagrange equation (see [41,
Lemma 3.7])

d
E (h)
k

h
= −κ

E (h)
k+1

+ λ
(h)
k+1 on ∂E (h)

k+1, (3.4)

in the classical sense, where λ
(h)
k+1 is the Lagrange multiplier due to the volume penal-

ization. Finally we define the approximate flat flow {E (h)(t)}t≥0 by setting

E (h)(t) = E (h)
k for t ∈ [kh, (k + 1)h).

Definition 3.1 A flat flow solution of (1.1) is any family of sets {E(t)}t≥0 which is a
cluster point of {E (h)(t)}t≥0, i.e.,

E (hn)(t) → E(t) as hn → 0 in L1 for almost every t > 0.

By [41, Theorem2.2] there exists a flat flow starting from E(0) such that P(E(t)) ≤
P(E(0)) and |E(t)| = m for every t ≥ 0.

We are interested in the long time behavior of the flow. To this aim we need two
technical lemmas. The first lemma is algebraic.
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Lemma 3.2 Let K ∈ N and {ak}k∈{1,...,K } be a sequence of non-negative numbers and
let I ⊂ {1, . . . , K }. Assume that there exists c > 1 such that

K∑

k=i

ak ≤ cai

for every i ∈ {1, . . . , K }\I. Then,
K∑

k=i+1

ak ≤
(
1 − 1

c

)i−|I|
S

for every i ∈ {1, . . . , K }, where S := ∑K
k=1 ak and |I| denotes the cardinality of I.

Proof Set F(i) := ∑K
k=i ak and note that by assumption F(i) ≤ c(F(i) − F(i + 1))

for every i ∈ {1, . . . , K }\I. Hence, we have

F(i + 1) ≤
{(

1 − 1
c

)
F(i) if i /∈ I,

F(i) if i ∈ I.

By iterating the previous estimate (note that at least K − |I| times the first instance
must hold), we conclude. ��

The second lemma is in the spirit of Ekeland variational principle.

Lemma 3.3 Let d ∈ N and Dr (x1), . . . , Dr (xd) be disjoint disks and denote F =⋃d
i=1 Dr (xi ). Then there is a constant C, which depends only on d and r, such that

for every set of finite perimeter E ⊂ R
2 it holds

P(F) ≤ P(E) + C |E�F | 13 .

Proof Let us fix a set E and let ρ ≤ r/10 be a positive number whose choice will be
clear later. We begin by constructing a set Fρ of class C1,1, which contains the union
of disks F ⊂ Fρ , satisfies interior and exterior ball condition with radius ρ and

P(F) ≤ P(Fρ) + C
√

ρ, and |F�Fρ | ≤ Cρ
3
2 . (3.5)

Let x1, . . . , xd be the centerpoints of the disks. If it holds |xi − x j | > 2r +ρ for every
i 	= j we simply choose Fρ = F . If |xi − x j | ≤ 2r +ρ for some i 	= j we connect the
disks Dr (xi ) and Dr (x j ) with a thin neck around the midpoint (xi + x j )/2 as follows.

We first enlarge the disks by ρ and consider the union F̃ i j
ρ := Dr+ρ(xi ) ∪ Dr+ρ(x j ),

which overlap around the midpoint (xi + x j )/2 . We then decrease the union back by
ρ and define

Fi, j
ρ = {x ∈ R

2 : dist(x,R2\F̃ i j
ρ ) > ρ}.
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Fig. 1 If two disks are close to
each other, we connect them
with a neck given by two arcs

xjxi

Since |xi − x j | ≤ 2r + ρ, the set Fi, j
ρ is connected and contains the disks Dr (xi ) and

Dr (x j ). The part of the boundary of F
i, j
ρ , which is not contained in D̄r (xi ) ∪ D̄r (x j ),

consists of two arcs, see Fig. 1. In particular, the set Fi, j
ρ satisfies interior and exterior

ball condition with radius ρ. We repeat the same construction for all disks Dr (xi ) and
Dr (x j ) which are close to each other in the sense that |xi − x j | ≤ 2r + ρ, and obtain
Fρ which satisfies (3.5).

The rest of the proof follows from standard calibration argument (see e.g. [2, Proof
of Theorem 4.3]) and we only give the sketch of the argument. We construct a vector
field X ∈ C1,1(R2,R2) such that

X(x) = ∇dFρ (x)ζ(x)

where 0 ≤ ζ ≤ 1 is a smooth cut-off function such that ζ(x) = 1 for |dFρ (x)| ≤ ρ/4,
ζ(x) = 0 for |dFρ (x)| ≥ ρ/2 and |∇ζ | ≤ C/ρ. In particular, it holds |X | ≤ 1 inR2 and
X = νFρ on ∂Fρ . Moreover, since Fρ satisfies interior and exterior ball condition with
radius ρ it holds |�dFρ (x)| ≤ C/ρ for |dFρ (x)| ≤ ρ/2. Therefore by the divergence
theorem

P(Fρ) − P(E) ≤
∫

Fρ�E
|div(X)| dx ≤ C

ρ
|Fρ�E |.

We combine the above inequality with (3.5) and deduce

P(F) ≤ P(E) + C

ρ
|E�F | + C

√
ρ.

Choosing ρ = min{|E�F | 23 , r/10} yields the claim. ��
We may now give the proof of the convergence of the area-preserving mean curva-

ture flow.

Proof of Theorem 1.2 Let {E(t)}t≥0 be an area-preservingflat flowand let {E (hn)(t)}t≥0
be an approximate flow converging to E(t). Set

fn(t) = P(E (hn)(t)) + 1√
hn

∣
∣|E (hn)(t)| − m

∣
∣.
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By (3.3) the fn’s are monotone non-increasing functions which are bounded by
P(E(0)). Therefore, by Helly’s selection theorem, up to passing to a further subse-
quence (not relabeled), the functions fn’s converge pointwise to some non-increasing
function f∞ : [0,+∞) → R. Set F∞ = limt→+∞ f∞(t). In what follows we also
set

v
(hn)
t =

d
E (hn )
k

hn
, where k =

⌊
t

hn

⌋

− 1

the approximate velocity of the approximate flow at time t . Moreover, C will denote
a positive constant, which may change from line to line and might depend on the flat
flow itself (but not on hn nor on the discrete step of the minimizing movements).

We divide the proof in two cases.
Case 1: There exists d ∈ N\{0} such that either Pd < F∞ < Pd+1 or F∞ = Pd

and f∞(t) > Pd for every t ∈ [0,+∞).
In this case, there exists t̄ > 0 such that, for every T > t̄ there exist n̄ ∈ N\{0}

such that

Pd ≤ fn(t) < Pd+1 and Pd+1 − fn(t) ≥ Pd+1 − F∞
2

=: δ0 (3.6)

for every n ≥ n̄ and t ∈ [t̄, T ]. Set I(hn) =
{
i ∈ {� t̄

hn
�, . . . , � T

hn
�} : |E (hn)

i | 	= m
}
.

By [41, Cor. 3.10] there exists a constant CT > 0 such that

|I(hn)| ≤ CT (3.7)

for n sufficiently large. For every i /∈ I(hn) we have by iterating (3.3) and using (3.6)

1

hn

� T
hn

�
∑

k=i+1

D(E (hn)
k , E (hn)

k−1 ) ≤ P(E (hn)
i ) − fn(T ) ≤ P(E (hn)

i ) − Pd .

Then by (1.3) and by the Euler–Lagrange equation (3.4)

1

hn

� T
hn

�
∑

k=i+1

D(E (hn)
k , E (hn)

k−1 ) ≤ P(E (hn)
i ) − Pd

≤ C0‖κE (hn )
i

− κ
E (hn )
i

‖2
L2(∂E (hn )

i )

≤ C0‖κE (hn )
i

− λ
(hn)
i ‖2

L2(∂E (hn )
i )

= C0

h2n

∫

∂E (hn )
i

d2
E (hn )
i−1

dH1.

(3.8)
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In [41] it is proven (formula after (3.25)) that

∫

∂E (hn )
i

d2
E (hn )
i−1

dH1 ≤ CD
(
E (hn)
i , E (hn)

i−1

)
. (3.9)

Therefore from (3.8) we conclude

� T
hn

�
∑

k=i+1

D
(
E (hn)
k , E (hn)

k−1

)
≤ C ′

0

hn
D

(
E (hn)
i , E (hn)

i−1

)
.

Settinga(hn)
k = h−1

n D(E (hn)
k , E (hn)

k−1 )wehave that for every i ∈ {� t̄
hn

�, . . . , � T
hn

�}\I(hn)

it holds

� T
hn

�
∑

k=i

a(hn)
k ≤ C ′

0 + hn
hn

a(hn)
i

≤ 2C ′
0

hn
a(hn)
i .

Moreover it holds by (3.3)
∑∞

k=1 ak ≤ P(E(0)) ≤ M . By Lemma 3.2 we infer that

� T
hn

�
∑

k=i+1

a(hn)
k ≤ M

(

1 − hn
2C ′

0

)i−CT − t̄
hn

for all i = � t̄

hn
�, . . . , � T

hn
�.

In other words for every t ∈ [t̄, T ] we have

� T
hn

�
∑

k=� t
hn

�+1

h−1
n D(E (hn)

k , E (hn)
k−1 ) ≤ M

(

1 − hn
2C ′

0

)� t
hn

�−CT − t̄
hn

≤ Ce
− t

2C ′
0 (3.10)

for hn ≤ h0(T ).
By [41, Proposition 3.4], it holds

|E (hn)
i �E (hn)

i−1 | ≤ C�P(E (hn)
i ) + C

�

∫

E (hn )
i �E (hn )

i−1

|d
E (hn )
i−1

| dx

123



1986 V. Julin et al.

for all � ≤ 1
C

√
hn . Therefore, by the inequality above and by (3.10) we infer that for

every t̄ ≤ t < s ≤ T we have

|E (hn)(t)�E (hn)(s)| =
� s
hn

�
∑

i=� t
hn

�+1

|E (hn)
i �E (hn)

i−1 |

≤ C

� s
hn

�
∑

i=� t
hn

�+1

(

�P(E (hn)
i ) + 1

�

∫

E (hn )
i �E (hn )

i−1

|d
E (hn )
i−1

| dx
)

≤ CP(E(0))�
s − t

hn
+ C

�

� s
hn

�
∑

i=� t
hn

�+1

D
(
E (hn)
i , E (hn)

i−1

)

≤ CM�
s − t

hn
M + C hn

�
e
− t

2C ′
0 ,

for all � ≤ 1
C

√
hn and hn ≤ h0. In particular, choosing � = hn

eαt with α = 1
4C ′

0
and

s ≤ t + 1, we have

|E (hn)(t)�E (hn)(s)| ≤ CMe
− t

4C ′
0 .

Passing to the limit as hn → 0, we get

|E(t)�E(s)| ≤ CMe
− t

4C ′
0 for all t̄ ≤ t ≤ s ≤ t + 1. (3.11)

Hence, we deduce that E(t) converges exponentially fast to a set of finite perimeter
E∞ in L1 and |E∞| = m.

We now show that the limiting set E∞ is the union of disjoint open disks with the
same radius. Denote by S∞ the countable set of discontinuity points of f∞ and note
that for any t ∈ (0,+∞)\S∞ and any sequence tn → t we have fn(tn) → f∞(t).

Fix t ≥ t̄ , 0 < α < 1
2C ′

0
, and an open set A(t) such that S∞ ∩ [t, t + e−αt ] ⊂

A(t) ⊂ [t, t + e−αt ] and |A(t)| ≤ e−α′t , with α′ > α. By (3.9) and (3.10) we have

∫

[t,t+e−αt ]\A(t)

(∫

∂E (hn )(s)
(v(hn)

s )2dH1
)

ds ≤ 1

hn

� t+e−αt
hn

�
∑

i=� t
hn

�

∫

∂E (hn )
i

d2
E (hn )
i−1

dH1

≤ C

� t+e−αt
hn

�
∑

i=� t
hn

�

1

hn
D

(
E (hn)
i , E (hn)

i−1

)
≤ Ce

− t
2C ′

0 , (3.12)
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for n sufficiently large. By possibly increasing t̄ we have |[t, t+e−αt ]\A(t)| > 1
2e

−αt

for t ≥ t̄ . Moreover by (3.7) it holds

|{s ∈ [t, t + e−αt ] : |E (hn)(s)| 	= m}| → 0, as n → ∞.

Then by (3.12) and by the mean value theorem there exists sn ∈ [t, t + e−αt ]\A(t)
such that

‖κE (hn )(sn) − κE (hn )(sn)‖2L2(∂E (hn )(sn))
≤

∫

∂E (hn )(sn)
(v(hn)

sn )2dH1 ≤ Ce
−
(

1
2C ′

0
−α

)
t
,

(3.13)

|E (hn)(sn)| = m, and thus, in particular, fn(sn) = P(E (hn)(sn)). From Proposition 2.1
and (3.13), we infer that, for t ≥ t̃ , where t̃ is sufficiently large, E (hn)(sn) is diffeo-
morphic to a union of d disjoint disks and

|P(E (hn)(sn)) − Pd | ≤ Ce
−
(

1
2C ′

0
−α

)
t
. (3.14)

In particular, passing to the limit in hn → 0 (up to a further not relabelled sub-
sequence, if needed), there exists st ∈ [t, t + e−αt ]\A(t) such that sn → st and
thus E (hn)(sn) → E(st ) in L1 and P(E (hn)(sn)) = fn(sn) → f∞(st ). In fact, by

the uniform C1, 12 -bounds provided by (3.13) and Proposition 2.1 we deduce that
P(E (hn)(sn)) → P(E(st )) and thus f∞(st ) = P(E(st )), and that E(st ) is the union of
d nearly spherical sets parametrized over d disjoint open disks Dr (xi (t)), i = 1, . . . d

of volumem/d, withC1, 12 -norm of the parametrizations (exponentially) small. In par-
ticular, setting F(t) := ∪d

i=1Dr (xi (t)), we have that supx∈E(st )�F(t) dist(x, ∂F(t))
decays exponentially to zero as t → +∞, E∞ is a union of d disjoint open disks of
volume m/d, and F(t) → E∞ in the Hausdorff sense exponentially fast.

Summarizing, and recalling also the first inequality in (3.6) and (3.14), we have
shown that for every t sufficiently large, there exists st ∈ [t, t + e−αt ] such that E(st )
is the union of d disjoint nearly spherical sets parametrized over the disjoint open
disks of E∞ and

Pd ≤ f∞(st ) = P(E(st )) ≤ Pd + Ce−(1/C−α)t ,

sup
x∈E(st )�E∞

dist(x, ∂E∞) ≤ Ce− t
C , (3.15)

for a suitable constant C > 1.
From the first inequality in (3.15) and by the monotonicity of f∞ we obtain for all

s sufficiently large that by choosing t such that s = t + e−αt it holds

P(E(s)) ≤ f∞(s) ≤ f∞(st ) ≤ Pd + Ce−(1/C−α)(s−e−αt ) ≤ Pd + Ce− (1/C−α)s
2 .
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On the other hand, by Lemma 3.3 and (3.11) we obtain

Pd ≤ P(E(t)) + C |E(t)�E∞| 13 ≤ P(E(t)) + C ′e
− t

12C ′
0 .

Hence, we have the exponential convergence of the perimeters in (1.4).
The first part of the inequality in (1.4) follows from the second inequality in (3.15)

and from [28, Lemma 4.3].
Case 2: There exist d ∈ N\{0} and t̄ > 0 such that F∞ = Pd = f∞(t) for every

t ≥ t̄ .
In this case, using the monotonicity of the functions fn’s, we deduce that for every

T > t̄ the functions fn converge uniformly to f∞ ≡ F∞ in [t̄, T ]. In particular, using
that

1

hn
D(E (hn)

k , E (hn)
k−1 ) ≤ fn((k − 1)hn) − fn(khn),

we deduce that for every t ∈ [t̄ + hn, T ] we have

� T
hn

�
∑

k=� t
hn

�+1

1

hn
D(E (hn)

k , E (hn)
k−1 ) ≤ fn

(
� t

hn
�hn

)
− fn

(
� T

hn
�hn

)

=: bn → F∞ − F∞ = 0

as hn → 0. Arguing as above, for every t̄ + hn ≤ t < s ≤ T , we get

|E (hn)(t)�E (hn)(s)| ≤ C�
s − t

hn
P(E(0)) + C

�

� s
hn

�
∑

i=� t
hn

�+1

D(E (hn)
i , E (hn)

i−1 ),

for all � ≤ 1
C

√
hn and, choosing � = √

bnhn , we conclude that

|E (hn)(t)�E (hn)(s)| ≤ C
√
bn(s − t)P(E(0)) + C

√
bn → 0,

that is E(t) = E(s) for every t̄ < t < s < T .
The final part of the proof consists in showing that the limiting set E∞ is the union

of disjoint open disks with the same radius. We have

∫ T

t

∫

∂E (hn )(t)
(v

(hn)
t )2dH1 = 1

hn

� T
hn

�
∑

i=� t
hn

�

∫

∂E (hn )
i

d2
E (hn )
i−1

=
� T
hn

�
∑

i=� t
hn

�

1

hn
D(E (hn)

i , E (hn)
i−1 ) = o(1).
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By the mean value theorem, for every T sufficiently large there exists tn ∈ [T , T + 1]
such that

‖κE (hn )(tn) − κE (hn )(tn)‖2L2(∂E (hn )(tn))
≤

∫

∂E (hn )(tn)
(v

(hn)
tn )2dH1 = o(1).

As before, by Proposition 2.1 the sets E (hn)(tn) are nearly spherical and converge to
the union of d disjoint open balls. From here the conclusion follows. ��

4 The asymptotics of the 2DMullins–Sekerka flow

Let us first construct a flat flow solution for the Mullins–Sekerka flow in the 2-
dimensional flat torus. The construction in the case of bounded domain is due to
Luckhaus and Sturzenhecker [34] and the same construction can be applied to the
periodic setting with obvious changes. We denote the perimeter of a set E in the flat
torus T2 by PT2(E) and recall that it is defined as

PT2(E) := sup

{∫

E
divX dx : X ∈ C1(T2,R2), ‖X‖L∞ ≤ 1

}

.

Here X ∈ C1(T2,R2)means that theZ2-periodic extension of X toR2 is continuously
differentiable. For a given set of finite perimeter E ⊂ T

2, with |E | = m, we consider
the minimization problem

min

{

PT2(F) + h

2

∫

T2
|∇UF,E |2 dx : with |F | = |E | = m

}

, (4.1)

where the function UF,E ∈ H1(T2) is the solution of

− �UF,E = 1

h
(χF − χE ) (4.2)

with zero average. As proven in [34, 45] there exists a minimizer for (4.1), but it might
not be unique. Concerning the regularity of the minimizers we may argue as in [2,
Theorem 2.8.] (see also [39, Proposition 2.2]) to deduce that the minimizing set F
is C3,α-regular. Let us briefly sketch the argument. First, we may replace the volume
constraint in (4.1) by volume penalization as in [2, 21] and conclude that theminimizer
is a �-minimizer of the perimeter. This implies that the minimizer is C1,α-regular and
satisfies the associated Euler–Lagrange equation

UF,E = −κF + λ on ∂F

in a weak sense (see, for instance, [34, 45]), where λ is the Lagrange multiplier. Since
UF,E is the solution of (4.2), by standard elliptic regularity it holdsUF,E ∈ C1,α(T2).
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Then by the Euler–Lagrange equation we deduce that F is in fact C3,α-regular and
the Euler–Lagrange equation holds in the classical sense.

Let us denote

D(F, E) :=
∫

T2
|∇UF,E |2 dx (4.3)

where UF,E is defined in (4.2). We define the H−1-norm of a function f on the torus
T
2 with

∫
T2 f = 0 by duality as

‖ f ‖H−1(T2) := sup

{∫

T2
ϕ f dx : ‖∇ϕ‖L2(T2) ≤ 1

}

.

Then, integrating (4.2) by parts yields

‖χF − χE‖2H−1(T2)
≤ h2 ‖∇UF,E‖2L2(T2)

= h2 D(F, E). (4.4)

We fix the time step h > 0 and our initial set E(0) ⊂ T
2 and let E (h)

1 be aminimizer

of (4.1) with E(0) = E . We construct the discrete-in-time evolution (E (h)
k )k∈N as

before by induction such that, assuming that E (h)
k is defined, we set E (h)

k+1 to be a

minimizer of (4.1) with E = E (h)
k and denote the associated potential for short by

U (h)
k+1, which is the solution of

− �U (h)
k+1 = 1

h

(
χ
E (h)
k+1

− χ
E (h)
k

)
(4.5)

with zero average. The Euler–Lagrange equation now reads as

U (h)
k+1 = −κ

E (h)
k+1

+ λ
(h)
k+1 on ∂E (h)

k+1. (4.6)

By a direct energy comparison (formula (3.6) in [45]) we obtain

PT2(E (h)
k+1) + h

2
D(E (h)

k+1, E
(h)
k ) ≤ PT2(E (h)

k ), (4.7)

where D(E (h)
k+1, E

(h)
k ) is defined in (4.3).

As before we define the approximate flat flow {E (h)(t)}t≥0 by setting

E (h)(t) = E (h)
k for t ∈ [kh, (k + 1)h)

and we call a flat flow solution of (1.2) any cluster point {E(t)}t≥0 of {E (h)(t)}t≥0, as
h → 0; i.e.,

E (hn)(t) → E(t) in L1 for almost every t > 0 and for some hn → 0.
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Arguing exactly as in [45, Proposition 3.1] we may conclude that there exists a flat
flow starting from E(0) such that PT2(E(t)) ≤ PT2(E(0)), |E(t)| = |E(0)| for every
t ≥ 0 and {E(t)}t≥0 satisfies the equation (1.2) in a weak sense.

To proceed, we need the analogue of Proposition 2.1 for the Mullins–Sekerka flow.
To this aim we first prove the following lemma, which is similar to [47, Lemma 2.1].

Lemma 4.1 Let E ⊂ T
2 be a set of class C3, with |E | ≤ 1

2 and PT2(E) < 2, and let
uE ∈ C1(T2) be a function with zero average such that ‖∇uE‖L2(T2) ≤ M and

κE = −uE + λ on ∂E for some λ ∈ R. (4.8)

Then it holds

sup
x∈T2,ρ>0

H1(∂E ∩ Dρ(x))

ρ
≤ K , (4.9)

where the constant K > 0 depends only on |E | and M.

Proof We note that by (4.8) for every X ∈ C1(T2;R2) it holds

∫

∂E
divτ X dH1 =

∫

E
div

(
(−uE + λ)X

)
dx . (4.10)

Therefore the statement follows from [47, Lemma 2.1] once we bound the Lagrange
multiplier λ ∈ R. To this aim, and for future purpose, we show that there is δ > 0 such
that every component Ei of E is contained in a cube Q1−δ(xi ) := (1− δ)2 + {xi } for
some xi .

Let us first show that every component
i of the boundary ∂E divides the torusT2 in
two components and thus it is the boundary of a set. Indeed, if this is not the case then
necessarilyH1(
i ) ≥ 1. Since
i is not a boundary of a set then ∂E must have another
component, say 
 j , such that H1(
 j ) ≥ 1. But this implies PT2(E) = H1(∂E) ≥ 2,
which contradicts the assumption PT2(E) < 2.

Let us next show that 
i is contained in a cube Q1−δ(xi ) for some xi . Let π1 :
T
2 → T be the projection onto the x1-axis i.e., π1(x1, x2) = x1. Then we deduce from

H1(
i ) < 2 and from the fact that 
i is the boundary of a set that H1(π1(
i )) < 1.
Similarly it holds H1(π2(
i )) < 1, where π2 is the projection onto the x2-axis. This
implies that 
i ⊂ Q1−δ(xi ) for some δ > 0 and xi . Let us from now on denote the set
enclosed by 
i which is inside the cube Q1−δ(xi ) by Fi .

Let 
1, . . . , 
n be the components of the boundary ∂E which enclose the sets
F1, . . . , Fn . Let us show that

E ⊂
n⋃

i=1

Fi . (4.11)
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Since Fi ⊂ Q1−δ(xi ) we have by the Isoperimetric Inequality 2
√

π |Fi | ≤ H1(
i ).
Therefore by the assumption on the perimeter, PT2(E) < 2, we have

4π
∣
∣

n⋃

i=1

Fi
∣
∣ ≤ 4π

n∑

i=1

|Fi | ≤
n∑

i=1

H1(
i )
2 ≤

( n∑

i=1

H1(
i )
)2 ≤ PT2(E)2 < 4.

Therefore
∣
∣⋃n

i=1 Fi
∣
∣ < 1

π
< 1

3 . Since, |E | ≤ 1
2 then necessarily E ⊂ ⋃n

i=1 Fi .
We conclude from (4.11) that a component E j of E is contained in Fi for some i .

Therefore since Fi ⊂ Q1−δ(xi ), then also E j ⊂ Q1−δ(xi ).
We may finally bound the Lagrange multiplier in (4.10) by a standard argument.

Indeed, let E j be a component of E . Since E j ⊂ Q1−δ(x j ) we may define X ∈
C1
0

(
Q1−δ/3(x j )

)
such that X(x) = x in E j and X(x) = 0 in E\E j . We apply (4.10)

with this choice of X and have

PT2(E j ) =
∫

∂E j

divτ x dH1 =
∫

E j

div
(
(−uE + λ)x

)
dx

= −
∫

E j

div(uE x) dx + 2λ|E j |.

We have
∣
∣
∫
E j

div(uE x) dx
∣
∣ ≤ C‖uE‖H1(E j )

. By repeating the argument for every
component we obtain by the Poincaré inequality

|λ||E | ≤ PT2(E) + C‖uE‖H1(E) ≤ PT2(E) + C‖uE‖H1(T2)

≤ PT2(E) + C‖∇uE‖L2(T2).

This yields the required bound on the Lagrange multiplier. ��
We also recall the result by Meyers–Ziemer [38, Theorem 4.7] which implies that

if E satisfies (4.9) then for every ϕ ∈ C1(T2) it holds

∣
∣
∫

∂E
ϕ dH1

∣
∣ ≤ C‖ϕ‖W 1,1(T2), (4.12)

with C depending on K (and thus on |E | and M).
We are now ready to state and prove the analogue of Proposition 2.1, which is suited

for the Mullins–Sekerka flow.

Proposition 4.2 Let E ⊂ T
2 be a set of class C3, with |E | = m ≤ 1

2 and PT2(E) < 2,
and let uE ∈ C1(T2) be a function with zero average such that

κE = −uE + λ on ∂E

for some λ ∈ R. Then, there exist ε0 = ε0(m) ∈ (0, 1) and C0 = C0(m) > 1 such
that if

‖∇uE‖L2(T2) ≤ ε0
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then E is diffeomorphic to a union of d disjoint disks D1, …, Dd with equal areas
m/d and dist(Di , Dj ) > 0 for i 	= j . Moreover,

|PT2(E) − Pd | ≤ C0‖∇uE‖2L2(T2)

and for ε0 sufficiently small the boundary of every connected component of the set E

can be parametrized as a normal graph over one of the disc Di with C1, 12 norm of the
parametrization vanishing as ε0 → 0.

We note that we need the assumption PT2(E) < 2 to exclude the case when E is a
strip or a union of strips.

Proof We recall that the argument in the proof of Lemma 4.1 implies that every
component Ei of E is contained in a cube Q1−δ(xi ) for some xi . By Lemma 4.1, we
can apply (4.12) with ϕ = u2E and obtain

∫

∂E
u2E dH1 ≤ C‖u2E‖W 1,1(T2) ≤ C‖uE‖2H1(T2)

≤ C‖∇uE‖2L2(T2)
,

where the last inequality follows from Poincaré inequality. Since uE satisfies (4.8) we
deduce by the assumption ‖∇uE‖L2(T2) ≤ ε0 that

∫

∂E
|κE − κE |2 dH1 ≤

∫

∂E
|κE − λ|2 dH1 =

∫

∂E
u2E dH1 ≤ C‖∇uE‖2L2(T2)

≤ Cε20 .

Hence, the claim follows from Proposition 2.1. ��
Proposition 4.2 immediately implies the following corollary.

Corollary 4.3 Let E ⊂ T
2 be a set of class C3, with |E | = m ≤ 1

2 and PT2(E) < 2
and let uE ∈ C1(T2) be a function with zero average such that κE = −uE + λ on ∂E
for some λ ∈ R. If δ0 > 0 and d ∈ N, are such that Pd ≤ P(E) ≤ Pd+1 − δ0, then it
holds

P(E) − Pd ≤ C0‖∇uE‖2L2(T2)

for C0 = C0(m, δ0).

We also need the following lemmawhich is essentially a restatement of [34, Lemma
3.1]. The proof can also be found in [9, Lemma 2], but we recall it for the reader’s
convenience.

Lemma 4.4 Let ϕ ∈ BV(T2). There is a constants C > 1 and ρ0 > 0 such for all
ρ ≤ ρ0 it holds

‖ϕ‖L1(T2) ≤ Cρ ‖ϕ‖BV (T2) + Cρ−1‖ϕ‖H−1(T2).
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Proof Let us fix ρ > 0 and let ηρ(x) = ρ−2η( x
ρ
) be the standard mollifier. Then we

write

‖ϕ‖L1(T2) ≤
∫

T2
|ϕ − ϕ ∗ ηρ | dx +

∫

T2
|ϕ ∗ ηρ | dx .

Let us first bound the second term on the RHS. Since ‖ηρ‖H1(T2) ≤ C/ρ we obtain
by the definition of the H−1-norm

∫

T2
|ϕ ∗ ηρ | dx =

∫

T2

∣
∣
∫

T2
ϕ(y)ηρ(y − x) dy

∣
∣dx

≤ ‖ϕ‖H−1(T2)‖ηρ‖H1(T2) ≤ Cρ−1 ‖ϕ‖H−1(T2).

We bound the first term by change of variables

∫

T2
|ϕ − ϕ ∗ ηρ | dx =

∫

T2

∣
∣
∫

T2

(
ϕ(x) − ϕ(x + ρy)

)
η(y) dy

∣
∣ dx

=
∫

T2

∣
∣
∫

T2

∫ ρ

0
− ∂

∂τ
ϕ(x + τ y)η(y) dτdy

∣
∣ dx

≤ Cρ ‖ϕ‖BV (T2) .

��
We are ready to prove the convergence of the Mullins–Sekerka flow in the flat torus

T
2.

Proof of Theorem 1.3 The proof is similar to the proof of Theorem 1.2 but we highlight
the main differences. Let {E(t)}t≥0 be a flat flow for the Mullins–Sekerka flow and let
{E (hn)(t)}t≥0 be an approximate flow converging to E(t). Since {T2\E(t)}t≥0 is a flat
flow starting from T

2\E(0), by replacing E(0) with its complement in T
2 if needed,

we may assume without loss of generality that |E(0)| ≤ 1
2 . We will show that in this

case the limiting set is a finite union of disjoint open discs with equal radii.
Arguing as before we deduce that by (4.7) the functions

fn(t) = PT2(E (hn)(t))

aremonotone non-increasing with fn(t) < 2 and (possibly up to a further unrelabelled
subsequence) converge pointwise to a non-increasing function f∞ : [0,+∞) → R.
Set F∞ = limt→+∞ f∞(t). Again we divide the proof in two cases.

Case 1: There exists d ∈ N\{0} such that either Pd < F∞ < Pd+1, or F∞ = Pd
and f∞(t) > Pd for every t ∈ [0,+∞). In this case, there exists t̄ ≥ 1 such that, for
every T > t̄ there exist n̄ ∈ N\{0} such that

Pd ≤ fn(t) < Pd+1 and Pd+1 − fn(t) ≥ Pd+1 − F∞
2

=: δ0 (4.13)
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for every n ≥ n̄ and t ∈ [t̄, T ]. By summing (4.7) and using (4.13) we obtain for every
i ∈ {� t̄

hn
�, . . . , � T

hn
�} that

hn
2

� T
hn

�
∑

k=i+1

D(E (hn)
k , E (hn)

k−1 ) ≤ PT2(E (hn)
i ) − PT2

(
E (hn)

� T
hn

�
) ≤ PT2(E (hn)

i ) − Pd ,

(4.14)

whereD(E (hn)
k , E (hn)

k−1 ) is defined in (4.3). Then by (4.14) and by Corollary 4.3 it holds

hn
2

� T
hn

�
∑

k=i+1

D(E (hn)
k , E (hn)

k−1 ) ≤ PT2(E (hn)
i ) − Pd ≤ C0‖∇U (h)

i ‖2L2(T2)

= C0D(E (hn)
i , E (hn)

i−1 ).

Therefore we conclude

� T
hn

�
∑

k=i+1

D(E (hn)
k , E (hn)

k−1 ) ≤ 2C0

hn
D(E (hn)

i , E (hn)
i−1 ).

Setting a(hn)
k = hn D(E (hn)

k , E (hn)
k−1 ) we have that for every i ∈ {� t̄

hn
�, . . . , � T

hn
�} it

holds

� T
hn

�
∑

k=i

a(hn)
k ≤ 2C0 + hn

hn
a(hn)
i ≤ 3C0

hn
a(hn)
i

and by applying (4.14) with i = � t̄
hn

� yields

� T
hn

�
∑

k=� t̄
hn

�+1

a(hn)
k ≤ PT2

(
E (hn)

� t̄
hn

�
)

≤ PT2(E(0)) < 2.

Therefore Lemma 3.2, with I being the empty set this time, implies

� T
hn

�
∑

k=i+1

a(hn)
k ≤ 2

(

1 − hn
3C0

)i− t̄
hn

for all i = � t̄

hn
�, . . . , � T

hn
�.

123



1996 V. Julin et al.

In other words for every t ∈ [t̄, T ] we have

� T
hn

�
∑

k=� t
hn

�+1

hn D(E (hn)
k , E (hn)

k−1 ) ≤ 2

(

1 − hn
3C0

)� t
hn

�− t̄
hn ≤ Ce

− t
3C0

for hn ≤ h0(T ). Then, by (4.4) and by the above inequality we have that for t̄ ≤ t <

s ≤ T with s ≤ t + 1 it holds

‖χE (hn )(s) − χE (hn )(t)‖H−1(T2) ≤
� s
hn

�
∑

k=� t
hn

�+1

‖χ
E (hn )
k

− χ
E (hn )
k−1

‖H−1(T2)

≤
√
s − t√
hn

( � T
hn

�
∑

k=� t
hn

�+1

‖χ
E (hn )
k

− χ
E (hn )
k−1

‖2H−1(T2)

) 1
2

≤ 1√
hn

( � T
hn

�
∑

k=� t
hn

�+1

h2n D(E (hn)
k , E (hn)

k−1 )
) 1

2

≤ C e
− t

6C0 ,

(4.15)

when hn ≤ h0(T ).
Recall for all t > 0 it holds ‖χE (hn )(t)‖BV(T2) ≤ ‖χE(0)‖BV(T2) ≤ 3.We use Lemma

4.4 and (4.15) to deduce

‖χE (hn )(s) − χE (hn )(t)‖L1(T2)

≤ Cε ‖χE (hn )(s) − χE (hn )(t)‖BV(T2) + Cε−1‖χE (hn )(s) − χE (hn )(t)‖H−1(T2)

≤ Cε + Cε−1e
− t

6C0 .

Choosing ε = e
− t

12C0 yields

‖χE (hn )(s) − χE (hn )(t)‖L1(T2) ≤ Ce
− t

12C0 .

Letting hn → 0 we obtain for the limit flow

|E(s)�E(t)| ≤ C e
− t

12C0 .

From here we conclude that E(t) converges to a set of finite perimeter E∞ exponen-
tially fast.

We may characterize the limit set E∞ as a disjoint union of open disks
Dr (x1), . . . , Dr (xd) thanks to Proposition 4.2 by arguing as in the proof of Theo-
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rem 1.2. Similarly, we obtain the convergence of the perimeters. We leave the details
for the reader.

Also the argument for the Case 2, when there exist d ∈ N\{0} and t̄ > 0 such that
F∞ = Pd = f∞(t) for every t ≥ t̄ , follows by the same argument as in the proof of
Theorem 1.2. ��
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