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Abstract
We consider the Navier–Stokes–Fourier system describing the motion of a compress-
ible viscous fluid in a container with impermeable boundary subject to time periodic
heating and under the action of a time periodic potential force. We show the existence
of a time periodic weak solution for arbitrarily large physically admissible data.
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21-02411S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported
by RVO:67985840. This work is partially supported by the Simons Foundation Award No 663281 granted
to the Institute of Mathematics of the Polish Academy of Sciences for the years 2021-2023. The work of
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1 Introduction

There are numerous examples of turbulent fluid motion excited by changes of the
boundary temperature, among which is the well studied problem of Rayleigh–Bénard
convection, see e.g. Davidson [8]. Motivated by similar problems in astrophysics of
gaseous stars,we consider a general compressible viscous possibly rotatingfluid, occu-
pying a bounded domain � ⊂ Rd , d = 2, 3, driven by periodic changes of boundary
temperature. The relevant system of field equations for the standard variables: the
mass density � = �(t, x), the velocity u = u(t, x), and the (absolute) temperature
ϑ = ϑ(t, x) reads:

∂t� + divx (�u) = 0, (1.1)

∂t (�u) + divx (�u ⊗ u) + �(ω × u) + ∇x p(�, ϑ) = divxS + �∇x G, (1.2)

∂t (�e(�, ϑ)) + divx (�e(�, ϑ)u) + ∇xq = S : Dxu − p(�, ϑ)divxu,

(1.3)

where S is the viscous stress given by Newton’s rheological law

S(ϑ,Dxu) = μ(ϑ)

(
∇xu + ∇ t

xu − 2

3
divxuI

)
+ η(ϑ)divxuI, (1.4)

and q is the heat flux given by Fourier’s law

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ. (1.5)

The momentum equation is augmented by the Coriolis force with the rotation constant
vector ω, the associated centrifugal force as well as the gravitation and other possible
inertial time-periodic forces are regrouped in the potential G. The fluid occupies a
bounded smooth domain � ⊂ Rd , d = 2, 3 endowed with the Dirichlet boundary
conditions

u|∂� = 0,

ϑ |∂� = ϑB . (1.6)
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Time periodic motion of temperature... 1605

The functions ϑB = ϑB(t, x) and G = G(t, x) are smooth and T -periodic in the
time variable,

ϑB(t + T , x) = ϑB(t, x),

G(t + T , x) = G(t, x). (1.7)

Hereafter, the problem (1.1)–(1.6) is referred to as Navier–Stokes–Fourier system.
Our goal is to show the existence of a time–periodic solution to problem (1.1)–(1.7).

There is a substantial number of references, where such a result is proven under some
smallness and smoothness assumption on the data. Valli and Zajaczkowski [24, 25]
observe that the distance of two smooth global in time solutions decays in time for the
system close to a stable equilibrium, and, as a by product, they deduce the existence of a
time periodic solution. Similar ideas have been followed bymany authors, see Březina
and Kagei [4], [5], Jin and Yang [17] , Kagei and Oomachi [18], Kagei and Tsuda
[19], Tsuda [23] to name only a few. Turbulent fluid flows given by large forces out of
equilibrium are mostly considered in the framework of weak solutions. Based on the
mathematical theory of compressible fluids developed by Lions [20, 21], the existence
of large time periodic solutions for the simplified isentropic system was proved in [9]
for the isentropic pressure–density equation of state p(�) = a�γ , γ ≥ 9

5 . The later
development of the theory in [12] enabled to extend the result to the case γ > 5

3 , see
Cai and Tan [6].

The situation is more delicate for the complete fluid systems including thermal
effects. As a direct consequence of the Second law of thermodynamics, the existence
of (forced) time periodic solutions is ruled out for problems with purely conservative
boundary conditions, see [13]. In [10], the heat flux was controlled by means of a
Robin type boundary condition

q · n = d(ϑ − 
0) on ∂�, (1.8)

with a given “mean” temperature 
0. Accordingly, the internal energy is transferred
out of the fluid domain in the high temperature regime and the time periodic motion
is possible, see [10, Theorem 1]. Our goal is to show a similar result for the Dirichlet
boundary conditions (1.6). Note that the problem is much more delicate than in [10]
as the heat flux through the boundary is a priori not controlled. Additional novelty
is that the function ϑB in (3.1) is time dependent whereas its counterpart 
0 in [10],
cf. (1.8), depends only on x . Finally we note that the presence of the Coriolis force
in the momentum equation, though physically relevant in some situations, does not
represent any extra analytical difficulties.

Our approach is based on several rather new ideas that appeared only recently in
the mathematical theory of open fluid systems.

• The concept of weak solution for the Navier–Stokes–Fourier system based on a
combination of the entropy inequality and the ballistic energy balance developed
in [7].

• Uniform bounds and large time asymptotics of the weak solutions in the spirit of
[14].
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• An approximation scheme based on a penalization of the Dirichlet boundary con-
ditions via (1.8).

The concept of weak solution developed in the monograph [11] and used in [10] is
based on the total energy balance as an integral part of the definition of weak solution
to the Navier–Stokes–Fourier system. This approach applies solely to problems with
conservative boundary conditions, where the energy flux vanishes on the boundary of
the physical space or it is at least controlled as in (1.8). The problems with inhomoge-
neous Dirichlet boundary conditions require an alternative approach developed in [7],
where the energy is replaced by the ballistic energy, for which the boundary flux is
again controllable. This approach has been used recently in [14], where the existence
of bounded absorbing sets and asymptotic compactness of bounded trajectories was
established.

The constitutive restrictions imposed on the equations of state as well as the trans-
port coefficients are the same as in the existence theory [7]. In particular, the general
equation of state of real monoatomic gases proposed in [11, Chapters 1,2] is included.
From this point of view, the result is apparently better than in the isentropic case stud-
ied in [9], and later revisited by Cai and Tan [6], where the condition γ > 5

3 is needed.
The price to pay is the potential form of the driving force f = ∇x G that, however,
includes the physically relevant centrifugal as well as gravitational forces.

The paper is organized as follows. In Sect. 2, we introduce the basic hypotheses
concerning the constitutive relations and state the main result. In Sect. 3, we introduce
an approximation scheme inspired by [10]. Section 4 is the heart of the paper. Here
we establish the necessary uniform bounds to perform the limit in the sequence of
approximate solutions. Finally, in Sect. 5, we obtain the desired solution as a limit of
the approximate sequence.

2 Main result

Before stating themain result, we recall the formof the constitutive equations proposed
in [11, Chapters 1,2]. To complywith the Second law of thermodynamics, we postulate
the existence of entropy s, related to the internal energy e and the pressure p through
Gibbs’ equation

ϑ Ds(�, ϑ) = De(�, ϑ) + p(�, ϑ)D

(
1

�

)
. (2.1)

2.1 Constitutive theory

Similarly to [11, Chapters 1,2] we consider the pressure equation of state in the form

p(�, ϑ) = pm(�, ϑ) + prad(ϑ),
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Time periodic motion of temperature... 1607

where pm is the pressure of a general monoatomic gas related to the internal energy
through

pm(�, ϑ) = 2

3
�em(�, ϑ), (2.2)

augmented by the radiation pressure

prad(ϑ) = a

3
ϑ4, a > 0.

Similarly, the internal energy reads

e(�, ϑ) = em(�, ϑ) + erad(�, ϑ), erad(�, ϑ) = a

�
ϑ4.

Now, Gibbs’ equ. (2.1) gives rise to a specific form of pm ,

pm(�, ϑ) = ϑ
5
2 P

(
�

ϑ
3
2

)

for a certain P ∈ C1[0,∞). Consequently,

p(�, ϑ) = ϑ
5
2 P

(
�

ϑ
3
2

)
+ a

3
ϑ4, e(�, ϑ) = 3

2

ϑ
5
2

�
P

(
�

ϑ
3
2

)
+ a

�
ϑ4, a > 0.

(2.3)

In addition, we suppose

P(0) = 0, P ′(Z) > 0 for Z ≥ 0, 0 <

5
3 P(Z) − P ′(Z)Z

Z
≤ c for Z > 0,

(2.4)

that may be seen as a direct consequence of hypothesis of thermodynamic stability,

see [11, Chapter 1], and Bechtel et al. [1]. It follows that the function Z �→ P(Z)/Z
5
3

is decreasing, and we suppose

lim
Z→∞

P(Z)

Z
5
3

= p∞ > 0. (2.5)

The associated entropy takes the form

s(�, ϑ) = S
(

�

ϑ
3
2

)
+ 4a

3

ϑ3

�
, (2.6)
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1608 E. Feireisl et al.

where

S ′(Z) = −3

2

5
3 P(Z) − P ′(Z)Z

Z2 < 0. (2.7)

Finally, we impose the Third law of thermodynamics, see e.g. Belgiorno [2, 3], requir-
ing the total entropy to vanish as soon as the absolute temperature approaches zero,

lim
Z→∞S(Z) = 0. (2.8)

It is easy to check that (2.4)–(2.8) imply

0 ≤ �S
(

�

ϑ
3
2

)
≤ c

(
1 + � log+(�) + � log+(ϑ)

)
. (2.9)

As for the transport coefficients, we suppose that they are continuously differen-
tiable functions of the absolute temperature satisfying

0 < μ(1 + ϑ) ≤ μ(ϑ), |μ′(ϑ)| ≤ μ,

0 ≤ η(ϑ) ≤ η(1 + ϑ),

0 < κ(1 + ϑβ) ≤ κ(ϑ) ≤ κ(1 + ϑβ), (2.10)

where, in accordance with the existence theory developed in [7], we require

β > 6. (2.11)

2.2 Weak solutions

It is convenient to identify the time periodic functions (distributions) with objects
defined on a periodic “flat sphere”

ST = [0, T ]|{0,T }.

We are ready to introduce the concept of time periodic solution to the Navier–Stokes–
Fourier system (1.1)–(1.7).
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Definition 2.1 (weak solution) We say that a trio (�, ϑ, u) is a weak time–periodic solution to
the problem (1.1)–(1.7) if the following holds:

• Regularity class:

� ∈ Cweak(ST ; Lγ (�)) for γ = 5

3
,

u ∈ L2(ST ; W 1,2
0 (�; Rd )), �u ∈ Cweak(ST , L

2γ
γ+1 (�; Rd )),

ϑβ/2, log(ϑ) ∈ L2(ST ; W 1,2(�)),

(ϑ − ϑB) ∈ L2(ST ; W 1,2
0 (�)). (2.12)

• Equation of continuity:

∫
ST

∫
�

[
�∂tϕ + �u · ∇xϕ

]
dx dt = 0, (2.13)

∫
ST

∫
�

[
b(�)∂tϕ + b(�)u · ∇xϕ +

(
b(�) − b′(�)�

)
divxuϕ

]
dx dt = 0 (2.14)

for any ϕ ∈ C1(ST × �), and any b ∈ C1(R), b′ ∈ Cc(R).
• Momentum equation:

∫
ST

∫
�

[
�u · ∂tϕ + �u ⊗ u : ∇xϕ − �(ω × u) · ϕ + pdivxϕ

]
dx dt

=
∫

ST

∫
�

[
S : ∇xϕ − �∇x G · ϕ

]
dx dt (2.15)

for any ϕ ∈ C1
c (ST × �; Rd ).

• Entropy inequality:

−
∫

ST

∫
�

[
�s∂tϕ + �su · ∇xϕ + q

ϑ
· ∇xϕ

]
dx dt

≥
∫

ST

∫
�

ϕ

ϑ

[
S : Dxu − q · ∇xϑ

ϑ

]
dx dt (2.16)

for any ϕ ∈ C1
c (ST × �), ϕ ≥ 0;

• Ballistic energy balance:

−
∫

ST

∂tψ

∫
�

[
1

2
�|u|2 + �e − ϑ̃�s

]
dx dt +

∫
ST

ψ

∫
�

ϑ̃

ϑ

[
S : Dxu − q · ∇xϑ

ϑ

]
dx dt

≤
∫

ST

ψ

∫
�

[
�u · ∇x G − �su · ∇x ϑ̃ − q

ϑ
· ∇x ϑ̃

]
dx dt (2.17)

for any ψ ∈ C1(ST ), ψ ≥ 0, and any ϑ̃ ∈ C1(ST × �),

ϑ̃ > 0, ϑ̃ |∂� = ϑB . (2.18)
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1610 E. Feireisl et al.

Theweak time–periodic solutions are therefore theweak solutions in the sense of [7]
that are T -periodic in the time variable. The instantaneous values of the conservative
variables �(τ, ·), (�u)(τ, ·) are well defined as well as the right and left-hand limits
of the total entropy S = �s(�, ϑ),

〈S(τ−, ·);φ〉 ≡ lim
δ→0+

1

δ

∫ τ

τ−δ

∫
�

�s(t, ·)φ dx dt,

〈S(τ+, ·);φ〉 ≡ lim
δ→0+

1

δ

∫ τ+δ

τ

∫
�

�s(t, ·)φ dx dt .

2.3 Main result

Having collected the necessary preliminary material we are ready to state our main
result.

Theorem 2.2 (existence of time periodic solutions) Let � ⊂ Rd, d = 2, 3
be a bounded domain of class C2+ν . Suppose that the pressure p, the internal
energy e, the entropy s, as well as the transport coefficients μ, η, and κ satisfy
the hypotheses (2.2)–(2.11). Finally, let the data G ∈ W 1,∞(ST × �), ϑB ∈
C3(ST × Rd) be time periodic as stated in (1.7), and

inf
ST ×�

ϑB = ϑ > 0.

Then for any M0 there exists at least one time periodic solution (�, ϑ,u) of
the problem (1.1)–(1.7) in the sense specified in Definition 2.1 satisfying

∫
�

�(t, ·) dx = M0 for any t ∈ ST .

Remark 2.3 In the hypotheses of Theorem 2.2, we assume that ϑB |∂� is a restriction
of a (smooth) function defined on the whole space Rd .

The rest of the paper is devoted to the proof of Theorem 2.2.

3 Approximate problem

The most efficient way of constructing suitable approximate solutions seems adapting
the result of [10] to the present setting. Specifically, the approximation scheme is based
on penalization of the Dirichlet boundary condition for the temperature via the Robin
boundary conditions

q · n = 1

ε
|ϑ − ϑB |k(ϑ − ϑB), k ≥ 0, on ∂�, (3.1)

where ε > 0 is a small parameter.
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The approximate solutions (�ε, ϑε,uε) are defined similarly to Definition 2.1:

• Regularity class:

�ε ∈ Cweak(ST ; Lγ (�)) for γ = 5

3
,

uε ∈ L2(ST ; W 1,2
0 (�; Rd)), �εuε ∈ Cweak(ST , L

2γ
γ+1 (�; Rd))

ϑβ/2
ε , log(ϑε) ∈ L2(ST ; W 1,2(�)). (3.2)

• Equation of continuity:

∫
ST

∫
�

[
�ε∂tϕ + �εuε · ∇xϕ

]
dx dt = 0,

(3.3)∫
ST

∫
�

[
b(�ε)∂tϕ + b(�ε)uε · ∇xϕ +

(
b(�ε) − b′(�ε)�ε

)
divxuεϕ

]
dx dt = 0

(3.4)

for any ϕ ∈ C1(ST × �), and any b ∈ C1(R), b′ ∈ Cc(R).
• Momentum equation:

∫
ST

∫
�

[
�εuε · ∂tϕ + �εuε ⊗ uε : ∇xϕ − �ε(ω × uε) · ϕ + pdivxϕ

]
dx dt

=
∫

ST

∫
�

[
S : ∇xϕ − �ε∇x G · ϕ

]
dx dt (3.5)

for any ϕ ∈ C1
c (ST × �; Rd).

• Entropy inequality:

−
∫

ST

∫
�

[
�εs∂t ϕ + �εsuε · ∇x ϕ+ q

ϑε
· ∇x ϕ

]
dx dt≥

∫
ST

∫
�

ϕ

ϑε

[
S : Dxuε−q · ∇x ϑε

ϑε

]
dx dt

+ 1

ε

∫
ST

∫
∂�

ϕ
|ϑB − ϑε |k (ϑB − ϑε)

ϑε
dσx dt (3.6)

for any ϕ ∈ C1(ST × �), ϕ ≥ 0.
• Energy balance:

−
∫

ST

∂tψ

∫
�

[
1

2
�ε|uε|2 + �εe

]
dx dt + 1

ε

∫
ST

ψ

∫
∂�

|ϑε − ϑB |k(ϑε − ϑB)dσx dt

=
∫

ST

ψ

∫
�

�εuε · ∇x G dx dt (3.7)

for any ψ ∈ C1(ST ),

cf. [10, Section 2.2].
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1612 E. Feireisl et al.

3.1 Existence of approximate solutions

Our aim is to use the existence result proved in [10, Theorem 1] to obtain the approx-
imate solutions (�ε, ϑε,uε)ε>0. To perform this step some comments are in order. In
comparison with [10], the present problem features the following new ingredients:

• The action of the Coriolis force in the momentum equation (3.5).
• The function ϑB in (3.1) is time dependent whereas its counterpart 
0 in [10]
depends only on x .

• The exponent k in (3.1) equals zero in [10].

It is easy to check that the existence proof in [10] can be modified to accommodate
the above changes as soon as suitable a priori bounds similar to those in [10, Section
2.4] are established. To see this, we start with the energy balance (3.7) with ψ ≡ 1
yielding

1

ε

∫
ST

∫
∂�

|ϑε − ϑB |k (ϑε − ϑB )dσx dt =
∫

ST

∫
�

�εuε · ∇x G dx dt = −
∫

ST

∫
�

�ε∂t G dx dt

≤ M0‖∂t G‖L∞(ST ×�), where M0 =
∫
�

�ε dx . (3.8)

As ϑε > 0 a.a., (3.8) yields the bound

‖ϑε‖Lk+1(ST ×∂�)

<∼ 1 (3.9)

in terms of the data and uniform for ε → 0. Consequently, the entropy inequality (3.6)
gives rise to the bound on the entropy production rate

∫
ST

∫
�

1

ϑε

[
S : Dxuε − q · ∇xϑε

ϑε

]
dx dt ≤ c(ε, G, ϑB , M0) (3.10)

and the remaining estimates are obtained exactly as in [10, Section 2.4]. Note that the
right–hand side of (3.10) may blow up for ε → 0.

With the necessary a priori bounds at hand, we obtain a family of approximate
solutions (�ε, ϑε,uε)ε>0 exactly as in [10].

Proposition 3.1 (Approximate solutions) In addition to the hypotheses of Theorem 2.2,
let

ε > 0, 6 < k + 1 = β, M0 > 0 (3.11)

be given.
Then the approximate problem (3.2)–(3.7) admits a solution (�ε, ϑε,uε).
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3.2 Approximate ballistic energy balance

Let ϑ̃ ∈ C1(ST × �) satisfy (2.18). Choosing ϕ(t, x) = ψ(t)ϑ̃(t, x), where ψ ∈
C1(ST ), ψ ≥ 0, as a test function in the approximate entropy inequality (3.6) and
adding the resulting integral to the energy balance (3.7), we deduce

−
∫

ST

∂t ψ

∫
�

[
1

2
�ε |uε |2 + �εe − ϑ̃�εs

]
dx dt +

∫
ST

ψ

∫
�

ϑ̃

ϑε

[
S : Dxuε − q · ∇x ϑε

ϑε

]
dx dt

+ 1

ε

∫
ST

ψ

∫
∂�

|ϑε − ϑB |k+2

ϑε
dσx dt

≤
∫

ST

ψ

∫
�

[
�εuε · ∇x G − �εsuε · ∇x ϑ̃ − q

ϑε
· ∇x ϑ̃ − ∂t ϑ̃�εs

]
dx dt . (3.12)

Inequality (3.12) is obviously a counter part of the ballistic energy balance (2.17) and
will be used in the forthcoming part to deduce the necessary bounds on the family of
approximate solutions.

4 Uniform bounds

In order to perform the limit ε → 0 in the family of approximate solutions obtained
in Proposition 3.1, we need uniform bounds independent of ε.

4.1 Mass conservation

Obviously, as the total mass of the fluid is conserved, we get

M0 =
∫

�

�ε(t, ·) dx for all t ∈ ST ⇒ sup
t∈ST

‖�ε(t, ·)‖L1(�)

<∼ 1. (4.1)

4.2 Energy estimates

As both ∂� and the boundary data ϑB are smooth, we may suppose that

�xϑB(t, ·) = 0 in � for any t ∈ ST . (4.2)

Choosing ψ = 1, ϑ̃ = ϑB in the ballistic energy inequality (3.12) we get

∫
ST

∫
�

ϑB

ϑε

[
S(Dxuε) : Dxuε + κ(ϑε)|∇x ϑε |2

ϑε

]
dx dt + 1

ε

∫
ST

∫
∂�

|ϑε − ϑB |k+2

ϑε
dσx dt

≤
∫

ST

∫
�

[
�εuε · ∇x G − �εs(�ε, ϑε)uε · ∇x ϑB + κ(ϑε)∇x ϑε

ϑε
· ∇x ϑB − ∂t ϑ̃�εs(�ε, ϑε)

]
dx dt .

(4.3)
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1614 E. Feireisl et al.

By virtue of hypothesis (2.10) and Korn’s inequality, we obtain

‖uε‖2W 1,2
0 (�;Rd )

<∼
∫

�

ϑB

ϑε

S(Dxuε) : Dxuε dx .

Moreover, again by virtue of (2.10),

∫
�

[
|∇xϑ

β
2
ε |2 + |∇x log(ϑε)|2

]
dx

<∼
∫

�

ϑB

ϑε

κ(ϑε)|∇xϑε|2
ϑε

dx .

By Poincarè inequality (see e.g. Theorem 4.4.6 in [27]) we obtain that

∫
�

|ϑ
β
2
ε |2 dx

<∼
∫

∂�

|ϑ
β
2
ε |2 dσx +

∫
�

∣∣∣∣ϑ
β
2
ε −

∫
∂�

ϑ
β
2
ε dσx

∣∣∣∣
2

dx
<∼
∫

∂�

|ϑ
β
2
ε |2 dσx

+
∫

�

|∇xϑ
β
2
ε |2 dx,

as well as
∫

�

| log(ϑε)|2 dx
<∼
∫

∂�

| log(ϑε)|2 dσx +
∫

�

|∇x log(ϑε)|2 dx .

Collecting the last three inequalities, hypothesis (3.11) and estimating the boundary
terms

|ϑ
β
2
ε |2 + | log(ϑε)|2 <∼ |ϑε − ϑB |k+2

ϑε

<∼ 1

2ε

|ϑε − ϑB |k+2

ϑε

gives

∥∥∥∥ϑ
β
2
ε

∥∥∥∥
2

W 1,2(�)

+ ‖log(ϑε)‖2W 1,2(�)

<∼
(
1 + 1

2ε

∫
∂�

|ϑε − ϑB |k+2

ϑε

dσx +
∫

�

ϑB

ϑε

κ(ϑε)|∇xϑε|2
ϑε

dx

)
.

Gathering the previous observations, we may infer that

∫
ST

[
‖uε‖2W 1,2

0 (�;Rd )
+
∥∥∥∥ϑ

β
2

ε

∥∥∥∥
2

W 1,2(�)

+ ‖log(ϑε)‖2W 1,2(�)

]
dt + 1

ε

∫
ST

∫
∂�

|ϑε − ϑB |β+1

ϑε

dσx dt

<∼
(
1 +

∣∣∣∣
∫

ST

∫
�

[
�εuε · ∇x G − �εs(�ε, ϑε)uε · ∇x ϑB + κ(ϑε)∇x ϑε

ϑε

· ∇x ϑB − ∂t ϑ̃�εs(�ε, ϑε)

]
dx dt

∣∣∣∣
)

.

(4.4)

Now, as �ε, uε solve the equation of continuity (2.13),

∫
ST

∫
�

�εuε · ∇x G dx dt = −
∫

ST

�ε∂t G dt ≤ c(M0, G).
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In addition, denoting

K(ϑ) =
∫ ϑ

1

κ(z)

z
dz,

we obtain, by virtue of (4.2),

∫
�

κ(ϑε)∇xϑε

ϑε

· ∇xϑB dx =
∫

�

∇xK(ϑε) · ∇xϑB dx =
∫

∂�

K(ϑε)∇xϑB · ndσx .

Consequently, as κ satisfies hypothesis (2.10), we conclude

∣∣∣∣
∫

�

κ(ϑε)∇xϑε

ϑε

· ∇xϑB dx

∣∣∣∣ =
∣∣∣∣
∫

∂�

K(ϑε)∇xϑB · ndσx

∣∣∣∣
<∼
(
1 +

∫
∂�

|ϑε − ϑB |β+1

ϑε

dσx

)
.

Thus inequality (4.4) reduces to

∫
ST

[
‖uε‖2W 1,2

0 (�;Rd )
+
∥∥∥∥ϑ

β
2
ε

∥∥∥∥
2

W 1,2(�)

+ ‖log(ϑε)‖2W 1,2(�)

]
dt

+ 1

ε

∫
ST

∫
∂�

|ϑε − ϑB |β+1

ϑε

dσx dt

<∼
(
1 +

∫
ST

∫
�

(
|�εs(�ε, ϑε)uε · ∇xϑB | + |∂t ϑ̃�εs(�ε, ϑε)|

)
dx dt

)
. (4.5)

In accordance with hypothesis (2.6), we decompose the entropy as

�εs(�ε, ϑε) = �εS
(

�ε

ϑ
3
2
ε

)
+ 4a

3
ϑ3

ε .

Consequently, the radiation component may be handled as

∫
�

|ϑ3
ε uε · ∇xϑB | dx ≤ δ‖uε‖2L2(�;Rd )

+ c(δ, ϑB)

∫
�

ϑ6
ε dx
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1616 E. Feireisl et al.

for any δ > 0. Consequently, as β > 6, this term can be absorbed by the left–hand
side of (4.5) yielding

∫
ST

[
‖uε‖2W 1,2

0 (�;Rd )
+
∥∥∥∥ϑ

β
2
ε

∥∥∥∥
2

W 1,2(�)

+ ‖log(ϑε)‖2W 1,2(�)

]
dt

+ 1

ε

∫
ST

∫
∂�

|ϑε − ϑB |β+1

ϑε

dσx dt

<∼
(
1 +

∫
ST

∫
�

∣∣∣∣∣�εS
(

�ε

ϑ
3
2
ε

)
uε · ∇xϑB

∣∣∣∣∣+
∣∣∣∣∣�εS

(
�ε

ϑ
3
2
ε

)
∂t ϑ̃

∣∣∣∣∣ dx dt

)
. (4.6)

Finally, following the arguments of [14, Section 4.4], we make use of the Third law
of thermodynamics enforced through hypothesis (2.8). Specifically, if

�

ϑ
3
2

< r meaning � < rϑ
3
2 ,

we get, by virtue of (2.9),

0 ≤ �S
(

�

ϑ
3
2

)
<∼
(
1 + rϑ

3
2

[
log+(rϑ

3
2 ) + log+(ϑ)

])
. (4.7)

Consequently, we deduce from (4.6),

∫
ST

[
‖uε‖2W 1,2

0 (�;Rd )
+
∥∥∥∥ϑ

β
2
ε

∥∥∥∥
2

W 1,2(�)

+ ‖log(ϑε)‖2W 1,2(�)

]
dt

+ 1

ε

∫
ST

∫
∂�

|ϑε − ϑB |β+1

ϑε

dσx dt

<∼

⎛
⎜⎜⎝�(r) +

∫
ST

∫
�

1⎧⎨
⎩ �ε

ϑ

3
2
ε

≥r

⎫⎬
⎭

∣∣∣∣∣�εS
(

�ε

ϑ
3
2
ε

)
uε · ∇xϑB

∣∣∣∣∣ dx dt

+
∫

ST

∫
�

1⎧⎨
⎩ �ε

ϑ

3
2
ε

≥r

⎫⎬
⎭

∣∣∣∣∣�εS
(

�ε

ϑ
3
2
ε

)
∂t ϑ̃

∣∣∣∣∣ dx dt

⎞
⎟⎟⎠ , (4.8)

where �(r) → ∞ as r → ∞.
Now, again by hypothesis (2.8),

0 ≤ 1⎧⎨
⎩ �ε

ϑ

3
2
ε

≥r

⎫⎬
⎭
S
(

�ε

ϑ
3
2
ε

)
≤ S(r) → 0 as r → ∞.
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In an analogous way we treat the term
∫

ST

∫
�

∂t ϑ̃�εs dx dt . Going back to (4.8) we
conclude

∫
ST

[
‖uε‖2W 1,2

0 (�;Rd )
+
∥∥∥∥ϑ

β
2
ε

∥∥∥∥
2

W 1,2(�)

+ ‖log(ϑε)‖2W 1,2(�)

]
dt

+ 1

ε

∫
ST

∫
∂�

|ϑε − ϑB |β+1

ϑε

dσx dt

<∼
(

�(r) + S(r)

∫
ST

∫
�

(|�εuε| + �ε) dx dt

)
,

�(r) → ∞, S(r) → 0 as r → ∞. (4.9)

4.3 Pressure estimates

To close the estimates we have to control the density in terms of the integrals on the
right–hand side of (4.9). To this end, we use the nowadays standard pressure estimates
obtained via Bogovskii operator. Specifically, we use the quantity

ϕ(t, x) = B
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
, ω > 0,

as a test function in themomentumequation (3.5).HereB denotes theoperator enjoying
the following properties:

• B : Lq
0(�) ≡

{
v ∈ Lq(�)

∣∣∣
∫

�

v dx = 0

}
→ W 1,q

0 (�; Rd), 1 < q < ∞;
(4.10)

• divxB[v] = v;

• if v = divxg, with g ∈ Lq(�; Rd), divxg ∈ Lr (�), g · n|∂� = 0, then

‖B[divxg]‖Lr (�;Rd )

<∼ ‖g‖Lr (�;Rd ), (4.11)

see Galdi [15, Chapter 3] or Geißert et al. [16]. Boundedness of the operator B stated
in (4.10), (4.11) will be systematically used in the estimates below.
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1618 E. Feireisl et al.

After a straightforward manipulation (see e.g. [9]), we obtain

∫
ST

∫
�

p(�ε, ϑε)�
ω
ε dx dt

=
∫

ST

1

|�|
(∫

�

�ω
ε dx

)(∫
�

p(�ε, ϑε) dx

)
dt

−
∫

ST

∫
�

�ε(uε ⊗ uε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

+
∫

ST

∫
�

�ε(ω × uε) · B
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

+
∫

ST

∫
�

S(ϑε,Dxuε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

−
∫

ST

∫
�

�ε∇x G · B
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

+
∫

ST

∫
�

�εuε · B[divx (�
ω
ε uε)] dx dt

+ (ω − 1)
∫

ST

∫
�

�εuε · B
[
�ω

ε divxuε − 1

|�|
∫

�

�ω
ε divxuε dx

]
dx dt . (4.12)

Since the total mass M0 is constant, the smoothing properties of B yield

∥∥∥∥B
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]∥∥∥∥
L∞(ST ×�;Rd )

≤ c(M0) as soon as ω <
1

d
.

Moreover, in accordance with hypotheses (2.3)–(2.5),

�
5
3 + ϑ4 <∼ p(�, ϑ)

<∼ �
5
3 + ϑ4 + 1.

In view of these facts, inequality (4.12) gives rise to

∫
ST

∫
�

�
5
3+ω
ε dx dt ≤ c(M0)

(
1 +

∫
ST

∫
�

ϑ4
ε dx dt

−
∫

ST

∫
�

�ε(uε ⊗ uε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

+
∫

ST

∫
�

�ε(ω × uε) · B
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

+
∫

ST

∫
�

S(ϑε,Dxuε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt
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+
∫

ST

∫
�

�εuε · B[divx (�
ω
ε uε)] dx dt

+ (ω − 1)
∫

ST

∫
�

�εuε · B
[
�ω

ε divxuε − 1

|�|
∫

�

�ω
ε divxuε dx

]
dx dt

)
.

(4.13)

The following steps will be performed for d = 3. Obviously even better estimates
can be obtained if d = 2. First,

∣∣∣∣
∫

ST

∫
�

�ε(uε ⊗ uε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

∣∣∣∣
<∼
∫

ST

‖�ε‖Lγ (�)‖uε‖2L6(�;R3)
‖�ω

ε ‖Lq (�) dt

<∼ sup
t∈ST

‖�ε‖Lγ (�)

∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt sup
t∈ST

‖�ω‖Lq (�) dt,

where

q = 3γ

2γ − 3
> 1 provided γ >

3

2
.

Fixing

γ = 5

3
, ω = 3γ

2γ − 3
= 1

15
(4.14)

and using the fact that the total mass M0 is conserved, we get

∣∣∣∣
∫

ST

∫
�

�ε(uε ⊗ uε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

∣∣∣∣
≤ c(M0) sup

t∈ST

‖�ε‖Lγ (�)

∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt .

Seeing that the integral containing the Coriolis force can be controlled in a similar
way we may rewrite (4.13) in the form

∫
ST

∫
�

�
5
3+ω
ε dx dt ≤ c(M0)

(
1 +

∫
ST

∫
�

ϑ4
ε dx dt

+ sup
t∈ST

‖�ε‖Lγ (�)

∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt

+
∫

ST

∫
�

S(ϑε,Dxuε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt
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+
∫

ST

∫
�

�εuε · B[divx (�
ω
ε uε)] dx dt

+ (ω − 1)
∫

ST

∫
�

�εuε · B
[
�ω

ε divxuε − 1

|�|
∫

�

�ω
ε divxuε dx

]
dx dt

)
.

(4.15)

In a similar way, we get

∣∣∣∣
∫

ST

∫
�

�εuε · B[divx (�
ω
ε uε)] dx dt

∣∣∣∣
<∼
∫

ST

‖�ε‖Lγ (�)‖uε‖L6(�;R3)‖�ω
ε uε‖Lq (�;R3) dt,

where

1

γ
+ 1

6
+ 1

q
= 1.

In addition,

‖�ω
ε uε‖Lq (�;R3) ≤ ‖uε‖L6(�;R3)‖�ω

ε ‖L p(�),where
1

q
= 1

6
+ 1

p
;

whence

∣∣∣∣
∫ τ+1

τ

∫
�

�u · B[divx (�
ωu)] dx dt

∣∣∣∣ ≤ c(M) sup
t∈(τ,τ+1)

‖�‖
L

5
3 (�)

∫ τ+1

τ

‖u‖2
W 1,2

0 (�;R3)
dt

as soon as (4.14) holds.
Finally,

∣∣∣∣
∫

ST

∫
�

�εuε · B
[
�ω
ε divxuε − 1

|�|
∫
�

�ω
ε divxuε dx

]
dx dt

∣∣∣∣
≤
∫

ST

‖�ε‖Lγ (�)‖uε‖L6(�;R3)

∥∥∥∥B
[
�ω
ε divxuε − 1

|�|
∫
�

�ω
ε divxuε dx

]∥∥∥∥
Lq (�;R3)

dt,

where

1

γ
+ 1

6
+ 1

q
= 1.

Here,

∥∥∥∥B
[
�ω
ε divxuε − 1

|�|
∫
�

�ω
ε divxuε dx

]∥∥∥∥
Lq (�;R3)

<∼ ‖�ω
ε divxuε‖Lr (�;R3), q = 3r

3 − r
,
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and

‖�ω
ε divxuε‖Lr (�;R3) ≤ ‖uε‖W 1,2

0 (�;R3)
‖�ω

ε ‖L p(�), with
1

2
+ 1

p
= 1

r
.

Thus using (4.14) we may infer that

∣∣∣∣
∫

ST

∫
�

�εuε · B
[
�ω

ε divxuε − 1

|�|
∫

�

�ω
ε divxuε dx

]
dx dt

∣∣∣∣
≤ c(M0) sup

t∈ST

‖�ε‖
L

5
3 (�)

∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt .

Going back to (4.15) and summarizing the previous estimates we conclude

∫
ST

∫
�

�
5
3+ω
ε dx dt ≤ c(M0)

(
1 +

∫
ST

∫
�

ϑ4
ε dx dt

+ sup
t∈ST

‖�ε‖
L

5
3 (�)

∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt

+
∫

ST

∫
�

S(ϑε,Dxuε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]
dx dt

)
, where ω = 1

15
.

(4.16)

The last step is estimating

∫
�

S(ϑε,Dxuε) : ∇xB
[
�ω

ε − 1

|�|
∫

�

�ω dx

]
dx

≤ (1 + ‖ϑε‖L4(�))‖uε‖W 1,2
0 (�;R3)

∥∥∥∥∇xB
[
�ω

ε − 1

|�|
∫

�

�ω
ε dx

]∥∥∥∥
L4(�;R3)

≤ c(M)(1 + ‖ϑε‖L4(�))‖uε‖W 1,2
0 (�;R3)

.

We therefore conclude the pressure estimates:

∫
ST

∫
�

�
5
3+ω
ε dx dt ≤ c(M0)

[
1 +

∫
ST

∫
�

ϑ4
ε dx dt

+
(
1 + sup

t∈ST

‖�ε‖
L

5
3 (�)

)∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt

]
, ω = 1

15
. (4.17)

4.4 Uniform bounds for " → 0

As β > 6, we deduce from the inequalities (4.9), (4.17) that

∫
ST

∫
�

ϑ4
ε dx dt

<∼
(
1 +

∫
ST

‖ϑ
β
2
ε ‖2W 1,2(�)

dt

)
<∼
(
1 +

∫
ST

∫
�

�ε|uε| dx dt

)
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provided we fix r = 1 in (4.9). Furthermore,

∫
ST

∫
�

�ε|uε| dx dt ≤ 1

2

∫
ST

∫
�

�ε dx dt + 1

2

∫
ST

∫
�

�ε|uε|2 dx dt

≤ 1

2
T M0 + 1

2
sup
t∈ST

‖�ε‖
L

5
3 (�)

∫
ST

‖uε‖2L5(�;R3)
dt

≤ c(M0)

(
1 + sup

t∈ST

‖�ε‖
L

5
3 (�)

∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt

)
.

Consequently, inequality (4.17) reduces to

∫
ST

∫
�

�
5
3+ω
ε dx dt ≤ c(M0)

[
1 +

(
1 + sup

t∈ST

‖�ε‖
L

5
3 (�)

)∫
ST

‖uε‖2W 1,2(�;R3)
dt

]
,

ω = 1

15
. (4.18)

Next, going back to (4.9) we get

∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt
<∼
(
S(r)

∫
ST

∫
�

(�ε|uε| + �ε) dx dt + �(r)

)

where, by means of the standard Sobolev embedding theorem,

∫
�

�ε|uε| dx ≤ ‖√�ε‖L2(�)‖√�ε‖L3(�)‖uε‖L6(�;R3)

≤ c(M0)‖√�ε‖L3(�)‖uε‖W 1,2
0 (�;R3)

.

Consequently,

∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt
<∼
(
S(r)

∫
ST

‖�ε‖
L

3
2 (�)

dt + �(r)

)
. (4.19)

Now, introducing the total energy of the system,

E(�, ϑ,u) = 1

2
�|u|2 + �e(�, ϑ)

we first observe that

sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx
<∼
(
1 +

∫
ST

∫
�

E(�ε, ϑε,uε) dx dt

)
. (4.20)

The estimate (4.20) follows from the mean value theorem and the ballistic energy
inequality (3.12). Indeed, in view of the uniform bounds established in Sect. 4.2, we
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first deduce (4.20) for the ballistic energy

E(�ε, ϑε,uε) − ϑB�εs(�ε, ϑε),

and then use (2.9) to observe that the entropy part ϑB�εs(�ε, ϑε) is a lower order
perturbation.

Now, we estimate the kinetic energy using (4.19),

∫
ST

∫
�

�ε|uε|2 dx dt

≤ sup
t∈ST

‖�ε‖
L

3
2 (�)

∫
ST

‖uε‖2L6(�;R3)
dt

≤ c sup
t∈ST

‖�ε‖
L

3
2 (�)

∫ τ+1

τ

‖uε‖2W 1,2
0 (�;R3)

dt

<∼ �(r) sup
t∈ST

‖�ε‖
L

3
2 (�)

+ S(r) sup
t∈ST

‖�ε‖
L

3
2 (�)

∫
ST

‖�ε‖
L

3
2 (�)

dt .

In addition, by interpolation,

‖�ε‖
L

3
2 (�)

≤ ‖�ε‖
5
6

L
5
3 (�)

‖�ε‖
1
6
L1(�)

. (4.21)

Consequently,

∫
ST

∫
�

�ε|uε|2 dx dt ≤
<∼ c(M0)�(r) sup

t∈ST

‖�ε‖
5
6

L
5
3 (�)

+ S(r) sup
t∈ST

‖�ε‖
5
6

L
5
3 (�)

∫
ST

‖�ε‖
5
6

L
5
3 (�)

dt .

(4.22)

Combining (4.18), (4.19), (4.21) we get

∫
ST

∫
�

�
5
3+ω
ε dx dt

≤ c(M0)

[
1 +

(
1 + sup

t∈ST

‖�ε‖
L

5
3 (�)

)∫
ST

‖uε‖2W 1,2
0 (�;R3)

dt

]

≤ c(M0)

[
1 +

(
1 + sup

t∈ST

‖�ε‖
L

5
3 (�)

)(
S(r)

∫
ST

‖�ε‖
L

3
2 (�)

dt + �(r)

)]

≤ c(M0)

[
1 +

(
1 + sup

t∈ST

‖�ε‖
L

5
3 (�)

)(
S(r)

∫
ST

‖�ε‖
5
6

L
5
3 (�)

dt + �(r)

)]
.

(4.23)
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Interpolating L1 and L
5
3+ω and using boundedness of the total mass we have

∫
ST

∫
�

�
5
3
ε dx dt ≤ c(M0)

(∫
ST

∫
�

�
5
3+ω
ε dx dt

) 10
11

provided ω = 1

15
. (4.24)

Thus summing up (4.20)–(4.24) we may infer that

(4.20) ⇒ sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx
<∼
(
1 +

∫
ST

∫
�

E(�ε, ϑε,uε) dx dt

)

<∼
[
1 +

∫
ST

∫
�

(
‖uε‖2W 1,2

0 (�;Rd )
+
∥∥∥∥ϑ

β
2
ε

∥∥∥∥
2

W 1,2(�)

+ ‖log(ϑε)‖2W 1,2(�)

)
dx dt

+
∫

ST

∫
�

�ε|uε|2 dx dt +
∫

ST

∫
�

�
5
3
ε dx dt

]

(4.9) ⇒<∼
[
1 +

∫
ST

∫
�

�ε|uε|2 dx dt +
∫

ST

∫
�

�
5
3
ε dx dt

]

(4.22) ⇒<∼
[
1 +

∫
ST

∫
�

�
5
3
ε dx dt

+ �(r)

(
sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx

) 1
2

+ S(r)

(
sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx

)⎤
⎦

(4.24) ⇒≤ c(M0)

[
1 +

(∫
ST

∫
�

�
5
3+ω
ε dx dt

) 10
11

+ �(r)

(
sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx

) 1
2

+ S(r)

(
sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx

)⎤
⎦

(4.23) ⇒≤ c(M0)

[
�(r) + S 10

11 (r)

(
sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx

)

+ �(r)

(
sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx

) 1
2

+ S(r)

(
sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx

)⎤
⎦ .

(4.25)

As S(r) → 0 as r → ∞, we fix r > 0 large enough to deduce from (4.25) the desired
energy bound

sup
t∈ST

∫
�

E(�ε, ϑε,uε) dx ≤ c(M0). (4.26)
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5 Convergence

Our ultimate goal is to perform the limit in the sequence of approximate solutions
(�ε, ϑε,uε)ε>0 to obtain the existence of the time–periodic solution claimed in The-
orem 2.2. With the energy estimate (4.26) at hand, this is nowadays well understood
routine matter. Indeed the test functions used in the entropy inequality (2.16) are
compactly supported thus unaffected by the boundary integral in its approximate coun-
terpart (3.6). Similarly, the approximate ballistic energy (3.12) is in fact stronger than
(2.17) due to the penalization

1

ε

∫
ST

ψ

∫
∂�

|ϑε − ϑB |k+2

ϑε

dσx dt
<∼ 1, ψ ≥ 0. (5.1)

In particular, for ψ = 1, the above inequality together with the (3.12) yield

ϑε → ϑ weakly in L2(0, T ; W 1,2(�; Rd))

with the limit trace ϑ |∂� = ϑB as required in Theorem 2.2.
Consequently, the proof of convergence is exactly the same as in the existence

theory elaborated in [7] with the exception of the strong convergence of the density,
the “initial” value of which is unspecified in the periodic setting. Fortunately, the
compactness arguments based on Lions’ identity and boundedness of the oscillation
defect measure can be modified to accommodate the time periodic setting exactly as
in [10, Section 9.3]. Thus the proof of Theorem 2.2 can be completed.

6 Concluding remarks

In comparison with [10], the available a priori bounds do not allow to handle a general
driving force �g in the momentum equation. Although the potential case g = ∇x G is
physically relevant, more general (non–potential) forces occur when the fluid is stirred
up by the motion of the container. A detailed inspection of the arguments in Sect. 4.3
reveals that they could be considerably improved in the case d = 2 due to the Sobolev
embedding W 1,2 ⊂ Lq for any finite q. Similar improvement may also be expected
in the case the total mass M0 is small, cf. Wang and Wang [26]. We therefore strongly
conjecture that the present result can be extended to a general driving force g provided

• either d = 2,
• or

M0 =
∫

�

� dx

is small enough with respect to the amplitude of g.

As potentiality of g was also used in the estimate (3.8) crucial for boundedness of
the approximate sequence, the proof of the above conjecture would require a different
kind of approximation scheme.
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Finally, let us discuss briefly the possibility of extending the results to non–smooth
spatial domains. In view of the Sobolev space theory, notably various embedding
theorems, one is tempted to say that everything works well for domains with Lipschitz
boundary. Indeedwebelieve that such an extension is possible, however, there are some
technical difficulties to overcome in the construction of the approximate solutions, see
e.g. Poul [22].

Data Availability Data sharing not applicable to this article as no data sets were generated or analysed
during the current study.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bechtel, S.E., Rooney, F.J., Forest, M.G.: Connection between stability, convexity of internal energy,
and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)

2. Belgiorno, F.: Notes on the third law of thermodynamics. I. J. Phys. A 36, 8165–8193 (2003)
3. Belgiorno, F.: Notes on the third law of thermodynamics. II. J. Phys. A 36, 8195–8221 (2003)
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