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Abstract

We consider the singular limit problem for the Cauchy problem of the (Patlak—) Keller—
Segel system of parabolic-parabolic type. The problem is considered in the uniformly
local Lebesgue spaces and the singular limit problem as the relaxation parameter t
goes to infinity, the solution to the Keller—Segel equation converges to a solution to
the drift-diffusion system in the strong uniformly local topology. For the proof, we
follow the former result due to Kurokiba—Ogawa [20-22] and we establish maximal
regularity for the heat equation over the uniformly local Lebesgue and Morrey spaces
which are non-UMD Banach spaces and apply it for the strong convergence of the
singular limit problem in the scaling critical local spaces.

1 Keller-Segel system and drift-diffusion equation

We consider the Cauchy problem of the (parabolic—parabolic) (Patlak—)Keller—Segel
system on n-dimensional Euclidean space R":

Oy — Aug +V - (U Vigr) =0, t>0, x eR",

1

—0Yr — AYr + AP = uq, t>0, xeR", (1.1)
T

ur(0,x) = uo(x), ¥(0,x) =o(x), xeR"

wheren > 3, A > 0, T > 0 and (ug, Yo) are given initial data. The problem (1.1) was
introduced by Patlak [33] and later on, Keller—Segel [ 13] rediscovered it for describing
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a model of chemotactic aggregation of microorganisms. In the chemotaxis model,
ur; = u.(t, x) and Y, = ¥, (¢, x) denote the unknown density of microorganisms and
the distribution of the chemical substances, respectively. The parameter t > 0 is the
relaxation time coefficient, and stands for the ratio of the relative speed of chemical
substances. By passing t — o0, the limiting functions

lim wu.(t, x) = u(t, x),
T—>00

. (1.2)
lim (1, x) = ¥ (2, x)
T—>00
formally solve the Cauchy problem of the drift-diffusion equation:
ou—Au+V-wVy)=0, t>0, xeR",
— AV 4+ A =u, t>0, x e R", (1.3)

u(0, x) = up(x), x e R",

and the problem (1.3) is often referred as the parabolic-elliptic Keller—Segel system.
In this paper, we consider the singular limit problem (1.2) in uniformly local spaces.

Both of the Cauchy problems (1.1) and (1.3) show a (semi-)scaling invariant struc-
ture and the invariant scaling is given by the following: For . > 0,

_ 2.2
{uu(t,x) = pu(u’t, px), (14)

Yult, x) = Y (u’t, px).

Under the above scaling, the systems are invariant if A = 0. According to such a
structure, the problem is typically considered as the scaling invariant spaces such
as the Bochner—Lebesgue spaces L?(0, T; L? (R")) with 2/6 4+ n/p = 1 for u and
L°(,T; L1(R")) with 2/0 + n/q = 0 for ¢ . Indeed, there are many results for the
existence and the well-posedness of the problems (1.1) or (1.3) on the critical space
(see Biler [1], Biler—Cannone—Guerra—Karch [4], Kurokiba—Ogawa [ 18, 19], Corrias—
Perthame [6], Kozono—Sugiyama [14, 15], Iwabuchi [9], Iwabuchi-Nakamura [10],
see for the bounded domain case Biler [2], Nagai [27], Nagai—Senba—Yoshida [28],
and Senba—Suzuki [37]).

Among others, the singular limit problem (1.2) was considered by Raczynski [34]
and Biler—Brandolese [3] in the pseudo-measure PM?*(R") = { f e S'(R"); f €
LIIOC(R") and || fllpams = |||‘§‘|Sf||Oo < +oo} and the Lorentz spaces LP-*°(R"),
respectively. They showed the singular limit (1.2) for the two-dimension case under
the condition of ug = 0 and A = 0. In [34], the same problem (1.2) was considered over
the pseudo-measure space PMO(R?) defined above. Lamarié-Rieusset [23] extended
these results to the homogeneous Morrey space. Kurokiba—Ogawa [20-22] showed
the singular limit problem (1.2) in the scaling critical Bochner—Lebesgue spaces for
the large initial data and showed the appearance of the initial layer in the two and
higher dimensional cases. Those results [20-22] cover the finite mass case, where the
positive solution preserves the total mass, while the other results are not covering the
finite mass case.
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On the other hand, both the systems have the spatially non-local structure and it is
interesting to consider the well-posedness of the problems in spatially local function
classes. The second author showed that the Cauchy problem (1.3) is time locally well-
posed in the uniformly local Lebesgue space in [38]. For 1 < p < o0, let the uniformly
local Lebesgue space is defined as follows:

xeRn?

1
LL®") = {f e Ll @i Il = s ([ 1roirdy)” < +oo},
B B1(x)

where Bj(x) denotes the open ball in R"” with center x and radius 1. In the case of
A > 0, the solution ¥ to the second equation in (1.3) is written by using the Bessel
potential and it enables us to treat the Cauchy problem in such local function spaces.
Analogous result is also obtained by Cygan—Karch—Krawczyk—Wakui [7], where they
consider the stability of a constant solution. A natural question for the Keller—Segel
system under such a setting is whether the singular limit problem (1.2) can be justified
in such a locally uniform class of solutions. Namely such a singular limit problem also
remains valid in the local uniform class that reflect a spatial structure of a solution to
both problems.

Meanwhile the singular limit was established in the scaling invariant classes in
[20-22] by applying the maximal regularity estimate for the Cauchy problem of the
heat equation with A > 0. Maximal regularity is a useful tool to see that the time local
well-posedness of the problems (1.1) and (1.3) and it provides useful local estimates
which are independent of the parameter t > 0. Hence it allowed us to show that the
limit exists and it solves the limiting problem (1.3) in the critical Lebesgue space.
Following basic method used in [20-22], we employ maximal regularity for the heat
equation to show the singular limit problem (1.2).

In order to derive maximal regularity on the uniformly local Lebesgue space,
we consider a slightly general setting, namely, the local (inhomogeneous) Morrey
spaces M; (R™) and its real interpolation spaces, i.e., the local Besov—Morrey spaces
Ny, 4. R") which are extensions of the uniformly local Lebesgue space, and exten-
sively developed by Kozono—Yamazaki [16].

Definition (The (local) Morrey space). For 1 < g < p < oo, we define the (local)
Morrey space M} (R") with the norm

1l = sup 1B~ (/B()u(y)wdy)q, (15)
xeR"? RX

O<R§yl

where | Bg| is the Lebesgue measure of Bg(x). We also introduce the completion of
bounded uniformly continuous space (BU C(R")) as

ME®") = BUC@R™) 4|
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The Sobolev spaces based on those Morrey spaces are analogously defined: For 1 <
p,q <00,5 €R,

MyP @Y = {1 € S'®M: (V) f € MR,

where (V)* f = f‘l[(l + |$|2)5/2f(<§)] denotes the Bessel potential of order s € R
and F~! stands for the inverse Fourier transform. The corresponding space M;’p ®R")
is also defined in a similar way. Since by the definition M}, (R") = L/} (R") (and thus

M,’;(R”) = ﬁfﬁ(R”) = BUC(R”)”'”LQ) forall 1 < p < oo, the local Morrey space
is a generalization of the uniformly local Lebesgue space.

We note that the homogeneous Morrey class is defined by taking the supremum of
R over (0, co) which may denoted by Mé’ (R™) (and analogously ./\/lf; (R™)). We also
remark that the local Morrey space M(f (R™) is neither reflexive nor separable' and
we may avoid difficulty to treat a non-Cyp-semigroup of the heat evolution operator in
Mf; (R™). We then introduce a real interpolation space called as the Besov—Morrey
space, which originally goes back to Netrusov [29] (cf. Kozono—Yamazaki [16],
Nogayama-Sawano [30]). Let {¢;} <7 be the Littlewood—Paley dyadic decomposition
of unity. We set ¢ by means of {¢;};cz_ as

VE =1-) ¢

j<0

and we often write ¢y = V.

Definition (The Besov—Morrey and the Lizorkin—Triebel-Morrey spaces). For 1 <
q < p<o0o,1<o0 <o00,s €R, we define the Besov—Morrey space N;’q,a (R™)
with the norm

1

14,0

= ¥ % fllyg + H{zvuqa g o

and the Lizorkin-Triebel-Morrey space E), , ,(R") with the norm

ILf Il

p.q.9 ’

P
M, q

Jfz1)

= 1 * Fllagy + o

7 (N)

where the convolution f s g includes a correction of constant (27r)"/2.

For the Cauchy problem of the incompressible Navier—Stokes equations, Giga—
Miyakawa [8] and Kato [12] showed the existence of a unique strong solution on the
homogeneous Morrey space and Maekawa—Terasawa [24] constructed a mild solution
on uniformly local Lebesgue spaces. Besides, Kozono—Yamazaki [16] introduced the

Besov—Morrey space N,  , by using the real interpolation theory and applied for the

! These are because of the same reason for the case of the uniformly local Lebesgue space.
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Maximal regularity and singular limit problem 393

well-posedness issue of the incompressible Navier—Stokes equations:

Ny oo = (V)M (V)T2MG),
where s = (1 — 6)s; +6s2 and 0 < 6 < 1. We should like to note that Mazzucato
[25, 26] showed that Eg’ q,Z(R”) ~ Mé’ (R™) by the Littlewood—Paley theorem (see
Proposition 2.3, below).

The systems (1.1) and (1.3) are invariant under the scaling transformation (1.4) and
the invariant Bochner class (the Serrin class) is given by after (1.4). In this paper, we
employ the corresponding invariant class and define the admissible exponents for the
scaling critical spaces:

Definition (The admissible pair). Pairs of the exponents (6, p) and (o, r) are called
the scaling invariant(Serrin) admissible if max{r, 0} < o < oo, and

ueLG(R+;M;(R")), 4+ — =2, g<p§9,2§9<oo,

n
p (1.6)
Vi e L°Ry: MLRY), =+ §

=1, 2<n<r<o<o0.

Qo DI

We define mild solutions to (1.1) and (1.3):
Definition (The mild solution). Let T > 0, 1 < p,r < o0, 1 < g1 < p, and
1 < o1 < r. For initial data (ug, Vo) € Mé’] (R") x Mg, (R"), (ur, ¥7) is a mild
solution to (1.1) if the following integral equation is solved:

t
ur (t) = e"ugp — / Ve 9% . (ur () Ve (5)) ds,
0 1.7)

t
Y (t) = e”(A*)”)wo + / e(tﬂ)r(Afk)rur(s) ds
0

in C(/; Mcﬁ R") x C(I, Molti’(R”)).

Definition (The mild solution). Let 1 < p,r <o0,1 <¢q; < p,and 1 <« <r. For
initial data ug € M};’l R™), (u, ¥) is a mild solution to (1.3) if the following integral
equation is solved:

t
ut) = e ®ugp — / Ve =92 (u(s)V(s)) ds,
0

vt) =0 — A" u@) = /Oo ANyt ds

0

in C(I; MJ (R™) x C(I; My (R™)).
Our first result of this paper is the time local well-posedness for the Keller—Segel
system (1.1) in the Besov—Morrey spaces:

Proposition 1.1 (The local well-posedness). Letn > 3, t,A > 0, T > 1 and (0, p)
and (o, r) be admissible pair defined in (1.6) with 0 < o. Suppose that 1 < g9 < n/2,
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394 T.Ogawa, T. Suguro

go < q1 < p, 1 <ap<n, oy <oy <r satisfy

2 1 1
A _ BT g — 4 — <1 (1.8)
nop n qo a1
n/2 mn -2/0 n 1,nmon 1-2/o n
Assume that (ug, o) € Mgy~ (R") N Np‘ql)e(]R ) X Mt (R") N Ny o1 (R"). Then

there exists T = T (ug, ¥o) > 0 such that the unique mild solution (ur, ;) to (1.1)
exists and satisfies

e € C(I0, T); ME,(R") N L (0, T); ME, (R")),
Ye € C([0, T); My (R™) N L (0, T); My (R™).

If the first condition in (1.8) is satisfied by n/2 = g, then the result in Proposi-
tion 1.1 implies the local well-posedness of the problem (1.1) in the uniformly local
Lebesgue spaces, i.e., (u;, Vi;) € Eﬁl/ 2(}R”) x L7, (R"). The assumption of the initial
data in Proposition 1.1 is rather stringent than the one appeared in [38]. However, the
most importantly, the existence time T = T (ug, ¥9) > 0 depends only on the initial
data but not on the parameter t > 1.

Analogously we obtain the time local well-posedness for the Cauchy problem of

to the limiting drift-diffusion system (1.3) in the same function class as above:

Proposition 1.2 (The local well-posedness). Let n > 3, A > 0, and (0, p) and (o, 1)
be admissible pair defined in (1.6) with 6 < o and 1 < g0 < n/2, q0 < q1 < p,
1 <ap <n,ay < ay <r satisfy (1.8). Assume that uq € MZ({Z(R") N N;;{’gg (R™).
Then there exists T = T (ug) > 0 such that the unique mild solution (u, ) to (1.3)

exists and satisfies

w e C(0, T); Mgy (R") N LY (0, T); MY, (R™),
¥ € C([0, T); My (R™) N L7 (0, T); My (R")).

Proposition 1.2 is a distinct version of the time local well-posedness for the drift-
diffusion system (1.3). Indeed, one can find a well-posedness result more general
assumption the initial data (cf. [38]). The added regularity assumption on the data is
required for applying maximal regularity.

The limiting process by T — oo corresponds to observing the large time behavior
of only the second component ¥ of the system (1.1) as # — oo. In general, the decay
of a solution as t — oo or the stability of a stationary solution to the Cauchy problem
of a partial differential equation is necessary to avoid the initial disturbance from the
spatial infinity. For example, the decay of the solution to the heat equation is obtained
by the initial data that prevents the initial disturbance at the spatial infinity. In our
case, however, the initial data is taken from the uniformly local spaces and the initial
turbulence from the spatial infinity is fully included. Hence the singular limit generally
is not expected under such a setting. Nevertheless, we may show the singular limit
problem (1.2) by the density of the initial class of Efl(R”), the use of the space-time
integral norm, and the application to the Lebesgue dominated convergence theorem.
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According to such observations, a presence of the positive parameter > > 0 in (1.1) is
essential because it implies exponential decay of the potential term 1/ in time variable.
Such a decay property enables us to show the strong convergence of the singular limit
problem under the locally integrable function class.

We now state our main result.

Theorem1.3 Letn > 3, t,A > 0, (0, p) and (o, r) be admissible pairs defined
in (1.6) with 0 < o. Suppose that 1 < qo < n/2, g0 <q1 < p, 1 <oy < n,

ay < ay < r satisfy (1.8). Assume that (ug, Vo) € Mgéz(R”) N N;Z%(R") X

Méo’l R"H N N,‘;?/;’ (R™). Let (ur, ¥) be a unique mild solution to (1.1) in

(C(s ME @MY N LY (1 ME, R™)) x (C(I; METR™) 0 L7 (1; ML (R™)),

where (0, p) and (o, r) are admissible pairs defined in (1.6) and I = (0, T) with
0 < T < oo. Then the following holds:

(1) For the same initial data u, there exists a unique mild solution (u, ¥) to (1.3) in
(CI; MR N LT MY RY)) x (CU: METR™) N L (1 My (R™))).

(2) For any admissible pairs (6, p) and (o, r) defined in (1.6) with 0 < o, it holds
that

tim (e = ull ooz + IV = Vllog,)) =0 (19)

(3) Forany0 <ty < T, set Iy = (t, T). Then it holds that

Jim_ (uuf il ) FIVYE O Vl/f(f)lle(l,O;MgO)> =0.(1.10)

do)

On the other hand, for some small t; > 0, let

Ne(t) = Xp0.-1,1 (O Wo — (A — A) " ug)

and x[q,p)(t) be the characteristic function on [a, b]. Then it holds that
sup  [lur () — M(f)||Mﬂ + sup VY (1) — VY () — v77r(l)||M(;'0 -0

2
tel0,77 1] q0  te[0,77 1]

(1.11)

as T — 09, in other words, . shows the initial layer o — (A — A)~"Lug as
T — 00.

As is stated in remark after Proposition 1.1, the above result for the singular limit
problem also shows the corresponding result in the uniformly local Lebesgue space

for (u;, Vifr;) € c? (R™) x L7, (R") due to the equivalence of the function classes.

ul
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The proof of the singular limit problem in Theorem 1.3 is based on maximal regu-
larity for the Cauchy problem of the heat equation:

Ou —puAu+ru=f, >0, x eR",
u (0, x) = ugp(x), x e R".

where A > 0 and f and ug are given external force and initial data. The general
theory of maximal regularity for the Cauchy problem of a parabolic equation is well
established on function spaces satisfying the unconditional martingale differences
(UMD). Since UMD Banach spaces are necessarily reflexive, maximal regularity
in non-reflexive space requires distinct treatment. In particular, the uniformly local
Lebesgue space is not reflexive by observing

L{(R™) = °(Z"; LP (B1(xr))),

where €°°(Z") denotes a sequence space over the n-dimensional lattice point x; € Z".
Thus, maximal regularity for the heat equations on the uniformly local Lebesgue
space requires independent argument. To show maximal regularity for the uni-
formly local Lebesgue space, we introduce the Besov—Morrey spaces and employ
the real interpolation argument for proving maximal regularity (cf. [20, 31, 32]). After
establishing maximal regularity we fully use the embedding relation between the
Besov—Morrey space and the Lizorkin-Triebel-Morrey space (see Proposition 2.4)
and the Littlewood-Paley theory obtained by Mazzucato [25, 26] to connect the Besov—
Morrey space and the Morrey space. To this end, we use the smoothing properties of
the heat evolution and the sub-suffixes of the Besov—Morrey spaces are fully improved
(cf. Kozono—Yamazaki [16]) and this enables us to recover regularity of solution and
convergence of the singular limit follows by an improved argument from [20] and [21].
Since MJ (R") = LF(R™) forall 1 < p < g < 0o, we complete the convergence of
the singular limit in the scaling critical local spaces M; (R™) and hence Lfl (R™) as is
seen below.

This paper is organized as follows. In the next section, we prepare properties of the
Morrey and the Besov—Morrey spaces. In Sect. 3, we derive maximal regularity for the
heat equation on the Besov—Morrey space. Section 4 is devoted to proving the well-
posedness of the Cauchy problems of the parabolic-parabolic and the parabolic-elliptic
Keller—Segel systems. In Sect. 5, we give proof of Theorem 1.3.

In the rest of paper, we use the following notation. Let f be the Fourier transfor-
mation of f € S(R"):

fEe) =em f e 8 f(x) dx.
Z!* denotes all the lattice point over R". Forx € R”, (x) = (1+|x|»)"? and (V)* f =
(1 — A2 f = F7U[(£)° f(&)] is the Bessel potential of order s € R. For a various
function space X (R") over R”, we abbreviate it as X such as M) = My (®R"), L}, =
L! (R™). The weak Lebesgue space for 1 < p < oo is denoted by L = Li (R").
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Maximal regularity and singular limit problem 397

Let B, be the Bessel potential defined by

A=l oo o2 s a2 ds
B, (x) = yp e s e s 2 e (1.12)
0

For fe N;, q,0» We use the simplified potation ¢4 * f = ¥ * f and the summation
in the Besov—Morrey norm can be rewritten by

1
o

1 f g0 = 1 Fllyg + (Z (27119, f||M;)U)
j=1

- (i (27l *fuM;)”)

j=0

2 Preliminaries

We first remark on the relation between the uniformly local Lebesgue space and the
local Morrey spaces. Let 1 < g < p < oo. By the definition (1.5), we see that the
following embeddings are continuous:

LleM(fDLfl, q < p,

Moreover, if g1 < ¢, then M}, D M}, by the Holder inequality. To see the equiva-
lences M,f = Lzl for g > p, it follows from the definition (1.5) that

1
(1_1 q
||f||M§E sup | BR] (‘1 ") (/B If(y)lqdy>

oxf§§’1 R @1

1
1_1

_(1_1 q

<|Bi| (" ") sup (/ If(y)lqdy> = Call £l -
xeR", Br(x) b
0<R<1

Note that (2.1) also implies M} D L! if ¢ < p by regerding LY as L7 . Conversely
tosee My C LI forg > p,
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1

flg = Co sup 1B11(77) (/ lf(y)lqdy>q
! Bi(x)

xeR"

1
1_1 q
< ¢y sup B2l q)(/B()|f<y)|‘fdy) (2.2)

xeR”,
0<R<1

=1/ -

The inequality (2.2) holds for the other case ¢ < p and hence the first embedding
LI > M} also holds.

Like in the uniformly local spaces, the Holder type inequality also holds between
the local Morrey spaces.

Proposition 2.1 (The Holder type inequality). Let 1 < p1, p» < 00, 1 < gq; < p; for
Jj = 1,2. Suppose that for | < q <r < oo,

111 111
—+—=—and —+—=-.
pi P2 P Q9@ q

Then for any f € M} and g € M}?, it holds that
Irgllyy = ”f”M,fll ||g||M§22- (2.3)

The inequality (2.3) immediately follows from the Holder inequality for the inte-
gration.

Proposition 2.2 (The Hausdorff-Young inequality). Let 1 < g < p < oo. For any
feMY(R" and g € L'(R), it holds that

1 &l < glhllfllage- (2.4)

Proof of Proposition 2.2 By Minkowski’s inequality, we see that

1
_(1_1 q
Bl )([ I(f*g)(y)l"dy>
Br(x)
1
1B 7 (/ ' dy) ’
Bgr(x)

_(1_1> g
<18 / (/ |f<z)|q|g<y—z>|qdy> dz
n Bgr(x)

= If gz llglh

fy—2g)dz
R}l

for any x € R" and 0 < R < 1. Thus, we obtain the inequality. O

The Littlewood—Paley theorem on the Morrey space was shown by Mazzucato [25,
26]:
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Proposition 2.3 (/25, 26]). Let 1 <q < p < oo and s > 0. Then Eg, g2 = MY (the
norm equivalent), i.e.,

1 g = 1S g

I laggr = W flle

s
p.q.2

The embedding between Besov and Lizorkin—Triebel type Morrey spaces holds
(Proposition 1.3 of Sawano [36]):

Proposition2.4 Let1 <g <p <00, 1 < p <00, and s € R. Then it holds that

s

s
N p,q,00°

p.q.minfg.p} & E;,q,p CN
The following potential estimate on Morrey spaces holds (see Taylor [39]):

Proposition 2.5 Let 1 < pg < p1 < oo satisfy 1/po — 1/p1 < 1/n. Suppose that
1 < g0 < q1 < oo satisfy

q0 _ 91

— if po=n,
Po P1
q0 q1 .
— > — if pg > n.
po D1

Let By (x) be the Bessel potential defined by (1.12). Then there exists a constant C > 0
such that for any f € Mé’(;’ (R™),

IVBs * fllyn < CULF llygo-
The Sobolev embedding theorem was shown in Theorem 2.5 of Kozono—Yamazaki
[16]:
Proposition 2.6 ([16]). Let 1l < g < p <00, 1 <0 < 00, and s € R. Then the

following embedding holds:

n
s—n
N 14
Np,q,o C BOQU'

Moreover, for1 < q; < pj <00 (j =0,1)and sy < s1, it holds that

o1 L sp—so 1 L po(si — so)
NS C N with — = — + — 2 — — — 4 2010 (25)
P1,91,0 P0,90,0 pl PO n C]l C]O nqo

We introduce a dissipative estimate or the heat evolution semigroup on the local
Morrey spaces. Let ¢! f = G, % f, where we set

2

Gi(x) = () Te ar .
We derive the heat semigroup estimate (cf. Theorem 3.1 of [16] and see also [17]):

@ Springer
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Proposition2.7 Let 1 < g < p < 00, 50 <51, and 1 < o < oo. Then the following
estimates hold:

tA A ] s
19176 1y = €27 1970 ], 2o
_S1=50
le® Fllys, < CA+1 T fllyn . @.7)
Moreover, if so < s1, then it holds that
tA s < ( 7@) S
lle fllengl <C(l+1 IIfIINpqq,Oo- (2.8)

Proof of Proposition 2.7 In order to show (2.6), it suffices to consider the case of s = s
and so = 0 for s > 0. By (2.4), we have

(VP f e < NVEGH 1A gz

Since |[|VI*G, ||, < C17*/?, we obtain (2.6). By the definition of the norm of Besov—
Morrey space and (2.6), we have

tA o = SO o! A (- o - s
e Fllys, , = > 2 e @j* Dlyr | =CA+Z DS My, -

j=0
For (2.8), we use the real interpolation theory. By (2.7), we see that

A —(s1—
le' £l s < CCLA S0 Fll
P.q,00 P.q,00

A (2.9
le'® Flly = Cllfllyo
We take f € Nj,, o arbitrary and define the K -functor;
K@, f)= lnf {Ilfolleo + Al Ay, 3 (2.10)

By the above definition (2.10), for any ¢ > 0 and A > O, there exist fy, f1 € N;,?q’oo
such that

I ollys, + 21 fillys, < (1 +eKG /).

By (2.9), we see that ¢’® f NZ” wdand e'® fi € N}y oo If we seta(t) = (1 +
61— SO)),then we have

le"™ foll y2sy—so +a@alle™® fillyo < CA+1 SN follyso  + 2l fillyo )
Pq,0 P-q, P-q,00 P-4,

< Cat)(1+e)K(r, f).
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51

Since the real interpolation provides (N;%h 0, N, . )1/2.1 = N we obtain by

p.q,
changing the variable that
BNV
l f||,\/p{%l
_ A
= e Sl zzo v, e
RS RN 7N dxr
< [ (1 ol o + M Al ) S
> L (1A 1A dp
= [ @®p)72 (1" foll 20 + @™ fillys, ) ==
0 p.q,00 P.q,00 0
—(s1—50) -1 > -1 d'O
< CA+ ) A +e)a(n)™2 p 2K (p, f) —
0 o
1 g d Ly d
< c+a+r ([T o bisiyy Lo [otisy %)
i race p o pae p
< Ca+a+17 ) flly .
pP.q,%0
Since one can choose ¢ > 0 arbitrary, the inequality (2.8) holds. O

Concerning the heat semigroup, M,‘; (R™) is characterized by the following propo-
sition:

Proposition2.8 Let 1 < g < p < oo and assume that f € M(f(R”). Then the
following statements are equivalent:

(1) f e M{ERM.
(2) It holds that

lim || f(-+y)— flly» =0.
NE ‘
(3) It holds that
: A g _
th_% lle'™ f f”M(f =0.

Proof of Proposition 2.8 We first suppose that f € Mf; (R™). For arbitrary fixed ¢ > 0,
there exists a sequence { fx }xey € BUC(R") and K € N such that for any £ > K,

&

i = Fllagy < 5-

By the triangle inequality, we have
IFCH3) = Fllagp = 1AV = Sl D pp + 1G5 = Sficllpgy + e = Fllpge
2e

= 5 HIACEY) = fellyp

3
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for any k > K. Since { fi} C BUC(R"), there exists § > 0 such that

ez +9) — /(@] < ——
3|By|»

for all y, z € R" with |y| < § and k € N. Thus, if |y| < §, then we have

1

|BR|_(5_;) (/B ( )|fk(Z+)’) - fir@| dZ>q < |BR|_(5_;)|BI| ”IBRI%
R(x

b)l>—

&

W | =

1 _11
= |BRI? [Bi| 7 ze <
3
forany x € R*,;0 < R < 1, and k € N, which implies
IFC+3) = Fllyp <&
if |y] < 8.

Secondary, we assume that (2) holds. By the representation of the heat semigroup,
we have

1677 = Fllg = @8 [ PG = Vi = fllyg ds

for any ¢ > 0. It follows from the assumption (2) that

||f('—x/;z)—f||M5—>O ast — 0.

On the other hand, we see taht

_L
1fC =12 = Fllyz <20l € L' R e ¥ dx).
By the Lebesgue dominated convergence theorem, we obtain

||e’Af—f||M5—>0 ast — 0.

Lastly, we suppose that (3) holds. By the embedding My P(R™) C qu (R™), we see
that ¢/2 f € BUC(R") when ¢t > 0O for any f € 3 (R") (see Proposition 2.2 in
[24]). This and the assumption (3) imply that f € Mg (R"). O

The norm of the Morrey space M;’ can be represented by the following equivalent
norm:

i(1_1
1/l = sup 2 P>||f||m<Q,.<k»,
JeNU{0},
keZ
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where Q (k) denotes an open cube in R” whose side length is 27/ and lower cor-
ner is 277k, that is, Q;(k) = 277k + 27/(0, 1)". By Rosenthal-Triebel [35] and
Izumi—Sawano—-Tanaka [11], the dual and the pre-dual spaces of the Morrey space
are identified by the following way: For 1 < p < g < oo, we set H” L9(R") as all
collection of 1 € S’(R™) such that

> hij withsupphy ; C (k)

J€ENU{0},
keZ"

satisfying

1\—-
Q\.—.

E 2 ( >||hj kLo, k) < +oo.
JeNU{0},
keZ

Furthermore, we define

7]l gpLa
Einf{ do2m w53 IIh, kllLaco;
JeNU{0),
keZ
Z hi,j in S'(R™), supp hy,j C Qj(k)}~
JENU{0},
keZ

Proposition 2.9 (The duality [11, 35]). Let1 < q < p < ooand 1/p+1/p' =
1/q +1/q' = 1. Then

(1) the dual space of ./\/lé7 (R™) satisfies
(ME®R™) = HP LY (R).
(2) Conversely the dual space of H P'LY (R") is identified as
(HP'LY ®R™)" = MI(R").
In particular, neither qu nor M,’; is reflexive forall 1 < q < p < oo.

We introduce a new function space N* which is a pre-dual of the space N ;,"q, -

p.4.0
forl/p+1/p'=1/qg+1/q' =1,1 < p,q < oo as follows: y
Definition. Forany 1 < p,gq, < o0,s e Rand0 < 6 < 1, let N;,q(, = ;’qﬂ(R”)

be the real interpolation space given by
N o R = (- AT HPLY, (1 — A)_THI’L’I) ,
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404 T. Ogawa, T. Suguro

where s = (1 — 0)so + 0s1. Analogously

Vi GRY = ((1— A" FHPLY, (1 — A)~ 3 HPLY)

r.q,0 6,0°
where
If oo =sup  sup 277 inf (I follx + Al fally)
JEZ2J <p<2i+] f=h+h
with
lim su A7 inf (I follx + Al filly) = 0. 2.11)
\j|—>002_/<)\5pz_/+1 f=f0+f1( f f )

Proposition 2.10 Let 1 < p,q <00, s € Rand 1 <o < oco. Then

nTS * A ATS
(N o) =N (2.12)

If o = oo,

TS * -5
(N3 0" =N,

.4.0 AL (2.13)

Proof of Proposition 2.10 For the first relation (2.12), by the duality result in Proposi-
tion 2.9, we see forany 1 < p,q <o0o,s e Rand 1 <o < oo that

(V3 400" = (1= &) THPLY* (1 = AT HPLYY),

— T e _ v
=(1-A4)2 M, (1-24)? Mq,)gva, = Np,fq,’o,. (2.14)
Noting the duality relation to the sequence space (£9)* = ¢1, the relation (2.13) is also
shown in a similar way, where £y = {{ak}keN; lag| > 0 ask — oo} O

3 Generalized maximal regularity

In this section, we consider maximal regularity for the Cauchy problem of the heat
equation on Morrey spaces. By Proposition 2.9, we see that the (local) Morrey space
is not reflexive and the general theory of UMD does not cover such a function space.
We then employ the Besov—Morrey space N¥ = (R") to derive maximal regularity

p.q,0
for the heat equations on such a local function space:

Theorem3.1 Letl <g<p<oo, 1 <p<oo,u>0A>0,andlet] =10,T)
for0 < T < oo (T < o0 if A =0). Given initial data ugy € N;f;;)l/p)(R”) and the
external force [ € LP(I; Ng’q’p(R")), suppose that u is the solution to the Cauchy
problem of the heat equation

@ Springer



Maximal regularity and singular limit problem 405

Ou —pAu+ru=f, >0, x eR",
u(0, x) = ug(x), x e R".

Then there exists a constant C > 0 such that

”atu”Lﬂ([;Nquvp)"_M”Au”LP(I;N]Q_qyp) + 7~||M||L/>(1;Nqu’p)
< C(IluollNgfé;l/m + IIfIILp(1;N19’q1p))- 3.1

We note that the constant C appearing in the inequality (3.1) depends on T in the
case of A = 0. On the other hand, if A > 0, then the constant C is independent of 7.

The proof of Theorem 3.1 is decomposed into a homogeneous estimate and an
inhomogeneous estimate.

Proposition3.2 [et 1 <g < p <oo, 1 <0 <00, 1 <p <o00, A >0, and let
I =100,T)for0 < T <o00(T < o0ifr =0). Then there exists a constant C > 0

such that for any ug € N,l,;%p (R™), it holds that

H(A—L) < -
19" Mgl ogrng, ) = Cliwolly1-2o- (3.2)

Proof of Proposition 3.2 By the embedding /! C I° for o > 1, it suffices to consider

the case of o = 1. By the definition of the norm of Ng q.1» We see that

t(A—X) =t . tA
IVe =Y NIV (€ P uo) -

j=0

uO”]\qul

Using (/7)]- =¢j_1+¢;+ ¢j+1, then we have

1(A=2) _ M 7. ) 1A
IVe' S Pugllye =Y IV x (@) % " u0))

j=0
= e Y NV % G x @) xuo)lyy.  (33)
j=0
By changing the variable, we see that
IV, * Gilly < C2Te™2, (34)

It follows from (2.4), (3.3), and (3.4) that

—_ — i -2
IVe' S Pugllyo < Ce™ |1y xuollyp + 327 Mgy xuollyy |- (35)
h izl
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We take «, B > 0 satisfying
2
a+pB=1 and B < —.
o

By the Holder inequality with respect to j, we have

Y 27 g w uollyp

izl

1
= <Z(2a~i€_4jlt”¢j *u()”M;)p>ﬂ <Z(2'BJ —3.4J— lt)p>

Jj=1 j=1

1
ﬂ o \
<8 (e gy uollyp)?)”

j=1

Thus, it follows from (3.5) that

(A=) 1P < CpPM Jo=2%ty . L
IVe' A Pugllfy = Ce (19 uollyyg + D277 16 % uoll g

P j=1

1 L) P
<C2r 1, “’(W*MO”L;JF(ZW@ 21t||¢j>x<uo||qu) )

j=1

_ _bBe i —4J-1
< Ce "M * up|? 172 2% ™ 1 % u .
< I uoliy +177 3 ( 19 ol p)

j=1

By integration both sides with respect to ¢, we then have

T
/||Ve’<A )‘)u0||p dt
0

pql

T
§C</ *p“nw*uoup dt

f ( 5(2 —ﬂ)./e_4j—1,2/<1‘%)||¢j *u0||qu>p dt)

Jj=1

1 — e P
= C(p—||1/f >*<M0||Mp

+y <2<’2’_ﬂ)j2j(1_’2’)||¢j : uo||M5>p/OOf‘ﬂ2"e—p<4f1fdt>.
0

jz=1

Since Bp/2 < 1, we see that
RaY) 1 o0
/ = F e gy = (p 4 - / s~H e ds < oo,
0 0
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Maximal regularity and singular limit problem 407

Therefore, we obtain

T 1
P
( / IVe' A Pug ||, dr)
0 xal

1
< co(nw wuollyyy + 3 (2"<“%)n¢,~ x uouM;)”) '

j=1

. 1
< Co(llllf cuolyg + (22071 4 uo||§45)”),

j=1

which implies (3.2). If A > 0, then the constant Cy is independent of 7. On the other
hand, if A = 0, then Cy = ¢TV/? for some constant ¢ > 0. O

We state the following slightly general form of maximal regularity for the inhomo-
geneous term:

Proposition3.3 Letr 1l < g < p <00, 1 <v <o < p <00, A >0, and let
1 =100,T)for0 < T <o00o(T < o0ifr =0). Then there exists a constant C > 0

such that for any f € LV (I, N;é{ffrz/v), it holds that

Proof of Proposition 3.3 By instituting ¢ j» (2.4) and Minkowski’s inequality, we see
that

-/t Ae=IAM £(5) dg

0

=CIfI 2,2 - (3.6)
LP(I;NY , ) L' (N g0 )

/t Ae=IAM £(5) dsg
0

0
Np.q,a

t
/ Yo (U7AN () ds
0

=<

P
Mq

o

+ D 24

izl

t
e / 19 % (B f( ) p ds
0 q

t
/ ¢ * (IR f(s)) ds
0

P
M’{

t o
+12.27° ( fo g % (9702 F () dslygp ds)

j=1
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t
<C [ Ol s

+ 222]6 </0 e 2%/ (¢ )||¢j *f(s)”Mg’ ds)

jz1
For simplicity, we set
2j ! —22J (t—s)
g =2 ¢ 6 * f ()l pp ds.
Since o < p, it follows from Minkowski’s inequality that

I IHg}521 i ||Lp(,) <| g )51 ey o -

Thus, we have

/ t AeT=AN £(5) ds
0

-NO
LP(I;Ny 4 5)

T, pt P %
< c[/ (/ e 5 f ()] ds) dt}
0 0 4

.y T /ot Y p 5
+C|> 2 f“{/o ([0 e A||¢j>l<f||quds> d;}

j=1

al—

By the Hausdorff—Young inequality with respect to ¢, we see (denoting *; the convo-
lution by ¢-variable) that

T t P %
(/ (/ e—“'—S>||¢,*f(s)||Mpds> dt)
0 0 a

< e w5 f Oy

q

LA(I)

T Yo oT v
§c</ e—wdt) (f ||1/f*f(r>||;4pdr) ,
0 0 K

T t 2 P P
(/ (/ 6_2'(’_S)||¢J~*f(s)||Mpds) dt)
0 0 4

,zzjt
< e 5165 % F Ol

LP(I)

T _ 1 r .
<C (/ o2t dt> </ lgp; * f(t)”})w” dt) )
0 0 :
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where © > 1 satisfies

Since

T . '
/ e—;/.2 T dt < M—12—21
0

and v < o, it follows from Minkowski’s inequality that

H / l A=A £(5) dsg
0

-NO
LP(I;Ny 4 5)

<G (/0 1 * FOI pdr>v

a
v

( 3 22ien ( / pj = £, dt)
j=1 0
<G ( 1 SOl dr)v

)

1
27 l l v
22 JU v b ||¢j *f(t)||‘;4qp dt> ,

+C
izl
which implies (3.6).
If A > 0, then the constant Cy is independent of 7. On the other hand, if A = 0,
then Cy = ¢T/#* for some constant ¢ > 0. O

As acorollary of Proposition 3.3 with v = ¢ = p, we obtain the maximal regularity
for the inhomogeneous term:

Corollary3.4 Let 1l <g <p <oocandl1 < p <oo, A >0, andlet I = [0,T) for
0<T <o (T < 00 if A = 0). Then there exists a constant C > 0 such that for any
f e LP(I; N° ), it holds that

Proof of Theorem 3.1 Combining Proposition 3.2 and Corollary 3.4, we conclude the
estimate (3.1). O

Psq,p

= C”f”Ln([;Nng'p)-

t
/ A=A £(5) ds

0

- N0
LP(I:Ny 4 )

By the refined dissipative estimates in Proposition 2.7, we introduce a version of
maximal regularity for the inhomogeneous term like (3.6) as follows:
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Proposition3.5 Letr 1 < g < p <00, 1 < v < p <oo,andl = (0,T) for
0 < T < 4o00. Then there exists C = C(n, i, p, T) > 0 such that for any f €
LY(I; Nyt Y7219), it holds that

'
H/ Ve =9 £ (s) ds
0

=CIfl 2.2 . (3.7
L\)

—-1+4-2

LP(I;Nquyl) (IiNp .00

Proof of Proposition 3.5 We first treat the case 1 < v < p < co. By (2.8), we have

/
H/ Vel =92 £ (s) ds
0

t
< / 192 F () |yt ds
N/(;,q'I 0 P.q.1

! 1 1
= C/ <1+(t—s)—1+;—5> £l VER ds.
0

P.q,00

By the generalized Hausdorff—Young inequality, it holds that

t
H[;VeU—”Af@)dq

o(7-NO
LP(INY )

* el
< CH/ x,7)( — s)(l +(t —5) 1+ n)X(OJ)(s)”f(S)” 2 2ds
0 N VTP

oo Lr(R4)
J D G
scli+™ ) e
Lu() " "LY(IiNp g0 )
=CIfl S142-2
L"(iNpgc ”

where L’ denotes the weak L* norm and p > 1 satisfies

11 1
1+—=—+-.
pmov

Since the interval [ is bounded, we obtain (3.7) in the case of 1 < v < p < o0.

For the end-point case 1 < v < p = oo, we employ the duality argument: Since
0 < T < +o0, there exists jo € Z such that 2/0 < T < 2J0t! For any g €
C5°((0, T) x R™), we see that

T t
/1 (/ Veu_”Af“)dSAKH) dt
0 0 L
(t—s)A
= /»/O<s<t<T ‘(Ve f(s), g(t)>L2
Vell—9A ’
= Z //2j<t—s<2j+l ( ¢ f(S) g(”)

J=<Jo

ds dt

dsdt.

L2
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We set

(Ve“—S)A £(s), g(t))Lz) ds dt

Tj(f’g)E/fz- y
J<t—s<2/t1

and
Lity=1t =2 e =20), Jis)=[s+2/,s+2/T).
By the duality and (2.14) and the improved dissipative estimate (2.8), we have

Ti(f,8)
= ff _ Ve IR F ) yo Ng@Wllgo  dsdt
2J <t—s<2i+! p.q.1 Pq o

Scf/, | (1+<t—s>‘(1 NIFOI 13 3180l | dsa
2J<t—g<2Jj+1 g0

Npg.o0

<cu+2”’ // (WAL T ||g(t)||N0 | dsdt.
2/ <t—s <2/l N],qoo .q'.00

In the case of p = o0, it follows from the Hausdorff—Young inequality that
JZ]:O f~/21<t s<2/+1

<CZ(1+2 // A ||f(S)|| ,1+2||g(l)||N0 dsdt
2J<t—s<2it '.q 00

J<jo Np.g.00

(Ve £ (9. 80))

§CZ(1+2‘-"( PO (/ [FAE] e szs) /||g(t)||N0 ’,oodt

J=<Jo Np.g.00

A
= Clifl S1+2-2 >V +D | leligo  dr.
Lv(I; I; P'q’,00

pd.0 J=<Jo

Since

E (2” +1)f ||g(t)||N0 ) 61’t<(2”'+1 1)/||g(t)||N0 i
j=<Jjo R o
= CT“g”Ll(I;I\?O, L)
pP.q .0

and (2.11) holds for g € C°((0, T) x R"), we obtain

t
(t—s)A
</0 Ve f(s)ds, g(t)> <crifi, v leloase, o

L2(I xR") P4.00
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By the duality (2.13) in Proposition 2.10 we conclude

<Crlfl ; 142
L®(I:NY ) Lv(I; Npqoo)

t
H/ Ve =92 £(s) ds
0

O

Since N; g1 C M;’p C N3, 4.0 by Proposition 2.4, we immediately obtain the

following estimate as a corollary of Proposition 3.5.

Corollary3.6 Let 1 <g < p <oo, 1 <v < p <oo,andl = (0,T). Then there
exists C = C(n, u, p, T) > 0 such that for any f € L"(I; Mq_1+2/v_2/p’p), it holds
that

<CIrl S142-2, (3.8)
Lo(I;MD) LY(I;M, 7

t
H/ Vel'=94 £(s) ds
0

4 Well-posedness of the Cauchy problems

In this section, we show the well-posedness of the Cauchy problem of the parabolic-
parabolic Keller-Segel system (1.1). The proof of Proposition 1.2 for the parabolic-
elliptic Keller—Segel system (1.3) is similar to the case for (1.1) and we do not show
the case for (1.3) (cf. [38]).

Proof of Proposition 1.1 Let 1 < go < n/2 and 1 < ag < n satisfy 2gop = ap. Let
(p,0) and (r, o) be admissible defined in (1.6) with # < o. We further assume that
the exponents (qo, g1, o, @1) are subject to the conditions (1.8).

For the initial data (uo, Vo) € (Mj/*(R") N N, é{f’g(R")) x (M] (R") N
—2/0

Nra1,0 (R")), let

t
Olur, Yel(t) = e ugp — / Ve 9% . (ur () Ve (5)) ds,
0

Tt
Wlug, Yrl(t) = e APy + / T ARN Py, g (7 s) ds.
0

We then introduce a metric space
Xy = {(u, y) € (LU Mg) N LY (I; MJ)) x (L M) N LT (I M,)));
Il g I ety < M Tl oiaggy + W o gty < N},
d((u, ¥), (v, 9)) = lu— Vllzompy IVQ =@l amg,),

where

M = 4(luoll 5 + 1V¥ollmy,) (4.1)

a0
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and N > 0 which s chosen later. It is shown that the metric space (X s, d) is complete.
We show the proof of the completeness in Appendix. We now show that for any
(D, V) : (ue, ¥y) — (Plue, ¥, ¥[us, ¥¢]) is contraction in X 7. Then Banach—
Cacciopolli fixed point theorem implies that there exists a unique solution (u,, lﬁr) €

X p to the integral equation:

t
ur (t) = e"ugp — f Ve 9% . (ur () Ve (5)) ds,
0

Tt
Yr (1) = €Ay +/ Ty (7 s) ds,
0

which is equivalent to (1.7). By Proposition 2.2 and (4.1), we see that

tA

lle M,

-

uo| 1 =< luoll 2 <
Leedt Mqo) Mg,

_ 1
| Vet 4 MI//OHLOO(I;M;O) < IVollmz, < ZM

By the maximal regularity (3.7), we have

n

L®(I: M)

13
/ Vel ™98 (uy (5) Ve (5)) ds

0

=

t
/O Ve ™92 (up () Ve (5)) ds

A0
LOO(I,N,%’%.I)

< ClucVyell

+a)

By the Sobolev embedding (2.5) (Proposition 2.6);

nr_ 2rqq
n+2r’ n+2r-

142 2 2 1 2
NO Can‘f'{, withn+ r:———<—1+—>,
7+40,00 o

nr n n

4.2)

(4.3)

we have from Propositions 2.3, 2.4 and the Holder inequality (Proposition 2.1) that

n

t
/O Vel'™92 . (uy () Ve (5)) ds

L®(I:M)
< Clluc Vel po g p0 )
U _nr 2rqq 0

n+2r> n42r-

< Clluc V||
T T LU(I Mg,t{z')

n+2r

< Cllucll )||V¢||L6(1 M) = CMN.
qO

4.4)
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Combining (4.3) and (4.4), we see that

1
| Plur, Yl 1 <M+ CMN. 4.5)
LoIMg) — 4

By the condition (1.8), the embedding Ng’ql’I C Eg,ql,Z o~ M,fl (with using Proposi-
tion 2.3) and maximal regularity (3.2), we have

tA tA
e “uollrog.yury < lle " uoll;o.;.n0 < Cllu —2/6
Il 0||L ;M) Il O”L ([’Np,t“,l) I O||Np.q/1’9s

e Yol o g pgiry = ||e’<H>woum,wgw) = CIVYoll 2 -
Then for 0 < g9 < N /8, we may choose T sufficiently small such that
||€IA”0”L9(1;M,IPI) <¢go and ||VeTZ(A7)»)wO”LU([;M&1) < g0, (4.6)

where the choice of T does not depend on T > 1. By maximal regularity (3.7), the
condition (1.8) and the Holder inequality, we have

t
” /O Vel (up () Ve (5)) ds

LMy

t
< f Vel S ()Y ds|
0 LONY, )
< Clluc Vel o0 _1+2
L5 (N0 )
< C u V o
< ClueVoel ge e

”
p+r p+r e
pr

= Clluc Vel 46

Lote (1M 4))

T
< Cllucll oo IVVello g, < CN, 4.7
where we use the Sobolev embedding;
N o, C Nybta, with p;rr - ﬁ - % <—1 + ;) .
Thus, (4.6) and (4.7) imply
I00te, Vel s rang) < 0+ CN> < 2N “8)

if N is chosen as N < min{1/(8C), M /(4C)}. Similarly, it follows from (1.8) and
(4.8) that
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Tt
va TNy, Y 1(x ) ds
0

Lo My))

< C||®lur, Yel(x™ ")zt 2
LO(I 4

5 n,ozo,oo)

1
< C||®[uy, wf]”L‘;(I;M,fl) = ZCN’ 4.9)

Tt
f eTTIA I By Y 1t ) ds
0

Lo (M)

< C||®lur, Yel(x™" )zt
L g

5 n,oto.oo)

S C”q)[u‘[a ‘/fr]” _]+2
Lo 3

3 n,oc(),oo)

1
< C||®[u, wr]”LH(];lel) < ZCN. (4.10)
Combining (4.3), (4.5), (4.9), and (4.10), we have

1 1
||CI>[MT, I/It]”Loo 1o+ ||V\IJ[M1—, wf]”LOO(I;MDItbn) = M+ CMN + ECN = M.

(I:MQ) 2
4.11)
Since 0 > 6 and (1.8), it follows from (3.7) that
Tt
”V/ (I EP Dy Y(r ) ds
0 Lo (1;Mg,)
< Cl P, Yol )=l 22
Lo ;Nr.al.ch: 0)
< C||®[u,, 1ﬂr]||1‘0(1;11/10'(’1p/r)
1
< C|®[uy, 1ﬂ‘t]ll[ﬂ([;ﬁ,{qpl) = ZCN- 4.12)
Similarly, from (3.7) that
Tt

‘ f I EN D, e )(rs) ds

0 LO(IsMy,)

< ClUPLur, Yel(@ el 522

LN, 0y & 7))
E C“q)[l,{-[, Wr]”Lg( : ;;Té;%
1
< C||®[uy, WT]”LF?(];M%) < ZCN. (4.13)
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Thus, by (4.6), (4.8), (4.12) and (4.13), we have

1 1
I @luee. Yelllorpap ) + 1 Te Vel o pytry < 5N + €0+ CN < N (4.14)

Combining (4.11) and (4.14), we see that (®[u, V], VI[u, Y1) € Xp. Analogously
from (4.7) and (4.12), we have

|PLur, Y] — Plog, ¢T]”L9([;M:])

t
/ Vel ™2 (u (s)Vre (s) — v (5) Ve (5)) ds

0 LOI; M)
< Cllu:Vifr — vV o
< Cllac Ve = v Vel o, o
o0
ptre p+re
<Cl(ur —v)V ) Cllve (Vi =V )
< Ol =)Vl e o ) eV =Vl e o L
SN pr o qpr t_pr4ir
pEro p+r ,00 p+re p+r ,00

< Cllu; — vT”L(’(I;Mgl)”wa ”L“(I;M,;l) + Cllve ”LH(I;M‘;II)HVWT - vd’rllL”(l;Mgl)
<CN(llur — vr ”LH([;M;I) + VY — V¢T”L‘7(1;M&I)) < CNd((ur, ¥¢), (ve, ¢¢))

and similarly,

IVW[ur, Yre] = VW[ve, delllLe :my))

Tt
f Ve "I (Dug, Y 1(x7Ls) — ®lvr, ¢ 1(t 7 's)) ds
0

Lo(I;Mg,)
< Cl®[u, Y1 — Py, ¢r]||L9(1;Mé’l)
S CNd((ur» w‘[)9 (U‘L’s ¢‘L’))

for (u, ¥¢), (v¢, ) € X7. We choose N smaller as CN < 1/8. Thus, we obtain
|Plur, ¥e] — Plvg, ¢T]”L9(I;qul) + VW [ue, Y] — VW [y, (br]”L“(I;M,;l)

1
= Ed((“ra Yo), (ve, ¢1)),

whichimplies that (¥, W) is acontraction onto X ;. By the Banach fixed point theorem,
there exists a unique fixed point (u,, ¥;) € Xy which solves (1.7).

We prove the continuous dependence on initial data. Let (u, ¥;) and (v, ¢;) be
solutions to (1.7) with initial data (uo, ¥o), (vo, ¢o), respectively. Then, we see that

||ur_Ur||L0(1;M51)

tA tA
<lleuy—e UO”LH([;MJ’I)

t
+ / Ve'™8  (ur () Vipe (s) — ve(5)Vhe (5)) ds
0

LO(I:Mf)
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< Clluo — voll yo , +CN(llus — UrllLeU;Mgl) VY = VéelLoamy))s
740>
IVYe=VérliLea:my)

< Hvert(A—k)l//O _ Vé‘”(A_)L)d’O”L"(I;Mgl)

Tt
+ Hv/ Tt ) — vp (e 9)) d
0

=< C”VWO - V(ﬁ()“[\]r(')ﬂ(%<7 + C”I/lr — vT”Le(I;M‘fl)’

Lo (I;M)

and hence, we have

lu: — UTHL“)(I;M,fl) + IV — V¢f”LU(13M51)
=< C(lluo — voll 5o
5 0.

VY0 = Véollng,, ) (4.15)

Similarly to the above argument, we see that

lle—ve|] 4
Lo(I:M2)

< ”etAM() _ etA

t
+ ’ /0 Ve "9 . (U () Ve (s) — v (5)Vepe (5)) ds

< |lug — voll

Vol

n
L®(I; M)

n

L(I; M)
1+ CNllur — v s FCMIVYr = VéeliLoa:my),
2 Lo(I:MJ)
IV =VrllLeou:mz)
< ||Ve”<A*A)¢o _ Vert(Af)»)(pO”Loo(l;Mgo)
Tt
+ Hv/ Tzl s) — v (t7 ) ds
0 Lo (1:M2,)
< CIVY0 — Veollug, + Cllue = vel gy
By (4.15), we obtain
llur —ve IILOO(I;M(]%) IV = Voelliooimy)
< C(lluo —voll 2 + lluo — voll po +1IVYo — Vollmr + IVYo — Vollyo ),
M‘IU %*q(]ﬁ 0 n,xq,0

(4.16)
which proves the continuous dependence on initial data. By (4.16), we see that u (¢) €
M%Z(R”) forany r > 0 and u, (t) € MJ, (R") almost everywhere t > 0.
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We show that (u,, V) € C([0, T); M”/2

(R")) x C([0, T);
t <t+h < T.We see that

et + 1) — u (Dl

n
2
q0
< ||e(t+h)A

uo — e upll 2 +

t+h
/ Velth=94 (uz )V (s)) ds
t

n
2
a0

5
My,

/ (Ve U928 (4 () Ve (5)) — VU9 - (ur () Ve (5))) ds
0

M‘IO
Since ¢'®ug € ./\/ln/z(R") we have
e M2 — e Pug| 3 >0 ash— 0.
a0
By the estimate (3.8), we see that
f (Ve 98 (5) Vi (5)) — V'™ - (ur () Ve () ds|
0 M‘IO
< Cle" e Vo) —ue Vel
LOMGE )
qo+oq

2
Again, since u; (1) Vi (t) € M"gég'}&oﬁa])(ﬂ%”), we have

hA
"™ e Ve) —ueVipe|| m — 0 ash — 0.
0%
q0+o]

On the other hand, it follows from the Holder inequality that

"2 Vipre) — u Vi |

nr

<
ity = 2Vl

nr
90| LI M g, )
q0+ay q0+ay
< 2ull

||V¢r||L9(1 Mg
qo)

Thus, the Lebesgue convergence theorem implies that

A (V=98 (u (5)Vr (5)) — Ve ™92 . (ur () Ve (5))) ds
ash — 0.

. —0
5
M‘iO
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M (R™)). Let 0 <

(4.17)
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On the second term of the right hand side in (4.17), we have

1+h
/ Vel =94 (4, (s)Vi(s)) ds
'

< Clixa,i+nyuc V| ar_
ml e g
K qo+aq

—0 ash— 0.
For Vr;, we see that

IV (2 4 1) = Ve (Ol

< [|[VeTUHMA=Dy 7ot A=yl
— ao

T(t+h)
+ (v / TUAM=(A=1)y (71 g5) ds (4.18)
Tt n
My,
t
+ H \V/ /T (e(r(t+h)_s)(A_)L)ut(T_ls) _ e(ft—S)(A—)»)ur(T—ls)) ds
0 Ml’l
a0
Since Ve (AN ¢ M}, (R"), we have
Vet UHMA=L gy gt (A= oy My, =0 ash — 0.
By (3.7), we see that
Tt
HV / (e(‘[(tﬂ-h)—s)(A—)u)ur(T—ls) _ e(Tt—.S‘)(A—)L)uI(T—ls)) ds
O Mn
o
(A=A
< Cle* ( )Mr - ”T”LG(I;M;I)'
Again, since u,(t) € /\/l,";1 (R™) almost everywhere ¢ > 0, we have
e AP up(t) —u; @) |yr — 0 ae.t>0
a1
as h — 0. On the other hand, it follows from the Holder inequality that
”e‘[h(A—)x)uT — Ur “LH(I;M;I) < CHM-L- ”LB(I;M;I)‘
Thus, the Lebesgue convergence theorem implies that
Tt
”v / (e T = A=2) gy (r7hg) — T=A=My (7 1g)) ds — 0 ash
0 M'l
o

— 0.
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On the second term of the right hand side in (4.18), we have

T(t+h)
V/ e(‘[([-‘rh)—s)(A_)‘)ur(‘[_lS) ds
121

n
Ma()

= Cllxerca+mttcllzoqppy — 0 ash — 0.
Furthermore, we have

llue () —uoll 2
9

A
< lle"®uo — uoll

n oo
2

t
f Ve ™92 (ur (5)Vre (s)) ds

0

"

M,

n
2
0 )

VY (@) = Viollag,

Tt
< ||Vert(A7}L)'¢f() _ v‘//OHM&’O + va e(ff*S)(A*)»)ur(Tfls) ds
0

Mz,

Since ug € M%Z(R") and Vo € Mg (R"), the solution (u(t), V(7)) converges

to (ug, Vo) in My~ (R") x Ml (R") as 1 — 0. O

5 Singular limit problem

Proofof Theorem 1.3 Letn > 3,1, 7 > 0,1 <gg <n/2,1 <ag <n,andI = (0, T)

for0 < T < oo. We take (ug, Vi) € M,;ZO/Z(R") x My (R"). Let (p, 0) and (r, o)

satisfy (1.6) and (qo, 1) and (g, a2) satisfies (1.8). We recall that the solution to (1.1)
solves the integral Eq. (4.2) and

u(t) = emuo +/

R Vell=94 (u(s)Vyr(s)) ds,

o
VO =G-8 uw = [ Puwas
0
By changing the variable, the potential term 1/, can be rewritten by
Tt s
by =Py [ eGP (1= L) as,
0 T

and the difference of solutions to the first equation is written by

t
ur(t) —u(t) = / V™92 . ((ur(s) — u(s)) Vi (5)) ds
0 (5.1)

t
n /0 V=98 . (4(s) (Ve (s) — Vi (5))) ds.
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and
Vo (1) — Vi (1)

= Ve 0 + /o Ver (e (1= 2) —u(i=2)) ds (50

Tt o
+/ Vet (A—H (u (t — —) — u(t)) ds — / VS A M y(t) ds.
0 T Tt

We estimate the difference (5.1) of solutions to the first equation. Taking the norm
of LY(I; M})), we have

t
0 Ve(t_s)A ((ur(s) —u(s))Vir(s)) ds

luz — u”L@(]-MI’) =
T LO(1: M)

t
/ Ve "% (u(s) (Ve (5) — VY (5)) ds

"
0

LO(I:M)))

It suffices to consider only the first term of the right hand side. By the maximal
regularity (3.7), we see that

t
/O Vel (s (s) — () Vipe (5)) ds

LO(I;MG))

t
<C H / Ve '8 ((ur (s) — u(s) Ve (s)) ds
0

Ocr-n0
LOINY )

< Cll(ur(s) —u@)V ()] A
1 Np q1» oo)

The Sobolev embedding

—1+2 11 2
NOI)r q1r CN[?,;T,SO Withp+r :—__<_1+_>
p n

ptr pr o pr

and the Holder inequality give

(e (s) — u(s) Vi, (S)IIL oo 142

U0 (I:Np.q,,5)
< C [ (uc(s) —u(s)) Ve (s)|| LES

p+r’ p+r
= Cl(uc(s) — M(S))VWT(S)II 6o pr
Lo+ (I; Ml ’)
P+V

< Cllu — u”Lé)([;Mé’l)”VWI”L"([;ME’”)-
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Thus, we obtain

t
/ Ve =92 . ((ur(s) — u(s)) Ve (s)) ds

0 LO(I: M)
< Cllur — u”L@(];M‘fl)“Vl//r”LU(I;M;I)-
Similarly to the above argument, we have
! A
’ [ 9t @) = Ty s
0 LO(I;MY)

< CIIMIILH(I;M;I)IIV% = V¥llLoamy),
and hence, we obtain
llur — “||L6<1;M51) <CM(Jlu; — uIILe(,;M;’l) T IVYe = Vilie i )), (5:3)

where M = max{||Vw,||La(1;M&1), ||u||L9(1;M51)}, which is independent of T > 0.
We decompose (5.2) as follows:

IVVe = V¥lliLe iy

< Ve A Dyl Lo mg, )

o e - - )
. /(;rt Vet (A=) (u (t _ %) _ u(t)) ds

o0
+ / Ve A My (t) ds
T

t

Lo (I;M,)

Lo (1M,

Lo (I:M)

=lo+ 0L+ L+ 15

For any ¢ > 0, taking v > O sufficiently large, then it follows from Proposition 3.2
that

1 1

T o 00
l o
Iy= (f ||Ve”(A_)”)1ﬂ0||g/1r dl‘) <17 (f ||V€S(A_'\)Iﬂollﬁ,1r ds) < é&.
0 “ 0 “1

5.4)
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By maximal regularity (3.7) with o > 6 and Proposition 3.5, it follows

Tt
e | e e ()= ()
; T T Lo(I3My)
Tt S 5
<c ‘/‘ Ve Ti=9)(A=1) (Mr <_) —u (—)) ds
0 T T L”(I;Nglxl‘l)
s s
<C (ur (‘) —u (_)) i
T T S=Tt LQ(I;Nr,ong *”)
< Cllu; — “||L9<1;N2 ap )
< Cllu; — M||L9(1;qul)' >
For 1>, we have
Tt s
b ‘ [ 9@ (u i = 2) - utn) as
; T Lo (I;My,)
Tt s
- / Ve (A—h) (u (; - —) — M(f)) ds
A T
t
_/ V= A) e AP Au(t — s)ds ds
\ Lo(I;M)
t
+ ‘ / Ve (AP — A) T Au(r - 5) ds
A Lo (I3 M},)
t
oy ‘ / Ve N0 — A) T Au( — 5)ds '
; Lo(I;My,)

It follows from (3.8) that for any ¢ > 0, taking T > O sufficiently large,

t
/ Ve A Mo — A Aut — ) ds
0

Lo (1M,

<c|

t
/ Vet U=9A=0 () ds
0

Lo (I;Mg,)
-1
<Crt ||u||L9(,;M;I) < e. (5.6)

By the Sobolev inequality, we see that

[0 000 (u (1= 2) —u) as

t
- / e AP Au(s)ds ds
0

izfc‘

nr_
Lo(I;M 3] )
ntr
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By the mean value theorem and Fubini’s theorem, we have

Tt s
f (A — A A (/ iu (t — 2) d,o) ds
0 0o 9p T
Tt Tt
3

_ / (/ (L — Ay’ B0 ds) 2 (t - 3) dp
0 p ap T

. / (EM_M _erz(A—k)> L (t_ 2) dp
0 ap T

t _
_ /r ep(AJ‘)iu (t _ B) dp — et A0 [u (t B E)]ﬂ—rt.
0 ap T t/1p=0

By the triangle inequality, we decompose D> as follows:

- Tt 9 ) t
L <C / P BH —y (z — 7) dp — / eSAMAY (1 — 5) ds
0 ) T 0

0

_nr_
Lo (I;M g))

n+r

ett(Af)\) w4+ C

TtH(A—A)
P = € u(t) P =
LO(I;M pa) ) LO(I;M pa) )

n+r n+r

+C ug

=hi1+ho+ 3.

For I 1, changing the variable and using the first equation of (1.1), we have

hi=C _nr_
Lo(I;Ma])
nFr

' P 4
f eTS(A—)L)_u(t _ S) ds — / eTS(A—)L)AM (t — S) ds
0 as 0

1
=C /e”(A_)‘)V~(u(t—s)VI/f(t—s))ds .
0 Lo(I;M )
Fr

By maximal regularity (3.7), for any ¢ > 0, taking t > O sufficiently large, we then
see that

_nr_
Lo(I;M a))

n+r

t
Lhi=C H/ eAIY L (u(t — )Vt — s))ds
0

-1
S CT ||MVW|| fo _|+%
Lb+o (I;N nr nog oc)
n+r’n+r’

< Ct uvy| pr
L

Fo (1M e )

-1
<Crt ||M||L9(1;Mé’l)||VW||LU(I;M;1) < é&.
Thus, we obtain
L <e. 5.7
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For I > and I 3, ug, u(t) € Mg, satisfy

TH(A=))

_n(l_1
e AP ugll nr < Ce™™* (14 (x1) $570)Y ol 5,
M M7

nay
n+r

1_1
17 APy wr < Ce ™ 1+ (1) 2< ) lu@Il =.
M)H»r %

na|
n+r

By the maximal regularity (3.2) and the heat estimate, we have

”et(Af)»)

woll  w < Clluoll _ <Cluollyy < Clluollyg
Lo (I; Mnozl ) nr nay 2:491:9 2441
n+r n+r>n¥r-
(A=
Jle't >u(z>|| < Cllul| .
Mgl ) Lo (M)
n+r n+r
By the Holder inequality, we see that
" o= H |u|| |u|| ,
| ”La(l;M:};l’) HH ”M;};r{ Lo | Mg, e (1)
n+r n+r
l—p
< lull || [lop P
Lo LO(I; M)
where
w= plr —n) i.e., uo =0
- r@2p—n) ’ ’
n—+r 7 1—n . - nqi
=—+——, ie., g1 =—— =qo.
noy o qi q1 2p

For any t > 1, we see that

A=A A=A 1
e A Pug |7 < Clle! ™ Mugll® € LN,
M
= -

||ert(A_A)u(t)||G e < C”et(A_)L)M(l‘)”U € Ll([)
Mg;rlr +r

na|

n+r

n+r

By the Lebesgue dominated convergence theorem, for any ¢ > 0, taking v > 0
sufficiently large, we then have

hr+Dhj3<e. (5.8)

Therefore, by (5.6), (5.7), and (5.8), we obtain

L <e. (5.9)
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For I3, it follows from Proposition 2.5 that

I3 =

o0
/ Ve AN dsu(r)
T

t

- HV(A — AT B0y
Lo(I:My,) Lo Mg,)

<C _nr_
Lo(I:Mua))

n+r

e‘L’t(A*)u)u(t) ‘

1 1
o

T T
<c f 1 AP L di| =c f WO e dt
0 Mgl 0 nary
n¥r n¥r

Similarly to the above argument, for any ¢ > 0, taking t > O sufficiently large, we
then have

I <e. (5.10)

Summing up these estimates (5.4), (5.5), (5.9), and (5.10), for any ¢ > 0, takingt > 0
sufficiently large, we have

Ve = Vlle g ) < Cllue = ullpogmp ) + & (5.11)
and hence, it follows from (5.3) and (5.11) that
”Mr — u”LH(I;M;l) < CM(”MT — u”LH(l;qul) + g).

Since u € L(I; lel) and Vyy € L7 (I; M, ), one can take a small constant M for 7'
small enough. For a small constant M, taking t sufficiently large, we have

lur — M”Lg(I;Mq”l) + IV — VI,Z’HL"(I;M&I) =& (5.12)
Repeating the same argument, we obtain (1.9).

By maximal regularity (3.7), the Sobolev inequality and the Holder inequality, we
have

13
lur —ull p = H/ Ve '8 . (ur (5)Vir (s) — u(s)V(s)) ds .
Le(1:Mg,) 0 L®(I:Mg)
S Cllue Ve —uVyll oo 14202
Lota (N, °°7)
72°40-
S Cllue Ve —uVrll oo e
LO+o (I;Mgprqo )
n(p+)
< Cllu; — MllLe(,;M;l)HVWr||LJ(1;M;1)
+ Cllull oz IV = V¥ llLoaimg - (5.13)
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Forany O < 19 < T, we set I;; = (1, T'). By the similar argument from (5.4), (5.5),
(5.9), and (5.10), we see for large T > 0 that

IVre = VrliLee iy mz)

A=
< |ve™( )WO”LOO(I,O;M[;O)

[T oot (un (= 2) —u (- 2)) as
N /Orz Vet (A—2) (u (t _ %) — u(t)) ds

o
—i—/ VS ANyt ds
T

t

Lo (L M)

L (1y: M2y

L (1y: M2,

< ||Ve”°(A_)‘)T/fO||M&‘0 + Cllus — ulng(Ilo;qu]) +2e < 4e. (5.14)
On the other hand, for some small #; > 0, let
N2 (1) = Xjo,0-11,) (W0 — (4 = 8) o).
Since Vo € Mg (R"), we choose 71 > 0 small enough so that
IV — Vi — VTIrllLOO((o,r—lzl);MgO)
< IVe™ A0 — VYoll Loo(o,v-10):mz,)

Tt
/ Ve(‘[t—s)(A—)»)uT(T—ls) dS
0

+ ‘
Loo((0,77 1) MY,

n HV(A —A)ug -V — A)‘luH
Lo°((0,7 1) M)

A—X
=< ||(et1( ) — I)VWOHMQO + C”uT“LH((O,r”tl);qul)

+ Cllu — uo| n < 3e. (5.15)
L=((0,7111); Mg)

The last inequality follows from the strong continuity of u, () in M;’O/ 2 (R™) and the
uniformly estimate for u, € LY(I; Mqﬁ). Therefore, by passing T — oo in (5.13),
(5.14), and (5.15), we conclude from (5.12) that the convergence (1.10) and (1.11)
hold. O
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Appendix A. Proof of the completeness

Let 1l < go < n/2and 1 < oy < n satisfy 2g0 = «p. Let (p,6) and (r, o) be
admissible as defined in (1.6) with & < o. We further assume that the exponents
(g0, q1, &0, @1) is subject to the conditions (1.8). For M, N > 0 and I = (0, T), we
set

Xy = H(u, ¥ € (LI M,]%O) AL ME)) x (LI My VL7 (1; M)

”u”LDC(l;Mq%) + ”wan(];Mdlb") S Mv ”u”LH(l;Mé’l) + ||W||LU(I;M;,{) S N}7

d((u, V), (v, ¢)) = |lu — U”LG([;Mé’l) +IV( — ¢)||L“(I;Mgl)'

We prove that the metric space (X, d) is complete.
If we set

Y =L Mp) < L7 (I; My)),

then (Y, d) is a complete space. We show that X, is a closed subspace of Y. Let
{(ur, Y)}ken C Xy and (u, ¥) € Y satisfy

d((uk, Y1), (u, ¥)) — 0 ask — oo. (A1)
By Proposition 2.9, we see that
M = (H" L%0)*
Sincel <y <n<oo, H " L% is separable. Thus, by the Banach—Alaoglu theorem

(see Brezis [5]), there exist a subsequence {(ux;, Yi;)}jen C {(ui, Y1)} and @, v) e
Xy such that

(ur; Y )= (@i, ¥) weak=+ in LI M) x L™(I; M),
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(g, Vi) =G, ) weak-x in L7 (I3 M) x L7 (I3 My").

On the other hand, it follows from (A.1) that

(up, Yi) — (u,¥) inD'(I x R").

Thus, it holds that i = u and ¥ = ¥ because of the uniqueness of the convergence
limit. Hence, we see that

(uk;, Yi,) =, W) weak-x in L®(I3 Mg)) x L™(I3 My™).

(uk; Y)) =, ¥)  weak—+in L7 (I MJ) x L7 (I3 My").

By the weak lower semicontinuity of norms, we have

|u||Loo(1 M%) + ”w”Loo(I;MOl((’)")

5 q0
< liminf ||u » + liminf Iy <M,
<timinf gl oo+ B 1) <

Heell o crnagy + 1V N o 1l

< liminf . lim inf <N
< Himinf fuell g g;pgp ) + Umnf (Yl o g ptry) < N

which implies that (u, ¥) € X . Therefore, (X, d) is complete.

References

11.

. Biler, P.: The Cauchy problem and self-similar solutions for a nonlinear parabolic equation. Studia

Math. 114, 181-205 (1995)

. Biler, P.: Existence and nonexistence of solutions for a model of gravitational interaction of particles.

111, Colloq. Math. 68, 229-239 (1995)

. Biler, P., Brandolese, L.: On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system

modelling chemotaxis. Studia Math. 193, 241-261 (2009)

. Biler, P., Cannone, M., Guerra, I.A., Karch, G.: Global regular and singular solutions for a model of

gravitating particles. Math. Ann. 330, 693-708 (2004)

. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations, Universitext,

Springer, New York, xiv+599pp (2011)

. Corrias, L., Perthame, B.: Critical space for the parabolic-parabolic Keller-Segel model in RY.C.R.

Math. Acad. Sci. Paris 342, 745-750 (2006)

. Cygan, S., Karch, G., Krawczyk, K., Wakui, H.: Stability of constant steady states of a chemotaxis

model. J. Evol. Equ. 21, 4873-4896 (2021)

. Giga, Y., Miyakawa, T.: Navier-Stokes flow in R3 with measures as initial vorticity and Morrey spaces.

Comm. Partial Differ. Equ. 14, 577-618 (1989)

. Iwabuchi, T.: Global well-posedness for Keller-Segel system in Besov type spaces. J. Math. Anal.

Appl. 379, 930-948 (2011)

. Iwabuchi, T., Nakamura, M.: Small solutions for nonlinear heat equations, the Navier-Stokes equation,

and the Keller-Segel system in Besov and Triebel-Lizorkin spaces. Adv. Differ. Equ. 18, 687-736
(2013)

Izumi, T., Sawano, Y., Tanaka, H.: Littlewood-Paley theory for Morrey spaces and their preduals. Rev.
Mat. Complut. 28, 411-447 (2015)

@ Springer



430

T.Ogawa, T. Suguro

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

38.

Kato, T.: Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. (N.S.)
22, 127-155 (1992)

Keller, E.F,, Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol.
26, 399415 (1970)

Kozono, H., Sugiyama, Y.: Global strong solution to the semi-linear Keller-Segel system of parabolic-
parabolic type with small data in scale invariant spaces. J. Differ. Equ. 247, 1-32 (2009)

Kozono, H., Sugiyama, Y.: Strong solutions to the Keller—Segel system with the weak L% initial data
and its application to the blow-up rate. Math. Nachr. 283, 732-751 (2010)

Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier-Stokes equation with distributions
in new function spaces as initial data. Comm. Partial Differ. Equ. 19, 959-1014 (1994)

Kozono, H., Ogawa, T., Taniuchi, Y.: Navier-Stokes equations in the Besov space near L° and BM O.
Kyushu J. Math. 57, 303-324 (2003)

Kurokiba, M., Ogawa, T.: Finite time blow-up of the solution for a nonlinear parabolic equation of
drift-diffusion type. Differ. Integral Equ. 16, 427-452 (2003)

Kurokiba, M., Ogawa, T.: Well-posedness for the drift-diffusion system in L” arising from the semi-
conductor device simulation. J. Math. Anal. Appl. 342, 1052-1067 (2008)

Kurokiba, M., Ogawa, T.: Singular limit problem for the Keller-Segel system and drift-diffusion system
in scaling critical spaces. J. Evol. Equ. 20, 421-457 (2020)

Kurokiba, M., Ogawa, T.: Singular limit problem for the two-dimensional Keller—Segel system in
scaling critical space. J. Differ. Equ. 269, 8959-8997 (2020)

Kurokiba, M., Ogawa, T.: Maximal regularity and a singular limit problem for the Patlak-Keller-Segel
system in the scaling critical space involving BM O. Partial Differential Equations Appl. 3, no.1., paper
no.3 (2022)

Lemarié-Rieusset, P.G.: Small data in an optimal Banach space for the parabolic-parabolic and
parabolic-elliptic Keller-Segel equations in the whole space. Adv. Differ. Equ. 18, 1189-1208 (2013)
Maekawa, Y., Terasawa, Y.: The Navier-Stokes equations with initial data in uniformly local L? spaces.
Differ.Integral Equ. 19, 369-400 (2006)

Mazzucato, A. L.: Decomposition of Besov-Morrey spaces, Harmonic analysis at Mount Holyoke
(South Hadley, MA, 2001) 320, 279-294 (2003)

Mazzucato, A.L.: Besov-Morrey spaces: function space theory and applications to non-linear PDE.
Trans. Amer. Math. Soc. 355, 1297-1364 (2003)

Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5,
581-601 (1995)

Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system
of chemotaxis. Funkcial. Ekvac. 40, 411-433 (1997)

Netrusov, Y. V.: Some embedding theorems for spaces of Besov-Morrey type(Russian), Numerical
methods and questions in the organization of calculations, 7. Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI) 139 139-147 (1984)

Nogayama, T., Sawano, Y.: Maximal regularity in Morrey spaces and its application to two-dimensional
Keller-Segel system, preprint (2020)

Ogawa, T., Shimizu, S.: End-point maximal regularity and its application to two-dimensional Keller—
Segel system. Math. Z. 264, 601-628 (2010)

Ogawa, T., Shimizu, S.: End-point maximal Ll—regularity for the Cauchy problem to a parabolic
equation with variable coefficients. Math. Ann. 365, 661-705 (2016)

Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15,311-338 (1953)
Raczyniski, A.: Stability property of the two-dimensional Keller-Segel model. Asymptot. Anal. 61,
35-59 (2009)

Rosenthal, M., Triebel, H.: Morrey spaces, their duals and preduals. Rev. Mat. Complut. 28, 1-30
(2015)

Sawano, Y.: Wavelet characterization of Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Funct.
Approx. Comment. Math. 38, 93-107 (2008)

. Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic-elliptic system of mathematical biology.

Adyv. Differ. Equ. 6, 21-50 (2001)
Suguro, T.: Well-posedness and unconditional uniqueness of mild solutions to the Keller—Segel system
in uniformly local spaces. J. Evol. Equ. 21, 45994618 (2021)

@ Springer



Maximal regularity and singular limit problem 431

39. Taylor, M.E.: Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equa-
tions. Comm. Partial Differ. Equ. 17, 1407-1456 (1992)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Maximal regularity of the heat evolution equation on spatial local spaces and application to a singular limit problem of the Keller–Segel system
	Abstract
	1 Keller–Segel system and drift-diffusion equation
	2 Preliminaries
	3 Generalized maximal regularity
	4 Well-posedness of the Cauchy problems
	5 Singular limit problem
	Acknowledgements
	Appendix A. Proof of the completeness
	References




