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Abstract
We provide a general, homotopy-theoretic definition of string group models within an
∞-category of smooth spaces and present new smooth models for the string group.
Here, a smooth space is a presheaf of∞-groupoids on the category of cartesian spaces.
The key to our definition and construction of smooth string groupmodels is a version of
the singular complex functor, which assigns to a smooth space an underlying ordinary
space.We provide new characterisations of principal∞-bundles and group extensions
in ∞-topoi, building on work of Nikolaus, Schreiber and Stevenson. These insights
allow us to transfer the definition of string group extensions from the ∞-category
of spaces to the ∞-category of smooth spaces. Finally, we consider smooth higher-
categorical group extensions that arise as obstructions to the existence of equivariant
structures on gerbes. These extensions give rise to new smooth models for the string
group, as recently conjectured in joint work with Müller and Szabo.
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690 S. Bunk

1 Introduction and overview

The most direct way to define the string group is via the Whitehead tower of O(n),

· · · −→ String(n) −→ Spin(n) −→ SO(n) −→ O(n) . (1.1)

By this approach, String(n) is defined as a 3-connected topological space with a
continuousmap String(n) → Spin(n)which induces an isomorphism on all homotopy
groups except for in degree three. So far, this defines String(n) only as a space, but
in [34] Stolz constructed String(n) as a topological group and the map String(n) →
Spin(n) as a morphism of topological groups. In fact, he presented a construction that
produces, for any compact, simple, and simply connected Lie group H , a morphism
String(H) → H of topological groups whose underlying continuous map is a three-
connected covering. A covering of this type is also called a string group extension of
H . In these conventions, we write String(n):=String(Spin(n)).

The string group is important in geometry and topology in several ways. Originally,
Killingback [20] and Witten [41] investigated the two-dimensional supersymmetric
σ -model on background manifolds M and found that this is well-defined only if the
free loop space LM admits a spin structure. Witten, moreover, computed the index
of a hypothetical Dirac operator on LM based on physical arguments, leading to
the definition of the Witten genus. By now, it has been understood that the Witten
genus is related to the cohomology theory of topological modular forms (TMF). The
string group enters in this story, for example by defining orientations in TMF [1, 14],
analogously to how the spin group underlies orientations in real K-theory.

Since the free loop space LM is less tractable than the manifold M itself, it is an
important question whether the condition that LM admit a spin structure can be recast
as a condition on the manifold M itself. This is indeed the case: spin structures on LM
correspond to string structures on M [35, 36, 40]. Topologically, a string structure
on M is a lift of the classifying map M → BO(n) of the tangent bundle T M → M
to a map M → BString(n). That is, a string structure is a reduction of the structure
group of T M to String(n). From a geometric perspective, the interest ultimately is in
identifying consequences and constructions that are facilitated by a string structure
on a manifold. Concrete examples include the Höhn-Stolz conjecture [18, 34] that the
Witten genus is trivial for any Riemannian 4k-manifold with positive Ricci curvature
which admits a string structure, or the long-standing goal to define a Dirac operator
on the loop space LM .

In order to study the differential geometric, rather than topological, implications
of string structures, it is paramount to have models for String(n) not just as a topo-
logical group, but as a group object in some geometric category. For instance, given
a Riemannian manifold M , the construction of the Dirac operator associated with
a spin structure on M depends on the ability to glue the tangent bundle T M from
smooth Spin(n)-valued functions. Technically, one also needs to find local frames
for T M in which the Levi-Civita connection of M is represented by 1-forms val-
ued in the Lie algebra spin(n) rather than so(n); however, since the fibre of the map
Spin(n) → SO(n) is discrete, these Lie algebras happen to be canonically isomorphic
(for more background on spin geometry and Dirac operators, see, for instance, [21]).
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Principal∞-bundles and smooth string group models 691

Analogously to how spin structures on LM stem from string structures on M , a hypo-
thetical Dirac operator on LM may well stem from a geometric operator on M itself
(e.g. via some transgression procedure), obtained from a further lift of the Levi-Civita
connection to the Lie algebra string(n). However, for this to make sense, one must
work with a smooth, rather than topological, model for String(n).

Classical results on cohomology readily imply that it is impossible to construct
String(H) as a finite-dimensional Lie group (for any compact, simple, simply con-
nected Lie group H ). Thus, to find geometric models for String(H), one needs to look
beyond the category of smooth, finite-dimensional manifolds. Indeed, a number of
models for String(H) have been found in (higher) categories of smooth spaces that
generalise the notion of a manifold in various ways [2, 16, 17, 25, 31, 39].

In each of these constructions, an extension

A −→ String(H) −→ H

of a compact, simple, simply connected Lie group H is constructed within the chosen
ambient category of smooth spaces. It is then argued that on the underlying ordinary
spaces (meaning topological spaces or simplicial sets) one obtains a string group exten-
sion in the sense of (1.1). However, so far there is no general definition of String(H) in
a smooth context that formalises this procedure. Consequently, in geometric models
for String(H) the extending group A currently has to be chosen ad hoc as an explicit
delooping of the Lie group U(1) in a rather strict sense. This obscures the homotopy-
theoretic nature of String(H), since from a homotopical point of view, not A is fixed,
but only its homotopy type.

In [10], studying symmetries of gerbes, we came across extensions of Lie groups
H not by a delooping of the Lie group U(1), but by the delooping of the diffeological
group U(1)H of smooth maps from H to U(1). However, if H is simply connected,
then the smooth groupU(1)H is homotopy equivalent toU(1). Therefore, extensions of
H by the delooping B(U(1)H ) potentially have the correct homotopy type to produce
smooth string group extensions of H . Nevertheless, we could not make this rigorous
due to the lack of a homotopy-theoretic notion of smooth string group extensions that
does not fix the extending group, but only its homotopy type.

Here, we provide such a general definition of smooth string group extensions, and
we prove that the string group models proposed in [10] fit within this definition. Let
Mfd denote the category of manifolds and smooth maps, and let Cart ⊂ Mfd be the
full subcategory on those manifolds that are diffeomorphic to R

n for any n ∈ N0.
We denote the ∞-category of spaces by S. As our ambient ∞-category of smooth
spaces, we choose the ∞-category H∞:=Fun(Cartop,S) of presheaves of spaces on
Cart. This provides a very general notion of smooth space: for instance, H∞ contains
the categories of manifolds, diffeological spaces, and Lie groupoids. We write M for
the image of a manifold M under the fully faithful inclusion Mfd ↪→ H∞.

The ∞-category H∞ is even an ∞-topos. There exists an established theory of
group objects in∞-topoi [23]. Moreover, there exists a notion of principal∞-bundles
and extensions of group objects in ∞-topoi, due to [26]. A large part of this paper is
devoted to developing this theory further. In particular, we show that group actions in
∞-topoi automatically form groupoid objects (Theorem 3.19) and that principal ∞-
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692 S. Bunk

bundles essentially consists of an effective epimorphism and a principal group action
(Theorem 3.31); this is analogous to the definition of principal bundles of topological
spaces as a locally trivial map and a principal group action. A group object in an
∞-topos H is a simplicial object A ∈ Fun(´op,H) satisfying certain properties (see
Definitions 2.6 and 3.2). We provide the following characterisation of extensions of
group objects:

Theorem 1.2 Let H be an ∞-topos. Let A
ι−→ G

p−→ H be a sequence of morphisms
of group objects in H. The following are equivalent:

1. A
ι−→ G

p−→ H is an extension of group objects in H in the sense of [26], i.e. the
sequence BA → BG → BH is a fibre sequence in H.

2. A
ι−→ G

p−→ H is a fibre sequence of group objects in H and p1 : G1 → H1 is an
effective epimorphism (the subscript 1 denotes evaluation at [1] ∈ ´).

3. A1
ι1−→ G1

p1−→ H1 is a fibre sequence in H and p1 : G1 → H1 is an effective
epimorphism.

4. The morphism p1 : G1 → H1 together with the action of A on G1 induced by ι

define a principal A-bundle over H1.

In order to give a general homotopy-theoretic definition of string group extensions
within H∞, we need to associate an underlying space to an object in H∞. In [6] we
investigated (a model categorical presentation of) a functor Se : H∞ → S from H∞
to the ∞-category S of spaces. It evaluates a smooth space B ∈ H∞ on the extended
affine simplices �k

e ∈ Cart and then takes the geometric realisation of the resulting
simplicial object in S. One can think of Se is a version of the singular complex functor
for smooth spaces. Here, we give further interpretation and context to this functor.
Consider the adjunction c̃ � �, where � : H∞ → S is the global-section functor and c̃
is the constant-presheaf functor. This fits into a triple adjunction� � c̃ � � � codisc,
where codisc is fully faithful and where � preserves finite products. That is, the ∞-
topos H∞ is cohesive.

Theorem 1.3 The functor Se : H∞ → S is part of the cohesion of H∞: there is a
canonical equivalence

� � Se .

This has already been argued in [3] and proven on the level of model categories of
simplicial presheaves in [6]; here we provide an∞-categorical proof based on findings
from [6].

Let L : H → H′ be a functor between ∞-topoi which preserves finite products and
geometric realisations of simplicial objects.We show that Lmaps principal∞-bundles
in H to principal ∞-bundles in H′ and group extensions in H to group extensions in
H′ (this relies on Theorem 3.19). In particular, the functor Se : H∞ → S has these
properties. In S, a string group extension of a compact, simple, simply connected
Lie group H can be defined as usual: it is an extension A → String(H) → H of
group objects in S such that String(H) is 3-connected and such that the morphism
String(H) → H induces an isomorphism on all homotopy groups of the underlying
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Principal∞-bundles and smooth string group models 693

spaces except for in degree three. Using that SeM � M for any manifold M (see [6]
for a proof of this classical fact using the present technology) and that Se preserves
principal∞-bundles and group extensions, we can now transfer this definition toH∞:

Definition 1.4 Let H be a compact, simple, and simply connected Lie group, and let
H denote the induced group object inH∞. An extension of the group object H inH∞
is called a smooth string group extension of H if its image under Se is a string group
extension in S.

We show that the string group models conjectured in [10] fit within Definition 1.4.
Let M be a manifold endowed with a bundle gerbe G (a categorified hermitean line
bundle). In [10], we addressed the question of when an action of a Lie group H on
M lifts to an equivariant structure on G. We found that the obstruction to such a lift is
captured by an extension

HLBM i−→ Sym(G)
p−→ H (1.2)

of H by the smooth 2-group HLBM of hermitean line bundles onM . Each of the above
objects can be interpreted as a group object inH∞ via the nerve functor N , and so the
sequence (1.2) enhances to an extension

N
(

HLBM) Ni−→ N
(

Sym(G)
) Np−→ H

of H as a group object in H∞. The case relevant for string group extensions is
M = H , where H is a compact, simple and simply connected Lie group, acting
on itself via left multiplication. Since H is 2-connected, there is an objectwise equiv-
alence HLBH � B(U(1)H ), and since H is 1-connected, there is a smooth homotopy
equivalence U(1)H � U(1). Therefore, the extending group in (1.2) has the correct
homotopy type for a string group extension. We prove:

Theorem 1.6 Let H be a compact, simple, simply connected Lie group, and let N be
the nerve functor. Consider the left-action of H on itself via left multiplication. Let
G ∈ Grb(H) be a gerbe on H whose class in H3(H ;Z) ∼= Z is a generator. The
sequence

N
(

HLBH
)

N
(

Sym(G)
)

HNi Np

is a smooth string group extension of H.

This string groupmodel is somewhat similar to the model in [16], which is obtained
by studying symmetries of gerbes with connection. However, here the presence of
connections forces the extending group to be the delooping BU(1). It is interesting that
the connection does not change the homotopy type of the extension. In [10, Def. 5.33],
we also constructed a second extension of H with a connection on the gerbe G acting
as crucial auxiliary data.We showed that this extension is equivalent to the one in (1.2)
[10, Thm. 5.36], it gives rise to a second smooth string group extension of H .
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694 S. Bunk

Finally, we expect that most (or possibly all) of the aforementioned smooth string
group models fit within Definition 1.4. Checking this in full detail in each case would
go beyond the scope of this article, but we outline the relevant arguments here: for the
models in [16] and [39] the methods we use here should adapt in a straightforward
manner. The models [17, 31] should fit into the present framework via the presentation
of sheaves of ∞-groupoids on Cart as ∞-Lie groupoids (see, for instance, [27, 28,
32]). For the infinite-dimensional models in [34] and [2], one needs to be able to
compute homotopy types of infinite-dimensional manifolds, such as gauge groups
and loop spaces, via the functor Se. In the case of loop spaces, this is facilitated by the
Smooth Oka Principle from [30]. For gauge groups one needs that the homotopy type
induced from the infinite-dimensional manifold structure agrees with the homotopy
type extracted by using Se. This should follow from general results on the relation
between diffeological spaces and infinite-dimensional manifolds in [19].

Outline. In Sect. 2 we investigate the functor Se : H∞ → S. Further, we recall
some basic notions and facts about ∞-topoi and prove Theorem 1.3.

Section 3 is devoted to the theory of group objects, group extensions, and principal
∞-bundles in∞-topoi.We recall the definitions of these notions from [26] and provide
new characterisations of principal ∞-bundles and group extensions. In particular, we
prove Theorem 1.2.

In Sect. 4, we use the results obtained thus far to transfer the definition of string
group extensions in S to the ∞-topos H∞. After recalling from [10] the smooth 2-
group extensions which control equivariant structures on gerbes, we show that these
extensions give rise to new smoothmodels for string group, thus proving Theorem 1.6.

Finally, in Appendix A we prove Theorem 3.19: we show that group actions in an
∞-topos give rise to groupoid objects.

Notation. We usually make no notational distinction between ordinary categories
and ∞-categories; the nerve functor will be used implicitly where necessary.

We write ´ for the simplex category, and Set� for the category of simplicial
sets. In a simplicial category C, we denote the simplicially enriched hom-functor
by C(−,−) : Cop × C → Set�.

We write |−| = colimC
´op for the colimit of simplicial objects in an ∞-category C.

Moreover, we also refer to |X | (if it exists) as the geometric realisation of a simplicial
object X in C.

Usually, we denote ∞-categories by letters C,D, . . . , but for ∞-topoi we use
bold-face letters H. In particular, the ∞-topos of spaces is denoted by S. We write
D(−,−) : Dop × D → S for the mapping spaces in an ∞-category D.

We model ∞-categories by quasi-categories. Given an ∞-category C and a simpli-
cial set K ∈ Set�, we write Fun(K ,C) = Set�(K ,C) = CK for the ∞-category of
functors from K to C.

We let ´+ denote the augmented simplex category, i.e. the category ´ with an
initial object adjoined. We usually do not distinguish notationally between augmented
simplicial objects X ∈ Fun(´op

+ ,C) in an∞-categoryC and their underlying simplicial
objects. If we wish to make this distinction explicit for clarity, we will denote the latter
by the restriction X |´op .
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Principal∞-bundles and smooth string group models 695

If M is a simplicial model category, then M◦ is the full simplicial subcategory on
the cofibrant-fibrant objects of M. Recall from [23] that the coherent nerve N�(M◦)
is an ∞-category.

If C is a (small) ∞-category, we write P(C) = Fun(Cop,S) for the ∞-category of
presheaves of spaces on C.

2 Smooth spaces and∞-topoi

In this section we recall and develop some background on the ∞-categories most
relevant in this paper. Most importantly, we consider a presheaf ∞-category H∞,
whose objects can be interpreted as a general notion of smooth spaces. We study an
∞-categorical version Se : H∞ → S of a Quillen functor considered in [6], which
provides a singular complex functor for smooth spaces. Subsequently, we briefly recall
the definition of an ∞-topos and of cohesion of ∞-topoi, and we show that Se is part
of the cohesion of H∞.

2.1 Presheaves on cartesian spaces and the smooth singular complex

We let Cart denote the (small) category whose objects are submanifolds of R∞ that
are diffeomorphic to R

n for any n ∈ N0, and whose morphisms are the smooth maps
between these manifolds. We let

H∞:=P(Cart) = Fun(Cartop,S)

denote the ∞-category of presheaves of spaces on Cart. The ∞-category H∞ is pre-
sented by several model categories of simplicial presheaves on Cart—for example,
there is a canonical equivalence [23]

H∞ � N�

(

(Hi∞)◦
)

,

whereHi∞ is the category of simplicial presheaves on Cart, endowedwith the injective
model structure.

Let I :={c × R → c | c ∈ Cart} denote the set of morphisms in Cart of the form
1c × cR, where cR : R → ∗ is the map that collapses the real line to the point. We can
localise both Hi∞ and H∞ at this set of morphisms (or rather at its image under the
Yoneda embedding), and there is still a canonical equivalence between the localisations
[23],

N�

(

(L IH
i∞)◦

) � L IH∞ .

The simplicial model categoriesHi∞ and L IH
i∞ were the subject of [6]. On the level

of their underlying ∞-categories, one of the main results of that paper can be phrased
as follows. For k ∈ N0, we let �k

e :={t ∈ R
k+1 | ∑k

i=0 t
i = 1} denote the extended

(affine) k-simplex. This is a k-dimensional affine subspace of Rk+1, and hence forms
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696 S. Bunk

a cartesian space. The face and degeneracy maps of the standard topological simplices
|�k | extend to the extended affine simplices, turning them into a functor

�e : ´ → Cart , [k] �→ �k
e .

We let Se : H∞ → S denote the composition of functors

Se : H∞ Fun(´op,S) S .
�∗

e colim (2.1)

We refer to this functor as the smooth singular complex functor; viewing the ∞-
category H∞ as an ∞-category of smooth spaces, Se thus assigns an underlying
ordinary space to a smooth space.

Theorem 2.2 [6] There exist adjunctions of ∞-categories

H∞ L IH∞

S S

Loc
⊥

Se �

ι

SIeRe LIe � RI
e

�

where SIe is the restriction of Se to L IH∞ ⊂ H∞. Furthermore, the following state-
ments hold true:

1. The functor Se : H∞ → S preserves and reflects I -local equivalences.
2. The morphism ι is fully faithful, i.e. Loc is a reflective localisation.
3. The three right-hand vertical functors are equivalences of ∞-categories.
4. The diagram obtained by omitting the morphism LI

e is (weakly) commutative.

Proof The first claim follows readily from Proposition 3.6, Corollary 3.12, and Corol-
lary 3.37 of [6]. (Note that model categorical presentations of H∞, L IH∞, and S are
used in [6], and the functors in the statement are presented by Quillen functors.)

Further, claim (1) follows readily from [6, Cor. 3.15]. Claim (2) follows from
general properties of ∞-categories underlying simplicial model categories and their
Bousfield localisations [23]. Claim (3) is the version on the underlying ∞-categories
of Theorems 3.14 and 3.40 of [6]. Claim (4) holds true because the diagram of the
right-adjoints clearly commutes (ι is an inclusion, and Re simply factors through
L IH∞ ⊂ H∞ [6]). ��
Remark 2.3 There is a fully faithful embedding Mfd ↪→ H∞ from the category of
manifolds into H∞: it sends a manifold M to the presheaf M of discrete spaces that
maps a cartesian space c to the set Mfd(c, M) of smooth maps from c to M . By [6,
Thm. 5.1] there is a canonical equivalence of spaces M � SeM for any M ∈ Mfd,
which is natural in M . �
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Principal∞-bundles and smooth string group models 697

Proposition 2.4 The localisation functor Loc : H∞ → L IH∞ preserves finite prod-
ucts. The class WI of I -local equivalences in H∞ is closed under finite products.

Proof By [6, Prop. 2.13], the localisation L IH∞ agrees with the localisation LWH∞
ofH∞ at the setW of all collapse morphisms c → ∗, for c ∈ Cart. The setW is stable
under finite products in H∞, since Cart has finite products. Therefore, the first claim
follows from [13, Cor. 7.1.16]. The second claim then follows since a morphism in
H∞ is inWI precisely if its image under Loc is an equivalence [23, Prop. 5.5.4.15]. ��
Proposition 2.5 For B,C ∈ H∞, let C B ∈ H∞ denote their internal hom object in
H∞. The localisation functor Loc : H∞ → L IH∞ is given (up to equivalence) by

Loc � colim
´op

H∞(

(−)�e
)

.

Proof By Theorem 2.2(4), there is a canonical equivalence SIe ◦Loc � Se. Combining
this with Theorem 2.2(3), we obtain canonical equivalences

Loc � LI
e ◦ SI

e ◦ Loc � LI
e ◦ Se .

Consider the adjunction c̃ : S � H∞ : ev∗, where c̃ assigns to a space K the constant
presheaf with value K , and where ev∗ evaluates a presheaf on the final object ∗ ∈ Cart.
These functors induce an equivalence c̃ : S � L IH∞ : ev∗ [6, Thm. 2.17], and there is
a canonical equivalence ev∗ � SI

e of functors L IH∞ → S by [6, Prop. 2.7, Cor. 3.15].
By adjointness, we also obtain a canonical equivalence c̃ � LI

e . Consequently, there
is a canonical equivalence

Loc � c̃ ◦ Se .

We observe that there exists a canonical equivalence

Se = colim
´op

S(�∗
e(−)

) � ev∗ ◦ colim
´op

H∞(

(−)�e
)

.

By [6, Prop. 6.2], we have that colimH∞
´op ((−)�e ) is a functor H∞ → L IH∞; that is,

it takes values in I -local objects. It follows that there are canonical equivalences

Loc � c̃ ◦ Se � c̃ ◦ ev∗ ◦ colim
´op

H∞(

(−)�e
) � colim

´op
H∞(

(−)�e
)

.

This completes the proof. ��

2.2 Background on∞-topoi

In this section, we briefly recall some background on ∞-topoi. Most of the material
in this section can be found in [23, 26, 32]. For n ∈ N0 and a subset S ⊂ [n], let
�S ⊂ �n be the full ∞-subcategory on the vertices that lie in S. There is a canonical
isomorphism �S ∼= �|S| as simplicial sets, where |S| is the cardinality of S. The
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698 S. Bunk

simplicial set �S can equivalently be seen as the image of an inclusion �|S| ↪→ �n

that sends the i-th vertex of �|S| to the vertex of �n which corresponds to the i-th
element of S (with the order induced from the inclusion S ⊂ [n]).Given an∞-category
C and a simplicial object X ∈ Fun(´op,C), we set X(S):=X(�|S|). This comes with
a canonical morphism Xn → X(S), induced by the inclusion S ⊂ [n].
Definition 2.6 Let C be an ∞-category. A groupoid object in C is a simplicial object
X ∈ Fun(´op,C) such that, for every n ∈ N0 and every partition [n] = S ∪ S′ (as
finite sets) with S ∩ S′ ∼= {∗} consisting of a single element, the diagram

Xn X(S′)

X(S) X0

is a pullback diagram in C.

In particular, any groupoid object is a category object (see also Definition A.1): for
every n ≥ 1, the spine decomposition [n] = [1] �[0] · · · �[0] [1] induces a canonical
equivalence

Xn � X1 ×X0 · · · ×X0 X1
︸ ︷︷ ︸

n+1 factors

.

We denote the full subcategory of Fun(´op,C) on the groupoid objects by

Gpd(C) ⊂ Fun(´op,C) .

Let´+ denote the simplex categorywith an initial object [−1] adjoined. For n ∈ N0, let
´+,≤n ⊂ ´+ be the full subcategory on the objects [−1], . . . , [n]. In particular, ´op

+,≤0
is the category with two objects and one non-trivial morphism [0] → [−1]. Therefore,
anymorphism p : P → B in an∞-categoryC defines an object {p} ∈ Fun(´op

+,≤0,C).

Definition 2.7 Given a morphism p : P → B in an ∞-category C, its Čech nerve Č p
(if it exists) is the augmented simplicial object obtained as the right Kan extension

´op
+,≤0 C

´op
+

{p}

ı
Č p

That is, Č p = Ranı {p}, where ı is the inclusion ´op
+,≤0 ↪→ ´op

+ .

For later use, we record:
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Proposition 2.8 [23, Prop. 6.1.2.11] Let C be an ∞-category, and let X : ´op
+ → C be

an augmented simplicial object. The following are equivalent:

1. X is a right Kan extension of X |´op+,≤0
.

2. The underlying simplicial object X |´op is a groupoid object in C and the diagram

X1 X0

X0 X−1

d0

d1

is a pullback square in C.

Definition 2.9 Let C be an ∞-category, and let p : P → B be a morphism in C. Then,
p is an effective epimorphism if the augmented Čech nerve Č p ∈ Fun(´op

+ ,C) ∼=
Fun((´op)�,C) is a colimiting cocone in C. In other words, the morphism p : P → B
is an effective epimorphism precisely if the colimit |Č p| exists in C and the induced
morphism |Č p| → B is an equivalence.

Let X : ´op
+ → C be an augmented simplicial object in an∞-category C. We denote

the morphism X0 → X−1 by p. Suppose that its Čech nerve Č p exists. Observe that
{p} = ı∗X as objects in Fun(�1,C) ∼= Fun(´op

+,≤0,C). By the adjointness property
of the right Kan extension, there is a canonical equivalence of mapping spaces

Fun(´op
+,≤0,C)(ı∗X , {p}) � Fun(´op

+ ,C)(X , Č p) .

The identity ı∗X = {p} thus induces a canonical morphism

η : X −→ Č p . (2.10)

We define ∞-topoi in terms of the Giraud-Lurie-Rezk axioms [23, Def. 6.1.0.4,
Thm. 6.1.0.6]:

Definition 2.11 An ∞-topos is an ∞-category H satisfying the following axioms:

1. H is presentable. In particular, H has all limits and colimits [23, Def. 5.5.0.1,
Cor. 5.5.2.4]. We denote its initial object by ∅ ∈ H and its final object by ∗ ∈ H.

2. Colimits inH are universal: for any diagram D : K → H, any cocone D : K � → H
under D with apex C ∈ H, and for any morphism f : B → C in H, the induced
morphism

colim
K

H(D ×
cC

cB) −→ (

colim
K

HD
) ×
C
B

is an equivalence (on the left-hand side, cB, cC : K → H are the constant diagrams
with values B and C , respectively, and the pullback is formed in Fun(K ,H)).
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700 S. Bunk

3. Coproducts in H are disjoint: for every pair of objects B,C ∈ H, the pushout
diagram

∅ B

C B � C

is also a pullback diagram.
4. Groupoids inH are effective: given any groupoid object X ∈ Gpd(H), let p : X0 →

|X | denote the canonical morphism which is part of the colimiting cocone. Then,
the comparison morphism η : X → Č p constructed in (2.10) is an equivalence of
simplicial objects in H. In particular, p is an effective epimorphism.

Example 2.12 We list some examples of ∞-topoi; we will mostly be using the first
two of these.

1. The ∞-category of spaces S is an ∞-topos.
2. Any ∞-category P(C) of presheaves of spaces on a (small) ∞-category C is an

∞-topos.
3. Any accessible, left-exact, reflective localisation of an ∞-category P(C) of

presheaves on a small ∞-category C is an ∞-topos; in fact, every ∞-topos is
equivalent to an ∞-topos of this form [23, Thm. 6.1.0.6, Prop. 6.1.5.3]. �
We will later need the following properties of effective epimorphisms in an ∞-

topos:

Lemma 2.13 In an∞-toposH, effective epimorphisms are stable under pullbacks and
colimits.

Proof The fact that effective epimorphisms are stable under pullback is [23,
Prop. 6.2.3.15]. The effective epimorphisms in H are precisely the (−1)-connected1

morphisms [23, Def. 6.5.1.10]. The class of n-connected and n-truncated morphisms
in an ∞-topos form a factorisation system [23, Rmk. 5.2.8.16], and the left class of
morphisms in a factorisation system is stable under colimits [23, Prop. 5.2.8.6(7)]. ��

An important notion of morphism between ∞-topoi is that of a geometric mor-
phism, which is more adapted to the additional structure on ∞-topoi than a mere
functor of ∞-categories:

Definition 2.14 Let H and H′ be ∞-topoi. A geometric morphism of ∞-topoi from
H to H′ is a functor F∗ : H → H′ admitting a left exact left adjoint F∗ : H′ → H.

One can show that the∞-category S of spaces is final in the∞-category of∞-topoi
and geometric morphisms [23, Prop. 6.3.4.1]. That is, for every∞-toposH there exists
an essentially unique geometric morphismH → S. We will denote the corresponding
adjunction by c̃ : S � H : � and refer to � as the global-section functor of H.

1 Note that there is a shift in convention between [23] and the nLab: A morphism f in H is n-connective
in [23] if and only if it is (n−1)-connected in the conventions used on the nLab. We follow the nLab here.
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Example 2.15 Consider a Grothendieck ∞-site, i.e. a small ∞-category C with a
Grothendieck coverage. Suppose C additionally has a final object. If H is the ∞-
category of sheaves of spaces on C, then the global section functor � ofH agrees with
the evaluation of sheaves at the final object of C. In particular, this applies to H∞, the
∞-topos of presheaves of spaces on Cart from Sect. 2.1. �
Definition 2.16 An ∞-toposH is called cohesive if the adjunction c̃ : H � S : � can
be extended to a triple adjunction � � c̃ � � � codisc, in which the left adjoint �

preserves finite products and the right adjoint codisc is fully faithful.

Cohesive ∞-topoi have been studied extensively in [32] and related works.

Theorem 2.17 The ∞-topos H∞ is cohesive, i.e. there exists a triple adjunction � �
c̃ � � � codisc as in Definition 2.16, and there is a canonical equivalence

� � Se .

Remark 2.18 The fact that H∞ is cohesive is not new, see [32]. The second statement
has been proven in a model categorical presentation in [6], and a different argument
has been given in [3]. We give an ∞-categorical proof of this fact for completeness. �
Proof The∞-toposH∞ = P(Cart) admits a right-adjoint to its global-section functor
� by abstract arguments: evaluation of a presheaf at any object preserves colimits,
and since both H∞ and S are presentable, � must admit a further right adjoint [13,
Prop. 7.11.8]. It is well-known that this can in fact be extended into a triple adjunction
which establishes that H∞ is cohesive [32].

For the second part of the statement, we show that Se is left-adjoint to the functor
c̃. Recall from Sect. 2.1 that here c̃ simply sends a space K ∈ S to the constant
presheaf on Cart with value K . Further, recall from the proof of Proposition 2.4 (and
[6, Prop. 2.13]) that the I -local objects in H∞ are precisely the essentially constant
presheaves, i.e. those F ∈ H∞ for which the canonical morphism F(∗) → F(c) is an
equivalence for every c ∈ Cart. Equivalently, F is I -local if and only if the canonical
morphism c̃ ◦ �(F) → F is an equivalence inH∞. Further, by Theorem 2.2 the right
adjoint Re to Se factors through the localisation L IH∞ ⊂ H∞; this is precisely the
full ∞-subcategory of H∞ on the I -local objects.

Consider the two adjunctions Se : H∞ � S : Re and c̃ : S � H∞ : �. They
induce an adjunction

Se ◦ c̃ : S S : � ◦ Re .⊥

By the definition (2.1) of Se, for any space K ∈ S we have a canonical natural
equivalence

Se ◦ c̃(K ) = colim
´op

S(c̃(K )(�e)
) � K , (2.11)

because left-hand side is the colimit of a constant diagram over an indexing cate-
gory whose nerve is contractible in the Kan-Quillen model structure on Set� (see
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Lemma A.7, Example A.9). In other words, there is a canonical natural equivalence
Se ◦ c̃ � 1S. Consequently, there is also a canonical equivalence on the right adjoints,
� ◦ Re � 1S. We obtain natural equivalences

c̃ � c̃ ◦ � ◦ Re � Re .

In the second equivalence we have used that Re takes values in L IH∞ ⊂ H∞ and
that on objects in L IH∞ the morphism c̃ ◦ � → 1H∞ is an equivalence. From the
equivalence Re � c̃ and the adjunction Se � Re we infer that Se is a further left adjoint
to c̃. Hence, it is equivalent to the functor �. ��

Theorem 2.17 shows that the smooth singular complex functor Se : H∞ → S has
a deep homotopical meaning for assigning homotopy types to objects in H∞ and for
studying these homotopy types. It also provides an additional, refined, perspective on
the good homotopical properties of the functor Se that were found and studied in [6].
Finally, note that we also obtain from this a natural equivalence

Se(F) = colim
´op

S(F(�e)
) � colim

Cartop
S(F) .

That is, we see that Se computes the ∞-categorical colimit of Cartop-shaped dia-
grams of spaces, and thus, by [13, Thm. 6.4.5], that N�e : N´ → NCart is a cofinal
morphism in Set�.

3 Principal∞-bundles and group extensions in∞-topoi

In this section, starting from the theory introduced in [26], we develop characteri-
sations of principal ∞-bundles and extensions of group objects in ∞-topoi. These
characterisations are interesting already in their own right. In Sect. 4 they will also
allow us to transfer the definition of string group extensions from S to H∞ and to
construct explicit smooth models for the string group.

3.1 Groups and group extensions

Here we recall the definitions of group objects and their extensions in ∞-topoi [26].
We investigate how to compute limits of group and groupoid objects in ∞-topoi,
and how group objects and their classifying objects behave under functors between
∞-topoi that preserve finite products and geometric realisations.

LetH be an ∞-topos, and let Gpd(H) be the ∞-category of groupoid objects inH.
Further, let EEpi(H) ⊂ Fun(�1,H) denote the full ∞-subcategory on the effective
epimorphisms in H. Recall that by Definition 2.11(4) and Proposition 2.8 there is a
canonical equivalence

Gpd(H) � EEpi(H) , (3.1)

given by forming colimits and Čech nerves, respectively.
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Principal∞-bundles and smooth string group models 703

Definition 3.2 Let C be an ∞-category. Let Grp(C) ⊂ Gpd(C) denote the full ∞-
subcategory on those groupoid objects X in C for which X0 is a final object of C. We
call Grp(C) the ∞-category of group objects in C.

Proposition 3.3 For any ∞-topos H, there are reflective localisations

Fun(´op,H) Gpd(H) Grp(H) .⊥ ⊥

Proof First, the right adjoints in the above sequence of adjunctions are fully faithful by
definition. The first morphism has a left adjoint by [23, Prop. 6.1.2.9]. For the second
left adjoint, we use the equivalence (3.1)2: this equivalence induces a commutative
square

Gpd(H) Grp(H)

EEpi(H) EEpi∗(H)

� �

where EEpi∗(H) ⊂ EEpi(H) is the full ∞-subcategory on those effective epimor-
phisms f : X0 → X−1 where X0 is a final object. A left adjoint to the bottom
morphism is given by the functor that sends an effective epimorphism f : X0 → X−1
to the morphism g : ∗ → X−1 �X0 ∗ induced by the pushout. Since f is an effective
epimorphism, Lemma 2.13 implies that so is g. ��

For a group object G ∈ Grp(H) in an ∞-topos H, we set

BG:=colim
´op

H G = |G| ∈ H .

Note that in an ∞-topos H, for any groupoid object X ∈ Gpd(H) the map X0 →
colimH

´opX is an effective epimorphism. Hence, given a group object G in H, the
morphism ∗ � G0 → BG is an effective epimorphism. Moreover, the functor B is
part of an equivalence [23, Lemma 7.2.2.11] (see also [26, Thm. 2.19])

H∗/
≥1 Grp(H) ,⊥

	

B
(3.4)

where H∗/
≥1 is the ∞-category of pointed, connected objects in H. Note that, for each

T ∈ H∗/
≥1, we view 	T as a group object in H, i.e. 	T ∈ Grp(H). Its underlying

object in H is (	T )1=:	1T .
Unravelling the definition, we obtain that a group object in an ∞-category Cwith a

final object ∗ ∈ C is equivalently a simplicial object G in C such that G0 � ∗ and, for
any [n] ∈ ´ and any partition [n] = S ∪ S′ as finite sets with S ∩ S′ ∼= {∗} consisting
of a single element, the diagram

2 This proof goes back to a mathoverflow answer by Jacob Lurie, see https://mathoverflow.net/questions/
140639/is-the-category-of-group-objects-in-an-infty-1-topos-reflective-as-a-subcat/140742#140742.
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Gn G(S)

G(S′) G0 � ∗

is a pullback diagram in C. That is, there is a canonical equivalence Gn
�−→ G(S) ×

G(S′). In particular, iterating this for the spine partition [n] = [1] �[0] · · · �[0] [1], we
obtain a canonical equivalence

Gn
�−→ Gn

1 .

Proposition 3.5 Let L : H → H′ be a functor between ∞-topoi.

1. If L preserves finite products, then it preserves group objects.
2. If L additionally preserves geometric realisations, then, for any group object G in

H, there is a canonical equivalence

B(LG) � L(BG) .

Proof The first part of the Proposition is known [23]; we include its proof only for
completeness. Any functor F : C → D between ∞-categories preserves simplicial
objects, i.e. it induces a functor Fun(´op,C) −→ Fun(´op,D). Suppose that G ∈
Fun(´op,H) is a group object inH. Since L preserves finite products, it preserves final
objects, so that (LG)0 � ∗ is final in H′. For n �= 0 and any partition [n] = S ∪ S′
with S ∩ S′ ∼= {∗}, we obtain a commutative diagram

(LG)n = L(Gn) L
(

G(S) × G(S′)
)

LG(S) × LG(S′)

�

�

The top morphism is an equivalence since G is a group object in H and the vertical
morphism is an equivalence since L preserves products. This proves claim (1). Using
that BG = colimH

´opG = |G|, the second part is now immediate. ��
Remark 3.6 We will prove a number of statements about functors as in Proposi-
tion 3.5(2), i.e. functors between ∞-topoi which preserve geometric realisations
and finite products. An important class of such functors is given by the additional
left-adjoints of cohesive ∞-topoi—see Definition 2.16. In particular, the functor
Se : H∞ → S from Sect. 2.1 is of this type by Theorem 2.17. �
Lemma 3.7 Let H be an ∞-topos.

1. A morphism X → Y in Gpd(H) is an equivalence if and only if Xi → Yi is an
equivalence in H for i = 0, 1.
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2. A morphism G → H in Grp(H) is an equivalence if and only if G1 → H1 is an
equivalence in H.

Proof Proposition 3.3 implies that an equivalence of groupoid objects X
�−→ Y in H

is the same as an objectwise equivalence of the underlying simplicial objects in H:
X and Y are local objects in Fun(´op,H) with respect to the localisation Gpd(H) ⊂
Fun(´op,H), so that the local equivalences between them are precisely the original,
i.e. the levelwise, equivalences. In particular, this implies the ‘only if’ part of claim (1).

Conversely, if we are given amorphism X
�−→ Y of groupoid objects inH such that

Xi → Yi is an equivalence for i = 0, 1, then it follows that X
�−→ Y is a levelwise

equivalence of simplicial objects; this is because for each n ∈ N0 there is a canonical
equivalence Xn � X1 ×X0 · · · ×X0 X1, natural in X ∈ Gpd(H). It then follows that
the morphism X → Y is also an equivalence in Gpd(H).

The same line of argument shows the second claim. ��

Lemma 3.8 Let H be an ∞-topos, and let K ∈ Set� be a simplicial set.

1. A diagram X : K � → Gpd(H) of groupoid objects in H is a limit diagram if and
only if the composition ιX : K � → Gpd(H) ↪→ Fun(´op,H) is a limit diagram.

2. A diagram X : K � → Gpd(H) of groupoid objects in H is a limit diagram if and
only if the induced diagrams Xi : K � → H are limit diagrams for i = 0, 1.

3. A diagram G : K � → Grp(H) of group objects in H is a limit diagram if and only
if the the composition jG : K � → Grp(H) ↪→ Gpd(H) is a limit diagram.

4. A diagram G : K � → Grp(H) of group objects in H is a limit diagram if and only
if the induced diagram G1 : K � → H is a limit diagram.

Proof One can see the ‘only if’ direction of claims (1) and (2) as follows: we first
note that since the inclusion Gpd(H) ⊂ Fun(´op,H) is a right adjoint, we have that
if X : K � → Gpd(H) is a limit diagram, then so is X : K � → Fun(´op,H). Further,
since limits in diagram ∞-categories are computed pointwise, this is equivalent to the
functor Xi : K � → H being a limit diagram in H for every [i] ∈ ´.

For the converse direction in claim (1), we first show that limits of diagrams in
Gpd(H) can be computed inFun(´op,H).More precisely, a functor X : K � → Gpd(H)

is a limit diagram whenever its composition with the inclusion ι : Gpd(H) ↪→
Fun(´op,H) is so, i.e. the inclusion reflects limits. Equivalently, the ∞-subcategory
Gpd(H) ↪→ Fun(´op,H) is closed under limits in Fun(´op,H). This is seen as fol-
lows: consider a functor X : K � → Gpd(H) and a decomposition [n] = S ∪ S′ with
S ∩ S′ = {∗}. This induces an equivalence

Xn
�−→ X(S) ×

X0

X(S′)

in Fun(K �,H). Setting Y :=limFun(´op,H)
K (ιX) and using that limits commute with

limits [23, Lemma 5.5.2.3], we have
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Yn � (

lim
K

Fun(´op,H)(ιX)
)

n

� lim
K

H(ιXn)

� lim
K

H(

ιX(S) ×
ιX0

ιX(S′)
)

� (

lim
K

HιX(S)
) ×

(lim
K

HιX0)

(

lim
K

HιX(S′)
)

� Y (S) ×Y0 Y (S′) , (3.9)

which shows that Y ∈ Fun(´op,H) is local with respect to the localisation Gpd(H) ↪→
Fun(´op,H), i.e. that Y ∈ Gpd(H). Since the inclusion ι : Gpd(H) ↪→ Fun(´op,H)

is fully faithful, Y is also a limit of the diagram X : K → Gpd(H). Consequently, if
the composition ιX : K � → Gpd(H) ↪→ Fun(´op,H) is a limit diagram, then so is
X : K � → Gpd(H).

For the converse direction in claim (2), suppose that X : K � → Gpd(H) is a diagram
such that the functors Xi : K � → H are limit diagrams for i = 0, 1. By part (1) it
suffices to show that the composition ιX : K � → Fun(´op,H) is a limit diagram; that
is, it suffices to show that Xi : K � → H is a limit diagram for every [i] ∈ ´.

Since X : K � → Fun(´op,H) is valued in groupoid objects, and since limits in
H commute with limits, it follows from (3.9) that for every [n] ∈ ´ the diagram
Xn : K � → H is equivalent to a limit diagram X1 ×X0 · · · ×X0 X1 : K � → H, and is
hence a limit diagram itself.

The proof of claim (3) proceeds along the exact same line as the proof of part (2): the
key insight is the fact that if G : K � → Grp(H) is a diagram such that the composition
jG : K � → Gpd(H) is a limit diagram, then limGpd(H)

K (jG) is still local with respect
to the localisation Grp(H) ⊂ Gpd(H).

Claim (4) is then the combination of claims (2) and (3). ��

Having established several properties of the ∞-category of group objects inH, we
now define extensions of group objects:

Definition 3.10 [26, Def. 4.26] Let A and H be group objects in an ∞-topos H. An
extension of group objects of H by A is a sequence A → G → H in the ∞-category
Grp(H) such that the sequence BA → BG → BH is a fibre sequence in H.

Remark 3.11 This definition of a group extension has advantages from a theoretical
perspective. Nevertheless, it appears that there should be a simpler definition that
more directly generalises extensions of groups in Set to the ∞-categorical setting.
For group objects in Set, a group extension is a sequence A → G → H of group
homomorphisms such that G → H is surjective and A is the fibre of the morphism
G → H at the identity element of H . We will prove in Theorem 3.48 that one can
indeed generalise this view on group extensions to group objects in ∞-topoi. �
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3.2 Group actions in∞-categories

Wenow investigate actions of group objects in∞-topoi. Let Set� J denote the category
of simplicial sets endowedwith the Joyalmodel structure. For K ∈ Set�, we let obj(K )

be the set K0 of vertices of K , seen as a discrete simplicial set. Let J :=�1[ f −1] be
the localisation of �1 at its non-trivial edge (see e.g. [13, Sec. 3.3]).

Lemma 3.12 Let C be an ∞-category, and let K be a simplicial set.

1. The inclusion ι : obj(K ) ↪→ K induces a morphism

ι∗ : CK = Fun(K ,C) −→ Fun
(

obj(K ),C
) = Cobj(K )

of simplicial sets, which is a fibration between fibrant objects in the Joyal model
structure.

2. Consider either of the inclusions �{i} ↪→ J , where i = 0, 1. The induced mor-
phism

Fun(J ,CK ) −→ CK ×
Cobj(K )

Fun
(

J ,Cobj(K )
)

is a trivial Kan fibration.

3. Let g : K → C and g′ : obj(K ) → C be functors. For any equivalence η : ι∗g �−→
g′, consider the space of pairs (ĝ′, η̂), where ĝ′ is a lift of g′ to a functor ĝ′ : K → C,

and where η̂ is an equivalence g
�−→ ĝ′ such that ι∗η̂ = η. This space is a

contractible Kan complex.

Proof Part (1) follows since obj(K ) ↪→ K is a cofibration in the Joyal model category
Set� J , C is a fibrant object in Set� J , and Set� J is a (closed) symmetric monoidal
model category.

For part (2), we apply [13, Cor. 3.6.4] to the categorical anodyne extension�{i} ↪→
J = �1[ f −1] and the Joyal fibration (i.e. isofibration) from part (1).

Part (3) is obtained by taking the fibre of the morphism from part (2), which is a
contractible Kan complex since it is the fibre of a trivial Kan fibration. This fibre is
equivalently described as the space of lifts in the commutative diagram

�{i} CK

J Cobj(K )

g

ι∗

η

which is precisely the space of pairs (ĝ′, η̂) of lifts ĝ′ : K → C of g′ and equivalences
η̂ : g �−→ ĝ′ such that ι∗η̂ = η. ��
Example 3.13 Let G be a group object in an ∞-category C with a final object. This
is, in particular, a simplicial object G : ´op → C (we suppress the canonical inclusion
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functors Grp(C) ↪→ Gpd(C) ↪→ Fun(´op,C)). Consider the functor

[0]�(−) : ´ −→ ´ , [n] �−→ [0]�[n] ∼= [n + 1] ,

where � denotes the join of categories (and where we view partially ordered sets as
categories). The induced pullback functor

Dec0 :=([0]�(−)
)∗ : Fun(´op,C) −→ Fun(´op,C)

is also called the decalage functor; see [33] for more background. For each n ≥ 1, the
partition [n] = {0, 1} �{1} {1, . . . , n} induces an equivalence

γn : (Dec0 G)n = Gn+1 � G1 × Gn . (3.14)

We can phrase this as an equivalence of functors Dec0 G � G1× ι∗G : obj(´op) → C.
FromLemma3.12weobtain that there exists an essentially uniqueway to lift these data

to a functor´op → C, whichwe denote byG1//G, and an equivalence γ : Dec0 G
�−→

G1//G inFun(´op,C), whose components are exactly the equivalences γn from (3.14).
One can now check that G1//G is the simplicial object in C that describes the right
action of G on itself via the group multiplication in G. �
Definition 3.15 Let C be an ∞-category with pullbacks and a final object. Let G be
a group object in C, and let P ∈ C. An action of G on P is a simplicial object
P//G ∈ Fun(´op,C) such that

1. for each n ∈ N0, we have (P//G)n = P × Gn
1,

2. the morphism d1 : P ×G1 → P is the canonical projection onto P , the morphism

s0 : P → P × G1 agrees with the morphism 1P × (∗ s0→ G1), and
3. the collapse morphism P → ∗ induces a morphism P//G → G in Fun(´op,C).

Given a group action P//G, we set a:=d0 : P × G1 → P . It follows by the
pasting law for pullbacks that there are canonical equivalences of morphisms between
d0 : P × Gn

1 → P × Gn−1
1 and a × 1Gn−1

1
: P × Gn

1 → P × Gn−1
1 , and similarly

between dn : P × Gn
1 → P × Gn−1

1 and the projection onto the first n factors.

Remark 3.16 Definition 3.15 is taken from [26, Def. 3.1] almost verbatim, but it differs
from that source in that we do not require group actions to be groupoid objects. Instead,
we show in Theorem 3.19 that this is a consequence of the axioms inDefinition 3.15. A
second (minor) difference is that we also fix the level-zero degeneracy map s0 : P →
P × G1. �
Example 3.17 For any group object G ∈ Grp(C) there is a canonical trivial action
∗//G on the final object ∗ ∈ C, coming from the canonical equivalence ∗ × G �
G of simplicial objects; there is a canonical equivalence G � ∗//G in Fun(´op,

C). �
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Example 3.18 We can now give a precise meaning to the last sentence of Exam-
ple 3.13: the object G1//G ∈ Fun(´op,C) is an action of G on its underlying object
G1 ∈ H via right multiplication; see also [24, Def. 4.2.2.2, Example 4.2.2.4] for more
background. �

Given an action of a group object G on an object P in C, we would like to think of
the simplicial object P//G as the action groupoid associated with this action. This is
indeed justified:

Theorem 3.19 Let C be an ∞-category with finite limits, let G ∈ Grp(C) be a group
object in C, and let P//G ∈ Fun(´op,C) be an action of G on an object P ∈ C. Then,
P//G is a groupoid object in C.

Remark 3.20 Let L : H → H′ be a functor between ∞-topoi which preserves finite
products and geometric realisations. The relevance of Theorem 3.19 is that it will allow
us to show that functors of this type map group actions inH to group actions inH′ (see
Theorem 3.32). In [26], group actions are defined to be groupoid objects, but functors
L : H → H′ as above do not preserve groupoid objects in general. However, Theo-
rem 3.19 shows that—as in the classical case of (set-theoretic) group actions—actions
of group objects in ∞-topoi automatically form groupoid objects. Consequently, we
do not need to require L to preserve groupoid objects. �

We prove Theorem 3.19 in Appendix A. For the remainder of this section, letH be
an ∞-topos.

Definition 3.21 Let G ∈ Grp(H) be a group object. A G-action over an object B ∈ H
is an augmented simplicial object X ∈ Fun(´op

+ ,H) whose underlying simplicial
object is a G-action P//G on some object P ∈ H, and whose augmenting object is
B, i.e. X−1 = B. Writing p : P → B for the morphism X |´op+,≤0

, we also denote a

G-action over B by

P//G
p−→ B ∈ Fun(´op

+ ,H) .

A morphism of G-actions over B ∈ H,

(P//G → B)
f−→ (Q//G → B) ,

is a morphism f in Fun(´op
+ ,H) as above such that

1. f−1 = 1B is the identity on B, and
2. the collapse morphisms P → ∗ and Q → ∗ induce a (weakly) commutative

diagram

P//G Q//G

∗//G

f|´op

of simplicial objects in H.
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710 S. Bunk

The ∞-category of G-actions over an object B ∈ H is the full ∞-subcategory of
Fun(´op,H)/(B×(∗//G)) on those objects whose underlying simplicial object is a G-
action.

An ordinary G-action is equivalent to a G-action over the final object ∗ ∈ H.

Example 3.22 For a group object G ∈ Grp(H) and an action P//G of G on an object
P ∈ H, let q : (´op)� → H be a colimiting cocone of the simplicial diagram P//G in
H. Observing that (´op)� ∼= (´�)op ∼= (´+)op, this defines an augmented simplicial
object in H, which we denote as

q : P//G −→ colim
´op

H(P//G) = |P//G| .

Therefore, the data P//G → |P//G| form a G-action over |P//G|. In particular, the
canonical morphism ∗//G → BG is of this form. �

Another example of a morphism of this type is the collapse morphism G1//G → ∗,
as we show now:

Proposition 3.23 If G is a group object in H, then the canonical morphism

|G1//G| �−→ ∗

is an equivalence.

Proof Since H is presentable, there exists a combinatorial simplicial model category
M and an equivalence of ∞-categories H � N�(M◦) [23, Prop. A.3.7.6]. Under this
equivalence, colimits in H over diagrams indexed by ordinary categories correspond
to homotopy colimits in M [23, Cor. 4.2.4.8]. It now suffices to observe that any
simplicial object in M obtained as the decalage of another simplicial object has an
augmentation and extra degeneracies [29, 33]. ��

Any morphism A → G of group objects induces an action of A on G1 by the
following construction:

Proposition 3.24 Let f : A → G be a morphism in Grp(H). Define a simplicial object
G1//A as the pullback

G1//A G1//G

∗//A ∗//G

(3.25)

in Fun(´op,H). Then, G1//A is an action of A on G1.

Proof We check the axioms in Definition 3.15: axiom (1) follows from the pasting
law for pullbacks and the diagram

(G1//A)n (G1//G)n G1

(∗//A)n (∗//G)n ∗
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in which the right-hand square is a pullback for any n ∈ N0 by construction of G1//G.
Axiom (2) is readily seen from applying the maps d1 and s0 to the diagram (3.25),

for n = 0, 1. Axiom (3) follows since the morphism G1//A −→ ∗//A induced by the
above diagram agrees with the morphism obtained by collapsing the first factor G1. ��

3.3 Principal∞-bundles

In this subsection, we characterise principal ∞-bundles and group extensions in ∞-
topoi. Throughout this section, let H be an ∞-topos and let G ∈ Grp(H) be a group
object in H.

Definition 3.26 [26, Def. 3.4] A G-principal ∞-bundle on an object B ∈ H is a G-
action P//G → B over B such that the augmented simplicial object P//G → B is
a colimiting cocone for the simplicial diagram P//G ∈ Fun(´op,H). In other words,

the augmenting map p : P → B induces an equivalence colimH
´op(P//G)

�−→ B in
H.

A morphism of G-principal ∞-bundles on B, denoted (P//G → B) −→
(Q//G → B), is a morphism of the underlying G-actions over B. The ∞-
category BunG(B) of G-principal ∞-bundles over B is the full ∞-subcategory of
Fun(´op,H)/(B×(∗//G)) (cf. Definition 3.21) on the G-principal ∞-bundles on B.

Example 3.27 Let G ∈ Grp(H). For any G-action P//G in H, the morphism P//G →
|P//G| is a principal G-bundle in H over |P//G|. As concrete examples of this type,
we have already seen that G1//G exhibits G1 as a principal G-bundle over ∗ ∈ H
(Proposition 3.23), and that ∗//G exhibits ∗ as a principal G-bundle over BG (by the
definition of BG). �

We now provide an alternative characterisation of principal∞-bundles in∞-topoi.
Let G ∈ Grp(H) be a group object in H, and let p : P//G → B be a G-action over an
object B ∈ H. Let ı : ´op

+,≤0 ↪→ ´op
+ be the inclusion. The identity provides a canonical

equivalence

η : {p} = ı∗(P//G → B)
�−→ ı∗(Č p) = {p}

in Fun(´op
+,≤0,H) � Fun(�1,H). Since right Kan extension is a right adjoint, there

is an equivalence

Fun(´op
+,≤0,H)

(

ı∗(P//G → B), {p}) � Fun(´op
+ ,H)

(

(P//G → B), Č p
)

of mapping spaces (compare also (2.10)). We denote the image of η under this equiv-
alence by

α : (P//G → B) −→ Č p .

Observe that, by construction, the restriction of α along ı is η. We will not distinguish
notationally betweenα as defined here and its restriction along the inclusion´op ⊂ ´op

+
(since α−1 = 1B).
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712 S. Bunk

Definition 3.28 A G-action P//G −→ B over B ∈ H is called principal if the canon-
ical morphism α : P//G −→ Č p is an equivalence in Fun(´op,H).

This is an ∞-categorical version of the principality condition for a group action.
It is, in fact, equivalent to the usual principality condition—that the action morphism
P × G1 → P ×B P is an equivalence—in the following sense (in particular, this
implies the converse to [26, Prop. 3.7]):

Lemma 3.29 Let P//G → B be aG-action over B ∈ H. The following are equivalent:

1. The G-action is principal.
2. The diagram

P × G1 P

P B

d1=prP

a=d0 p

p

(3.30)

is a pullback diagram in H.

Proof (1) implies (2) since the action P//G
p−→ B is principal precisely if it is

equivalent, as an augmented simplicial object inH, to the Čech nerve Č p = Ranι{p}.
Thus, the implication follows from Proposition 2.8.

Conversely, (2) also implies (1): we know from Theorem 3.19 that P//G is a
groupoid object. If we additionally have that (3.30) is a pullback diagram, then we
can again apply Proposition 2.8 to obtain the claim. ��

We can use Lemma 3.29 to give a characterisation of principal ∞-bundles which
can be understood as encoding directly the classical criteria for principal bundles: a
locally trivial map p : P → B and a principal G-action over B.

Proposition 3.31 Let P//G
p−→ B be a G-action over an object B ∈ H. The following

are equivalent:

1. P//G
p−→ B is a principal ∞-bundle (in the sense of Definition 3.26).

2. The morphism p is an effective epimorphism and the action P//G is principal.

Proof To see that (1) implies (2), first observe that since P//G is a groupoid object in
H, and since by assumption the canonical morphism |P//G| → B is an equivalence,
it follows from Definition 2.11(4) that the canonical morphism α : P//G → Č p is an
equivalence in Fun(´op,H). In particular, p is an effective epimorphism. Further, it
has been shown in [26, Prop. 3.7] that if P//G → B is a principal bundle, then the
action P//G satisfies condition (2) of Lemma 3.29, and so the action is principal.

To see the other direction, consider the commutative diagram

|P//G| |Č p|

B

|α|
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Principal∞-bundles and smooth string group models 713

In this case, both the top and the right-hand morphisms in diagram are equivalences.
It thus follows that also the left-hand morphism is an equivalence, which amounts to
the fact that P//G → B is a principal G-bundle in the sense of Definition 3.26. ��
Theorem 3.32 Let L : H → H′ be a functor between ∞-topoi which preserves geo-
metric realisations and finite products. Suppose G is a group object in H.

1. L maps G-actions P//G
p−→ B over B ∈ H to LG-actions LP//LG

Lp−→ LB over
LB ∈ H′.

2. If the action P//G → B is a principal G-bundle, then the action LP//LG
Lp−→ LB

is a principal LG-bundle.

Proof Since L preserves finite products, the first claim follows readily from Defini-
tion 3.15.

For the second claim, recall that P//G → B is a principal G-bundle precisely if
the map |P//G| → B is an equivalence. Applying the functor L to this morphism,

we obtain an equivalence L|P//G| �−→ LB. Since L preserves geometric realisations,
and using claim (1), we obtain further canonical equivalences

|LP//LG| �−→ L|P//G| �−→ LB ,

which establishes the action LP//LG
Lp−→ LB as a principal LG-bundle over B. ��

Proposition 3.33 Let G be a group object in H, and let P//G → C be a G-principal
∞-bundle in H. For any morphism f : B → C in H, there is a canonical G-action
over B on the pullback Q:=B ×C P that makes Q//G → B into a G-principal
∞-bundle on B.

Proof Let c : H −→ Fun(´op,H) be the constant-diagram functor. Consider the pull-
back diagram

cB ×cC (P//G) P//G

cB cC

f̂

f ∗ p p

c f

(3.34)

in Fun(´op,H) (or, equivalently, in Gpd(H)). For any [n] ∈ ´ there exists a canonical
equivalence

(

cB ×cC (P//G)
)

n � B ×C (P × Gn−1
1 ) � (B ×C P) × Gn−1

1 .

We use Lemma 3.12 to obtain from these equivalences a canonical pair (up to con-
tractible choices) of an object (B ×C P)//G ∈ Fun(´op,H), with ((B ×C P)//G)n =
(B ×C P) × Gn

1 for all n ∈ N0, together with an equivalence

(B ×C P)//G
�−→ cB ×cC (P//G) (3.35)
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714 S. Bunk

of simplicial objects inH. By a slight abuse of notation,we also denote the composition

(B ×C P)//G
�−→ cB ×cC (P//G) −→ cB

by f ∗ p. It follows by construction that (B ×C P)//G
f ∗ p−→ B is a G-action over B.

We are hence left to show that it is a principal ∞-bundle.
To that end, we will show that the morphism

|(B ×C P)//G| −→ B

is an equivalence. Diagram (3.34) is a diagram of the form�1×�1 −→ Fun(´op,H).
Composing with the functor colimH

´op = |−|: Fun(´op,H) −→ H we obtain a dia-
gram

|(B ×C P)//G| |P//G|

B C

| f̂ |

f ∗ p p�

f

(3.36)

in H. The right-hand morphism is an equivalence since P//G → C is assumed to be
a principal ∞-bundle. Using the equivalence (3.35), diagram (3.36) is equivalent to
the diagram

|cB ×cC (P//G)| |P//G|

B C

| f̂ |

f ∗ p p�

f

(3.37)

By the universality of colimits in H, we have a canonical equivalence

|cB ×cC (P//G)| � B ×C |P//G| .

This establishes that the morphism f ∗ p in diagram (3.37) is the pullback of an equiv-
alence in H, and hence that f ∗ p is an equivalence itself. ��

One can now show that everyG-principal∞-bundle arises as a pullback of the bun-
dle (∗//G) → BG. This insight is not new, but has been observed in [26, Prop. 3.13,
Thm. 3.17] already. However, in Sect. 4.3 it will be important to have a good under-
standing of the classifying map of a principal ∞-bundle, and so we include a brief
treatment of thesemaps.We start with two short technical lemmas, before constructing
for each G-principal ∞-bundle in H its classifying map.

Lemma 3.38 Let G be a group object in H, and let f : ∗ → BG be the base point
of BG. The pullback of the canonical bundle (∗//G) → BG along f agrees with the
bundle G1//G → ∗.
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Proof Consider the commutative square

G1//G ∗//G

∗ cBG

in Fun(´op,H). By the canonical equivalence G � 	BG in Grp(H) (see (3.4)), this
diagram is level-wise a pullback, i.e. it is a pullback diagram in Fun(´op,H). That
proves the claim by Proposition 3.33. ��

Definition 3.39 A G-principal ∞-bundle P//G → B is trivial if it is equivalent in
BunG(B) to the trivial G-principal ∞-bundle B × (G1//G) → B, i.e. if there is an
equivalence of simplicial objects inH/B between P//G and B×(G//G) that commutes
with the canonical morphisms to ∗//G.

Lemma 3.40 [26, Prop. 3.12]For every G-principal∞-bundle P//G → B inH, there
exists an effective epimorphism U → B such that the pullback bundle U ×B (P//G)

is trivial.

Proof We give an alternative proof to [26]. Given aG-principal∞-bundle P//G → B
in H, consider the effective epimorphism P → B and the pullback bundle P ×B

(P//G). We have a commutative diagram

P × (G1//G)

P ×B (P//G) P//G

cP cB

pr

a×1

ψ

in Fun(´op,H), where a × 1 acts on P with the first copy of G and as the identity on
the remaining copies of G. The induced morphism ψ is a morphism of G-principal
∞-bundles (since the triangles in the diagram commute and since a×1 is a morphism
of G-actions). It is thus equivalent to a morphism

ψ ′ : Č(P × G → P) −→ Č
(

(P ×B (P//G)) −→ P
)

of Čechnerves over P . The level-zero component ofψ ′ is precisely the equivalence P×
G1 → P ×B P which establishes that P//G → B is principal (cf. Proposition 3.29).
Sinceψ ′ is the imageofψ under the rightKan extensionRanι (compareDefinition 2.7),
it follows that ψ ′, and hence ψ , is an equivalence. ��
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716 S. Bunk

Proposition 3.41 For every G-principal ∞-bundle P//G → B in H, the diagram

P//G ∗//G

cB cBG

p

|p|

(3.42)

is a pullback diagram in Fun(´op,H): there is an equivalence (P//G → B) �
B ×BG (∗//G) of G-principal ∞-bundles over X. In particular, every G-principal
∞-bundle is a pullback of the bundle ∗//G → BG.

This is a refinement of [26, Prop. 3.13] to a statement on the level of simplicial
objects, rather than only on their zeroth level.

Proof Consider the diagram

G1//G ∗//G

P × (G1//G) P//G

∗ cBG

cP cB

(3.43)

in Fun(´op,H). Here, the front and rear squares are pullbacks (by Lemmas 3.40 and
3.38, respectively), and the diagram is obtained as a morphism of pullback diagrams.
We need to show that the right-hand face is a pullback square in Fun(´op,H).

First, we show that the top square of (3.43) is a pullback. By Lemma 3.8 it suffices
to check this level-wise: at simplicial level n = 0, it is trivial. For n ∈ N, the square
consists of the the image under the functor (−) × Gn−1

1 of the diagram

P × G1 P

G1 ∗

a

pr1 (3.44)

This a pullback diagram: there is a commutative diagram

P × G1

P × G1 P

G1 ∗
pr1

pr0

g

a

pr1

123



Principal∞-bundles and smooth string group models 717

in which the dashed morphism is given by the composition

g = (a × 1G1) ◦ (1P × inv × 1G1) ◦ (1P × �G1) ,

where �G1 : G1 → G2
1 is the diagonal morphism, and where inv : G1 → G1 is the

choice of an inverse inG: since the group objectG ∈ Grp(H) is in particular a groupoid
object, we have a diagram

G1 � G1 × ∗ G1 × G1 � G(�2
0) G2 G1 ,

� d0

wherewehave used the characterisation of groupoid objects as certain category objects
from Proposition A.5. Choosing an inverse for the right-facing morphism defines the
morphism inv.

Since g is an equivalence (becauseG is a group object), diagram (3.44) is a pullback
in H, and since the span category {0, 1} ← {0} → {0, 2} has contractible nerve, the
pullback (3.44) is preserved by (−) × Gn−1

1 (see Lemma A.9). We thus obtain that
the top square in diagram (3.43) is a pullback.

Next, we prove that the bottom square of (3.43) is a pullback. We define an object
C :=∗×BG B ∈ H, andwe consider the diagram (omitting constant-diagram functors)

C ×B (P//G) C ∗

P//G B BG

Both squares in this diagram are pullbacks in Fun(´op,H), so that the pasting law
yields a canonical equivalence of simplicial objects

C ×
B

(P//G) � ∗ ×
BG

(P//G) .

Observe that C ×B (P//G) → C is a G-principal ∞-bundle by Proposition 3.33, so
that

C � ∣

∣C ×
B

(P//G)
∣

∣ � ∣

∣ ∗ ×
BG

(P//G)
∣

∣ .

Nowwe use that themorphism P//G → BG factors through ∗//G (byDefinitions 3.15
and 3.26) and that ∗ ×BG (∗//G) � G1//G (by Lemma 3.38). Applying the pasting
law to the diagram

(P//G) ×
(∗//G)

(G1//G) G1//G ∗

P//G ∗//G BG
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718 S. Bunk

in Fun(´op,H), in which both squares are pullbacks, we obtain a canonical equiva-
lence

∗ ×
BG

(P//G) � (P//G) ×
(∗//G)

(G1//G) .

The right-hand side is precisely the pullback described by the top square in dia-
gram (3.43). Since we already know that the top square of (3.43) is cartesian, we
obtain an equivalence

(P//G) ×
(∗//G)

(G1//G) � P × (G1//G)

in Fun(´op,H). Thus, it follows that

C � ∣

∣ ∗ ×
BG

(P//G)
∣

∣ � ∣

∣P × (G1//G)
∣

∣ � P .

The last equivalence can be seen either by combining Proposition 3.23 with the fact
that |−| preserves finite products (because´op is sifted [23, Lemma5.5.8.4]), or simply
by recalling that P × (G1//G) → P is a G-principal ∞-bundle on P . This shows that
the bottom square in (3.43) is a pullback.

Finally, we prove that the right-hand square in (3.43) is a pullback as well. Consider
the commutative diagram of solid arrows

P//G

B ×
BG

(∗//G) ∗//G

B BG

ϕ

which induces an essentially unique morphism ϕ of simplicial objects in H. By the
commutativity of the right-hand triangle in this diagram, ϕ is even a morphism of
G-actions. By the commutativity of the left-hand triangle it is even a morphism of G-
actions over B. Since its source and target are G-principal ∞-bundles, ϕ is equivalent
to a morphism of Čech nerves

ϕ′ : Č(P → B) −→ Č
(

(B ×
BG

∗) → B
)

.

That is, ϕ′ is the image under Ranι (compare Definition 2.7) of the square

P B ×
BG

∗

B B

ϕ′
0
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Thisϕ′
0 is an equivalence since the bottomsquare of (3.43) is a pullback.Consequently,

themorphismϕ is an equivalence inFun(´op,H), and thus the right-hand face in (3.43)
is a pullback. ��
Corollary 3.45 Let P//G → B be a G-principal ∞-bundle in H. For any morphism
x : ∗ → B, we have a pullback diagram

G1//G P//G

∗ Bx

in Fun(´op,H). In particular, any fibre of P → B is canonically equivalent to G1 in
H.

Remark 3.46 For any group object G in H and any object B ∈ H, there is an equiva-
lence

BunG(B) � H(B,BG)

between the ∞-category of G-principal ∞-bundles on B and the mapping space
H(B,BG) [26, Thm. 3.17]. This implies that every morphism of principal G-bundles
on B is an equivalence. Proposition 3.41 feeds into the proof of this equivalence by
showing that the functor H(B,BG) → BunG(B), sending a morphism B → BG to
the principal ∞-bundle B ×BG (∗//G), is essentially surjective. �

In particular, under the equivalence of Remark 3.46, the morphism |p| : B → BG
in diagram (3.42) is a classifying morphism for the bundle P//G → B.

Proposition 3.47 Let L : H → H′ be a functor of ∞-topoi which preserves finite
products and geometric realisations. If P//G → B is a G-principal ∞-bundle in
H, classified (up to canonical equivalence) by a morphism |p| : B → BG, then the
LG-principal∞-bundle LP//LG −→ LB (compare Theorem 3.32) inH′ is classified
by the morphism |Lp| � L|p|.
Proof Consider the commutative diagram

L(P//G) L(∗//G)

LP//LG ∗//LG

L|P//G| LBG

|LP//LG| BLG

Lp

q

�
�

L|p|

|q|

�
�
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The morphism q is the canonical morphism induced from the collapse morphism
LP → ∗. By Proposition 3.41, the front face of this diagram is a pullback in H′,
witnessing |q| as the classifying morphism LX → BLG of the bundle LP//LG −→
LX . Since all diagonal morphisms are equivalences, the rear face of the diagram is a
pullback as well, showing that L|p| is a classifyingmorphism for the LG-principal∞-
bundle L(P//G) −→ LB, which is equivalent to the bundle LP//LG −→ LB. Finally,
since the diagonal morphisms arise from the natural equivalences L ◦ |−| � |−| ◦ L,
it follows that |q| � |Lp|. ��

We now state several alternative characterisations of group extensions in ∞-topoi.
These clarify the relation between the original notion of an extension of group objects
fromDefinition 3.10 andmore direct categorifications of several perspectives on group
extensions in Set. The last of these alternative characterisations will be important in
Sect. 4.3.

Theorem 3.48 Let H be an ∞-topos, and let A
ι−→ G

p−→ H be a sequence of mor-
phisms in Grp(H). The following are equivalent:

1. A
ι−→ G

p−→ H is an extension of group objects in H, i.e. the induced sequence
BA → BG → BH is a fibre sequence in H (see Definition 3.10).

2. A
ι−→ G

p−→ H is a fibre sequence in Grp(H) and G1 → H1 is an effective
epimorphism in H.

3. A1
ι1−→ G1

p1−→ H1 is a fibre sequence in H and G1 → H1 is an effective epimor-
phism in H.

4. The morphism p1 : G1 → H1 together with the action G1//A of A on G1 induced
by ι define a principal A-bundle over H1.

Proof (1) ⇒ (3): This implication was proven in [26] already. We import the proof
for completeness: consider the diagram

A1 G1 ∗

∗ H1 BA ∗

∗ BG BH

ι′1

p′
1

Bι

Bp

(3.49)

in H. Each square in diagram (3.49) is a pullback square (this assumes (1)). It thus
follows that the sequence

A1
ι′1−→ G1

p′
1−→ H1

is a fibre sequence inH. By this construction, themorphisms ι′ and p′ coincidewith the
morphisms	◦B(ι) and	◦B(p), respectively. The equivalence (3.4) then yields that
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Principal∞-bundles and smooth string group models 721

also A1
ι1−→ G1

p1−→ H1 is a fibre sequence inH. Observe that each verticalmorphism in
diagram (3.49) is an effective epimorphism since ∗ → BG is an effective epimorphism
for every group object G ∈ Grp(H) and since effective epimorphisms are stable under
pullback. In particular, p1 is an effective epimorphism.

(3) ⇔ (2): This follows from Lemma 3.8.
(3) ⇒ (4): By Proposition 3.31 it suffices to show that the action of A on G1

is principal (in the sense of Definition 3.28). We will make use of Lemma 3.29. By
assumption, the diagram

A1 G1

∗ H1

ι1

p1

is a pullback diagram in H. Let m : G1 × G1 → G1 be the multiplication on G1 (it
can be identified with the morphism d1 : G2 → G1). Further, let inv : G1 → G1 be
a choice of inverse for the group object G (compare the proof of Proposition 3.41).
There is a commutative diagram

G1 ×
H1

G1 G1 × G1 G1

∗ H1

inv×1 m

p1

Using that A1 � ∗ ×H1 G1, the universal property of pullbacks thus provides an
essentially unique morphism ϕ : G1 ×H1 G1 → A1. The morphisms

G1 ×
H1

G1 G1 × A1

pr1×ϕ

pr1×act

are mutually inverse equivalences inH. Lemma 3.29 now implies that p1 : G1 → H1,
together with the A-action on G1 induced by ι : A → G is a principal A-bundle over
H1.

(4) ⇒ (1): First, note that the morphism p : G → H induces an action of G on
H1 (via Proposition 3.24). We would like to compute the pullback

∗ ×
BH

BG BG

∗ BH

(3.50)

in H. Since colimits in H are universal and BG = |∗//G|, we have equivalences

∗ ×
BH

BG � ∣

∣(∗ ×
BH

∗)//G
∣

∣ � |H1//G| ,
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722 S. Bunk

where we have used that 	BH � H in Grp(H) by the equivalence (3.4). One can also
see this equivalence more explicitly by applying the pasting law to the diagram

H1//G H1//H ∗

∗//G ∗//H BH

The left-hand square is a pullback by the definition of the action H1//G and Proposi-
tion 3.24. The right-hand square is a pullback by Lemma 3.38.

The canonical morphism ∗ → H1 and themorphism ι : A → G induce amorphism
of simplicial objects ψ : ∗ //A −→ H1//G. Its colimit is a morphism |ψ | : BA →
|H1//G|. In particular, we obtain from this an augmented simplicial object ∗//A −→
|H1//G| inH. Let q : ∗ → |H1//G| denote the restriction of this augmented simplicial
object to ´+,≤0. We claim that ∗//A −→ |H1//G| is equivalent to the Čech nerve of
q. By Definition 2.7, Proposition 2.8 and the fact that ∗//A is a groupoid object, it
suffices to show that the diagram

A1 ∗

∗ |H1//G|

is a pullback diagram. We can see this as follows: with the G-action induced by
p : G → H , the morphism H1 → |H1//G| becomes a principal G-bundle in H.
Since the sequence of morphisms A1 → G1 → H1 is a fibre sequence in H by
Corollary 3.45, we obtain a double pullback diagram

A1 G1 ∗

∗ H1 |H1//G|

ι1

p1

We have thus shown that the augmented simplicial object ∗//A −→ |H1//G| is
equivalent to the Čech nerve of q : ∗ → |H1//G|. As the latter describes the loop
object 	|H1//G| as a group object in H, we infer that

	|H1//G| � A ∈ Grp(H) ,

i.e. as group objects in H.
The claimwill now follow from the equivalence (3.4), provided we can additionally

show that |H1//G| is a connected object in H. One way of proving this is by showing
that the morphism ∗ → |H1//G| is an effective epimorphism. Consider the morphism
of simplicial objects

G1//G −→ H1//G
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induced by p. In each simplicial level, this is an effective epimorphism by assumption
on p. Since effective epimorphisms are stable under colimits (see Lemma 2.13), it
follows that the morphism induced on colimits,

∗ � |G1//G| −→ |H1//G|

is an effective epimorphism as well. Alternatively, one can see that the left-hand mor-
phism in (3.50) is 0-connected: themorphismBp : BG → BH is a colimit of effective
epimorphisms.Thus, it is an effective epimorphism itself. It is also amorphismbetween
connected objects in H and therefore necessarily induces an isomorphism on zeroth
homotopy groups (i.e. it is a connected morphism). The claim then follows since n-
connected morphisms in ∞-topoi are stable under pullback [23, Prop. 6.5.1.16(6)].

��

Corollary 3.51 Suppose A
ι−→ G

p−→ H is an extension of group objects in H. Then,
there is a canonical equivalence in H,

|G1//A| � H .

This is the ∞-categorical analogue of the canonical isomorphism G/A ∼= H for
ordinary (set-theoretic) group extensions A → G → H .

Corollary 3.52 Let L : H → H′ be a functor between ∞-topoi which preserves geo-

metric realisations and finite products. Suppose A
ι−→ G

p−→ H is an extension of

group objects in H. Then, the sequence LA
Lι−→ LG

Lp−→ LH is an extension of group
objects in H′.

Proof This statement now follows from combining Theorems 3.32 and 3.48. ��

4 Homotopy-theoretic smooth string groupmodels

In this section,we present a definition of string group extensionswithin the∞-category
H∞ of smooth spaces. It relies on the singular complex functor Se : H∞ → S for
smooth spaces from Sect. 2 and the theory of group extensions in ∞-topoi from
Sect. 3. We begin by recalling the definition of a string group extension in the ∞-
category S of spaces. Then, we use our results thus far to transfer this definition to
H∞ along the functor Se, leading to a homotopy-theoretic definition of smooth string
group extensions (Definition 4.2).

After recalling some background on bundle gerbes in Sect. 4.2, we provide new
smooth models for the string group in Sect. 4.3, building on recent constructions of
smooth 2-group extensions in [10]. (There already, evidence was given that these
smooth 2-group extensions can model the string group; here we provide a full formal
framework and proof for that conjecture.)
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4.1 The definition of smooth string groups

The definition of a string group via the Whitehead tower (see Sect. 1) is purely
homotopy-theoretic. In particular, in a string group extension A → String(H) → H
the extending group A is not fixed, but only its underlying homotopy type. So far, to
our knowledge there does not exist a definition of string group extensions in a smooth
context that contains this flexibility—the extending group A is usually chosen ad hoc
to be some smooth version of BU(1). Here, we provide a smooth version of the original
homotopy-theoretic definition (see Definition 4.2). In particular, only the underlying
homotopy type of the extending smooth group A is fixed in this definition.

To avoid clashes of notation, we denote a Lie group by a triple (H1, ·, eH ), where
H1 ∈ Mfd is the underlying manifold, (−) · (−) denotes the multiplication on H1 and
eH : ∗ → H1 is the neutral element in H1. Recall that each compact, simple and simply
connected Lie group (H1, ·, eH ) is also 2-connected and satisfies H3(H1;Z) ∼= Z

[12]. Any Lie group (H1, ·, eH ) canonically defines a group object H in the ∞-topos
of spaces S. We start by reformulating the definition of a string group extension of
topological groups within the ∞-category of spaces:

Definition 4.1 Let (H1, ·, eH ) be a compact, simple and simply connected Lie group,
and denote by H ∈ Grp(S) its associated group object in S. A string group extension
of (H1, ·, eH ) is an extension of group objects

A String(H) Hι p

in S such that

1. A1 is an Eilenberg–MacLane space K (Z, 2), and
2. under the isomorphism

π0S(H1,BA) ∼= π0S
(

H1, K (Z, 3)
) ∼= H3(H1;Z) ∼= Z ,

the classifyingmorphismH1→BA of the A-principal∞-bundleString(H)1//A→
H (compare Remark 3.46 and Theorem 3.48(4)) represents a generator of Z.

Given condition (1), condition (2) is equivalent to saying that themapString(H)1 →
H1 of spaces induces an isomorphism πi (String(H)1) → πi (H1) for i �= 3 and that
π3(String(H)1) ∼= 0. This is a consequence of the Hurewicz Theorem, the Universal
Coefficient Theorem, and the long exact sequence of homotopy groups associated to
a (homotopy) fibre sequence of spaces. That is, String(H)1 → H1 is a 3-connected
covering of H1.

Recall the ∞-topos H∞ = P(Cart) from Sect. 2.1. There we also introduced the
localisation L IH∞ of H∞ at the set I = {c × R → c | c ∈ Cart} and the smooth
singular complex functor Se : H∞ → S. Also recall the fully faithful embedding
(−) : Mfd ↪→ H∞, with M(c) = Mfd(c, M); under this embedding, any Lie group
(H1, ·, eH ) canonically gives rise to a group object H in H∞. We can now use our
results from Sect. 3 to transfer the definition of a string group extension to the∞-topos
H∞:
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Principal∞-bundles and smooth string group models 725

Definition 4.2 Let (H1, ·, eH ) be a compact, simple, and simply connected Lie group.
A smooth string group extension of (H1, ·, eH ) is an extension

A String(H) Hι p

of group objects in H∞ whose its image under Se is a string group extension in S.

Note that by Theorem 3.52 the functor Se maps group extensions in H∞ to group
extensions in S. Further, even though Se induces an equivalence between S and the
localisation L IH∞ rather than the full ∞-category H∞, we do not need to demand
that A, String(H) and H are local objects, because Se sends all I -local equivalences
in H∞ to equivalences in S (Theorem 2.2(1)).

Remark 4.3 Definition 4.2 is a generalisation as well as a weakening of the following
approach to smooth string group extensions (see, for instance, [16]): there, one works
in the localisation LτH∞ of H∞ at the Čech nerves of differentiably good open
coverings {ca → c}a∈� of cartesian spaces c ∈ Cart. Recall that a differentiably good
open covering of c ∈ Cart is an open covering {ca ↪→ c}a∈� such that every finite
non-empty intersection of the images of the patches ca is again a cartesian space. The
differentiably good open coverings endow Cart with a Grothendieck coverage τ [15,
32]. In [16] string group extension of H are defined via the pullback

BString(H) ∗

BH B3U(1)
1
2 p1

(4.4)

Here, 1
2 p1 denotes the fractional first Pontryagin class, which is a generator of

H4(BH ;Z) ∼= Z. However, this definition of String(H) is considerably stricter than
the original perception of String(H) as a 3-connected covering of H1 by another group
object (Definition 4.1). For instance, the definition of a string group extension based
on (4.4) enforces that themorphismString(H)1 → H1 is a BU(1)-principal∞-bundle
(note that if H is an ∞-topos and A ∈ Grp(H) is a group object whose multiplication
lifts to anE2-algebra structure, then BA is canonically the underlying object of a group
object in H [26]). However, from the purely homotopy-theoretic point of view, it is
not the actual fibre of this map in H that should be fixed, but only the homotopy type
of its underlying space in S (which must be a K (Z; 2)). Definition 4.2 emphasises this
latter, homotopy-theoretic aspect of string group extensions.

More concretely, for smooth string group extensions A
ι→ String(H)

p→ H in the
sense of Definition 4.2 it is enough if there is an I -local equivalence A1 � BU(1)
in H∞. Therefore, this setup is considerably more general than working with the
pullback (4.4). In particular, two different smooth string group extensions of a Lie
group H need not be equivalent in H∞, but only in L IH∞. In Sect. 4.3 we present a
smooth string group extension which satisfies the criteria from Definition 4.8, but not
the stricter version (4.4): its fibre A is not equivalent to BU(1) in LτH∞, but only in
L IH∞ � S. �
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Remark 4.5 Not allowing for this flexibility would lead to simply missing or being
unable to recognise smooth group extensions found in nature whose underlying spaces
form a string group extension in the classical sense. The smooth ∞-group A we find
in the string group model in Sect. 4.3 is much larger than the simple delooping of
U(1), but this can have advantages: for example, our string group model should act
extremely naturally on the K-theory of the underlying Lie group twisted by its basic
gerbe. �
Remark 4.6 It will be very interesting to see a Lie-algebra version of Definition 4.2.
The ∞-groups A ∈ Grp(H∞) that we allow to appear in string group extensions
can have much larger Lie algebras than those which appear in the stricter definition
via (4.4). This is true, in particular, for the smooth string group extension we present
in Sect. 4.3 below. There might hence be a Lie-algebra version of I -local equivalences
of group objects in H∞. �

4.2 Bundle gerbes and their symmetries

Before we can present our smooth string group extension, we need to recall some
background on bundle gerbes.Wewill not give full definitions or details here, but refer
the reader to [7, 11, 37, 38] for technical background and [8, 9] for an introduction
to the topic. Bundle gerbes provide an explicit, geometric model for categorified line
bundles. We point out that there also exists a notion of connection on a bundle gerbe,
but here we will only be working with bundle gerbes without connection. (This is the
main technical cause for the distinction between our smooth string group model and
that in [16].)

To any manifold M , we can assign a symmetric monoidal 2-groupoid (Grb(M),⊗)

of bundle gerbes on M . Given a bundle gerbe G ∈ Grb(M), the monoidal groupoid
Grb(M)(G,G) of automorphisms of G is canonically equivalent to the symmetric
monoidal groupoid (HLB(M),⊗) of hermitean line bundles on M with the usual
tensor product (which we also denote by ⊗). Note that (HLB(M),⊗) is even a 2-
group; that is, it is a symmetric monoidal groupoid in which every object has an
inverse with respect to the monoidal product. Every smooth map f : N → M of
manifolds induces a monoidal 2-functor

f ∗ : Grb(M) −→ Grb(N ) .

Isomorphism classes of gerbes are in canonical bijection with the third integer coho-
mology of M : there is an isomorphism of abelian groups

π0
(

Grb(M),⊗) ∼= H3(M;Z) . (4.7)

The class associated to a gerbeG under this isomorphism is called theDixmier-Douady
class of G.

We let H≤1 denote the following 2-category: its objects are functors π : C → Cart
that are Grothendieck fibrations in groupoids (that is, π is a Grothendieck fibration
and all its fibres are groupoids). Its morphisms (π : C → Cart) −→ (π ′ : C′ → Cart)
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Principal∞-bundles and smooth string group models 727

are functors F : C → C′ such that π ′ ◦ F = π , and its 2-morphisms are natural
transformations η : F → F ′ such that π ′η is the identity natural transformation
1Cart → 1Cart. Note that the 2-categoryH≤1 is canonically equivalent to the 2-category
of pseudo-functors Cartop → Gpd from Cartop to the 2-category of groupoids via the
Grothendieck construction. We make the following definitions; for more background,
see [10, 31].

Definition 4.8 [10] The 2-category of smooth 2-groups is the 2-category of group
objects in the 2-category H≤1.

Example 4.9 Let (H1, ·, eH ) be a Lie group. We associate to it the following category,
denoted by

∫

H1: its objects are pairs (c, h) of a cartesian space c ∈ Cart and a
smooth map h : c → H1. A morphism (c, h) → (c′, h′) is a smooth map f : c → c′
such that h′ ◦ f = h. The category

∫

H1 comes with a canonical projection functor
∫

H1 → Cart. The product on H1-valued maps turns
∫

H1 into a smooth 2-group in
the sense of Definition 4.8; we denote this smooth 2-group by

∫

H . Note that
∫

H1 is
simply the Grothendieck construction of the presheaf of sets H1 on Cart. �

Example 4.10 For a manifold M , let HLB(M) denote the groupoid of hermitean line
bundles on M . For fixed manifold M , we define a category (HLBM )1 as follows: its
objects are pairs (c, L) of a cartesian space c ∈ Cart and a hermitean line bundle
L ∈ HLB(c×M). A morphism (c, L) → (c′, L ′) is a pair ( f , ψ) of a smooth map
f : c → c′ and an isomorphism ψ : L → ( f ×1M )∗L ′ of hermitean line bundles
over c. This category comes with a projection functor (HLBM )1 → Cart. The tensor
product of hermitean line bundles turns (HLBM )1 into a smooth 2-group, which we
denote by HLBM . �

Let M be a manifold, and let G ∈ Grb(M) be a gerbe on M . Further, let (H1, ·, eH )

be a connected Lie group acting smoothly on M from the left; we denote the action
by � : H1 × M → M . Given these data, we define a category Sym(G)1 as follows: an
object in Sym(G)1 is a triple (c, h,A), where c ∈ Cart is a cartesian space and where
h : c → H1 is a smooth map. These give rise to a smooth map �h : c× M → c× M ,
defined as the composition

�h : c × M
�×1M−−−−→ c × c × M

1c×h×1M−−−−−−→ c × H × M
1c×�−−−→ c × M ,

where � : c → c × c is the diagonal map. Then, A is a 1-isomorphism

A : pr∗MG −→ �∗
hG

of gerbes on the manifold c × M . A morphism (c, h,A) → (c′, h′,A′) is a pair
( f , ψ), where f is a smooth map f : c → c′ such that h′ ◦ f = h, and where ψ is a
2-isomorphismψ : A −→ ( f ×1M )∗A′ (where we have implicitly used that there is a
canonical 1-isomorphism ( f × 1M )∗�∗

h′G ∼= �∗
hG). Observe that there is a projection

functor p1 : Sym(G)1 → ∫

H1, acting as (c, h,A) �→ (c, h) and ( f , ψ) �→ f .

123



728 S. Bunk

Remark 4.11 In this set-up, the following statements hold true:

1. There is a canonical inclusion ι1 : (HLBM )1 ↪→ Sym(G)1 in H≤1.
2. The connectedness of H1 ensures that the functor p1 is surjective on objects.

Further, p1 is an essentially surjective Grothendieck fibration in groupoids; it is
even strictly surjective on objects [10, Thm. 5.27].

3. The equivalence Grb(N )(G′,G′) � (HLB(N ),⊗) for any gerbe G′ on any mani-
fold N implies that the diagram

(HLBM )1 Sym(G)1

∗ ∫

H1

ι1

p1

eH

is a pullback in H≤1, where eH is the functor that sends c ∈ Cart to the
constant map c → H1 with value the unit element of H1. Since p1 is a
Grothendieck fibration in groupoids, this pullback is even a homotopy pullback
[10, App. A.1]. �

Theorem 4.12 [10, Thms. 5.23, 5.27] Let � : H1 × M → M be a smooth action of a
connected Lie group (H1, ·, eH ) on a manifold M. Let G ∈ Grb(M) be a bundle gerbe
on M.

1. Sym(G)1 carries the structure of a smooth 2-group. We denote this smooth 2-group
by Sym(G).

2. The functors ι1 and p1 canonically lift to morphisms of smooth 2-groups and
induce a sequence

HLBM i−→ Sym(G)
p−→ ∫

H (4.13)

of smooth 2-groups.

The nerve functor N : Cat → Cat∞ induces a functor N : H≤1 → H∞ (where
we have used the canonical equivalence between H≤1 and the 2-category of pseudo-
functors Cartop → Gpd from Cartop to the 2-category of groupoids). This functor, in
particular, preserves final objects and products, so that it maps smooth 2-groups to
group objects in H∞. Our smooth string group model will be obtained by applying
this functor to the sequence (4.13).

4.3 A smooth string groupmodel

We can now state the main theorem of this section. It provides a new smooth model
for smooth string group extensions which fits Definition 4.2, but which lies outside
the scope of the stricter definition via the pullback (4.4). Note that applying the nerve
functor N to

∫

H1 ∈ H≤1 yields the familiar presheaf of spaces H1 ∈ H∞, defined
via H1(c) = Mfd(c, H) for cartesian spaces c ∈ Cart. Further, N maps the smooth
2-group

∫

H in H≤1 to the group object H in H∞.
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Theorem 4.14 Let (H1, ·, eH ) be a compact, simple, simply connected Lie group. We
consider the left-action of H1 on itself via left multiplication. Let G ∈ Grb(H) be
a gerbe on H1 whose class in H3(H ;Z) ∼= Z is a generator (see (4.7)). Then, the
sequence

N
(

HLBH
)

N
(

Sym(G)
)

HN ι Np
(4.15)

of group object in H∞ is a smooth string group extension of (H1, ·, eH ).

The proof of Theorem 4.14 will occupy the remainder of this section. By Defini-
tion 4.2 we have to show that the sequence (4.15) is an extension of group objects in
H∞ and that its image under the functor Se : H∞ → S is a string group extension in
S in the sense of Definition 4.1.

Proposition 4.16 The sequence (4.15) is an extension of group objects in the ∞-topos
H∞.

Proof The nerve functor N : Cat → Cat∞ is a right adjoint and hence maps products
in H≤1 to products in H∞, and final objects to the final objects. Consequently, it
preserves group objects and group actions.

We will now use the characterisation of group extensions from Theorem 3.48(4)
to show that the sequence (4.15) of group objects in H∞ is an extension of group
objects. That is, we have to show that NSym(G)1 with the NHLBH -action induced
by the morphism N ι (cf. Proposition 3.24) is an NHLBH -principal ∞-bundle over
H1. According to the characterisation of principal ∞-bundles in Proposition 3.31,
it suffices to prove that the morphism Np1 is an effective epimorphism and that the
action of NHLBH on NSym(G)1 is principal.

We start by showing that the morphism Np1 is an effective epimorphism: by [10,
Sec. 5.1] the restriction p1|c of p1 to any fibre is essentially surjective, hence Np1|c is
surjective on connected components. SinceH∞ is a presheaf∞-topos (in which limits
and colimits are computed objectwise), amorphism inH∞ is an effective epimorphism
if and only if it is objectwise an effective epimorphism in S. The effective epimor-
phisms in S, however, are exactly those morphisms which are surjective on connected
components [23, Cor. 7.2.1.15]. Therefore, Np1 is an effective epimorphism in H∞.

The action of NHLBH on NSym(G)1 is principal with respect to Np1 as was
shown in [10, Thm. 5.27] (there, the principality condition was shown on the level of
the sequence (4.13) of smooth 2-groups—this suffices for the ∞-categorical context
used here because of Lemma 3.29 and because the nerve functor is a right adjoint).
Therefore, the sequence (4.15) is a group extension in H∞. ��

It thus remains to show that the image of the sequence (4.15) under Se is a string
group extension in S. To that end, we first show the following lemma:

Lemma 4.17 Let M be a connected manifold with H2(M;Z) ∼= 0.

1. The object (NHLBM )1 = N (HLBM )1 ∈ H∞ is equivalent to B(U(1)M ).

2. If M is additionally simply connected, (NHLBM )1 ∈ H∞ is I -locally equivalent
to BU(1) ∈ H∞.
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Both equivalences are even established by morphisms of group objects in H∞.

Since Se maps I -local equivalences in H∞ to equivalences of spaces, applying
Lemma 4.17 to M = H1 establishes axiom (1) of Definition 4.1 for the image of the
sequence (4.15) under the functor Se.Note that for a simplicial object X ∈ Fun(´op,H)

in an ∞-topos H and an object B ∈ H, we can form the level-wise exponential
XB ∈ Fun(´op,H). There are canonical equivalences (XB)n � (Xn)

B . Thus, we can
simply write XB

n . If X is a groupoid or group object, then so is XB .

Proof We proceed in parallel to the proof of [10, Thm. 8.7]: since any c ∈ Cart
is contractible and since H2(M;Z) ∼= 0, it follows that any hermitean line bundle
on c × M is trivialisable. Consequently, the groupoid HLBM (c) is equivalent to the
groupoid with one object and morphisms given by the group U(1)M (c) of smooth

maps from c × M to U(1). This induces an equivalence (NHLBM )1 � B(U(1)M ) in
H∞, which extends to a morphism of group objects in H∞. This proves (1).

Next, since π1(M) is trivial, there exists a smooth homotopy equivalence
evx,1 : U(1)M1 → U(1)1, given by restricting a smooth map c× M → U(1) to c×{x},
where x ∈ M is any point. A homotopy inverse to evx,1 is given by pulling a smooth
map c → U(1) back along the projection c × M → c [10, Lemma 8.9]. In particular,
evx,1 is an I -local equivalence [6, Cor. 3.16].

Observe that evx,1 induces a morphism of group objects

evx : U(1)M −→ U(1) .

Since evx,1 is an I -local equivalence inH∞ and I -local equivalences are closed under
finite products (Proposition 2.4), the morphism evx is a levelwise I -local equivalence
of simplicial objects in H∞.

Further, the class WI of I -local equivalences in H∞ is strongly saturated [23,
Lemma 5.5.4.11]. In particular, the full subcategory of Fun(�1,H∞) on the I -local
equivalences is stable under colimits. Therefore, taking the colimit inH∞ of simplicial
objects (i.e. taking geometric realisations), we obtain an I -local equivalence

B evx : B(

U(1)M
) −→ BU(1)

in H∞. Composing with the morphism constructed in part (1), we now obtain the
desired I -local equivalence NHLBM −→ BU(1) in H∞. ��

Weare thus left to show that the sequence of group objects inS obtained by applying
the functor Se to the sequence (4.15) of group objects in H∞ satisfies axiom (2) of
Definition 4.1. That is, we have to show that the principal ∞-bundle of spaces

(

SeNSym(G)1
)

//
(

SeN HLBH ) −→ SeH1

represents a generator ofH3(H ;Z) ∼= Z. This is best checked using Čech cohomology.
Recall the Grothendieck coverage τ of differentiably good open coverings on Cart

from Remark 4.3.
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Lemma 4.18 Let M ∈ Mfd be a simply connected manifold, and let k ∈ N0. Then,

1. In H∞, there is an I -local equivalence

Bk(U(1)M ) � BkU(1) .

2. The presheaf Bk(U(1)M ) satisfies descent with respect to the Grothendieck cover-
age τ of differentiably good open coverings on Cart.

Proof Ad (1): This is an iteration of the argument in the proof of Lemma 4.17(2).
Ad (2): We prove this claim by induction. For k = 0, we have to check that the

functor Cartop → S, c �→ Mfd(c × M,U(1)) satisfies descent with respect to good
open coverings of c. However, this follows directly from the fact that, for any manifold
Y , the functor

Op(Y )op → Set , U �→ Mfd
(

U ,U(1)
)

defines a sheaf on Y , where Op(Y ) is the category of open subsets of Y and their
inclusions.

Suppose that Bl(U(1)M ) is a sheaf on Cart for all l = 0, . . . , k. Let c ∈ Cart, and
let U = {ca ↪→ c}a∈� be a differentiably good open covering of c. We have to show
that the canonical morphism

q∗ : Bk+1(U(1)M
)

(c) −→ lim
n∈´

S H∞
(

ČUn,B
k+1(U(1)M )

)

(4.19)

is an equivalence of spaces. Here, ČU ∈ Fun(´op,H∞) is the Čech nerve of the
covering U.

We first show that q∗ is essentially surjective; that is, it induces a bijection on
isomorphism classes of objects. Since limits and colimits inH∞ = Fun(Cartop,S) are
computed pointwise, we have isomorphisms

π0

(

Bk+1(U(1)M
)

)

(c) ∼= π0

(

Bk+1(U(1)M (c)
)

)

= ∗ .

On the other hand, we have that

π0 lim
n∈´

S H∞
(

ČUn,B
k+1(U(1)M )

) ∼= Ȟ
k+1(

U;U(1)M
)

, (4.20)

where on the right-hand side we have the usual Čech cohomology group with respect
to the covering U of the sheaf of abelian groups on c given by

Op(c)op → Ab , U �→ Mfd
(

U × M,U(1)
)

.

By a slight abuse of notation, we also denote this sheaf by U(1)M . We claim that the
right-hand side of (4.20) is further isomorphic to Hk+2(c;Z) ∼= ∗.
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First, the Čech cohomology groups Ȟ
k+1

(U;U(1)M ) are isomorphic to the sheaf

cohomology groups of U(1)M : since the covering U of c is differentiably good, it
follows from [4, Thm. 1.3.6] that there is a canonical isomorphism

Ȟ
k(
U;U(1)M

) ∼= Hk(c;U(1)M
)

.

Next, we observe that since M is simply connected, there is a short exact sequence

Z −→ R
M −→ U(1)M .

We further observe that the sheaf RM is fine (it admits partitions of unity, for instance
those induced from the canonical map R → R

M ) when seen as a sheaf on the open
subsets of amanifold.Therefore, for anymanifoldY ,wehave a canonical isomorphism

Hk(Y ;U(1)M
) ∼= Hk+1(Y ;Z)

for every k ≥ 1. We thus arrive at

π0 lim
n∈´

S H∞
(

ČUn,B
k+1(U(1)M )

) ∼= Hk+2(c;Z) ∼= ∗ ,

for each cartesian space c ∈ Cart and each k > 0. This completes the proof that the
morphism q∗ from (4.19) is bijective on connected components.

It remains to check that the morphism q∗ from (4.19) is an isomorphism on all
higher homotopy groups in H∞ = P(Cart). We will achieve this by comparing the
automorphisms of the unique object in the source and target space of q∗. On the source
side, this automorphism space is given as the pullback of spaces

	Bk+1
(

U(1)M
)

(c) ∗

∗ Bk+1
(

U(1)M
)

(c)

and there is a canonical equivalence in H∞,

	Bk+1(U(1)M
)

(c) � Bk(U(1)M (c)
)

.

On the target side of q∗, the automorphism space of the (essentially) unique object is
the pullback

	 lim
n∈´

S H∞
(

ČUn,Bk+1(U(1)M )
) ∗

∗ lim
n∈´

S H∞
(

ČUn,Bk+1(U(1)M )
)
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Since limits in H∞ are computed objectwise, there are canonical equivalences

	 lim
n∈´

S H∞
(

ČUn,B
k+1(U(1)M )

) � lim
n∈´

S H∞
(

ČUn,	Bk+1(U(1)M )
)

� lim
n∈´

S H∞
(

ČUn,B
k(U(1)M )

)

.

However, by the induction hypothesis, the presheaf Bk(U(1)M ) is a sheaf, so that
q∗ induces an equivalence between the automorphism spaces. This proves that q∗ is
indeed an equivalence. ��

An application of [5, Thm. 1.1] now implies that, for each simply connected man-
ifold M , the presheaf of spaces

H∞
(−,Bn(U(1)M

)) : Mfdop −→ S

satisfies descent with respect to open coverings (and even surjective submersions).
Consequently, given any open covering V = {ca ↪→ M}a∈�, whose Čech nerve we
denote by ČV → M , the canonical morphism

H∞
(

M,Bn(U(1)M )
) ∼= lim

´

S H∞
(

ČV,Bn(U(1)M )
)

is an equivalence of spaces. Therefore, there is an isomorphism

π0H∞
(

M,Bn(U(1)M )
) ∼= Ȟ

n(
M;U(1)M

)

, (4.21)

which can be represented explicitly by composing a morphism M → Bn(U(1)M )

with any Čech nerve ČV → M of an open covering of M . (Alternatively, this can be
seen directly in the presentation ofH∞ by the projective model structure on simplicial
presheaves on Cart.)

Now let us return to the casewhereM = H1 is themanifold underlying the compact,

simple, simply connected Lie group (H1, ·, eH ). Let eve,1 : U(1)
H1
1 −→ U(1)1 be

the morphism induced by pullback along the base-point inclusion eH : ∗ ↪→ H1. It
induces amorphismof groupobjects eve : U(1)H1 −→ U(1).Weobtain a commutative
diagram

π0H∞
(

H1,B
n(U(1)H1)

)

π0H∞
(

H1,B
nU(1)

)

Ȟ
n(
H1;U(1)H1

)

Ȟ
n(
H ;U(1)

)

∼=

(Bn eve)∗

∼=
(eve)∗

(4.22)

It was shown in [10, Prop. 8.11] that the bottom horizontal morphism is an isomor-
phism for all n ∈ N (with n > 0); thus, so is the top horizontal morphism. Consider
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the morphisms

π0H∞
(

H1,B
n(U(1)H1)

) −→ π0S
(

SeH1,SeB
n(U(1)H1)

)

∼= π0S
(

H1,B
nSe(U(1)H1)

)

∼= π0S
(

H1,B
nSeU(1)

)

∼= π0S
(

H1,B
nU(1)

)

. (4.23)

The first morphism is applying the functor Se. For the second morphism we have
used [6, Thm. 5.1]: for every manifold Y ∈ Mfd, there is a canonical equivalence
SeY � Y in S. Further, here we have used that Se commutes with B (Proposition 3.5).
For the third morphism, we have used that the inclusion U(1) ↪→ U(1)H1 is an I -local
equivalence in H∞: since H1 is connected and simply connected, this morphism is a
smooth homotopy equivalence by [10, Lemma 8.9], and by [6, Cor. 3.16] any smooth
homotopy equivalence is an I -local equivalence. The last morphism again uses [6,
Thm. 5.1]. Since Se preserves finite products, the equivalence SeU(1)1 � U(1)1 in S
is compatible with the group structure3 on U(1).

We can describe the map (4.23) more explicitly as follows: we have already seen
above that any element in π0H∞(H1,B

n(U(1)H1)) can be described as a smooth
U(1)H1 -valued Čech cocycle with respect to a (differentiably good) open cover V of
H1. Under themap (4.23), these data are sent first to the same Čech cocycle, but seen as
a map of spaces, and then this resulting Čech cocycle is composed with the evaluation
U(1)H1

1 → U(1)1 at the unit element in H . Therefore, using the canonical isomorphism

π0S(H1,BnU(1)) ∼= Ȟ
n
(H1;U(1)) and combining thiswith themaps (4.22) and (4.23)

we obtain a commutative diagram of abelian groups

π0H∞(H1,B
n(U(1)H1)

)

π0S
(

H1,BnSe(U(1)H1)
)

Ȟ
n(
H1;U(1)H1

)

Ȟ
n(
H1;U(1)

)

(BnSe(eve))∗

(eve)∗

(4.24)

In this diagram, the left-hand vertical morphism is invertible as argued before (4.21).
The bottom morphism is an isomorphism by [10, Prop. 8.11] and the fact that Čech
cohomology and abelian sheaf cohomology are isomorphic on manifolds. The right-
hand vertical morphism is invertible as a consequence of the isomorphisms in (4.22)

and the fact that the map eve,1 : U(1)
H1
1 → U(1)1 is an I -local equivalence.

Combining diagram (4.24) with Proposition 3.47 and Lemma 4.17, we obtain that

the class in H3(H1;Z) ∼= Ȟ
2
(H1,U(1)) defined by the NHLBH1 -principal∞-bundle

(

NSym(G)1
)

//NHLBH1 −→ H1 (4.25)

3 This can also be seen directly: for any manifold M , the comparison map SeM → Sing(M) sends a
smooth map �k

e → M to the restriction |�k | → M—see [6, Secs. 4, 5] for details.
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in H∞ agrees with the class defined by the principal ∞-bundle

(

SeNSym(G)1
)

//
(

SeNHLBH1
) −→ SeH1 � H1

inS. Herewe have used that there is an equivalence NHLBH1 � BU(1)H1 inGrp(H∞),
so that

π0H∞
(

H1,B NHLBH1
) � π0H∞

(

H1,B
2U(1)H1

)

.

(Again, one can alternatively see the coincidence of the cohomology classes more
explicitly on the level of Čech cocycles in the presentation of H∞ by the simplicial
model categoryHp∞: a smooth bundle represented by a smoothU(1)H1 -valued cocycle
on H gets sent to the topological bundle represented by the same Čech cocycle inter-
preted as a collection of continuousmaps.) It thus remains to compute the cohomology
class associated to these bundles. In [10, Sec. 8] it has been shown that the class in
H3(H1;Z) of the bundle (4.25) agrees with the class in H3(H1;Z) that classifies the
gerbe G under the isomorphism (4.7). Since we started our construction from a so-
called basic gerbe, i.e. one whose Dixmier-Douady class is a generator of H3(H1;Z),
this completes the proof of Theorem 4.14.

Remark 4.26 We conclude with the following remarks:

1. In [10], we suggested the smooth 2-group extension (4.15) as a model for the
string group extension of (H1, ·, eH ). However, the necessary formalism to make
this precise was not available then—its development was the main goal of the
present paper.

2. Moreover, in [10, Sec. 5.5] we also presented a second smooth 2-group extension

HLBH1 DesL
∫

Hi p
(4.27)

of (H1, ·, eH ); its construction uses a connection on G as auxiliary data and relies
heavily on a notion of parallel transport on a gerbeG with connection, as developed
in [10]. The extension (4.27) is then obtained via a homotopy-coherent version
of an associated bundle construction. By [10, Thm. 5.33], there is an equivalence
(in H≤1) between the smooth 2-group extension in (4.27) and (4.13), so that we
automatically obtain an equivalence between the group objects inH∞ they induce
under the nerve functor. Hence, given the input of a basic gerbe G on H1, by
Theorem 4.14 the extension (4.27) also gives rise to a second, equivalent smooth
string group extension

NHLBH1 NDesL H

of (H1, ·, eH ), for any compact, simple and simply connected Lie group
(H1, ·, eH ). �
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A Actions and category objects

In this appendix, we prove Theorem 3.19; that is, we show that group actions P//G
in ∞-topoi (as in Definition 3.15) are automatically groupoid objects.

Definition A.1 A category object in an ∞-category C is a simplicial object X ∈
Fun(´op,C) such that for every n ∈ N0 the pullback X1 ×X0 · · · ×X0 X1 exists
in C and the morphism

Xn −→ X1 ×
X0

· · · ×
X0

X1 ,

induced by the spine decomposition [n] ∼= [1] �[0] · · · �[0] [1] of finite ordered sets, is
an equivalence.

Suppose C has a final object. In analogy with Definition 3.2, a monoid object in C

is a category object M ∈ Fun(´op,C) such that M0 � ∗ is a final object in C. As for
group objects, it follows that there are canonical natural equivalences Mn � Mn−1

1 .
Therefore, by Lemma 3.12 we may assume, without loss of generality, that we have
Mn = Mn−1

1 for any n ∈ N0. We set M1//M :=Dec0 M ∈ Fun(´op,C). Monoid
objects can act on objects in their ambient ∞-category. A monoid action is defined in
the same way as a group action (Definition 3.15), but for the reader’s convenience, we
spell out the definition (compare also [24, Def. 4.2.2.2, Rmk. 4.2.2.3]):

Definition A.2 Let C be an ∞-category with a final object, and let M be a monoid
object in C. Let P ∈ C be an object in C. An action of M on P is a simplicial object
P//M ∈ Fun(´op,C) such that

1. for each n ∈ N0, we have (P//M)n = P × Mn
1 ,
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2. the morphism d1 : P × M1 → P agrees with the projection onto P , the morphism
s0 : P → P × M1 agrees with the morphism 1P × (∗ → M1), and

3. the collapse morphism P → ∗ induces a morphism P//M → M in Fun(´op,C).

The trivial action ofM on the final object ∗ satisfies ∗//M = M as simplicial objects
in C. We set a:=d0 : P × M1 → P . The pasting law for pullbacks implies that there
are canonical equivalences of morphisms between d0 : P × Mn

1 → P × Mn−1
1 and

a×1Mn−1
1

: P×Mn
1 → P×Mn−1

1 , and similarly between dn : P×Mn
1 → P×Mn−1

1
and the projection onto the first n factors.

Proposition A.3 Let C be an ∞-category with pullbacks and a final object, let M ∈
Fun(´op,C) be a monoid object in C, and let P//M ∈ Fun(´op,C) be an action of M
on an object P ∈ C. Then, P//M is a category object in C.

Proof Consider the diagram

(P//M)1 (P//M)1

(P//M)0

d0 d1
=

P × M1 P × M1

P

a pr0

We use the following notational convention: let I be a set, and consider a product
∏

i∈I Ci of objects in C. For a subset J ⊂ I , we let prJ : ∏

i∈I Ci → ∏

j∈J C j denote
the canonical projection. If J = {i0, . . . , in} is finite, we also write pri0...in instead of
pr{i0,...,in}.

We can augment the above diagram to a diagram

P × M1 × M1 P × M1 M1

P × M1 P ∗

pr01

a×1M1

pr0

pr1

a

Here, the right and the outer rectangle are pullback diagrams, and hence the left
square is a pullback diagram as well by the pasting law. It follows that the canonical
morphism

(P//M)2 −→ (P//M)1 ×
(P//M)0

(P//M)1

is an equivalence in C.
We now proceed by induction: suppose that the canonical morphism

(P//M)k −→ (P//M)1 ×
(P//M)0

· · · ×
(P//M)0

(P//M)1
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is an equivalence, for each 2 ≤ k ≤ n. By this assumption, it now suffices to show
that the morphism

(P//M)n+1 −→ (P//M)n ×
(P//M)0

(P//M)1 (A.4)

induced by the partition [n + 1] = [n] �[0] [1] is an equivalence. We again have an
augmented diagram

P × Mn+1
1 P × M1 M1

P × Mn
1 P ∗

pr0...n

a(n)×1M1

pr0

pr1

a(n)

where the morphism a(n) is, up to canonical equivalence, the morphism

a ◦ (a × 1M1) ◦ · · · ◦ (a × 1Mn
1
) : P × Mn

1 → P .

Again, the right-hand and outer squares in this diagram is a pullback squares. It follows
by the pasting law that the left-hand square is a pullback as well. Since (P//M)n+1 =
P × Mn+1

1 , and the morphisms P × Mn+1
1 → P × Mn

1 and P × Mn+1
1 → P × M1

in (A.4) canonically equivalent to those morphisms which are induced by the partition
[n + 1] = [n] �[0] [1]. This completes the proof. ��

We recall a criterion from (the proof of) [22, Prop. 1.1.8] for when a category object
is a groupoid object. Given a simplicial object X ∈ Fun(´op,C) in an ∞-category C

and a simplicial set K ∈ Set�, we define an object X(K ) ∈ C as the limit (if it exists)
of the diagram

N (´/K )op −→ N´op X−→ C .

The following can be found in the proof of [22, Prop. 1.1.8]:

Proposition A.5 Let C be an ∞-category with finite limits. A category object X in C is
a groupoid object in C if and only if the inclusion �2

0 ↪→ �2 induces an equivalence

X2
�−→ X(�2

0).

Let I be the span category, depicted as {0, 1} ← {0} → {0, 2}. Consider the functor
D : I → ´/�2

0
, which sends the object {0} ∈ I to the tip inclusion �{0} ↪→ �2

0 and the

object {0, i} to the edge inclusion �{0,i} ↪→ �2
0, for i = 0, 2.

Lemma A.6 Let D : I → ´/�2
0
be defined as above, and let C be an ∞-category with

finite limits. The following statements hold true:

1. The functor D : I → ´/�2
0
is cofinal.
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2. For any X ∈ Fun(´op,C), the diagram

X(�2
0) X1

X1 X0

ι∗0,1

ι∗0,2 d1

d1

is a pullback diagram in C, where ι∗0,i denotes the morphism X(�{0,i} ↪→ �2
0).

3. A category object X ∈ Fun(´op,C) in C is a groupoid object precisely if the
diagram

X2 X1

X1 X0

d2

d1 d1

d1

is a pullback diagram in C.

Proof For claim (1), note that an object of ´/�2
0
is a pair ([n], ϕ) of an object [n] ∈ ´

and amorphism of simplicial sets ϕ : �n → �2
0.We show that, for each object ([n], ϕ)

of ´/�2
0
, the slice category ([n], ϕ)/D is contractible.

Since the horn �2
0 fits into a pushout diagram

�{0} �{0,1}

�{0,2} �2
0

d1

d1

in Set�, the morphism ϕ : �n → �2
0 is either the constant map at the apex of the

horn, i.e. ϕ factors as ϕ : �n → �{0} ↪→ �2
0, or it factors through a unique map

�n → �{0,i}, for i = 0 or i = 2, but not through the apex �{0} ↪→ �2
0. (One can see

this either by writing �n = N [n] and �2
0 = NI and using that the nerve functor is

fully faithful, or by using that Set�(�n,−) = (−)n preserves colimits.)
In the first case, the slice category ([n], ϕ)/D is the category describing spans; in

otherwords, it is isomorphic to I, andwehave |NI| ∼= |�1��0�1| ∼= |�1|�|�0||�1| �
∗. In the other cases, the slice category ([n], ϕ)/D is the final category, and hence
contractible as well.

Claim (2) now follows directly from the definition of X(K ), for K ∈ Set�, together
with part (1) (after taking opposites), and claim (3) then follows by combining claim (2)
with Proposition A.5. ��

Lemma A.7 Let K be a simplicial set, let C be an ∞-category, and let C ∈ C be an
object. Let c : C → Fun(K ,C) denote the constant-diagram functor.
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1. If K is contractible, i.e. K � ∗ in Set� with the Kan-Quillen model structure, and
colimC

K (cC) exists in C, then the canonical morphism colimC
K (cC) → C in C is

an equivalence.
2. Dually, if K is contractible and limC

K (cC) exists in C, then the canonical morphism
C → limC

K (cC) in C is an equivalence.

Proof By the definition of c, there is a commutative diagram

K C

∗
coll

cC

C

in S. By [23, Cor. 4.1.2.6, Thm. 4.1.3.1], the morphism coll is cofinal if and only
if the simplicial set K × ∗ ∼= K is contractible, i.e. precisely if coll : K → ∗ is an
equivalence in Set� (in the Kan-Quillen model structure). The first claim then follows
from the fact that cofinal morphisms preserve colimits [23, Prop. 4.1.1.8]. The second
statement follows by duality. ��
Example A.9 We need the following two specific cases in which Lemma A.7 applies:

1. The nerve NI ∈ Set� is contractible, as already seen in the proof of Lemma A.6.
2. The inclusion {[0]} ↪→ ´ is the inclusion of a final object. Thus, the nerve N´ ∈

Set� is contractible in Set�. �
Lemma A.9 Let K ∈ Set� be contractible (in the Kan-Quillen model structure) and
let C be an ∞-category admitting limits of shape K . Let P ∈ C be any object.

1. The constant diagram functor c : C → Fun(K ,C) is fully faithful.
2. If C admits finite products, then the functor P × (−) : C → C preserves limits of

shape K .

Proof Let C, D ∈ C be any objects. To see (1), we use the adjunction c � limC
K and

Lemma A.7, which yield canonical equivalences

CK (cC, cD) � C(C, limC
K cD) � C(C, D) .

For claim (2), let C, P ∈ C be objects, and let F : K → C be a diagram. We now
have canonical equivalences

C
(

C, limC
K (cP × F)

) � CK (cC, cP × F)

� CK (cC, cP) × CK (cC, F)

� C(C, P) × C(C, limC
K F)

� C(C, P × limC
K F) .

In the third equivalence we have used part (1), i.e. that c is fully faithful here. Then,
the statement follows from the Yoneda Lemma. ��
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We can now prove Theorem 3.19:

Proof of Theorem 3.19 Since every group object in C is in particular a monoid object
in C, it follows from Proposition A.3 that P//G is a category object in C. We now use
Lemma A.6 to show that it is even a groupoid object. By that lemma, it suffices to
check that the diagram

(P//G)2 (P//G)1

(P//G)1 (P//G)0

d2

d1 d1

d1

=
P × G2

1 P × G1

P × G1 P

d2=pr01

d1 d1=pr0

d1=pr0

(A.10)

is a pullback diagram in C, where we have used axioms (1) and (2) of Definition A.2
and their consequences pointed out after Definition 3.15.

Our goal now is to split off the factor P in diagram (A.10). To that end, consider
the diagram

P P

P × G2
1 P × G1

G2
1 G1

pr0�d1d2

pr12

d1

pr0=d1

pr1

dG1

(A.11)

The bottom rectangle in diagram (A.11) commutes by axiom (3) of Definition 3.15.
The top rectangle commutes because P//G is a simplicial object in C, so we have a
canonical equivalence d1d2 � d1d1. This establishes the morphism d1 as a product of
morphisms in C: it is induced by the morphisms 1P : P → P and dG1 : G2

1 → G1.
That is, there is a canonical equivalence

d1 � 1P × dG1 ,

of morphisms (P//G)2 → (P//G)1 in H. We thus have an equivalence of diagrams

P × G2
1 P × G1

P × G1 P

d2=pr01

d1�1P×dG1 d1=pr0

d1=pr0

� P ×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

G2
1 G1

G1 ∗

dG2

dG1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

123
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By the definition of G as a groupoid object, the diagram

G2
1 G1

G1 ∗

dG2

dG1

is a pullback diagram in C. It now follows from Lemma A.9 that the functor P × (−)

sends this pullback diagram to a pullback diagram. Consequently, the square (A.10)
is a pullback diagram in H.
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