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Abstract
We refine Cossec and Dolgachev’s classification of extra-special Enriques surfaces,
providing a complete and concise proof.

Mathematics Subject Classification 14J28 · 14C20

1 Introduction

Throughout the paper, X will denote an Enriques surface defined over an algebraically
closed field of arbitrary characteristic p.

A half-fiber on X is a divisor F such that 2F is a fiber of a genus one fibration. A
c-sequence on X is a sequence of half-fibers (F1, . . . , Fc) such that Fi .Fj = 1 − δi j .
As observed by Enriques himself for classical Enriques surfaces, and later extended
to non-classical Enriques surfaces by Bombieri and Mumford [1, Theorem 3], every
Enriques surface admits a 1-sequence. The maximal length of a c-sequence is 10.

It is a natural question to ask whether every c-sequence can be extended to a
c′-sequence with c′ > c. In this context, extra-special Enriques surfaces play a fun-
damental role.
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134 G. Martin et al.

Definition 1.1 An Enriques surface X is called

• extra-special of type Ẽ8 if the dual graph of all (−2)-curves on X is

(A)

• extra-special of type D̃8 if the dual graph of all (−2)-curves on X is

(B)

• extra-special of type Ẽ7 if the dual graph of all (−2)-curves on X is

(C)

An Enriques surface is called extra-special if it is extra-special of type Ẽ8, D̃8, or Ẽ7.

Extra-special Enriques surfaces do exist. Salomonsson [13] gave equations for all
extra-special surfaces of type Ẽ8 and Ẽ7. An alternative construction of these surfaces
as well as examples of extra-special surfaces of type D̃8 were given by Katsura, Kondō
andMartin [9, §§10, 11, 12]. A description of all genus one fibrations on these surfaces
can be found in [7, Proposition 6.2.7].

The classification of Enriques surfaces on which every 1-sequence can be extended
to a 2-sequence is well-known and is contained in the following theorem due to Cossec
and Dolgachev.

Theorem 1.2 ([3, Theorem 3.4.1] or [4, Theorem 6.1.10]) An Enriques surface X
is not extra-special of type Ẽ8 if and only if every 1-sequence on X extends to a
2-sequence.

More precisely, on extra-special surfaces of type Ẽ8 there exists only one genus
one fibration, so the only 1-sequence is non-extendable.

The main result of this paper is the following theorem, whose proof is obtained by
combining Theorem 3.4 and Corollary 4.3.

Theorem 1.3 AnEnriques surface X is not extra-special if and only if every c-sequence
with c ≤ 2 on X extends to a 3-sequence.

More precisely, on extra-special surfaces of type D̃8 there are exactly three genus
one fibrations, giving rise to two distinct 2-sequences, both non-extendable. On extra-
special surfaces of type Ẽ7 there are exactly two genus one fibrations, giving rise to a
non-extendable 2-sequence.
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On extra-special Enriques surfaces 135

Remark 1.4 In their first book about Enriques surfaces, Cossec and Dolgachev proved
that X admits a 3-sequence if X is not extra-special [3, Theorem 3.5.1]. In a similar
vein, Cossec proved that if p �= 2, then every 1-sequence on X extends to a 3-sequence
[2, Theorem 3.5]. Note that our result is strictly stronger than both of these results,
since it asserts the extendability of any given 2-sequence in all characteristics. Big
parts of the proof of the result of Cossec are left to the ‘patient reader’. Moreover,
the proof of the result of Cossec–Dolgachev occupies 32 pages and is described as
‘lengthy’ in the new book on Enriques surfaces, with ‘no guarantee that it is correct’
(see [7, Remark 6.1.14 and Theorem 6.2.6]). The main ingredient that allows us to
give a substantially shorter proof of a stronger result is the observation that in a non-
extendable 2-sequence one of the genus one fibrations is special with a fiber of type II∗
(Theorem 3.4), and that Enriques surfaces with such a fibration can be easily classified
in all characteristics (Theorem 4.2).

Remark 1.5 Every extra-special surface admits a genus one fibration with a half-fiber
of additive type, and an extra-special surface of type Ẽ7 even admits a quasi-elliptic
fibration with two half-fibers [7, Proposition 6.2.7]. Consequently (cf. Lemma 2.2),
extra-special Enriques surfaces can exist only in characteristic 2 and they are either
classical or supersingular. Additionally, extra-special surfaces of type Ẽ7 can only be
classical.

We infer an immediate corollary from Remark 1.5.

Corollary 1.6 If one of the following conditions holds:

1. p �= 2,
2. p = 2 and X is ordinary,
3. p = 2 and X is not extra-special,

then every c-sequence on X with c ≤ 2 extends to a 3-sequence.

Let us describe one of the geometric consequences of the extendability of 1- and
2-sequences to 3-sequences. By applying [4, Theorem 3.5.1 and the following discus-
sion] and [5, Section 7.8.1] to a 3-sequence that extends a given 2-sequence (F1, F2),
we obtain the following strong version of the Enriques–Artin Theorem for non-extra-
special, classical Enriques surfaces.

Corollary 1.7 If X is a classical Enriques surface which is not extra-special, then X
is the minimal resolution of a sextic S ⊆ P

3 given by an equation of the form

x1x2x3LQ + x21 x
2
2 L

2 + x21 x
2
3 L

2 + x22 x
2
3 L

2 + x21 x
2
2 x

2
3 ,

where L is linear and Q is a quadratic form. Moreover, for each half-fiber F1 (resp. 2-
sequence (F1, F2)) on X, there is a sextic model as above such that F1 (resp. (F1, F2))
maps to a line (resp. a pair of lines) in the non-normal locus of S.

Extending 3-sequences to 4-sequences is a much more difficult problem, even in
characteristic p �= 2. The classification of non-extendable 3-sequences is the subject
of our follow-up article [11].
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136 G. Martin et al.

2 Preliminaries

Recall that an Enriques surface is a smooth and proper surface X of Kodaira dimen-
sion 0 with b2(X) = 10 over an algebraically closed field of arbitrary characteristic p.
An Enriques surface X is called classical if its canonical divisor is not linearly equiva-
lent to 0. A non-classical Enriques surface X (which can only exist if p = 2) is called
ordinary (or singular or a μ2-surface) if the absolute Frobenius morphism is bijective
on H1(X ,OX ), and supersingular (or an α2-surface) otherwise.

A genus one fibration on X is a fibration f : X → P
1 such that the generic fiber Xη

is a regular genus one curve. A genus one fibration is called elliptic if Xη is smooth and
quasi-elliptic otherwise. We will use Kodaira’s notation for singular fibers. Singular
fibers of type In are called ofmultiplicative type, while all others are called of additive
type. Any genus one fibration on X admits at least one half-fiber, that is a curve F of
arithmetic genus one such that 2F is a fiber of the fibration. In particular, the degree
of a multisection of a genus one fibration f on X is divisible by 2 and if f admits a
(−2)-curve as a bisection, both f and the bisection are called special. A non-multiple
fiber of a genus one fibration is called simple.

By a component of a divisor D on X , we always mean an irreducible component
and we call a component simple, if it is reduced, that is, if it has multiplicity 1 in D.
We call D primitive if its class in Num(X) spans a primitive sublattice.

Lemma 2.1 ([4, Corollary 2.2.9]) An effective divisor D on X is a half-fiber of a genus
one fibration on X if and only if D is nef, primitive, and D2 = 0.

We recall here the behaviour of genus one fibrations on Enriques surfaces.

Lemma 2.2 ([4, Theorem 4.10.3]) Let f : X → P
1 be a genus one fibration on X.

• If p �= 2, then f is an elliptic fibration with two half-fibers, and each of them is
either non-singular or singular of multiplicative type.

• If p = 2 and X is classical, then f is an elliptic or quasi-elliptic fibration with
two half-fibers, and each of them is either an ordinary elliptic curve or a singular
curve of additive type.

• If p = 2 and X is ordinary, then f is an elliptic fibration with one half-fiber, which
is either a non-singular ordinary elliptic curve or a singular curve of multiplicative
type.

• If p = 2 and X is supersingular, then f is an elliptic or quasi-elliptic fibration
with one half-fiber, which is either a supersingular elliptic curve or a singular
curve of additive type.

The symbol ∼ denotes linear equivalence, and W nod
X denotes the Weyl group gen-

erated by reflections in classes of (−2)-curves on X .

Lemma 2.3 ([3, Theorem 3.2.1] or [4, Theorem 2.3.3]) If D is an effective divisor
on X with D2 ≥ 0, then there exist non-negative integers ai and (−2)-curves Ri such
that

D ∼ D′ +
∑

i

ai Ri ,
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On extra-special Enriques surfaces 137

where D′ is the unique nef divisor in the W nod
X -orbit of D. In particular, D2 = D′2.

The following bound is an immediate consequence of the Shioda–Tate formula.

Lemma 2.4 The number of irreducible curves contained in s fibers of any genus one
fibration on X is at most 8 + s.

A c-degenerate (canonical isotropic) n-sequence on X is an n-tuple of the form

(
F1, F1 + R1,1, . . . , F1 +

m1∑

j=1

R1, j , F2, F2 + R2,1, . . . , Fc +
mc∑

j=1

Rc, j
)
,

where the Fi are half-fibers of genus one fibrations on X and the Ri, j are (−2)-curves
satisfying the conditions

1. Fi .Fj = 1 − δi j .
2. Ri, j .Ri, j+1 = 1.
3. Ri, j .Rk,l = 0 unless (k, l) = (i, j) or (k, l) = (i, j ± 1).
4. Fi .Ri,1 = 1 and Fi .Rk,l = 0 if (k, l) �= (i, 1).

If c = n, we simply call the above sequence a c-sequence.
We say that a c-degenerate n-sequence extends to a c′-degenerate n′-sequence if

the former is contained in the latter, disregarding the ordering. The following fun-
damental theorem is due to Cossec and holds also in positive characteristic (cf. [7,
Proposition 6.1.7]).

Theorem 2.5 ([2, Lemma 1.6.1, Theorem 3.3]) If n �= 9, then every c-degenerate
n-sequence on X can be extended to a c′-degenerate 10-sequence for some c′ ≥ c.

A generic Enriques surface does not contain any (−2)-curve. Thus, by Theorem 2.5
every c-sequence with c �= 9 can be extended to a 10-sequence.

Lemma 2.6 ([4, Lemma 2.6.3] or [8, Lemma 3.5]) If (F1, F2) is a 2-sequence, then
F1 and F2 do not have common irreducible components.

3 Non-extendable 2-sequences

In this section, we investigate the extendability of 2-sequences and the properties of
non-extendable 2-sequences.

Proposition 3.1 Let (F1, F2) be a 2-sequence on an Enriques surface X. If there are
two simple fibers G1 ∈ |2F1| and G2 ∈ |2F2| with a common irreducible component,
then there is a half-fiber F3 extending (F1, F2) to a 3-sequence.

Proof By [4, Proposition 2.6.1], the linear system |F1+F2| is a pencil of curveswithout
fixed components. Let R be a common component of G1 and G2. Then, R is a (−2)-
curve with R.(F1 + F2) = 0. Hence, there exists a curve C ∈ |F1 + F2| containing
R. Set C ′:=C − R. Then, C ′.Fi = (F1 + F2 − R).Fi = 1 and C ′2 = (C − R)2 =
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138 G. Martin et al.

(F1+F2)2−2(F1+F2).R+R2 = 0. Using Lemma 2.3, wewriteC ′ = C ′′+∑
i ai Ri

with ai ≥ 0, C ′′ nef and C ′′2 = C ′2 = 0. Then, C ′′.Fi = C ′.Fi − ∑
a j R j .Fi ≤ 1.

Since C ′′ is nef, C ′′.Fi = 0 for at most one i and then C ′′.Fj = 1 for j �= i .
This implies that C ′′ is primitive, and therefore C ′′ is a half-fiber of some genus one
fibration on X by Lemma 2.1. Hence, if C ′′.F1 = C ′′.F2 = 1, then (F1, F2,C ′′) is a
3-sequence.

Thus, let us exclude the possibility that C ′′.F1 = 0 (the case C ′′.F2 = 0 is analo-
gous). In this case, C ′′ is a half-fiber of |2F1|. If C ′′ = F1, then

F2 ∼ (
F1 + F2 − C ′′) ∼ (F1 + F2 − C) +

(
R +

∑
ai Ri

)
∼

(
R +

∑
ai Ri

)
.

Since |F2| is 0-dimensional, this shows that R is a component of F2. But this is
impossible, since we assumed that R is a component of a simple fiber G2 ∈ |2F2|. If
C ′′ �= F1, then the above argument applied to |F2 + KX | shows that R is a component
of the other half-fiber of |2F2|, again contradicting the fact that R is contained in the
simple fiber G2 ∈ |2F2|. ��
Remark 3.2 Let us explain what happens geometrically in the situation of
Proposition 3.1. We will restrict ourselves to characteristic p �= 2 and leave it to
the motivated reader to formulate the analogous picture in characteristic p = 2. We
will use the notation of Proposition 3.1 and refer to [4, Section 3.3] for details on
bielliptic models of Enriques surfaces.

The linear system |2F1 + 2F2| induces morphisms X
ϕ1−→ X ′ ϕ2−→ D, where ϕ1 is

birational, and ϕ2 is 2-to-1 onto a 4-nodal quartic symmetroid del Pezzo surface D.
The surface D contains a quadrangle of lines whose vertices are the nodes, and each of
the four half-fibers maps to one of the lines. Since R is not contained in a half-fiber and
R.(2F1 + 2F2) = 0, the curve R is contracted by ϕ1 and maps to a singular point P
of the branch curve of ϕ2 outside the quadrangle of lines. There are four pencils of
conics on D and their preimages on X are the pencils |2F1|, |2F2|, |F1 + F2|, and
|F1 + F2 + KX |. The proof of Proposition 3.1 shows that the preimage |F1 + F2|
of one of the pencils of conics that contains two lines, which is a pencil of curves of
genus 2 on X , has a reducible member that contains the half-fiber F3.

Another way of seeing this more geometrically was suggested by the referee: the

linear system |2F1 + 2F2 − R| induces morphisms X
ψ1−→ X ′ ψ2−→ C, where ψ1 is

birational, ψ2 is 2-to-1, and C is the blow-up of D in P . Since P does not lie on a
line, C is isomorphic to a cubic surface with four nodes, hence it is the Cayley cubic
surface. The surface C contains exactly nine lines, and we can describe them explicitly
in terms of D: four of them are the strict transforms of the four lines on D, four of them
are the strict transforms of the four conics on D that pass through P , and one of them
is the exceptional curve E over P . Six of the nine lines form a tetrahedron, and the
other three lie on a plane that intersects the tetrahedron away from the vertices. The
three pencils of residual conics that we obtain from the latter three lines give rise to the
genus one fibrations |2F1|, |2F2|, and |2F3|, and the preimages of the former six lines
are the six half-fibers. We refer the reader to our follow-up article [11] for a closer
study of the so-called special 3-sequences that give rise to this geometric situation.
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On extra-special Enriques surfaces 139

Corollary 3.3 If (F1, F2) is a 2-sequence on X that does not extend to a 3-sequence,
then one of the half-fibers of |2F1| or |2F2| is reducible and has at least 4 irreducible
components.

Proof By Theorem 2.5, after possibly interchanging F1 and F2, we may assume that
there exist (−2)-curves R1,1, . . . , R1,m, R2,1, . . . , R2,n with m + n = 8, m ≥ 4,
and such that (F1, F1 + R1,1, . . . , F2, F2 + R2,1, . . .) is a 2-degenerate 10-sequence.
Since R1,2.F1 = R1,2.F2 = 0, R1,2 is a component of two fibers G1 ∈ |2F1| and
G2 ∈ |2F2|. By Proposition 3.1, G1 and G2 cannot both be simple. Therefore, R1,2
is a component of a reducible half-fiber, which also contains all the other R1, j with
j �= 1. Hence, one of the reducible half-fibers has at least 4 components. ��
The bound of Corollary 3.3 on the number of irreducible components is not sharp,

but it is enough to prove the following theorem, which is the key result of this paper.

Theorem 3.4 If (F1, F2) is a 2-sequence on X that does not extend to a 3-sequence,
then either |2F1| or |2F2| is a special genus one fibration with a fiber of type II∗.

Proof By Corollary 3.3 we can suppose that F1 is reducible and has at least 4 compo-
nents. Let R2,1 be the component of F1 meeting F2. Since R2,1 is a simple component
of F1, we can find two more components R2,2, R2,3 of F1 forming a chain with R2,1.

Applying Theorem 2.5, we extend the 2-degenerate 5-sequence (F1, F2, . . . , F2 +
R2,1+R2,2+R2,3) to a 2-degenerate 10-sequence (F1, . . . , F1+∑m

i=1 R1,i , F2,. . . , F2
+ ∑n

i=1 R2,i ) with n ≥ 3. Clearly, all the R2,i are contained in F1.
Note that R2,1 is a special bisection of |2F2|. Since F2.F1 = F2.R2,1 = 1 and

F1 − R2,1 is connected (R2,1 being a simple component), all components of F1 except
R2,1 are contained in a fiber G2 ∈ |2F2|. We want to prove that G2 is of type II∗.

The fiber G2 is necessarily simple because of Lemma 2.6. Let � be the sublattice
of Num(X) generated by the components of G2 and R2,1 and let �′ = �[F2] be the
sublattice of Num(X) obtained from � by adjoining F2 = 1

2G2 ∈ 1
2�.

If m ≥ 1, then R1,1 meets a component of F1 distinct from R2,1, hence R1,1 meets
a component of G2. But R1,1.G2 = 2R1,1.F2 = 0, so R1,1 is contained in G2 and
then so are all the R1, j . This shows that � has rank 10, because it contains all Ri, j ,
the class of F1 and the class of G2 ≡ 2F2. Since �′ contains all the 10 divisors of the
10-sequence and since these divisors generate a lattice of rank 10 and discriminant 9,
�′ has index 1 or 3 in Num(X).

By [2,Lemma1.6.2], there exists a vector e ∈ Num(X)with e2 = 0, e.F1 = e.F2 =
1, e.Ri, j = 0 for all (i, j) except for e.R2,n−1 = 1, and such that e and the components
of the 10-sequence generate Num(X). (In the notation of [2, Lemma 1.6.2], we can
choose e = e9,10 = d − f9 − f10, since n ≥ 3.)

Note that it suffices to show that e is contained in the sublattice �′. Indeed, if this
holds, then �′ = Num(X) and therefore � has index at most 2 in Num(X). Then,
consider the basis of � given by G2, R2,1 and all the components of G2 except a
simple one. The intersection matrix of � with respect to this basis is

⎛

⎝
0 2 0
2 −2 ∗
0 ∗ L

⎞

⎠ ,
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140 G. Martin et al.

where L is a root lattice of rank 8 depending on the type of G2. More precisely, L
is the root lattice associated to the Dynkin diagram obtained by removing a simple
component from G2. By reducing along the first row and first column, we obtain that
det(�) = −4 det(L). Since � has index at most 2 in the unimodular lattice Num(X),
we have |det(�)| ≤ 4, and hence det(L) = 1. This forces L to be isometric to the
lattice E8, and in turn G2 to be of type II∗.

It remains to show that e ∈ �′. Let D be an effective lift of e to Pic(X). Write
D ∼ D′+∑

i ai Ri as inLemma2.3. Since D′2 = D2 = 0 and D′.Fi ≤ 1with equality
for at least one i , D′ is nef and primitive, hence equal to a half-fiber byLemma2.1. If D′
is not a half-fiber of |2F1| or |2F2|, then (F1, F2, D′) is a 3-sequence, contradicting our
assumption that (F1, F2) does not extend to a 3-sequence. Therefore, we can suppose
that D′ is a half-fiber of |2Fk | for some k ∈ {1, 2}.

Take j ∈ {1, 2} with j �= k. Then, D′.Fj = 1 and D′.Fk = 0, while D.Fj =
D.Fk = 1, so (

∑
i ai Ri )

2 = (D−D′)2 = (D−Fk)2 = −2 and (
∑

i ai Ri ).Fj = (D−
D′).Fj = 0. Thus,

∑
i ai Ri is a connected configuration of (−2)-curves contained in

a single fiber of |2Fj |. But (∑i ai Ri ).R2,n−1 = (D − D′).R2,n−1 = D.R2,n−1 = 1,
since R2,n−1.F1 = R2,n−1.F2 = 0, hence

∑
i ai Ri is contained in the fiber of |2Fj |

containing R2,n−1. If j = 1, this fiber is F1, whereas if j = 2 this fiber is G2. In both
cases, we obtain that e ∈ �′. ��

4 Special genus one fibrations with a fiber of type II∗

By Theorem 3.4, one of the two fibrations in a non-extendable 2-sequence is special
with a fiber of type II∗. It turns out that admitting such a fibration is such a restric-
tive property that all Enriques surfaces satisfying this property can be classified. We
will carry out this classification in this section, thereby proving Theorem 1.3 (see
Corollary 4.3).

Definition 4.1 An Enriques surface X is called

• of type I if the dual graph of all (−2)-curves on X is

(D)
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On extra-special Enriques surfaces 141

• of type Ẽ (2)
7 if the dual graph of all (−2)-curves on X is

(E)

Theorem 4.2 If an Enriques surface X admits a special genus one fibration with a
fiber of type II∗, then one of the following holds:

1. X is of type I,
2. X is of type Ẽ (2)

7 ,
3. X is extra-special.

Proof First, note that it suffices to show that X contains a configuration of (−2)-
curves whose dual graph is one of the Graphs (A), (B), (C), (D), or (E). Indeed,
by [14, Theorem 2.3] and [9, Remark 2.15], the group generated by reflections in the
(−2)-curves in the dual graph of one of these surfaces has finite index in the orthogonal
group of Num(X). By [12, Proposition 6.9], this implies that the (−2)-curves in the
graph are in fact all the (−2)-curves on a surface containing such a configuration.

Assume first that the fiber of type II∗ is a half-fiber. Its special bisection must meet
the only component of the half-fiber of multiplicity 1, giving rise to Graph (A).

Assume instead that the fiber of type II∗ is simple. Since this fiber has only one
simple component, the special bisection R intersects transversely one of the two com-
ponents of multiplicity 2 or it intersects doubly the component of multiplicity 1. If
R intersects the component of multiplicity 2 next to the simple component, then we
obtain Graph (B). If R intersects the other component of multiplicity 2, then we obtain
a new half-fiber of type III∗:

CR

The component C is orthogonal to the fiber of type III∗, hence it belongs to another
reducible fiber G of this new fibration. By Lemma 2.4, G must be of type I2 or III. If
G is a half-fiber, then we obtain Graph (C). If instead it is a simple fiber, we obtain
Graph (E). Finally, if R intersects doubly the simple component of the fiber of type II∗,
then we obtain a new half-fiber G of type I2 or III. The seven components orthogonal
to G are contained in a fiber of type III∗ by Lemma 2.4, which can be a half-fiber or
a simple fiber. In the former case, we obtain Graph (C). In the latter, the bisection of
the III∗ fiber also intersects the other simple component:
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142 G. Martin et al.

There is a half-fiber of type I8, hence, by Lemma 2.2, either p �= 2 or X is ordinary.
Thus, it follows from [10, Theorem 3.1] that X is of type I. ��

Corollary 4.3 If X is an Enriques surface with a special genus one fibration with a
fiber of type II∗, then X satisfies the following properties:

1. X contains finitely many (−2)-curves,
2. X has finite automorphism group,
3. if p �= 2 or X is ordinary, then X is of type I,
4. X is not extra-special if and only if every c-sequence with c ≤ 2 extends to a

3-sequence.

Proof Claim (1) follows from the classification in Theorem 4.2, since all the surfaces
listed there contain only finitely many (−2)-curves.

By the first paragraph of the proof of Theorem 4.2, the Weyl group W nod
X has finite

index in the orthogonal group of Num(X). Since Aut(X) acts with finite kernel on
Num(X)/W nod

X by [8, Theorem], this implies Claim (2) (see also [6, Corollary 3.4]).
For Claim (3), by Lemma 2.2 it suffices to observe that if X is not of type I, then

there exists an additive half-fiber on X .
Finally, for Claim (4), one can simply list all genus one fibrations on X . For the

surfaces of type I, we refer to [7, Proposition 8.9.6]. For the extra-special surfaces and
for the surfaces of type Ẽ (2)

7 , we refer to [7, Proposition 6.2.5]. ��

Remark 4.4 Enriques surfaces of type I and of type Ẽ (2)
7 also display a special

behaviour with respect to c-sequences: on both types of surfaces, there exist 3-
sequences that cannot be extended to 4-sequences. In fact, there are no 4-sequences
at all on type Ẽ (2)

7 [7, Proposition 6.2.5].
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www.math.lsa.umich.edu/idolga/EnriquesOne.pdf (2021)
5. Cossec, F.R.: Projective models of Enriques surfaces. Math. Ann. 265(3), 283–334 (1983)
6. Dolgachev, I.: On automorphisms of Enriques surfaces. Invent. Math. 76(1), 163–177 (1984)
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