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Abstract
In this paper, we consider a weakly coupled system of a wave and damped Klein–
Gordon equation with nonlinearities of derivative type. We prove a blow-up result
for the Cauchy problem associated with this system for nonnegative and compactly
supported data by means of an iteration argument.

Mathematics Subject Classification 35B44 · 35C15 · 35L05 · 35L56 · 35L76

1 Introduction

Let us consider a Nakao-type weakly coupled systemwith nonlinearities of derivative-
type, namely,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2t u − �u + b∂t u + m2u = |∂tv|p, x ∈ R
n, t ∈ (0, T ),

∂2t v − �v = |∂t u|q , x ∈ R
n, t ∈ (0, T ),

(u, ∂t u)(0, x) = ε(u0, u1)(x), x ∈ R
n,

(v, ∂tv)(0, x) = ε(v0, v1)(x), x ∈ R
n,

(1)

where p, q > 1, ε is a positive parameter describing the size of the Cauchy data, and
b > 0, m2 � 0 are real constants.

Over the last years, systems of diffusion andwave equations with coupled nonlinear
terms have been studied in the literature (see [3, 6, 13, 14, 18]). By diffusion equations
here we mean, in a broad sense, not only parabolic equations but also hyperbolic
equations which present diffusion phenomena towards certain parabolic models. This
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kind of nonlinear coupled systems have been named Nakao’s problems in the case of
a weakly coupled Cauchy system of wave and damped wave equations in [3, 6, 18]
after the author of [13, 14], who first proposed and studied these systems in the case
of bounded domains.

Let us summarize briefly the results for the Nakao’s problems considered in the
case of the whole space, i.e. for Cauchy problems. In [6, 18] the Nakao’s problemwith
weakly coupled power nonlinearities, namely,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2t u − �u + ∂t u = |v|p, x ∈ R
n, t ∈ (0, T ),

∂2t v − �v = |u|q , x ∈ R
n, t ∈ (0, T ),

(u, ∂t u)(0, x) = ε(u0, u1)(x), x ∈ R
n,

(v, ∂tv)(0, x) = ε(v0, v1)(x), x ∈ R
n,

(2)

has been investigated from the viewpoint of the blow-up in finite time (for suitable p, q
and under suitable sign assumptions on the Cauchy data). While in [18] the so-called
test function method is used, in [6] an iteration argument is employed, by considering
the space averages of the components of a local solution as time-dependent functionals.

On the other hand, in [3] theNakao’s problemwithweakly coupled nonlinearities of
derivative type, namely (1) for (b, m2) = (1, 0), is studied again from the sufficiency
part. In particular, the blow-up in finite time is proved for p, q > 1 such that

1

pq − 1
>

n − 1

2

provided that the Cauchy data are compactly supported, nonnegative and nontrivial.
The approach used to prove this blow-up result is inspired in some sense by [11,
Sect. 13.2] and by [10].

In what follows we called (1) a Nakao-type weakly coupled system, since we will
consider a semilinear wave equation for v and a semilinear damped Klein–Gordon
equation for u which are weakly coupled through the nonlinear terms given by powers
of the time-derivatives. We shall focus only on the case of the Cauchy problem and
our goal will be determining a blow-up result in finite time when the exponents of the
nonlinear terms p, q belong to a suitable range and under suitable sign assumptions
for the Cauchy data.

Our approach is based on the blow-up technique introduced by Zhou in [20] for the
treatment of the semilinear wave equation with a nonlinearity of derivative type in all
space dimensions combined with an iteration argument for determining a sequence of
lower bound estimates for a suitable time-dependent functional related to a local in time
solution to (1). The above cite technique of Zhou consists in reducing the problem to
the one-dimensional case by integrating with respect to the last (n−1) space-variables
and, then, in proving the blow-up on a suitable characteristic line. More specifically,
when dealing with the wave equation in one space dimension, d’Alembert’s formula
is used to describe explicitly the solution. Consequently, before proving the main
blow-up result of this paper, we are going to recall an integral representation formula
for the linear equation associated with the equation for u in (1) (which is a damped
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Klein–Gordon equation) in one space dimension. Moreover, since the kernel function
appearing in this integral formula contain an exponential factor, we will need to adapt
the treatment of an unbounded exponential multiplier in the iteration frame from [4,
5] to our problem by applying a slicing procedure while shrinking the domain of
integration in the iteration frame. We anticipate that the other factor appearing in the
integral kernel will be the composition of the modified Bessel function of the first kind
of order 0 with another function related to the forward light-cone. In the derivation of
the iteration frame,wewill take advantage of the fact that this special function (denoted
I0) is bounded from below by a positive function. On the contrary, we may not use
the asymptotic behavior of I0 for large arguments due to the contemporary presence
of the aforementioned exponential factor. For a rigorous explanation we address the
reader to Remark 4.

The range of p, q for which our blow-up result is valid is exactly the same one as in
[3] for the special case (b, m2) = (1, 0) that we recalled above, although the methods
employed in our proof and in the proof of the corresponding result in [3] are quite
different. Moreover, we will extend the blow-up result even to the limit case

1

pq − 1
= n − 1

2
.

Finally, we point out that the blow-up result in the present work is valid only under
the further assumption

b2 ≥ 4m2. (3)

We refer to Remark 3 for a technical explanation on the unsuitableness of our method
for b2 < 4m2. We may interpret the condition (3) by saying that we consider the case
in which the equation for u in (1) has a mass term m2u that is dominated (or balanced,
when the equality holds) by the damping term b∂t u. Therefore, this equation has some
properties which resemble the ones for the damped wave equation rather than the ones
for the Klein–Gordon equation. Let us explain the previous heuristic considerations
more rigorously. If we consider the linear damped Klein–Gordon equation

∂2t φ − �φ + b∂tφ + m2φ = 0,

then, carrying out the transformation φ(t, x) = eγ tψ(t, x), where γ is a real constant,
it results that ψ solves

∂2t ψ − �ψ + (2γ + b)∂tψ + (γ 2 + bγ + m2)ψ = 0.

For b2 > 4m2 we can choose γ
.= 1

2 (−b + √
b2 − 4m2) so that ψ solves the damped

wave equation

∂2t ψ − �ψ + (b2 − 4m2)
1
2 ∂tψ = 0.
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For this reason, we call the case b2 > 4m2 the case with dominant damping. On the
contrary, for b2 < 4m2, setting γ

.= − b
2 , we get that ψ solves the Klein–Gordon

equation (with positive mass)

∂2t ψ − �ψ +
(

m2 − b2

4

)

ψ = 0.

Hence, we call b2 < 4m2 the case with dominant mass. In the limit case b2 = 4m2,
we find that ψ solves the free wave equation, therefore, we call it the balanced case.
We stress that this nomenclature is borrowed from the introduction of [8].

The paper is organized as follows: in Sect. 2we state themain blow-up result for (1);
in Sect. 3 we recall the integral representation formula for the linear Cauchy problem
associated with the damped Klein–Gordon equation when n = 1; finally, in Sect. 4 we
derive the iteration frame and we apply the slicing procedure to perform the iteration
procedure.

2 Main result

Theorem 1 Let n � 1 and let b > 0, m2 � 0 be real constants satisfying (3). We
assume that u0, v0 ∈ C 2

0 (Rn), u1, v1 ∈ C 1
0 (Rn) are nonnegative and compactly

supported functions with supports contained in BR for some R > 0, and that v1 is
nontrivial. Let us consider exponents for the nonlinear terms p, q > 1 satisfying

θ(n, p, q)
.= 1

pq − 1
− n − 1

2
� 0. (4)

Then, there exists a positive constant ε0 = ε0(n, p, q, b, R, v1) such that for any
ε ∈ (0, ε0] if (u, v) ∈ (

C 2([0, T ) × R
n)

)2
is a local in time solution to (1) such that

supp u(t, ·), supp v(t, ·) ⊂ BR+t for any t ∈ [0, T ), (5)

where T = T (ε) denotes the lifespan of (u, v), then, (u, v) blows up in finite time.
Furthermore, the following upper bound estimate for the lifespan holds

T (ε) �
{

Cε−θ(n,p,q)−1
if θ(n, p, q) > 0,

exp
(
Cε−(pq−1)

)
if θ(n, p, q) = 0,

(6)

where the positive constant C is independent of ε.

3 Integral representation formula in one space dimension

In the proof of Theorem 1 we are going to use the approach from [20] to proving the
blow-up on a certain characteristic line, as described in the introduction.
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Since the second order partial operator acting on u in (1) is a damped wave operator
with a mass term we need first to get a representation formula for the corresponding
linear Cauchy problem in the one-dimensional case, namely,

⎧
⎪⎨

⎪⎩

∂2t φ − ∂2x φ + b∂tφ + m2φ = F(t, x), x ∈ R, t > 0,

φ(0, x) = f (x), x ∈ R,

∂tφ(0, x) = g(x), x ∈ R.

(7)

The integral representation formula for the solution to (7), under suitable regularity
assumptions on the data f , g, F , is already known in the literature. However, the proof
of this representation formula in the form that we will employ is scattered through
different references. For the ease of readability we shall provide an elementary proof
of it.

In what follows, we collect and adapt the results from [7, Chapter III Sect. 3.5 and
Chapter VI Sect. 12.6] and [19, Sect. 1.1]. Hereafter, we denote by Iν, Jν the modified
Bessel function and the Bessel function of the first kind of order ν, respectively.

Lemma 2 Let b > 0 and m2 � 0. For any h ∈ C 1(R) and any t � 0, x ∈ R we define
the solution operator

S
(
t; b, m2)h(x)

.=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2
e− b

2 t
∫ x+t

x−t
I0

(

μ

√

t2 − |x − y|2
)

h(y) dy for 4m2 < b2,

1

2
e− b

2 t
∫ x+t

x−t
h(y) dy for 4m2 = b2,

1

2
e− b

2 t
∫ x+t

x−t
J0

(

μ

√

t2 − |x − y|2
)

h(y) dy for 4m2 > b2,

(8)

where

μ
.=

√∣
∣
∣
∣
b2

4
− m2

∣
∣
∣
∣

and I0, J0 denote the modified Bessel function and the Bessel function of the first kind
of order 0, respectively, (cf. [15, Sections 10.2 and 10.25]).

Let us consider f ∈ C 2(R), g ∈ C 1(R) and F ∈ C 1([0,∞) × R). Then, the
solution to the linear Cauchy problem (7) is given by

φ(t, x) = S
(
t; b, m2)(g + b f )(x) + ∂

∂t
S
(
t; b, m2) f (x)

+
∫ t

0
S
(
t − τ ; b, m2)(F(τ, ·))(x) dτ. (9)

Remark 1 In the special case (b, m2) = (1, 0) the representation formula (9) coincides
with the one for the classical linear damped wave equation (see [7, Equation (43), page
695] or [17, Proposition 2.1]).

123



116 A. Palmieri, H. Takamura

Proof In the balanced case b2 = 4m2 the function ψ(t, x) = e
b
2 tφ(t, x) solves the

Cauchy problem

⎧
⎪⎨

⎪⎩

∂2t ψ − ∂2x ψ = e
b
2 t F(t, x), x ∈ R, t > 0,

φ(0, x) = f (x), x ∈ R,

∂tφ(0, x) = g(x) + b
2 f (x), x ∈ R.

Combining d’Alembert’s formula with Duhamel’s principle and the inverse transfor-

mation φ(t, x) = e− b
2 tψ(t, x), we get immediately (9).

When b2 �= 4m2 we begin by proving that S
(
t; b, m2

)
(g)(x) solves the Cauchy

problem (7) for f = 0 and F = 0. We carry on the computation only in the dom-
inant damping case b2 > 4m2, since in the dominant mass case b2 < 4m2 the
procedure is completely analogous. Let us check the Cauchy conditions first. Clearly
S
(
0; b, m2

)
(g)(x) = 0. On the other hand, using I0(0) = 1, we have

∂

∂t
S
(
t; b, m2)(g)(x) = 1

2
e− b

2 t (g(x + t) + g(x − t))

− b

4
e− b

2 t
∫ x+t

x−t
I0

(

μ

√

t2 − |x − y|2
)

g(y) dy

+ μ

2
t e− b

2 t
∫ x+t

x−t

I′0
(
μ

√
t2 − |x − y|2

)

√
t2 − |x − y|2 g(y) dy. (10)

Consequently, ∂tS
(
t; b, m2

)
(g)(x)

∣
∣
t=0 = g(x).

We prove now that S
(
t; b, m2

)
(g)(x) solves the homogeneous differential equation.

A further differentiation of (10) with respect to t provides

∂2

∂t2
S
(
t; b, m2)(g)(x) =

(

−b

2
+ μ2t

4

)

e− b
2 t (g(x + t) + g(x − t))

+ 1

2
e− b

2 t (g′(x + t) − g′(x − t))

+ b2

8
e− b

2 t
∫ x+t

x−t
I0

(

μ

√

t2 − |x − y|2
)

g(y) dy

+ 1

2
e− b

2 t
∫ x+t

x−t
I′0

(

μ

√

t2 − |x−y|2
) (

μ(1 − bt)
√

t2 − |x−y|2 − μt2

(t2 − |x − y|2)3/2
)

g(y) dy

+ 1

2
e− b

2 t
∫ x+t

x−t
I′′0

(

μ

√

t2 − |x − y|2
)

μ2t2

t2 − |x − y|2 g(y) dy. (11)

We point out that, differentiating the second integral in (10), we applied the relation

I′0(z)
z

∣
∣
∣
∣
z=0

= 1

2
(12)
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that follows from the relation I′0 = I1 and from the Maclaurin series expansion for the
function z−1I1(z) (cf. [15, Equations (10.29.3) and(10.25.2)]). Using again (12), we
find that the second order derivative with respect to x of S

(
t; b, m2

)
(g)(x) is given by

∂2

∂x2
S
(
t; b, m2)(g)(x) = μ2t

4
e− b

2 t (g(x + t) + g(x − t))

+ 1

2
e− b

2 t (g′(x + t) − g′(x − t))

+ 1

2
e− b

2 t
∫ x+t

x−t
I′0

(

μ

√

t2 − |x−y|2
) (

− μ
√

t2 − |x−y|2 − μ(x − y)2

(t2 − |x − y|2)3/2
)

g(y) dy

+ 1

2
e− b

2 t
∫ x+t

x−t
I′′0

(

μ

√

t2 − |x − y|2
)

μ2(x − y)2

t2 − |x − y|2 g(y) dy. (13)

Combining (10), (11) and (13), we get

(
∂2

∂t2
− ∂2

∂x2
+ b

∂

∂t
+ m2 I

)

S
(
t; b, m2)(g)(x)

= 1

2
e− b

2 t
∫ x+t

x−t
μ2I′′0

(

μ

√

t2 − |x − y|2
)

g(y) dy

+ 1

2
e− b

2 t
∫ x+t

x−t

μI′0
(
μ

√
t2 − |x − y|2

)

√
t2 − |x − y|2 g(y) dy

+ 1

2
e− b

2 t
∫ x+t

x−t

(

m2 − b2

4

)

I0

(

μ

√

t2 − |x − y|2
)

g(y) dy

= μ2

2
e− b

2 t
∫ x+t

x−t

(

I′′0(z) + I′0(z)
z

− I0(z)

) ∣
∣
∣
∣
z=μ

√
t2−(x−y)2

g(y) dy = 0, (14)

where in the last stepwe used the fact that I0 is a solution of theODE (see [15, Equation
(10.25.1)])

z2I′′0(z) + zI′0(z) − z2I0(z) = 0.

We emphasize that in the dominant mass case we can repeat the same steps as before.
However, since μ2 = m2 − b2

4 in this case, we use the fact that J0 is a solution of the
ODE (see [15, Equation (10.2.1)])

z2J′′0(z) + zJ′0(z) + z2J0(z) = 0.

So, we proved (9) for f = 0 and F = 0.
Now we focus on the case g = 0 and F = 0. We claim that

φ̃(t, x)
.= ∂

∂t
S
(
t; b, m2)( f )(x) + bS

(
t; b, m2)( f )(x)
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is the solution of (7) with vanishing second data and source term.
Clearly, φ̃ solves the homogeneous differential equation as the differential operators

(∂t +bI ) and (∂2t −∂2x +b∂t +m2 I ) commute. We check now the Cauchy conditions.
Using the initial conditions derived in the previous case, we see immediately that
φ̃(0, x) = f (x). On the other hand,

∂

∂t
φ̃(t, x) =

(
∂2

∂t2
+ b

∂

∂t

)

S
(
t; b, m2)( f )(x) =

(
∂2

∂x2
− m2 I

)

S
(
t; b, m2)( f )(x).

Therefore, combining (8) and (13) with the previous relation it follows that
∂t φ̃(0, x)=0.

It remains to consider the inhomogeneous Cauchy problem (7) with both vanishing
initial data f = g = 0. By usingDuhamel’s principle together with the solution opera-
tor defined in (8), since themodel under consideration is invariant by time translations,
we get that the solution for this case is given by

∫ t

0
S
(
t − τ ; b, m2)(F(τ, ·))(x) dτ.

Due to the linearity of (7), combining the results from the previous subcases, we
conclude the validity of (9). 	

Remark 2 By using (8) and (10), we can rewrite (9) more explicitly as follows:

φ(t, x) = 1

2
e− b

2 t ( f (x + t) + f (x − t))

+ μ

2
t e− b

2 t
∫ x+t

x−t

I1
(
μ

√
t2 − |x − y|2

)

√
t2 − |x − y|2 f (y) dy

+ 1

2
e− b

2 t
∫ x+t

x−t
I0

(

μ

√

t2 − |x − y|2
) (

g(y) + b

2
f (y)

)

dy

+ 1

2

∫ t

0
e− b

2 (t−τ)

∫ x+t−τ

x−t+τ

I0

(

μ

√

(t − τ)2 − |x − y|2
)

F(τ, y) dy dτ

(15)

for b2 > 4m2, and

φ(t, x) = 1

2
e− b

2 t ( f (x + t) + f (x − t)) + 1

2
e− b

2 t
∫ x+t

x−t

(

g(y) + b

2
f (y)

)

dy

+ 1

2

∫ t

0
e− b

2 (t−τ)

∫ x+t−τ

x−t+τ

F(τ, y) dy dτ (16)

for b2 = 4m2. Finally, for b2 < 4m2 the representation formula is analogous the the
one in (15), but instead of the modified Bessel functions I0, I1 we have the Bessel
functions J0,−J1, respectively. In particular, we use the relation J′0 = −J1, see [15,
Equation (10.6.2)].
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Remark 3 In the statement of Theorem 1 we consider only b, m2 such that b2 � 4m2.
This assumption is due to the fact in the dominant mass case b2 < 4m2 the kernel
functions in the representation formula (9) are no longer nonnegative functions. Indeed,
in the iteration argument that we will use to prove the blow-up result it is crucial the
fact that we will be working with a nonnegative functional. For b2 < 4m2 the partial
differential operator acting on u in (1) is in this sense very close to the Klein–Gordon
operator (i.e. for b = 0) and the damped oscillations of the Bessel functions of the
first kind do not allow to carry on with the iteration procedure. We stress that when
the equation for u in (1) is exactly Klein–Gordon equation (namely, for b = 0) the
approach of this paper is unfruitful for a positive mass, but it could be used to deal
with a negative mass (that is, for m2 < 0 in our notations).

4 Proof of Theorem 1

The proof of Theorem 1 is based on the approach introduced by Zhou in [20], where
a blow-up result for the semilinear wave equation with nonlinearity of derivative-type
is proved for all space dimensions. Recently, this approach have been applied to study
semilinear models with time-dependent coefficients (cf. [9, 12, 16]).

In [20] d’Alembert’s formula is used to prove the blow-up result for the semilinear
wave equation with nonlinearity of derivative type. In our case, since we work with
the weakly coupled system (1) together with d’Alembert’s formula (coming from the
equation for v) we shall also employ the representation formulas (15) and (16) from
Sect. 3. Notice that (15) coincides exactly with (16) forμ = 0. Hence, in what follows
we work always with (15) for both cases.

Let us introduce the following notation: we will write any x ∈ R
n as x = (z, w)

with z ∈ R and w ∈ R
n−1. Thanks to this notation we might introduce the following

functions

U (t, z)
.=

∫

Rn−1
u(t, z, w) dw, V (t, z)

.=
∫

Rn−1
v(t, z, w) dw for any t ∈ [0, T ), z ∈ R,

U j (z)
.=

∫

Rn−1
u j (z, w) dw, V j (z)

.=
∫

Rn−1
v j (z, w) dw for any z ∈ R, j = 0, 1.

Clearly, it makes sense to introduce these functions only for n � 2, while for n = 1
we set simply (U ,V ) = (u, v) and (U0,U1,V0,V1) = (u0, u1, v0, v1).

We remark that due to the assumption supp u j , supp v j ⊂ BR for j = 0, 1 it follows
that

suppU j , suppV j ⊂ (−R, R) j = 0, 1. (17)

Analogously, from (5) we have

suppU (t, ·), suppV (t, ·) ⊂ ( − (R + t), R + t
)

for any t ∈ [0, T ). (18)

123
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By a straightforward computation we find that (U ,V ) solves for n � 2 the following
system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2t U − ∂2z U + b∂tU + m2U =
∫

Rn−1
|∂tv(t, z, w)|pdw, t ∈ (0, T ), z ∈ R,

∂2t V − ∂2z V =
∫

Rn−1
|∂t u(t, z, w)|qdw, t ∈ (0, T ), z ∈ R,

(U , ∂tU )(0, z) = ε(U0,U1)(z), z ∈ R,

(V , ∂tV )(0, z) = ε(V0,V1)(z), z ∈ R.

By using D’Alembert’s formula and the representation formula for the damped wave
equationwith amass term fromSect. 3,weobtain the following integral representations

U (t, z) = U lin(t, z) + U nlin(t, z),

V (t, z) = V lin(t, z) + V nlin(t, z),

where

U lin(t, z)
.= ε

2
e− b

2 t(U0(z + t) + U0(z − t)
)

+ ε

2
e− b

2 t
∫ z+t

z−t
I0

(

μ

√

t2 − |z − y|2
)

(
U1(y) + b

2U0(y)
)
dy

+ μ ε

2
t e− b

2 t
∫ z+t

z−t

I1
(
μ

√
t2 − |z − y|2

)

√
t2 − |z − y|2 U0(y) dy,

U nlin(t, z)
.= 1

2

∫ t

0
e

b
2 (τ−t)

∫ z+t−τ

z−t+τ

I0

(

μ

√

(t − τ)2−|z−y|2
)∫

Rn−1
|∂tv(τ, y, w)|pdwdydτ,

V lin(t, z)
.= ε

2

(
V0(z + t) + V0(z − t)

) + ε

2

∫ z+t

z−t
V1(y) dy,

V nlin(t, z)
.= 1

2

∫ t

0

∫ z+t−τ

z−t+τ

∫

Rn−1
|∂t u(τ, y, w)|qdw dy dτ.

Now that we obtained the explicit integral representation formulas for (U ,V ),
we need to determine the functional related to (u, v) that blows up in finite time. We
anticipate that this functional will be V evaluated on a certain characteristic line. In
order to prove the blow-up result wewill establish a sequence of lower bound estimates
for this functional, that we will determine by means of a suitable iteration frame.

The next step is to determine the iteration frame. For this purpose we proceed with
lower bound estimates for the functions U nlin,V nlin. Hereafter we focus on the case
n � 2, nevertheless our computations can be repeated with simple modifications in
the case n = 1.

By the support condition (5) we get

supp ∂t u(t, ·), supp ∂tv(t, ·) ⊂ BR+t for any t ∈ [0, T ),
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that implies in turn

supp ∂t u(t, z, ·), supp ∂tv(t, z, ·) ⊂
{

w ∈ R
n−1 : |w| �

(
(R + t)2 − z2

)1/2
}

(19)

for any t ∈ [0, T ) and any z ∈ R such that |z| � R+ t . Combining Hölder’s inequality
and (19), we arrive at

∫

Rn−1
|∂tv(τ, y, w)|pdw �

(
(R + τ)2 − y2

)− n−1
2 (p−1)|∂tV (τ, y)|p,

∫

Rn−1
|∂t u(τ, y, w)|qdw �

(
(R + τ)2 − y2

)− n−1
2 (q−1)|∂tU (τ, y)|q ,

for any τ ∈ [0, t] and any y ∈ [z − t + τ, z + t − τ ]. Thus, we obtain

U nlin(t, z) �
∫ t

0
e− b

2 (t−τ)

∫ z+t−τ

z−t+τ

I0
(
μ

√
(t − τ)2 − |z − y|2

)

(
(R + τ)2 − y2

) n−1
2 (p−1)

|∂tV (τ, y)|p dy dτ,

V nlin(t, z) �
∫ t

0

∫ z+t−τ

z−t+τ

(
(R + τ)2 − y2

)− n−1
2 (q−1)|∂tU (τ, y)|q dy dτ.

Applying Fubini’s theorem, we have

U nlin(t, z) �
∫ z+t

z−t

∫ t−|z−y|

0
e− b

2 (t−τ)
I0

(
μ

√
(t − τ)2 − |z − y|2

)

(
(R + τ)2 − y2

) n−1
2 (p−1)

|∂tV (τ, y)|p dτ dy,

V nlin(t, z) �
∫ z+t

z−t

∫ t−|z−y|

0

(
(R + τ)2 − y2

)− n−1
2 (q−1)|∂tU (τ, y)|q dτ dy.

From here on we will work on the characteristic line t − z = R for z � R. Also,
shrinking the domain of integration in the previous estimate for U nlin, we find

U nlin(R + z, z) �
∫ z

R

∫ y+R

y−R
e− b

2 (t−τ)
I0

(
μ

√
(t − τ)2 − |z − y|2

)

(
(R + τ)2 − y2

) n−1
2 (p−1)

|∂tV (τ, y)|p dτ dy

�
∫ z

R

e− b
2 (z−y)

(R + y)
n−1
2 (p−1)

∫ y+R

y−R
I0

(

μ

√

(t − τ)2 − |z − y|2
)

|∂tV (τ, y)|p dτ dy

�
∫ z

R
e− b

2 (z−y)(R + y)−
n−1
2 (p−1)

∫ y+R

y−R
|∂tV (τ, y)|p dτ dy,

where in the last step we used the inequality I0(s) � 1 for any s � 0 (due to the
identity I′0(s) = I1(s) � 0 for any s � 0 and I0(0) = 1).
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Remark 4 As we pointed out in the introduction, we may not use the asymptotic
estimate

I0(s) ∼ 1√
2πs

es for s → ∞

while deriving the previous inequality. Indeed, on the domain of integration (namely,
for y ∈ [R, z] and τ ∈ [y − R, y + R]) the argument of the modified Bessel function
of the first kind of order 0 satisfies

μ

√

(t − τ)2 − |z − y|2 ≈ μ
√

z − y,

so it can be large only for y away from a neighborhood of z. However, if we shrink
further the domain of integration by removing a neighborhood of z, then, we are not

able to compensate the exponentially decaying term e− b
2 z through the factor e

b
2 y in

the integral. This explains why earlier we had to use the lower bound estimate I0 � 1
rather than the asymptotic estimate for I0.

Then, by Jensen’s inequality and the fundamental theorem of calculus, we get

U nlin(R + z, z) �
∫ z

R
e− b

2 (z−y)(R + y)−
n−1
2 (p−1)

∣
∣
∣
∣

∫ y+R

y−R
∂tV (τ, y) dτ

∣
∣
∣
∣

p

dy

�
∫ z

R
e− b

2 (z−y)(R + y)−
n−1
2 (p−1)|V (y + R, y)|p dy (20)

for z � R, where we employed V (y − R, y) = 0 that follows from the support
condition (18). For V nlin the estimate from below on the characteristic line t − z = R
can be obtained in a similar way. For z � R it holds

V nlin(R + z, z) �
∫ z

R
(R + y)−

n−1
2 (q−1)|U (y + R, y)|q dy. (21)

Therefore, since u0, u1, v0, v1 and the kernel functions in the definitions of
U lin,V lin are nonnegative, for suitable positive constants C, K depending on
n, p, q, R from (20) and (21) we have the iteration frame

U (R + z, z) � C
∫ z

R
e− b

2 (z−y)(R + y)−
n−1
2 (p−1)|V (y + R, y)|p dy for z � R,

(22)

V (R + z, z) � K
∫ z

R
(R + y)−

n−1
2 (q−1)|U (y + R, y)|q dy for z � R.

(23)

In order to start the iteration procedure, we need a first lower bound estimate for
V (R + z, z). Since v0 is nonnegative (and so is V0), from the definition of V lin we
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get immediately

V lin(t, z) � ε

2

∫ z+t

z−t
V1(y) dy.

On the characteristic line t − z = R for z � R it results [−R, R] ⊂ [z − t, z + t] ,
thus, from the support condition (17) we obtain

V lin(R + z, z) � ε

2

∫

R

V1(y) dy = ε

2

∫

R

∫

Rn−1
v1(y, w) dw dy = 1

2
‖v1‖L1(Rn) ε,

(24)

where we used Fubini’s theorem and the nonnegativity of v1.

Remark 5 Let us point out that for U lin we may derive only lower bounds that decay
exponentially. Namely, since I0(s) � 0 and I1(s) � s

2 for s � 0 (the estimate from
below for I1 is a straightforward consequence of the Maclaurin series expansion), and
we assumed u0, u1 � 0, from the definition of U lin for z � R we have

U lin(R + z, z) � ε

2

∥
∥u1 + b

2u0
∥
∥

L1(Rn)
e− b

2 t + μ2ε

4
‖u0‖L1(Rn) t e− b

2 t .

Unfortunately, combining the previous exponential lower bound for U with the iter-
ation frame (22)–(23) we are not able to get a sequence of lower bound estimates for
U (R +z, z)whose lower bound diverges as j → ∞ for t above a certain ε-dependent
threshold ( j denotes here the index in the sequence of lower bounds). In other words,
an exponentially decaying lower bound for U does not allow us to derive a blow-up
result for (1).

Since the nonlinear term in the second equation in (1) is nonnegative, from (24) it
follows

V (R + z, z) � Mε (25)

for z � R, where M
.= 1

2‖v1‖L1(Rn).
We can start now the iteration argument to get a sequence of lower bound estimates

for V (R + z, z). Since in (22) it is present an exponential factor we need to use a
slicing procedure when shrinking the domain of integration. The idea to shrink the
domain of integration and cut intervals smaller and smaller on each step (i.e. the slicing
procedure) was introduced for the first time in [1]. Hence, in the series of papers [4,
5] it was developed a slicing procedure associated with an increasing exponential
function. Later, this method has been applied to study the blow-up dynamic of several
semilinear weakly coupled systems (cf. [2, 3, 6]).

We shall consider separately the treatment of the subcritical case θ(n, p, q) > 0
from the treatment of the critical case θ(n, p, q) = 0.
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4.1 Subcritical case

In this section we focus on the subcritical case θ(n, p, q) > 0. Let us introduce the
parameters that individuate the slicing procedure, namely, the sequences of positive
reals {� j } j∈N, {L j } j∈N defined as follows:

�0
.= max

{
2

bR
, 1

}

and � j
.= 1 + (pq)− j for any j ∈ N\{0}, (26)

L j
.=

j∏

k=0

�k for any j ∈ N. (27)

We emphasize that

L
.= lim

j→∞ L j =
∞∏

k=0

�k ∈ R (28)

and, moreover, since � j > 1 for any j ∈ N\{0}, it results L j ↑ L as j → ∞.

Remark 6 We emphasize that the convergence of
∏∞

k=0 �k is a consequence of the
following elementary property: given a sequence of positive real numbers {ak}k∈N,
then, the infinite product

∏∞
k=0 ak is convergent if and only if the series

∑∞
k=0 ln(ak)

is convergent.

Our next goal is to prove

V (R + z, z) � C j (R + z)−α j (z − L j R)β j for z � L j R and any j ∈ N, (29)

where {C j } j∈N, {α j } j∈N and {β j } j∈N are sequences of nonnegative real numbers that
we shall determine iteratively. Clearly, due to (25), (29) for j = 0 holds true by setting
C0

.= Mε and α0
.= 0, β0

.= 0. Next we prove the inductive step. We assume that (29)
is satisfied for some j � 0 and we will prove it for j + 1. Plugging (29) in (22), for
z � L j R we get

U (R + z, z) � C
∫ z

L j R
e− b

2 (z−y)(R + y)−
n−1
2 (p−1)|V (y + R, y)|p dy

� CC p
j

∫ z

L j R
e− b

2 (z−y)(R + y)−
n−1
2 (p−1)−α j p(y − L j R)β j p dy

� CC p
j (R + z)−

n−1
2 (p−1)−α j p

∫ z

L j R
e− b

2 (z−y)(y − L j R)β j p dy.

Thus, if we consider z � L j+1R then [z/� j+1, z] ⊂ [L j R, z]. Therefore, shrinking
the domain of integration in the previous inequality, for z � L j+1R we have

U (R + z, z) � CC p
j (R + z)−

n−1
2 (p−1)−α j p

∫ z

z/� j+1

e− b
2 (z−y)(y − L j R)β j p dy
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� CC p
j (R + z)−

n−1
2 (p−1)−α j p

(
z

� j+1
− L j R

)β j p
∫ z

z/� j+1

e− b
2 (z−y) dy

= 2CC p
j

b�
β j p
j+1

(R + z)−
n−1
2 (p−1)−α j p(z − L j � j+1R)β j p

(
1 − e− b

2 (1−1/� j+1)z
)

. (30)

Let us estimate from below the factor on the right hand-side of the previous chain of
inequalities that contains the exponential term. Then, for z � L j+1R it holds

1 − e− b
2 (1−1/� j+1)z � 1 − e− b

2 RL j+1(1−1/� j+1) = 1 − e− b
2 RL j (� j+1−1)

� 1 − e− b
2 R�0(� j+1−1) � 1 − e−(� j+1−1)

� 1 −
(
1 − (� j+1 − 1) + 1

2 (� j+1 − 1)2
)

= (� j+1 − 1)
(
1 − 1

2 (� j+1 − 1)
) = (pq)−2( j+1)

(
(pq) j+1 − 1

2

)

� (pq)−2( j+1) (
(pq) − 1

2

)
. (31)

Combining (30) and (31), for z � L j+1R we arrive at

U (R + z, z)

� 2pq − 1

b
CC p

j �
−β j p
j+1 (pq)−2( j+1)(R + z)−

n−1
2 (p−1)−α j p(z − L j+1R)β j p.

Plugging the previous upper bound for U (R + z, z) in (23), for z � L j+1R we get

V (R + z, z) � K
∫ z

L j+1R
(R + y)−

n−1
2 (q−1)|U (y + R, y)|q dy

�
K Cq (2pq − 1)q b−q C pq

j

�
β j pq
j+1 (pq)2q( j+1)

∫ z

L j+1R
(R + y)−

n−1
2 (pq−1)−α j pq (y − L j+1R)β j pq dy

�
K Cq (2pq − 1)q b−q C pq

j

�
β j pq
j+1 (pq)2q( j+1)

(R + z)−
n−1
2 (pq−1)−α j pq

∫ z

L j+1R
(y − L j+1R)β j pq dy

= K Cq (2pq − 1)q b−q C pq
j

�
β j pq
j+1 (pq)2q( j+1)(β j pq + 1)

(R + z)−
n−1
2 (pq−1)−α j pq (z − L j+1R)β j pq+1.

Thus, we proved (29) for j + 1 with

C j+1
.= K Cq(2pq − 1)qb−qC pq

j

�
β j pq
j+1 (pq)2q( j+1)(β j pq + 1)

, (32)

α j+1
.= n − 1

2
(pq − 1) + pqα j , β j+1

.= 1 + pqβ j . (33)

The next step is to determine a suitable lower bound for C j , that will be easier to
handle. First we derive an explicit representation for α j and β j . By using recursively
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(33), we have

α j = n−1
2 (pq − 1) + pqα j−1 = · · · = (pq) jα0 + n−1

2 (pq − 1)
j−1∑

k=0

(pq)k

= n−1
2 ((pq) j − 1), (34)

β j = 1 + pqβ j−1 = · · · = (pq) jβ0 +
j−1∑

k=0

(pq)k = (pq) j −1
pq−1 . (35)

Therefore,

(β j−1 pq + 1)−1 = β−1
j � (pq − 1)(pq)− j .

Moreover, since

lim
j→∞ �

β j−1 pq
j = lim

j→∞ exp

(
(pq) j − pq

pq − 1
ln

(
1 + (pq)− j )

)

= e1/(pq−1),

there exists N = N (p, q, b, R) > 0 such that �
−β j−1 pq
j > N for any j ∈ N. Conse-

quently,

C j = K Cq(2pq − 1)qb−qC pq
j−1

�
β j−1 pq
j (pq)2q j (β j−1 pq + 1)

� D(pq)−(2q+1) j C pq
j−1 (36)

for any j ∈ N, where D
.= K Cq N (2pq −1)q(pq −1)b−q . Applying the logarithmic

function to both sides of (36) and using iteratively the resulting inequality, we have

lnC j � pq lnC j−1 − (2q + 1) j ln(pq) + ln D

� (pq)2 lnC j−2 − (2q + 1) ln(pq)( j + ( j − 1)pq) + (1 + pq) ln D

� · · · � (pq) j lnC0 − (2q + 1) ln(pq)

j−1∑

k=0

( j − k)(pq)k + ln D
j−1∑

k=0

(pq)k .

Using the identities

j−1∑

k=0

( j − k)(pq)k = 1

pq − 1

(
(pq) j+1 − pq

pq − 1
− j

)

,

j−1∑

k=0

(pq)k = (pq) j − 1

pq − 1
,

(37)

it results

lnC j � (pq) j
(

lnC0 − (2q + 1)pq ln(pq)

(pq − 1)2
+ ln D

pq − 1

)

+ (2q + 1)pq ln(pq)

(pq − 1)2
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+ (2q + 1) ln(pq)

pq − 1
j − ln D

pq − 1
.

Let us denote by j0 = j0(n, b, p, q, R) the smallest nonnegative integer such that

j0 � ln D

(2q + 1) ln(pq)
− pq

pq − 1
.

Then, for any j � j0

lnC j � (pq) j
(

lnC0 − (2q + 1)pq ln(pq)

(pq − 1)2
+ ln D

pq − 1

)

= (pq) j ln(Eε), (38)

where E
.= M(pq)−(2q+1)(pq)/(pq−1)2 D1/(pq−1). Combining (29), (34), (35) and

(38), for j � j0 and z � L R we find

V (R + z, z) � exp
(
(pq) j ln(Eε)

)
(R + z)−

n−1
2 ((pq) j −1)(z − L R)

(pq) j −1
pq−1

= exp
(
(pq) j

(
ln(Eε) − n−1

2 ln(R + z) + 1
pq−1 ln(z − L R)

))

× (R + z)
n−1
2 (z − L R)

− 1
pq−1 .

Equivalently, for t � (L + 1)R and j � j0 it holds

V (t, t − R) � exp
(
(pq) j

(
ln(Eε) − n−1

2 ln t + 1
pq−1 ln(t − (L + 1)R)

))

× t
n−1
2 (t − (L + 1)R)

− 1
pq−1 .

For t � 2(L + 1)R we can estimate ln(t − (L + 1)R) � ln t − ln 2. Consequently,
for t � 2(L + 1)R and j � j0 we have

V (t, t − R) � exp
(
(pq) j

(
ln(Eε) + ( 1

pq−1 − n−1
2 ) ln t − 1

pq−1 ln 2
))

(39)

× t
n−1
2 (t − (L + 1)R)

− 1
pq−1

= exp
(
(pq) j

(
ln

(
E1εtθ(n,p,q)

)))
t

n−1
2 (t − (L + 1)R)

− 1
pq−1 , (40)

where E1
.= 2−1/(pq−1)E and θ is defined in (4).

Let us fix ε0 = ε0(n, p, q, b, R, v1) > 0 sufficiently small so that

ε0 � E−1
1 (2(L + 1)R)−θ(n,p,q).

Then, for any ε ∈ (0, ε0] and any t � (E1ε)
−θ(n,p,q)−1

we have

t � 2(L + 1)R and ln
(

E1εtθ(n,p,q)
)

> 0,
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so letting j → ∞ in (40) we see that V (t, t − R) is not finite.
Summarizing we proved that (u, v) blows up in finite time and we established the

upper bound estimate in (6).

4.2 Critical case

In this section we study the blow-up result in the critical case θ(n, p, q) = 0. In this
case it is more convenient to rewrite the iteration frame as follows

U (R + z, z) � C
∫ z

R
e− b

2 (z−y)y− n−1
2 (p−1)|V (R + y, y)|p dy for z � R, (41)

V (R + z, z) � K
∫ z

R
y− n−1

2 (q−1)|U (R + y, y)|q dy for z � R. (42)

Note that, for the sake of simplicity, we kept the same notations for the multiplicative
constants as in Sect. 4.1.

The main difference in comparison to the subcritical case consists in the choice
of the parameters characterizing the slicing procedure. We introduce the sequence
{� j } j∈N, where

� j
.= 1 + 4

bR

(
2 − 2− j ) for any j ∈ N.

The sequence {� j } j∈N is strictly increasing and bounded and � j ↑ �
.= 1+ 8/(bR)

as j → ∞. We shall employ this sequence when applying the slicing procedure.
The next step is to prove the sequence of lower bound estimates

V (R + z, z) � K j

(

ln

(
z

� j R

))γ j

for z � � j R and any j ∈ N, (43)

where {K j } j∈N and {γ j } j∈N are sequences of nonnegative real numbers to be deter-
mined iteratively throughout the proof.

We remark that (25) implies the validity of (43) for j = 0, provided that K0 = Mε

and γ0 = 0. In order to establish (43) for any j ∈ N it remains to demonstrate the
inductive step. Let us assume that (43) is fulfilled for some j ∈ N, then, we have to
prove that (43) is satisfied also for j + 1. Plugging (43) in (41), for z � � j+1R we
find

U (R + z, z) � C
∫ z

� j R
e− b

2 (z−y)y− n−1
2 (p−1)|V (R + y, y)|p dy

� C K p
j

∫ z

� j R
e− b

2 (z−y)y− n−1
2 (p−1)

(

ln

(
y

� j R

))γ j p

dy

� C K p
j z− n−1

2 (p−1)
∫ z

� j z
� j+1

e− b
2 (z−y)

(

ln

(
y

� j R

))γ j p

dy
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� C K p
j z− n−1

2 (p−1)
(

ln

(
z

� j+1R

))γ j p ∫ z

� j z
� j+1

e− b
2 (z−y) dy

= 2b−1C K p
j z− n−1

2 (p−1)
(

ln

(
z

� j+1R

))γ j p (

1 − e
− b

2 (� j+1−� j )
z

� j+1

)

,

where in the third step we used [� j R, z] ⊃ [ � j z
� j+1

, z
]
. Since {� j } j∈N is an increasing

sequence, for z � � j+1R we may estimate

1 − e
− b

2 (� j+1−� j )
z

� j+1 � 1 − e− bR
2 (� j+1−� j )

� bR

2
(� j+1 − � j )

(

1 − bR

4
(� j+1 − � j )

)

= 2−(2 j+1)(2 j+1 − 1) � 2−(2 j+1),

where in the second inequality we used the elementary inequality e−s � 1 − s + s2
2

for any s � 0. Thus, for z � � j+1R we showed that

U (R + z, z) � b−1C 2−2 j K p
j z− n−1

2 (p−1)
(

ln

(
z

� j+1R

))γ j p

.

Using the last lower bound estimate forU (R + z, z) in (42) and the critical condition
θ(n, p, q) = 0, for z � � j+1R we get

V (R + z, z) � K
∫ z

� j+1R
y− n−1

2 (q−1)|U (R + y, y)|q dy

� K b−qCq 2−2q j K pq
j

∫ z

� j+1R
y− n−1

2 (pq−1)
(

ln

(
y

� j+1R

))γ j pq

dy

= K b−qCq 2−2q j K pq
j

∫ z

� j+1R
y−1

(

ln

(
y

� j+1R

))γ j pq

dy

= K b−qCq 2−2q j K pq
j (γ j pq + 1)−1

(

ln

(
z

� j+1R

))γ j pq+1

,

which is exactly (43) for j + 1, provided that we set

K j+1
.= K b−qCq 2−2q j K pq

j (γ j pq + 1)−1, (44)

γ j+1
.= γ j pq + 1. (45)

By applying iteratively (45) and γ0 = 0, we obtain

γ j = 1 + pqγ j−1 = · · · = (pq) jγ0 +
j−1∑

k=0

(pq)k = (pq) j −1
pq−1 . (46)
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Next we determine a lower bound estimate for the constant K j . From the previous
representation for γ j it follows

K j = K b−qCq 2−2q( j−1)K pq
j−1(γ j−1 pq + 1)−1 = K b−qCq 2−2q( j−1)K pq

j−1γ
−1
j

� 22q K b−qCq(pq − 1) 2−2q j (pq)− j K pq
j−1 = D̃(22q pq)− j K pq

j−1,

where D̃
.= 22q K b−qCq(pq − 1). Applying the logarithmic function to both sides

of the inequality K j � D̃(22q pq)− j K pq
j−1 and using in an iterative way the obtained

inequality, we obtain

ln K j � pq ln K j−1 − j ln(22q pq) + ln D̃

� (pq)2 ln K j−2 − ln(22q pq)( j + ( j − 1)pq) + (1 + pq) ln D̃

� · · · � (pq) j ln K0 − ln(22q pq)

j−1∑

k=0

( j − k)(pq)k + ln D̃
j−1∑

k=0

(pq)k

= (pq) j

(

ln(Mε) − (pq) ln(2q pq)

(pq − 1)2
+ ln D̃

pq − 1

)

+ ln(2q pq)

pq − 1
j

+ (pq) ln(2q pq)

(pq − 1)2
− ln D̃

pq − 1
,

where in the last step we applied the identities in (37).
If we denote by j1 = j1(n, b, p, q, R) the smallest nonnegative integer number

such that

j1 � ln D̃

ln(2q pq)
− pq

pq − 1
,

then, for any j � j1 it results

ln K j � (pq) j

(

ln(Mε) − (pq) ln(2q pq)

(pq − 1)2
+ ln D̃

pq − 1

)

= (pq) j ln(Ẽε), (47)

where Ẽ
.= M(2q pq)−(pq)/(pq−1)2 D̃1/(pq−1).

Combining (43), (46) and (47), for j � j1 and z � �R we find

V (R + z, z) � exp
(
(pq) j ln(Ẽε)

) (
ln

( z

�R

)) (pq) j −1
pq−1

= exp

(

(pq) j
(

ln

(

Ẽε ln
( z

�R

) 1
pq−1

))) (
ln

( z

�R

))− 1
pq−1
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Therefore, for t � (� + 1)R and for any j � j1 we have

V (t, t − R) � exp

(

(pq) j

(

ln

(

Ẽε ln

(
t − R

�R

) 1
pq−1

))) (

ln

(
t − R

�R

))− 1
pq−1

� exp

(

(pq) j

(

ln

(

Ẽε ln

(
t

2�R

) 1
pq−1

))) (

ln

(
t − R

�R

))− 1
pq−1

.

(48)

Let us fix ε0 = ε0(n, b, p, q, R) > 0 sufficiently small so that ε
−(pq−1)
0 �

Ẽ pq−1 ln �+1
2� . Then, for any ε ∈ (0, ε0] and any t > (2�R) exp

(
(Ẽε)−(pq−1)

)

the following inequalities are satisfied

t � (� + 1)R and ln

(

Ẽε ln

(
t

2�R

) 1
pq−1

)

> 1,

thus, letting j → ∞ in (48) the lower bound for V (t, t − R) diverges. Consequently,
V (t, t − R) cannot be finite. So, we proved that v blows up in finite time and we found
as byproduct of the iteration procedure the upper bound estimate

T (ε) � exp
(

Ẽ1ε
−(pq−1)

)

for the lifespan of the solution (u, v) for any ε ∈ (0, ε0], where Ẽ1 > 0 is a suitable
constant depending on n, b, p, q, R, v1.
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