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Abstract
We investigate the number of steps taken by three variants of the Euclidean algorithm
on average over Farey fractions. We show asymptotic formulae for these averages
restricted to the interval (0, 1/2), establishing that they behave differently on (0, 1/2)
than they do on (1/2, 1). These results are tightly linked with the distribution of
lengths of certain continued fraction expansions as well as the distribution of the
involved partial quotients. As an application, we prove a conjecture of Ito on the
distribution of values of Dedekind sums. The main argument is based on earlier work
of Zhabitskaya, Ustinov, Bykovskiı̆ and others, ultimately dating back to Lochs and
Heilbronn, relating the quantities in question to counting solutions to a certain system
of Diophantine inequalities. The above restriction to only half of the Farey fractions
introduces additional complications.
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1 Introduction

1.1 Euclidean algorithm (classical version)

The Euclidean algorithm—referred to as ‘EA(sub)’ in the sequel—for the computa-
tion of the greatest common divisor (gcd) of two positive integers a and b, has been
described as ‘the oldest non-trivial algorithm that has survived to the present day’ by
Knuth [16, p. 318]. In its most basic form the algorithm proceeds by replacing the
input tuple (a, b) by (a − b, b) if a < b (‘Case A’) and (a, b − a) if a ≥ b (‘Case B’)
until one of the arguments becomes zero (‘Case C’), in which case the gcd of the
original input is given by the other argument. (There is some leeway in describing
the algorithm and we shall choose what is convenient for our exposition rather than
what is historically most accurate; the reader is referred to loc. cit. for a more detailed
discussion of that matter.) For instance, on the input (11, 3), the algorithm takes the
following six steps:

(11, 3) �→ (8, 3) �→ (5, 3)
∗�→ (2, 3)

∗�→ (2, 1)

�→ (1, 1)
∗�→ (1, 0) (hence, gcd(11, 3) = 1),

(1.1)

where the asterisks (∗)mark the positionswhere the algorithm switches between cases.
Observe that the number 11/3 has the continued fraction expansion

11

3
= 3 + 1

1 + 1

2

. (1.2)

and 6 = 3 + 1 + 2 is the sum of the partial quotients herein.
If one modifies Case A of EA(sub) as to replace (a, b) by (a − B, b), where B

is the largest multiple of b not exceeding a, and modifies Case B similarly, then
the modified algorithm skips all steps ( �→) not marked with an asterisk in the above
example; this amounts to precisely 3 steps which is also the number of partial quotients
in the continued fraction expansion (1.2); we shall refer to this version of EA(sub) by
EA(div).

It is easy to see that the correspondence of number of steps on the input (a, b) and
properties of the continued fraction expansion

a

b
= [0; a1, . . . , an] := 0 + 1

a1 + 1

a2 + · · ·
· · · + 1

an

(1.3)

of a/b ∈ [0, 1) (where n ∈ N0 and the so-called partial quotients a1, a2, . . . , an are
positive integers and an ≥ 2) holds in general, i.e.,
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(b)

(c)

(a)

Fig. 1 The number of steps of EA(sub), EA(div) &EA(div)
(by-excess) when applied to all reduceda/b ∈ [0, 1)∩Q

with 1 ≤ b ≤ 100

• the number of steps taken by EA(sub) when applied to (a, b) (or any tuple (ka, kb)

with some positive integer k) is a1 + a2 + · · · + an (see Fig. 1a for a plot of its
behavior), and

• the number of steps taken by EA(div) is n. We denote this number by s(a/b). (See
Fig. 1b for a plot of its behavior.)

1.2 Variants of the Euclidean algorithm

Several other variants of the Euclidean algorithm have been considered in the litera-
ture (see, e.g., [27, 28] for a selection). For the most part, they arise (ignoring some
technicalities) from modifying the distinguishing conditions of the cases A and B as
introduced in Sect. 1.1. Here we discuss only one such variant. In fact, for conve-
nience, we restrict our discussion to only stating a variant that is more similar in spirit
to EA(div) rather than EA(sub). To obtain this variant—referred to as EA(div)

(by-excess) in the

sequel—modify Case A of EA(div) to replace the input (a, b) by (B −a, b), where B is
the smallestmultiple of b not smaller than a andmake a similarmodification to CaseB.

Given this modification, our example (1.1) takes the shape (11, 3)
∗�→ (1, 3)

∗�→ (1, 0).
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294 P. Minelli et al.

Once more, one can associate a certain continued fraction expansion of a number
a/b ∈ [0, 1) to the behaviour of the algorithm on the input (a, b). The particular
continued fraction expansion relevant in this case is often called minus continued
fraction expansion1 and takes the shape

a

b
= �1; b1, . . . , bm� := 1 − 1

b1 − 1

b2 − · · ·
· · · − 1

bm

, (1.4)

where m ∈ N and b1, b2, . . . , bm ≥ 2 are integers. When expanding a/b as in (1.4),
then m + 1 can be seen to be the number of steps taken by EA(div)

(by-excess) on the input
(a, b). We shall write �(a/b) for the number m from (1.4) in the sequel. (See Fig. 1c
for a plot of �(a/b).) For further background on continued fractions we refer to [20].

1.3 Asymptotics for the number of steps of Euclidean algorithms

It is an interesting question to study statistical properties of the number of steps of
the Euclidean algorithm (and its variants), or—equivalently—distribution properties
of continued fractions. It was Heilbronn [12] who first identified the principal term of
the asymptotics for the average number of steps in the case of the classical Euclidean
algorithm, the average being taken over numerators:

1

ϕ(b)

∑

a≤b
gcd(a,b)=1

s

(
a

b

)
= A1 log b + O((log log b)4) (as b → ∞);

here ϕ(n) := #{1 ≤ m ≤ n : gcd(m, n) = 1} (n ∈ N) is Euler’s totient function
and A1 is an explicitly given non-zero constant.2 For the same average, an asymptotic
formula with two significant terms was obtained later by Porter [21]:

1

ϕ(b)

∑

a≤b
gcd(a,b)=1

s

(
a

b

)
= A1 log b + A2 + Oε(b

−1/6+ε);

here A1 is as before and A2 is also an explicitly given non-zero constant. Bykovskiı̆
and Frolenkov [6] have recently obtained a generalisation of this and obtained an
improved error term.

Considering averages over both numerators and denominators, an asymptotic for-
mula with power-law fall-off in the error term was obtained by Vallée [27] through
the use of probability theory and ergodic-theoretic methods. This was improved by

1 Instead of ‘minus’, some authors use the attribute ‘backwards’ or ‘regular’ instead.
2 See Sect. 2.3 for a comment on the notation.
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Ustinov [24], who obtained an asymptotic formula with better fall-off in the error term
than the one that can be derived from Porter’s result:

1

#F (Q)

∑

b≤Q

∑

a≤b
gcd(a,b)=1

s

(
a

b

)
= B1 log Q + B2 + O((log Q)5/Q), (1.5)

where

B1 = log 2

2ζ(2)
, B2 = log 2

4ζ(2)

(
3 log 2 + 4γ − 2

ζ ′(2)
ζ(2)

− 3

)
− 1

4
,

γ denotes the Euler–Mascheroni constant, ζ is the Riemann zeta function, and

F (Q) = { a/b ∈ Q : gcd(a, b) = 1, 0 ≤ a ≤ b ≤ Q }

denotes the set of Farey fractions of order Q. In this regard it is worth noting that
another natural way of averaging is over all pairs (a, b) with 1 ≤ a ≤ b ≤ Q without
assuming coprimality of a and b. However, this situation is easily covered using (1.5)
and Möbius inversion.

While examining the statistical properties of different variations of the Euclidean
algorithm, Vallée [28] obtained also the leading term of the asymptotic formula for the
expectation of the number of steps of the by-excess Euclidean algorithm (and hence for
the average length of minus continued fractions). This was improved by Zhabitskaya
[30] (following the approach of Ustinov [24]), a few years later, who showed that

1

#F (Q)

∑

b≤Q

∑

a≤b
gcd(a,b)=1

�

(
a

b

)
=C1(log Q)2+C2 log Q+C3+O((log Q)6/Q), (1.6)

where C1, C2, C3 are explicitly given non-zero constants, the first two being given by

C1 = 1

2ζ(2)
, C2 = 1

ζ(2)

(
2γ − 3

2
− 2

ζ ′(2)
ζ(2)

)
, (1.7)

and the value ofC3 being given by a somewhat longer, yet similar expressionwhichwe
omit here. Both error terms in (1.5) and (1.6) have been improved to O((log Q)3/Q)

by Frolenkov [10] who incorporated ideas of Selberg from the elementary proof of
the prime number theorem.

For more results regarding the expectation and the variance of the number of steps
of the classical and by-excess Euclidean algorithm, we also refer to the work of Baladi
and Vallée [1], Bykovskiı̆ [5], Dixon [8, 9], Hensley [13] and Ustinov [25, 26].
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1.4 Dedekind sums

Let �η� = min{ n ∈ Z : n ≤ η } denote the integer part of η ∈ R. Then the saw-tooth
function is defined as

((η)) =
{

η − �η� − 1/2 if η ∈ R \ Z,

0 if η ∈ Z.

For any pair a, b ∈ Z, b = 0, the Dedekind sum3 D(a, b) is defined as

D(a, b) =
∑

n≤b

((
n

b

))((
na

b

))
.

It can be verified that D(a, b) = D(ka, kb) for any non-zero integer k. Hence,
D(a/b) := D(a, b) is well defined. Moreover, the function D : Q → Q just defined
is periodic with period one.

Dedekind sums originally arose in connection with the multiplier system for
Dedekind’s eta function over the modular group of two by two integer matrices of
determinant one [7] and also satisfy a curious reciprocity law. By means of the latter
Barkan [2] and (independently) Hickerson [14] have obtained the following identity
which connects Dedekind sums with continued fraction expansions:

D(a/b) = (−1)n − 1

8
+ a/b − (−1)n [0; an, . . . , a2, a1] + Σ±(a/b)

12
; (1.8)

here a/b = [0; a1, a2, . . . , an] is as in (1.3) and

Σ±(a/b) :=
∑

j≤n

(−1) j−1a j . (1.9)

(See Fig. 2 for a plot of Σ±.) In particular, Hickerson employed (1.8) to prove that the
set {(a/b, D(a/b)) : a/b ∈ Q} is dense in R2.

Concerning distribution properties ofDedekind sums observe that via the symmetry
property D(x) = −D(1 − x) it is easy to see that

∑

x∈F (Q)

D(x) = 0.

On the other hand, letF0(Q) = F (Q) ∩ [0, 1/2) denote ‘half’ of all Farey fractions
with denominators bounded by Q. Then, on the basis of numerical evidence, it has
been conjectured by Ito [15] that

lim
Q→∞ Σ(Q) = +∞, where Σ(Q) := 1

#F (Q)

∑

x∈F0(Q)

D(x). (1.10)

3 The notation s(a/b) is also commonly used, but would conflict with our notation for the length of (1.3).
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Fig. 2 Plot of Σ±(a/b) when applied to all Farey fractions a/b ∈ [0, 1] ∩ Q with 1 ≤ b ≤ 100. Note that
the average of the plotted values over the interval [0, 1/2) is clearly positive, whereas the average of the
plotted values over the interval [1/2, 1) is negative

For an exposition of results on Dedekind sums we refer to the classical work of
Rademacher and Grosswald [22], as well as a more up-to-date survey of Girstmair
[11] with a focus on distribution properties.

2 Main results

2.1 Results

One of the main results of the present work is a proof of Ito’s conjecture:

Theorem 2.1 (Ito’s conjecture is true) The statement in (1.10) holds. In fact, one even
has the following stronger quantitative version:

1

#F (Q)

∑

x∈F0(Q)

D(x) = 1

16
log Q + O(1). (2.1)

The proof of Theorem 2.1 rests crucially on the following variant of (1.6) which
we believe to be of independent interest:

Theorem 2.2 (Bias in EA(div)
(by-excess)) We have

1

#F (Q)

∑

x∈F0(Q)

�(x) = c1(log Q)2 + c2 log Q + O(1),

where c1, c2 are non-zero constants satisfying 2c1 = C1 and 2c2 > C2 with the
constants C1 and C2 given in (1.7). More precisely,

c1 = 1

4ζ(2)
, c2 = 1

2ζ(2)

(
2γ − 3

2
− 2

ζ ′(2)
ζ(2)

+ 3ζ(2)

4

)
= C2

2
+ 3

8
.

123



298 P. Minelli et al.

The above theorem may be interpreted as a quantitative version of the statement
that the length �(a/b) of the minus continued fraction expansion (1.4) tends to be
larger on average on F0(Q) than on F (Q) \ F0(Q) (due to 2c2 > C2; see (1.6)).
This may be phrased equivalently as saying that EA(div)

(by-excess) takes longer on average
for fractions in [0, 1/2) than it does for fractions in [1/2, 1).

In view of the above it seems natural to ask if similar results can be obtained
for the other algorithms EA(sub) and EA(div) discussed in Sect. 1.1. This turns out
to be a rather easier question. For EA(sub) one sees no difference in behaviour on
F0(Q) versus onF (Q) \F0(Q), as should be evident from the symmetry in Fig. 1a
about the vertical line through 1/2. The latter symmetry may be verified easily by
noting that x = [0; a1, a2, . . . , an] (with a1 ≥ 2 so that x ≤ 1/2) and 1 − x =
[0; 1, a1−1, a2, . . . , an] have the same sum of partial quotients, viz. identical running
time when fed into EA(sub). On the other hand, an analogue of Theorem 2.2 may be
obtained for EA(div):

Proposition 2.3 (Bias in EA(div)) We have

1

#F (Q)

∑

x∈F0(Q)

s(x) = b1 log Q + b2 + O((log Q)5/Q),

where 2b1 = B1 and 2b2 < B2 with the constants B1 and B2 given from (1.5). More
precisely, 2b2 = B2 − 1/2.

Proof This follows immediately from (1.5) and the fact that s(x) = s(1 − x) − 1 for
x ∈ (0, 1/2). ��
We should like to mention that Bykovskiı̆ [5] has obtained an asymptotic formula for
averaging s(a/q) over all a in some arbitary interval of length at most q. However,
the error term in his result does not permit one to deduce Proposition 2.3.

Generalising Theorem 2.2 and Proposition 2.3 to averages over F ∩ [0, α) seems
to be an interesting problem. However, this requires a more careful analysis and a
sufficiently flexible generalisation of Lemma 4.2 below. As this seemed dispensable
for our primary intent of proving Theorem 2.1, we shall address this elsewhere in
forthcoming work (see also the first author’s doctoral dissertation [18]).

2.2 Plan of the paper

In the next section we show how Theorem 2.1 can be deduced from Theorem 2.2.
The proof of Theorem 2.2 is rather more involved. In Sect. 4 we sketch the overall
argument and show how Theorem 2.2 can be deduced from a technical proposition
(Proposition 4.5). The proof of the latter is carried out in Sect. 5.

2.3 Notation

We use the Landau notation f (x) = O(g(x)) and the Vinogradov notation f (x) �
g(x) to mean that there exists some constant C > 0 such that | f (x)| ≤ Cg(x) holds
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Bias in the Euclidean algorithm and a conjecture of Ito 299

for all admissible values of x (where the meaning of ‘admissible’ will be clear from
the context). Unless otherwise indicated, any dependence of C on other parameters is
specified using subscripts. Similarly, we write ‘ f (x) = o(g(x)) as x → ∞’ if g(x) is
positive for all sufficiently large values of x and f (x)/g(x) tends to zero as x → ∞.

Given two coprime integers a and q = 0 we write invq(a) for the smallest positive
integer in the residue class (a mod q)−1.

3 Deducing Theorem 2.1 from Theorem 2.2

Throughout this section we shall assume that Theorem 2.2 has already been proved.
The main tool for deducing Theorem 2.1 from Theorem 2.2 is the formula (1.8) of
Barkan and Hickerson. In this vein, recall also the definition of Σ±(x) given in (1.9).
For a number x ∈ [0, 1) as in (1.3) let

Σodd(x) =
n∑

i=1
i odd

ai , Σeven(x) =
n∑

i=2
i even

ai .

Then, clearly,

Σ±(x) = Σodd(x) − Σeven(x). (3.1)

The connection with minus continued fraction expansions and, thus, Theorem 2.2
arises as follows: in [29] Zhabitskaya notes4 that it is implicit in an article of Myerson
[19] that

�(x) = Σodd(x) − ε(x), (3.2)

�(1 − x) = Σeven(x) + ε(x). (3.3)

Here ε(x) ∈ {0, 1} is some correction term which is related to our way of forcing
uniqueness in the continued fraction expansion (1.3) by means of requiring the last
partial quotientan to exceed 1. In fact, one can describe the value of ε(x) quite precisely
(see [29]), but this is not necessary for our particular application.

Corollary 3.1 We have

1

#F (Q)

∑

x∈F0(Q)

Σ±(x) = 3

4
log Q + O(1).

Proof From (3.2) and Theorem 2.2 we deduce that

1

#F (Q)

∑

x∈F0(Q)

Σodd(x) = c1(log Q)2 + c2 log Q + O(1).

4 There appears to be a misprint in [29, Eq. (8)]: the left hand side should read l ′((b − a)/b), as can be
deduced from the equations (5) and (7) in loc. cit.
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Moreover, by (3.3),

∑

x∈F0(Q)

Σeven(x) =
∑

x∈F0(Q)

�(1 − x) + O(Q2) =
∑

x∈F (Q)\F0(Q)

�(x) + O(Q2).

On the other hand, (1.6) and Theorem 2.2 show that, after dividing by #F (Q), the
right hand side in the above is

(C1 − c1)(log Q)2 + (C2 − c2) log Q + O(1).

In view of (3.1), the result follows from the previous considerations. ��
Proof of Theorem 2.1 Clearly it suffices to prove (2.1). To this end, observe that,
by (1.8), we have D(x) = Σ±(x)/12 + O(1). Now (2.1) follows immediately from
this and Corollary 3.1. ��

4 Proof of Theorem 2.2

Before stating the key lemmas needed for the proof of Theorem 2.2, we give a short
informal sketch of the overall argument. In Sect. 4.2 we state the three key lemmas
we require. The proof of Theorem 2.2 is given in Sect. 4.3.

4.1 Sketch of the proof

In proving Theorem 2.2, we adapt the approach of Zhabitskaya [30]. The idea, which
goes back to Lochs [17] and Heilbronn [12], is to transfer the problem of computing
the (restricted) average of the lengths of (minus) continued fractions into a problem of
counting lattice points inside certain regions. By virtue of Lemmas 4.3 and 4.4 (below),
the proof of Theorem2.2 boils down to evaluating asymptotically the number of integer
solutions of the system

⎧
⎨

⎩

gcd(p, q) = 1, p, q ≥ 1,
invp(q) ≤ p/2,
2 ≤ nq + kp ≤ Q, 1 ≤ k < n.

This amounts to counting the lattice points inside some region subject to some copri-
mality condition and the additional restriction invp(q) ≤ q/2. The latter restriction is
not present in [30] and complicates the overall analysis. Following [30], we split the
problem of counting the solutions to the above system into five sub-cases. For every
case we have to count lattice points with certain properties inside regions (see Sect. 4.3
for the details). This counting problem is solved in Proposition 4.5 and it should be
apparent from the proof of Proposition 4.5 that the reason for the bias (2c2 > C2) in
Theorem 2.2 is found within two of the considered cases. More specifically, for one
of these cases, the number of lattice points to be counted is given, up to some error
term, by
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∑

q<Q1/4

1

q

∑

q/2<b≤q
gcd(b,q)=1

1

q
log

Q1/2

q2 =
∑

q<Q1/4

1

q2 log
Q1/2

q2 δ+(q),

where δ+ is the function appearing in Lemma 4.2. The same procedure carried out for
fractions greater than 1/2 leads to the same expression with δ+ being replaced by δ−.
As Lemma 4.2 shows, the functions δ+ and δ− agree everywhere except at 1 and 2;
this is the reason for 2c2 > C2.

4.2 Four lemmas

Each of the following lemmas plays a crucial rôle in the proof of Theorem 2.2. In fact,
in spite of its simplicity, Lemma 4.1 turns out to be particularly useful in establishing
Proposition 4.5: it permits a simple, yet important modification of the considered
systems, allowing us to evaluate R3(U ) and R5(U ) (to be defined below) with the
required precision (see Sect. 5 for details). The relevance of Lemma 4.2 as the source
of bias was already explained in Sect. 4.1. Lemmas 4.3 and 4.4 are adapted from [30,
Lemma 2 in § 2.3] and allow us to translate our problem into the enumeration of the
solutions of a system of inequalities (see (4.2)).

Lemma 4.1 (Inversion trick) Let p, q ≥ 2 be two coprime integers. Then

invp(q) ≤ p

2
if and only if invq(p) >

q

2
.

Proof By coprimality, there are integers a and b such that aq + bp = 1, where
a = invp(q) + tp and b = invq(p) + sq for some integers s and t . Hence

invp(q)q + invq(p)q − qp ≡ 1 mod pq.

On the other hand, the left hand side of the above is contained in the interval (−pq, pq).
Hence, we conclude

invp(q)q + invq(p)p = 1 + pq,

from which the lemma follows. ��
Lemma 4.2 Let ϕ be Euler’s totient function and define for every positive integer q
the counting functions

δ−(q) =
∑

b≤q/2
gcd(b,q)=1

1 and δ+(q) =
∑

q/2<b≤q
gcd(b,q)=1

1.

Then the following assertions hold:

1. δ+(1) = δ−(2) = 1;
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2. δ+(2) = δ−(1) = 0;
3. δ+(q) = δ−(q) = ϕ(q)/2 for q ≥ 3.

Proof The assertions for q ≤ 2 are trivial to check. For q ≥ 3 note that the sets

{ 1 ≤ b ≤ q/2 : gcd(b, q) = 1 } and { q/2 < b < q : gcd(b, q) = 1 }

are disjoint and in bijection by means of the map b �→ q − b. As the union of both
sets contains exactly ϕ(q) elements, we are done. ��
Lemma 4.3 The sum N0(Q) of the lengths of the minus continued fraction expansions
of the numbers a/q with 1 ≤ a < q/2, q ≤ Q is

N0(Q) = T0(Q) + O(Q2),

where T0(Q) denotes the number of solutions (a1, q1, a2, q2, m, n, a, b) ∈ N
8 to the

following system of equalities and inequalities:

⎧
⎨

⎩

a1q2 − a2q1 = 1, 1 ≤ a1 ≤ q1, 1 ≤ a2 ≤ q2/2,
na2 − ma1 = a, nq2 − mq1 = b, 1 ≤ a < b ≤ Q,

1 ≤ m < n, 1 ≤ q1 < q2.
(4.1)

Proof The claim follows mutatis mutandis from [30, pp. 1185–1186]. ��
Next, discarding an acceptable number of solutions in the process, we reduce the

system (4.1) to a system with four variables.

Lemma 4.4 Let R(Q) denote the number of solutions (p, q, n, m) ∈ N
4 of the system

⎧
⎨

⎩

gcd(p, q) = 1, p, q ≥ 1,
invp(q) ≤ p/2,
2 ≤ nq + kp ≤ Q, 1 ≤ k < n.

(4.2)

Then, the number N0(Q) defined as in Lemma 4.3 satisfies

N0(Q) = R(Q) + O(Q2).

Proof By virtue of Lemma 4.3, we only need to show that R(Q) = T0(Q) + O(Q2).
It is convenient to exclude the solutions with q1 = 1 from the discussion. We claim
that their number is O(Q2) and, thus, negligible. To this end, consider first all the
solutions of the system (4.1) with q1 = 1. The conditions in system (4.1) force that
a1 = a2 = q1 = 1 and q2 = 2, reducing the system to

{
n − m = a, 2n − m = b,

1 ≤ a < b ≤ Q, 1 ≤ m < n,

for which one easily sees that its number of solutions is � Q2.

123



Bias in the Euclidean algorithm and a conjecture of Ito 303

For the remainder of the proof we shall assume that q1 ≥ 2. We claim that this
assumption also implies that a1 ≤ q1/2. Indeed, suppose to the contrary that there
was some solution to (4.1) with q1 ≥ 2 and a1 > q1/2. We then deduce that

2 = 2(a1q2 − a2q1) ≥ (q1 + 1)q2 − 2a2q1 ≥ (q1 + 1)q2 − q2q1 = q2 > q1,

in contradiction with q1 ≥ 2.
Upon reducing the equationa1q2−a2q1 = 1moduloq1,weobtaina1 = invq1(q2)+

tq1 for some integer t . As a1 is positive and q1 < q2, it follows that t must vanish.
Hence, a1 = invq1(q2). Consequently, invq1(q2) ≤ q1/2. Now consider the system

{
gcd(q1, q2) = 1, 1 ≤ q1 < q2, invq1(q2) ≤ q1/2,
2 ≤ nq2 − mq1 ≤ Q, 1 ≤ m < n.

(4.3)

We now contend that the map � sending solutions u = (a1, q1, a2, q2, m, n, a, b)

of (4.1) with q1 ≥ 2 to solutions v = (q1, q2, m, n) of (4.3) (by means of dropping
the entries a1, a2, a, and b) is a bijection. Indeed, above we have just seen that this
map is well defined. To see that it is injective, suppose that v arises from some solution
u of (4.1). As we have seen, a1 = invq1(q2) is already determined by v. But then, by
a1q2 − a2q1 = 1, also a2 is determined by v. Similarly, (4.1) then yields that also a
and b are determined by v, showing that � is injective.

To show that� is also surjective, we start out with some solution v = (q1, q2, m, n)

of (4.3) and need to exhibit some preimage of v under �. As q1 and q2 are coprime,
there exist integers a1 and a2 such that a1q2 − a2q1 = 1. Moreover, by replacing
(a1, a2) by (a1 + tq1, a2 + tq2) with an appropriate integer t , we may assume that
0 ≤ a1 < q1. Furthermore, define a = na2 − ma1 and b = nq2 − mq1. We now show
that the octuple u = (a1, q1, a2, q2, m, n, a, b) is the desired preimage v under �.
We have shown above that a1 = invq1(q2). Similarly, by reducing a1q2 − a2q1 = 1
modulo q2, we find that a2 = t2q2 − invq2(q1) for some integer t2. We claim that
t2 = 1. To see this, first observe that

a1q2 − (q2 − invq2(q1))q1 ≡ a1q2 − a2q1 = 1 mod q1q2. (4.4)

From (4.3) we see that a1 = invq1(q2) ≤ q1/2 and Lemma 4.1 shows that invq2(q1) >

q2/2. Therefore,

a1q2 − (q2 − invq2(q1))q1

{
> q1q2/2 − (q2 − q2/2)q1 = 0,
< q1q2.

(4.5)

Upon combining (4.4) and (4.5) we infer that the left hand side of (4.5) is equal to one
and this shows that a2 = q2 − invq2(q1), as claimed. In particular, we have a2 < q2/2.
Moreover (4.3) shows that b ≤ Q. It remains to show that a < b. We have

q1a = q1(na2 − ma1) = n(a1q2 − 1) − ma1q1 = a1(nq2 − mq1) − n = a1b − n.

Using a1 ≤ q1, this shows that a < b. We conclude that � is surjective.
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Finally, we transform the system (4.3) into the system (4.2) by changing the vari-
ables slightly by means of the following map:

{solutions (q1, q2, m, n) of (4.3)} 1:1−→ {solutions (p, q, k, n) of (4.2)},
(q1, q2, m, n) �−→ (q1, q2 − q1, n − m, m).

This is easily checked to be a bijection; we omit the details. ��

4.3 Proof of Theorem 2.2

In view of Lemma 4.4, it suffices to count the number of solutions of the system

⎧
⎨

⎩

gcd(p, q) = 1, p, q ≥ 1,
invp(q) ≤ p/2,
2 ≤ nq + kp ≤ Q, 1 ≤ k < n,

(4.6)

with an error term of size O(Q2). The reader may notice the similarity between
the system (4.6) and the system [30, Eq. (42)]: they are almost identical, up to the
additional constraints concerning coprimality and modular inversion. Set U = Q1/2

and consider the following five cases:

• p ≤ q ≤ U ; (‘Case 1’)
• p ≤ q, U < q; (‘Case 2’)
• q < p ≤ U ; (‘Case 3’)
• q < p, U < p, n ≤ U ; (‘Case 4’)
• q < p, U < p, U < n. (‘Case 5’)

Those cases are exactly the five cases appearing in [30]. The following proposition
provides us the asymptotic number of solutions for each single case.

Proposition 4.5 Suppose that 1 ≤ i ≤ 5 and let Ri (U ) denote the number of solutions
to the system (4.6) subject to the additional constraint that ‘Case i’ be satisfied. Then
we have

1. R1(U ) = log 2

4ζ(2)
U 4 logU + O(U 4),

2. R2(U ) = log 2

4ζ(2)
U 4 logU + O(U 4),

3. R3(U ) = U 4(logU )2

8ζ(2)
+ U 4 logU

4ζ(2)

(
γ − ζ ′(2)

ζ(2)
+ 3ζ(2)

4
− log 2

)
+ O(U 4),

4. R4(U ) = U 4(logU )2

8ζ(2)
+ U 4 logU

4ζ(2)
(γ − log 2) + O(U 4),

5. R5(U ) = U 4

4ζ(2)
(logU )2 + U 2

2ζ(2)

(
γ − ζ ′(2)

2ζ(2)
− 3

2
+ 3ζ(2)

8

)
logU + O(U 4).

The proof of Proposition 4.5 is the most technical part of the paper. We postpone it
until Sect. 5.
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Assuming the conclusion of Proposition 4.5 for the moment, we are now in a
position to finish the proof of Theorem 2.2. Indeed, by the above, we find that the
number of solutions of the system (4.6) is equal to

U 4

2ζ(2)
(logU )2 + U 4

2ζ(2)

(
2γ − ζ ′(2)

ζ(2)
− 3

2
+ 3ζ(2)

4

)
logU + O(U 4).

Substituting U = Q1/2, we conclude for real numbers Q > 0 which are not squares
that

N0(Q) = Q2

8ζ(2)
(log Q)2 + Q2

4ζ(2)

(
2γ − ζ ′(2)

ζ(2)
− 3

2
+3ζ(2)

4

)
log Q + O(Q2),

(4.7)

where N0(Q) is the quantity described in Lemma 4.3. To obtain the same result in
case Q is a square, it suffices to notice that the asymptotic formula for N0(Q + 1/2)
matches (4.7) up to an error of order O(Q log Q). To finish the proof, we still have to
restrict to the set F0(Q). To this end, notice that by Möbius inversion we have

∑

x∈F0(Q)

�(x) =
∑

b≤Q

∑

a<b/2
gcd(a,b)=1

�

(
a

b

)
=

∑

d≤Q

μ(d)
∑

b≤Q/d

∑

a<b/2

�

(
a

b

)

=
∑

d≤Q

μ(d)N0

(
Q

d

)
.

Hence, we deduce from Lemma A.3 and (4.7) that

∑

x∈F0(Q)

�(x)= Q2(log Q)2

8ζ(2)2
+ Q2 log Q

4ζ(2)2

(
2γ − 3

2
− 2

ζ ′(2)
ζ(2)

+ 3ζ(2)

4

)
+ O(Q2).

This concludes the proof of Theorem 2.2. ��

5 Proof of Proposition 4.5

As mentioned in Sect. 4.3, we count the solutions of (4.6) in five different cases
which are exactly those considered by Zhabitskaya with the additional restrictions on
coprimality and modular inversion. Therefore, in what follows we often refer to the
proof of [30, Theorem 2] as it contains several estimates which we employ directly
here to simplify our exposition.
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Case 1

We count the number of solutions R1(U ) of

⎧
⎨

⎩

gcd(p, q) = 1, 1 ≤ p ≤ q ≤ U ,

invp(q) ≤ p/2,
2 ≤ nq + kp ≤ U 2, 1 ≤ k < n.

(5.1)

If p and q are fixed, then the number of solutions of the above system with respect
to the various 1 ≤ k < n has been shown in [30, (45)] to be equal to

�(p, q) := U 4

2q(p + q)
+ E(U , p, q),

where E(U , p, q) is given explicitly in [30, (45)]. Thus, the number of solutions of
(5.1) is equal to

∑

q≤U

∑

p≤q

gcd(p,q)=1
invp(q)≤p/2

�(p, q) = U 4

2

∑

p≤U

∑

p≤q≤U
gcd(p,q)=1
invp(q)≤p/2

1

q(p + q)
+ O

(∑

q≤U

∑

p≤q

E(U , p, q)

)
.

(5.2)

The error term above has been proved in [30, (45)–(47)] to be O(U 3). It remains to
compute the first double sum in the right-hand side of (5.2). We deal with the inner
sum over q first. To this end, we set

f (x) = 1

x(p + x)
, g(x) = ϕ(p)

2p
(x − p) and M(x) = x

p1/2−ε
.

Then Lemmas A.2 and A.1 yield that

∑

p≤q≤U
gcd(p,q)=1
invp(q)≤p/2

1

q(p + q)
= ϕ(p)

2p

∫ U

p

dx

x2 + xp

+ Oε

(
1

p3/2−ε
+

∫ U

p

x(2x + p)

p1/2−ε(x2 + xp)2
dx

)

= ϕ(p)

2p2

∫ U

p

(
1

x
− 1

x + p

)
dx + Oε

(
p−3/2+ε

)

= ϕ(p)

2p2
log 2 + O(U−1) + Oε

(
p−3/2+ε

)
.

We now take ε = 1/3 (any ε < 1/2 would do) and sum the above terms over p ≤ U .
Our choice of ε ensures that the sum over the error terms remains bounded. In view
of Lemma A.5 (3), we conclude that
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∑

p≤U

∑

p≤q≤U
gcd(p,q)=1
invp(q)≤p/2

1

q(q + p)
= log 2

2

∑

p≤U

ϕ(p)

p2
+ O(1) = log 2

2ζ(2)
logU + O(1). (5.3)

For later use, observe also that the relation

∑

q<U

∑

q<p≤U
gcd(p,q)=1
invq (p)>q/2

1

p(q + p)
= log 2

2ζ(2)
logU + O(1) (5.4)

can be derived in the same way as relation (5.3) was. Finally, upon combining (5.2)
with (5.3), we conclude that

R1(U ) = log 2

4ζ(2)
U 4 logU + O(U 4).

Case 2

We count the number of solutions R2(U ) of

⎧
⎨

⎩

gcd(p, q) = 1, 1 ≤ p ≤ q, U < q,

invp(q) ≤ p/2,
2 ≤ nq + kp ≤ U 2, 1 ≤ k < n.

(5.5)

In this case the inequalities n ≤ U 2/q < U hold as well.
Let C := { (p, q) ∈ N

2 : gcd(p, q) = 1 } and fix k and n. If n + k ≤ U , then the
domain of solutions of the above system can be expressed as the lattice5

S1(n, k) =
{
(p, q) ∈ C : 1 ≤ p ≤ U 2

n + k
, U < q ≤ U 2 − kp

n
, invp(q) ≤ p

2

}

without the points of the lattice

S2(n, k) =
{
(p, q) ∈ C : U < p ≤ U 2

n + k
, U < q ≤ p, invp(q) ≤ p

2

}
.

The number of integer points in S1(n, k) is equal to

�1(n, k) :=
∑

p≤U2/(n+k)

Ap

(
U ,

U 2 − kp

n

)
,

5 The interested reader can have a look at the figures in [30, p. 1200] for a visual representation of those
regions. The domain is the same but we restrict to its intersections with modular hyperbolas.
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where Ap(y, x) is defined in Lemma A.1. Therefore, it follows that

�1(n, k) =
∑

p≤U2/(n+k)

ϕ(p)

2p

(
U 2

n
− U − p

k

n

)
+

+
∑

p≤U2/(n+k)

Oε

(
U 2 − kp − nU + np

np1/2−ε

)

=: S11 + S12.

(5.6)

Regarding the first sum, Lemma A.5 (1)–(2) and inequalities k < n < U yield that

S11 =
(

U 2

n
− U

)(
U 2

2ζ(2)(n + k)
+ O

(
log

U 2

n + k

))

− k

n

(
U 4

4ζ(2)(n + k)2
+ O

(
U 2

n + k
log

U 2

n + k

))

= U 4

2ζ(2)n(n + k)
− U 3

2ζ(2)(n + k)
− kU 4

4ζ(2)n(n + k)2
+ O

(
U 2

n
log

U 2

n + k

)

= U 4

4ζ(2)n(n + k)
+ U 4

4ζ(2)(n + k)2
− U 3

2ζ(2)(n + k)
+ O

(
U 2

n
log

U 2

n + k

)
.

For the sum S12 over the error terms, we estimate

S12 �ε

U 2 − nU

n

(
U 2

n + k

)1/2+ε

+ n − k

n

(
U 2

n + k

)3/2+ε

�ε

U 3+2ε

n(n + k)1/2+ε
.

We work similarly for the number of integer points in S2(n, k):

�2(n, k) =
∑

U<p≤U2/(n+k)

Ap(U , p)

=
∑

U<p≤U2/(n+k)

(
ϕ(p)

2p
(p − U ) + Oε

(
2p + U

p1/2−ε

))
.

Once more, Lemma A.5 (1)–(2) and inequalities k < n < U yield that

∑

U<p≤U2/(n+k)

ϕ(p)

2p
(p − U ) = 1

4ζ(2)

(
U 4

(n + k)2
− U 2

)
+ O

(
U 2

n + k
log

U 2

n + k

)

− U

2ζ(2)

(
U 2

n + k
− U + O

(
log

U 2

n + k

))

= U 4

4ζ(2)(n + k)2
− U 3

2ζ(2)(n + k)
+ O

(
U 2 + U 2

n
log

U 2

n + k

)
,
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while for the sum of the error terms we obtain that

∑

U<p≤U2/(n+k)

Oε

(
2p + U

p1/2−ε

)
�ε

∑

U<p≤U2/(n+k)

p1/2+ε �ε

U 3+2ε

(n + k)3/2+ε
. (5.7)

In view of (5.6)–(5.7) and Lemma A.4 (1), we conclude that the number of solutions
of the system (5.5) for pairs (n, k) ∈ N

2 such that 1 ≤ k < n and n + k ≤ U , is equal
to

∑

n<U

∑

k<n
n+k≤U

(�1(n, k) − �2(n, k))

= U 4

4ζ(2)

∑

n<U

∑

k<n
n+k≤U

1

n(n + k)
+

∑

n<U

∑

k<n
n+k≤U

[
O(U 2) + Oε

(
U 3+2ε

nk1/2+ε

)]

= log 2

4ζ(2)
U 4 logU + O(U 4) + Oε

(
U 7/2+2ε

)
.

Now we consider the pairs (n, k) ∈ N
2 for which 1 ≤ k < n and n + k > U .

In that case the number of solutions of the system (5.5) is smaller than the number
of solutions of the same system without the restrictions on coprimality and modular
inversion. This number has been computed in [30, (54)–(56)] to be O(U 4). Therefore,
by fixing ε ∈ (0, 1/4), we obtain that

R2(U ) = log 2

4ζ(2)
U 4 logU + O(U 4).

Case 3

We count the number of solutions R3(U ) of

⎧
⎨

⎩

gcd(p, q) = 1, 1 ≤ q < p ≤ U ,

invp(q) ≤ p/2,
2 ≤ nq + kp ≤ U 2, 1 ≤ k < n.

Similar as in Case 1 (see also [30, (58)–(60)]), the number of solutions of the above
system is equal to

U 4

2

∑

p≤U

∑

q<p

gcd(p,q)=1
invp(q)≤p/2

1

q(p + q)
+ O(U 3 logU ). (5.8)
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It remains to compute the double sum

∑

p≤U

∑

q<p

gcd(p,q)=1
invp(q)≤p/2

1

q(p + q)
=

∑

p≤U

∑

q<p

gcd(p,q)=1
invp(q)≤p/2

1

pq
−

∑

p≤U

∑

q<p

gcd(p,q)=1
invp(q)≤p/2

1

p(q + p)

=
∑

p≤U

∑

p1/2≤q<p
gcd(p,q)=1
invp(q)≤p/2

1

pq
+

∑

p≤U

∑

q<p1/2

gcd(p,q)=1
invp(q)≤p/2

1

pq
−

∑

p≤U

∑

q<p

gcd(p,q)=1
invp(q)≤p/2

1

p(q + p)

=: S1 + S2 − S3.
(5.9)

In view of Lemma 4.1 and our remark (5.4), we have that

S3 =
∑

p≤U

∑

q<p

gcd(p,q)=1
invp(q)≤p/2

1

p(q + p)
=

∑

q<U

∑

q<p≤U
gcd(p,q)=1
invq (p)>q/2

1

p(q + p)
= log 2

2ζ(2)
logU + O(1).

(5.10)

Interchanging the sums in S1 and applying Lemma 4.1 yield that

S1 =
∑

q<U

1

q

∑

q<p≤Vq

gcd(p,q)=1
invq (p)>q/2

1

p
,

where Vq := min{U , q2}. If we set

f (x) = 1

x
, g(x) = ϕ(q)

2q
(x − q) and M(x) = x

q1/2−ε
,

then it follows from Lemmas A.1 and A.2 that

∑

q<p≤Vq

gcd(p,q)=1
invq (p)>q/2

1

p
= ϕ(q)

2q

∫ Vq

q

dx

x
+ Oε

(
q−1/2+ε +

∫ Vq

q

dx

xq1/2−ε

)

= ϕ(q)

2q
log

Vq

q
+ Oε

(
q−1/2+2ε

)
.

Hence,

S1 =
∑

q<U1/2

ϕ(q)

2q2 log q +
∑

U1/2≤q<U

ϕ(q)

2q2 (logU − log q) +
∑

q<U

Oε

(
q−3/2+2ε

)
.
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We now take ε = 1/5, so that the last sum on the right hand side converges if U is
replaced by ∞ (any ε < 1/4 would do). Therefore, in view of Lemma A.5 (3)–(4),
we obtain that

S1 = (logU )2

16ζ(2)
+ (logU )2

4ζ(2)
+ O

(
(logU )2

U

)
− 3(logU )2

16ζ(2)
+ O(1)

= (logU )2

8ζ(2)
+ O(1).

(5.11)

Lastly, we proceed with the computation of S2 where the bias in the EA(div)
(by-excess)

makes its appearance for the first time. Interchanging the sums in S2 and applying
Lemma 4.1 yield that

S2 =
∑

p≤U

∑

q<p1/2

gcd(p,q)=1
invp(q)≤p/2

1

pq
=

∑

q<U1/2

1

q

∑

q2<p≤U
gcd(p,q)=1
invq (p)>q/2

1

p

=
∑

q<U1/2

1

q

∑

q/2<b≤q
gcd(b,q)=1

∑

q2<p≤U
p≡invq (b) mod q

1

p
.

(5.12)

Since

#{ p ≤ x : p ≡ invq(b) mod q } = x

q
+ O(1),

for any coprime integers 1 ≤ b ≤ q, we know from Lemma A.2 that

∑

q2<p≤U
p≡invq (b) mod q

1

p
= 1

q
log

U

q2 + O(q−2).

Inserting this to (5.12) yields that

S2 =
∑

q<U1/2

1

q

∑

q/2<b≤q
gcd(b,q)=1

[
1

q
log

U

q2 + O(q−2)

]

=
∑

q<U1/2

[
δ+(q)

q2 log
U

q2 + O

(
δ+(q)

q3

)]
,

(5.13)

where δ+(q) is defined in Lemma 4.2.
It is clear from relation (5.13) and Lemma 4.2 where the bias occurs. In the case

we are considering (for fractions less than 1/2), the terms which correspond to q = 1
and q = 2 come with weight 1 and 0, while in the complementary case (for fractions
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greater than 1/2) where the counting function δ+ is replaced by δ−, they come with
weight 0 and 1/2, respectively.

Now in view of Lemma 4.2, Lemma A.5 (3)–(4) we have that

S2 = logU +
∑

3≤q<U1/2

ϕ(q)

2q2 log
U

q2 + O(1)

= 1

2
logU − 1

8
logU +

∑

q<U1/2

ϕ(q)

2q2 (logU − 2 log q) + O(1)

= 3

8
logU + (logU )2

8ζ(2)
+ logU

2ζ(2)

(
γ − ζ ′(2)

ζ(2)

)
+ O(1).

(5.14)

Finally, we deduce from (5.8), (5.9), (5.10), (5.11) and (5.14) that

R3(U ) = U 4(logU )2

8ζ(2)
+ U 4 logU

4ζ(2)

(
γ − ζ ′(2)

ζ(2)
+ 3ζ(2)

4
− log 2

)
+ O(U 4).

Case 4

We count the number of solutions R4(U ) of

⎧
⎨

⎩

gcd(p, q) = 1, 1 ≤ q < p, U < p,

invp(q) ≤ p/2,
2 ≤ nq + kp ≤ U 2, 1 ≤ k < n ≤ U .

(5.15)

Similar as in Case 2, we fix k and n and count the number of the above system, when
n + k ≤ U and when n + k > U .

If n + k ≤ U , then the domain of solutions of (5.15) can be expressed as the union
of the lattices6

S1(n, k) =
{
(p, q) ∈ C : U < p ≤ U 2

n + k
, 1 ≤ q ≤ p, invp(q) ≤ p

2

}

and

S2(n, k) =
{

(p, q) ∈ C : U2

n + k
< p ≤ U2

k
, 1 ≤ q ≤ U2 − kp

n
, invp(q) ≤ p

2

}

=
{

(p, q) ∈ C : 1 ≤ q ≤ U2

n + k
− θ,

U2

n + k
< p ≤ U2 − nq

k
, invq (p) >

q

2

}
,

6 See [30, p. 1206] for figures.
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wherewe have employed aboveLemma4.1 and have introduced a parameter θ ∈ [0, 1]
which may vary. The number of integer points in S1(n, k) is equal to

�1(n, k) :=
∑

U<p≤U2/(n+k)

∑

b≤p/2
gcd(b,p)=1

∑

q≤p
q≡invp(b) mod p

1 =
∑

U<p≤U2/(n+k)

ϕ(p)

2
.

It follows now from Lemma A.5 (1) that

�1(n, k) = 1

4ζ(2)

((
U 2

n + k

)2

− U 2
)

+ O

(
U 2

n + k
log

U 2

n + k

)

= U 4

4ζ(2)(n + k)2
+ O

(
U 2 + U 2

n + k
log

U 2

n + k

)
.

(5.16)

The number of integer points in S2(n, k) is equal to

�2(n, k) :=
∑

q≤U2/(n+k)−θ

Bq

(
U 2

n + k
,

U 2 − nq

k

)
,

where Bq(y, x) is defined in Lemma A.1. Upon applying said lemma, we infer that

�2(n, k) = S21 + Oε(S22),

where

S21 =
∑

q≤U2/(n+k)−θ

ϕ(q)

2q

(
nU 2

k(n + k)
− nq

k

)
,

S22 =
∑

q≤U2/(n+k)−θ

(
nU 2

k(n + k)
− nq

k
+ q

)
q−1/2+ε .

From Lemma A.5 (1)–(2) and inequalities k < n < n + k ≤ U we obtain that

S21 = nU 2

2k(n + k)ζ(2)

(
U 2

n + k
− θ + O

(
log

U 2

n + k

))
+

− n

4kζ(2)

((
U 2

n + k
− θ

)2

+ O

(
U 2

n + k
log

U 2

n + k

))

= nU 4

4ζ(2)k(n + k)2
+ O

(
nU 2

k(n + k)
log

U 2

n + k

)
.

For the sum over the error terms we estimate

S22 �ε

nU 2

k(n + k)

(
U 2

n + k

)1/2+ε

+ n − k

k

(
U 2

n + k

)3/2+ε
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�ε

nU 3+2ε

k(n + k)3/2+ε
. (5.17)

In view of (5.16)–(5.17) and Lemma A.4 (2), we deduce that the number of solutions
of the system (5.15) for pairs (n, k) ∈ N

2 such that 1 ≤ k < n and n + k ≤ U , is
equal to

∑

n<U

∑

k<n
n+k≤U

(�1(n, k) + �2(n, k))

= U 4

4ζ(2)

∑

n<U

∑

k<n
n+k≤U

1

k(n + k)
+

∑

n<U

∑

k<n
n+k≤U

[
O(U 2) + Oε

(
U 3+2ε

kn1/2+ε

)]

= U 4(logU )2

8ζ(2)
+ U 4 logU (γ − log 2)

4ζ(2)
+ O(U 4) + Oε

(
U 7/2+2ε

)
.

Now we consider the pairs (n, k) ∈ N
2 for which 1 ≤ k < n and n + k > U .

In that case the number of solutions of the system (5.15) is smaller than the number
of solutions of the same system without the restrictions on coprimality and modular
inversion. This number has been computed in [30, (64)–(65)] to be O(U 4). Therefore,
by fixing ε ∈ (0, 1/4), we see that

R4(U ) = U 4(logU )2

8ζ(2)
+ U 4 logU

4ζ(2)
(γ − log 2) + O(U 4).

Case 5

We now count the number of solutions R5(U ). Employing Lemma 4.1, we find that
this is the same as counting the number of solutions of the system

⎧
⎨

⎩

gcd(p, q) = 1, 1 ≤ q < p, U < p,

invq(p) > q/2,
2 ≤ nq + kp ≤ U 2, 1 ≤ k < n, U < n.

(5.18)

Notice that the set of solutions of the above system is non-empty if, and only if,
k + q < U .

For fixed k and q the number of solutions of (5.18) with respect to the various n
and p is equal to

�(k, q) =
∑

U<n≤(U2−k�U�)/q

∑

q/2<b≤q
gcd(b,q)=1

∑

U<p≤(U2−nq)/k
p≡invq (b) mod q

1

=
∑

U<n≤(U2−k�U�)/q

∑

q/2<b≤q
gcd(b,q)=1

(
1

q

(
U 2 − nq

k
− U

)
+ O(1)

)
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=
∑

U<n≤(U2−k�U�)/q

(
δ+(q)

q

(
U 2 − nq

k
− U

)
+ O

(
δ+(q)

q

))
,

where �x� := �x�+1 is the ceiling function. From Lemma 4.2 and k < U we deduce
that

�(k, 1) =
∑

U<n≤U2−k�U�

(
U 2

k
− U − n

k

)
+ O(U 2)

=
(

U 2

k
− U

)
(U 2 − k�U� − �U�) +

− (U 2 − k�U�)2 + U 2 − k�U� − �U��U�
2k

+ O(U 2)

= U 4

2k
+ O(U 3)

and �(k, 2) = 0. Here is another case where the bias in the Euclidean algorithm
appears. Lastly, if q ≥ 3, then

�(k, q) =
∑

U<n≤
(

U2−k�U�
)

/q

ϕ(q)

2q

(
U 2

k
− U − nq

k

)
+ O(U 2)

= ϕ(q)

2q

(
U 2

k
− U

)(
U 2 − kU + O(k)

q
− U + O(1)

)
+ O(U 2) +

− ϕ(q)

4k

((
U 2 − kU + O(k)

q
+ O(1)

)2

− (U + O(1))2
)

and by expanding each of the products we obtain that

�(k, q) = ϕ(q)

2q

(
U 4

kq
− 2U 3

q
− U 3

k
+ kU 2

q
+ O(U 2)

)
+ O(U 2) +

− ϕ(q)

4k

(
U 4 − 2kU 3 + k2U 2

q2 + O

(
kU 2

q2 + U 2

q

)
− U 2 + O(U )

)

= ϕ(q)U 4

4kq2 − ϕ(q)U 3

2q2 − ϕ(q)U 3

2qk
+ ϕ(q)kU 2

4q2 + ϕ(q)U 2

4k
+ O(U 2).
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Now we sum up over all pairs (k, q) ∈ N
2 such that k + q < U , which is essentially

equal to R5(U ):

∑

k

∑

q
k+q<U

�(k, q) = U 4

4

(∑

k

∑

q
k+q<U

ϕ(q)

kq2 +
∑

k≤U−1

1

k
−

∑

k≤U−2

1

4k

)
+ O(U 4) +

− U 3

2

∑

k

∑

q
k+q<U

(
ϕ(q)

q2 + ϕ(q)

qk

)
+ U 2

4

∑

k

∑

q
k+q<U

(
ϕ(q)k

q2 + ϕ(q)

k

)
.

Each of the above sums is already given in Lemma A.6, except of the harmonic sums

∑

k≤U−1

1

k
−

∑

k≤U−2

1

4k
= 3

4
logU + O(1)

which have occurred here, because the quantities �(k, 1) and �(k, 2) are not of the
form

U 2ϕ(q)

4kq2 + O(U 3), q = 1, 2,

respectively. Thus, we conclude that

R5(U ) = U 4(logU )2

4ζ(2)
+ U 2 logU

4ζ(2)

(
2γ − ζ ′(2)

ζ(2)
− 3 + 3ζ(2)

4

)
+ O(U 4).
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Appendix A: Some asymptotic formulae

We start by recalling, for the reader’s convenience, a special case of a classical result
on the distribution of points on modular hyperbolas.

Lemma A.1 (Points on the modular hyperbola) Let p be a positive integer and x >

y ≥ 0. Let

Ap(y, x) :=
∑

y<q≤x
gcd(p,q)=1
invp(q)≤p/2

1 and Bp(y, x) :=
∑

y<q≤x
gcd(p,q)=1
invp(q)>p/2

1.

Then, for any ε > 0,

Ap(y, x) = ϕ(p)

2p
(x − y) + Oε

(
x − y + p

p1/2−ε

)
= Bp(y, x).

Proof This is a consequence of amore general folklore result about points (q, invp(q))

on a modular hyperbola (mod p) where both coordinates are restricted to intervals.
The interested reader may consult the survey [23] (in particular, see Theorem 13 in
Sect. 3.1 therein). A version with a slightly more explicit error term can be found,
for instance, in [3, Lemma 1.7]. Strictly speaking, in both of the above sources, the
intervals in question are restricted to have length not exceeding p. Nevertheless, the
version required here easily follows from that by splitting (y, x] into� 1+ (x − y)/p
intervals of length at most p. ��

The next result is a version of Abel’s summation formula.

Lemma A.2 (Abel’s summation formula) Let f , g : [0,∞) → R be continuously dif-
ferentiable functions. Let y ≥ 0 be arbitrary. Suppose that (an)n∈N is a sequence of
complex numbers such that the approximation

∑

y<n≤x

an = g(x) + O(M(x)),

holds with some continuous function M : [0,∞) → [1,∞). Then

∑

y<n≤x

an f (n) =
∫ x

y
f (t)g′(t) dt + O

(
max
t=x,y

| f (t)M(t)| +
∫ x

y

∣∣ f ′(t)
∣∣ M(t) dt

)
.

We also require the following lemma, which is an application of Möbius inversion.

Lemma A.3 Let �(Q) = aQ2(log Q)2 + bQ2 log Q + O(Q2). Then

∑

d≤Q

μ(d)�

(
Q

d

)
= a

ζ(2)
Q2(log Q)2 + 1

ζ(2)

(
b − 2a

ζ ′(2)
ζ(2)

)
Q2 log Q + O(Q2).
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Proof For a proof see, e.g., [30, Corollary 3]. ��
We conclude with recording two technical lemmas which are used in the proof of

Proposition 4.5.

Lemma A.4 The following asymptotic formulae hold for any U ≥ 2:

1.
∑

n<U

∑

k<n
n+k≤U

1

n(n + k)
= log 2 logU + O(1),

2.
∑

n<U

∑

k<n
n+k≤U

1

k(n + k)
= (logU )2

2
+ (γ − log 2) logU + O(1).

Proof For a proof see [30, Lemma 9]. Notice that the formulae there are being proved
for U /∈ N, but they are readily seen hold for U ∈ N as well. ��
Lemma A.5 The following asymptotic formulae hold for any x ≥ 2:

1.
∑

q<x

ϕ(q) = x2

2ζ(2)
+ O(x log x),

2.
∑

q<x

ϕ(q)

q
= x

ζ(2)
+ O(log x),

3.
∑

q<x

ϕ(q)

q2 = 1

ζ(2)

(
log x + γ − ζ ′(2)

ζ(2)

)
+ O

(
log x

x

)
,

4.
∑

q<x

ϕ(q)

q2 log q = (log x)2

2ζ(2)
+ O(1).

Proof The first two formulae are well known and the proof of the third one can be
found in [4, Corollary 4.5]. The last formula can be deduced easily from (3) and
Lemma A.2. ��
Lemma A.6 The following asymptotic formulae hold for any U ≥ 2:

1.
∑

k

∑

q
k+q<U

ϕ(q)

kq2 = (logU )2

ζ(2)
+ logU

ζ(2)

(
2γ − ζ ′(2)

ζ(2)

)
+ O(1),

2.
∑

k

∑

q
k+q<U

ϕ(q)

q2 = U logU

ζ(2)
+ O(U ) =

∑

k

∑

q
k+q<U

ϕ(q)

qk
,

3.
∑

k

∑

q
k+q<U

ϕ(q)k

q2 = U 2 logU

2ζ(2)
+ O(U 2) =

∑

k

∑

q
k+q<U

ϕ(q)

k
.

Proof They follow directly from the formulae of Lemma A.5 and the asymptotic
formula of the truncated harmonic sum. ��
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