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Abstract
Fix a positive integer n and a finite field Fq . We study the joint distribution of the
rank rk(E), the n-Selmer group Seln(E), and the n-torsion in the Tate–Shafarevich
groupX(E)[n] as E varies over elliptic curves of fixed height d ≥ 2 over Fq(t). We
compute this joint distribution in the large q limit. We also show that the “large q,
then large height” limit of this distribution agrees with the one predicted by Bhargava–
Kane–Lenstra–Poonen–Rains.
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1 Introduction

1.1 Arithmetic statistics of Selmer groups

The statistical behavior of Selmer groups has recently been the focus of much study.
In [1], remarkable probability distributions are introduced to model the distribution of
the n-Selmer group Seln(E), for E varying through isomorphism classes of elliptic
curves over a fixed global field. We refer to the these distributions, and the models
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which generate them, as the “BKLPR heuristic”. The BKLPR heuristic is consistent
with all known results on the statistics of Selmer groups.

One can also consider the analogous question for elliptic curves over a global
function field. The heuristics make sense in that case as well, and it is generally
believed that in the “large height, then large q” limit, limq→∞ limd→∞, the statistics
of Selmer groups over global function fields should behave the same as in the case
of number fields. For example, [10] computes the average size of 3-Selmer groups in
this limit, and [19] computes the average size of 2-Selmer groups in this limit. Most
notably, breakthrough work of Bhargava–Shankar [3–6] computes the average size of
n-Selmer groups for elliptic curves over number fields for n = 2, 3, 4, 5; the methods
are expected to extend to global function fields with the same answers (and without
taking a large q limit!). The proofs of all these results rely on special features of small
n, and confirming the BKLPR heuristic for the average size of Seln seems out of reach
at present when n > 5. Our goal is to nevertheless provide some partial evidence for
the full BKLPR heuristic, by studying an easier version of the problem.

To this end, we study the limiting process in the reversed order, limd→∞ limq→∞
for elliptic curves over a rational function field Fq(t). This problem is significantly
more accessible by algebraic geometry, which allows us to identify the distribution
completely. Informally speaking, we show that in the “large q, then large height” limit,
the distribution of Seln(E) is exactly as predicted by the BKLPR heuristic. A novel
difficulty of this result is that it cannot be proved simply by computing and comparing
the moments of the two distributions, because these distributions are not determined
by their moments. Conversely, because the distribution is unbounded, convergence
in distribution in the “large q, then large height” limit does not automatically imply
convergence of themoments in these limits, thoughwe do show themoments converge
to the BKLPR moments as well.

1.2 Statement of results

1.2.1 Some notation

We now introduce notation in order to state our main results precisely. Let p =
char(Fq). For p > 2, an elliptic curve E over Fq(t) has a minimal Weierstrass model
of the form

y2 = x3 + a2(t)x
2 + a4(t)x + a6(t),

where ai (t) is a polynomial of degree 2id for i ∈ {1, 2, 3} (cf. [10, Sects. 4.2–4.8]).
This value of d is uniquely determined by E , and we define d =: h(E) to be the height
of E . Let (rk,Seln)dFq denote the probability distribution assigning to a pair (r ,G), for
r ∈ Z and G a finite abelian group, the proportion of isomorphism classes of height d
elliptic curves over Fq(t) with algebraic rank r and n-Selmer group isomorphic to G
(see Definition 1.3).
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The geometric distribution of Selmer… 617

1.2.2 The BKLPR heuristic

We summarize the BKLPR heuristic in Sect. 5.3. Briefly put, it models the distri-
bution of the �∞-Selmer group in terms of the intersection in (Q�/Z�)

m induced by
two maximal isotropic subspaces of Z

m
� (with the standard split quadratic form) as

m → ∞. Conditioned on the rank, the �-primary parts of the Selmer group are pre-
dicted to behave independently. This gives, in particular, a conjectural joint distribution
(rkBKLPR,SelBKLPRn ) for the rank and n-Selmer group of elliptic curves, described in
Definition 5.12.

1.2.3 Main result

We consider the distribution (rk,Seln)dFq as a function on pairs (r ,G), where r ∈ Z

and G is an isomorphism class of finite abelian groups. Then we form

lim sup
q→∞

gcd(q,2n)=1
(rk,Seln)

d
Fq

and lim inf
q→∞

gcd(q,2n)=1
(rk,Seln)

d
Fq

as functions on {(r ,G)}.1 (Note that because we are taking a pointwise lim inf or
lim sup, the resulting function may no longer be a probability distribution, i.e., its sum
over all (r ,G) may not be 1.) Our main result is the following, which we deduce as a
consequence of Theorems 6.1 and 6.4:

Theorem 1.1 For fixed integers d ≥ 2 and n ≥ 1, and q ranging over prime powers,
the limits

lim
d→∞ lim sup

q→∞
gcd(q,2n)=1

(rk, Seln)
d
Fq

and lim
d→∞ lim inf

q→∞
gcd(q,2n)=1

(rk, Seln)
d
Fq

exist, are equal to each other, and coincide with the distribution predicted by the
BKLPR heuristic.

As far as we are aware, our results give the first direct connection between the
heuristics of [1] for general n and the arithmetic of elliptic curves. Further, our results
suggest a potential approach to proving the conjectures of [1] in the function field
setting via homological stability techniques as used in [13] to prove a version of the
Cohen–Lenstra heuristics over function fields.

Remark 1.2 One can deduce a more precise version of Theorem 1.1 with estimates on
the error terms in the above limits directly from Theorems 6.1 and 6.4. One may also
deduce the same result holds with algebraic rank replaced by analytic rank. Further,
one may include the joint distribution of Tate–Shafarevich groups—see Remark 1.8.

1 To spell this out: the lim inf (resp. lim sup) of a distribution on the discrete set of {(r ,G)} is, by definition,
the measure assigning to (r ,G) the lim inf (resp. lim sup) of the probability that (r ,G) occurs.
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618 T. Feng, A. Landesman, and E. Rains

1.2.4 Summary of the main difficulties

Experts will recognize that the distribution in this “large q limit” is completely deter-
mined by certain monodromy representations. Letting W ◦d

B be the “moduli space of
smooth height d elliptic surfaces” (described more precisely in Sect. 3.3) the rele-
vant monodromy representations take the form ρd

n,B : π1(W ◦d
B) → GL(V d

n ). Their
significance lies in the fact that they control the number of connected components
of moduli spaces parameterizing Selmer elements. Let us call the image of ρd

n,B the

(arithmetic) monodromy group, and the image of ρd
n,B |π1((W ◦d

B )
Fq

)
the geometric mon-

odromy group.
Let us talk through some of the difficulties in proving Theorem 1.1 in order to orient

the reader where the content of the paper lies. First, it is important that we determine
the monodromy group precisely. If we had just wanted to compute the moments of
Seln , then it would have been enough to know that the geometry monodromy group
is “large enough”. However, the behavior of the distribution depends more subtly on
the arithmetic monodromy group. For example, it turns out that sometimes the Selmer
distribution does not have a limit as q → ∞, and this can happen even when q is
taken only over powers of a fixed odd prime p. Nevertheless, both the “lim supq→∞”
and the “lim infq→∞” exist, and tend towards each other as the height tends to∞.

In a bit more detail, it is possible that for fixed height d, the Selmer distribution
does not have a well defined limit as q → ∞. Specifically, the lim supq→∞ and
lim infq→∞ donot agreewhen, for an infinite sequence ofq’s overwhich the limits run,
the arithmetic monodromy group contains an element of non-trivial spinor norm (see
Sect. 3.2.2) but the geometric monodromy group does not. In this case, the arithmetic
monodromy group fluctuates between two possibilities, which ends up creating a
discrepancy between lim supq→∞ and lim infq→∞.

A second substantial issue is that even after having determined the monodromy
representations that control the Selmer groups, it is not straightforward to identify
the resulting distribution with the BKLPR heuristic. (To be clear, this is a purely
combinatorial question, although it turns out to require techniques from algebraic
geometry, number theory, etc. to address.) The reason for this difficulty is that the
BKLPR heuristic is not described in terms of explicit closed formulas, but in terms
of a random algebraic model. For example, it is not determined by its moments, as
illustrated in Example 1.12 below. In order to compare the BKLPR distribution to
the distribution coming from a monodromy representation, we introduce a “random
kernel model” that mediates between the two distributions. We observe that both the
BKLPR heuristic and the random kernel model enjoyMarkov properties which reduce
their comparison to simpler cases that can be computed explicitly, bymatching enough
moments. (Even this is a little oversimplified: what we need is to establish enough
control on the moments already at a “finite height” level—see Sect. 4.)

1.2.5 Defining the random variables

In order to state the next results, we will need to introduce some more notation.
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The geometric distribution of Selmer… 619

Let Abn denote the set of isomorphism classes of finite Z/nZ-modules. We will
next define several distributions on Z≥0 × Abn modeling the joint distribution of the
rank and n-Selmer group of an elliptic curves. For E an elliptic curve, we use rk(E) to
denote the algebraic rank of E and rkan(E) to denote the analytic rank of E . In what
follows, we use E to denote an isomorphism class of elliptic curves.

Definition 1.3 For n, d ∈ Z≥1 and k a finite field, let (rk,Seln)dk and (rkan,Seln)dk be
the distributions on Z≥0 × Abn given by

Prob((rk,Seln)
d
k = (r ,G)) = #{E/k(t):h(E) = d, rk(E) = r ,Seln(E) � G}

#{E/k(t):h(E) = d}
Prob((rkan,Seln)

d
k = (r ,G)) = #{E/k(t):h(E) = d, rkan(E) = r ,Seln(E) � G}

#{E/k(t):h(E) = d} ,

where E varies over isomorphism classes of elliptic curves over k(t). Also, define the
distribution Seldn /k(t) on Abn by

Prob(Seldn /k(t) = G) = #{E/k(t):h(E) = d,Seln(E) � G}
#{E/k(t):h(E) = d}

and define the distributions rkd /k(t), rkan,d /k(t) on Z≥0 by

Prob(rkd /k(t) = r) = #{E/k(t):h(E) = d, rk(E) = r}
#{E/k(t):h(E) = d}

Prob(rkan,d /k(t) = r) = #{E/k(t):h(E) = d, rkan(E) = r}
#{E/k(t):h(E) = d} .

For a random variable X , we let E[X ] be denote the expected value of X (if it
exists).

Remark 1.4 In Definition 1.3, for the purposes of computing these distributions in the
limit q →∞, we could equally well replace the condition h(E) = d by the condition
h(E) ≤ d. The reason for this is that isomorphism classes of curves with h(E) < d
are parameterized by k points of the stack W ′i

k (defined below in Sect. 2.1.5) for
i < d, which is a finite type global quotient stack of strictly smaller dimension than
W ′d

k . Hence, ∪i≤dW ′i
k will only contributes at most On,d(q−1/2) to the probability

distributions in question, as can be deduced from the Lang–Weil estimate and [28,
Lemma 5.3].

For analogous reasons, one can equally well weight the above counts by automor-
phisms (which would be the correct “stacky way” to count points) and the distribution
in the q →∞ limit will remain the same. Note that after excising the locus of elliptic
curves with more than 2 automorphisms, there will be a factor of one half in both
the numerator and denominator in the definition of the distributions in Definition 1.3,
which cancel out.
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620 T. Feng, A. Landesman, and E. Rains

1.2.6 Some consequences

The following result (which is part of Corollary 6.5) is a variant of the Katz-Sarnak
minimalist conjecture, stating that for fixed height, in the large q limit, the average rank
is 1/2.Moreover, in the large q limit, the rank takes value 1 and 0 with probability 1/2,
and takes value ≥ 2 with probability 0. It can also be deduced from [23, Theorem
13.3.3], though the more precise error terms given in Corollary 6.5 do not directly
follow from [23, Theorem 13.3.3]. We note that the fact that elliptic curves in the
large q limit have rank 0 with probability 1/2 is not a direct consequence of Theorem
1.1, but it comes out of the more refined analysis used to prove Theorem 1.1 for n = �

a prime.2

Proposition 1.5 (Large q analog of [33, Conjecture 1.2]) For fixed integers d ≥ 2
and n ≥ 1, we have

lim
q→∞

gcd(q,2n)=1
Prob(rkd /Fq(t) = r) =

{
1/2 if r ≤ 1, (1.1)

0 if r ≥ 2. (1.2)

Furthermore,

lim
q→∞

gcd(q,2n)=1
E[rkd /Fq(t)] = 1/2.

The following calculation of the geometric moments of Selmer groups is a conse-
quence of Corollary 6.6, which includes more precise error terms.

Theorem 1.6 (Large q analog of [33, Conjecture 1.4]) Let n be a squarefree positive
integer, d ≥ 2, and ω(n) be the number of prime factors of n.

(1) Fix c� ∈ Z≥0 for each prime � | n. Then

lim
d→∞ lim sup

q→∞
gcd(q,2n)=1

Prob

⎛
⎝Seldn /Fq (t) �

∏
�|n

(Z/�Z)c�

⎞
⎠

= lim
d→∞ lim inf

q→∞
gcd(q,2n)=1

Prob

×
⎛
⎝Seldn /Fq (t) �

∏
�|n

(Z/�Z)c�

⎞
⎠

=
{
2ω(n)−1∏

�|n
((∏

j≥0
(
1− �− j

)−1) (∏c�
j=1

�
� j−1

))
if all c� have the same parity,

0 otherwise.

(1.3)

(2) We have

lim
q→∞

gcd(q,2n)=1
E[# Seldn /Fq(t)] = σ(n) :=

∑
s|n

s.

2 However, the statement that elliptic curves in the large q limit have rank at least 2 with probability 0 does
follow from just the computation of the average size of # Seln , see [28, Corollary 1.3].
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The geometric distribution of Selmer… 621

(3) For m ≤ 6d − 3, we have

lim
q→∞

gcd(q,2n)=1
E[(# Seldn /Fq(t))

m] =
∏

prime �|n

m∏
i=1

(
�i + 1

)
.

The following corollary is the more familiar case of Corollary 1.6 when n is taken
to be a prime �. One can also deduce a version with explicit error terms in q, as in
Corollary 6.6.

Corollary 1.7 (Large q analogue of [33, Conjecture 1.1]) Let � be a prime, and d ≥ 2.

(1) We have

lim
d→∞ lim sup

q→∞
gcd(q,2�)=1

Prob
(
Seld� /Fq(t) = (Z/�Z)c

)

= lim
d→∞ lim inf

q→∞
gcd(q,2�)=1

Prob
(
Seld� /Fq(t) = (Z/�Z)c

)

=
⎛
⎝∏

j≥0

(
1− �− j

)−1⎞⎠
⎛
⎝ c∏

j=1

�

� j − 1

⎞
⎠ .

(2) We have

lim
q→∞

gcd(q,2�)=1
E[# Seld� /Fq(t)] = σ(�) := �+ 1.

(3) For m ≤ 6d − 3 the mth moment of Seld� /Fq(t) is

lim
q→∞

gcd(q,2n)=1
E[(# Seld� /Fq(t))

m] =
m∏
i=1

(
�i + 1

)
.

Remark 1.8 (Distributions of Tate–Shafarevich groups). Throughout this paper, we
mostly work with the joint distribution of ranks and n-Selmer groups of elliptic curves,
while [1] alsomakes predictions forTate–Shafarevich groups of elliptic curves. Indeed,
as an easy consequence of our results, we obtain analogous predictions for Tate–
Shafarevich groups, as we now explain. For E a torsion free elliptic curve over Fq(t),
we have an exact sequence

0 (Z/nZ)rk E Seln(E) X(E)[n] 0. (1.4)

Note that the torsion freeness condition is satisfied 100% of the time [1, Lemma
5.7]. Therefore, the algebraic rank and n-Selmer group of E determines X(E)[n],
and hence the joint distribution of algebraic ranks, and n-Selmer groups determines
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622 T. Feng, A. Landesman, and E. Rains

the joint distribution of algebraic ranks, n-Selmer groups, and n-torsion in Tate–
Shafarevich groups. Let (rkBKLPR,SelBKLPRn ,X[n]BKLPR) denote the conjectural
joint distribution for ranks, n-Selmer groups, and n-torsion in Tate–Shafarevich groups
described in [1, §5.7] and let (rk,Seln,X[n])d

Fq
) denote the joint distribution of alge-

braic ranks, n-Selmer groups, and n-torsion in Tate–Shafarevich groups of height d
elliptic curves over Fq . Then, it follows from Theorem 1.1 and the above remarks that

(rkBKLPR,SelBKLPRn ,X[n]BKLPR) = lim
d→∞

⎛
⎜⎝ lim sup

q→∞
gcd(q,2n)=1

(rk,Seln,X[n])d
Fq

⎞
⎟⎠

= lim
d→∞

⎛
⎝ lim inf

q→∞
gcd(q,2n)=1

(rk,Seln,X[n])d
Fq

⎞
⎠ .

One can also bound the error in these limits using Theorems 6.1 and 6.4. We note
that for fixed height d ≥ 2, the proportion of elliptic curves of height up to d over Fq

with analytic rank equal to algebraic rank tends to 1 as q →∞ over prime powers q
with gcd(q, 2) = 1. This follows from Theorem 1.1 and Proposition 6.3. Therefore,
the Birch and Swinnerton-Dyer Conjecture holds for all such curves, implying the
Tate–Shafarevich group is finite for all such curves.

Remark 1.9 (Families of quadratic twists) In other families of elliptic curves, such as
quadratic twist families, the “geometric distribution” will similarly be controlled by
the analogous monodromy representations to those described in Sect. 1.2.4. Adapting
our arguments will yield similar results for such families whenever the geometricmon-
odromy group is large enough. However, the precise distribution that results depends
rather delicately on the precise monodromy group, for the same reasons as described
in Sect. 1.2.4.

For example, in forthcoming work [34], Park and Wang carry out an analog of the
results of [28] for quadratic twist families of elliptic curves, at least in the case of
n-Selmer groups for n prime. We note this should often be extendable to composite
n, see [28, Remark 1.7]. Suppose one chooses a quadratic twist family such that the
sheaf on that family constructed analogously to S◦dn,B on the universal family has
geometric monodromy containing the commutator of the relevant orthogonal group,
but with nontrivial Dickson invariant (see Sect. 3.2.4). Given such a family, via similar
arguments to those in this paper, if one first takes lim infq→∞ or lim supq→∞, and
then a large height limit, the joint distribution of the rank and n-Selmer group will
agree with (rkBKLPR,SelBKLPRn ). We note that triviality or nontriviality of the Dickson
invariant can often be verified for explicit examples, as in the proof of [46, Theorem
4.1].

On the other hand, it is possible for the Dickson invariant to be trivial in quadratic
twist families; explicit such examples are constructed in [46, Sects. 5 and 6]. In these
cases, the distribution of ranks and Selmer groups in the quadratic twist family will
differ from those predicted in [1]. E.g., the minimalist conjecture will fail as 100%
of elliptic curves in such families will have rank 0. Nevertheless, for sufficiently high
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The geometric distribution of Selmer… 623

degree twists, the large q limit mth moments in these quadratic twist families will
agree with those predicted in [1]. Additionally, it is possible to choose quadratic twist
families where the relevant geometric monodromy does not contain the commutator
of the relevant orthogonal group, in which case the large q limit statistics of ranks and
Selmer groups may differ drastically from those predicted in [1].

Remark 1.10 (The inverse Galois problem) For � a prime, let Qd
� denote the quadratic

form defined in Definition 3.1, which we note has discriminant 1 and hence is equiv-
alent to the standard quadratic form x1x2 + x3x4 + · · · + x12d−5x12d−4. In order to
prove Theorem 1.1, we perform a certain monodromy computation in Theorem 3.14,
which shows that for even d ≥ 2, and � � d − 1, O(Qd

� ) occurs as a Galois group over
Q(t1, . . . , t10d+2), and hence also as a Galois group over Q by Hilbert irreducibility
( [36, Sect. 9.2, Proposition 2] in conjunction with [36, Sect. 13.1, Theorem 3]). To
our knowledge, it was not previously known that these groups all appear as Galois
groups over Q.

Closely related constructions to ours are given in [46, Theorem 1.1], and the
techniques of [46] can likely be adapted to construct the Galois groups O(Qd

� ) when
� ≥ 5. However, our results also apply in the cases � = 2 and � = 3, to which the
techniques of [46] seem not to apply.

Remark 1.11 An interesting byproduct of the proof of Theorem 1.1 is that the analytic
rank of an elliptic curve over Fq(t) with smooth minimal proper regular model is
realized as the dimension of the generalized 1-eigenspace of a certainmatrix associated
to an action of Frobenius (see Lemma 3.18) while the �∞-Selmer rank is the dimension
of the 1-eigenspace of that same matrix (see Lemma 6.2). These dimensions agree for
100% of elliptic curves of fixed height d over Fq(t) in the large q limit and also agree
with the rank of the elliptic curve (see Proposition 6.3). Hence, at least in the function
field setting, this gives an answer to the question raised in [32, Remark 1.1.4] as to
whether there exists a natural matrix coming from the arithmetic of elliptic curves
giving rise to the rank and Selmer group of an elliptic curve.

Example 1.12 (A distribution not determined by its moments) Consider the three
distributions

(rkBKLPR,SelBKLPRn ),

((rkBKLPR,SelBKLPRn )| rkBKLPR ≡ 0 mod 2),

((rkBKLPR,SelBKLPRn )| rkBKLPR ≡ 1 mod 2),

with the latter two the distributions conditioning upon whether the rank is even or odd.
These give examples of three distinct distributions which we claim have the samemth
moments for all m ≥ 0.

We now justify why the moments of these three distributions agree. For simplicity,
we assume n is prime, though the same claim holds true for general composite n, as
can be deduced from the Markov properties verified in Sect. 5. By Theorem 6.4, the
above three distributions agree with the three distributions

lim
d→∞ lim inf

q→∞ (Rrk,RSeln)
d
Fq

,
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624 T. Feng, A. Landesman, and E. Rains

lim
d→∞ lim inf

q→∞ ((Rrk,RSeln)
d
Fq
| rk ≡ 0 mod 2),

lim
d→∞ lim inf

q→∞ ((Rrk,RSeln)
d
Fq
| rk ≡ 1 mod 2)

respectively. By Definition 4.2, these distributions are all given by the limit as d →∞
of the the dimension of the kernel of a random matrix drawn from certain cosets of
the orthogonal group of rank 12d − 4. The distribution conditioned on even rank
corresponds to the cosets with Dickson invariant 0 while that conditioned on odd
rank corresponds to cosets with Dickson invariant 1. Therefore, by Theorem 4.10, the
moments of these distributions all stabilize in d (in fact once 6d − 3 ≥ m), and are
equal to

∏m
i=1
(
�i + 1

)
.

1.3 Overview of the proof

We next indicate the idea of the proof of Theorem 1.1. There is a moduli stack W ′d
Fq

parameterizing Weierstrass equations for elliptic curves over Fq(t) of height d. For
(n, q) = 1, we define in Sect. 2.1 a moduli stack Sel′dn,Fq

that approximately param-

eterizes pairs (E, α) for [E] ∈ W ′d
Fq

an elliptic curve and α ∈ Seln(E). The basic

point here is that there is a dense open set of points of W ′d
Fq

whose corresponding
minimal Weierstrass models are smooth over Fq . For elliptic curves E corresponding
to points in this open set, if E 0 is the identity component of the Néron model of E over
P
1
Fq
, Seln(E) = H1

é t(P
1
Fq

,E 0[n]). (We observe that E 0[n] is étale over P
1
Fq

by our
assumption that (n, q) = 1: indeed, by miracle flatness it suffices to check this is étale
over each point of P

1
Fq
. Each fiber of E 0 is a 1-dimensional group scheme isomorphic

to Ga, Gm , or an elliptic curve E , in which case its n-torsion is id, μn, or E[n], all of
which are étale when (n, q) = 1.) In other words, Sel′dn,Fq

is the stack classifying E

along with étale E 0[n]-torsors over P
1
Fq
.

There is an natural quasi-finite map π :Sel′dn,Fq
→ W ′d

Fq
, and over an open dense

substack W ◦d
Fq
⊂ W ′d

Fq
the restriction

π :Sel◦dn,Fq
:= Sel′dn,Fq

|W ◦d
Fq
→ W ◦d

Fq
(1.5)

is finite étale. The n-Selmer group of [E] ∈ W ◦d
Fq

(Fq) is then identified with

Fq -points of π−1(E). The cover π is associated to a monodromy representation
ρd
n,Fq

:π1(W
◦d
Fq

) → O(Qd
n), where (V d

n , Qd
n) is a particular rank 12d − 4 quadratic

space over Z/nZ, and π−1(E)(Fq) identifies with ker(ρd
n,Fq

(FrobE )− id) ⊂ V d
n .

After determining the monodromy group, this reduces to a combinatorial problem:
compute the distribution of dim ker(g − id) for a g drawn randomly from the mon-
odromy group. For V d

n over Z/�Z, (i.e., the case that n = � is prime,) and g drawn
from the full O(Qd

� ), this computation was done in unpublished work of Rudvalis
and Shinoda, as we learned from [15]. We give an alternative proof which generalizes
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Fig. 1 A schematic diagram depicting the structure of the proof of Theorem 1.1

to the case where g is drawn from certain proper subgroups of O(Qd
� ) related to the

monodromy group (which is needed for our results).
After handling the case where n = � is prime, we move on to the case of Sel�e . In

this case, we prove that there is a characterization of ker(g− id) in terms of a Markov
property, and that the BKLPR heuristic is also characterized by this same Markov
property. The case of general Seln for n composite follows from the prime power case
by the Chinese remainder theorem.

1.4 Outline of paper

We next give a brief outline of the content of the various sections in this paper. In Sect.
2 we recall the construction of Selmer spaces, which parameterize Selmer elements
of elliptic curves. The Selmer spaces mentioned above are generically finite étale
covers of the moduli space of height d elliptic surfaces. In Sect. 3 we compute the
monodromy associated to these covers. Next, in Sect. 4 we establish that the geometric
distribution of prime order Selmer groups agree with that predicted by the BKLPR
heuristic. In Sect. 5, we show that both the BKLPR heuristic distribution and our
geometric distribution agree for prime powers, by relating the two distributions for
� j -Selmer groups to the two distributions for � j+1-Selmer groups via separateMarkov
processes. Finally, in Sect. 6 we put the pieces together to the prove our main results.

2 Summary of Selmer spaces

2.1 Reviewing the definition of the Selmer space

Here, we briefly recall the construction of the Selmer space and related spaces intro-
duced in [28, Sect. 3]. The new content in this section occurs in Sect. 2.3 where we
introduce an sheaf is isomorphic to the Selmer sheaf (Sect. 2.1.4 for the definition)
on a dense open. This sheaf is closely related to the L-function of elliptic curves, and
hence gives us a way to access the analytic ranks of elliptic curves in terms of the
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626 T. Feng, A. Landesman, and E. Rains

Selmer sheaf. Our notation differs slightly from that of [28] due to a minor error (only
appearing in characteristic 3), as we will explain further in Remark 2.1.

2.1.1 The space of Weierstrass equations

Throughout this section, we work relatively over a scheme B on which 2 is invertible.
As in [28, Definition 3.1], define P

1
B := ProjB OB[s, t]. Form the affine space,

A
12d+3
B := SpecB OB[a2,0, a2,1 . . . , a2,2d , a4,0, . . . , a4,4d , a6,0 . . . , a6,6d ].

For i ∈ {1, 2, 3}, define a2i (s, t) :=∑2id
j=0 a2i, j t j s2id− j . Let W ′d

B ⊂ A
12d+3
B denote

the open subscheme parameterizing those points such that the Weierstrass equation

y2z = x3 + a2(s, t)x
2z + a4(s, t)xz

2 + a6(s, t)z
3

defines an elliptic surface with smooth generic fiber. This is open as it corresponds to
the open subscheme of A

12d+3
B such that the discriminant is nonzero.

Remark 2.1 There was a minor error in [28, Definition 3.1] where it was claimed
that a Weierstrass model is minimal if and only if it is of the form y2z = x3 +
a2(s, t)x2z + a4(s, t)xz2 + a6(s, t)z3 with no non-constant polynomial f ∈ k[s, t]
with f 2i | a2i (s, t) for all i ∈ {1, 2, 3}. However, it is only true that it can be written
in this form after a change of variables.

This makes it less obvious that in characteristic 3, the locus of minimal Weierstrass
equations is open A

12d+3
B . It is fairly simple to see this is true in characteristic neither

2 nor 3, since one can make a change of variables to assume a2(s, t) = 0, and then
the resulting equation y2z = x3 + a4(s, t)xz2 + a6(s, t)z3 is minimal if and only if
there is no non-constant polynomial f ∈ k[s, t] with f 2i | a2i (s, t) for all i ∈ {2, 3}.
In characteristic 3, this non-minimal locus is still open, but we only found a somewhat
involved proof which involves tracing through the steps of Tate’s algorithm.

To avoid this fairly involved proof, we opt to work over a slightly larger open set
W ′d

B , which does not parameterize minimal Weierstrass models, but instead parame-
terizes all Weierstrass models over A

12d+3
B with smooth generic fiber. Since the two

open subsets differ by a divisor, their point counts do not contribute in the large q
limit, and so which set we work with does not substantially alter the argument.

2.1.2 The universal Weierstrass equation

Similarly to [28, Definition 3.1], one can construct a family of minimal Weierstrass
models UW ′d

B over P
1 ×W ′d

B as the subscheme of

Proj
P
1
B×BW ′d

B
Sym•

(
O
P
1
B×BW ′d

B
⊕ O

P
1
B×BW ′d

B
(−2d)⊕ O

P
1
B×BW ′d

B
(−3d)

)

cut out by the equation

y2z = x3 + a2(s, t)x
2z + a4(s, t)xz

2 + a6(s, t)z
3.
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As mentioned in Remark 2.1, we work overW ′d
B , a set including non-minimal elliptic

curves, which is slightly different than that used in [28, Definition 3.1].

2.1.3 An open subset

Recall our definition of W ′d
B from Sect. 2.1.1 as a moduli space of height d minimal

Weierstrass equations. Similarly to [28, Definition 3.9], let W ◦d
B ⊂ W ′d

B denote the
open subscheme over which UW ′d

B → W ′d
B is smooth. In the case B is a field k,

W ◦d
k parameterizes elliptic curves of height d over k(t) so that the associated minimal

Weierstrass elliptic surface is smooth over k. Let UW ◦d
B := UW ′d

B ×W ′d
B
W ◦d

B

denote the universal elliptic surface over W ◦d
B . We also introduce W ��d

B ⊂ W ′d
B as

the open subscheme parameterizing elliptic surfaces with squarefree discriminant and

let UW ��d
B := UW ′d

B ×W ′d
B
W ��d

B ; these subsets are indeed open and dense over B
as is explained in [28, Lemma 3.14]. Loosely speaking, the idea is to show that the
elliptic surfaces of height d with squarefree discriminant are the complement of two
divisors: the divisor parameterizing elliptic surfaces of height d which are singular and
the divisor paramterizing elliptic surfaces of height d with some cuspidal fiber. These
two divisorial subschemes can be defined via incidence correspondences. One can then
use these incidence correspondences to compute the dimensions of these subschemes,
and verify they are indeed divisors, implying that the open locus of elliptic surfaces
of height d is fiberwise nonempty, hence fiberwise dense.

2.1.4 The Selmer space

Similarly to [28, Definition 3.3], (but see Remark 2.1 for a slight difference) denote
by f and g the projection maps

UW ′d
B

f−→ P
1
B ×B W ′d

B
g−→ W ′d

B .

Assuming further that 2n is invertible on B. Define the n-Selmer sheaf over B of
height d as Se�′dn,B := R1g∗(R1 f∗μn). Define the n-Selmer space over B of height

d, denoted Sel′dn,B as the algebraic space representing the sheaf of Z/nZ modules

Se�′dn,B . Let

Sel◦dn,B := Sel′dn,B ×W ′d
B
W ◦d

B, Sel ��d
n,B := Sel′dn,B ×W ′d

B
W ��d

B, Se�◦dn,B

:= Se�′dn,B ×W ′d
B
W ◦d

B .

2.1.5 Amoduli stack of elliptic curves

Note that G
2d+1
a � Gm acts on UW ′d

B and W ′d
B compatibly. Loosely speaking,

(r0, . . . , r2d) ∈ G
2d+1
a acts by sending x �→ x + r0s2d + r1ts2d−1 + · · · + r2d t2d

and λ ∈ Gm acts by sending a2i (s, t) �→ λ2i a2i (s, t), see [28, Definition 3.4] for a
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more precise formulation in terms of Weierstrass equations. By [38, III.3.1(b)], any
two points in W ′d

B corresponding to isomorphic elliptic curves lie in the same orbit
of this action. Similarly to [28, Definition 3.4], we define the moduli stack of height
d minimal Weierstrass models over B as the quotient stack

W ′d
B :=

[
W ′d

B/G
2d+1
a � Gm

]
.

2.1.6 The Selmer stack

Similarly to [28, Definition 3.4], we define the n-Selmer stack over B of height d as
the quotient stack

Sel′dn,B :=
[
Sel′dn,B/G

2d+1
a � Gm

]
.

Since the action of G
2d+1
a � Gm restricts to an action on UW ◦d

B , W
◦d
B , and Sel◦dn,B ,

we similarly define

W ◦d
B :=

[
W ◦d

B/G
2d+1
a � Gm

]
, W ��B

d :=
[
W ��d

B/G
2d+1
a � Gm

]
,

and

Sel◦dn,B :=
[
Sel◦dn,B/G

2d+1
a � Gm

]
, Sel ��d

n,B :=
[
Sel ��d

n,B/G
2d+1
a � Gm

]
.

Remark 2.2 For x ∈ W ′d
B or x ∈ W ′d

B , we use Ex denote the corresponding elliptic
curve. Specifically, for x ∈ W ′d

B , if f : UW ′d
B → P

1×W ′d
B , then Ex = f −1(η× x),

for η the generic point of P
1. We often notate this by [Ex ] = x ∈ W ′d

B . Similarly, for
x ∈ W ◦d

B , we notate [Ex ] = x where Ex is the elliptic curve corresponding to x .

2.2 The relation between Selmer spaces and Selmer groups

We have now defined the Selmer space, but have not yet explained the connection to
Selmer groups of elliptic curves. The following lemma provides the relation.

Lemma 2.3 ([28, Corollary 3.24]) Let n ≥ 1, d > 0,m ≥ 0. Let B be a noetherian
scheme with 2n invertible, and let π : Sel′dn,B → W ′d

B denote the projection map. For

[Ex ] = x ∈ W ◦d
B(Fq), we have

# Seln(Ex ) = #
(
π−1(x)

(
Fq
))

. (2.1)
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2.3 The sheaf governing rank

In this section, we introduce a sheaf S◦dn,B . This is closely related to the Selmer sheaf

Se�◦dn,B and governs the rank of the elliptic curve. This sheaf is not new, and has
previously appeared in the literature, see Remark 2.5. Our goal will be to show the
two sheaves are isomorphic on the fiberwise over B dense open ofW ◦d

B parameterizing
elliptic surfaces with squarefree discriminant. We now define S◦dn,B .

Notation 2.4 Let B be a scheme with 2n invertible on B. Let j : U ⊂ P
1
B ×B W ◦d

B
denote the open subscheme over which the projection f : UW ◦d

B → P
1
B ×B W ◦d

B is
smooth. Let g : P1

B ×B W ◦d
B → W ◦d

B denote the projection. Then, if αS : S → W ◦d
B

is a map of schemes, set up the following commutative diagram, where both squares
are fiber squares.

UW ◦d
B ×W ◦d

B
S US U UW ◦d

B

P
1
B ×B S P

1
B ×B W ◦d

B

S W ◦d
B

f S

α′S

j S

gS

j

g
f

gS g

αS

Define E[n]S := ( j S)∗R1 f S∗ μn (we note that E[n]S is a slight abuse of notation
since it depends on the map αS and not just the scheme S). This sheaf represents
the relative n torsion of f S . Define the sheaf S◦dn,B := R1g∗( j∗E[n]W ◦d

B
), with the

implicit map αW ◦d
B
: W ◦d

B → W ◦d
B taken to be the identity.

Remark 2.5 Sheaves defined analogously toS◦dn,B appeared in the context of quadratic

twist families of elliptic curves in [18, Sect. 6.2] and [46, Sect. 3.2]. In fact, S◦dn,B
is itself a reasonable candidate for the Selmer sheaf, but we will instead work with
Se�◦dn,B , which has the advantage that it commutes with base change. On the other

hand, we are not sure if S◦dn,B commutes with base change in general, though it does

over W ��d
B , as we show in Lemma 2.6.

Having defined S◦dn,B , we next wish to show it agrees with Se�◦dn,B , at least when

both are restricted to W ��d
B . To verify this isomorphism, we will construct a map

between them and check it is an isomorphism by checking it on fibers. The verification
on fibers is fairly immediate once we know that the formation of S◦dn,B commutes with
base change, as we now verify. A variant of the following Lemma 2.6 is explained in
[22, Construction-Proposition 5.2.1(3)].

Lemma 2.6 With maps f and g as in Notation 2.4, the sheaf S◦dn,B is a constructible

sheaf of Z/nZ modules whose formation commutes with base change onW ��d
B. More

precisely, for any base scheme S factoring through W ��d
B, the base change map
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α∗S R1g∗( j∗E[n]W ◦d
B
)→ R1gS∗ ( j S∗ α′S

∗E[n]W ◦d
B
),

is an isomorphism.

Proof Let R1g!E[n]W ◦d
B

φ−→ S◦dn,B denote the map induced by j!E[n]W ◦d
B
→

j∗E[n]W ◦d
B
, using the identification R1g!E[n]W ◦d

B
= R1g∗( j!E[n]W ◦d

B
). LetS◦dn,B

ψ−→
R1g∗E[n]W ◦d

B
denote the map induced from the composition of functors spectral

sequence for g ◦ j . We will show that S◦dn,B is the image of the composition

R1g!E[n]W ◦d
B

φ−→ S◦dn,B
ψ−→ R1g∗E[n]W ◦d

B
. Once we show this, it will immediately

follow that S◦dn,B is constructible, being the image of a map of constructible sheaves.

By the Leray spectral sequence, ψ is always injective. Hence, to identify S◦dn,B
as the image of ψ ◦ φ, we only need to show φ is surjective. To this end, define
M as the quotient sheaf j∗E[n]W ◦d

B
/ j!E[n]W ◦d

B
. Note that M is supported on the

complement ofU which is finite overW ◦d
B . Therefore, R

1g∗M = 0 and we conclude
that R1g!E[n]W ◦d

B
= R1g∗( j!E[n]W ◦d

B
) → R1g∗( j∗E[n]W ◦d

B
) = S◦dn,B is surjective.

Hence, R1g∗
(
j∗E[n]W ◦d

B

)
is a constructible Z/nZ module, being the image of a map

of constructible Z/nZ modules.
To conclude, we show that the formation of S◦dn,B commutes with base change

over W ��d
B . Since S◦dn,B is the image of ψ ◦ φ : R1g!E[n]W ◦d

B
→ R1g∗E[n]W ◦d

B
, it

suffices to show that the formation of both R1g!E[n]W ◦d
B
and R1g∗E[n]W ◦d

B
commute

with base change overW ��d
B . The former commutes with base change by proper base

change with compact supports.
To conclude, it remains to show the formation of R1g∗E[n]W ◦d

B
commutes with

base change over W ��d
B . We will do this using Poincaré duality and Deligne’s semi-

continuity theorem for Swan conductors [29, Corollaire 2.1.2 and Remarque 2.1.3].
We first use Deligne’s semicontinuity theorem to show Ri g!E[n]W ◦d

B
is locally con-

stant constructible for all i ≥ 0. The semicontinuity theorem says that Ri g!E[n]W ◦d
B

will be locally constant over any open subscheme of W ◦d
B for which the degree of

P
1 × W ◦d

B − U → W ◦d
B is constant and the total Swan conductor associated to

E[n]W ◦d
B
is constant.

We now verify the hypotheses of Deligne’s semicontinuity theorem by verifying

P
1 × W ◦d

B − U → W ◦d
B has constant fiber degree over W ��d

B and that the Swan

conductor vanishes overW ��d
B . Indeed, any elliptic curve corresponding to a point of

W ��d
B has reduced discriminant, and hence 12d geometric fibers of type I1 reduction

and no other singular fibers, by Tate’s algorithm. This shows P
1×W ◦d

B−U → W ◦d
B

has constant fiber degree over W ��d
B . Finally, the Swan conductor always vanishes

when the reduction is multiplicative [37, IV.10.2(b)].
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Using that R1g!E[n]W ◦d
B
is locally constant constructible over W ��d

B we next

deduce R1g∗E[n]W ◦d
B
is as well via Poincare duality. Namely, Poincaré duality [42]

gives an isomorphism of sheaves in the derived category

Rg∗RH om(E[n]W ◦d
B
, μn[2]) � RH om(Rg!E[n]W ◦d

B
, μn).

Note that the [2] denotes a cohomological shift by 2while the [n] refers to the n-torsion.
We will now take (−1)st cohomology of both sides. By construction of

U , E[n]W ◦d
B

is locally constant on U , and therefore the i th cohomology of

Rg∗RH om(E[n]W ◦d
B
, μn[2]) is given by Ri+2g∗H om(E[n]W ◦d

B
, μn) � Ri+2

g∗E[n]W ◦d
B
, the latter isomorphism induced by the Weil pairing. Additionally, since

R−i g!E[n]W ◦d
B
is locally constant constructible, we get that the i th cohomology

of RH om(Rg!E[n]W ◦d
B
, μn[2]) is given by H om(R−i g!E[n]W ◦d

B
, μn). Therefore,

taking (−1)st cohomology of the Poincaré duality isomorphismyields an isomorphism
R1g∗E[n]W ◦d

B
� (R1g!E[n]W ◦d

B
)∨. Since the right hand side is locally constant con-

structible over W ��d
B , the left hand side is as well, and therefore commutes with base

change. ��
We next produce an isomorphism Se�◦dn,B |W ��d

B
� S◦dn,B |W ��d

B
over W ��d

B , cru-

cially using that the formation of both sheaves commute with base change.

Proposition 2.7 Retainnotation fromNotation2.4. There is canonicalmap R1 f∗μn →
j∗E[n]W ◦d

B
of sheaves on P

1
B ×B W ◦d

B. This map induces an isomorphism

R1g∗(R1 f∗μn)|W ��d
B
� R1g∗( j∗E[n]W ��d

B
), which commutes with base change.

Proof Retaining notation from Notation 2.4, define the maps j ′ and f ′ as in the fiber
square

WU UW ◦d
B

U P
1
B ×B W ◦d

B .

j ′

f ′ f

j

(2.2)

We have canonical maps coming from Leray spectral sequences

R1 f∗(μn) � R1 f∗( j ′∗μn)

→ R1( f ◦ j ′)∗μn

= R1( j ◦ f ′)∗μn

→ j∗R1 f ′∗μn . (2.3)

Using the Kummer exact sequence (possible since n is invertible by Notation 2.4) and
the assumption that the fibers of f ′ are smooth connected elliptic curves so [2, Sect.
9.5, Theorem 1] applies, we obtain isomorphisms
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j∗R1 f ′∗μn � j∗ PicWU /U [n] � j∗ Pic0WU /U [n] � j∗E[n]W ◦d
B
. (2.4)

Composing (2.3) with (2.4), we obtain the desired map R1 f∗(μn,W )→ j∗E[n]W ◦d
B
.

We show this map induces an isomorphism R1g∗(R1 f∗μn))|W ��d
B
→

R1g∗( j∗E[n]W ��d
B
). To verify this is an isomorphism, it suffices to do so on stalks.

As the formation of both sides commutes with base change by proper base change
and Lemma 2.6, we can check this is an isomorphism in the case that the base is a
geometric point.

Thus, it suffices to show that if f x : Wx → P
1
x is a smooth minimal Weierstrass

model corresponding to a point x ∈ W ◦d
B , j

x is the restriction of j to x , and gx is the
restriction of g to x , then the map on stalks φx : R1gx∗ (R1 f x∗ μn)→ R1gx∗ ( j x∗ (E[n]x ))
is an isomorphism. It suffices to check the map R1 f x∗ μn → j x∗ (E[n]x ) inducing φx

under R1gx∗ is an isomorphism. To this end, by [28, Lemma 3.7], the étale sheaf
R1 f x∗ μn is represented by theNéronmodel of Ex [n] on the small étale site ofP1

x , while
j x∗ (E[n]x ) is also represented by the Néron model of Ex [n] by the Néron mapping
property. The Néron mapping property implies that to check the map R1 f x∗ μn →
j x∗ (E[n]x ) constructed in (2.3) is an isomorphism, it suffices to check its restriction to
U is an isomorphism. That is, we want to show the base change of j∗R1 f∗(μn) →
j∗ j∗E[n]W ◦d

B
� R1 f ′∗ j ′∗μn to x is an isomorphism. If we could show this is the

natural base change map, it would indeed be an isomorphism by proper base change.
So, to conclude theproof,weonlyneed to check the constructedmap j∗R1 f∗(μn)→

R1 f ′∗ j ′∗μn , coming from pulling back (2.3) along j , is the base change map. Indeed,
this follows from the definitions. In more detail, recall that for F a sheaf on UW ◦d

B ,
the base changemap is given as themap of δ-functors j∗◦(R• f∗)F → (R• f ′∗)◦ j ′∗F
induced via the degree 0 composition j∗ f∗F → j∗ f∗ j ′∗ j ′∗F → j∗ j∗ f ′∗ j ′∗F →
f ′∗ j ′∗F , see [14, Sect. 6, p. 60–61]. However, pulling back the map of (2.3)
along j is given by the composition j∗R1 f∗μn → j∗R1 f∗( j ′∗ j ′∗μn) → j∗R1( j ◦
f ′)∗( j ′∗μn) → R1 f ′∗( j ′∗μn). This is precisely the resulting map on degree 1 δ-
functors, and hence is the natural base change map. ��

7

3 The precise monodromy of Selmer spaces

The main result of this section is Theorem 3.14 where we compute precisely the mon-
odromy group associated to the cover Sel◦dn,B → W ◦n

B . In order to state the theorem,
we first introduce some various notation relating to orthogonal groups and the mon-
odromy representation. Following this, we recall a general result on equidistribution
of Frobenius elements in Sect. 3.4. The remainder of the section is devoted to proving
Theorem 3.14, whose proof is outlined at the end of Sect. 3.5.
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3.1 Adelic notation

For R an integral noetherian ringwith fraction field Frac(R) such that char(Frac(R)) =
p, let

Ẑ
(p) := lim

gcd(n,p)=1Z/nZ �
∏

� prime
r �=p

Z�.

We allow p = 0, in which case Ẑ
(0) = Ẑ.

3.2 Notation for orthogonal groups

3.2.1 Notation for quadratic forms

Let R be a ring. A quadratic space over R is a pair (V , Q) where V is a free module
over R and Q : V → R is a quadratic form. We say a quadratic space (V , Q) is
nondegenerate if the hypersurface defined by the vanishing of Q in PV∨ is smooth
over Spec R. When 2 is invertible or rk V is even, this is equivalent to the discriminant
of Q being a unit on Spec R, see [9, Remark C.1.1]. See [9, C.1] for a characterization
in terms of non-degeneracy of the associated bilinear form on fibers. Let O(Q) the
corresponding orthogonal group. Note that we will use O(Q) to denote both the group
and the group scheme. We will primarily consider it as a group, and whenever we use
it to denote the group scheme O(Q), we refer to it as “the algebraic group O(Q)”.

For φ : R → S a map of rings, we denote (Vφ, Qφ) := (V ⊗R S, Q ⊗R S). When
the map φ is understood, we notate this as (VS, QS) := (Vφ, Qφ). In the special case
that S = Z/nZ, we will also use (Vn, Sn) := (VZ/nZ, QZ/nZ).

Definition 3.1 For d ≥ 1, define the quadratic space (V d
Z

, Qd
Z
) to be the rank 12d − 4

free Z module associated to U⊕(2d−2) ⊕ (−E8)
⊕d , for U a hyperbolic plane and

−E8 the E8 lattice with the negative of its usual pairing. Then (V d
n , Qd

n) denotes the
reduction of this quadratic space modulo n.

For Q a quadratic form on a free module V over a ring R, the associated bilinear
form BQ : V × V → R is defined by

BQ(x, y) := Q(x + y)− Q(x)− Q(y).

In what follows, we assume the quadratic form Q is nondegenerate.
For v ∈ V , with Q(v) ∈ R× invertible, denote the reflection about v (sometimes

also called an orthogonal transvection, cf. [43, 3.8.1])

rv : V → V

w �→ w − BQ(w, v)

Q(v)
v.

Remark 3.2 When R is a field, O(Q) is generated by these reflections so long as
(R, rk V ) �= (F2, 4) [8, I.5.1].
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3.2.2 The spinor norm

For completeness, we briefly recall the formal definition of the −1-spinor norm. We
follow [9, p. 349] which gives the definition in the more general context of algebraic
groups. Let (V , Q) be a quadratic space over R, and suppose that either rk V is even
or 2 is invertible on R. The +1-spinor norm is then defined as the boundary map on
cohomology

sp+Q : O(Q) → H1(Spec R, μ2) � R×/
(
R×
)2

induced by the sequence of algebraic groups μ2 → Pin(Q) → O(Q). Then the
−1-spinor norm on O(Q) is the +1-spinor norm for O(−Q) composed with the
identification O(Q)

∼−→ O(−Q) [9, Remark C.4.9, Remark C.5.4, and p. 348].3

In the case Q(v) ∈ R×, the reflection rv satisfies sp−Q(rv) = [−Q(v)], the coset
represented by −Q(v) in R×/

(
R×
)2. Note that the spinor norm is trivial in the case

R = F2. When R = k is a field with k �= F2, then O(Q) is generated by reflections
(cf. Remark 3.2), and sp−Q is then characterized by sp−Q(rv) = [−Q(v)].
Definition 3.3 For (V , Q) a nondegenerate quadratic space over a ring R, define
O∗−(Q) := ker sp−Q ⊂ O(Q) to be the kernel of the −1-spinor norm.

3.2.3 The adelic spinor map

We now spell out some notation to describe the spinor map for a quadratic form over
Ẑ

(p). Let p either be a prime or p = 0. Let (V , Q) be a nondegenerate quadratic space
over Ẑ

(p). Let

sp−Q : O(Q)→
(
Ẑ

(p)
)×

/

((
Ẑ

(p)
)×)2

� (Z/2Z)2 ×
∏

odd primes � �=p

Z/2Z,

where the first copy of (Z/2Z)2 comes from (Z/2Z)2 ∼= Z
×
2 /(

Z
×
2

)2 � (Z/8Z)× /
(
(Z/8Z)×

)2 and the copy of Z/2Z indexed by an odd prime

� comes from Z
×
� /
(
Z
×
�

)2 � (Z/�Z)× /
(
(Z/�Z)×

)2. When p �= 0 and q is a power
of p, we let

[q] ∈
(
Ẑ

(p)
)×

/

((
Ẑ

(p)
)×)2

� (Z/2Z)2 ×
∏

odd primes � �=p

Z/2Z

denote the element induced by multiplication by q on Ẑ
(p).

3 Although it will not be relevant to this paper, as we shall ultimately only be interested in the even rank
quadratic space of Definition 3.1, one can define the spinor norm on O(Q) in the case that R is a field of
characteristic 2 and rk V is odd. This can be done using the equality O(Q) = SO(Q) as abstract groups
(even though the corresponding group schemes are not isomorphic) since the group scheme SO(Q) is the
underlying reduced subscheme of the group scheme O(Q), see [9, Remark C.5.12].
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3.2.4 The Dickson invariant

Next, for (Q, V ) a quadratic space over a ring R with Spec R connected, the Dickson
invariant is a map

DQ : O(Q)→ Z/2Z,

as defined in [9, (C.2.2) andRemarkC.2.5]. In the case (Q, V ) is a quadratic space over
a ring R such that Spec R is a disjoint union of finitely many connected components,
such as when R = Z/nZ, we define the Dickson invariant as the resulting map

DQ : O(Q)→ (Z/2Z)#π0(Spec R) ,

obtained by restricting to a given connected component of Spec R and then applying
the Dickson invariant on that component.

In the case R = Ẑ
(p), we define the Dickson invariant as the resulting composition

DQ : O(Q)→
∏

primes � �=p

O(Q|Z�
)

∏
primes � �=p DQ|Z�−−−−−−−−−−→

∏
primes � �=p

Z/2Z.

In all cases above, for DQ : O(Q) → ∏
s∈S Z/2Z for an appropriate set S, we

let Z/2Z : Z/2Z → ∏
s∈S Z/2Z denote the diagonal inclusion sending 1 �→

(1, 1, . . . , 1).

Warning 3.4 Our definition of the Dickson invariant for a quadratic space over Ẑ
(p)

may differ from the more general scheme theoretic definition given in [9, (C.2.2)
and Remark C.2.5]. There, it is defined as a map to (Z/2Z) (Spec R), the global
sections of the locally constant sheaf Z/2Z on Spec R. However, there is a natural
map (Z/2Z) (Spec Ẑ

(p)) → ∏
primes � �=p Z/2Z, and our definition of the Dickson

invariant is the composition of the Dickson invariant as in [9, (C.2.2) and Remark
C.2.5] with this natural map.

Remark 3.5 In the case that 2 is invertible on R with Spec R connected, the Dickson
invariant agrees with the determinant [9, Corollary C.3.2]. However, over a field k of
characteristic 2, the determinant is trivial while the Dickson invariant is nontrivial (and
it is nontrivial on k-points when the rank of the quadratic space is even) [9, Proposition
C.2.8].

Over a field of characteristic 2, the Dickson invariant is sometimes also called the
pseudodeterminant, and the following explicit description, which follows from the
fact that reflections always have nontrivial Dickson invariant, will be useful: For any
T ∈ O(Q), and any expression of T as a product of reflections T = rv1 · · · rvs , (which
exists so long as (k, rk V ) �= (F2, 4) by Remark 3.2,) the Dickson invariant is given
by the map O(Q)→ Z/2Z which sends T �→ s mod 2.
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3.2.5 The Joint Kernel

Definition 3.6 Define �(Q) ⊂ O(Q) as �(Q) := ker DQ ∩ ker sp−Q .

Because the −1-spinor norm agrees with the +1-spinor norm when restricted to
SO(Q), it follows that �(Q) is also the joint kernel of the Dickson map and the
+1-spinor norm.

3.3 Notation for themonodromy representation

When d > 0, the map π : Sel◦dn,B → W ◦d
B is finite étale, representing a locally

constant constructible sheaf of rank 12d − 4 free Z/nZ modules by [28, Corollary
3.22]. For B an integral noetherianZ[1/2n] scheme, letting V d

n denote the rank 12d−4
free Z/nZ module corresponding to the geometric generic fiber of π , we obtain a
monodromy representation ρd

n,B : π1(W ◦d
B) → GL(V d

n ) [28, Definitions 4.1 and
4.2].

Remark 3.7 Strictly speaking, we should keep track of base points in our fundamental
groups. However, as we will ultimately be concerned with integral base schemes B,
changing basepoint only changes the map ρd

n,k by conjugation on the domain. Since

we will only care about the image of ρd
n,k , we will often omit the basepoint from our

notation.

For R a ring, we use ρd
n,R to denote ρd

n,Spec R .

3.3.1 The adelic monodromymap

For n′ | n both prime to char(k), we obtain a map Sel◦dn,R → Sel◦dn′,R over W ◦d
R

induced by the corresponding map φn,n′ : μn → μn′ sending y �→ yn/n′ in the defini-
tion of Sel′dn,R from Sect. 2.1.4. Because φn,n′′ = φn′,n′′ ◦φn,n′ , the monodromy maps
ρd
n,R : π1(W ◦d

R)→ GL(V d
n ) fit together compatibly to define amonodromy represen-

tation ρd
Ẑ(p),R

: π1(W ◦d
R)→ GL(V d

Ẑ(p) ). For n prime to p, we have a natural reduction

mod n map rn : GL(V d
Ẑ(p) ) → GL(V d

n ) and ρd
Ẑ(p),R

is uniquely characterized by the

property that for all n prime to p, rn
(
ρd
Ẑ(p),R

)
= ρd

n,R .

3.4 An equidistribution result

For x ∈ W ′d
Z[1/2] let Frobx be the conjugacy class of (geometric) Frobenius at x in

π1(W ′d
Z[1/2]). In this section we prove an equidistribution result for Frobenius classes

in the monodromy group, in the large q limit. To state the proposition, we define the
“mult” map.

Definition 3.8 Let X be a geometrically connected finite type scheme over Fq , let G
be a profinite group, and let λ : π1(X) → G be a group homomorphism. Let G0
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denote the image of the composition π
geom
1 (X) := π1(XFq

) → π1(X) → G and
let � := G/G0. Then, we define mult : G → � as the natural projection. Because
π1(SpecFq) = π1(X)/π

geom
1 (X), we obtain a resulting map π1(SpecFq) → �. We

let γq denote the image in � of geometric Frobenius.

The following is an equidistribution result for Frobenii in a monodromy group,
which is a generalization of [26, Theorem 1].

Proposition 3.9 Let X be a smooth affine scheme of finite type overO[1/S], whereO
is a ring of integers in a number field, with geometrically irreducible fibers. For q a
maximal ideal of O[1/S] with residue field Fq , write X := X |O/q. Assume that we
have a commutative diagram

1 π
geom
1 (X) π1(X) Ẑ 1

1 G0 G � 1

λ0

deg

λ 1 �→γ−1q

mult

(3.1)

with λ0 tamely ramified and surjective, G a finite group, and � abelian. Suppose
C ⊂ G is a conjugacy-invariant subset. Then

Prob{x ∈ X(Fqn ):λ(Frobx ) ∈ C} = #C ∩ Gmult γ n
q

#G0
+ OX

⎛
⎝#G

√
#C ∩ Gmult γ n

q

qn

⎞
⎠ .

where Gmult γ n
q := mult−1(γ n

q ). Here the constant in the error term

OX

(
#G

√
#C∩Gmult γ nq

qn

)
is independent of q, the choice of G, and the choice of λ,

so long as λ0 is tamely ramified and surjective.

Proof By the Lang–Weil bound, we have #X (Fq) = qdimXFq + OX (qdimXFq−1/2)
and so aftermultiplying both sides by #X (Fq) (see also [26, Remark 2]), this statement
nearly appears in [26, Theorem 1]. There are two differences however: First, Kowalski
assumes that #G is prime to q instead of only that λ0 is tamely ramified. Second,
Kowalski works over a field instead of over O[1/S]. The proof of Proposition 3.9 is
the same as that given in [26, Theorem 1], once these two differences are addressed.

First we address the tamely ramified constraint. Indeed, a careful examination of
the proof of [26, Theorem 1], shows that the only reason for assuming #G is prime
to q appears in the reference to [25, Proposition 4.7], which in turn only uses this
assumption in its reference to [25, Proposition 4.5], which in turn only uses this
assumption in [25, (4.13)]. However, [25, (4.13)] holds whenever λ0, or the associated
map labeled φ in [25], is tamely ramified, see [21, 2.6, Cor 2.8]. We note that a
generic hyperplane section of a tamely ramified cover remains tamely ramified, using
Bertini’s theorem to ensure that the hyperplane intersects the divisor of ramification
generically. Hence, [25, Proposition 4.6], used in the proof of [25, Proposition 4.5],
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can be suitably generalized to include the assumption that the restriction of φ to the
hyperplane is tamely ramified.

Second, we address the issue of working overO[1/S] in place of a finite field. The
proof in [26] shows that if X comes as the reduction of a smoothX overO[1/S], then
the constant in the error termOX

(
#G
√

#C
qn

)
ofProposition 3.9 canbe taken to be a sum

of (compactly supported) Betti numbers of X , which is uniform in q by Ehresmann’s
Theorem and proper base change for compactly supported étale cohomology. This
applies in particular to the Selmer spaces, as they are smooth over Z[1/2]. ��

In computing the image of the monodromy representation associated to the Selmer
space, the following criterion for when an irreducible cover is geometrically connected
will be crucial.

Corollary 3.10 Let Y be a geometrically irreducible finite type Fq scheme and let
π : X → Y be a finite étale connected Galois G cover corresponding to a surjective
map ρ : π1(Y ) → G which is tamely ramified. Then, X is geometrically disconnected
if and only if there exist infinitely many positive integers i such that for all y ∈ Y (Fqi ),
ρ(Froby) �= id ∈ G.

Proof If X is geometrically connected, then once i is sufficiently large, there do exist
y ∈ Y (Fqi ) with ρ(Froby) = id, using the equidistribution of Frobenius elements in
G resulting from Proposition 3.9 (using that G = G0 in that statement).

We next show the converse. Suppose X is geometrically disconnected and let j
denote the number of components of X

Fq
. We claim that for any i relatively prime to

j , XFqi
is connected. Indeed, if XFqi

is disconnected, Gal(Fqi /Fq) � Z/iZ would
act nontrivially on the components of XFqi

, implying that gcd( j, i) > 1.
To conclude the proof, it suffices to show that for any such i relatively prime to

j , and any y ∈ Y (Fqi ), ρ(Froby) �= id ∈ G. Indeed, if ρ(Froby) = id ∈ G, the
fiber of π : X → Y over y would necessarily be degπ copies of y, so in particular,
X would have some Fqi point. However, since XFqi

is connected but geometrically
disconnected, the j geometric components of X

Fq
must be nontrivially permuted by

the action of Gal(Fq/Fqi ). In particular, this Galois action on the fiber Xy over y must
be nontrivial, and so X cannot have any Fqi points. ��
Corollary 3.11 Retain the notation of Definition 3.8. For any n ≥ 1 and C ⊂
im ρd

n,Z[1/2n] a conjugacy class and Fq a finite field of characteristic p with
gcd(p, 2n) = 1, we have

#
{
x ∈ W ◦d

Z[1/2n](Fq) : ρd
n,Z[1/2n](Frobx ) ∈ C

}
#W ◦d

Z[1/2n](Fq)

=
⎧⎨
⎩

#C
# im ρd

n,Fp

+ On,d
(
q−1/2

)
if mult(C) = γq ,

0 if mult(C) �= γq .

The same statement holds true with W ◦d
k in place of W ◦d

k .
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Proof Note that in this setting, the tameness assumption on ρd
n,k

was verified in the
proof of [28, Proposition 4.9], see especially the end of the first paragraph of [28, p.
702]. The first statement follows immediately from Proposition 3.9. Note here that G
and C as in the statement of Proposition 3.9 are fixed, and so we may absorb their
orders into the constant in the error term On,d(q−1/2).

To deduce the equidistribution statement for W ◦d
k from W ◦d

k , note that the mon-
odromy representation for W ◦d

k is induced by the cover Sel◦dn,k → W ◦d
k . Further

Sel◦dn,k is the pullback of Sel◦dn,k along W ◦d
k → W ◦d

k , i.e. the diagram

Sel◦dn,k Sel◦dn,k

W ◦d
k W ◦d

k

is cartesian. In other words, the monodromy representation associated to Sel◦dn,k →
W ◦d

k factors through π1(W ◦d
k ) � π1(W

◦d
k ). This implies that if x, y ∈ W ◦d

k

map to the same point in W ◦d
k then ρd

n,k(Frobx ) = ρd
n,k(Froby). Because W ◦d

k =
[W ◦d

k /G
2d+1
a �Gm], Lang’s theorem applied to the groupG

2d+1
a �Gm shows that each

z ∈ W ◦d
k (Fq) (counted with multiplicity according to automorphisms) has precisely

G
2d+1
a � Gm(Fq) points lying over it inW ◦d

k (Fq), all mapping to the same conjugacy
class under ρd

n,k . Therefore, the distribution of ρd
n,k(Frobx ) for x ∈ W ◦d

k (Fq) agrees

with the distribution ρd
n,k(Frobz) for z ∈ W ◦d

k (Fq). ��

3.5 Determining the image of monodromy

In [28, Theorem 4.4], a partial description of im ρd
n,k was given for k a field. The goal

of this section is to precisely compute im ρd
n,k . First, we recall the description from

[28, Theorem 4.4]. Keeping notation as in Sect. 3.2.1, for (V , Q) a quadratic space
over a ring R with a map R → Z/nZ, we let (Vn, Qn) := (VZ/nZ, QZ/nZ) and let
rn : O(Q)→ O(Qn) denote the induced reduction mod n map of orthogonal groups.
We will be most concerned with the case R = Z or R = Ẑ

(p).
In [28, Theorem 4.4] a quadratic space (V d

Z
, Qd

Z
) over Z is defined. This agrees

with that defined in Definition 3.1 by [28, Remark 4.5]. With these definitions, [28,
Theorem 4.4] states

rn(O
∗−(Qd

Z
)) ⊂ im ρd

n,k
⊂ im ρd

n,k ⊂ O(Qd
n).

We next recall a slight generalization of the usual cyclotomic character, which we
shall need to characterize im ρd

n,k .

Definition 3.12 For k a field of characteristic p, allowing p = 0, we define the cyclo-
tomic character as the map χcyc : Gal(k/k) →

(
Ẑ

(p)
)×

defined as follows: For ν a
positive integer with (ν, p) = 1 when p > 0 and ν arbitrary when p = 0, let ζν be
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a primitive νth root of unity. For σ ∈ Gal(k/k), suppose σ(ζν) = ζ
aν,σ
ν . Then, define

χcyc(σ ) := (aν,σ )ν , considered as an element of
(
Ẑ

(p)
)×

.

Remark 3.13 Note that χcyc of Definition 3.12 is the usual cyclotomic character when
char(k) = 0. Further, from the definition, in the case p �= 0, k = Fp, and q is a power

of p, we have χcyc(Frobq) = q ∈ (Ẑ(p)
)×

.

For the statement of Theorem 3.14, recall the notation for the spinor norm and
Dickson invariant from Sect. 3.2. Also, let Z/2Z : Z/2Z → ∏

primes � �=p Z/2Z the

diagonal inclusion. For k a field of characteristic p and d ∈ Z≥2, let χd−1 denote the
composition

Gal(k/k)
χd−1
cyc−−−→

(
Ẑ

(p)
)× → (

Ẑ
(p)
)×

/

((
Ẑ

(p)
)×)2

.

Theorem 3.14 Let k be a field of characteristic p, allowing p = 0, and let d ∈ Z≥2.
With Z/2Z and χd−1 defined above,

im ρd
n,k = D−1

Qd
Ẑ(p)

(imZ/2Z) ∩
(
sp−

Qd
Ẑ(p)

)−1
(im χd−1).

Example 3.15 Let’s explicate what Theorem 3.14 says in the cases

• If k is algebraically closed or d is odd, then

im ρd
Ẑ(p),k

= D−1
Qd
Ẑ(p)

(imZ/2Z) ∩ ker

(
sp−

Qd
Ẑ(p)

)
.

• If d is even and k = Fq has characteristic p > 0, using Remark 3.13, we have

im ρd
Ẑ(p),k

= D−1
Qd
Ẑ(p)

(imZ/2Z) ∩ (sp−
Qd
Ẑ(p)

)−1(〈[q]〉)

where 〈[q]〉 is the group generated by the class of q.

Wewill prove Theorem 3.14 at the end of this section in Sect. 3.10. The general out-
line of the proof is as follows. First, in Sect. 3.6, we show the image of the monodromy
representation contains �(Qd

Ẑ(p) ). Next, in Sect. 3.7, we explain how to compute the
spinor norm and Dickson invariant of images of Frobenius, in certain cases. Then,
in Sect. 3.8 and Sect. 3.9 we compute the spinor norm and Dickson invariants on
im ρd

Ẑ(p),k
, for k a finite field. Finally, we piece these parts together in Sect. 3.10.

3.6 Showing themonodromy is big

We next explain how to deduce �(Qd
Ẑ(p) ) ⊂ im ρd

Ẑ(p),k
by combining [28, Theorem

4.4] with some group theory.
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Lemma 3.16 For d ≥ 2 and n ≥ 1, we have rn(O∗−(Qd
Z
)) ⊃ �(Qd

n). In particular,
combining this with [28, Theorem 4.4] gives �(Qd

n) ⊂ im ρd
n,k

and so �(Qd
Ẑ(p) ) ⊂

im ρd
Ẑ(p),k

.

Proof The last sentence follows from the first by [28, Theorem 4.4], which says
O∗−(Qd

Z
) ⊂ im ρd

Ẑ(p),k
.

We turn our attention to proving the first statement. For every v ∈ V d
n , with

Qd
n(v) = −1, there exists a lift ṽ ∈ V d

Z
with Qd

Z
(̃v) = −1, as is shown in the

proof of [11, Lemma 4.13] (which implicitly assumes d ≥ 2 so that (V d
Z

, Qd
Z
) con-

tains summands isomorphic to the hyperbolic plane). Let R(Qd
n) denote the subgroup

of O(Qd
n) generated by elements of the form rw for v ∈ V d

n and let R′(Qd
n) denote

the subgroup of O(Qd
n) generated by elements of the form rv ◦ rw for v,w ∈ V d

n with
Qd

n(v) = Qd
n(w) = −1. We next show R(Qd

n) = O(Qd
n) and R′(Qd

n) = �(Qd
n).

Recall a quadratic space (V , Q) over Z is unimodular if BQ is invertible as a linear
transformation over Z or equivalently the natural map induced by BQ from V to V∨,
the dual lattice, is an isomorphism.

In the case that n is a prime power, since (V d
Z

, Qd
Z
) is unimodular and nondegenerate

of rank more than 5 (see [28, Remark 4.5]), it follows from [24, Satz 2] that R(Qd
n) =

O(Qd
n). By [24, Satz 3] it follows R′(Qd

n) = �(Qd
n). Note that [24, Satz 3] is

stated for R′(Qd
n) generated by elements of the form rv ◦ rw for v,w ∈ V d

n with
Qd

n(v) = Qd
n(w) = 1, instead of Qd

n(v) = Qd
n(w) = −1. However, we may arrange

the latter by applying [24, Satz 3] to −Qd
n in place of Qd

n . Therefore, �(Qd
n) =

R′(Qd
n) ⊂ rn(O(Qd

Z
)).

For the general case, write n = ∏t
i=1 p

ai
i for pairwise distinct primes pi .

Since �(Qd
n) =

∏t
i=1 �(Qd

p
ai
i

), it suffices to show the image of �(Qd
p
ai
i

) →∏t
i=1 �(Qd

p
ai
i

), included as the i th component, is contained in rn(O∗−(q)). For this,

choose v,w ∈ V d
p
ai
i
with Qd

p
ai
i

(v) = Qd
p
ai
i

(w) = −1 and choose lifts ṽ, w̃ to V d
n so that

ṽ ≡ w̃ mod
∏

1≤ j≤n, j �=i p
a j
j and Qd

n (̃v) = Qd
n(w̃) = −1. We then find that rṽ ◦ rw̃

agrees with rv ◦rw when reduced mod paii and is the identity when reduced mod p
a j
j

for any j �= i . It follows that rn(O∗−(q)) ⊃ im(�(Qd
p
ai
i

) → ∏t
i=1 �(Qd

p
ai
i

)), as

desired. ��

3.7 Tools to compute the Dickson invariant and spinor norm of Frobenius

In this section, we prove Proposition 3.17 which allows us to compute the spinor norm
and Dickson invariants of the images of Frobenius elements under the monodromy
representation. The following result essentially appears as [46, Proposition 2.9], where
an analog is stated over Z/�Z in place of Ẑ

(p). The following generalization has
essentially the same proof, using that L-functions associated to elliptic curves are
power series with coefficients in Z. Slight care must be taken to deal with the fact that
the determinant disagrees with the Dickson invariant over fields of characteristic 2.
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For E an elliptic curve over Fq(t), we let L(T , E) denote the L-function associated
to E and let εE ∈ {±1} denote root number associated to E , see [46, Sect. 2.3] and
[46, Sect. 2.2] respectively for a definitions. The only property of root numbers we
will use is that they appear in the functional equation of the L function associated to
E . Recall our notation [Ex ] = x ∈ W ′d

k where Ex is the elliptic curve corresponding
to x as in Remark 2.2.

Proposition 3.17 (Mild generalization of [46, Proposition 2.9]) Let d ≥ 1.

(1) For [Ex ] = x ∈ W ◦d
Fp

(Fq), DQd
Ẑ(p)

(ρd
Ẑ(p),k

(Frobx )) = Z/2Z((1− εEx )/2).

(2) For [Ex ] = x ∈ W ��d
Fp

(Fq), whenever det(id−ρd
Ẑ(p),k

(Frobx )) �= 0, we have

sp−
Qd
Ẑ(p)

(ρd
Ẑ(p),k

(Frobx )) = [qd−1],

where [q] is the class of the integer q in
(
Ẑ

(p)
)×

/
((

Ẑ
(p)
)×)2

.

In order to prove Proposition 3.17 we will need the following Lemma, which is essen-
tially shown in [46, p. 10].

Lemma 3.18 Let d ≥ 1, p an odd prime, � a prime with � �= p, and [Ex ] = x ∈
W ��d

Fp
(Fq). Then, letting L(T , Ex ) be the L-function associated to Ex , we have

det(id−ρd
Z�,Fp

(Frobx )T |V d
Z�

) = L(T /q, Ex ),

viewed as an equality of polynomials with coefficients inZ�. In particular, the analytic
rank of Ex is equal to the Z�-rank of the generalized 1-eigenspace of ρd

Z�,Fp
(Frobx )

on V d
Z�
.

Proof Let L(T , Ex ) denote the L-function of Ex , which is in fact a polynomial
of degree 12d − 4 with integral coefficients [46, Theorem 2.2]. Define gx,� :=
ρd
Z�,Fp

(Frobx ). It suffices to show that

det(id−gx,�T |V d
Z�
⊗Z�

Q�) = L(T /q, Ex )

viewed as an equality with coefficients in Q�. As explained in [46, p. 10], we have

L(T /q, Ex ) = det(id−Frobx T |H1(P1
Fq

, j∗T�(Ex ))⊗Z�
Q�)

where j∗T�(Ex ) is defined as follows. Let U denote the open subscheme of P
1
Fq

over

which the minimal proper regular model of Ex is smooth. Let j : U → P
1
Fq

denote the

inclusionmorphism. Let Ex [�k] denote the rank 2 locally free sheaf ofZ/�kZmodules
parameterizing the �k torsion of the smooth minimal proper regular model of Ex over
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U with j∗Ex [� j ] the pushforward sheaf on P
1
Fq
. Define j∗T�(Ex ) := lim←−k

j∗Ex [�k]
with transition maps j∗Ex [�k+1] → j∗Ex [�k] given by multiplication by �.

We next identify H1(P1
Fq

, j∗T�(Ex )) with V d
Z�

so as to compare this representation

with ρd
Z�,Fp

. By Lemma 2.7, there is a natural identification between the geometric

fiber of the Selmer space over x , Sel ��d
�k ,Fp

×
W ��d

Fp ,x
SpecFq � H1(P1

Fq
, j∗Ex [�k]).

Further, these are both free Z/�kZ modules of rank 12d − 4 by [28, Corollary 3.19].
By compatibility of these isomorphisms with the maps E[�k+1] → E[�k] we obtain
the equality det(id−gx,�T |V d

Z�
⊗Z�

Q�) = L(T /q, Ex ), viewed as an equality of
polynomials with coefficients in Q�.

To conclude the proof, it remains to explain why the final statement regarding ana-
lytic rank follows from the equality det(id−gx,�T ) = L(T /q, Ex ). The analytic rank
is the largest power of T − 1 dividing L(T /q, Ex ) = det(id−gx,�T ). This agrees

with the largest power of T − 1 dividing det
(
g−1x,� − T

)
, which is the characteristic

polynomial of g−1x,�. Hence, the analytic rank agrees with the dimension of the gen-

eralized 1-eigenspace of g−1x,�, which is the same as the dimension of the generalized
1-eigenspace of gx,�. ��
Proof of Proposition 3.17 Define gx,� := ρd

Z�,Fp
(Frobx ). First, we verify (1) regard-

ing the Dickson invariant. From the definition of the Dickson invariant from
Sect. 3.2.4, to compute the DQd

Ẑ(p)
(ρd

Ẑ(p),Fp
(Frobx )), it is equivalent to compute

DQd
Z�

(ρd
Z�,Fp

(Frobx )) for each prime � �= p separately and show this is equal to

(1− εEx )/2.
Next, observe that det(T − gx,�) = det(T − g−1x,�).
Indeed, for any nondegenerate quadratic space (V , Q) and M ∈ O(Q), and for

Mt the transpose of M , we have Mt BQM = BQ �⇒ Mt = B−1Q M−1BQ . Hence,
the characteristic polynomial of M agrees with that of Mt which agrees with that of
M−1. Therefore, the characteristic polynomial of gx,� agrees with that of g−1x,� using

gx,� ∈ O(Qd
Z�

) by the easier containment of [28, Theorem 4.4].
Therefore, we have

T 12d−4 det(id−gx,�T−1) = det(T − gx,�) = det(T − g−1x,�)

= det(−g−1x,�) det(id−gx,�T )

= (−1)12d−4 det(gx,�) det(id−gx,�T )

= det(gx,�) det(id−gx,�T ).

By [46, Theorem 2.2] in conjunction with Lemma 3.18, we also have

T 12d−4 det(id−gx,�T−1) = εEx det(id−gx,�T ),

implying det(gx,�) = εEx . Note that in the case � = 2, we are using crucially that
we are working over Z2 which does not have characteristic 2. The relation between
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the Dickson invariant and the determinant for matrices over Z2 given in [9, Corollary
C.3.2] implies (1).

We next verify (2). It suffices to verify sp−
Qd
Z�

(ρd
Z�,k

(Frobx )) = [qd−1], for every
prime � �= p. As in the previous part, let gx,� := ρd

Z�,Fp
(Frobx ). First, observe

that as det(id−gx,�) �= 0, it follows that gx,� has trivial 1-eigenspace. Because the
Dickson invariant for an orthogonal group over a nondegenerate free module of even
rank is congruent to the rank of the 1-eigenspace mod 2 by [39, p. 160], we find
gx,� ∈ SO(Qd

Z�
). Therefore, sp−

Qd
Z�

(gx,�) = sp+
Qd
Z�

(gx,�). By [45, Sect. 2, Cor.] (see

also [9, Theorem C.5.7]), and sp−
Qd
Z�

(−1) = disc(Qd
Z�

) [9, Lemma C.5.8], one can

compute the spinor norm of gx,� as

sp−
Qd
Z�

(gx,�) = sp+
Qd
Z�

(gx,�)

= sp+
Qd
Z�

(− id)sp+
Qd
Z�

(−gx,�)

= disc(Qd
Z�

) · det
(
1− gx,�

2

)
· (Z×� )2 = 2

rk V d
Z� det(1− gx,�)) · (Z×� )2

= det(id−gx,�) · (Z×� )2.

Then, using the identification det(id−gx,�T |V d
Z�

) = L(T /q, Ex ) of Lemma 3.18,

sp−
Qd
Z�

(gx,�) = det(id−gx,�) · (Z×� )2 = L(1/q, Ex ) · (Z×� )2.

To conclude the proof, we only need check L(1/q, E) ∈ qd−1(Z×� )2. In fact, con-
sidering L(T , E) as a polynomialwith integer coefficients, wewill verify L(1/q, E) ∈
qd−1(Q×)2, and the fact that both L(1/q, E) and qd−1 lie inZ

×
� will imply they agree

up to a square in Z
×
� . Since det(id−gx,�) = L(1/q, Ex ) and det(id−gx,�) �= 0, we

find that the L function of Ex has analytic rank 0,meaning that ordT=1/q L(T , Ex ) = 0
or equivalently L(1/q, Ex ) �= 0. It follows from [46, Corollary 2.6] (as is deduced
from the Birch and Swinnerton Dyer conjecture, applicable because the analytic
rank and algebraic rank are both 0) that L(1/q, Ex ) = q0−1+dcEx ·

(
Q
×)2, for

cEx the Tamagawa number of Ex . Observing that cEx = 1 as x ∈ W ◦d
k , we find

L(1/q, Ex ) = q−1+d · (Q×)2, as desired. ��

3.8 Controlling the Dickson invariant

Using Proposition 3.17, we next compute the image of im ρd
Ẑ(p),k

under the Dickson
invariant map.
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Lemma 3.19 For any field k of characteristic p �= 2 (allowing p = 0) and any height
d ≥ 2, the image of the map

DQd
Ẑ(p)

◦ ρd
Ẑ(p),k

: π1(W
◦d
k )→

∏
primes � �=p

Z/2Z

is im(Z/2Z).

Proof First, because rn(O∗−(Qd
Z
)) ⊂ ρd

n,k
by [28, Theorem 4.4], the Dickson invariant

must be nontrivial on im ρd
n,k

, as it is nontrivial on O∗−(Qd
Z
). Therefore, it is similarly

nontrivial on im ρd
Ẑ(p),k

. Therefore, to conclude the proof, it suffices to show imDQd
Ẑ(p)
◦

ρd
Ẑ(p),k

⊂ imZ/2Z. Further, from the definition of profinite groups as a limit of finite
groups, it suffices to show that for any integer n of the form n = �1 · · · �t , for primes
�1, . . . , �t with no �i = p, im DQd

n
◦ ρd

n,k is contained in imZ/2Z.

By base change, it suffices to establish the containment im DQd
n
◦ρd

n,k ⊂ imZ/2Z

when k is either Q or a finite field of odd characteristic. If the composition DQd
n
◦ ρd

n,k

defines a surjective map π1(W ◦d
k ) → G, we obtain a resulting finite étale Galois G-

cover UG,n,d,k → W ◦d
k . By Chebotarev density, for example as in [12, Lemma 1.2],

it suffices to establish that UG,n,d,Q is geometrically connected and to establish the
claim for all finite fields k of odd characteristic. Further, geometric irreducibility for
UG,n,d,Q follows from geometric irreducibility of UG,n,d,Fp for all but finitely many

primes p, because UG,n,d,k → W ◦d
k → Spec k is in fact the base change of a map

UG,n,d,Z[1/2] → W ◦d
Z[1/2] → SpecZ[1/2], and the set of fibers on which a map is

geometrically connected is constructible [16, Corollaire 9.7.9]. Hence, it suffices to
demonstrate that for each finite field k of odd characteristic, im DQd

n
◦ρd

n,k is contained
in imZ/2Z and UG,n,d,k is geometrically connected.

For all finite fields k of odd characteristic and all x ∈ W ◦d
k (k), by Proposition 3.17

we have DQd
n
◦ ρd

n,k(Frobx ) ⊂ imZ/2Z. For all sufficiently large finite fields of odd

characteristic, it follows fromProposition 3.9 applied to theG-coverUG,n,d,k → W ◦d
k

constructed above that im DQd
n
◦ ρd

n,k ⊂ imZ/2Z. Since the reverse containment
also holds, we have equality for all sufficiently large (in the sense of divisibility of
cardinality) finite fields.

We claim that the cover UG,n,d,k → W ◦d
k is tamely ramified. Indeed, this holds

because we are assuming k does not have characteristic 2, while the coverUG,n,d,k →
W ◦d

k has degree which is a power of 2 because the Dickson invariant takes values in
a 2-group.

It follows from Corollary 3.10 that over any finite field k, the resulting G-cover is
geometrically connected, and so the containment DQd

n
◦ ρd

n,k(Frobx ) ⊂ imZ/2Z in
fact holds for all finite fields of odd characteristic. ��
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3.9 Controlling the spinor norm

We next use Proposition 3.17(2) to analyze the spinor norm applied to im ρd
Ẑ(p),k

. The
general strategy in what follows will be to compute the image of the spinor norm
restricted to the kernel of the Dickson invariant, and then use this to deduce the joint
image of the spinor norm and Dickson invariant.

For this proof, we will need to know there are many elliptic curves [Ex ] ∈ W ◦d
k

with trivial 1-eigenspace. This will follow from the group theoretic statement soon
established in Proposition 3.22. In order to state this precisely, we recall a relevant
distribution on the �-adic points of a finite type scheme from [1]. All but the last
statement appears in [1, Lemma 2.1(b)], while the last statement appears in [35,
Corollaire, p. 146].

Lemma 3.20 Let X be a finite type Z� scheme of dimension d and equip X(Z�) with
the �-adic topology. There exists a unique bounded R≥0-valued measure μX on the
Borel σ -algebra of X(Z�) such that for any open and closed subset S of X(Z�), we
have

μX (S) = lim
e→∞

# (image of S in X(Z/�eZ))

(�e)d
.

If Y ⊂ X is a subscheme of dimension < d, μX (Y (Z�)) = 0 and

#
(
im
(
Y (Z/�eZ) → X(Z/�eZ)

)) = OY (�e(d−1)).

Remark 3.21 Lemma 3.20 is correct as stated, but the proof in [1, Proposition 2.1(b)]
has a minor error. There, it is stated that #Y (Z/�eZ) = O

(
(�e)d−1

)
, which is not in

general true. The correct statement is that im (Y (Z�)→ Y (Z/�eZ)) = O
(
(�e)d−1

)
.

A counterexample to the incorrect statement is provided by the subscheme Y =
SpecZ[x]/(x2) and X = A

1
Z�
. In this case, we easily see that #Y (Z�) = 1 because

Z� is reduced, but #Y (Z/�eZ) = ��e/2� as such points are in bijection with elements
of Z/�eZ which square to 0.

In the following proposition only, we use O(Q) and SO(Q) to denote the algebraic
groups associated to a quadratic form Q, and O(Q)(R) to denote its Spec R points,
for R a ring.

Proposition 3.22 Let (V , Q) be a nondegenerate quadratic space of even rank at least
4 over Z�. There is a Zariski closed pure codimension 1 subscheme Z ⊂ O(Q), such
that g ∈ Z if and only if g has a generalized 1-eigenspace of dimension at least 2.

Further, any g ∈ (O(Q)−Z)(Z�) has a zero dimensional generalized 1-eigenspace
and zero dimensional 1-eigenspace when g ∈ SO(Q)(Z�) and a one dimensional
generalized 1-eigenspace and one dimensional 1-eigenspace when g /∈ SO(Q)(Z�).

In particular, Z(Z�) has measure 0 with respect to the distribution of Lemma 3.20.

Proof For VL an even dimensional free module over a field L and g : VL → VL ,
let V g=λ

L denote the λ-eigenspace and V [g=λ]
L denote the generalized λ-eigenspace.
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Let QL be a nondegenerate quadratic form on VL . Recall that the Dickson invariant
agrees with dim V g=1

L mod 2, using that dim VL is even and [39, p. 160]. (In [39, p.
160] the notation [V , f ] is used for im(1− f ), whose rank taken mod 2 agrees with
dim V g=1

L mod 2 since dim VL is even.)
In particular, every element in (O(QL) − SO(QL))(L) has odd dimensional 1-

eigenspace while every element of SO(QL)(L) has even dimensional 1-eigenspace.
Now, let (V , Q) be a nondegenerate even rank quadratic space over Z� as in the
statement of the proposition. We may apply the above discussion to the base change
(VQ�

, QQ�
) to deduce that any element g ∈ SO(Q)(Z�) has rk V

g=1
L ≡ 0 mod 2

and any element of g ∈ (O(Q)− SO(Q))(Z�) has rk V
g=1
Q�

≡ 1 mod 2.

Further, the condition that an element g ∈ SO(Q)(Z�) has rk V [g=1]
Q�

> 0 is
Zariski closed and nonempty in the algebraic group SO(Q) over Z�; it is Zariski
closed because this condition can be expressed as T − 1 dividing the characteristic
polynomial of g and it is nonempty because there are elements in a maximal torus with
dim V g=1

Q�
= 0. Similarly, the condition that an element g ∈ (O(Q) − SO(Q))(Z�)

has rk V [g=1]
Q�

> 1 is Zariski closed and nonempty. (This uses that char Z� = 0 �= 2,
as in characteristic 2 every element of O(Q) − SO(Q) would have generalized 1
eigenspace of dimension at least 2.) Therefore, to establish the statement regarding
generalized 1-eigenspaces, it suffices to show that a proper Zariski closed subscheme
of an integral scheme over Z� parameterizes a measure 0 subset, which is the content
of Lemma 3.20.

The statement for generalized 1-eigenspaces established above implies the corre-
sponding statement for 1-eigenspaces because when the generalized 1-eigenspace is
at most 1 dimensional, it is equal to the 1-eigenspace. The final statement that Z(Z�)

has measure 0 follows from Lemma 3.20. ��
We next define a double cover Z d

k → W ◦d
k so that the Dickson invariant is trivial

on π1(Z
d
k ).

Definition 3.23 Let n ≥ 1, d ≥ 2, and let k be an integral domain (not necessarily
a field) on which 2n is invertible. By Lemma 3.19, the Dickson invariant defines a
surjective map π1(W ◦d

k )→ Z/2Z and hence corresponds to a finite étale Z/2Z cover
Z d

k → W ◦d
k . This yields a map π1(Z

d
k ) → SO(Qd

n) which is identified with the
restriction of ρd

n,k to the kernel of the Dickson invariant.

In the case k is a field, by abuse of notation, we have a map χcyc : π1(Spec k) →
(Z/nZ)× (induced by the cyclotomic character χcyc to

(
Ẑ

(p)
)×

from Definition 3.12).
In the general case where k is just an integral domain, we also obtain a map χcyc :
π1(Spec k) → (Z/nZ)× which can be defined as the unique map making the diagram
below commute:

π1(Frac(k)) π1(Spec k)

(Z/nZ)×
χcyc χcyc

(3.2)
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We have a diagram

π1(Z
d
k ) SO(Qd

n)

π1(W ◦d
k )

π1(Spec k) (Z/nZ)× (Z/nZ)× /
(
(Z/nZ)×

)2
.

sp−
Qd
n

χd−1
cyc

(3.3)

Lemma 3.24 The square (3.3) commutes when k is a field of characteristic prime to
2n.

Proof Because commutativity of (3.3) is compatible with base change on the integral
domain k, it suffices to verify it in the cases that k = Q and that k is a finite field of
characteristic prime to 2n.

First, we verify the claim when k is a finite field of characteristic prime to 2n.
It suffices to establish the claim for all sufficiently divisible n. Hence, to simplify
matters latter, we make the further harmless assumption that 8 | n. Using that
(Z/nZ)× /

(
(Z/nZ)×

)2 has even order, it suffices to verify commutativity of (3.3)
for all sufficiently large finite fields of characteristic p with gcd(p, 2n) = 1, and odd
degree over Fp.

Now, for such sufficiently large finite fields, we only need verify that that for
varying x ∈ Z (k), sp−

Qd
n
(ρd

n,k(Frobx )) is always equal to
[
qd−1

]
. By Proposition 3.9,

Frobenius elements are equidistributed in a coset of the geometric monodromy group
and so it suffices to establish sp−

Qd
n
ρd
n,k(Frobx ) =

[
qd−1

]
for a subset of x ∈ W ◦d

k (k)

with density inW ◦d
k (k) tending to 1 as #k →∞. Further, we note that the spinor norm

is unchanged upon replacing n with n j for any j ≥ 1. Note that here we are using the
assumption 8 | n, as, for example, sp−

Qd
2
maps to the trivial group while sp−

Qd
4
maps

to a nontrivial group. By replacing n with a sufficiently large power we can ensure
that the density of g ∈ im ρd

n,k with a 0-dimensional 1 eigenspace is arbitrarily close
to 1 by Proposition 3.22. Recall that, by the Lang-Weil estimates, if X is a scheme
over SpecZ with geometrically irreducible fibers and U ⊂ X a fiberwise dense open

subscheme lim#k→∞ #U (k)
#X(k) = 1. Since W ��d

SpecZ[1/2] ⊂ W ◦d
SpecZ[1/2] is a fiberwise

dense open subscheme by [28, Lemma 3.14], we find that W ��d
k (k) has density 1 in

W ◦d
k (k) as #k →∞, and so it suffices to verify the above when x ∈ W ��d

k (k). Hence,

we want to verify commutativity of (3.3) for all x ∈ W ��d
k (k) with a 0-dimensional 1

eigenspace, which is the content of Proposition 3.17(2).
So, to finish the proof, it only remains to deal with the case k = Q. Since (3.3) is

in fact defined over the integral domain k = Z[1/2], and is compatible with base
change along SpecQ → SpecZ[1/2n], it suffices to verify commutativity when
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k = SpecZ[1/2n]. Via the bijection between maps π1(Z
d
Z[1/2n])→ G and G-covers

ofZ d
Z[1/2n], call X and Y the two induced (Z/nZ)× /

(
(Z/nZ)×

)2-covers ofZ d
Z[1/2n]

obtained by traversing the diagram (3.3) in the two different paths. We wish to show
X and Y are isomorphic. We obtain a (Z/nZ)× /

(
(Z/nZ)×

)2-cover T → Z d
Z[1/2n]

induced by the “difference” of X and Y ; that is, if X and Y correspond to maps f , g :
π1(Z

d
Z[1/2n]) → (Z/nZ)× /

(
(Z/nZ)×

)2 then T corresponds to the homomorphism

t(α) = f (α)g(α−1). To conclude the proof, it suffices to show T is trivial.
We first verify T ×SpecZ[1/2n] SpecQ → Z d

Q
is the pullback of a cover S →

SpecQ along the structure map Z d
Q
→ SpecQ. By the established case of finite

fields and compatibility with base change, we know T becomes trivial after base
change of T → Z d

Z[1/2n] → SpecZ[1/2n] along any closed point SpecFp →
SpecZ[1/2n]. We now apply [16, Proposition 9.7.8], which states that the num-
ber of geometric components of a morphism is constant on some open set, to the
map T → SpecZ[1/2n]. It follows that the cover T → Z d

Z[1/2n] is trivial when

restricted to SpecQ → SpecZ[1/2n]. This implies that the composite morphism
π1(Z

d
Q

) → π1(Z
d
Q

) → (Z/nZ)× /
(
(Z/nZ)×

)2 is trivial. From the exact sequence

[17, Exposé IX, Théorème 6.1]

0 π1(Z
d
Q

) π1(Z
d
Q

) π1(SpecQ) 0 (3.4)

we obtain that the cover T ×SpecZ[1/2n] SpecQ → Z d
Q

is the pullback of a cover

S → SpecQ along the structure map Z d
Z
→ SpecQ.

To conclude, we wish to show S is a trivial cover of SpecQ. By Chebotarev den-
sity, it suffices to show that the normalization of SpecZ in S is the trivial cover over a
density 1 subset of primes. Since S pulls back to T ×SpecZ[1/2n] SpecQ along the map
Z d

Z[1/2n] → SpecQ, it suffices to show that T → Z d
Z[1/2n] is the trivial cover over a

density 1 subset of primes. Indeed, this triviality holds by the previously established
commutativity of (3.3) when char(k) is positive. ��

Recall inDefinition 3.23, we definedZ d
k as the double cover ofW ◦d

k corresponding
to the kernel of the Dickson invariant. That is, π1(Z

d
k ) = ker(DQd

Ẑ(p)
) : π1(W ◦d

k ) →
Z/2Z.

Lemma 3.25 For a field k of characteristic p �= 2 (allowing p = 0) and any height
d ≥ 2, the image of the spinor norm map restricted to ker(DQd

Ẑ(p)
)

sp−
Qd
Ẑ(p)

◦ ρd
Ẑ(p),k

|ker(D
Qd
Ẑ(p)

) : π1(Z
d
k ) →

(
Ẑ

(p)
)×

/

((
Ẑ

(p)
)×)2

is identified with the image of the composition

Gal(k/k)
χd−1
cyc−−−→

(
Ẑ

(p)
)× → (

Ẑ
(p)
)×

/

((
Ẑ

(p)
)×)2

. (3.5)
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Remark 3.26 In the case k is algebraically closed or d is odd, Lemma 3.25 says the
image of the spinor norm map sp−

Qd
Ẑ(p)

◦ ρd
Ẑ(p),k

, when restricted to the kernel of the

Dickson invariant, is trivial.

Proof It suffices to establish the claim for all finite n, with no prime factor of n equal
to p, in place of Ẑ

(p). The result then follows from Lemma 3.24. ��

3.10 Proving Theorem 3.14

Combining the results of the preceding subsections, we are ready to complete our
monodromy computation.

Proof of Theorem 3.14 First, by Lemma 3.16, we find �(Qd
Ẑ(p) ) ⊂ im ρd

Ẑ(p),k
. As

�(Qd
Ẑ(p) ) = ker

⎛
⎜⎜⎝O

(
Qd

Ẑ(p)

) (D
Qd
Ẑ(p)

,sp−
Qd
Ẑ(p)

)

−−−−−−−−−−→

⎛
⎜⎜⎝

∏
primes �,

� �=p

Z/2Z

⎞
⎟⎟⎠×

(
Ẑ
×/(Ẑ×)2

)
⎞
⎟⎟⎠ ,

determining im ρd
Ẑ(p),k

is equivalent to determining the image of (DQd
Ẑ(p)

, sp−
Qd
Ẑ(p)

) ◦
im ρd

Ẑ(p),k
.

First, because rn(O∗−(Qd
Z
)) ⊂ ρd

n,k
for every n ≥ 1 and prime to p, by [28,

Theorem 4.4], ρd
n,k

does contain elements with trivial spinor norm and nontrivial
Dickson invariant. Therefore, since we know the image of the Dickson invariant map
is Z/2Z(Z/2Z) by Lemma 3.19, it follows that im ρd

Ẑ(p),k
contains ker sp−

Qd
Ẑ(p)

∩
(DQd

Ẑ(p)
)−1(Z/2Z(Z/2Z)).

Therefore, the image of the joint map (DQd
Ẑ(p)

, sp−
Qd
Ẑ(p)

)◦ im ρd
Ẑ(p),k

is generated by

Z/2Z(Z/2Z)× id together with the image of the spinor norm when restricted to the
kernel of the Dickson invariant. The latter image is given in the theorem statement by
Lemma 3.25. Therefore, the joint map (DQd

Ẑ(p)
, sp−

Qd
Ẑ(p)

) has image as claimed in the

statement of Theorem 3.14. ��

4 The distribution of Sel�

In this section we will prove the key results towards showing that the BKLPR heuris-
tic agrees with the geometric distribution of Sel�, for prime �. The psychology of
the problem is as follows: one would like to “understand” the distributions by com-
puting numerical invariants such as moments, but the distributions in question are
not determined by their moments, since these moments grow too quickly. However,
both distributions are the limit as a certain “height” parameter tends to infinity, and at
finite height they are distributions on finite sets, hence obviously determined by their
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moments. We can then verify that the two limiting distributions agree by showing that
the “finite height” distributions are very close, which we can then do by computing
enough moments.

The key point that makes this computation feasible is that the moments stabilize
very quickly as the height grows. It was already observed in [28, Theorem 1.2] that
the first moment (i.e., average) size of Sel� for height d elliptic curves (in the large
q limit) is already equal to its limiting value as soon as the height d is at least 2. In
this section we go much further, computing the first 6d − 2 moments for the large q
limit of families of elliptic curves with height d (in the large q limit), and showing that
they are all already equal to their limiting values. Even computing one fewer moment
would be insufficient for our purposes, and it seems that computing one more moment
in closed form would be quite difficult, as the next moment is not equal to its limiting
value!

We caution, however, that the distribution at finite height depends quite delicately
on themonodromy group; for example, the large q limit does not literally exist because
of small fluctuations among the monodromy groups, but the difference between its
lim infq→∞ and lim supq→∞ will tend to 0 as the height tends to infinity.

We now give an outline of the contents of this section. In Sect. 4.1, we introduce the
random kernel model, which is our model for Selmer groups that directly connects to
points of the Selmer space. This model will be defined in terms of kernels of random
elements of subgroups of an orthogonal group, and so in Sect. 4.2 we compute the
probability distributions of the dimensions of these kernels. In Sect. 4.3.5 we show
how to determine compute the moments of the above mentioned random kernels, and
then how to determine their distribution in terms of these moments, which is used in
Sect. 4.4 to bound the total variation distance between the random kernel model and
the BKLPRmodel.We emphasize that these results a priori concern the random kernel
model rather than Seln , but later in Sect. 6 it will be spelled out how to relate the two.

4.1 The random kernel model

We introduce another probabilistic model which is closely related to the distribution
of Selmer elements. We will continue to use the notation introduced earlier, especially
from Sect. 3.2.1.

Definition 4.1 (Random 1-eigenspace for an element of H ) Let n and d be positive
integers. Let H ⊂ O(Qd

n) be a subset, where O(Qd
n) is the orthogonal group for

the quadratic form of Definition 3.1. We define RSelH
Vd
n
to be the random variable

ker(g− id), valued in isomorphism classes of Z/nZ-modules, for g drawn uniformly
at random from H .

In this section, we will primarily be concerned with the case of Definition 4.1 where
n = � is prime, but in Sect. 5, we will crucially use the case that n = �e is a prime
power. Now we will define the precise random variable that we end up relating to the
distribution of ranks and Selmer groups of elliptic curves for our universal family.

Definition 4.2 (Random kernel model) For n ∈ Z≥1, d ∈ Z≥2 and k a finite field of

cardinality q with gcd(q, 2n) = 1, let [q] ∈ (Z/nZ)× /
(
(Z/nZ)×

)2 denote the class
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of q. Define

Hd
n,k :=

(
DQd

n

)−1 (
Z/2Z(Z/2Z)

) ∩ (sp−
Qd
n

)−1
([qd−1]) ⊂ O

(
Qd

n

)
.

Define RSeldn,k as the distribution on Abn given by

Prob(RSeldn,k = G) := #{g ∈ Hd
n,k : ker(g − id) � G}

#Hd
n,k

.

Define (Rrk,RSeln)dk as the distribution on Z≥0 × Abn given by

Prob((Rrk,RSeln)
d
k = (r ,G)) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

#{g∈SO(Qd
n )∩Hd

n,k :ker(g−id)�G}
#Hd

n,k
if r = 0,

#{g∈(O(Qd
n )−SO(Qd

n )
)∩Hd

n,k :ker(g−id)�G}
#Hd

n,k
if r = 1,

0 if r ≥ 2.

Theorem 3.14, adapted to the case of finite fields, gives:

Corollary 4.3 For q ranging over all prime powers with gcd(q, 2n) = 1 and d ≥ 2 an
integer, the distribution of im ρd

n,Z[1/2n](Frobx ) ranging over x ∈ W ◦d
Z[1/2](Fq), up to

an error of On,d(q−1/2), agrees with the distribution RSeldn,Fq
.

Proof First, by Corollary 3.11 to determine the distribution of Frobenius elements, it
makes no difference whether we work with W ◦d

Z[1/2] or W ◦d
Z[1/2], so we choose to

work with the latter. Observe that the monodromy agrees with the geometric mon-
odromy (i.e., im ρd

n,Fq
= im ρd

n,Fq
) when q is a square or d is odd or n ≤ 2, and has

index 2 in the geometric monodromy when q is a square and d is even and n > 2 by
Theorem 3.14. Therefore, in the former case, it is equidistributed in the monodromy
group, which is Hd

n,k in this case, up to an error of On,d(q−1/2) by Proposition 3.9. On
the other hand, when q is not a square and d is even and n > 2, γq as in Definition 3.8
is nontrivial since the geometric monodromy is not equal to the monodromy. Hence,
by Proposition 3.9, Frobx is equidistributed in the nontrivial coset of ρd

n,Fq
⊂ ρd

n,Fq
,

which is precisely im ρd
n,Fq

− im ρd
n,Fq

= Hd
n,k .

The statement regarding the concrete characterization of the Dickson invariant and
spinor norm is merely a restatement of Theorem 3.14. ��

In Sect. 6, we will use the results from Sects. 2.2 and 3.4 to relate the random kernel
model to the distribution of Selmer groups. For the rest of this section, we focus on
analyzing the random kernel model.

4.2 Distribution of random 1-eigenspaces

We now focus on the case where n = � is prime.
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4.2.1 Some notation

We will use Theorem 4.9 in conjunction with Lemma 4.5 to deduce the probability
generating function for ker(g − id) for g drawn uniformly at random from a coset of
�(Qd

� ) ⊂ O(Qd
� ). Now we will take H ⊂ O(Qd

� ) to be a coset of �(Qd
� ) in O(Qd

� ).

• Note that when � = 2, the spinor norm is trivial on O(Qd
2) and hence �(Qd

2) =
SO(Qd

2) and there are two possibilities for the coset H , determined by theDickson
invariant.

• When � is odd, there are four cosets of �(Qd
� ) given by the pair (sp−

Qd
�

,DQd
�
). We

label these cosets as in the following table.

DQd
�

sp−
Qd

� trivial non-trivial

trivial � A
non-trivial B C

For Z a random variable valued in isomorphism classes of finite-dimensional F�-
vector spaces, define the probability generating function of Z to be the polynomial in
t given by

GZ (t) := E(tdim Z ) =
∑
i∈N

Prob(dim Z = i)t i .

For a polynomial f (t) = ∑i∈N ai t i , introduce the notation [ f (t)]r := ar to denote
the coefficient of tr in f (t).

4.2.2 The probability generating functions

We will now work towards the proof of:

Theorem 4.4 Let � > 2 be an odd prime and d ≥ 1 a positive integer. Then we have
GRSelB

Vd
�

= GRSelC
Vd
�

and

GRSel�
Vd
�

= GRSelA
Vd
�

+ 1

#�(Qd
� )

6d−3∏
i=0

(
t2 − �2i

)
.

4.2.3 Some lemmas

We begin with some preliminary results. For (V , Q) a quadratic space and k ∈ Z≥0,
we will abbreviate

V k := V × V × · · · × V︸ ︷︷ ︸
s times
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and consider the diagonal action of O(Q) on V k . This induces a diagonal action of
the subgroup �(Q) ⊂ O(Q) on V k .

Lemma 4.5 Let m ∈ Z≥0 and let (V , Q) be a nondegenerate quadratic space over a
finite field L with dimL V = r . If r ≥ 2m + 2, then the orbits of O(Q) and �(Q) on
Vm coincide. Hence, the orbits of O(Q) on Vm agree with the orbits of any subgroup
H ⊃ �(Q) on Vm.

Proof It suffices to show that �(Q) acts transitively on any orbit of O(Q). Fix an
arbitrary tuple of vectors (v1, . . . , vm) ∈ Vm . Let W := Span(v1, . . . , vm). We claim
that if dimL V ≥ 2m + 2, for every a ∈ L, there is some w ∈ W⊥ with Q(w) = a.

Assuming this claim, let us show that the orbits of O(Q) and �(Q) coincide.
First, we tackle the case char(L) �= 2. In this case, it suffices to show that for each
(α, β) ∈ Z/2Z×Z/2Z, there is some h ∈ O(Q) fixing (v1, . . . , vm)with sp−Q(h) = α

and det(h) = β. To see such an h exists, let w be an element in W⊥ with −Q(w)

a square in L , and let w′ be an element with −Q(w′) a non-square in L . Then the
four elements id, rw, rw′ , rw ◦rw′ ∈ O(Q) attain all four possible values of (sp−Q, det)
and fix (v1, . . . , vm). This implies that �(Q) acts transitively on the O(Q)-orbit of
(v1, . . . , vm).

The case char(L) = 2 is similar, but easier. To show �(Q) has the same orbits
as O(Q), it suffices to exhibit an element of nontrivial Dickson invariant fixing
(v1, . . . , vm). Indeed, for any v ∈ W⊥, rv is such an element.

We now conclude the proof by verifying the claim. If (V , Q) is any nondegenerate
quadratic space of dimension at least 2 over a finite field L , then for every a ∈ L there
is some v ∈ V with Q(v) = a. Recall that the rank of a quadratic space (V , Q) is
defined to be rk(V , Q) := dim V − dim rad(V , Q), where rad(V , Q) the radical of
(V , Q), i.e., the set of x ∈ V with BQ(x, y) = 0 for all y ∈ V . Therefore, it suffices
to show that rk(Q|W⊥ ,W⊥) ≥ 2. Note that rad(Q|W⊥ ,W⊥) = W ∩W⊥. Hence

rk(Q|W⊥ ,W⊥) = dimW⊥ − dim(W ∩W⊥). (4.1)

Since dim V ≥ 2 dimW+2,we have dimW⊥−dim(W∩W⊥) ≥ dimW⊥−dimW ≥
2. ��

It will also be useful later to have a result on the case when dim V = 2m.

Lemma 4.6 Let (V , Q) be a nondegenerate quadratic space over a finite field L with
dimL V = r . If r = 2m is even, then the orbits of O(Q) and SO(Q) on Vm agree
except on m-tuples (v1, . . . , vm) ∈ Vm that span a maximal isotropic subspace of V .

Proof It suffices to exhibit an element of O(Q)−SO(Q) that stabilizes (v1, . . . , vm).
Let W := Span(v1, . . . , vm) as in the proof of Lemma 4.5. If we can find w ∈ W⊥
such that Q(w) �= 0, then rw does the job.

To see that such w exists, it suffices to show that rk(Q|W⊥ ,W⊥) > 0. But by (4.1),
this holds as long as W is not maximal isotropic. ��
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Lemma 4.7 For � a prime and d ≥ 1, any coset H ⊂ O(Qd
� ) of �(Qd

� ), we have

GRSelH
Vd
�

(�i ) = GRSel�
Vd
�

(�i ) for i = 0, 1, . . . , 6d − 3.

Proof For g ∈ G, let V g=1 denote the 1-eigenspace of g acting on V . Let G ′ ⊂ G be
a subgroup. By definition, we have

GRSelG
′

Vd
�

(t) = 1

#G ′
∑
g∈G ′

tdim ker(g−id)

so that

GRSelG
′

Vd
�

(�i ) = 1

#G ′
∑
g∈G ′

(#V g=1)i . (4.2)

Note that (V g=1)i = (V i )g=1 where g ∈ G acts diagonally on V i , so that (#V g=1)i =
#(V i )g=1. Putting this into (4.2) gives

GRSelG
′

Vd
�

(�i ) = 1

#G ′
∑
g∈G ′

(#V i )g=1. (4.3)

By Burnside’s Lemma, we have

∑
g∈G ′

#(V i )g=1 = #{orbits ofG ′ onV i }. (4.4)

By Lemma 4.5, the right hand side of (4.4) has the same value when we take G ′ to be
any of �(Qd

� ), ker(sp−
Qd

�

), ker(DQd
�
), and O(Qd

� ) for i ≤ 6d − 3. Hence we have

GRSel�
Vd
�

(�i ) = G
RSel

O∗−(Vd
�

)

Vd
�

(�i )

= G
RSel

SO(Vd
�

)

Vd
�

(�i ) = G
RSel

O(Vd
�

)

Vd
�

(�i ), i = 1, . . . , 6d − 3.

We then obtain the result by noting that any coset can be expressed in terms of differ-
ences of the above subgroups. For example, we can obtain the result for H = B by
writing

G
RSel

SO(Vd
�

)

Vd
�

(�i ) = 1

2
GRSel�

Vd
�

(�i )+ 1

2
GRSelB

Vd
�

(�i ).

��
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Proof of Theorem 4.4 Recall that the Dickson invariant of any element g ∈ O(Qd
n)

agrees with the dimension of its 1-eigenspace mod 2. Indeed, in general, the Dickson
invariant of g agrees with dim im(1−g), by [39, p. 160], where the notation [V , f ] is
used for im(1− f ). Since dim V d

n is even, it follows that dim ker(1−g) ≡ dim im(1−
g) mod 2.

Because of this, only odd powers of t can appear in GRSelB
Vd
�

(t) and GRSelC
Vd
�

(t).

Furthermore, they have degree at most 12d − 5 since dim V = 12d − 4. By Lemma
4.7, these functions agree at the 6d−2 points 1, �, . . . , �6d−3. Since they are both odd
functions, they must agree as well at 0,−1,−�, . . . ,−�6d−3. But two polynomials of
degree at most 12d − 5 agreeing at 12d − 3 points must be the same.

Similarly, GRSel�
Vd
�

(t) and GRSelA
Vd
�

are even polynomials of degree at most 12d−4,

and they agree at the 12d−4 points±1,±�, . . . ,±�6d−3. The differenceGRSel�
Vd
�

(t)−
GRSelA

Vd
�

(t) must therefore be proportional to
∏6d−3

i=1 (t2 − �2i ). To find the constant

of proportionality, note that the coefficient of t12d−4 in GRSelH
Vd
�

(t) is the probability

that g ∈ H fixes all of V , i.e. is the identity. This happens with probability 1
#�(Qd

� )
for

H = �(Qd
� ), and probability 0 for any other coset. This completes the proof. ��

4.2.4 Formulas for the generating functions

Let O(12d − 4, F�) denote the orthogonal group associated to the standard quadratic
form

∑6d−2
i=1 x2i−1x2i on a 12d − 4 dimensional vector space over F�.

Lemma 4.8 The group O(12d − 4, F�) is isomorphic to O(Qd
� ).

Proof We begin by showing the quadratic form Qd
n has discriminant 1 over Z/nZ.

Indeed, it is the reduction mod n of a quadratic form Qd
Z
over Z which has dis-

criminant 1 over Z by [28, Theorem 4.4 and Remark 4.5]. Indeed, [28, Remark 4.5]
explains that Qd

Z
= U⊕(2d−2)⊕(−E8)

⊕d , whereU denotes the hyperbolic plane and
−E8 denotes the quadratic form associated to the E8 lattice with negative its usual
pairing. Since U has discriminant −1 while −E8 has discriminant 1, the discrimi-
nant of Qd

Z
is (−1)2d−2 · 1d = 1. We deduce that, O(Qd

� ) = O(12d − 4, F�) has
rank 12d − 4 and discriminant 1. When � > 2, there is a unique orthogonal group
over F� of discriminant 1 [43, 3.4.6], and so O(Qd

� ) � O(12d − 4, F�) in this case.
When � = 2, there are two nonisomorphic quadratic forms of discriminant 1 and rank
12d−4, but O(12d−4, F�) is the unique hyperbolic such quadratic form, so we only
need check O(Qd

� ) is hyperbolic. To this end, it suffices to check the quadratic form
associated to E8 is hyperbolic when reduced modulo 2. A nondegenerate even dimen-
sional quadratic form over a field is hyperbolic if and only if it contains an isotropic
subspace of half the dimension of the quadratic space [31, III, Lemma 1.2]. For the
E8 lattice, one can explicitly construct such a subspace, such as the space spanned by
the first, third, sixth and eighth basis vectors, when the E8 lattice is written as in [20,
Chapter 14, 0.3(iii)]. ��
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By Lemma 4.8, the generating function RSelO(12d−4,F�)

V d
�

agrees with the generating

function RSelH
Vd

�

from Definition 4.1 with H = O(12d − 4, F�) the full orthogonal

group, so we may use these notations interchangeably. The following theorem, which
completely characterizes RSelO(12d−4,F�)

V d
�

, is proved in an unpublished manuscript of

Rudvalis–Shinoda, cf. [15]. We will give an independent proof of this theorem in Sect.
4.3.1.

For Z a random variable we let E(Zm) denote the mth moment of Z , which is the
expected value of the random variable Zm .

Theorem 4.9 (Rudvalis–Shinoda, [15, Theorem 2.5 and 4.7]) We have

Prob(dim RSelO(12d−4,F�)

V d
�

= v)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�z

2
∣∣GLz(F�2 )

∣∣
∑6d−2−z

i=0
(−1)i

�(2z−1)i(�2i−1)···(�4−1)(�2−1)
+ 1

2
(−1)6d−2−z

�2z(6d−2−z)
∣∣GLz(F�2 )

∣∣(�2(6d−2−z)−1)···(�4−1)(�2−1) if v = 2z

1
2�z
∣∣GLz(F�2 )

∣∣
∑6d−2−z

i=0
(−1)i

�i
2+2(z+1)i(1−q−2)(1−q−4)···(1−q−2i) if v = 2z + 1.

Furthermore, we have

lim
d→∞

(
Prob(dim RSelO(12d−4,F�)

V d
�

= v)

)
=
∏
j≥0

(
1+ �− j

)−1

1

�(v2−v)/2
(
1− �−1

) (
1− �−2

) · · · (1− �−v
) . (4.5)

Additionally, for 0 ≤ m ≤ 6d − 2, the moments of #RSelO(12d−4,F�)

V d
�

are computed as

E(#RSelO(12d−4,F�)

V d
�

)m =
m∏
i=1

(
�i + 1

)
.

From Theorems 4.9 and 4.4, it is fairly straightforward to deduce explicit formulas
for the probability generating functionsGRSel�

Vd
�

(t),GRSelA
Vd
�

(t),GRSelB
Vd
�

(t),GRSelC
Vd
�

(t).

However, we omit the answers as we will not need them.

4.3 Direct computation of themoments

In this subsection we give an alternate computation of the moments of dim ker(g− id)
for g ∈ O(Q), for Q a quadratic form over F� of sufficiently large rank without using
the unpublished results of Rudvalis and Shinoda. We will explain that this gives an
alternate proof of Theorem 4.9. In addition, the analysis here is used later to get better
control on the convergence of the random kernel model.
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As already mentioned above, [15] computed an explicit formula for the moments
of dim ker(g − id) for g ∈ O(Q), using the probability distribution obtained in
unpublished work of Rudvalis–Shinoda. The calculation of Rudvalis–Shinoda rests
on intricate combinatorial analysis.We learned of this work after we had already found
an independent computation of the probability distribution, which we will explain in
this subsection. Our logic in this subsection runs in the opposite direction: we directly
compute the moments, and deduce the probability distribution from it. (The advantage
of this approach is that it also gives the distribution for g drawn from subgroups of
O(Q), such as �.)

Theorem 4.10 Fix m ∈ Z≥0, let n be squarefree, and let (V , Q) be a nondegenerate
quadratic space over Z/nZ. For rkZ/nZ V ≥ 2m + 2, then:

(1) The number of orbits of O(Q) acting diagonally on Vm is

∏
� prime |n

(1+ �)(1+ �2) · · · (1+ �m). (4.6)

(2) The orbits of �(Q) acting diagonally on Vm coincide with those of O(Q) acting
diagonally on Vm.

For the next part (which is about getting slightly sharper results in the “edge case”
r = 2m), we let n = � be prime and ask that (V , Q) be a split4 quadratic space of
dimension r over F�.

(3) For r = 2m, the number of orbits of O(Q) acting diagonally on Vm is also given
by (4.6).

(4) For r = 2m,

#{orbits of SO(Q) on Vm} = #{orbits of O(Q) on Vm} + 1.

4.3.1 Proof of Theorem 4.9, assuming Theorem 4.10

Let G̃(t) be the generating function of the distribution in Theorem 4.9. This is a
polynomial of degree 12d − 4; write

G̃(t) = G̃odd(t)+ G̃even(t)

where G̃odd(t) is an odd polynomial and G̃even(t) is an even polynomial. The compu-
tation in [15] shows that the moments of the even and odd parts of the distributions
coincide, so that

G̃odd(�m) = G̃even(�m), 0 ≤ m ≤ 6d − 3.

As explained Lemma 4.7, the orbit counts in Theorem 4.10 are the moments of
#RSelO(12d−4,F�)

V d
�

, so Theorem 4.10 shows that the mth moment of #RSelO(12d−4,F�)

V d
�

4 For the definition of this, see [31, I, Sect. 6].
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The geometric distribution of Selmer… 659

is as claimed in Theorem 4.9 for 0 ≤ m ≤ 6d − 3. Writing

G
RSel

O(12d−4,F�)

Vd
�

(t) = Godd

RSel
O(12d−4,F�)

Vd
�

(t)+ Geven

RSel
O(12d−4,F�)

Vd
�

(t)

for the decomposition into odd and even parts, Lemma 4.7 implies also that

Godd

RSel
O(12d−4,F�)

Vd
�

(�m) = Geven

RSel
O(12d−4,F�)

Vd
�

(�m), for 0 ≤ m ≤ 6d − 3.

Hence G̃odd(�m) = Godd

RSel
O(12d−4,F�)

Vd
�

(�m) for 0 ≤ m ≤ 6d − 2. Since they are both

odd polynomials, they also agree at −�m for 0 ≤ m ≤ 6d − 3. But since they both
have degree at most 12d − 5, and they agree at 12d − 4 points, they must be equal.

Similarly, G̃even(�m) = Geven

RSel
O(12d−4,F�)

Vd
�

(�m) for 0 ≤ m ≤ 6d − 2. Since they are

both odd polynomials, they also agree at −�m for 0 ≤ m ≤ 6d − 2. Hence there
difference is a polynomial of degree at most 12d − 4 vanishing at the 12d − 4 points
±�m for 0 ≤ m ≤ 6d − 3, and must therefore a multiple of

∏6d−2
m=0 (t2− �2m). But the

coefficients of t12d−4 in both G̃even(t) and Geven

RSel
O(12d−4,F�)

Vd
�

(t) are both 2
#O(12d−4,F�)

, so

the constant of proportionality must be 0. ��
The rest of this subsection is devoted towards proving Theorem 4.10.

4.3.2 Counting orbits of independent vectors

Recall that a quadratic space is hyperbolic if it has the form W ⊕ W∨ with form
Q(w, λ) = λ(w); over a field, this is equivalent to the condition that it be metabolic,
i.e., that it is nondegenerate and contains an isotropic subspace of half the dimension
[31, III, Lemma 1.2].

Lemma 4.11 Let (V , Q) be a metabolic quadratic space over a field. Then any (possi-
bly degenerate) quadratic space (W , Q′) of dimension dim(W ) ≤ dim(V )/2 embeds
isometrically in V .

Proof If dim(W ) < dim(V )/2, we can always enlarge W by taking the direct sum
with a trivial quadratic space of dimension dim(V )/2− dim(W ), so we may as well
assume that dim(W ) = dim(V )/2. Let Q′′ be the quadratic form onW⊕W ∗ given by
Q′′(w, λ) = Q′(w)+λ(w). Then (W , Q′) embeds isometrically in themetabolic (thus
hyperbolic) quadratic space (W ⊕W ∗, Q′′). Since two hyperbolic quadratic spaces of
the same dimension are isomorphic, there is an isometry (W ⊕ W ∗, Q′′) ∼= (V , Q),
and thus (W , Q′) embeds in (V , Q) as required. ��
Corollary 4.12 Let (V , Q) be a nondegenerate quadratic space over a finite field.
Then any (possibly degenerate) quadratic space (W , Q′) of dimension dim(W ) ≤
(dim(V )− 2)/2 embeds isometrically in (V , Q).
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660 T. Feng, A. Landesman, and E. Rains

Proof Any nondegenerate quadratic space over a finite field is isomorphic to the direct
sum of a hyperbolic quadratic space and a nondegenerate quadratic space of dimension
at most 2, and Lemma 4.11 shows that (W , Q′) embeds in the former. ��

The key technical ingredient in the proof of Theorem 4.10 is the following Propo-
sition.

Proposition 4.13 Fix m ∈ Z≥0 and let (V , Q) be a nondegenerate quadratic space
overF� of dimension r ≥ 2m+2. Then, the number of orbits of O(Q) in Vm consisting
of a tuple of independent vectors (x1, . . . , xm) is �m(m+1)/2. More precisely, the orbits
consisting of independent vectors are in bijection with F

m(m+1)/2
� via the map sending

(x1, . . . , xm) �→ (Q(x1), . . . , Q(xm), BQ(xi , x j ):1 ≤ i < j ≤ m). (4.7)

If (V , Q) is metabolic, then the result still holds if r = 2m.

Proof of Proposition 4.13 First we argue that (4.7) is injective. If (x1, . . . , xm) and
(x ′1, . . . , x ′m) have the same image under (4.7), Span(x1, . . . , xm) is isomorphic as
a quadratic subspace of (V , Q) to Span(x ′1, . . . , x ′m) by the map sending xi �→ x ′i .
Therefore, by Witt’s theorem [8, I.4.1, p. 80], there is an element of O(Q) sending
xi �→ x ′i . Hence, if (x1, . . . , xm) and (x ′1, . . . , x ′m) have the same image under (4.7),
they lie in the same O(Q) orbit.

It remains to show that (4.7) is surjective. Suppose (c1, . . . , cm, ci j :1 ≤ i < j ≤
m) ⊂ F

m(m+1)/2
� are arbitrary. Let (W , Q′) be the quadratic space on basis vectors

(y1, . . . , ym) with Q′(yi ) = ci and BQ′(yi , y j ) = ci j . The surjectivity amounts to
showing that we can find an embedding (W , Q′)→ (V , Q)which is an isometry onto
its image. But this is exactly the content of Corollary 4.12 if r ≥ 2m+ 2, and Lemma
4.11 if r ≥ 2m and (V , Q) is metabolic. ��

4.3.3 Orbits of dependent vectors

We aim to explain how to determine the orbits of tuples of vectors that are linearly
dependent inductively using Proposition 4.13. The following lemma is key to counting
these dependent orbits.

Lemma 4.14 Let (V , Q) be a nondegenerate quadratic space over F� and let O(Q)

act on Vm. Fix (x1, . . . , xm−1) ∈ Vm−1 and let W := Span (x1, . . . , xm−1). The
number of orbits of vectors of the form (x1, . . . , xm−1, y) ∈ Vm under the action of
O(Q) with y ∈ Span(x1, . . . , xm−1) is �dimW .

Proof Suppose that (xi1 , . . . , xit ) is a basis for W , so dimW = t . Then for any
g ∈ O(Q), g · (x1, . . . , xm−1, y) is uniquely determined by g · (xi1 , . . . , xit ).

To count the number of orbits, we can express y uniquely as

y =
t∑

j=1
a j xi j .
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Then the orbit of (x1, . . . , xm−1, y) is uniquely determined by the scalars (ai ∈
F�)1≤i≤t , and so there are �dimW such orbits. ��

4.3.4 A recursive formula

Definition 4.15 Fix a quadratic space (V , Q) over a finite field k. Let f (n, i) be the
number of orbits of V n under the action of O(Q) such that dimk Span(x1, . . . , xn) = i .

We next explain a recursive formula for the f (n, i).

Lemma 4.16 The functions f (n, i) satisfy the recursion

f (n, i) = f (n − 1, i − 1)�i + f (n − 1, i)�i . (4.8)

Proof Fix a tuple (x1, . . . , xn−1) ∈ V n−1. We will count the number of orbits
of the form (x1, . . . , xn−1, y) ∈ V n , by conditioning on whether or not y ∈
Span (x1, . . . , xn−1).

• If y ∈ Span (x1, . . . , xn−1), each choice of y yields a different orbit and there are
�i possible such orbits by Lemma 4.14.

• If y /∈ Span (x1, . . . , xn−1), let
(
xs1 , . . . , xsi−1

)
be a basis for Span (x1, . . . , xn−1).

Proposition 4.13 shows that there are �i(i+1)/2−(i−1)i/2 = �i orbits of the form
(x1, . . . , xn−1, y), parameterized by the possible values of the pairings

BQ(y, xs1), . . . , BQ(y, xsi−1), Q(y, y).

Adding these two contributions over varying vectors (x1, . . . , xn−1) ∈ V n−1 yields
the result. ��
Remark 4.17 We have the initial condition f (0, i) = 1 for all i ≥ 0. This together
with the recursion of Lemma 4.16 determine the f (n, i) uniquely. We extend f (n, i)
by 0 to a function on Z× Z.

Definition 4.18 For every j ∈ Z≥0, define

�(s)(m) :=
∑
i∈Z

f (m, i)�is .

Remark 4.19 From the definitions, it follows that the total number of orbits of O(Q)

on Vm is �(0)(m) = ∑
i∈Z f (m, i). Also observe that for any j , �( j)(0) = 1 by

definition, since f (0, i) = 0 unless i = 0.

By Remark 4.19, we want to calculate �(0)(m). The following lemma relates this
to �(m)(0).

Lemma 4.20 For m > 0 and s ≥ 0, We have

�(s)(m) = (1+ �s+1)�(s+1)(m − 1).
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Proof By Lemma 4.16, we have

�(s)(m) =
∑
i∈Z

f (m − 1, i − 1)�i+is +
∑
i∈Z

f (m − 1, i)�i+is

= �s+1
∑
i∈Z

f (m − 1, i − 1)�(i−1)(s+1) +
∑
i∈Z

f (m − 1, i)�i(s+1)

= �s+1
∑
i∈Z

f (m − 1, i)�i(s+1) +
∑
i∈Z

f (m − 1, i)�i(s+1)

= (�s+1 + 1)�(s+1)(m − 1).

��

Using Lemma 4.20, we can compute �(0)(m), and hence prove Theorem 4.10.

4.3.5 Proof of Theorem 4.10

First we focus on the situation in parts (1) and (2), where rkZ/nZ V ≥ 2m + 2. Since
n is squarefree, we may reduce to the case n = � is a prime by the Chinese remainder
theorem. Once the statement for O(Q) is established, the statement for �(Q) follows
from Lemma 4.5. By Remark 4.19, we just need to show that

�(0)(m) = (1+ �)(1+ �2) · · · (1+ �m).

Indeed, using Lemma 4.20, we find

�(0)(m) = (1+ �)�(1)(m − 1)

= (1+ �)(1+ �2)�(2)(m − 2)

...

= (1+ �)(1+ �2) · · · (1+ �m)�(m)(0)

= (1+ �)(1+ �2) · · · (1+ �m). ��
This completes the proof of parts (1) and (2). Now we move onto parts (3) and (4).
The argument for part (3) is the same as for the proof of Theorem 4.10. For Part (4),
we note by Lemma 4.6 that the orbits coincide except on vectors (x1, . . . , xm) ∈ Vm

that span a maximal isotropic subspace of V . In this case there is only one orbit of
such vectors under O(Q), but two orbits under SO(Q) [7, Corollary T.3.4].

4.4 Bounding the TV distance

We use the moment computations in Sect. 4.3 to obtain certain useful expressions for
the probability generating functions.
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In this section, let (Vr , Qr ) be the split orthogonal space over F� of rank r (hence
discriminant 1). We denote Or = O(Vr , Qr ), SOr = SO(Vr , Qr ), �r = �(Vr , Qr ),
etc.

Let H2r ⊂ O2r denote the kernel of the Dickson invariant, i.e., H2r = SO2r when
� is odd, and H2r = �2r when � is even. For j ≥ 0, let Mj be the limit as r →∞ of

the j th moment of RSelSOVr , which by Theorem 4.9 is
∏ j

i=1(�i + 1).

Lemma 4.21 We have the following values for the moments of # ker(g−1) for g drawn
from H2r and its complement:

Eg∈H2r (# ker(g − 1) j ) = Mj , 0 ≤ j < r

Eg∈H2r (# ker(g − 1)r ) = Mr + 1

Eg /∈H2r (# ker(g − 1) j ) = Mj , 0 ≤ j < r

Eg /∈H2r (# ker(g − 1)r ) = Mr − 1.

Proof The claims for j < r follow from Lemma 4.5 plus Theorem 4.10. The claims
for j = r follow from Lemma 4.6 plus Theorem 4.10 ��

Let Pr (t) be the unique even polynomial of degree 2r such that Pr (� j ) = Mj for
all 0 ≤ j ≤ r , and let P ′r (t) be the unique odd polynomial of degree 2r − 1 such that
P ′r (� j ) = Mj for 0 ≤ j < r (not to be confused with the derivative of Pr ).

Define

Gr (t) := Eg∈H2r [tdim ker(g−1)]

to be the probability generating function for 1-eigenspaces of elements drawn ran-
domly from H2r , and

G ′r (t) := Eg∈O2r−H2r [tdim ker(g−1)].

Lemma 4.22 We have identities

Gr (t) = Pr−1(t)+ 1

#H2r

∏
0≤ j<r

(t2 − �2 j ), (4.9)

Gr (t) = Pr (t)+
∏

0≤ j<r

t2 − �2 j

�2r − �2 j
, (4.10)

G ′r+1(t) = P ′r (t)+ �−r t
∏

0≤ j<r

t2 − �2 j

�2r − �2 j
, (4.11)

G ′r+1(t) = P ′r+1(t). (4.12)

Proof First, we check (4.9). By Lemma 4.21, Gr (t) − Pr−1(t) vanishes at t = ±� j

for 0 ≤ j ≤ r − 1, and is of degree 2r , hence is proportional to
∏

0≤ j<r (t
2 − �2 j ).
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664 T. Feng, A. Landesman, and E. Rains

Therefore, we can determine Gr (t) completely by examining the coefficient of t2r ,
which is #H−12r because that is the probability of drawing the identity element.

We next check (4.10) Similarly,Gr (t)− Pr (t) is proportional to
∏

0≤ j<r (t
2−�2 j ),

and it can be determined by evaluating at �r , where the value is 1 by Lemma 4.21.
Next, (4.12) holds because both G ′r+1(t) and P ′r+1(t) are polynomials of degree

2r + 1 vanishing at the 2r + 3 values 0,±1,±�, . . . ,±�r .
Finally, we show (4.11). By (4.12) and Lemma 4.21, we see P ′r (�r ) = Mr−1 while

G ′r+1(�r ) = Mr . Therefore, G ′r+1(t)− P ′r (t) is a degree 2r +1 polynomial vanishing
at the 2r + 1 values 0,±1,±�, . . .± �r , and hence is determined up to a constant. We
can then determine its constant value by plugging in t = �r , using P ′r (�r ) = Mr − 1
and G ′r+1(�r ) = Mr . ��

Recall that the Total Variation distance (TV) between two probability distributions
P and P ′ is

dTV(P, P ′) = sup
events A

|P(A)− P ′(A)|.

When P and P ′ are defined on a countable discrete probability space X , as shown in
[30, Proposition 4.2] we can write this as

dTV(P, P ′) := 1

2

∑
x∈X

|P(x)− P ′(x)|. (4.13)

In otherwords, conflating P and P ′with functions on X , this is (up to the normaliza-
tion factor 1/2) the L1-norm.Clearly, convergence inTVdistance implies convergence
as distributions (which is pointwise convergence in the case of distributions on a dis-
crete space). We define the TV distance between two random variables to be the TV
distance between their induced probability distributions.

Theorem 4.23 For � a prime, d ≥ 2, and q ranging over prime powers with
gcd(q, 2�) = 1We have

lim sup
q→∞

gcd(q,2n)=1
dTV(dim RSeld�,Fq , lim

d→∞ dim RSelO(12d−4,F�)

V d
�

) = O(�−(6d−2)2),

where the implicit constants are absolute in both cases.

Proof We write the proof in the case where � is odd; the case where � = 2 is even
easier, as the analysis of the cosets simplifies because there are fewer cosets (cf. the
discussion in Sect. 4.2.4).

We first compare the TV distance between dim RSelO(12d−4,F�)

V d
�

and dim RSeld
�,Fq

.

We have

G
RSel

O(12d−4,F�)

Vd
�

(t) = 1

4
GRSel�

Vd
�

(t)+ 1

4
GRSelA

Vd
�

(t)+ 1

4
GRSelB

Vd
�

(t)+ 1

4
GRSelC

Vd
�

(t)
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and

GRSeld
�,Fq

(t) = 1

2
GRSel�

Vd
�

(t)+ 1

2
GRSelB

Vd
�

(t) or
1

2
GRSelA

Vd
�

(t)+ 1

2
GRSelC

Vd
�

(t).

Note that the TV distance between random variables Z and Z ′ has a clean formulation
in terms of the probability generating functions GZ (t) and GZ (t ′): it is half the sum
of the absolute values of the differences of the coefficients, as follows from (4.13).
Using this observation together with Theorem 4.4, we have

dTV(dim RSelO(12d−4,F�)

V d
�

, dim RSeld�,Fq ) ≤
1

4
dTV(dim RSel�

V d
�

, dim RSelA
V d

�

)

= 1

8
· 1

#�(Qd
� )

6d−3∏
i=0

(1+ �2i ).

By examining the dimension of the orthogonal group, we find

#�(Qd
� ) = 1

4
#O(Qd

� )  �(12d−4)(12d−5)/2.

On the other hand, we have

6d−3∏
i=0

(1+ �2i )  �(6d−2)(6d−3).

Hence5

dTV(dim RSelO(12d−4,F�)

V d
�

, dim RSeld�,Fq ) " �−(6d−2)2 .

Next, we estimate dTV(RSelO(12d−4,F�)

V d
�

, limr→∞ RSelO(12r−4,F�)

Vr
�

). It suffices to

show that

dTV(dim RSelO2r

V 2r
�

, dim RSelO2r+2
V 2r+2

�

) " �−r2 .

We compare the even and odd parts of their generating functions, using the compu-
tations of the preceding section. For the even part, using Lemma 4.22 gives that the
sum of the absolute values of the coefficients of Gr (t)− Gr−1(t) is

" �−r
∏

0≤ j<r

1+ �2 j

�2r − �2 j
= �−r�−r2+r

∏
0≤ j<r

1+ �−2 j

1− �2 j−2r
" �−r2 .

5 The notation A(d) " B(d) means A(d) = O(B(d)) as d →∞, where the implicit constant is absolute.
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This shows

lim sup
q→∞

dTV(dim RSeld�,Fq , lim
d→∞RSelO(12d−4,F�)

V d
�

) = O(�−(6d−2)2).

��
Corollary 4.24 Fix a prime �, an integer d ≥ 2, and consider a sequence of prime
powers {q1, q2, . . .} with gcd(qi , 2�) = 1, so that the qi lie in a fixed residue class
mod � if � is odd, and lie in a fixed residue class mod 8 if � = 2. Then, the TV distance
between the BKLPR heuristic and limi→∞ dim RSeld�,Fqi

is O(�−(6d−2)2).

Proof First, we impose the assumption that the the qi lie in a fixed residue class mod
� if � is odd, and lie in a fixed residue class mod 8 if � = 2, so that the distribution
in Theorem 3.14 is independent of the choice of qi in this sequence, since im χd−1 is
independent of the choice of qi . Hence, limi→∞ dim RSeld

�,Fqi
exists.

Note that in the case where � is prime, which we are currently considering, the
“BKLPR heuristic” first appeared as the “Poonen-Rains heuristic” [33], whose explicit
formula is given by [33, Conjecture 1.1(a)]. By inspection, this agrees with the distri-
bution of limd→∞ RSelO(12d−4,F�)

V d
�

calculated inTheorem4.9.Hence the result follows

from Theorem 4.23. ��

5 Markov properties

In this section, we establish Markov properties satisfied by both the random kernel
model and the BKLPR model, which will be used to identify their distributions for
prime power order Selmer groups. In Sect. 5.1 we state the Markov property satisfied
by the random kernel model, which we prove in Sect. 5.2. We then recall the BKLPR
model in Sect. 5.3 and demonstrate the Markov property satisfied by the BKLPR
model in Sect. 5.4.

5.1 Markov property for random 1-eigenspaces

Let (V , Q) be a nondegenerate quadratic space of rank rm over Z/�eZ. Recalling
from Definition 4.1, that for a subset H ⊂ O(V , Q) we let RSelHV be the random
variable ker(g − id), valued in isomorphism classes of finite abelian �-groups, for g
drawn uniformly at random from H .

In this section only,wewill use the notationO(V , Q),�(V , Q), and SO(V , Q) for
various subgroups of orthogonal groups, because we will consider various coefficient
changes and wish to emphasize this in the notation. Noting that H acts on V [� j ], we
let Hj be the image of H in O(V [� j ], Q|V [� j ]).
Theorem 5.1 Let (V , Q) be a nondegenerate quadratic space of rank 2m overZ/�eZ.

For j ≤ e, write d j (H) := dimF�
(� j−1RSelHj

V [� j ]).
If H is a non-empty union of cosets of �(V , Q) in O(V , Q), then the sequence of

random variables d1(H), d2(H), . . . , de(H) is Markov. If � is odd or di �= 2m, then
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The geometric distribution of Selmer… 667

the distribution of di+1(H) given di (H) is the same as the dimension of the kernel of
a uniform random alternating form on F

di (H)
� .

Corollary 5.2 For n a prime power, d ≥ 2 and k a finite field, the statement of Theorem
5.1 holds with H := im ρd

n,k ∩mult−1(mult γq).

Proof By definition, im ρd
n,k∩mult−1(mult γq) is a coset of the geometricmonodromy

group in the monodromy group. By Theorem 3.14, the geometric monodromy group
contains �(V d

n , Qd
n) and the monodromy group is contained in O(V d

n , Qd
n). Hence

(im ρd
n,k)

mult γq is a union of cosets of �(V d
n , Qd

n) in O(V d
n , Qd

n), and we can apply
Theorem 5.1 to each of the cosets. ��

We next reduce Theorem 5.1 to Theorem 5.4 below. For any 1 ≤ j ≤ e,
consider �e− j V = V [� j ], which is a nondegenerate quadratic space of rank 2m
over Z/� j

Z. The action of g ∈ O(V , Q) on V [� j ] factors through the quotient
O(V , Q) � O(V [� j ], Q|V [� j ]). Let H be any coset of �(V , Q). If g is drawn
uniformly at random in O(V , Q), its image in O(V [� j ], Q|V [� j ]) will also be uni-
form in a coset of �(VZ/� jZ, QZ/� jZ). We now naturally generalize Definition 4.1 to
the setting of quadratic space over Z�.

Definition 5.3 Let (V , Q) be a quadratic space over Z�, and let H ⊂ O(V , Q) be a
subset which is a union of cosets of�(V , Q) in O(V , Q). Define the random variable
RSelHV⊗Q�/Z�

to be given by ker(g − id |V⊗Q�/Z�
) for g ∈ H drawn from the Haar

measure (normalized to be a probability measure) of Lemma 3.20.

By the compatibility with reduction modulo � j discussed above, Theorem 5.1 then
follows from:

Theorem 5.4 Let (V , Q) be a nondegenerate quadratic space of rank 2m over Z�. Let
H ⊂ O(V , Q) be a union of cosets of �(V , Q). Define the random variable

d j (H) := dimF�
(� j−1RSelH

V⊗Q�
Z�
[� j ]).

Then the sequence d1(H), d2(H), . . . is Markov, and for � odd or di �= 2m, the
distribution of di+1(H) given di (H) is the same as the dimension of the kernel of a
uniform random alternating form on F

di (H)
� .

We prove Theorem 5.4 in Sect. 5.2.

Remark 5.5 Another way to think about the numbers d j (H) is as follows. Decompos-
ing

RSelHV := (Z/�Z)r1(H) ⊕ (Z/�2Z)r2(H) ⊕ (Z/�3Z)r3(H) ⊕ . . .

where the ri (H) are random variables, we have

d1(H) = r1(H)+ r2(H)+ r3(H)+ . . .
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d2(H) = r2(H)+ r3(H)+ . . .

d3(H) = r3(H)+ . . .

...

5.2 Proving Theorem 5.4

We now embark on the proof of Theorem 5.4. The proof encompasses this entire
subsection, and notation is built cumulatively throughout the section.

We begin by giving one more interpretation of the sequences d j (H). Referring
to notation of Theorem 5.4, let V H

j be the random variable6, valued in isomorphism
classes of F�-vector spaces, given by

(ker(g − id)|V /� j V + �V )/�V ⊂ V ⊗ F�,

for g drawn from the Haar measure on H . For a fixed g ∈ O(V , Q) we write

V g
j := ker((g − id)|V /� j V ).

Lemma 5.6 For a fixed g ∈ O(V , Q), the isomorphism V ⊗Z�
F�

∼−→ V ⊗Z�

Q�

Z�
(�)

identifies

V g
j
∼−→ � j−1 ker

(
g − id |

V⊗Z�

Q�
Z�
[� j ]

)
.

Hence dim V H
j coincides with the random variable d j (H).

Proof This is a straightforward verification which follows from commutativity of

(V ⊗Q�/Z�)[� j ] V ⊗ Z/� j
Z

(V ⊗Q�/Z�)[�] V ⊗ F�

∼
×� j

×� j−1 mod �

∼
×�

(5.1)

��
We set V H

0 := V ⊗Z�
F� by convention. We claim that the sequence V H

1 , V H
2 , . . .

of random subspaces is Markov, and more precisely that if � is odd or V H
j �= V H

0 ,

then V H
j+1 is the kernel of a uniformly distributed alternating form on V H

j . In view of
Lemma 5.6, this will complete the proof of Theorem 5.4.

Lemma 5.7 The orthogonal complement of V g
j ⊂ V⊗F� with respect to the quadratic

form induced by Q is (�1− j (im(g − id) ∩ � j−1V ))/�V ⊂ V ⊗ F�.

6 We apologize for the similarity to the notation Vd
n ; at least, the latter notation will not appear in this

section.
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Proof Inside V /� j V , we have ker((g − id)|V /� j V )⊥ = im((g − id)|V /� j V ), hence

(im((g − id)|V /� j V ) ∩ � j−1V /� j V )⊥ = ker((g − id)|V /� j V )+ �V .

This immediately induces the claim about orthogonal complements inside V ⊗ F�. ��
Given j and g, for v ∈ V g

j , we use ṽ to denote any choice of lift to V .

Lemma 5.8 Keep the notation of the preceding discussion. The following are equiva-
lent:

(i) v ∈ V g
j+1,

(ii) �− j (g − id)ṽ ∈ (�1− j (im(g − id) ∩ � j−1V ))/�V = (V g
j )⊥,

(iii) B(�− j (g − id)ṽ, w) = 0 for all w ∈ V g
j , where B is the bilinear form associated

to the quadratic form Q on V .

Proof Given v ∈ V g
j , we want to know when it is in V g

j+1. The condition that v ∈ V g
j

is equivalent to there being a lift ṽ of v to V such that (g − id)ṽ ∈ � j V . Fixing
such a lift ṽ, the question is whether we can modify it to another lift ṽ′ such that
(g− id)ṽ′ ∈ � j+1V . The freedom for modification is that we can replace ṽ by ṽ+ �δ

for some δ ∈ V . So we want to know if δ can be chosen so that

(g − id)(̃v + �δ) ∈ � j+1V ,

or equivalently, so that

(g − id)̃v ≡ �(g − id)δ mod � j+1V .

Since we know that (g − id)̃v ∈ � j V by assumption, we can rewrite this as

�− j (g − id)̃v = �1− j (g − id)δ ∈ V ⊗ F�

for δ such that (g − id)δ ∈ � j−1V . This establishes the equivalence of (i) and (ii).
The equivalence of (ii) and (iii) then follows from Lemma 5.7. ��
The F�-linear functional w �→ B(�− j (g − id)ṽ, w) on V g

j depends only on v, and

expresses V g
j+1 as the kernel of a linear transformation V g

j → (V g
j )∨, or equivalently

as the radical of a bilinear form.

Lemma 5.9 Keep the notation of the preceding discussion. Define the bilinear form
on V g

j :

〈v,w〉 j := B(�− j (g − id)ṽ, w).

Then

(i) V g
j+1 is the radical of 〈·, ·〉 j .

123



670 T. Feng, A. Landesman, and E. Rains

(ii) 〈·, ·〉 j is alternating.
Proof Part (i) follows from Lemma 5.8. For (ii), we need to show that

B((g − id)ṽ, ṽ) ∈ � j+1
Z�.

But this follows by observing:

B((g − id)ṽ, ṽ) = Q(gṽ)− Q((g − id)ṽ)− Q(ṽ)

= −Q((g − id)ṽ)

= −�2 j Q(�− j (g − id)ṽ) ∈ �2 jZ�. ��

We thus find that V g
j+1 is the kernel of an alternating form on V g

j , so it remains

only to show that as g varies over elements with fixed sequence (V g
1 , . . . , V g

j ), this
alternating form is uniformly distributed. It suffices to show this when g merely varies
over elements of a fixed coset of �(V , Q) ⊂ O(V , Q). Let � j ⊂ �(V , Q) be the
subgroup consisting of elements which are 1 mod � j . We will show that the uniform
distribution holds already when drawing uniformly from the coset H = � j g. For
fixed v, changing g �→ hg with h ∈ � j changes the linear functional by

w �→ B(�− j (h − 1)gṽ, w) = B(δhgv,w) = B(δhv, g−1w),

where δh = �− j (h−1). We view its reductionmodulo as an element of the Lie algebra
of the special fiber of O(V , Q): δh ∈ Lie(O(V , Q)F�

). To get equidistribution, it
suffices for the induced homomorphism from � j/� j+1 to the space ∧2(V g

j )∨ of

alternating forms on V g
j , sending h to the restriction of δh , to be surjective.

5.2.1 The case � > 2

If � is odd, then �1 is a pro-�-group, and thus the spinor
norm vanishes on�1. It immediately follows that the logarithm induces an isomor-

phism � j/� j+1
∼−→ Lie(O(V , Q)F�

) ∼= ∧2(V ⊗ F�)
∨, hence the further projection

map to ∧2(V g
j )∨ is surjective.

5.2.2 The case � = 2

For � = 2, it may not be the case that� j surjects on Lie O(V , Q). However,�(V , Q)

contains the commutator subgroup of O(V , Q), and the image of the commutator
subgroup in Lie(O(V , Q)F�

) contains the image of Ad g − Id for all g ∈ O(V , Q).
In particular, the image of � j contains

(Ad g − Id) · α = α �→ gαgt − α

for any g ∈ O(V , Q) and any alternating form α ∈ ∧2(V ⊗ F�)
∨.
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Take g to be any lift of the reflection in a nonisotropic vector v ∈ VF�
(i.e., a vector

with Q(v) �= 0). Denoting v∗ = B(v, •) ∈ V∨, g ∈ V∨
F�
⊗ VF�

can be represented by

Id+ v∗
Q(v)

v (the unusual expression because we are in characteristic 2). Then

gαgt − α = 1

Q(v)
(v∗ ⊗ v · α + α · v∗ ⊗ v)− 1

Q(v)2
(v∗ ⊗ v)α(v∗ ⊗ v).

A computation shows all w∗ ⊗ v∗ with B(v,w) = 0 are in the space generated by
such expressions 7

Since for any w, 〈w〉⊥ is spanned by nonisotropic vectors, the space log(� j ) in
fact contains

{v∗ ∧ w∗:B(v,w) = 0}, (5.2)

and thus has codimension at most 1. The full Lie algebra Lie O(V , Q) is generated
over this space by any single element v∗ ∧ w∗ with B(v,w) �= 0. If W is any proper
subspace of V , then we can pick v ∈ W⊥ and w ∈ V such that B(v,w) �= 0.
The image of v∗ ∧ w∗ in ∧2W∨ is zero, hence the restriction map from (5.2) to
∧2(W∨) is surjective for any proper subspace W ⊂ V . Thus the only case in which
the alternating form may not be equidistributed is when Vj = V0. This completes the
proof of Theorem 5.4. ��

5.3 The BKLPR heuristic

We summarize the model for the Selmer group described in [1, Sect. 1.2].

5.3.1 The �∞ rank and Selmer distribution from BKLPR

Let m ∈ Z and V = Z
2m
� , with the quadratic form Q:V → Z� given by

Q(x1, . . . , xm, y1, . . . , ym) =
m∑
i=1

xi yi .

A Z�-submodule Z ⊂ V is called isotropic if Q|Z = 0. Let OGr(V ,Q)(Z�) be the
set of maximal isotropic summands of V , hence each Z ∈ OGr(V ,Q)(Z�) is a free
Z�-module of rank m.

There is a probabilitymeasure onOGr(V ,Q)(Z�) such that the distribution of Z/�e Z
in V /�eV for each e ≥ 1 is uniform [1, Sects. 1.2, 2, 4]. We define Q2m,� (notated

7 We spell out this computation in more detail. Let x be such that B(x, v) = 1. Take α to be represented
by x∗ ⊗w ∈ V ∗

F�
⊗ VF�

, where we have used B to identify V with V ∗. Then gαgt − α is represented by

(v∗ ⊗ v)(x∗ ⊗ w)︸ ︷︷ ︸
v∗⊗w

+ (x∗ ⊗ w)(v∗ ⊗ v)︸ ︷︷ ︸
0

+ (v∗ ⊗ v)(x∗ ⊗ w)(v∗ ⊗ v)︸ ︷︷ ︸
0

.
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in [1] as Q2m) to be the distribution associated to the random variable S, valued in
isomorphism classes of abelian groups, where S obtained by drawing Z and W from
OGr(V ,Q)(Z�) independently from this measure, and forming

S :=
(
Z ⊗ Q�

Z�

)
∩
(
W ⊗ Q�

Z�

)
.

Remark 5.10 In [1],Q2m,� and related distributionswere definedon symplectic abelian
groups, which are abelian groups together with a nondegenerate alternating pairing
to Q/Z. Since two symplectic abelian groups are isomorphic if and only if their
underlying abelian groups are isomorphic [1, §3.2], their distribution can be regarded
as a distribution on abelian groups (which takes probability 0 on any abelian group
not admitting a symplectic structure).

As m →∞ the distributions Q2m,� converge to a discrete probability distribution
Q� [1, Theorem 1.2], which is conjectured in [1, Conjecture 1.3] to determine the
asymptotic distribution of �∞-Selmer groups of elliptic curves ordered by height.

Furthermore, S fits naturally into a short exact sequence

0→ R → S → T → 0

where R := (Z ∩ W ) ⊗ Q�

Z�
and T is torsion. It is further conjectured that the joint

distribution of (R, S, T ) models the joint distribution of the rank of the elliptic curve
(i.e., R = (Q�/Z�)

r for r modeling the rank), the �∞-fSelmer group, and the �-primary
part of the Tate–Shafarevich group, respectively [1, Conjecture 1.3]. For example, the
following proposition expresses the compatibility of these predictions with the Katz-
Sarnak philosophy [27] that 50% of elliptic curves should have rank 0 and 50% should
have rank 1.

Proposition 5.11 ( [1, Proposition 5.6]) Let notation be as above. Fix W ∈ OGr(V ,Q)

(Z�). If Z is chosen randomly from OGr(V ,Q)(Z�) (according to the above measure),
then Z ∩W has rank 0 with probability 1/2 and rank 1 with probability 1/2.

5.3.2 The �∞ Selmer distribution from BKLPR conditioned on rank

LetT2m,r ,� be the distribution onfinite abelian �-groups, (notated in [1] asT2m,r ) given
by the above process in Sect. 5.3.1 conditioned on the assumption rk(Z ∩W ) = r . By
[1, Theorem 1.6], these distributions converge as m → ∞ to a discrete distribution
Tr ,�, (notated in [1] asTr )which agreeswithDelaunay’s conjecture for the distribution
of X[�∞] of rank r elliptic curves over Q [1, p. 278].

There is another characterization of the distributionTr ,�. For non-negative integers
m, r withm− r ∈ 2Z≥0, let A be drawn randomly from the Haar probability measure
on the set of alternating m × m-matrices over Z� having rank m − r , and Am,r ,� be
the distribution of (coker A)tors. According to [1, Theorem 1.10], asm →∞ through
integers with m − r ∈ 2Z≥0, the distributions Am,r ,� converge to a limit Ar ,�, which
coincides with Tr ,�.

123



The geometric distribution of Selmer… 673

Finally, [1, Sect. 5.6] predicts that, conditioned on elliptic curves having rank r ,
X is distributed as the direct sum over all primes � of a finite abelian group drawn
from Tr ,�.

5.3.3 The BKLPR n-Selmer distribution

We next review the model for n-Selmer elements described at the beginning of [1,
Sect. 5.7]. Let Tr ,� denote the random variable defined on isomorphism classes of
finite abelian � groups (notated Tr in [1]) defined in [1, Theorem 1.6] and reviewed
in Sect. 5.3.2. For G an abelian group, we let G[n] denote the n torsion of G. For n ∈
Z≥1 with prime factorization n = ∏�|n �a� , define a distribution Tr ,Z/nZ on finitely
generated Z/nZ modules by choosing a collection of abelian groups {T�}�|n , with T�

drawn from Tr ,�, and defining the probability Tr ,Z/nZ = G to be the probability that
⊕�|nT�[n] � G.

Given the above predicted distribution for the n-Selmer group of elliptic curves of
rank r , the heuristic that 50% of elliptic curves have rank 0 and 50% have rank 1 leads
to the following predicted joint distribution of the n-Selmer group and rank:

Definition 5.12 Let (rkBKLPR,SelBKLPRn ) be the joint distribution on Z≥0 × Abn
defined by

Prob((rkBKLPR,SelBKLPRn ) = (r ,G)) =
{

1
2Tr ,Z/nZ if r ≤ 1

0 if r ≥ 2.

5.4 Markov property for the BKLPRmodel

Fix Z ,W ∈ OGr(V ,Q)(Z�) and set S = (Z ⊗ Q�

Z�
) ∩ (W ⊗ Q�

Z�
). Define

S j :=
⎛
⎜⎝W/� j ∩ Z/� j︸ ︷︷ ︸

⊂V /� j

+ �V

� j V

⎞
⎟⎠ /�V , (5.3)

which are the analogues of the Vj in Lemma 5.6. Although S j depends on Z and W ,
and will be viewed as a random variable in the future, we suppress this dependence for
notational convenience. The main result of this subsection is the following Theorem
5.13, and the proof encompasses the remainder of this subsection.

Theorem 5.13 Let V , Z , and W be as in Sect. 5.3. Define random variables, valued
in isomorphism classes of finite-dimensional F�-vector spaces, by S0 := V ⊗ F�,
and S1, S2, . . . , S j , . . . as in (5.3). Then, the sequence S1, S2, . . . is Markov, and the
distribution of dim Si+1 given Si coincides with the distribution of the dimension of
the kernel of a uniformly random alternating form on Si .

We omit the proof of the following lemma, which is similar to that of Lemma 5.6.
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Lemma 5.14 Keep the notation above. Under the identification

(
V ⊗ Q�

Z�

)
[�] ∼−→ V ⊗ F�,

we have

� j−1 · S[� j ] ∼−→ S j .

The non-degenerate bilinear form B on V induces a non-degenerate bilinear form
on V ⊗ F�, that we denote by B. We may sometimes abbreviate notation by using
B(v, x), with v ∈ V and x ∈ V ⊗ F�, to denote B(v (mod �), x).

We will construct the sequence of alternating forms (one for each S j , whose radical
is S j+1) referenced in Theorem 5.13.

Lemma 5.15 Identifying �1− j (� j−1V /� j V )
∼−→ V ⊗ F�, the orthogonal complement

of S j in V ⊗ F� is �1− j
(
(Z/� j +W/� j ) ∩ � j−1V /� j V

)
.

Proof Inside V /� j V , we have

(
Z/� j ∩W/� j

)⊥ =Z⊥/� j +W⊥/� j

=Z/� j +W/� j

using that Z and W are maximal isotropic. Therefore,(
(Z/� j ∩W/� j )+ �V /� j

)⊥ = (Z/� j ∩W/� j )⊥ ∩ (�V /� j )⊥

= (Z/� j +W/� j ) ∩ � j−1V /� j .

The result then follows by tensoring with F�. ��
Next, given v ∈ S j , we seek to characterize when v ∈ S j+1. By definition, v ∈ S j

is equivalent to the existence of a representative ṽ ∈ W/� j ∩ Z/� j reducing to v mod
�, and lifts wv of ṽ to W and zv of ṽ to Z such that wv ≡ zv (mod � j V ). Hence
wv − zv = � jε for some ε ∈ V .

Lemma 5.16 With notation above, v ∈ S j lies in S j+1 if and only if the associated ε

as above satisfies ε ∈ �1− j
(
(Z/� j +W/� j ) ∩ � j−1V /� j V

)
.

Proof For v ∈ S j+1, if we can find other lifts ṽ′,w′v , z′v satisfying the same conditions,
but such that w′v ≡ z′v (mod � j+1). Such modifications are exactly of the form w′v =
wv + �δW with δW ∈ W and z′v = zv + �δZ with δZ ∈ Z . Hence v ∈ S j+1 if and only
if we can choose δW , δZ such that

wv + �δW
?= zv + �δZ + � j+1ε′.

Since wv = zv + � jε, this is equivalent to solving

� j−1ε ≡ δW − δZ (mod � j ) for some δW ∈ W/� j , δZ ∈ Z/� j .
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which is equivalent to

ε ∈ �1− j
(
(Z/� j +W/� j ) ∩ � j−1V /� j V

)
. ��

Lemma 5.17 There is a well defined bilinear form

A j : S j × S j → Q�/Z�

given by

A j (v, x) := B(ε, x) = B(�− j (wv − zv), x). (5.4)

Proof We need to check that the value

B(ε, x) = B(�− j (wv − zv), x) mod �. (5.5)

is independent of the choices of ṽ, wv , and zv . Indeed, any other allowable w′v differs
from wv by an element of � jW , say � jδ with δ ∈ W . But since W/� is isotropic and
x lies in S j ⊂ W/� ⊂ V /�, we have B(δ, x) ≡ 0 (mod �). Similarly, replacing zv
with any other allowable z′v will not alter (5.5). ��
Lemma 5.18 Keep the notation of the preceding discussion.

(i) The radical of A j is S j+1.
(ii) A j is alternating.

Proof By definition, v ∈ S j is in the radical of A j if and only if (following the notation
above) εv := �− j (wv − zv) lies in S⊥j . But by Lemma 5.15, ε ∈ S⊥j if and only if

εv ∈ �1− j
(
(Z/� j +W/� j ) ∩ � j−1V /� j V

)
, which, as we proved in Lemma 5.16,

occurs if and only if ε ∈ S j+1.
For (ii), since we can take zv as a lift of v to V , it suffices to check B(wv− zv, zv) ∈

� j+1
Z�. For this, write wv − zv = � jε and observe that Z and W are isotropic for Q,

we have

B(wv − zv, zv) = Q(wv)− Q(wv − zv)− Q(zv)

= Q(wv − zv)

= Q(� jε)

= �2 j Q(ε) ∈ � j+1
Z�. ��

As in Sect. 5.1, it suffices to show that as Z and W are drawn from the canonical
measure on OGr(V ,Q)(Z�), the alternating form A j is uniformly distributed.

Lemma 5.19 O(V , Q) acts transitively on OGr(V ,Q)(Z�).
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Proof Fix W , Z ∈ OGr(V ,Q)(Z�). Then we have a scheme

Isom(W , Z) = {g ∈ O(V , Q):gW = Z} ⊂ O(V , Q)

over Z�. This is evidently a torsor for the parabolic subgroup Isom(W ,W ) ⊂
O(V , Q). Moreover, Witt’s theorem implies that Isom(W , Z) has a point over F�,
which lifts to a Z�-point because Isom(W , Z) is smooth (being a torsor for a smooth
group scheme). ��

It will suffice to show that conditioning on a fixed W , the distribution of A j is
already uniform. The distribution of Z conditioned on a fixed W coincides with the
orbit measure on OGr(V ,Q)(Z�) induced by the Haar measure on O(V , Q), since
O(V , Q) acts transitively on OGr(V ,Q)(Z�) by Lemma 5.19. As in Sect. 5.1, it suffices
to show that the distribution of A j is already uniform as Z varies over an orbit of a
coset of the principal congruence subgroup

�(� j ) := {g ∈ O(V , Q):g ≡ Id (mod � j )}.
For fixed Z0, which induces the alternating form

A j (v, x) = B(�− j (wv − z0v), x),

the alternating form associated to γ Z0 for γ ∈ �(� j ) is

B(�− j (wv − γ z0v), x)

which changes the functional by

x �→ B(�− j (1− γ )z0v, x).

Now, since the map γ �→ 1 − γ induces an isomorphism �(� j )/�(� j+1) ∼−→
Lie O(VF�

, Q), the resulting alternating form A j is uniformly distributed, so we are
done. ��
Remark 5.20 Note that unlike in the case of the random kernel model, where we had
additional complications to deal with associated to � = 2 in Sect. 5.2.2, there are no
additional complications here for � = 2 in the proof of Theorem 5.13, because here
we are working with the full congruence subgroup�(� j ), instead of a subgroup which
may have index 2, as was the case in Sect. 5.2.

6 Proofs of themain theorems

We conclude the paper by proving our main theorems. In Sect. 6.1 we connect the
actual Selmer distribution to the random kernel model, while in Sect. 6.2 we connect
the random kernel model to the BKLPR distribution. Combining these gives us a proof
of our main theorem, Theorem 1.1. Finally, in Sect. 6.3 we prove Corollaries 1.6 and
1.7.
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6.1 Comparing the Selmer distribution with the random kernel model

To start, we state one of our main theorems, which compares the distribution of Selmer
groups of elliptic curves to the random kernel model. We prove this at the end of the
subsection.

Theorem 6.1 Fix integers d ≥ 2 and n ≥ 1. For q ranging over prime powers, with
gcd(q, 2n) = 1 and (r ,G) ∈ Z≥0 × Abn, we have

Prob(Seldn /Fq(t) � G) = Prob(RSeldn,Fq
= G)+ On,d(q

−1/2) (6.1)

and

Prob((rk, Seln)
d
Fq
= (r ,G)) = Prob((rkan, Seln)

d
Fq
= (r ,G))+ On,d (q

−1
216d2−162d+31 )

= Prob((Rrk,RSeln)
d
Fq
= (r ,G))+ On,d (q

−1
216d2−162d+31 ).

(6.2)

In particular,

lim sup
q→∞

gcd(q,2n)=1
(rkan, Seln)

d
Fq
= lim sup

q→∞
gcd(q,2n)=1

(rk, Seln)
d
Fq
= lim sup

q→∞
(Rrk,RSeln)

d
Fq

(6.3)

lim inf
q→∞

gcd(q,2n)=1
(rkan, Seln)

d
Fq
= lim inf

q→∞
gcd(q,2n)=1

(rk, Seln)
d
Fq
= lim inf

q→∞ (Rrk,RSeln)
d
Fq

, (6.4)

The values of (6.3) and (6.4) agree when d is odd or n ≤ 2, but differ when d is even
and n > 2.

We are nearly ready to prove Theorem 6.1, but first we will need to establish two
preliminary results. The first preliminary result relates the Selmer group of an elliptic
curve to the 1-eigenspace of Frobenius.

Lemma 6.2 For n ≥ 1, d ≥ 2 and [Ex ] = x ∈ W ◦d
Z[1/2n](Fq), we have

Seln(Ex ) = ker

(
ρd
n,Z[1/2n](Frobx )− id |(

W ◦d
k

)
x

)
.

Proof Notate the geometric fiber of W ◦d
k over x by

(
Sel◦dn,k

)
x
, and the fiber by(

Sel◦dn,k

)
x
. Since

(
W ◦d

k

)
x
is a finite étale Fq -scheme, we have

(
Sel◦dn,k

)
x
(Fq) = ker

(
ρd
n,Z[1/2n](Frobx )− id |(

W ◦d
k

)
x

)
.

Hence, combining this with Lemma 2.3, we obtain that for [Ex ] = x ∈ W ◦d
k ,

ker

(
ρd
n,Z[1/2n](Frobx )− id |(

W ◦d
k

)
x

)
= Seln(Ex ).
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Here we are using that there is an isomorphism (Sel◦dn,k)x � (Sel◦dn,k)x ′ for x
′ ∈ W ◦d

k

mapping to x , coming from the definition of Sel◦dn,k and W ◦d
k as quotients of Sel◦dn,k

and W ◦d
k by a compatible group action. ��

Our second preliminary result relates the rank of an elliptic curve [Ex ] ∈ W ◦d
k (Fq)

to the Dickson invariant of ρd
Z�,k

(Frobx ).

Recall fromDefinition 3.1 that (Qd
Z
, V d

Z
) denotes the quadratic space overZ, whose

reduction mod n is (Qd
n , V

d
n ) on which the monodromy representation ρd

n,k acts. Let

(Qd
Z�

, V d
Z�

) := (Qd
Z
⊗Z Z�, V d

Z
⊗Z Z�) denote the base change to Z�.

Proposition 6.3 Let d ≥ 2, and let �be aprime.Forq aprimepowerwithgcd(q, 2�) =
1, define

Wd,rkan≤1
�,q :=

{
[Ex ] = x ∈ W ��d

Z[1/2�](Fq) : rkan(Ex ) ≤ 1
}

.

(1) For q ranging over prime powers with gcd(q, 2�) = 1, we have

#Wd,rkan≤1
�,q

#W ��d
Z[1/2�](Fq)

= 1+ Od

(
q

−1
216d2−162d+31

)
.

(2) For all x ∈Wd,rkan≤1
�,q ⊂ W ��d

Z[1/2�](Fq), we have

rk ker
(
ρd
Z�,Z[1/2�](Frobx )− id

)

=
{
0 ⇐⇒ ρd

Z�,Z[1/2�](Frobx ) ∈ SO(Qd
Z�

)

1 ⇐⇒ ρd
Z�,Z[1/2�](Frobx ) /∈ SO(Qd

Z�
).

(3) The above statements are true with analytic rank replaced by algebraic rank.

Proof To start, observe that (2) follows directly from Lemma 3.18 and Proposition
3.22

We next demonstrate (1). By Lemma 3.18, whenever x ∈ W ��d
Z
[1/2�], the analytic

rank of Ex is equal to the rank of the 1-generalized eigenspace of ρd
Z�,Z[1/2�](Frobx )−

id.
By Proposition 3.22, whenever x /∈ Wd,rkan≤1

�,q , there is a particular Zariski closed

hypersurface Z in the algebraic group O(Qd
Z�

), i.e., the hypersurface parameteriz-
ing elements with a two or more dimensional generalized 1-eigenspace, such that
ρd
Z�,Z[1/2�](Frobx ) ∈ Z(Z�). By Lemma 3.20, for any positive integer e, we have

im(Z(Z/�eZ)→ O(Qd
Z�

)(Z/�eZ))

= OZ

(
�
e(dim O(Qd

Z�
)−1)

)
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= O�,d

(
�
e(dim O(Qd

Z�
)−1)

)
.

By Theorem 3.14, we know im ρd
�e,Z[1/2�] has index at most 2 in O(Qd

Z�
), and hence

has sizewithin a constant factor of �
e dim O(Qd

Z�
)
. Therefore, it follows fromProposition

3.9 that

#
(
W ��d

Z[1/2�](Fq)−Wd,rkan≤1
�,q

)

#W ��d
Z[1/2�](Fq)

= # im(Z(Z/�eZ) → O(Qd
Z�

))

# im ρd
�e,Z[1/2�]

+ Od

⎛
⎝# im ρd

�e,Z[1/2�]

√
# im(Z(Z/�eZ)→ O(Qd

Z�
))

q

⎞
⎠

= O�,d

⎛
⎝�

e(dim O(Qd
Z�

)−1)

�
e dim O(Qd

Z�
)
+ q−1/2�e dim O(Qd

Z�
)
�
1
2 e(dim O(Qd

Z�
)−1)

⎞
⎠

= O�,d

(
�−e + q−1/2(�e)(

3
2 dim O(Qd

Z�
)− 1

2 )
)

. (6.5)

Crucially, the above constant does not depend on e, and so we may freely choose e to
minimize the above error term. Indeed, we may take e to be the least positive integer

so that q ≤ (�e)
(1+3 dim O(Qd

Z�
))
, or equivalently q

1
1+3 dim O(Qd

Z�
) ≤ �e. Then, so long as

q > �, replacing q by (�e)
(1+3 dim O(Qd

Z�
))
will introduce at most a factor of �, and so

O�,d (�
−e) = O�,d (q

−1
1+3 dim O(Qd

Z�
))
)

O�,d (q
−1/2(�e)(

3
2 dim O(Qd

Z�
)− 1

2 )
) = O�,d

⎛
⎜⎝q−

1
2+

3
2 dim O(Qd

Z�
)− 1

2

1+3 dim O(Qd
Z�

)

⎞
⎟⎠ = O�,d

(
q

−1
1+3 dim O(Qd

Z�
)

)
.

(6.6)

Further, for the finitely many q < �, we can adjust the constants so that the above still
holds with no dependence on q.

Combining (6.5) and (6.6), we find

#
(
W ��d

Z[1/2�](Fq)−Wd,rkan≤1
�,q

)

#W ��d
Z[1/2�](Fq)

= O�,d

(
q

−1
1+3 dim O(Qd

Z�
))

)
.

Further, the constant above does not depend on � because the analytic rank, and hence

the subset Wd,rkan≤1
�,q ⊂ W ��d

Z[1/2�](Fq) is independent of the auxiliary choice of �.
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Now, (1) follows because

−1
1+ 3 dim O(Qd

Z�
))
= −1

1+ 3(12d−4)(12d−5)
2

= −1
1+ 3(6d − 2)(12d − 5)

= −1
216d2 − 162d + 31

.

Part (3) follows from the proceeding ones and fact that, for elliptic curves of rank
at most 1 over Fq of characteristic≥ 3, we know on a full density (as q →∞) subset
that algebraic rank equals analytic rank. For char Fq > 3 the statement holds for every
elliptic curve of rank at most 1, as explained in [40, Sect. 3.8], using the analogue
of the Gross-Zagier formula in [41, Theorem 1.2]. If char Fq = 3, it follows by
combining [40, Sect. 3.8] with the Gross-Zagier formula for everywhere semistable

elliptic curves in [44, Remark 1.5]. Note that there is an open subscheme W ��d
B ⊂

W ◦d
B parameterizing those elliptic surfaces which have squarefree discriminant, so

are everywhere semistable. This is fiberwise dense over B by [28, Lemma 3.14], so
that in the large q limit, a density 1 subset of W ′d

B(Fq) corresponds to elliptic curves
with everywhere semistable reduction. ��
Proof of Theorem 6.1 We will explain how the distribution of (rkan,Seln)dFq and

(rk,Seln)dFq , up to an error of On,d(q
−1

216d2−162d+31 ), are determined by the distribu-

tions of Frobx for x ∈ Wd,rkan≤1
�,q ⊂ W ��Fq

d (Fq), as defined in Proposition 6.3. By

definition, these distributions are determined by Frobx for x ∈ W ′d
Fq

(Fq), so we only

need justify why there are On,d(q
−1

216d2−162d+31 ) points in W ��Fq

d (Fq)−Wd,rkan≤1
�,q ,

To start, we explain why (rkan,Seln)dFq and (rk,Seln)dFq agree with their restrictions

from W ′d
Fq

(Fq) to W ��Fq

d (Fq), up to an error of On,d(q−1/2). The argument here is

analogous to that in Remark 1.4. Indeed, the closed substackW ��Fq

d −W ′d
Fq
⊂ W ′d

Fq

has positive codimension. Hence, contributes at most On,d(q−1/2) to the distributions
(rkan,Seln)dFq and (rk,Seln)dFq , as can be deduced from the Lang-Weil estimate and
[28, Lemma 5.3].

We next explain how to relate the distribution of ρd
n,Z[1/2](Frobx ) over x ∈

W ��Fq

d (Fq) to (rkan,Seln)dFq and (rk,Seln)dFq . The keywill be the following two results
shown above.

(i) By Lemma 6.2, we have Seln(Ex ) = ker

(
ρd
n,Z[1/2n](Frobx )− id |(

W ◦d
Fq

)
x

)
.

(ii) By Proposition 6.3, there is a subset Wd,rkan≤1
�,q ⊂ W ��Fq

d (Fq) whose density is

1+ Od(q
−1

216d2−162d+31 ) for q ranging over prime powers with gcd(q, 2�) = 1 such
that

rk(Ex ) = rkan(Ex ) = δρd
n,Z[1/2n](Frobx )/∈SO(Qd

n ),
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where δa /∈B = 1 if a /∈ B and 0 if a ∈ B.

The observation (i) then establishes (6.1). Combining (i) and (ii) with the pre-
ceding discussion, we have explained how the distribution of Frobenius elements
determines the joint distributions (rkan,Seln)dFq and (rk,Seln)dFq , up to an error of

On,d(q
−1

216d2−162d+31 ). By Corollaries 4.3 and 3.11, up to an error of On,d(q−1/2), the
elements ρd

n,Z[1/2n](Frobx ) are equidistributed between the two cosets of�(Qd
n) given

by

(
DQd

n
, sp−

Qd
n

)
∈
{(

(0, . . . , 0), [qd−1]
)

,
(
(1, . . . , 1), [qd−1]

)}
.

This describes the distribution (Rrk,RSeln)dFq and hence yields (6.2), (6.3) and (6.4).
To conclude the proof we need justify the values of (6.3) and (6.4) agree when d

is odd or n ≤ 2 but differ when d is even and n > 2. Because these limits approach
(Rrk,RSeln)dFq , it suffices to show (Rrk,RSeln)dFq is independent of q when d is odd
or n ≤ 2 but depends on q when d is even.When d is odd, this follows fromDefinition
4.2 because the square class of qd−1 is always trivial, hence independent of q. Also,
when n ≤ 2, this holds again by Definition 4.2 because the spinor norm is trivial.
However, when d is even and n > 2, the spinor norm is nontrivial, and (Rrk,RSeln)dFq
will change depending on whether q is a square or nonsquare. Indeed, when q is a
square, Prob(RSeldn,Fq

= (Z/nZ)12d−4) > 0, corresponding to the case that g = id in

Definition 4.2, while when q is not a square, Prob(RSeldn,Fq
= (Z/nZ)12d−4) = 0. ��

6.2 Comparing the random kernel model with the BKLPR heuristic

We now prove:

Theorem 6.4 TheTVdistancebetween theBKLPRheuristic and lim sup
q→∞

(Rrk,RSeln)dFq

is O(2−(6d−2)2), where the implicit constant is absolute, and similarly for the TV dis-
tance between the BKLPR heuristic and lim inf

q→∞ (Rrk,RSeln)dFq
In particular, we have

(rkBKLPR, SelBKLPRn ) = lim
d→∞ lim sup

q→∞
(Rrk,RSeln)

d
Fq

= lim
d→∞ lim inf

q→∞ (Rrk,RSeln)
d
Fq

.

Proof By Definition 4.2, with probability one the rank is 0 or 1, and determined
by whether the random g in the random kernel model has Dickson invariant 0 or 1,
respectively.Hence the rank component of these distributions is completely determined
by the Selmer component, we can focus our attention on the Selmer component.

Thanks to Corollary 4.24, we know that the TV distance between lim infq→∞
dim RSeld

�,Fq
and the BKLPR heuristic for Sel� is O(�−(6d−2)2), and similarly for
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lim supq→∞ in place of lim infq→∞. The Markov properties Theorem 5.1 and Corol-
lary 5.2 and Theorem 5.13 imply that for � > 2, the two distributions for Sel�e agree
conditioned upon them agreeing for Sel�. For � = 2, the same is true as long as
d1 < 12d − 4 where the notation d1 is as in Theorem 5.1, which only fails if g
reduces to the identity element in O(12d − 4, F�). This happens with probability
1/#O(12d − 4, F�), which is negligible compared to the error term we seek. We con-
clude that the TVdistance between the two distributions for Sel�e is also O(�−(6d−2)2).

Finally, we consider general n. For n = ∏
�a� , the prime factorization of n, we

have

Seln ∼= ⊕� Sel�a� .

The BKLPR heuristic predicts that the distributions of the Sel�a� are independent after
conditioning on the rank. If (V , Q) is a quadratic form over Z/nZ then note that
�(Q) � ∏prime �|n �(Q|Z/�a�Z). Therefore, conditioned on each coset of � in Hd,i

�,k

the distributions (RSelkernel
�a�

)d
Fq

are independent.
Since the TV distance of two product distributions is the sum of the TV distance of

the factors, the TV distance between the BKLPR heuristic and lim sup
q→∞

(Rrk,RSeln)dFq
is

"
∑

prime �|n
�−(6d−2)2 " ζ((6d − 2)2)− 1" 2−(6d−2)2 .

��
We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1 This follows immediately from combining Theorems 6.1 and
6.4. ��

6.3 Remaining results

We conclude by proving two remaining results, promised in the introduction. First,
we prove Corollary 6.5, which is a version of Corollary 1.5 with more precise error
terms, and then we prove Corollary 6.6 which is a version of Corollary 1.6 with more
precise error terms.

Corollary 6.5 (Large q analog of [33, Conjecture 1.2]) For fixed integers d ≥ 2 and
n ≥ 1, and q ranging over prime powers with gcd(q, 2n) = 1, we have

Prob(rkd /Fq(t) = r) =
⎧⎨
⎩
1/2+ Od(q

−1
216d2−162d+31 ) if r ≤ 1,

Od(q
−1

216d2−162d+31 ) if r ≥ 2.
(6.7)

Furthermore,

E[rkd /Fq(t)] = 1/2+ Od(q
−1

216d2−162d+31 ).
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Proof The first statement follows immediately from (6.2) by summing over the set of
possible groups G which can appear. For the statement regarding average rank, we
also need to know that there is a uniform bound on the rank of elliptic curves of height
d over Fq(t), only depending on d. This holds because the rank is bounded by the
size of the Selmer group, which is uniformly bounded in q among all elliptic curves
of height d, as follows from [28, Corollary 3.27], since the Selmer space Sel′dn,Fq

is quasi-compact and quasi-finite over W ′d
Fq

and hence has uniformly bounded fiber
degree. ��
Theorem 6.6 (Large q analog of [33, Conjecture 1.4]) Let n be a squarefree positive
integer, d ≥ 2, and ω(n) be the number of prime factors of n.

(1) Fix c� ∈ Z≥0 for each prime � | n. Then

lim
d→∞ lim sup

q→∞
gcd(q,2n)=1

Prob

⎛
⎝Seldn /Fq (t) �

∏
�|n

(Z/�Z)c�

⎞
⎠

= lim
d→∞ lim inf

q→∞
gcd(q,2n)=1

Prob

⎛
⎝Seldn /Fq (t) �

∏
�|n

(Z/�Z)c�

⎞
⎠

=
{
2ω(n)−1∏

�|n
((∏

j≥0
(
1− �− j

)−1) (∏c�
j=1

�
� j−1

))
if all c� have the same parity,

0 otherwise.

(6.8)

(2) For q ranging over prime powers with gcd(q, 2n) = 1, we have

E[# Seldn /Fq(t)] = σ(n)+ On,d(q
−1/2) :=

∑
s|n

s + On,d(q
−1/2).

(3) For m ≤ 6d − 3 the mth moment of Seldn /Fq(t) is

E[(# Seldn /Fq(t))
m] =

∏
prime �|n

m∏
i=1

(
�i + 1

)
+ On,d,m(q−1/2).

Proof The first part follows from Theorem 1.1 once we establish that SelBKLPRn has
distribution as predicted in the bottom line of (6.8). To see this, note that, by definition,
the model SelBKLPRn is determined by the models for SelBKLPR� with � | n which are
independent, except for the constraint that the parities of theirZ/�Z ranks are all equal.
Hence, it suffices to establish the first part in the case n = � is prime. Note that the
model SelBKLPR� agrees with the model for �-Selmer groups defined in [33, Definition
2.9] by [33, Theorem 2.19(f)]. Therefore, in the case n = � is prime, SelBKLPR� has
distribution as predicted in the bottom line of (6.8) by [33, Proposition 2.6(d) and (f)].

Note that (2) is the special case of (3) with m = 1, so it suffices to
prove (3). To simplify notation in the ensuing proof, we use Sel◦d,m

n,Fq
to denote

Sel◦dn,Fq
×W ◦d

Fq
· · · ×W ◦d

Fq
Sel◦dn,Fq︸ ︷︷ ︸

m times

and Sel′d,m
n,Fq

to denote
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Sel′dn,Fq
×W ′d

Fq
· · · ×W ′d

Fq
Sel′dn,Fq︸ ︷︷ ︸

m times

To establish parts (2) and (3), we claim it is equiv-

alent to show lim q→∞
gcd(q,2n)=1

#Sel◦d,m
n,Fq

(Fq )

#W ◦d
Fq (Fq )

has values as given by the right hand sides

of (2) and (3). To show this is the case, it is enough to show that both #W ◦d
Fq

(Fq) is

within a factor of 1 + On,d,m(q−1/2) of the total number of height d elliptic curves
and #Sel◦d,m

n,Fq
(Fq) is within a factor of 1+ On,d,m(q−1/2) of the sum of # Seln(E)m

over all height d elliptic curves. First, #W ◦d
Fq

(Fq) certainly furnishes a lower bound

for the size of the set of all elliptic curves of height d, while W ′d
Fq

(Fq) furnishes an
upper bound (it is only an upper bound because it includes non-minimal smooth ellip-
tic curves). Next, using Lemma 2.3 to compare # Seln(E) to #H1(P1,E 0[n]), for E
with smooth Weierstrass model, we find that #Sel◦d,m

n,Fq
(Fq) indeed furnishes a lower

bound for the sum of # Seln(E)m over all height d elliptic curves.

Finally, to reduce to computing lim q→∞
gcd(q,2n)=1

#Sel◦d,m
n,Fq

(Fq )

#W ◦d
Fq (Fq )

for (3), we wish to show

that up to a factor of 1+ On,d,m(q−1/2), #Sel◦d,m
n,Fq

(Fq) also furnishes an upper bound

for the sum of # Seln(E)m over all height d elliptic curves. Since Sel′dn,Fq
→ W ′d

Fq
is

étale and quasi-finite, and Sel◦dn,Fq
constitutes a dense open in Sel′dn,Fq

, it follows that

Sel◦d,m
n,Fq

constitutes a dense open in the maximal dimensional components of Sel′d,m
n,Fq

.

Therefore, #Sel′d,m
n,Fq

(Fq) − #Sel◦d,m
n,Fq

is bounded by On,d,m(q−1/2), using the Lang-

Weil estimates. The difference #Sel′d,m
n,Fq

(Fq)− #Sel◦d,m
n,Fq

is not necessarily an upper
bound for the sum of # Seln(E)m . However, as shown in [28, Corollary 3.27], it is an
upper bound for the sum over all height d elliptic curves of #(n2 · Seln(E))m .

To conclude, it remains to determine lim q→∞
gcd(q,2n)=1

#Sel◦d,m
n,Fq

(Fq )

#W ◦d
Fq (Fq )

. Using the Lang-

Weil estimates as in [28, Lemma 5.1], it is enough to compute the number of
geometrically irreducible components of #Sel◦d,m

n,Fq
. Now, Part (3) follows from Burn-

side’s lemma for the action of im ρd
n,k acting diagonally on (V d

n )m , which we claim

has a total of
∏

�|n
∏m

i=1
(
�i + 1

)
orbits. Note that �(Qd

n) ⊂ im ρd
n,k ⊂ O(Qd

n), so it

suffices to show both �(Qd
n) and O(Qd

n) have
∏

�|n
∏m

i=1
(
�i + 1

)
orbits on (V d

n )m .
This follows from Theorem 4.9 and Lemma 4.5, together with the Chinese remainder
theorem to bootstrap this latter result from primes to squarefree integers. ��
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