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Abstract
We prove a full Harnack inequality for local minimizers, as well as weak solutions
to nonlocal problems with non-standard growth. The main auxiliary results are local
boundedness and a weak Harnack inequality for functions in a corresponding De
Giorgi class. This paper builds upon a recent work on regularity estimates for such
nonlocal problems by the same authors.

Mathematics Subject Classification 35B65 · 47G20 · 35D30 · 35B45 · 35A15

1 Introduction

The goal of the present work is to prove a full Harnack inequality for local minimizers
andweak solutions to a class of nonlocal problemswhich exhibit non-standard growth.
This article builds upon the recent paper [13], in which we study regularity properties
for local minimizers of nonlocal energy functionals, as well as weak solutions to
nonlocal equations with non-standard growth. We prove that these objects satisfy a
suitable fractional Caccioppoli inequality and therefore belong to corresponding De
Giorgi classes. In this work, we show that any function in suchDeGiorgi class satisfies
a full Harnack inequality. As a consequence, we obtain the full Harnack inequality for
local minimizers and weak solutions.
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Before we state the main result of this paper, let us formulate the main assump-
tions and briefly present the energy functionals respectively the nonlocal operators
considered in this work. We point out that the setup of this article is in align with [13].

Let � ⊂ R
d be open, s ∈ (0, 1) and 1 ≤ p ≤ q. Throughout the paper, let

f : [0,∞) → [0,∞) be convex, strictly increasing and differentiable with f (0) = 0
and f (1) = 1. We say that f satisfies ( f qp ) if for all t ≥ 0:

p f (t) ≤ t f ′(t), ( f p)

t f ′(t) ≤ q f (t). ( f q)

The growth function f is naturally associated with nonlocal energy functionals and
nonlocal operators. On the one hand, consider

u 	→ I f (u) = (1 − s)
¨

(�c×�c)c
f

( |u(x) − u(y)|
|x − y|s

)
k(x, y)

|x − y|d dy dx, (1.1)

where k : Rd × R
d → R is a measurable function satisfying

k(x, y) = k(y, x) and �−1 ≤ k(x, y) ≤ � for a.e. x, y ∈ R
d (k)

for some � ≥ 1. In [13, Theorem 6.2], we prove that local minimizers of I f belong
to the De Giorgi class DG(�; q, c, s, f ) for some constant c = c(d, q,�) > 0 if f
satisfies ( f q ) for some q > 1. For the precise definition of the De Giorgi class, see
Definition 2.8.

On the other hand, we consider weak solutions to

Lhu = 0 in �, (1.2)

where Lh is a nonlocal operator of the form

Lhu(x) = (1 − s)p.v.
ˆ
Rd

h

(
x, y,

u(x) − u(y)

|x − y|s
)

dy

|x − y|d+s
.

Here, h : Rd×R
d×R → R is ameasurable function satisfying the structure condition

h(x, y, t) = h(y, x, t), sign(t)
1

�
f ′(|t |) ≤ h(x, y, t) ≤ � f ′(|t |) (h)

for a.e. x, y ∈ R
d and for all t ∈ R. We show in [13, Theorem 7.3] that weak solutions

to (1.2) are in DG(�; q, c, s, f ) for some constant c = c(d, q,�) > 0 if ( f q ) holds
true for q > 1.

The goal of this article is to prove a full Harnack inequality of the following form.
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Harnack inequality for nonlocal problems… 535

Theorem 1.1 Let � be an open subset in R
d . Let 0 < s0 ≤ s < 1, 1 < p ≤ q,

c > 0 and assume that f satisfies ( f qp ). There exists a constant C > 0 such that if
u ∈ DG(�; q, c, s, f ) is nonnegative in BR(x0) ⊂ �, then

sup
BR/2(x0)

u ≤ C

(
inf

BR/2(x0)
u + Tail f ′(u−; x0, R)

)
. (1.3)

The constant C depends only on d, s0, p, q and c.

The Harnack inequality was originally proved for harmonic functions and later
obtained for several elliptic and parabolic local operators. It is known to have important
consequences such as a priori estimates in Hölder spaces or convergence theorems.
Therefore, it plays an important role in several mathematical fields such as geometric
analysis, probability or analysis of partial differential equations. For an introduction
to Harnack inequalities, their history and consequences, we refer the reader to the
article by Kassmann [26]. The appearance of the tail term on the right-hand side of
(1.3) is a purely nonlocal phenomenon. It is shown in [25] that the classical Harnack
inequality fails for s-harmonic functions if nonnegativity of the function is assumed
in the solution domain only. In [27], a new formulation of the Harnack inequality is
introduced. It involves a nonlocal tail termas in (1.3)which captures the negative values
of the s-harmonic function outside the solution domain. In our setup the nonlocal tail
is of the following form

Tail f ′(u; x0, R) = Rs( f ′)−1
(

(1 − s)Rs
ˆ
Rd\BR(x0)

f ′
( |u(y)|

|y − x0|s
)

dy

|y − x0|d+s

)
,

see Sect. 2.2 for details.
Further important contributions to investigation ofHarnack inequalities for nonlocal

operators are, among others, the articles [2, 3, 5, 7, 10, 12, 14–17, 31–33] and the
references therein.

Since local minimizers of (1.1) belong to the DeGiorgi class, we have the following
corollary of Theorem 1.1, that is the full Harnack inequality for local minimizers.

Corollary 1.2 Let s0 ∈ (0, 1), 1 < p ≤ q, � ≥ 1 and assume s ∈ [s0, 1). Assume
that f satisfies ( f qp ) and let k : Rd × R

d → R be a measurable function satisfying
(K ). There exists a constant C > 0, depending only on d, s0, p, q and �, such that
if u ∈ V s, f (�|Rd) is a local minimizer of (1.1) that is nonnegative in BR(x0) ⊂ �,

then the full Harnack inequality (1.3) holds true for u.

Another direct consequence of Theorem 1.1, together with the observation that
weak solutions belong to the De Giorgi class, is the full Harnack inequality for weak
solutions.

Corollary 1.3 Let s0 ∈ (0, 1), 1 < p ≤ q, � ≥ 1 and assume s ∈ [s0, 1). Assume that
f satisfies ( f qp ) and let h : Rd × R

d × R → R be a measurable function satisfying
(h). There exists a constant C > 0, depending only on d, s0, p, q and �, such that if
u ∈ V s, f (�|Rd) is a weak solution to (1.2) that is nonnegative in BR(x0) ⊂ �, then
the full Harnack inequality (1.3) holds true for u.

123



536 J. Chaker et al.

The proof of the main result Theorem 1.1 follows from a weak Harnack inequality
together with the local boundedness of functions in the De Giorgi class. Our approach
roughly follows the ideas of Mascolo and Papi [29], where they establish a Har-
nack inequality for minimizers of functionals with non-standard growth in the local
case.

We would like to point out that all results in the present paper are robust in the sense
that the constants stay uniform as s → 1−, since they depend on s0 and are independent
of the actual order of differentiability s. Since the tail contribution vanishes as s → 1−,
we recover purely local estimates in the limit case. Note that the nonlocal energy
functional is known to converge to a local energy form as s → 1−, see for instance
[1, 8].

The family of operators studied in this paper exhibits non-standard growth behavior.
The regularity theory has been intensively studied in recent years. In [13] and [4], local
boundedness and local Hölder regularity are established for such operators using two
different approaches and under slightly different conditions on the growth function.
Both papers prove Hölder estimate under the condition ( f qp ) using similar approaches.
While [13] establishes the local boundedness under the additional condition q < p∗,
in [4] such an estimate is proved without this restriction. Byun, Kim and Ok derive a
Poincaré Sobolev-type inequality, which takes into account the specific growth of the
functionals under consideration. However, their method is not robust as s → 1− in
the aforementioned sense. In this paper, (see Theorem 3.1) we prove a robust estimate
without any restriction on the exponents p and q, improving the corresponding results
from [4, 13].

Recently, Fang and Zhang have investigatedHarnack inequalities for nonlocal oper-
atorswith general growth [20]. In comparison to our setup, they imposemore restrictive
structural assumptions on the growth function f . Similar to the approach in this article,
they derive local boundedness and a tail estimate as in Theorem 3.1, Lemma 5.1, as
well as a weak Harnack inequality. By combining these results, [20] derive an upper
estimate for sup u in terms of inf u and a nonlocal tail term. However, for p < q,
this result is not optimal due to the appearance of an additional power ι = q/p in the
Harnack inequality. In this article, we prove a different version of a weak Harnack
inequality taking into account the growth function f , see Theorem 4.1. This allows
us to deduce a full Harnack inequality in the classical form (1.3).

For a deeper discussion on the literature about nonlocal operators with different
types of non-standard growth behavior and their regularity theory, we refer the reader
to the references given in those two articles. See also [6, 9, 11, 18, 19, 22–24, 30] and
the references therein.

Notation

Throughout the paper, we will denote by C > 0 a universal constant, which may be
different from line to line.
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Outline

This article is structured as follows. In Sect. 2 we collect several auxiliary results for
the growth functions under consideration and provide definitions of related function
spaces and De Giorgi classes. Sections 3 and 4 are devoted to the proof of local
boundedness and a weak Harnack inequality for functions u in appropriate De Giorgi
classes. Finally, the proof of the main result Theorem 1.1 is provided in Sect. 5.

2 Preliminaries

This section contains several auxiliary results on the growth function f and introduces
the function spaces related to our setup.

2.1 Properties of growth functions

We collect several properties of growth functions f : [0,∞) → [0,∞) which were
proved in [13] and will be used in the course of this article. Recall that we will assume
throughout this paper that f is convex, strictly increasing and differentiable with
f (0) = 0 and f (1) = 1.

Lemma 2.1 [13, Lemma 2.1] Let q ≥ 1. Then the following are equivalent:
(i) ( f q),
(ii) t 	→ t−q f (t) is decreasing,
(iii) f (λt) ≤ λq f (t) for all λ ≥ 1,
(iv) λq f (t) ≤ f (λt) for all λ ≤ 1.

Lemma 2.2 [13, Lemma 2.2] Let p ≥ 1. Then the following are equivalent:
(i) ( f p),
(ii) t 	→ t−p f (t) is increasing,
(iii) λp f (t) ≤ f (λt) for all λ ≥ 1,
(iv) f (λt) ≤ λp f (t) for all λ ≤ 1.

Corollary 2.3 [13, Corollary 2.4] Let 1 ≤ p ≤ q. Assume that f satisfies ( f qp ). Then,

p

q
λp−1 f ′(t) ≤ f ′(λt) ≤ q

p
λq−1 f ′(t) for all λ ≥ 1, (2.1)

p

q
λq−1 f ′(t) ≤ f ′(λt) ≤ q

p
λp−1 f ′(t) for all λ ≤ 1, (2.2)

1

2
f ′(t) + 1

2
f ′(s) ≤ f ′(t + s) ≤ q

p
2q−1( f ′(t) + f ′(s)) for all t, s ≥ 0. (2.3)

Lemma 2.4 [13, Lemma 2.5] Let c > 1 and assume that for some t, s > 0 it holds
that f (t) ≤ c f (s). Then t ≤ cs.
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538 J. Chaker et al.

Note that under the assumptions on f , it does not necessarily follow that f ′ is
invertible. Throughout this article, wewill workwith the following generalized inverse
of f ′:

( f ′)−1(y) = inf{t : f ′(t) ≥ y}. (2.4)

We collect a few properties of ( f ′)−1. First, we recall a proposition from [13].

Proposition 2.5 [13, Proposition 3.1] It holds that

( f ′ ◦ ( f ′)−1)(y) ≥ y for all y ≥ 0, (2.5)

(( f ′)−1 ◦ f ′)(t) ≤ t for all t ≥ 0. (2.6)

The following are simple consequences of the previous results.

Lemma 2.6 For every t, s ≥ 0:

( f ′)−1
(
t + s

2

)
≤ ( f ′)−1(t) + ( f ′)−1(s).

Proof By (2.5), (2.6) and monotonicity of ( f ′)−1:

( f ′)−1
[
t + s

2

]
≤ ( f ′)−1

[
f ′(( f ′)−1(t)) + f ′(( f ′)−1(s))

2

]

≤ ( f ′)−1
[
f ′ (( f ′)−1(t) + ( f ′)−1(s)

)]

≤ ( f ′)−1(t) + ( f ′)−1(s). �

Lemma 2.7 Let 1 < p ≤ q. Assume that f satisfies ( f qp ). Then

( f ′)−1(λt) ≤ cλ( f
′)−1(t) for all λ ≥ 0,

where cλ = (qλ/p)1/(p−1) if λ ≥ p/q and cλ = (qλ/p)1/(q−1) if λ ≤ p/q.

Proof First, we observe that by (2.1) and (2.2), λ f ′(t) ≤ f ′(cλt). Therefore, using
(2.5), (2.6) and monotonicity of ( f ′)−1:

( f ′)−1 [λt] ≤ ( f ′)−1
[
λ f ′(( f ′)−1(t))

]
≤ ( f ′)−1

[
f ′(cλ( f

′)−1(t))
]

≤ cλ( f
′)−1(t).

�
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2.2 Function spaces and De Giorgi classes

Let s ∈ (0, 1) and � ⊂ R
d be open. We define the Orlicz and Orlicz–Sobolev spaces

by

L f (�) = {u : � → R measurable : �L f (�)(u) < ∞},
Ws, f (�) = {u ∈ L f (�) : �Ws, f (�)(u) < ∞},

V s, f (�|Rd) = {u ∈ L f (�) : �V s, f (�)(u) < ∞},
where �L f (�), �Ws, f (�) and �V s, f (�|Rd ) are modulars defined by

�L f (�)(u) =
ˆ

�

f (|u(x)|) dx,

�Ws, f (�)(u) = (1 − s)
ˆ

�

ˆ
�

f

( |u(x) − u(y)|
|x − y|s

)
dy dx

|x − y|d ,

�V s, f (�|Rd )(u) = (1 − s)
¨

(�c×�c)c
f

( |u(x) − u(y)|
|x − y|s

)
dy dx

|x − y|d .

Next, we define nonlocal tails, which capture the behavior of functions u ∈ V s, f

(�|Rd) at large scales. We define the nonlocal f ′-Tail by

Tail f ′(u; x0, R) = Rs( f ′)−1
(

(1 − s)Rs
ˆ
Rd\BR(x0)

f ′
( |u(y)|

|y − x0|s
)

dy

|y − x0|d+s

)
.

(2.7)
Recall that the function f ′ does not have to be invertible. Here ( f ′)−1 denotes the
generalized inverse, see (2.4). In our previous work [13], we prove that this expression
is finite if u ∈ V s, f (�|Rd) for BR(x0) ⊂ �.

We are now ready to provide the definition of De Giorgi classes.

Definition 2.8 (De Giorgi classes) Let � be an open subset in R
d . Let s ∈ (0, 1),

q > 1 and c > 0. We say that u ∈ DG+(�; q, c, s, f ) if u ∈ V s, f (�|Rd) and if for
every x0 ∈ �, 0 < r < R ≤ d(x0, ∂�) and k ∈ R, it holds that

�Ws, f (Br (x0))(w+) + (1 − s)
ˆ
Br (x0)

ˆ
A−
k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d

≤ c

(
R

R − r

)q

�L f (BR(x0))

(w+
Rs

)
+ c

(
R

R − r

)d+sq

‖w+‖L1(BR(x0))(1 − s)

×
ˆ
Rd\Br (x0)

f ′
(

w+(y)

|y − x0|s
)

dy

|y − x0|d+s
, (2.8)

where w±(x) = (u(x) − k)± and A−
k = {y ∈ R

d : u(y) < k}. We say that u ∈
DG−(�; q, c, s, f ) if (2.8) holdswithw+,w− and A−

k replaced byw−,w+ and A+
k =

{y ∈ R
d : u(y) > k}, respectively. Moreover, we denote by DG(�; q, c, s, f ) =

DG+(�; q, c, s, f ) ∩ DG−(�; q, c, s, f ).
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3 Local boundedness

The goal of this section is to prove local boundedness of functions u ∈ DG+(�; q, c,
s, f ) under ( f q ), see Theorem 3.1. This result significantly improves [13, Theo-
rem 5.1]. Let us mention that a similar estimate has been obtained in [4] using a
different technique based on a Poincaré–Sobolev-type inequality for nonlocal Orlicz–
Sobolev spaces. Our proof solely relies on the classical fractional Sobolev embedding
and our estimate is robust for s → 1−.

Theorem 3.1 Let � be an open subset in R
d . Let 0 < s0 ≤ s < 1, q > 1, c > 0

and assume that f satisfies ( f q). There exists a constant C > 0 such that if u ∈
DG+(�; q, c, s, f ), then for any BR(x0) ⊂ �, 1/2 ≤ ρ < τ ≤ 1 and δ ∈ (0, 1), it
holds that

f

(
sup

BρR(x0)

u+
Rs

)
≤ C

δ(1−q)2d/s0

(τ − ρ)γ

 
Bτ R(x0)

f

(
u+(x)

Rs

)
dx + δ f

(
Tail f ′(u+; x0, R/2)

(R/2)s

)
,

where γ = 2d(d + q)/s0. The constant C depends only on d, s0, q and c.

Remark 3.2 In particular, Theorem 3.1 implies that functions u ∈ DG+(�; q, c, s, f )
are locally bounded from above in � under the assumptions of Theorem 3.1. Local
boundedness from below for functions u ∈ DG−(�; q, c, s, f ) can be proved in the
same way. Finiteness of Tail f ′(u+; x0, R/2) is a consequence of u ∈ V s, f (�|Rd),
see [13, Proposition 3.2].

Proof We may assume that x0 = 0. For j ≥ 0, we set

R j = ρR + 2− j (τ − ρ)R, Bj = BRj ,

k j = (1 − 2− j )k, k̃ j = (k j + k j+1)/2,

w j = (u − k j )+, w̃ j = (u − k̃ j )+,

where k is a positive number that will be determined later. Note that R j+1 < R j ≤
2R j+1, k j ≤ k̃ j ≤ k j+1 and w j+1 ≤ w̃ j ≤ w j . We denote by A+

h,r the set {x ∈ Br :
u(x) > h}.

Let σ = max{s0/2, (3s − 1)/2} ∈ (0, s). Then, it is easy to check that

1 − σ ≤ 3

2
(1 − s) and s − σ ≥ min{s0/2, (1 − σ)/3}. (3.1)

First, by Hölder’s inequality we have

 
Bj+1

f

(
w j+1(x)

Rs

)
dx ≤ 1

|Bj+1|
ˆ
A+
k̃ j ,R j+1

f

(
w̃ j (x)

Rs

)
dx

≤
|A+

k̃ j ,R j+1
| σ
d

2−d |Bj |

(ˆ
Bj+1

f

(
w̃ j (x)

Rs

) d
d−σ

dx

) d−σ
d

.

123



Harnack inequality for nonlocal problems… 541

By applying the fractional Sobolev inequality to w̃ j/Rs in Bj+1, we estimate

(ˆ
Bj+1

f

(
w̃ j (x)

Rs

) d
d−σ

dx

) d−σ
d

≤ C(1 − σ)

ˆ
Bj+1

ˆ
Bj+1

×| f (w̃ j (x)/Rs) − f (w̃ j (y)/Rs)|
|x − y|d+σ

dy dx

+CR−σ
j+1

ˆ
Bj+1

f

(
w̃ j (x)

Rs

)
dx .

Note that from monotonicity of f ′ and assumption ( f q ) it follows:

| f (a/Rs) − f (b/Rs)|
|x − y|σ ≤ max

{
f ′ ( a

Rs

)
, f ′

(
b

Rs

)} |a − b|
|x − y|s R

−s |x − y|s−σ

≤ q

(
max

{
f
( a

Rs

)
, f

(
b

Rs

)}
+ f

( |a − b|
|x − y|s

))
R−s |x − y|s−σ

for any a, b ∈ R. This inequality applied to a = w̃ j (x), b = w̃ j (y), together with
(3.1), yields

(1 − σ)

ˆ
Bj+1

ˆ
Bj+1

| f (w̃ j (x)/R
s) − f (w̃ j (y)/R

s)|
|x − y|d+σ

dy dx

≤ C(1 − σ)

ˆ
Bj

f

(
w̃ j (x)

Rs

)ˆ
Bj

R−s |x − y|s−σ

|x − y|d dy dx + CR−s Rs−σ
j+1�Ws, f (Bj+1)

(w̃ j )

≤ C

Rσ
j

(
|B j |

 
Bj

f

(
w j (x)

Rs

)
dx + �Ws, f (Bj+1)

(w̃ j )

)
.

We have thus far obtained

 
Bj+1

f

(
w j+1(x)

Rs

)
dx ≤ C

⎛
⎝ |A+

k̃ j ,R j+1
|

|Bj |

⎞
⎠

σ
d

( 
Bj

f

(
w j (x)

Rs

)
dx + �Ws, f (Bj+1)

(w̃ j )

|Bj |

)
, (3.2)

where the constant C depends only on d, s0 and q at this point.
In order to set up a suitable iteration scheme based on (3.2), it remains to estimate

the quantity �Ws, f (Bj+1)
(w̃ j ). Since u ∈ DG+(�; q, c, s, f ), we have
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�Ws, f (Bj+1)
(w̃ j ) ≤ c

(
R j

R j − R j+1

)q ˆ
Bj

f

(
w̃ j (x)

Rs
j

)
dx + c

(
R j

R j − R j+1

)d+sq

‖w̃ j‖L1(Bj )

ˆ
Rd\Bj+1

f ′
(

w̃ j (y)

|y|s
)

1 − s

|y|d+s
dy

=: I1 + I2. (3.3)

For I1, we use Lemma 2.1 and the fact that R j ≤ R to deduce

I1 ≤ c

(
R j

R j − R j+1

)q (
R

R j

)sq ˆ
Bj

f

(
w j (x)

Rs

)
dx ≤ C

2q j

(τ − ρ)q

ˆ
Bj

f

(
w j (x)

Rs

)
dx .

(3.4)
For I2, using monotonicity of f ′ and the assumption ( f q ) again, we observe that

w̃ j

Rs
f ′

(
k

Rs

)
≤ q2(q−1)( j+2) w̃ j

Rs
f ′

(
k̃ j − k j

Rs

)

≤ q2(q−1)( j+2) w j

Rs
f ′ (w j

Rs

)
≤ q22(q−1)( j+2) f

(w j

Rs

)
.

Thus, I2 can be estimated as

I2 ≤ C
2(d+2q) j

(τ − ρ)d+sq

(ˆ
Bj

f

(
w j (x)

Rs

)
dx

)
Rs

f ′(k/Rs)

ˆ
Rd\BρR

f ′
(
u+(y)

|y|s
)

1 − s

|y|d+s
dy.

If we assume that for some δ ∈ (0, 1), k ≥ k1 := δ2sTail f ′(u+; 0, R/2), it follows:

I2 ≤ C
δ1−q

(τ − ρ)d+sq
2(d+2q) j

ˆ
Bj

f

(
w j (x)

Rs

)
dx, (3.5)

where we used (2.2), and C = C(d, s0, q, c) is a positive constant. Combining (3.3),
(3.4) and (3.5):

1

|Bj |�Ws, f (Bj+1)
(w̃ j ) ≤ C

δ1−q

(τ − ρ)d+q
2(d+2q) j

 
Bj

f

(
w j (x)

Rs

)
dx . (3.6)

Since we have by Lemma 2.1

f

(
k

Rs

) |A+
k̃ j ,R j+1

|
|B j | ≤ q2q( j+2) f

(
k̃ j − k j

Rs

) |A+
k̃ j ,R j

|
|B j | ≤ q2q( j+2)

 
Bj

f

(
w j (x)

Rs

)
dx,

(3.7)
it follows from (3.2), (3.6) and (3.7) that

Y j+1 ≤ C0
δ1−q

(τ − ρ)d+q
b jY 1+β

j ,
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where b = 2d+3q > 1, β = σ/d > 0, C0 = C0(d, s0, q, c) > 1 and

Y j = 1

f (k/Rs)

 
Bj

f

(
w j (x)

Rs

)
dx .

Let us take

k = Rs f −1

(
C1

δ(1−q)2d/s0

(τ − ρ)γ

 
Bτ R

f

(
u+(x)

Rs

)
dx

)
+ k1,

where γ = 2d(d+q)/s0,C1 = C2d/s0
0 b4d

2/s20 and k1 is as before. This choice provides

Y0 ≤
(

C0δ
1−q

(τ − ρ)d+q

)−1/β

b−1/β2
,

where we used that σ ≥ s0/2. Therefore, [28, Lemma 4.7] shows that Y j → 0 as
j → ∞, which concludes that u ≤ k a.e. in BρR . Bymonotonicity of f , it follows that
f (u/Rs) ≤ f (k/Rs) a.e. in BρR , which implies the desired result due to Lemma 2.1
and since f (a + b) ≤ 2q( f (a) + f (b)). �

The following result includes Theorem 3.1 as the special case ε = 1. It is a direct
consequence of Theorem 3.1 and a classical iteration argument.

Corollary 3.3 Let � be an open subset in R
d . Let 0 < s0 ≤ s < 1, q > 1, c > 0,

ε ∈ (0, 1] and assume that f satisfies ( f q). There exists a constant C > 0 such that
if u ∈ DG+(�; q, c, s, f ), then for any BR(x0) ⊂ � and δ ∈ (0, 1), it holds that

f ε

(
sup

BR/2(x0)

u+
Rs

)
≤ Cδ−μ

 
BR(x0)

f ε

(
u+(x)

Rs

)
dx + δ f ε

(
Tail f ′(u+; x0, R/2)

(R/2)s

)
,

(3.8)
where μ = 2d(q − 1)/(εs0). The constant C depends only on d, s0, q, c and ε.

Proof We may assume that x0 = 0. Let 1/2 ≤ ρ < τ ≤ 1, δ0 ∈ (0, 1). By applying
Theorem 3.1 with δ0, we have

g(ρ) ≤ C
δ
(1−q)2d/s0
0
(τ − ρ)γ

 
Bτ R

f

(
u+(x)

Rs

)
dx + δ0 f

(
Tail f ′(u+; 0, R/2)

(R/2)s

)
=: I1 + I2,

(3.9)

where C = C(d, s0, q, c) > 0, γ = 2d(d + q)/s0 and

g(ρ) = f

(
sup
BρR

u+
Rs

)
.
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Using Young’s inequality, we obtain

I1 ≤ C
δ
(1−q)2d/s0
0

(τ − ρ)γ
g(τ )1−ε

 
Bτ R

f ε

(
u+(x)

Rs

)
dx

≤ 1

2
g(τ ) + C

δ
−μ
0

(τ − ρ)γ/ε

( 
BR

f ε

(
u+(x)

Rs

)
dx

)1/ε

(3.10)

for some C = C(d, s0, q, c, ε) > 0, where μ = 2d(q − 1)/(εs0). Combining (3.9)
and (3.10):

g(ρ) ≤ 1

2
g(τ ) + C

δ
−μ
0

(τ − ρ)γ/ε

( 
BR

f ε

(
u+(x)

Rs

)
dx

)1/ε
+ δ0 f

(
Tail f ′(u+; 0, R/2)

(R/2)s

)

for any 1/2 ≤ ρ < τ ≤ 1. Therefore, by an iteration lemma, see [21, Lemma 1.1]:

g(1/2) ≤ Cδ
−μ
0

( 
BR

f ε

(
u+(x)

Rs

)
dx

)1/ε

+ Cδ0 f

(
Tail f ′(u+; 0, R/2)

(R/2)s

)
.

Using the inequality (a + b)ε ≤ aε + bε, we obtain

f ε

(
sup
BR/2

u+
Rs

)
≤ Cδ

−εμ
0

 
BR

f ε

(
u+(x)

Rs

)
dx + Cδε

0 f
ε

(
Tail f ′(u+; 0, R/2)

(R/2)s

)
,

(3.11)
where C = C(d, s0, q, c, ε) > 1. For a given δ ∈ (0, 1), the inequality (3.8) follows
from (3.11) by setting δ0 = (δ/C)1/ε ∈ (0, 1). �

4 Weak Harnack inequality

The goal of this section is to prove a weak Harnack inequality for functions u ∈
DG−(�; q, c, s, f ). There exist several possible estimates in the literature, which go
under the name “weak Harnack inequality”. They all differ in the aspect that inf u
is estimated by different Lebesgue-norms of u. We will prove an estimate of the
following type since it allows us to deduce a full Harnack inequality by combination
with Corollary 3.3.

Theorem 4.1 Let � be an open subset in Rd . Let 0 < s0 ≤ s < 1, 1 < p ≤ q, c > 0
and assume that f satisfies ( f qp ). There exist constants C > 0 and ε ∈ (0, 1) such
that if u ∈ DG−(�; q, c, s, f ) is nonnegative in BR(x0) ⊂ �, then

 
BR(x0)

f ε

(
u(x)

Rs

)
dx ≤ C f ε

(
inf

BR/2(x0)

u

Rs

)
+ C f ε

(
Tail f ′(u−; x0, R)

Rs

)
.

The constants C and ε depend only on d, s0, q and c.
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Before we give the proof of Theorem 4.1, we recall the following growth lemma
from [13]:

Lemma 4.2 [13, Theorem 4.1] Let � be an open subset in R
d . Let 1 < p ≤ q,

c, H > 0, R > 0, s0 ∈ (0, 1) and assume s ∈ [s0, 1). Assume that f satisfies ( f qp ).
Suppose that B4R = B4R(x0) ⊂ �. Let u ∈ DG−(�; q, c, s, g) satisfy u ≥ 0 in B4R
and

|B2R ∩ {u ≥ H}| ≥ γ |B2R |

for some γ ∈ (0, 1). There exists δ ∈ (0, 1) such that if

Tail f ′(u−; x0, 4R) ≤ δH ,

then

u ≥ δH in BR .

The constant δ depends only on d, s0, p, q, c and γ.

Proof of Theorem 4.1 Without loss of generality, we assume that x0 = 0. Let us define

L := inf
BR/2

u + Tail f ′(u−; 0, 8R).

First of all, we claim that for any H > 0 it holds:

|A+
t,R |

|BR | ≤
(
L

δt

)a

. (4.1)

Here, a = log 1
2

log δ
, where δ ∈ (0, 1) is the constant from Lemma 4.2 applied with

γ = 6−d

2 and H := t . The proof of (4.1) is a well-known consequence of Lemma 4.2
and a covering argument due to Krylov and Safonov. It is explained in detail in [14,
Lemma 6.7 and (6.41)] and can be adapted to our setup without any changes being
necessary.

Let us explain how to deduce the desired result from (4.1). We choose ε =
1
2 min(1, a

q ) and compute by Cavalieri’s principle and performing a change of vari-
ables
 
BR

f ε

(
u(x)

Rs

)
dx = ε

ˆ ∞

0

|BR ∩ { f (u/Rs) ≥ t}|
|BR | tε−1dt

= ε

ˆ ∞

0

|A+
t Rs ,R |
|BR | f ε−1(t) f ′(t)dt

≤ ε

ˆ L/Rs

0
f ε−1(t) f ′(t)dt + ε

ˆ ∞

L/Rs

(
L

δt Rs

)a

f ε−1(t) f ′(t)dt

=: I1 + I2.
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For I1, by a change of variables,

I1 = ε

ˆ f (L/Rs )

0
tε−1dt = f ε

(
L

Rs

)
. (4.2)

For I2, we apply ( f q ) and obtain

I2 ≤ εqδ−a
(

L

Rs

)a ˆ ∞

L/Rs
t−1−a f ε(t)dt .

From integration by parts and again ( f q ), we see that

ˆ ∞

L/Rs
t−1−a f ε(t)dt = 1

a

(
L

Rs

)−a

f ε

(
L

Rs

)
− 1

a
lim
t→∞ t−a f ε(t)

+ ε

a

ˆ ∞

L/Rs
t−a f ε−1(t) f ′(t)dt

≤ 1

a

(
L

Rs

)−a

f ε

(
L

Rs

)
+ 1

2

ˆ ∞

L/Rs
t−1−a f ε(t)dt,

where we used the definition of ε and Lemma 2.1(ii) in the last step. It follows that

I2 ≤ 2q

a
δ−a f ε

(
L

Rs

)
, (4.3)

which yields, upon combining (4.2) and (4.3):

 
BR

f ε

(
u(x)

Rs

)
dx ≤ C f ε

(
L

Rs

)
≤ C f ε

(
inf
BR/2

u

Rs

)
+ C f ε

(
Tail f ′(u−; 0, 8R)

Rs

)
,

where we used that f (a+b) ≤ 2q( f (a)+ f (b)) and (a+b)ε ≤ aε +bε. The desired
result follows by noticing that

Tail f ′(u−; 0, 8R) ≤ CTail f ′(u−; 0, R),

which is a direct consequence of Lemma 2.7 applied with λ = 8s . �

5 Harnack inequality

In this section, we prove our main result Theorem 1.1. First, we prove the following
estimate for Tail f ′(u+; x0, R).

Lemma 5.1 Let � be an open subset in R
d . Let 0 < s0 ≤ s < 1, 1 < p ≤ q,

c > 0 and assume that f satisfies ( f qp ). There exists a constant C > 0 such that if
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u ∈ DG−(�; q, c, s, f ) is nonnegative in BR(x0) ⊂ �, then

Tail f ′(u+; x0, R/2) ≤ C

(
sup

BR/2(x0)
u + Tail f ′(u−; x0, R/2)

)
.

The constant C depends on d, s0, p, q and c.

Proof Without loss of generality, we may assume x0 = 0. Let w = u − 2M , where
M = supBR/2

u. By u ∈ DG−(�; q, c, s, f ):

(1 − s)
ˆ
BR/4

w−(x)

(ˆ
Rd

f ′
(

w+(y)

|x − y|s
)

|x − y|−d−s dy

)
dx

≤ c
ˆ
BR/2

f

(
w−(y)

Rs

)
dy + c(1 − s)‖w−‖L1(BR/2)

ˆ
Bc
R/2

f ′
(

w−(y)

|y|s
)

|y|−d−s dy.

(5.1)

Note that due to ( f p) it holds f ′(0) = 0. This allows us to consider the integral overRd

for the term on the left-hand side. Since |x − y| ≤ 2|y| for every x ∈ BR/4, y ∈ Bc
R/2

and by (2.3), we estimate the first term from below by

c(1 − s)
ˆ
BR/4

w−(x)

(ˆ
Bc
R/2

f ′
(

w+(y)

|x − y|s
)

|x − y|−d−s dy

)
dx

≥ C(1 − s)MRd
ˆ
Bc
R/2

f ′
(
u+(y)

|y|s
)

|y|−d−s dy − C(1 − s)MRd
ˆ
Bc
R/2

f ′
(

M

|y|s
)

|y|−d−s dy.

Note that by monotonicity of f ′ and (2.1)

(1 − s)MRd
ˆ
Bc
R/2

f ′
(

M

|y|s
)

|y|−s−d dy ≤ CMRd−s f ′
(
M

Rs

)
.

Furthermore, the terms on the right-hand side of (5.1) can be estimated from above
by:

CMRd−s f ′
(
M

Rs

)
+ C(1 − s)MRd

ˆ
Bc
R/2

f ′
(
u−(y)

|y|s
)

|y|−d−s dy
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using similar arguments. Altogether, we obtain

(1 − s)

(
R

2

)s ˆ
Bc
R/2

f ′
(
u+(y)

|y|s
)

|y|−d−s dy

≤ C f ′
(
M

Rs

)
+ C(1 − s)

(
R

2

)s ˆ
Bc
R/2

f ′
(
u−(y)

|y|s
)

|y|−d−s dy

≤ 1

2

[
f ′

(
CM

Rs

)
+ C(1 − s)

(
R

2

)s ˆ
Bc
R/2

f ′
(
u−(y)

|y|s
)

|y|−d−s dy

]
,

wherewe used (2.1) in the last step. Next, we apply ( f ′)−1 on both sides of the estimate
and multiply with (R/2)s to obtain

Tail f ′(u+; 0, R/2) ≤ CM + CTail f ′(u−; 0, R/2),

where we applied Lemma 2.6, (2.6) and Lemma 2.7. �
We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1 Wemay assume that x0 = 0. Let ε ∈ (0, 1) be the constant from
Theorem 4.1. By Corollary 3.3 and Lemma 5.1, we have

f ε

(
sup
BR/2

u

Rs

)
≤ Cδ−μ

 
BR

f ε

(
u(x)

Rs

)
dx + δ f ε

(
C
supBR/2

u + Tail f ′(u−; 0, R/2)

(R/2)s

)
,

where μ = 2d(q − 1)/(εs0). Using ( f q ), Lemma 2.1 and u ≥ 0 in BR , we obtain

δ f ε

(
C
supBR/2

u + Tail f ′ (u−; 0, R/2)

(R/2)s

)
≤ Cδ

(
f ε

(
sup
BR/2

u

Rs

)
+ f ε

(
Tail f ′ (u−; 0, R)

Rs

))
.

By taking δ sufficiently small so that Cδ < 1/2, we have

f ε

(
sup
BR/2

u

Rs

)
≤ C

 
BR

f ε

(
u(x)

Rs

)
dx + f ε

(
Tail f ′(u−; 0, R)

Rs

)
.

Thus, it follows from Theorem 4.1 that

f ε

(
sup
BR/2

u

Rs

)
≤ C f ε

(
inf
BR/2

u

Rs

)
+ C f ε

(
Tail f ′(u−; 0, R)

Rs

)
.

The desired inequality follows by using (a + b)
1
ε ≤ 2

1
ε
−1(a

1
ε + b

1
ε ), as well as the

estimate f (a) + f (b) ≤ 2 f (a + b) and Lemma 2.4. �
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