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Abstract
For a connected real Lie groupG we consider the canonical standard-ordered star prod-
uct arising from the canonical global symbol calculus based on the half-commutator
connection of G. This star product trivially converges on polynomial functions on
T ∗G thanks to its homogeneity. We define a nuclear Fréchet algebra of certain ana-
lytic functions on T ∗G, for which the standard-ordered star product is shown to be a
well-defined continuous multiplication, depending holomorphically on the deforma-
tion parameter �. This nuclear Fréchet algebra is realized as the completed (projective)
tensor product of a nuclear Fréchet algebra of entire functions on G with an appropri-
ate nuclear Fréchet algebra of functions on g∗. The passage to the Weyl-ordered star
product, i.e. the Gutt star product on T ∗G, is shown to preserve this function space,
yielding the continuity of the Gutt star product with holomorphic dependence on �.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2 Star products on T ∗G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

2.1 The standard-ordered star product on T ∗G . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2.2 Weyl ordering and the Neumaier operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3 The R′-topologies on the symmetric algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4 The R-entire functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.1 Lie-Taylor series of smooth functions on a Lie group . . . . . . . . . . . . . . . . . . . . . 164

Communicated by Bernhard Hanke.

B Stefan Waldmann
stefan.waldmann@mathematik.uni-wuerzburg.de

Michael Heins
michael.heins@mathematik.uni-wuerzburg.de

Oliver Roth
roth@mathematik.uni-wuerzburg.de

1 Institute of Mathematics, Julius Maximilian University of Würzburg, Würzburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-022-02384-x&domain=pdf
http://orcid.org/0000-0001-8414-130X


152 M. Heins et al.

4.2 Entire functions on G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.3 Representative functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5 The R, R′-topologies on the observable algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6 Continuity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Appendix A: Star products on cotangent bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Appendix B: Noncommutative higher Leibniz rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

1 Introduction

Formal deformation quantization as introduced in [1] is one of the very successful
quantization schemes forHamiltonianmechanical systems. The basic idea is to deform
the commutative algebra of smooth functionsC∞(M) on a Poisson manifold M into a
noncommutative algebra C∞(M)��� by introducing a formal star product �: this is an
associative product bilinear over the formal power series in � such that the zeroth order
in � is the undeformed pointwise product of functions and the first order commutator
equals the Poisson bracket. Additional requirements are that each order of � consists
of bidifferential operators on M .

The existence of such formal star products was first shown on symplectic manifolds
[13, 18] and then by Kontsevich for the general case of Poisson manifolds [30]. While
these results provide spectacular successes with many further developments and appli-
cations, for honest physical applications one has to overcome the formal power series
formulation: the deformation parameter � is to be interpreted as Planck’s constant.
Thus one is interested in strict versions of deformation quantization.

One scenario to obtain reasonable definitions and results for strictness is to use C∗-
algebraic deformations instead of formal deformations. This has been introduced by
Rieffel, see in particular [45, 46], and used by many others in the sequel, see e.g. [3–6,
34]. The basic ingredient is to use (oscillatory) integral formulas for the star product,
which then admit good enough estimates to arrive at constructions ofC∗-norms.While
giving strong results, the main difficulty with these approaches is that unfortunately
there is no general construction of star products via oscillatory integrals available.

Thus a different approach was proposed, namely to use the formal star products and
investigate their convergence directly. It turns out that in various classes of examples
the following strategy is successful: first one needs to understand the example well
enough to find a small subalgebra of functions for which the star product converges
for some trivial reasons. In the examples considered so far, the star products simply
terminate after finitely many terms on e.g. polynomial functions on a vector space.
Here no general results are available and one is restricted to classes of examples.
In a second step one then tries to establish a locally convex topology for the small
subalgebra in such a way that the star product becomes continuous. Again, also in
this step no general results are available, but examples show promising cases. Having
succeeded, a completion of the small subalgebra then gives a hopefully large and
interesting locally convex algebra, typically a Fréchet algebra, which then can be
investigated further.

In finite dimensions this programmight not seemmore promising than the previous
ones, as it also lacks general existence theorems. However, different types of exam-
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Convergent star products on cotangent bundles of Lie groups 153

ples can be covered, yielding e.g. analogs of unbounded operator algebras. Moreover,
infinite-dimensional examples are very well possible, where oscillatory integrals def-
initely are no longer available. Thus this approach can be seen as complementing the
previous strict deformation quantizations by new and different examples. A detailed
overview on these ideas can be found in the review [56], the original results are in [2,
16, 17, 32, 47, 48, 51, 55].

Of indisputable interest for geometric mechanics are the cotangent bundles with
their canonical Poisson structure. Their quantization is known to be strongly related
to various symbol calculi for pseudo-differential operators. In fact, the asymptotic
expansion of the corresponding integrals yield star productswhen interpreted correctly.
Important for us is the other direction: one can directly construct (global) star products
on cotangent bundles T ∗Q out of a covariant derivative on the configuration space
Q, see e.g. [7–9, 19, 41–43]. One of their crucial features is the homogeneity with
respect to the Euler vector field, which causes the functions Pol(T ∗Q) polynomial in
the fibers to form a subalgebra, on which the star product trivially converges. Thus we
have found a good starting point for the above program.

A particular case of cotangent bundles is obtained for a Lie group G as con-
figuration space. This highly symmetric situation admits a distinguished covariant
derivative, the half-commutator connection, which is entirely Lie-theoretic. The cor-
responding (standard-ordered) star product �std has been introduced already in [26]
and was further investigated in [8]. Using a left-invariant volume form on G one
then can pass to a Weyl ordered star product, as well. The left-invariant polynomial
functions Pol•(T ∗G)G ∼= S•(g) are in linear bijection to the symmetric algebra over
the Lie algebra. The star product �std restricts and yields the Gutt star product on
S•(g), thereby quantizing the linear Poisson structure on g∗. For this star product, the
above convergence program has been carried through in [17] by establishing a nuclear
locally convex topology on S•

R′(g) such that �std becomes continuous. Here R′ ≥ 1
is a parameter. The completion is explicitly given by certain real-analytic functions
on the vector space g∗ with controlled growth at infinity and becomes largest for the
limiting case R′ = 1.

Using the trivialization T ∗G ∼= G × g∗ we arrive at the first main result of this
paper: We define a subspace ER(G) of real-analytic functions on a connected Lie
group G together with a suitable nuclear Fréchet topology, depending on a parameter
R ≥ 0 in such a way that ER(G) ⊗ S•

R′(g) becomes a subalgebra of Pol(T ∗G) for
which the star product �std is continuous. Here the tensor product is equipped with
the projective topology. The completion ̂PolR,R′(T ∗G) is a nuclear Fréchet algebra
with largest completion for R = 0 and R′ = 1. The assumption to have a connected
Lie group is convenient as then real-analytic functions are determined by their Taylor
expansion at the unit element.

While the precise size of ER(G) and PolR,R′(T ∗G) is not easy to grasp, the rep-
resentative functions on G always belong to ER(G) as soon as 0 ≤ R < 1, thus
guaranteeing a nontrivial algebra of functions. Moreover, the continuity properties
of �std immediately imply the continuity of the standard-ordered quantization. This
results in a symbol calculus for differential operators on G with coefficient functions
in ER(G) acting continuously on ER(G).

123
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The second result is that the star product of two functions in the completion
PolR,R′(T ∗G) depends holomorphically on � ∈ C. This way, the star product becomes
a convergent series in � as wanted. As a consequence, also the standard-ordered quan-
tization is holomorphic in � and yields not only differential operators but certain
pseudo-differential operators for which the composition is holomorphic in �.

Finally, the passage from the standard-ordered star product to the physically more
appealing Weyl-ordered star product is compatible with the above topologies: the
equivalence transformation preserves PolR,R′(T ∗G), is continuous, and depends holo-
morphically on � itself. Thus the Weyl-ordered star product inherits all the nice
properties of �std with the additional feature that the complex conjugation is now
a ∗-involution and the corresponding Weyl-ordered quantization is a ∗-representation.

While these results yield another large class of examples for the aforementioned
program to construct convergent star products, we also mention the following list of
further questions and possible continuations:

• Having a ∗-algebra we can ask for its normalized positive functionals, i.e. its states.
Here one first question is whether each classical state, i.e. a positive Borel measure
on T ∗G, can be deformed into a state of the Weyl-ordered star product algebra?
Ideally, this can be accomplished in a way with good dependence on �. Note that,
unlike in [2, 32], such a deformation is expected to be necessary. In the case of
formal star products this is known to be possible in general [10].

• The standard-ordered or Weyl-ordered representation gives now certain pseudo-
differential operators which can be studied by means of the symbols in
PolR,R′(T ∗G). The strong analytic framework should help to establish functional-
analytic properties like self-adjointness in the same spirit as this was done in [32,
51].

• Since the star product �std has all needed symmetry properties this raises the
question whether we can construct further classes of examples of convergent star
products by means of phase space reduction starting with T ∗G. In view of the
examples [32, 47] one expects amore complicated dependence on � after reduction
with singularities reflecting the geometry of the reduced phase spaces.

The paper is organized as follows: in Sect. 2 we recall the basic construction of
�std and �Weyl on T ∗G and establish formulas which allow for efficient estimations.
Section 3 contains the construction of the topology on S•(g). We recall some of the
basic properties of the resulting algebra. Section 4 is at the heart of the paper. We
define the entire functions on G by means of their Lie-Taylor coefficients and study
first properties of the resulting space ER(G). In particular, we show that representative
functions belong to ER(G) for 0 ≤ R < 1. In Sect. 5 we combine the entire functions
ER(G) on G with the polynomials S•

R′(g) to the observable algebra PolR,R′(T ∗G),
whose completion will then be studied in the final Sect. 6. Here the continuity of the
star products is established. In two appendices we recall the general construction of
star products on cotangent bundles and explain some combinatorial aspects of the
Leibniz rule.
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Convergent star products on cotangent bundles of Lie groups 155

2 Star products on T∗G

In this section, we specialize the constructions of a global symbol calculus and the
corresponding star products on cotangent bundles [7–9] to the cotangent bundle of a
Lie group G, see also Appendix A for a brief introduction to the general situation.
The main idea is that having a global frame of left invariant vector fields simplifies
many of the formulas and allows us to use previously local formulas now globally.
Essentially, all formulas we present are known from [26] as well as [8], but given in
slightly different form, making it necessary to adapt them to our needs.

2.1 The standard-ordered star product on T∗G

Let G be an n-dimensional Lie group with Lie algebra g = TeG. We write Xξ ∈
�∞(TG) for the left invariant vector field with Xξ (e) = ξ and θα ∈ �∞(T ∗G) for
the left invariant one-form with θα(e) = α, where ξ ∈ g and α ∈ g∗. Then the natural
pairing θα(Xξ ) = α(ξ) ∈ C∞(G) yields a constant function on G.

After once and for all choosing a basis (e1, . . . , en) of the Lie algebra g with
corresponding dual basis (e1, . . . , en) of g∗, we write shorthand

Xi = Xei and θ i = θei (2.1)

for i = 1, . . . , n in the sequel. Following [8], see also Appendix A, to construct a
standard-ordered star product on the cotangent bundle T ∗G, we have to specify a
torsion-free covariant derivative on G first. The perhaps first surprising observation
is that the most natural covariant derivative, the half-commutator connection ∇ on
G, is not the Levi-Civita connection for a Riemannian metric in general. It would be
the Levi-Civita connection of a biinvariant pseudo Riemannian metric. However, a
positive definite one might not exist at all. Since we have a trivial tangent bundle, it
suffices to specify ∇ on left invariant vector fields. One sets

∇Xξ Xη = 1

2
X[ξ,η], (2.2)

which is torsion-free, as taking left invariant vector fields is a Lie algebra morphism
by the very definition of the Lie algebra. This then induces covariant derivatives on the
various tensor bundles and their complexifications, as usual. This is the only covariant
derivative we shall use in the sequel, wherefore we stick to the simple notation ∇.

The covariant derivatives of the global frames X1, . . . , Xn and θ1, . . . , θn are thus
given by the structure constants cki j = ek([ei , e j ]) of the Lie algebra g, i.e. we have

∇Xi X j = 1

2
cki j Xk and ∇Xi θ

k = −1

2
cki jθ

j . (2.3)

Here and in the following we shall use Einstein’s summation convention. The anti-
symmetry of the structure constants now gives the following result for the powers of
the symmetrized covariant derivative from (A.3):
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Lemma 2.1 Let G be a Lie group.

(i) Let α ∈ �∞(SkT ∗
C
G). Its symmetrized covariant derivative is given by the global

formula

Dα = θ i ∨ (∇Xi α
)

, (2.4)

where ∨ denotes the symmetric tensor product as usual.
(ii) For the kth power of D acting on a function ψ ∈ C∞(G) we have the global

formula

Dkψ =
(

LXi1
· · ·LXik

ψ
)

· θ i1 ∨ · · · ∨ θ ik . (2.5)

Proof We have already noted (i) in (A.5) with the crucial feature that now we have a
global frame. The second statement is a straightforward induction based on (2.4) and
(2.3). �


Since we have a global frame for TG, we can use it to identify the invariant polyno-
mial functions on T ∗G with the complexified symmetric algebra over the Lie algebra
g:

Lemma 2.2 Let G be a Lie group.

(i) We have the canonical isomorphism

S•
C
(g) ∼= �∞(

S•
C
TG

)G J−→ Pol•(T ∗G)G (2.6)

between the symmetric algebra of the Lie algebra and the invariant polynomials
on T ∗G.

(ii) We have the isomorphisms

C∞(G) ⊗ S•(g) ∼= �∞(

S•
C
(TG)

) ∼= Pol(T ∗G) (2.7)

of gradedalgebras inducedby the pullbackπ∗ with the cotangent bundle projection
π .

Here J is the canonical algebra isomorphism (A.1). This factorization will be used
extensively in the sequel. Note that we do not have to complexify the symmetric
algebra in (2.7), but doing so would not change the resulting algebra. We will switch
between these points of view, whenever it is convenient to do so in the sequel.

Using this observation and Lemma 2.1, we get the following surprisingly simple
formula for the standard-ordered quantization map:

Proposition 2.3 (Standard-ordered quantization map)
Let G be a Lie group.
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Convergent star products on cotangent bundles of Lie groups 157

(i) The standard-ordered quantization map on invariant polynomial functions is glob-
ally given by


std
(

J(Xξ1 ∨ · · · ∨ Xξk )
) =

(

�

i

)k 1

k!
∑

σ∈Sk
LXξσ (1)

· · ·LXξσ (k)
(2.8)

for ξ1, . . . , ξk ∈ g.
(ii) It provides an isomorphism


std : S(•)
C

(g) −→ DiffOp(•)(G)G (2.9)

between the complexification of the symmetric algebra over the Lie algebra and
the invariant differential operators on G, both viewed as filtered vector spaces.

(iii) For φ ∈ C∞(G) and ξ1, . . . , ξk ∈ g one has


std
(

π∗(φ)J(Xξ1 ∨ · · · ∨ Xξk )
) = φ · 
std

(

J(Xξ1 ∨ · · · ∨ Xξk )
)

, (2.10)

i.e. the smooth function φ acts as a multiplication operator.

Proof Thefirst partwas obtained in [8, Prop. 11]. For (ii)wenote that
std(J(Xi1∨· · ·∨
Xik )) is clearly an invariant differential operator. Conversely, if D ∈ DiffOpk(G)G

is invariant, it has an invariant leading symbol σk(D) ∈ �∞(Sk
C
TG)G ∼= Sk

C
(g).

Quantizing this symbol via 
std gives an invariant differential operator with the same
leading symbol, thus D − 
std(σk(D)) is of strictly lower order. A simple induction
on k then proves the isomorphism (2.9), since we already know that 
std is injective.
The last statement is clear, as 
std is left C∞(G)-linear in general. �


As the standard-ordered quantization map is the quantization map for the standard-
ordered star product �std in the sense of (A.9), the strategy is now to use (2.8) to derive
a formula for the standard-ordered star product suitable for estimation.

Thanks to Lemma 2.2, we can compute the star products for C∞(G) ⊗ S•(g)
directly. The star product of two functions from C∞(G) is the commutative pointwise
product, a feature which holds for all cotangent bundles and not only for T ∗G. The
next combination we are interested in are two elements of S•

C
(g). Since the covariant

derivative ∇ we use to construct �std is left invariant, their star product is an invariant
polynomial, i.e. an element of S•

C
(g) again. From [8, Lem. 10] we infer that �std

coincides with the Gutt star product [26] on S•
C
(g), which is obtained from the linear

Poincaré–Birkhoff–Witt isomorphism

S•
C
(g) ∼= UC(g) (2.11)

to the universal enveloping algebra via symmetrization. Incorporating the correct pow-
ers of the formal parameter into the definition then yields the star product �g for S•

C
(g),

where we follow the sign conventions from [17]. Finally, we have to take care of the
mixed products: the property of a standard ordered star product immediately gives
(φ ⊗ 1)�std (ψ ⊗ ξ) = (φψ) ⊗ ξ for all φ,ψ ∈ C∞(G) and ξ ∈ S•(g). Thus it is
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the opposite order which needs to be computed. We summarize the result from [8,
Prop. 11] in the following proposition, adapting it to our present notation:

Proposition 2.4 Let G be a Lie group.

(i) Functions act trivially from the left, i.e. we have

(

φ ⊗ 1
)

�std
(

ψ ⊗ ξ
) = (φ · ψ) ⊗ ξ (2.12)

for all φ,ψ ∈ C∞(G) and ξ ∈ S•
C
(g).

(ii) Products of invariant polynomials are given by the Lie algebra star product �g,
i.e. we have

(

1 ⊗ ξ
)

�std
(

1 ⊗ η
) = 1 ⊗ (

ξ�gη
)

(2.13)

for ξ, η ∈ S•
C
(g).

(iii) The remaining combination of interest is

(

1 ⊗ ξ1 ∨ · · · ∨ ξk
)

�std
(

φ ⊗ 1
)

=
k

∑

p=0

(

�

i

)p 1

p! (k − p)!
∑

σ∈Sk

(

LXξσ (1)
· · ·LXξσ (p)

φ
)

⊗ ξσ(p+1) ∨ · · · ∨ ξσ(k),

(2.14)

where ξ1, . . . , ξk ∈ g and φ ∈ C∞(G).
(iv) In general, one has

(φ ⊗ ξ1 ∨ · · · ∨ ξk)�std (ψ ⊗ η)

= (φ ⊗ 1)�std (1 ⊗ ξ1 ∨ · · · ∨ ξk)�std (ψ ⊗ 1)�std (1 ⊗ η) (2.15)

=
k

∑

p=0

(

�

i

)p
φ

p! (k − p)!
∑

σ∈Sk
LXξσ (1)

· · ·LXξσ (p)
ψ ⊗ (

ξσ(p+1) ∨ · · · ∨ ξσ(k)
)

�gη

(2.16)

for φ,ψ ∈ C∞(G), ξ1, . . . , ξk ∈ g and η ∈ S•(g).

Proof The presented formulae are obtained from [8, Prop. 11] after the suitable iden-
tification of polynomial functions with elements in C∞(G) ⊗ S•

C
(g). We list them

here, since directly working with the symmetric algebra will be easier for continuity
estimates down the line. �


2.2 Weyl ordering and the Neumaier operator

This completes our algebraic considerations for the standard-ordered star product.
In a next step, we turn towards other ordering prescriptions. More precisely, we are
going to simplify the general formulas for the Neumaier operator (A.15) by utilizing
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Convergent star products on cotangent bundles of Lie groups 159

the Lie-theoretic situation. As for the standard-ordered star product, having a global
frame allows us to obtain considerably more explicit formulas, see again [8, Sect. 8].

Themain idea is that we use the half-commutator connection to lift the left-invariant
global frame X1, . . . , Xn to vector fields

Yi = Xhor
i ∈ �∞(

T (T ∗G)
)

(2.17)

on the cotangent bundle. Together with the vertical lifts of the global frame θ1, . . . , θn ,
denoted by

Zi = (θ i )ver ∈ �∞(

T (T ∗G)
)

, (2.18)

one thus obtains a global frame Y1, . . . ,Yn, Z1, . . . Zn for the tangent bundle of T ∗G.
Having a global frame it is of course advantageous to express differential operators
like the Laplacian 
0 from (A.14) of the pseudo Riemannian metric g0 by iterated
Lie derivatives with respect to the frame vector fields instead of covariant derivatives.

Since we also need the choice of a volume density μ on G to construct the Weyl
ordering, we use the left-invariant volume form μ = θ1 ∧ · · · ∧ θn . The required
one-form α with ∇Xμ = α(X)μ is then given by α(Xξ ) = − 1

2 tr(adξ ) for ξ ∈ g and
hence

α = 1

2
ciikθ

k ∈ �∞(T ∗G). (2.19)

Note that in general α �= 0 unless the Lie algebra is unimodular. The vertical lift of
α gives αver = 1

2c
i
ik Z

k . For the operator N we need the combination 
0 + Lαver ,
wherefore we compute the action of this operator on factorizing tensors explicitly:

Proposition 2.5 For φ ∈ C∞(G) and ξ1, . . . , ξk ∈ g one has

(


0 + Lαver
)

(φ ⊗ ξ1 ∨ · · · ∨ ξk) =
k

∑

�=1

LXξ�
φ ⊗ ξ1 ∨ ξ�· · · ∨ ξk + 2Lαver , (2.20)

where we identify elements of C∞(G)⊗S(g) with polynomial functions Pol(T ∗G) as
before.

Proof In general, the covariant divergence div∇ : �∞(SkT Q) −→ �∞(Sk−1T Q) on
an arbitrary manifold Q with covariant derivative ∇ is given by the local formula

div∇
∣

∣

∣

U
= is(e

i )∇ei , (∗)

where e1, . . . , en ∈ �∞(TU ) is a local frame on an open subset U ⊆ M with
corresponding dual frame e1, . . . , en ∈ �∞(T ∗U ) and is( · ) denotes the symmetric
insertion derivation. As one easily verifies, this provides a global definition indepen-
dent of the local frame. Directly from the definition one infers the Leibniz rule

div∇(φX) = is(dφ)X + φdiv∇(X) (∗∗)

123
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for all φ ∈ C∞(Q) and X ∈ �∞(SkT Q). On polynomial functions J(X) ∈
Polk(T ∗Q) with X ∈ �∞(SkT Q) the Lie derivatives with respect to horizontal and
vertical lifts act like

LY horJ(X) = J(∇Y X) and LβverJ(X) = J(is(β)X),

where Y ∈ �∞(T Q) and β ∈ �∞(T ∗Q). Since J is an algebra homomorphism
this can be easily checked on generators. Using the local expression (A.14) for the
Laplacian with respect to the g0 as well as the local formulas for the horizontal and
vertical lifts, one verifies


0 ◦ J = J ◦ div∇ ,

see also [8, Eq. (111)]. Now we focus on the Lie group case. Here we first notice that
div∇(Xξ ) = − 1

2 tr adξ for all ξ ∈ g. Note that (∗) becomes a global formula once we
use the global frame X1, . . . , Xn . From the antisymmetry of the structure constants
we get the divergence of higher polynomials as

div∇(Xξ1 ∨ · · · ∨ Xξk ) = − 1
2 is(tr ad)(Xξ1 ∨ · · · ∨ Xξk ).

Together with the Leibniz rule (∗∗) we arrive at the explicit formula

div∇(φXξ1 ∨ · · · ∨ Xξk ) =
k

∑

�=1

LXξ�
φ · Xξ1∨ �· · · ∨Xξk − 1

2φis(tr ad)(Xξ1 ∨ · · · ∨ Xξk ).

Applying the algebra isomorphism J turns the divergence into the Laplacian and the
insertion of the modular one-form into the Lie derivative in direction of the vertical
lift of α, finally proving (2.20). �


From this explicit description of the Laplacian 
0 we see that it might be advanta-
geous to focus on the combination


 = 
0 − Lαver (2.21)

acting on polynomial functions as


(φ ⊗ ξ1 ∨ · · · ∨ ξk) =
k

∑

�=1

LXξ�
φ ⊗ ξ1 ∨ ξ�· · · ∨ ξk . (2.22)

The vertical Lie derivative Lαver is now easily shown to commute with both oper-
ators 
0 and 
. Thus the Neumaier operator Nκ factorizes

Nκ = exp (−iκ�(
0 + Lαver )) = exp (−iκ�
) ◦ exp (2iκ�Lαver ) . (2.23)
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As observed in [8, Lem. 11], the second factor exp(2iκ�Lαver ) is an automorphism
of �std for all κ . Thus the simpler operator

Nκ = exp (−iκ�
) (2.24)

with 
 as in (2.22) is still an equivalence transformation from �std to �κ for all κ ∈ R.
The reason to use Nκ instead of Nκ is that the simpler formulas are easier to estimate
later on.

Corollary 2.6 The Laplacian is given by the mixed Poisson bracket, i.e. we have


(φ ⊗ ξ1 ∨ · · · ∨ ξk) = {

1 ⊗ ξ1 ∨ · · · ∨ ξk, φ ⊗ 1
}

. (2.25)

Proof Indeed, the Poisson bracket of a function φ ∈ C∞(G)with left-invariant vector
fields can be directly obtained from Proposition 2.5 and the first order commutator
of �std as in Proposition 2.4. Note that such a formula is only possible since we can
factorize elements in Pol(T ∗G) into C∞(G) and S•(g). �


Corollary 2.7 Let � ≤ k. The powers of 
 act as

(



)�

(φ ⊗ ξ1 ∨ · · · ∨ ξk) = 1

(k − �)!
∑

σ∈Sk
LXξσ (1)

· · ·LXξσ (�)
φ ⊗ ξσ(�+1) ∨ · · · ∨ ξσ(k).

(2.26)

For � > k the result is zero for degree reasons.

To show the continuity of the κ-Neumaier operators later on, we require a more
explicit formula. Remarkably, (2.25) exponentiates very nicely: it turns out that the
square N 2 of the Neumaier operator is given by the mixed star product from Theo-
rem 2.4:

Proposition 2.8 Let G be a Lie group. For κ = 1
2 , the square of the Neumaier operator

N = N 1
2
is given by

N 2(φ ⊗ ξ1 ∨ · · · ∨ ξk) = (1 ⊗ ξ1 ∨ · · · ∨ ξk)�std (φ ⊗ 1) (2.27)

for φ ∈ C∞(G) and ξ1, . . . , ξk ∈ g.

Proof Taking another look at (2.14) and (2.26) confirms our claim. �


Notably, incorporating κ �= 1 is not that easy here. Down the line, the trick will thus
be to absorb it into the � dependence, at which point we can employ Proposition 2.8
again.
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3 The R′-topologies on the symmetric algebra

In view of the factorization Pol(T ∗G) ∼= C∞(G)⊗S•(g), we want to define a suitable
locally convex topology on the symmetric algebra S•(g) in such a way that the star
product �g is continuous. This has been accomplished and studied in detail in [17].
We briefly recall the construction based on the earlier work [55] and recollect some
of the crucial features.

Let V be a locally convex space over K = R or K = C. We fix a parameter R′ ∈ R.
Then for a seminorm p on V and a weight c ≥ 0 one defines the seminorm pR′,c

pR′,c : S•(V ) −→ R
+
0 , pR′,c =

∞
∑

k=0

k!R′
ck pk, (3.1)

where pk denotes the k-fold projective tensor power of the seminorm p acting on
Sk(V ) ⊆ T•(V ). By convention, S0(V ) = K = T0(V ) and p0 is the absolute value
on K.

Let P be a defining system of seminorms for V . The locally convex topology on
S•(V ) induced by the set of seminorms

(

pR′,c
)

p∈P, c≥0 is called the R′-topology. We

write S•
R′(V ) for S•(V ) equipped with the R′-topology. It is independent of the chosen

defining system of seminorms and thus intrinsic to V . However, it depends on R′ in a
very sensitive way. We note the obvious inequalities

pR′,c ≤ pS′,c and pR′,c ≤ pR′,d and pR′,c ≤ qR′,c, (3.2)

whenever R′ ≤ S′, 0 ≤ c ≤ d and p ≤ q. This implies that the inclusion (in fact
equality)

S•
S′(V ) ⊆ S•

R′(V ) (3.3)

is continuous. Thus it extends to a continuous inclusion for the completions.
In [55], all continuous seminorms were chosen. In this case, there is no need for the

parameter c ≥ 0 as with p also cp is continuous. Nevertheless, a smaller collection is
sometimes convenient: Let V = g be the Lie algebra of a Lie group G. In the sequel
we will always choose a basis of g and equip it with the corresponding �1-topology.
This then induces an R′-topology on S•(g) via P = {‖ · ‖1}, i.e. the system consists
of a single norm. Note, however, that the topology for S•

R′(g) is not at all normable. In
general, we also note

(

λ · p)R′,c = pR′,λc (3.4)

for all c ≥ 0, λ ≥ 0 and R′ ∈ R. Another consequence of having all polynomial
weights at our disposal is that instead of the �1-like seminorms (3.1) we could have
used the �∞-like seminorms

pR′,c,∞ : S•(V ) −→ R
+
0 , pR′,c,∞ = sup

k∈N0

k!R′
ck pk(vk) (3.5)
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with c ≥ 0. The mutual estimates between them show that the resulting locally convex
topology stays the same, see [55, Lem. 3.4]. We collect a few less obvious properties
of the R′-topology from [55]:

Proposition 3.1 Let V be a locally convex vector space with defining system of semi-
norms P and R′ ∈ R.

(i) Let k ≥ 0. The subspace topology induced by the inclusion Sk(V ) ⊂ S•(V ) is
the projective tensor power topology and the inclusion is continuous.

(ii) The R′-topology is coarser than the locally convex direct sum topology.
(iii) The R′-topology is finer than the subspace topology induced by the Cartesian

product topology.
(iv) The locally convex space S•

R′(V ) is Hausdorff iff V is Hausdorff.
(v) The locally convex space S•

R′(V ) is first countable iff V is first countable.
(vi) Let R′ ≥ 0. The locally convex space S•

R′(V ) is nuclear iff V is nuclear.

(vii) The completion Ŝ•
R′(V ) of S•

R′(V ) is explicitly given by

Ŝ•
R′(V ) =

{

v ∈
∞
∏

k=0

Ŝk(V )

∣

∣

∣

∣

pR′,c(v) < ∞ for all c ≥ 0 and p ∈ P

}

, (3.6)

where Ŝk(V ) denotes the completion of Sk(V ) with respect to the projective
tensor product topology.

(viii) Let R′ ≥ 0 and V be nuclear, Hausdorff as well as first countable. Then the
completion Ŝ•

R′(V ) is nuclear Fréchet, Montel, separable, and reflexive.

Proof All statements except for the last one havebeenobtained in [55]. The earlier parts
of our theorem guarantee that nuclearity, the Hausdorff property and first countability
get inherited by S•

R′(V ). Moreover, everything passes to the completion Ŝ•
R′(V ), as

well (see [54, (50.3)] for the nuclearity). By [54, Prop. 50.2] every nuclear Fréchet
space is Montel. Nuclear Montel spaces are separable by [29, Section 11.6, Thm. 2]
and by [54, Cor. 36.9] every Montel space is reflexive. �


From [55] we also get the following continuity statements for the symmetric tensor
product:

Proposition 3.2 Let V be a locally convex vector space, c ≥ 0 and R′ ∈ R.

(i) The symmetric tensor product

∨: S•
R′(V ) × S•

R′(V ) −→ S•
R′(V ) (3.7)

is continuous. More precisely, for R′ ≥ 0 we have

pR′,c(v ∨ w) ≤ pR′,2R′c(v) · pR′,2R′c(w) (3.8)

for all v,w ∈ S•(V ) and the seminorms pR′,c are submultiplicative for R
′ ≤ 0.
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(ii) Let R′ ≥ 0. For ϕ ∈ V ′ the evaluation functionals

δϕ : S•
R′(V ) −→ C, δϕ(v) =

∞
∑

k=0

ϕk(vk) (3.9)

are continuous algebra characters.
(iii) Let R′ < 0 and ϕ ∈ V ∗ with continuous δϕ as in (3.9). Then we have ϕ = 0.

Proof The only new statement is (iii): let R′ < 0 and ϕ ∈ V ∗ with continuous δϕ , i.e.
we find a continuous seminorm p on V and c ≥ 0 such that we have

∣

∣

∣

∣

∣

∞
∑

k=0

ϕk(vk)

∣

∣

∣

∣

∣

= ∣

∣δϕ(v)
∣

∣ ≤ pR′,c(v) =
∞
∑

k=0

k!R′
ck pk(vk) (∗)

for all v ∈ V . Assume that we had ϕ �= 0. Then there exists a v ∈ V with ϕ(v) �= 0.
Consider now v⊗n ∈ Tn(V ) for all n ∈ N. Then (∗) implies

|ϕ(v)|n =
∣

∣

∣

∣

∣

∞
∑

k=0

ϕk(v⊗n)

∣

∣

∣

∣

∣

≤ pR′,c
(

v⊗n) = n!R′ · cn · pn(v⊗n) = n!R′ · cn · p(v)n

for all n ∈ N. However, this inequality is absurd: factorial growth in n can not be

estimated by the fixed base
(

c·p(v)
|ϕ(v)|

)−(R′−1)

to the power of n. �


4 The R-entire functions

The purpose of this section is to introduce and study Fréchet subalgebras ER(G) ⊆
C∞(G) depending on another parameter R ∈ R. These Fréchet algebras will ulti-
mately serve as the other tensor factors in the observable algebra for our strict
deformation.While in the critical borderline case R = 0 the algebra E0(G) can be seen
as a Lie–theoretic descendent of the algebra of all holomorphic entire functions, the
algebras ER(G) for R > 0 share many properties with the classical and well studied
Fréchet algebras of entire holomorphic functions of finite order and minimal type.

In this section G denotes always a real Lie group with corresponding Lie algebra
g of dimension n ∈ N. We furthermore assume that the Lie group G is connected. As
it is standard, we denote for an open set U ⊆ C

n the set of all holomorphic functions
F : U −→ C by H(U ).

4.1 Lie-Taylor series of smooth functions on a Lie group

Taking another look at (2.8) and (3.6), we anticipate certain power series of Lie deriva-
tives LXξ for ξ ∈ g to make an appearance, since the completion Ŝ•

R′(g) of S•
R′(g)

contains already non-trivial (though not all) entire functions, when interpreting the
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elements of the completion as maps on g∗. Thus we need to find a space of functions
on G on which all elements of Ŝ•

R′(g) act and which is preserved by this action.
Formalizing this idea, it turns out that the functionswe are looking for are exactly the

“entire vectors” for suitably chosen seminorms on C∞(G) and the lifted Lie algebra
representation

L : UC(g) −→ End
(

C∞(G)
)

, L (ξ1 · · · ξk) = LXξ1
· · ·LXξk

. (4.1)

Here U(g) denotes the universal enveloping algebra of the Lie algebra g, as before.
To make the notion of an “entire vector” precise, we introduce some more notation.

Let Nn = {1, . . . , n} and α = (α1, . . . , αk) ∈ N
k
n be an ordered k-tuple. For a fixed

basis B = (e1, . . . , en) of the Lie algebra g, we then write

LXα = LXα1
· · ·LXαk

, (4.2)

where we once again use the convention (2.1). Finally, we also use the shorthand
notation

z
α

= zα1 · · · zαk for z = (z1, . . . , zn) ∈ C
n . (4.3)

Definition 4.1 (Lie-Taylor series and majorants)
Let φ ∈ C∞(G) be a smooth function and let B = (e1, . . . , en) be a basis of the

Lie algebra g.

(i) We call the formal series

Tφ : G −→ C�z�, Tφ(z; g) =
∞
∑

k=0

1

k!
∑

α∈N
k
n

(

LXαφ
)

(g) · z
α

(4.4)

the Lie-Taylor series of φ at the point g ∈ G (w.r.t. the basis B).
(ii) Using the coefficients

ck(φ) = 1

k!
∑

α∈N
k
n

∣

∣

(

LXαφ
)

(e)
∣

∣ (4.5)

we define the Lie-Taylor majorant of φ (w.r.t. the basis B) as

Fφ(z) =
∞
∑

k=0

ck(φ) · zk ∈ C�z�. (4.6)

Remark 4.2 (Lie-Taylor majorants)
Let φ ∈ C∞(G) be a smooth function.
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(i) The Lie-Taylor majorant Fφ(‖z‖∞) is a majorant of Tφ(z; e), i.e.
∣

∣Tφ(z; e)∣∣ ≤ Fφ

(‖z‖∞
)

(4.7)

for all z ∈ C
n . In particular, if Fφ ∈ H(Br (0)), i.e. Fφ is holomorphic on the open

disk Br (0) = {z ∈ C
∣

∣ |z| < r}, then Tφ( · ; e) is holomorphic on the polydisk
Br (0)n ⊆ C

n .
(ii) The coefficients ck(φ) and hence Fφ depend on the choice of the basis B, so one

should tend to write ck,B(φ) instead. However, if B′ is another basis of g, then it
is easy to see that there is a constant M = M(B,B′) > 0 such that

ck,B′(φ) ≤ Mk · ck,B(φ) (4.8)

for all k ∈ N0 and φ ∈ C∞(G). In particular, if Fφ ∈ H(C) w.r.t. some basis of g,
then Fφ ∈ H(C) w.r.t. any basis. The upshot is that whenever we are dealing with
entire Lie-Taylor majorants or only care about analyticity with no specific radius
of convergence, we can safely ignore the specific choice of the basis of g.

The following simple observations will prove very useful:

Proposition 4.3 (Leibniz and chain rule)
Let φ ∈ C∞(G) and z ∈ C.

(i) Let ψ ∈ C∞(G) be another smooth function. We have the Leibniz inequality

∣

∣Fφ·ψ(z)
∣

∣ ≤ Fφ

( |z| ) · Fψ

( |z| ). (4.9)

(ii) Let � : G −→ H be a morphism of Lie groups. Then

ck
(

�∗φ
) ≤ (Dn)k · ck(φ) (4.10)

and
∣

∣F�∗φ(z)
∣

∣ ≤ Fφ

(

Dn · |z| ), (4.11)

where D is the matrix supnorm of the matrix representation of the tangent map
Te� : g −→ h in the bases used for the construction of the Taylor majorants.

Proof The Leibniz rule (i) is an easy consequence of the noncommutative higher
Leibniz rule (B.1), the Cauchy product formula and the triangle inequality. For (ii)
recall that for ξ ∈ g, the left invariant vector fields XG

ξ and XH
TeG �ξ are �-related.

This implies for the corresponding Lie derivatives

LXG
ξ

(

�∗φ
) = �∗(LXH

Te�ξ
φ
)

.

As in the formulation, we set

D = max
i, j=1,...,n

∣

∣

∣(Te�)
j
i

∣

∣

∣ ,
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where we take matrix representation (Te�)
j
i = d j

i of Te� : g −→ h with respect to
the chosen bases. Thus we obtain for k ∈ N0

ck
(

�∗φ
) = 1

k!
∑

α∈N
k
n

∣

∣

∣

(

L G
Xα

�∗φ
)

(e)
∣

∣

∣

= 1

k!
∑

α∈N
k
n

∣

∣

∣

∣

�∗(LXH
Te�(eα1 )

· · ·LXH
Te�(eαk )

φ
)

∣

∣

∣

e

∣

∣

∣

∣

= 1

k!
∑

α∈N
k
n

∣

∣

∣

∣

d j1
α1

· · · d jk
αk

(

LXH
j1

· · ·LXH
jk
φ
)

∣

∣

∣

�(e)

∣

∣

∣

∣

≤ (Dn)k

k!
∑

β∈N
k
n

∣

∣

∣

(

L H
Xβ

φ
)

(e)
∣

∣

∣

= (Dn)kck(φ),

where we wrote β = ( j1, . . . , jk). This implies (4.11) at once. �

To understand the representation (4.1) it is essential to estimate the Lie-Taylor

majorant of Lie-derivatives LXξ φ in terms of the formal “complex” derivative

F′
φ(z) =

∞
∑

k=0

(k + 1)ck+1(φ) · zk (4.12)

of the Lie-Taylor majorant Fφ of φ. Such an estimate is provided by the following
result. Here and in what follows we slightly abuse notation and denote by ‖ξ‖∞ the
supnorm of the coordinate vector (ξ1, . . . , ξn) ∈ C

n of ξ ∈ g w.r.t. the basis B.

Proposition 4.4 Let ξ ∈ g, k ∈ N0, φ ∈ C∞(G) and z ∈ C. We have the estimates

ck
(

LXξ φ
) ≤ ‖ξ‖∞ · (k + 1)ck+1(φ) (4.13)

and
∣

∣

∣FLXξ
φ(z)

∣

∣

∣ ≤ ‖ξ‖∞ · F′
φ

( |z| ). (4.14)

Proof The estimate (4.13) is just

ck
(

LXξ φ
) = 1

k!
∑

α∈N
k
n

∣

∣

(

LXαLXξ φ
)

(e)
∣

∣

≤ ‖ξ‖∞
k!

∑

α∈N
k+1
n

∣

∣

(

LXαφ
)

(e)
∣

∣ ≤ ‖ξ‖∞ · (k + 1)ck+1(φ),

from which (4.14) follows at once via (4.12). �
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We now shift our focus to the setC ω(G) of (real) analytic functions on G. Here we
can say more and warrant our terminology from Definition 4.1. For a more conceptual
understanding, we recall the classical concept of Lie-Taylor series, which can be found
e.g. in the beginning of [27, Sec. 2.1.4] for Lie groups and [21, (1.48)] for arbitrary
analytic manifolds:

Proposition 4.5 (Lie-Taylor)
Let M be an analytic manifold, φ ∈ C ω(M) and X ∈ �ω(M) an analytic vector

field with corresponding flow �.

(i) Given p ∈ M, there exists a parameter r > 0 such that the Lie-Taylor formula

φ
(

�(t, p)
) = (

exp(tLX )φ
)

(p) (4.15)

holds, whenever |t | < r .
(ii) The series (4.15) is C∞(

Br (0)
)

-convergent in the parameter t .
(iii) Given a Lie algebra element ξ ∈ g, we get a well-defined exponential operator

exp
(

LXξ

) : C ω(G) −→ C ω(G). (4.16)

Proof We first compute how powers ofLX act on φ. To this end, we rewrite

LXφ

∣

∣

∣

�(t,p)
= d

ds
�

(

s,�(t, p)
)∗

φ

∣

∣

∣

s=0
= d

ds
�(s + t, p)∗φ

∣

∣

∣

s=0
= d

dt
φ
(

�(t, p)
)

,

which we can now iterate easily. This yields

L k
Xφ

∣

∣

∣

�(t,p)
= dk

dtk
φ
(

�(t, p)
)

(4.17)

for all k ∈ N0. Note that these considerations also work for smooth functions. The
case X(p) = 0 is special, so we deal with it first: then LXφ = X(p)φ = 0 and thus
the right hand side of (4.19) reduces to the constant term, which is just φ(p). From
the differential equation it is moreover clear that �(t, p) ≡ p in this case, so the left
hand side matches. Thus the interesting case X(p) �= 0 remains. Here we finally use
the analyticity to obtain a chart (U , x) of M centered at p such that the function

ψ : x(U ) −→ K, ψ = φ ◦ x

is givenby its power series around0onall of x(U ) ⊆ K
n aswell as x−1(te1) = �(t, p)

for t with te1 ∈ x(U ). The latter condition is achievable by [21, Lem. 1.9.2], which
yields an analytic chart if we go through its construction starting with an analytic chart

as well as using an analytic vector field: having a chart with X
∣

∣

∣

U
= ∂1 then gives the

differential equation

d

dt
�(t, p) = ∂

∂x1
(

�(t, p)
)

,
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which applied to a function on U gets solved by �(t, p) = x−1(te1). Note that the
left hand side acts by pullback here. Thus by uniqueness of solutions our condition
indeed holds. Let now

(

e1, . . . , en
)

be a basis of K
n . As x(U ) is open, we find an

r > 0 with Br (0) ⊆ x(U ) for some auxiliary norm on K
n . For |t | < r we have the

simple Taylor expansion

ψ(te1) =
∞
∑

k=0

tk

k!
(

∂k1ψ
)

(0)

=
∞
∑

k=0

tk

k!
dk

dsk
φ
(

x(sei )
)

∣

∣

∣

s=0

=
∞
∑

k=0

tk

k!
dk

dsk
φ
(

�(s, p)
)

∣

∣

∣

s=0

=
∞
∑

k=0

tk

k!L
k
Xφ

∣

∣

∣

�(0,p)

=
∞
∑

k=0

tk

k!L
k
Xφ

∣

∣

∣

p
,

which is exactly (4.15). This calculation gives also the uniform convergence statement:
the kth partial sum on the right hand side of (4.15) exactly corresponds to the kth
partial sum of the classical Taylor series. As the Taylor series is C∞-convergent in the
interior of the polydisk of convergence, so is (4.15) in t . The statement (iii) follows
immediately from reading (4.15) backwards. �


Taking M = G as a Lie group and X = Xξ as a left invariant vector field for some
ξ ∈ g gives the flow �(t, g) = g exp(tξ), which notably also yields a suitable chart
centered at g, as we just used in the proof. The Lie-Taylor series then has the form

(

φ ◦ rexp(tξ)

)

(g) = φ
(

g exp(tξ)
) = (

exp(tLXξ )φ
)

(g) (4.18)

for all g ∈ G and sufficiently small t ∈ R. It moreover coincides with the Taylor series
of φ ◦ �g ◦ exp on the ray through 0 in direction of ξ . Taking now ξ = x j e j as a basis
decomposition yields the following:

Corollary 4.6 (Lie-Taylor series on G) Let φ ∈ C ω(G) and g ∈ G. Then there is a
radius r > 0 such that

φ
(

g exp(x j e j )
) = Tφ(x; g) (4.19)

for all x = (x1, . . . , xn) ∈ R
n with ‖x‖∞ < r . The right hand side of (4.19) is

C∞-convergent, whenever it converges at all. In particular, if the Lie-Taylor majorant
Fφ of φ is an entire holomorphic function, then

R
n −→ C, x �→ φ

(

g exp(x j e j )
)

(4.20)
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has a holomorphic extension toC
n, which is provided by the Lie-Taylor seriesTφ( · ; g)

of φ at g.

The next result has a similar flavor as Proposition 4.4 and roughly ensures that
the concept of Lie-Taylor majorants is also compatible with the exponentiated action
(4.16) of G on C∞(G) by pullbacks with right multiplications rg(h) = hg.

Proposition 4.7 Let ξ ∈ g, φ ∈ C ω(G) and z ∈ C. Then

∣

∣Fφ◦rexp(ξ)
(z)

∣

∣ ≤ Fφ

( |z| + ‖ξ‖∞
)

. (4.21)

Proof Using (4.18) and applying (4.13) repeatedly yields

ck
(

φ ◦ rexp ξ

) = ck
(

exp(LXξ )φ
) ≤

∞
∑

�=0

1

�!ck
(

L �
Xξ

φ
) ≤

∞
∑

�=0

(k + �)!
k! �! ck+�(φ)‖ξ‖�∞.

Consequently,

∣

∣Fφ◦rexp ξ (z)
∣

∣ ≤
∞
∑

k=0

ck
(

φ ◦ rexp ξ

) · |z|k

≤
∞
∑

�=0

‖ξ‖�∞
�!

∞
∑

k=0

(k + �)!
k! ck+�(φ) · |z|k

=
∞
∑

�=0

‖ξ‖�∞
�! F(�)

φ

( |z| )

(�)= Fφ

( |z| + ‖ξ‖∞
)

,

provided that Fφ(|z|+‖ξ‖∞) < ∞. In fact, in this case Fφ is holomorphic on the disk
B|z|+‖ξ‖∞(0), so we can expand Fφ as a Taylor series around |z| in the disk B‖ξ‖∞(|z|),
at least. This proves (�) with ‖ξ‖∞ replaced by r‖ξ‖∞ for any 0 < r < 1. Letting
r → 1 gives (�). If Fφ

( |z| + ‖ξ‖∞
) = ∞, then the estimate is certainly true. �


Intuitively, (4.21) lets us estimate Taylor expansions of analytic functions with
perturbed expansion point on the group by perturbing the expansion point on the Lie
algebra.

Lemma 4.8 (Inversion invariance of Lie-Taylor majorants)
Let inv : G −→ G denote group inversion on G. Then Fφ◦inv = Fφ for all φ ∈

C∞(G).

Proof This is immediate from

LXξ (φ ◦ inv)
∣

∣

∣

e
= d

dt

(

φ ◦ inv
)

(e · exp(tξ))

∣

∣

∣

t=0
= d

dt
φ
(

exp(−tξ)
)

∣

∣

∣

t=0
= −LXξ φ

∣

∣

∣

e

for ξ ∈ g by definition of the Lie derivative. �
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Corollary 4.9 There is a locally constant function

γ : G −→ [0,∞)

such that for any φ ∈ C ω(G) and any z ∈ C
n the Lie-Taylor majorant Fφ(‖z‖∞ +

γ (g)) is a majorant for the Lie-Taylor series Tφ(z; g) of φ at g evaluated at z ∈ C
n

and hence

∣

∣Tφ(z; g)∣∣ ≤ Fφ

(‖z‖∞ + γ (g)
)

. (4.22)

Proof We denote left multiplication with g by �g , as usual. The left invariance of Xξ

gives LXξ ◦ �∗
g = �∗

g ◦ LXξ . Applying this to a function φ and evaluating at e ∈ G
gives

Tφ(z; g) = Tφ◦�g (z; e). (∗)

Now φ ◦ �g = φ ◦ inv ◦ rg−1 ◦ inv, so Proposition 4.8 implies

Fφ◦�g (z) = Fφ◦inv◦rg−1 (z).

We now choose ξ1, . . . , ξm ∈ g with ‖ξ j‖∞ ≤ 1 and g−1 = exp(ξ1) · · · exp(ξm).
By openness of the Lie exponential the integer m can be chosen in a locally constant
manner, i.e. there is an open neighbourhoodU of g−1 s.t. each h ∈ U can be written as
a product of m exponentials. Then applying Proposition 4.7 m-times and once again
Proposition 4.8 yields

∣

∣Fφ◦�g (z)
∣

∣ =
∣

∣

∣Fφ◦inv◦rg−1 (z)
∣

∣

∣ ≤ Fφ◦inv
( |z| + m

) = Fφ

( |z| + m
)

.

Combining this with (∗) and (4.7) completes the proof. �


4.2 Entire functions on G

In this subsection we first focus on the case R = 0 and introduce the pendant E0(G)

of the optimal case from the strict deformation [17, Prop. 3.2, (ii)], i.e. S•
R′(g) with

R′ = 1. In a second step, we then introduce the algebras ER(G) for R > 0. There are
several reasons for this two–step approach. Firstly, our methods in the case R = 0
seem completely natural and do not call for any specific motivation. Secondly, it
puts us in a position to reintroduce the classical notion of an entire vector for the
lifted Lie algebra representation (4.1). While our approach to this notion is novel, the
locally convex space we are about to consider is not. We will make this and its history
precise in Remark 4.16. Thirdly, the construction for the case R = 0 provides a solid
motivation for the cases R > 0, since it makes clear that we need to identify locally
convex algebras of entire functions with controlled growth, whose topology is finer
than that of locally uniform convergence, but which still are invariant with respect to
differentiation and translation in the argument.
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Definition 4.10 (Entire functions on G) An analytic function φ ∈ C ω(G) is called an
entire function on G if its Lie-Taylor majorant Fφ ∈ H(C) is entire. By

E0(G) = {

φ ∈ C ω(G)
∣

∣ Fφ ∈ H(C)
}

(4.23)

we denote the set of all entire functions on G.

In particular, each element of E0(G) is analytic by definition, so it does have a local
Lie-Taylor series representation by Corollary 4.6. Hence by connectedness of G it
follows that

φ = 0 ⇐⇒ Fφ = 0. (4.24)

Recall that the C-vector space H(C) carries a canonical topology, namely the
compact-open topology (or topology of locally uniform convergence). This locally
convex topology can be induced by the family of norms

‖F‖0,c = max|z|≤c
|F(z)| , (4.25)

and is metrizable in a translation-invariant manner by

d(F,G) = d(F − G, 0) =
∞
∑

j=1

1

2 j

‖F − G‖0, j
1 + ‖F − G‖0, j

for F,G ∈ H(C). It is well-known that (H(C), d) is then a multiplicatively convex
(commutative) nuclear Fréchet algebra w.r.t. pointwise multiplication. We are thus
naturally led to define a metric d0 on the vector space E0(G) by

d0(φ,ψ) = d(Fφ−ψ, 0) (4.26)

for φ,ψ ∈ E0(G). An associated family of seminorms is given by

q0,c(φ) = ‖Fφ‖0,c = max|z|≤c

∣

∣Fφ(z)
∣

∣ = Fφ(c)

=
∞
∑

k=0

ck(φ) ck =
∞
∑

k=0

ck

k!
∑

α∈N
k
n

∣

∣

(

LXαφ
)

(e)
∣

∣ (4.27)

with c > 0. Note that (4.24) ensures that each q0,c : E0(G) −→ R is in fact a norm on
E0(G). By the Leibniz inequality from Proposition 4.3, (i), the norms (4.27) are sub-
multiplicative. In particular, (E0(G), d0) is a locally multiplicatively convex algebra
w.r.t. to pointwise multiplication.

We now introduce the family of subspaces ER(G), R > 0, of the algebra E0(G) of
all entire functions on G, which will serve as the other tensor factors in the observable
algebra. The idea is to restrict the Lie-Taylor majorants Fφ ∈ H(C) to holomorphic
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entire functions of fixed finite order and minimal type. The intimate reason for this
choice is that these functions and thus their Taylor coefficients do have controlled
growth and they form a particularly well-studied subalgebra of E0(G) with the added
feature of being invariant w.r.t. to differentiation and translation, i.e. both the Lie
algebra and the Lie group representations. This puts us in a position to make use of
Propositions 4.4 and 4.7 andwill directly lead us to faithful analogues of those algebras
on the Lie group G. Recall that for any ρ > 0 a function F ∈ H(C) is said to have
finite order ≤ ρ and minimal type if

sup
z∈C

|F(z)| exp ( − ε |z|ρ )

< ∞ (4.28)

for every ε > 0.We denote the set of all such functions byHρ(C). Note that for ρ ≤ 1
we are speaking of entire functions of exponential type zero.

Definition 4.11 (R-entire functions) Let R > 0. A function φ ∈ C ω(G) is called an
R-entire function if Fφ ∈ H(C) has finite order ≤ 1

R and minimal type. We denote
the set of all R-entire functions by ER(G).

Unwrapping the definition, we thus have

φ ∈ ER(G) ⇐⇒ ∀ε>0 ‖φ‖R,ε = sup
z∈C

∣

∣Fφ(z)
∣

∣ exp
( − ε |z|1/R )

< ∞. (4.29)

Remark 4.12 (i) Clearly, each of the sets ER(G) is a unital subalgebra of E0(G) and
we have the inclusions

ER(G) ⊆ ES(G), (4.30)

whenever S ≤ R.
(ii) Let φ ∈ ER(G) for some R > 0. Then the Lie-Taylor series Tφ( · ; e) of φ is an

entire holomorphic function on C
n of order ≤ 1

R and minimal type. We denote the
set of such functions by H1/R(C) and equip it with the family of norms (4.29).
For a general treatment we refer e.g. to the textbook [35].

It is well-known (see e.g. [36, Prop. 4.2]) thatHρ(C) equipped with the family of
norms (4.28) is a nuclear Fréchet space. It follows at once from (4.29) that for ε > 0

‖φ · ψ‖R,ε ≤ ‖φ‖R,ε/2 · ‖ψ‖R,ε/2, (4.31)

so (ER(G), dR) is a locally convex commutative algebraw.r.t. pointwisemultiplication.
Note, however, that ER(G) is not multiplicatively convex as soon as R > 0. In fact, it
can be easily shown that ER(G) has no entire holomorphic functional calculus.

It will turn out convenient to introduce an equivalent family of (semi)norms on
ER(G). As in the classical case of entire holomorphic functions of finite order this is
achieved by relating the order of an analytic function φ ∈ C ω(G) to the growth of its
Taylor coefficients:
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Definition 4.13 (R-Lie-Taylor majorant) Let R ≥ 0 and φ ∈ C∞(G). Then we call

FR,φ(z) =
∞
∑

k=0

k!Rck(φ) · zk =
∞
∑

k=0

k!R−1
∑

α∈N
k
n

∣

∣

(

LXαφ
)

(e)
∣

∣ zk (4.32)

the R-Lie-Taylor majorant of φ and define for any c ≥ 0

qR,c(φ) = FR,φ(c) =
∞
∑

k=0

k!R · ck(φ) · ck =
∞
∑

k=0

k!R−1
∑

α∈N
k
n

∣

∣

(

LXαφ
)

(e)
∣

∣ ck .

(4.33)

The following elementary result tells us that for a function φ ∈ C ω(G)membership
in ER(G) can be checked using the R-Lie-Taylor majorant FR,φ and the seminorms
qR,c:

φ ∈ ER(G) ⇐⇒ FR,φ ∈ H(C) ⇐⇒ ∀c>0 qR,c(φ) < ∞, (4.34)

and also that

dR(φn, φ) → 0 ⇐⇒ FR,φn−φ → 0 in H(C). (4.35)

Remark 4.14 It seems (and perhaps is) over the top to introduce two different notions,
the seminorms qR,c and the R-Lie-Taylor majorant FR,φ , for essentially the same
object, namely FR,φ(c) = qR,c(φ). However, it emphasizes that qR,c(φ) simply is a
holomorphic function of one complex variable c, and this point of view brings along
some useful tools such as the Cauchy integral formula.

Proposition 4.15 Let φ,ψ ∈ C∞(G). Then

(i) for any R > 0 and ε > 0,

‖φ‖R,ε ≤ qR,(R/ε)R (φ); (4.36)

(ii) for any R > 0, c > 0 and ε > 0 such that c · ( eε
R

)R
< 1,

qR,c(φ) ≤ ‖φ‖R,ε

1 − c · ( eεR )R
; (4.37)

(iii) for any R ≥ 0 and c > 0

qR,c(φ · ψ) ≤ qR,2Rc(φ) · qR,2Rc(ψ). (4.38)

Moreover, naive extension of (4.33) to R < 0 yields submultiplicative seminorms
qR,c.
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(iv) for any R ≥ 0, ξ ∈ g and z ∈ C

∣

∣FR,φ◦rexp ξ (z)
∣

∣ ≤ FR,φ

( |z| + ‖ξ‖∞
)

(4.39)

and

∣

∣

∣FR,LXξ
φ(z)

∣

∣

∣ ≤ ‖ξ‖∞ · F′
R,φ

( |z| ). (4.40)

Proof The proofs of (i) and (ii) are standard and will not be given here. For (iii) we
recall ck(φ · ψ) ≤ ck(φ) · ck(ψ) by the Leibniz inequality in Proposition 4.3, (i).
Hence

qR,c(φ · ψ) ≤
∞
∑

k=0

k!R
k

∑

j=0

c j (φ)c j ck− j (ψ)ck− j

=
∞
∑

k=0

(

k

j

)R k
∑

j=0

j !Rc j (φ)c j · (k − j)!Rck− j (ψ)ck− j

≤
∞
∑

k=0

2kR
k

∑

j=0

j !Rc j (φ)c j (k − j)!Rck− j (ψ)ck− j

= qR,2Rc(φ) · qR,2Rc(ψ),

using the rather crude estimate
(k
j

) ≤ 2k resp. the Cauchy product formula in the last
two steps. Going through our computation for R < 0, one can be even cruder and
estimate the binomial to the power of R by 1. The proof of (iv) is identical to the ones
of Propositions 4.4 and 4.7 and will not be repeated here. The reader will notice that
it does rely on R ≥ 0, though. �


We are thus naturally led to equip the vector space ER(G) with the family of semi-
norms (4.29) and the corresponding metric

dR(φ,ψ) = d0
(

FR,φ−ψ, 0
) =

∞
∑

j=1

1

2 j

qR, j (φ − ψ)

1 + qR,c(φ − ψ)
. (4.41)

Notably, the inclusions (4.30) are then continuous. Before we take a closer look
at the somewhat deeper properties of the locally convex algebras ER(G), we take
a detour to relate our considerations to classical notions from infinite-dimensional
representation theory.

Remark 4.16 (Representation theory)
In the literature, [23, Sec. 2] was the first to consider the Fréchet space of entire

vectors for Lie algebra representations on Banach spaces B induced by strongly con-
tinuous Lie group representations π : G −→ L(B). Recall that a vector v ∈ B is
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called C k-vector for π if the maps

πv : G −→ B, πv(g) = π(g)v (4.42)

are C k-functions with values in B, where k ∈ N0 ∪ {∞, ω}. By sequential com-
pleteness of the Banach space B one can indeed define differentiability by means of
differential quotients. One writes C k(π) ⊆ B for the set of all C k-vectors for the
representation π . The assumed strong continuity of the representation π then just
means that C (π) = C 0(G) = B. Note that doing things in this pointwise fashion
corresponds to considering all limits in the weak topology of L(B). In this context,
the natural question is about density of the spaces C k(G) as subspaces of C (G). For
a quite nice, albeit dated discussion, we refer to [39]. Some more modern discourses
can be found in the textbooks [49, Chap. 10] and [53, Appendix D].

In fact, it is often necessary to go beyond the Banach space scenario and include
more general locally convex spaces like e.g. Fréchet spaces as representation spaces
as well.

Passing to the infinitesimal situation, we differentiate and obtain a Lie algebra
representation Tπ of not necessarily continuous linear operators Tπξ , each defined
on some subspace of the representation space. By the classical [22] they share a
common dense invariant domain, the so-called Gårding space G (π) ⊆ C∞(π). For
Fréchet spaces, the seminal work [14] proved the equality G (π) = C∞(π).

Analytic vectors aremore complicated. By [40, Sec. 3] a smooth vector v ∈ C∞(π)

is analytic if and only if the formal exponential exp(Tπξ)v converges for all ξ in
some neighbourhood of 0 ∈ g. Reference [23] turned this into a seminorm condition
and obtained families of Fréchet spaces Ht (π) this way: demanding convergence
for ξ ∈ Bt (0) ⊆ g prescribes a uniform radius of convergence for exp(Tπξ)v. Of
particular interest are then the union over t = 1

n and the intersection over t = n
with n ∈ Z: the former endows the space of analytic vectors with the structure of a
locally convex inductive limit, the latter is Fréchet again as the countable intersection
of Fréchet spaces. For obvious reasons, [23] calls this intersection entire vectors and
so shall we. Note that there is no need to start with a Lie group representation at all: all
notions make sense for Lie algebra representations from the start. The natural question
is then, when such a representation can be integrated. Some answers can be found in
[20, 38] and the much more recent developments [11, 49, 50].

The action we are interested in is the translation action of the group G by means of
pullbacks

�∗•, r∗• : G −→ L
(

C (G)
)

(4.43)

by left and right multiplications, which is surprisingly ill-behaved. Note that the space
of continuous functions C (G) is not Banach with respect to its usual topology of
locally uniform convergence in general, but a Fréchet space. It is straightforward to
generalize the notions of C k-vectors of a group representation into this more general
setting. These more general cases were studied e.g. in [33, 37]. However, most of
the useful techniques break down, unless the set π(G) is an equicontinuous family of
operators. Most importantly, the utilization of (Riemann or Bochner) integral methods
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require this assumption. Notably, the translation actions (4.43) are not equicontinuous
at all: there is no compact subset of G that contains all compact subsets, unless the
group is compact itself. Remarkably, we will be able to reproduce most of the pleasant
results for our particular situation regardless.

Our Taylor formula (4.18) implies that each φ ∈ E0(G) is an entire vector with
respect to the representation r∗• . Or differently put, the lifted Lie algebra representation
(4.1) exponentiates to the Lie group representation r∗• . Our Definition 4.10 is thus the
appropriate infinitesimal version of entire vectors in our locally convex situation.
This matches with a straightforward reformulation of the textbook definitions [49,
Def. 10.3.1 and 10.3.2] in the following sense: We consider the lifted Lie algebra
representation (4.1) and equip C (G) with the continuous seminorm |δe| given by the
absolute value of the Dirac functional at the group unit

δe : C (G) −→ C, δe(φ) = φ(e). (4.44)

While this is not the natural topology of C (G) at all, this is the useful choice for
estimation and to generate examples later on. By the upcoming Theorem 4.17, (vi),
this choice leads to the same locally convex spaceE0(G) as the natural one a posteriori.
This also identifies E0(G) as the space of entire vectors for the group representations
(4.43) in the sense of [23].

With this incomplete discussion in mind, we can show the following:

Theorem 4.17 (Representation theory) Let G be a connected Lie group and let R ≥ 0.

(i) Group inversion inv : G −→ G induces an isometry of (ER(G), dR), that is, φ ◦
inv ∈ ER(G) and

dR(φ ◦ inv, ψ ◦ inv) = dR(φ,ψ) (4.45)

for all φ,ψ ∈ ER(G).
(ii) Pullbacks with left and right translations yield representations

�∗•, r∗• : G −→ L
(

ER(G)
)

(4.46)

by continuous linear maps.
(iii) The space ER(G) of entire functions is invariant under the lifted Lie algebra rep-

resentation (4.1) by continuous maps. More precisely, we have the estimate

qR,c

(

LXξ φ
) ≤ qR,c+1(φ) · ‖ξ‖∞ (4.47)

for c ≥ 0, ξ ∈ g and φ ∈ ER(G).
(iv) The Lie-Taylor seriesTφ( · ; z) is absolutely convergent in ER(G) for every z ∈ C

n.
Thus every entire function φ ∈ ER(G) is an entire vector for the translation
representations (4.46), which are in particular strongly continuous.
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(v) The ER(G)-topology is finer than the C∞-topology. In particular, the evaluation
functionals

δg,α : ER(G) −→ C, δg(φ) = (

LXαφ
)

(g) (4.48)

are continuous linear maps for g ∈ G and α ∈ N
k
n.

(vi) The alternative seminorms

rR,c(φ) =
∞
∑

k=0

k!R c
k

k!
∑

α∈N
k
n

sup
g∈K

∣

∣

(

LXαφ
)

(g)
∣

∣ (4.49)

with c ≥ 0 and compact K ⊆ G are well-defined on ER(G) and constitute a
defining system for the ER-topology. Thus E0(G) is the space of entire vectors for
the representation (4.43) if we equip C (G) with its canonical topology.

Proof The statement (i) is just Lemma 4.8 again. For (ii) we consider g =
exp(ξ1) · · · exp(ξm) with ξ1, . . . , ξm ∈ g s.t. ‖ξ j‖∞ ≤ 1. Applying Proposition 4.15,
(iv), m-times we obtain

∣

∣FR,φ◦rg (z)
∣

∣ ≤ FR,φ

( |z| + m
)

for z ∈ C. This proves

qR,c(φ ◦ rg) ≤ qR,c+m(φ)

for c ≥ 0. The corresponding property of left multiplication by g follows now from (i)
by once again noting that φ ◦ �g = φ ◦ inv ◦ rg−1 ◦ inv. Thus the translations rg and
�g are continuous selfmaps of ER(G). For (iii) the Cauchy integral formula yields

F′
R,φ(c) = 1

2π

∣

∣

∣

∣

∫

∂Br (c)

FR,φ(w)

(w − c)2
dw

∣

∣

∣

∣

≤ r−1 FR,φ(c + r) = r−1 · qR,c+r (φ) (∗)

for every r > 0. Taking r = 1, Proposition 4.15, (iv), shows that

qR,c

(

LXξ φ
) = FR,LXξ

φ(c) ≤ ‖ξ‖∞ · F′
R,φ(c) ≤ ‖ξ‖∞ · qR,c+1(φ).

This completes (iii), wherefore asking for (iv) makes sense at all: each of theLXαφ is
an R-entire function itself. The idea is now to choose rk = 1

k in (∗), which gives due
to ‖e j‖∞ = 1 for N > 0

∞
∑

k=N

1

k!
∑

α∈N
k
n

qR,c

(

LXαφ
) ≤

∞
∑

k=N

1

k!
∑

α∈N
k
n

k · qR,c+1(φ) = qR,c+1(φ)

∞
∑

k=N

k · nk
k! −→ 0.
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Thus the Taylor series T( · , z) is indeed absolutely convergent in ER(G). In other
words, each of the maps

G � g �→ r∗
gφ ∈ ER(G)

is analytic by (4.18). The statement about left translations follows the usual way. As
analytic maps are continuous, this also gives the strong continuity of (4.46). We now
turn to (v) and notice that it suffices to handle the case R = 0. Let K ⊆ G be a compact
set. By a covering argument it is easy to see that there is a positive integerm (depending
only on K ) with the property that for any g ∈ K there are ξ1, . . . , ξm ∈ B1(0)cl ⊆ g
such that g = exp(ξ1) · · · exp(ξm). This implies for any φ ∈ E0(G)

|φ(g)| = ∣

∣

(

φ ◦ rg
)

(e)
∣

∣ = ∣

∣Fφ◦rg (0)
∣

∣ =
∣

∣

∣Fφ◦rexp(ξ1)··· exp(ξm )
(0)

∣

∣

∣ .

Applying Proposition 4.7 m-times we obtain

|φ(g)| ≤ ∣

∣Fφ

(‖ξ1‖∞ + · · · + ‖ξm‖∞
)∣

∣ ≤ q0,m(φ) (∗∗)

for all g ∈ K , yielding the claim.Keeping this compact subset K ⊆ G,we turn towards
(vi). Note that r0,c,{e} = q0,c, wherefore the topology induced by the seminorms (4.49)
is certainly finer than the E0-topology. Using (∗) with rk = 1

k again and what we have
just shown gives on the other hand

rR,c(φ) ≤
∞
∑

k=0

k!R−1ck
∑

α∈N
k
n

qR,m

(

LXαφ
) ≤

∞
∑

k=0

k!R−1(cn)k · max{k, 1} · qR,m+1(φ),

wherefore both topologies do indeed coincide. Here we have used qR,c ≤ qR,c+1. �

The following theorem summarizes the main properties of the locally convex alge-

bras (ER(G), dR) and shows that they share many of the pleasant properties of the
Fréchet algebras H1/R(C) of all entire holomorphic functions (of finite order and
minimal type).

Theorem 4.18 (Properties of ER(G))
Let G be a connected Lie group and let R ≥ 0. Then the locally convex algebra

(ER(G), dR) is

(i) a Fréchet algebra;
(ii) nuclear;
(iii) a Montel space: Every bounded and closed set in E0(G) is compact;
(iv) separable and reflexive.

Proof We tackle (i) first. Let (φ j ) be a Cauchy sequence in (ER(G), dR). By Theo-
rem 4.17, (v), there is a φ ∈ C∞(G) such that φ j → φ converges in C∞(G). We
need to show that φ ∈ ER(G), i.e. φ is analytic as well as qR,c(φ) < ∞ for all c ≥ 0,
and φ j → φ in (ER(G), dR). We proceed in several steps.
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(1) For each g ∈ G and each k ∈ N0 the kth order homogeneous Taylor polynomial
of φ j at g converges to the kth order homogeneous Taylor polynomial of φ at g,
that is,

Tk,φ j (z; g) = 1

k!
∑

α∈N
k
n

(

LXαφ j
)

(g) · zα j→∞−→ 1

k!
∑

α∈N
k
n

(

LXαφ
)

(g) · zα

= Tk,φ(z; g)

locally uniformly w.r.t. z ∈ C
n . This follows from φ j → φ in C∞(G) by conti-

nuity of the linear operators

C∞(G) � ψ �→ Tk,ψ ( · ; g) ∈ H(Cn).

(2) Fix g ∈ G. Then Tφ j ( · ; g) → Tφ( · ; g) locally uniformly on C
n . In order to

see this, we note that as a Cauchy sequence, (φ j ) is in particular bounded in
(E0(G), d0). With other words, (Fφ j ) ⊆ H(C) is locally bounded on C. By Corol-
lary 4.9 we can deduce that (Tφ j ( · ; g)) is locally bounded inH(Cn). Since

Tφ j (z; g) =
∞
∑

k=0

Tk,φ j (z; g) and Tφ(z; g) =
∞
∑

k=0

Tk,φ(z; g),

we see from (1) and a standard Montel-type normal family argument that
Tφ j ( · ; g) → Tφ( · ; g) locally uniformly on C

n .
(3) In view of Corollary 4.6, we also have

Tφ j (x; g) = φ j
(

g exp(x�e�)
) → φ

(

g exp(x�e�)
)

locally uniformly for (x1, . . . , xn) ∈ R
n . It follows that

Tφ(x; g) = φ
(

g exp(x�e�)
)

for each g ∈ G and x ∈ R
n . In particular, φ ∈ C ω(G), since x �→ g exp(x�e�) is

an analytic diffeomorphism around 0 ∈ C
n .

(4) Next, we show qR,c(φ) < ∞ for all c ≥ 0. By Theorem 4.17, (iii) we have
LXαφ j → LXαφ for each k-tuple α ∈ N

k
n . Hence we have convergence of the k-

th Taylor coefficients ck(φ j ) → ck(φ). Using the local boundedness of (FR,φ j ( · ))
in H(C) it easily follows that (FR,φ j ) converges in H(C) to FR,φ . In particular,
FR,φ ∈ H(C), so qR,c(φ) = FR,φ(c) < ∞ for each c ≥ 0.

(5) Finally, we prove φ j → φ in (ER(G), dR). An equivalent statement is that
FR,φ j−φ(c) → 0 for each c ≥ 0. By

∣

∣FR,φ j−φ(z)
∣

∣ ≤ FR,φ j

(|z|) + FR,φ

(|z|)
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the sequence (FR,φ j−φ) ⊆ H(C) is locally bounded. Hence the convergence of
each of the k-Taylor coefficients ck(φ j−φ) to 0 and a simpleMontel-type argument
imply FR,φ j−φ → 0 even locally uniformly on C.

For (ii) it is convenient to identify ER(G) with a Köthe space �R in the following
manner: write N

∞
n = ⋃∞

k=0 N
k
n and define a Köthe matrix by

aαc = (k!)R · c
k

k!
for α ∈ N

k
n , k ∈ N0 and c ∈ N. Note that aαc ≤ aαc′ , whenever c ≤ c′. We identify

each φ ∈ ER(G) with the sequence (φα) defined by

φα = (

LXαφ
)

(e).

Note that ck(φ) = 1
k!

∑

α∈N
k
n
|φα| from (4.5). This yields an injective isometry

ER(G) −→ �R,

as the net (φα) contains even more information than just the Lie-Taylor coefficients at
e. We use the Grothendieck–Pietsch Theorem as it can be found in [44, Thm. 6.1.2]
to check nuclearity of �R . As moreover any subspace of a nuclear space is nuclear,
see [44, Prop. 5.1.1] or [54, (50.3)], the claim will follow. Thus let c ∈ N. We have
to find a c′ ∈ N such that the series

∑

α∈N
∞
n

aαc

aαc′
=

∞
∑

k=0

∑

α∈N
k
n

ckk!
c′kk! =

∞
∑

k=0

nk
ck

c′k

converges. Taking c′ = 2cn does the job. By positivity of all the numbers, all of our
considerations are independent of the enumeration we choose for the index set N

∞
n ,

wherefore we do not make this choice at all. Thus the nuclearity of ER(G) follows.
By [54, Prop. 50.2] every nuclear Fréchet space is Montel, which gives (iii). Notably,
this can also be shown directly by using the classical Montel Theorem for the Taylor
majorants. Nuclear Montel spaces are separable by [29, Section 11.6, Thm. 2] and by
[54, Cor. 36.9] every Montel space is reflexive. �


Rounding out this section, we discuss the simple but surprisingly far reaching
example of the circle group S

1, which is closely related to GL1(C) ∼= C
× through the

notion of universal complexification:

Example 4.19 (Circle group) Let G = S
1, which is connected, but not simply con-

nected. Its universal complexification
(

S
1
C
, η

)

in the sense of [28, Def. 15.1.2.] is given
by

S
1
C

= C
× = C\{0} and η : S

1 −→ S
1
C
, η = id

C
×
∣

∣

∣

S
1
, (4.50)
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i.e. we embed S
1 as the unit circle into C\{0}. This induces a complex structure,

which coincides with the one given by exponential charts due to the local existence
of holomorphic logarithms. Given a morphism of complex Lie groups � : S

1 −→ H ,
we set

�C : C
× −→ H , �C

(

r · e2π it) = r · �(e2π it ), (4.51)

which is a holomorphic group morphism and clearly fulfils � = �C ◦ η. Notably,
the universal complexification C

× is not compact, even though the circle group S
1

was, but their fundamental groups are clearly isomorphic. Analogously, one obtains
the universal complexification for higher tori as products of C

×. Notice that the group
morphism given by the reflection on the unit circle

σ : C
× −→ C

×, σ
(

r · e2π it) = 1

r
· e2π it (4.52)

is antiholomorphic and fixes η(S1) = S
1. Thus σ is the unique antiholomorphic

complex conjugation on S
1
C
, whose existence is guaranteed by [28, Thm. 15.1.4, (iv)].

Let f : C
× −→ C be holomorphic. As exp(C) = C\{0} = C

×, we can form
the composition f ◦ exp : C −→ C, which is holomorphic as the composition of
holomorphic maps and thus entire in the classical sense. By commutativity of S

1
C
, the

Lie-Taylor majorant F f is entire if and only if the Taylor series of f ◦ exp converges
absolutely. Thus holomorphic functions on C

× are automatically entire in our sense.
Consequently, we have shown

E0
(

S
1
C

) ∩ H(S1
C
) = H

(

S
1
C

)

(4.53)

as locally convex algebras in view of Theorem 4.17, (v): having a convergent Taylor
series gives uniform estimates for the function values at once. Moreover, this restricts
nicely to the real situation, i.e. we have

E0
(

S
1) = η∗E0

(

S
1
C

) = η∗H
(

S
1
C

)

. (4.54)

This can be seen as follows: given φ ∈ E0(S
1), the composition φ ◦ exp : C −→ C

is entire and 2π -periodic (as the Lie exponential is exp(z) = eiz here). Applying [52,
Thm. 3.10.1] to a = b = n ∈ N with the obvious rescaling yields a H-convergent
Laurent expansion

φ
(

e2π iz
) = φ ◦ exp

∣

∣

∣

2π z
=

∞
∑

k=−∞
ake

2π ikz (4.55)

for z ∈ C. This is the holomorphic extension of φ toC
× wewere looking for. Rephras-

ing the convergence of (4.55), we find two entire functions F,G ∈ H(C) with

φ(z) = F(z) + G( 1z ) = F(z) + G(z) (4.56)
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for all z ∈ S
1. If now φ ∈ ER(G) for R > 0, we still get the Laurent expansion (4.55).

It is even convergent in the H1/R-topology, see again Proposition 4.15. Thus (4.56)
yields

ER(S1) = η∗H1/R
(

C
×)

(4.57)

as locally convex algebras for R > 0.

This example suggests to use the universal complexification of G also in general to
understand the algebra ER(G).

Remark 4.20 (Negative R) As already suggested in Proposition 4.15, (iii), one can
in principle consider arbitrary R ∈ R by using the series of seminorms in (4.33).
However, the approach we have taken to deal with R ≥ 0 ceases to work here: the
Lie-Taylor majorants need no longer be entire. This already happens in the abelian
case G = (R,+) = g. Consider the geometric series

g : R −→ C, g(x) = 1

1 + ix
, (4.58)

whose Taylor series converges if and only if |x | < 1. The underlying problem here is
of course the singularity at x = i, which is hidden in the universal complexification
C of R. Nevertheless, we have

qR,c(g) =
∞
∑

k=0

k!R · ck < ∞ (4.59)

for all c > 0 and R < 0. Consequently, we know at lot less about the nature of such
functions: in fact, all of the upcoming results simply work for arbitrary R ∈ R and
are somewhat algebraic in nature. Nevertheless, we shall admit R < 0 and consider
the R-entire functions ER(G) also in this extended sense in the sequel.

By the already mentioned Proposition 4.15, (iii), the resulting additional vector
spaces are locally multiplicatively convex. Also the continuous inclusions (4.30), the
inversion invariance and the continuity of Lie derivatives from Theorem 4.17, (i) and
(iii) remain correct. Indeed, we have the obvious inequalities

qR,c ≤ qS,c and qR,c ≤ qR,d , (4.60)

whenever −∞ < R ≤ S < ∞ and 0 ≤ c ≤ d. First countability and the Hausdorff
property are also clearly still intact. Beyond these trivial observations, our methods
break down immediately. For instance, we can no longer infer anything from (4.21) if
the right hand side is infinite.

4.3 Representative functions

At this point of our discussion it is not at all clear, whether there are examples of
entire functions on a given Lie group beyond the constant ones. To remedy this, we
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first note the following compatibility of the entire functions with pullbacks by group
morphisms:

Proposition 4.21 Let G and H be Lie groups and R ∈ R. Let � : G −→ H be a Lie
group morphism. The pullback with � is a morphism of locally convex algebras

�∗ : ER(H) −→ ER(G). (4.61)

More precisely, we have the estimate

qR,c

(

�∗φ
) ≤ qR,cnD(φ) (4.62)

for φ ∈ ER(G) and c ≥ 0, where D is the matrix supnorm of the matrix representa-
tion of the tangent map Te� : g −→ h in the bases used for the construction of the
seminorms of ER(G) and ER(H), respectively.

Proof Note that the pullback �∗ with � is an algebra morphism

�∗ : C ω(H) −→ C ω(G),

i.e. its restriction to ER(H) is an algebra morphism with values in C ω(G). Conse-
quently, this is just a rephrasing of the chain rule Proposition 4.3, (ii). Note that the
additional weight from R �= 0 does not interfere with the argument, as it shows up on
both sides of the estimate. �


This way, we obtain a contravariant functor ER( · ) from the category of connected
real Lie groups to the category of commutative Fréchet algebras. Thus our construction
of the entire functions fits nicely into the otherwise functorial framework of the R′-
topologies and the deformation quantization itself.

Generating examples of entire functions on one group thus lets us transport them to
other groups in a continuous way. Once again, this does not guarantee the existence of
interesting entire functions, yet. The idea is now that group representations on finite
dimensional vector spaces are particularly nice group morphisms, to which we can
associate special functions on G: the representative functions or matrix coefficients,
see e.g. [15, Sect. 4.3]. Recall that a choice of generators is of the form

πi j : G −→ C, πi j (g) = π(g)i j , (4.63)

where π ranges over all continuous (and thus automatically analytic) finite dimen-
sional representations of G. We are going to show by direct estimation that every
representative function is R-entire for R < 1. To this end, we recall the following
well-known Lemma:

Lemma 4.22 Let G be a Lie group and φ ∈ C ω(G) be a representative function and
write 〈φ〉 = {�∗

gφ ∈ C ω(G) | g ∈ G} for the orbit of φ under the left action of G on
itself.
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(i) The orbit 〈φ〉 is finite dimensional and coincides with the orbit of φ under right
translation, i.e. we have

〈φ〉 = {

r∗
gφ ∈ C ω(G)

∣

∣ g ∈ G
}

. (4.64)

(ii) Let ξ ∈ g. The Lie derivative LXξ is contained in the orbit 〈φ〉 of φ. The same is
true for right invariant vector fields.

Theorem 4.23 (Representative functions) Let G be a Lie group, R < 1 and φ ∈
C ω(G) be a representative function. Then φ ∈ ER(G). More precisely, choosing an
auxiliary norm ‖ · ‖ on 〈φ〉, we have the estimate

qR,c(φ) ≤ 
 · ‖φ‖
∞
∑

k=0

k!R−1 (c�n)k (4.65)

for c ≥ 0, where � is the maximum of the operator seminorms

� = max
i=1,...,n

max
ψ∈〈φ〉,|ψ(e)|≤1

∣

∣

(

LXi ψ
)

(e)
∣

∣ (4.66)

of the Lie derivatives in direction of left invariant vector fields on the orbit 〈φ〉 of φ

and 
 is the operator norm of the Dirac functional at the group unit, i.e.


 = max
ψ∈B1(0)cl

|ψ(e)| . (4.67)

Proof We equip the, by Lemma 4.22, (i), finite-dimensional orbit 〈φ〉with some auxil-
iary norm ‖ · ‖. Part (ii) of the same lemma implies that the “left invariant derivatives”

LXi : 〈φ〉 −→ 〈φ〉

arewell-defined and thus continuous as linearmaps on a finite-dimensional topological
vector space. Consequently, the maximum of the operator norms

� = max
i=1,...,n

max
ψ∈B1(0)cl

‖LXi ψ‖

is finite. For the very same reasons, the Dirac functional δe at the group unit is contin-
uous and thus its operator norm


 = max
ψ∈B1(0)cl

|ψ(e)|

is finite, as well. Putting both observations together, we obtain

qα(φ) =
∣

∣

∣δe ◦ LXαk
· · ·LXα1

φ

∣

∣

∣ ≤ 
 · �k · ‖φ‖
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for any k-tuple α ∈ {1, . . . , n}k . Plugging this into the full seminorms yields finally

qR,c(φ) =
∞
∑

k=0

k!R−1 ck
∑

α∈{1,...,n}k
qα(φ)

≤
∞
∑

k=0

k!R−1 ck
∑

α∈{1,...,n}k
�k · 
 · ‖φ‖

= 
 · ‖φ‖
∞
∑

k=0

k!R−1 (c�n)k,

which converges for all c ≥ 0 iff R < 1. �


Notably, choosing a basis of 〈φ〉 allows to proceed in the spirit of Proposition 4.21
to derive a similar estimate based on the matrix supnorm of the Lie derivatives in
direction of the left invariant vector fields instead. This is fairly cumbersome in terms of
bookkeeping due to numerous indices,whereforewe chose themore abstract approach.
For R = 0, we recognize the series in the estimate (4.65) as exp(c�n). Note that the
condition R < 1 is sharp:

Example 4.24 (Exponential representation) Consider the representation exp of the
abelian Lie group (R,+) on (R×, ·). Indeed, we have

�∗
x exp

∣

∣

∣

t
= exp(x + t) = exp(x) · exp

∣

∣

∣

t
(4.68)

for x, t ∈ R, confirming that exp is a representative function with one dimensional
orbit. This matches with Lemma 4.22, (ii), as exp′ = exp. This also implies

qR,c(exp) =
∞
∑

k=0

k!R−1 ck · 1 (4.69)

for R ∈ R and c ≥ 0. The series in (4.69) converges for all c ≥ 0 iff R < 1.

For a compact Lie group, we now know that the span of the matrix coeffi-
cients is already dense in C (G). This is the classical Peter-Weyl Theorem, see [15,
Thm. (4.6.1)]. Thus the same is true for ER(G), whenever R < 1. Here we also use that
pointwise complex conjugation is an isometry of ER(G). In the language of represen-
tation theory, see again the lengthy Remark 4.16, this means that the subspace of entire
vectors is dense in the space of continuous vectors for either of the representations
(4.1) or (4.43).
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5 The R,R′-topologies on the observable algebra

Having studied both the R-entire functions ER(G) and the symmetric algebra S•
R′(g)

with the R′-topology in isolation, we now projectively tensorize them together to the
observable algebra of our strict deformation:

Definition 5.1 ((R, R′)-Topologies) Let G be a Lie group and R, R′ ∈ R. We equip
the tensor product

Pol•R,R′(T ∗G) = ER(G) ⊗ S•
R′(g) (5.1)

with the projective tensor product topology and call it the (R, R′)-topology.
Due to ER(G) ⊆ C∞(G) and the decomposition (2.7) we have the inclusion

Pol•R,R′(T ∗G) ⊆ Pol(T ∗G), explaining the notation.
As projective tensor products moreover inherit most of the desirable properties of

their factors, we immediately obtain the following statements for Pol•R,R′(T ∗G) and
the commutative pointwise multiplication:

Proposition 5.2 Let G be a connected Lie group and R, R′ ∈ R.

(i) The projective tensor product topology turns Pol•R,R′(T ∗G) into a unital Haus-
dorff and first countable locally convex algebra.

(ii) Complex conjugation is a continuous involution on Pol•R,R′(T ∗G).
(iii) Let R, R′ ≤ 0. Then Pol•R,R′(T ∗G) is locally multiplicatively convex.

(iv) The completion ̂Pol
•
R,R′(T ∗G) of Pol•R,R′(T ∗G) contains the completion of each

factor and they are dense, i.e.

ÊR(G) ⊗ Ŝ•
R′(g) ⊆ ̂Pol

•
R,R′(G). (5.2)

(v) The completion ̂Pol
•
R,R′(T ∗G) is a commutative Fréchet ∗-algebra.

(vi) Let R ≤ S and R′ ≤ S′. We have the continuous inclusions of locally convex
algebras

Pol•S,R′(T ∗G) ⊆ Pol•R,R′(T ∗G) and Pol•R,S′(T ∗G) ⊆ Pol•R,R′(T ∗G). (5.3)

(vii) Let R, R′ ≥ 0. The locally convex algebras Pol•R,R′(T ∗G) and ̂Pol
•
R,R′(T ∗G)

are nuclear.
(viii) Let R, R′ ≥ 0. The locally convex algebra ̂Pol

•
R,R′(T ∗G) is Montel, reflexive

and separable.

Proof All statements are standard results about projective tensor products and have
nothing to do with our particular example. For detailed treatments, see e.g. the text-
books [54, Chap. 43, 50], [31, §41] and [29, Chap. 15]. The continuity of the complex
conjugation is clear as all our seminorms are invariant under complex conjugation. �


As a first consequence of the construction, we note that restricting to momentum
zero, which geometrically is the map ι∗, and prolonging constantly in momentum
direction, which is π∗, provide continuous maps:

123



188 M. Heins et al.

Proposition 5.3 Let R, R′ ≥ 0.

(i) The restriction to the zero section yields a continuous map

ι∗ : ̂Pol
•
R,R′(T ∗G) −→ ER(G). (5.4)

(ii) The pullback

π∗ : ER(G) −→ Pol•R,R′(T ∗G) ⊆ ̂Pol
•
R,R′(T ∗G) (5.5)

is continuous.

Proof From the above factorization we have ι∗ = idER(G)⊗δ0 on the dense subalgebra
Pol•R,R′(T ∗G) with the δ-functional

δ0 : S•
R′(g) −→ C.

This is a continuous functional for R′ ≥ 0 according to Proposition 3.2, (ii). The
functoriality of the projective tensor product implies the continuity of ι∗, which then
extends to the completion. The pullback is even simpler, we have

π∗φ = φ ⊗ 1,

which is again continuous by general properties of the projective tensor product. �

As tensor products of continuous linear maps are continuous in the projective tensor

product topology, we moreover obtain the following continuity of evaluations and
symmetries:

Proposition 5.4 Let R, R′ ∈ R.

(i) Assume R, R′ ≥ 0 and let g ∈ G, α ∈ N
k
n and η ∈ g∗. The tensor product

δg,α ⊗ δη : Pol•R,R′(T ∗G) −→ C (5.6)

of the evaluation functionals (3.9) and (4.48) is continuous.
(ii) Let � : G −→ H be a covering map of Lie groups. The pullback with the point

transformation

(T∗�)∗ : Pol•R,R′(T ∗H) −→ Pol•R,R′(T ∗G) (5.7)

is well-defined and continuous.

Proof The first part is clear. For the second, recall that the canonical isomorphism
(A.1) fulfils

(T∗�)∗J(X) = J
(

�∗X
)
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for X ∈ �∞(S•(TCH)). In our polynomial factorization from (2.7), the point trans-
formation is thus given by

�∗ ⊗ (

(Te�)−1 ⊗ · · · ⊗ (Te�)−1).

With this formula, our claims are clear in view of Proposition 4.21 and the basis
independence of the R′-topology. Note that the invertibility of the tangent map Te�
is equivalent to the group morphism � being a covering map. �


Recall that we may endow the cotangent bundle T ∗G with a natural Lie group
structure by choosing a trivialization. More precisely, this allows for the semidirect
product structure T ∗G = G �Ad∗ g∗ coming from the coadjoint representation. The
natural question is thus whether this group structure preserves our observable algebra
̂Pol

•
R,R′(T ∗G) ⊆ C∞(T ∗G). As before, we denote the left and right multiplications

with (g, η) ∈ T ∗G by �(g,η) and r(g,η), respectively.

Proposition 5.5 Let R, R′ ≥ 0.

(i) The pullbacks with left multiplications on T ∗G yield representations

�∗ : T ∗G −→ L
(

̂Pol
•
R,R′(T ∗G)

)

(5.8)

by continuous linear maps and ̂Pol
•
R,R′(T ∗G) consists of corresponding entire

vectors.
(ii) Assume furthermore R < 1. The pullbacks with right multiplications on T ∗G yield

representations

r∗ : T ∗G −→ L
(

̂Pol
•
R,R′(T ∗G)

)

(5.9)

by continuous linear maps and ̂Pol
•
R,R′(T ∗G) consists of corresponding entire

vectors.

Proof Let (g, η), (h, χ) ∈ G×g∗, φ ∈ ER(G) and ξ1, . . . , ξk ∈ g.We note the explicit
formulae

�∗
(g,η)

(

φ ⊗ ξ1 ∨ · · · ∨ ξk
)

∣

∣

∣

(h,χ)

= �∗
gφ ⊗ (

η(ξ1) · · · η(ξk) · 1 + Adg−1ξ1 ∨ · · · ∨ Adg−1ξk
)

∣

∣

∣

(h,χ)
,

r∗
(h,χ)

(

φ ⊗ ξ1 ∨ · · · ∨ ξk
)

∣

∣

∣

(g,η)

= r∗
hφ ⊗ ξ1 ∨ · · · ∨ ξk

∣

∣

∣

(g,η)
+ r∗

hφ · χ
(

Adinv( · )ξ1
) · · · χ(

Adinv( · )ξk
) ⊗ 1

∣

∣

∣

(g,η)

for the pullbacks. From here, the continuity estimates can be handled by the same
techniques we have employed throughout the paper, see in particular Theorem 4.17
and the upcoming Lemma 6.2. Notice that the maps

�ξ : G � g �→ χ
(

Adgξ
) ∈ C
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are nothing but representative functions, which we have studied in Theorem 4.23. This
explains the additional requirement of R < 1 in (ii). �


After these abstract considerations, we derive a more explicit description of
̂Pol

•
R,R′(T ∗G). A first observation is that for finite dimensional vector spaces V , we

have an analogue of (A.1), implementing the isomorphism S•(V ∗) ∼= Pol•(V ) of
graded vector spaces. We shall identify both without further comment in the sequel.
This moreover gives pR′,c = qR′,c for R

′ ∈ R and c ≥ 0. Here the slightly different
prefactors match, as differentiation produces another factorial. In particular, the sub-
space topology induced by S•

R′(V ) ⊆ ER(V ∗) is the S•
R′ -topology again. The idea is

now that ER(V ∗) is the completion of S•
R′(V ):

Lemma 5.6 Let V be a finite dimensional vector space over C and R′ ≥ 0. Then we
have

Ŝ•
R′(V ) ∼= ER′(V ∗) (5.10)

with embedding given by the isomorphism J. For R′ < 0 we have the inclusion
ER′(V ∗) ⊆ Ŝ•

R′(V ).

Proof Truncating the Taylor series of an entire function yields the desired polynomial
approximation by elements of S•

R′(V ) at once. Notably, this still works for negative
R′, but the completeness of ER′(V ∗) relies on R′ ≥ 0, see again Theorem 4.18, (i). �

Corollary 5.7 Let R′ ≥ 0 and R ∈ R.

(i) Every function χ ∈ ̂Pol
•
R,R′(T ∗G) is smooth.

(ii) Let R ≥ 0. The (R, R′)-topology is finer than the C∞-topology.

Proof We invoke the triviality of the bundle T ∗G ∼= G×g oncemore: every derivative
on C∞(T ∗G) factorizes into derivatives on G and g, which commute with each other.
Using this, (ii) is immediate from Lemma 5.6 and Theorem 4.18, (v). The case R < 0
in (i) is trivial, as ER(G) ⊆ C ω(G) by its very definition. �


Using the vector space structure of g, we arrive nowat the following explicit descrip-
tion of the completion ̂Pol

•
R,R′(T ∗G):

Proposition 5.8 Let R ∈ R, R′ ≥ 0 and χ ∈ ̂Pol
•
R,R′(T ∗G), viewed as an element of

C∞(T ∗G). Then there is a unique absolutely convergent decomposition

χ(g, η) =
∞
∑

k=0

∑

α∈N
k
n

cα(g) · η
α1
1 · · · ηαn

n (5.11)

for g ∈ G and η ∈ g∗, where each cα : G −→ C is R-entire and cα is independent of
the ordering of the entries of α ∈ N

k
n. Moreover, for every g ∈ G and as a function of

η, (5.11) is an element of ER′(g).
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Proof By Corollary 5.7, we know that χ ∈ C∞(T ∗G). Invoking [54, Thm. 45.1],
we find a summable sequence (φk) ⊆ ER(G) and another (not necessarily summable)
sequence (ψk) ⊆ ER′(g) s.t.

χ =
∞
∑

k=1

φk ⊗ ψk,

where the series converges absolutely in the projective tensor product topology. Given
a g ∈ G we use the product structure T ∗G ∼= G × g∗ to define

cα(g) = L
Xg∗

α
χ(g, · ) =

∞
∑

k=1

φk(g) ⊗ L
Xg∗

α
ψk

as the α-th Lie-Taylor coefficient of χ(g, · ) : g∗ −→ C. Note that this way, the cα(g)
do indeed have the claimed symmetry property, as the Lie derivatives on g are just
partial derivatives corresponding to the basis we chose. By summability of (φk), we
moreover have cα ∈ ER(G). Interchanging the series, it is straightforward to check
that the right hand side of (5.11) indeed converges absolutely to the function χ we
started with. This also gives the remaining statement, as each ψk ∈ ER′(g). �


Corollary 5.9 Let R ∈ R and R′ ≥ 0. We have the inclusion ̂Pol
•
R,R′(T ∗G) ⊆

C ω(T ∗G) of algebras.

6 Continuity results

We begin our considerations on continuity by restating [17, Prop. 3.2, (ii), and
Prop. 3.6] on the Lie algebra star product �g. By (2.15) this star product is the restric-
tion of �std to the second tensor factors, i.e. polynomials in the momenta only. For
convenience, we already specialize to the situation we are interested in, namely finite-
dimensional Lie algebras instead of general asymptotic estimate algebras [17]:

Proposition 6.1 Let g be a finite-dimensional Lie algebra and R′ ≥ 1. The Lie algebra
star product

�g : S•
R′(g) × S•

R′(g) −→ S•
R′(g) (6.1)

is well-defined and continuous. More precisely, we have the estimate

pR′,c′
(

ξ�gη
) ≤ pR′,c̃′(ξ) · pR′,c̃′(η) (6.2)

for ξ, η ∈ S•
R′(g), c′ ≥ 1 and c̃′ = 32(� + 1)c′. In particular, c̃′ is a continuous

function of �. Moreover, the map
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C � � �→ ξ�gη ∈ S•
R′(g) (6.3)

is entire for all ξ, η ∈ S•
R′(g).

Another look at (2.15) reveals that there is only one other interesting type of product
to consider: a polynomial in S(g) on the left and a function on G on the right. The
crucial idea is that the mixed product corresponds to a dual pairing in the spirit of
[24, 25], where only the sum R + R′ of the parameters in Pol•R,R′(T ∗G) matters
for continuity, but not their individual values. Note, however, that we do more than
just pair: instead of applying the differential operator to the function, we commute
the differential operators with the left multiplication, yielding numerous additional
contributions. Nevertheless, this yields the following continuity result:

Lemma 6.2 Let G be a Lie group and R, R′ ∈ R with R + R′ ≥ 1. The restricted
standard-ordered star product

�std : (

1 ⊗ S•
R′(g)

) × (

ER(G) ⊗ 1
) −→ Pol•R,R′(T ∗G) (6.4)

is well-defined and continuous with respect to the R, R′-topology. More precisely, in
each symmetric degree and for c, c′ ≥ 1 we have the estimate

(

qR,c ⊗ pR′,c′
)(

(1 ⊗ ξ)�std (φ ⊗ 1)
) ≤ 2 · pR′,d ′(ξ) · qR,2c(φ) (6.5)

for φ ∈ ER(G), ξ ∈ Ŝ•
R′(g) and d ′ = max{2�, c′}, which depends continuously on �.

In particular, the map

C � � �→ (1 ⊗ ξ)�std (φ ⊗ 1) ∈ ̂Pol
•
R,R′(T ∗G) (6.6)

is entire for all φ ∈ ER(G) and ξ ∈ Ŝ•
R′(g).

Proof Let φ ∈ ER(G), k ∈ N0,
(

e1, . . . , en
)

be a basis of g corresponding to the
�1-norm p we chose and 1 ≤ i1, . . . , ik ≤ n. Recall that by Proposition 2.4, (iii), we
have the explicit formula

(

1 ⊗ ei1 ∨ · · · ∨ eik
)

�std
(

φ ⊗ 1
)

=
k

∑

p=0

(

�

i

)p 1

p! (k − p)!
∑

σ∈Sk
LXiσ(p)

· · ·LXiσ(1)
φ ⊗ eσ(p+1) ∨ · · · ∨ eσ(k).

First note

∑

σ∈Sk
qα

(

LXiσ(p)
· · ·LXiσ(1)

φ
)

=
∑

σ∈Sk

∣

∣

∣

(

LXα�
· · ·LXα1

LXiσ(p)
· · ·LXiσ(1)

φ
)

(e)
∣

∣

∣

=
∑

σ∈Sk
q(iσ(1),...,iσ(p),α1,...,α�)

(φ)
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forα ∈ {1, . . . , n}�. In the sequelwewrite (iσ(1), . . . , iσ(p), α) for (iσ(1), . . . , iσ(p), α1,

. . . , α�) by slight abuse of notation. Note that we sum over Sk , but only use the first p
values of the permutation. For the other factor we use [12, Lem. A.1], which essen-
tially says that projective tensor products of �1-norms yield �1-norms associated to
the product bases. We write pk for the k-th projective tensor power of the �1-norm p.
This gives

pk−p(eσ(p+1) ∨ · · · ∨ eσ(k)
) = 1 = pk

(

ei1 ∨ · · · ∨ eik
)

.

Here it is important that we use the �1-norm pwith respect to the above basis, otherwise
we would only get estimates instead of equalities. This implies

pR′,c′
(

eσ(p+1) ∨ · · · ∨ eσ(k)
) = (k − p)!R′

c′k−p

=
(

(k − p)!
k!

)R′

c′−p pR′,c′
(

ei1 ∨ · · · ∨ eik
)

.

Let now R, R′ ≤ 1 such that R + R′ ≥ 1 and c, c′ ≥ 1. Due to

qR′,c′ ≤ qR′,max{c′,2�}

we may assume c′ ≥ 2� without loss of generality. Otherwise we just estimate c′ by
a yet another polynomial weight c̃ ≥ 2� in the very first step. With this in mind, we
obtain

(

qR,c ⊗ pR′,c′
)

(

(1 ⊗ ei1 ∨ · · · ∨ eik )�std (φ ⊗ 1)
)

≤
k

∑

p=0

�
p

p! (k − p)!
∑

σ∈Sk
qR,c

(

LXiσ(p)
· · ·LXiσ(1)

φ
)

· pR′,c′
(

eσ(p+1) ∨ · · · ∨ eσ(k)
)

=
k

∑

p=0

�
p

p! (k − p)!
∑

σ∈Sk

∞
∑

�=0

�!R−1 c�
∑

α∈{1,...,n}�
qα

(

LXiσ(p)
· · ·LXiσ(1)

φ
)

· pR′,c′
(

eσ(p+1) ∨ · · · ∨ eσ(k)
)

≤
k

∑

p=0

�
p

p! (k − p)!k!
∞
∑

�=0

�!R−1 c�
∑

β∈{1,...,n}�+p

qβ(φ)

·
(

(k − p)!
k!

)R′

c′−p pR′,c′
(

ei1 ∨ · · · ∨ eik
)

= pR′,c′
(

ei1 ∨ · · · ∨ eik
)

k
∑

p=0

�
p k!1−R′

p!R (k − p)!1−R′ c′p
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×
∞
∑

m=p

p!R−1 (m − p)!R−1 cm−p
∑

β∈{1,...,n}m
qβ(φ)

(∗)≤ pR′,c′
(

ei1 ∨ · · · ∨ eik
)

k
∑

p=0

(

k

p

)1−R′
1

p!R′+R−1

�
p

c′p

×
∞
∑

m=p

m!R−1 (

21−Rc
)m ∑

β∈{1,...,n}m
qβ(φ)

(∗′)≤ pR′,c′
(

ei1 ∨ · · · ∨ eik
)

2k(1−R′)
k

∑

p=0

�
p

c′p · qR,21−Rc(φ)

≤ pR′,21−R′c′
(

ei1 ∨ · · · ∨ eik
) · qR,21−Rc(φ)

∞
∑

p=0

2−p

≤ pR′,2c′
(

ei1 ∨ · · · ∨ eik
) · qR,2c(φ) · 2,

where we have used R ≤ 1 as well as c ≥ 1 in (∗), then R′ ≤ 1 in (∗′), and c′ ≥ 2�

in the final estimate. Note again that we can make this assumption on c′ without loss
of generality by (3.2). This observation and the analogous statement (4.60) for ER
also gives the worse estimate (6.5) from what we have computed. If we have R′ ≥ 1,
we estimate the binomial coefficient in the step (∗′) by 1 instead, which once again
implies (6.5). In the case that R ≥ 1 we note (m − p)!R−1 ≤ m!R−1, yielding

. . .
(∗)≤ pR′,c′

(

ei1 ∨ · · · ∨ eik
)

k
∑

p=0

(

k

p

)1−R′
1

p!R′
�
p

c′p
∞
∑

m=0

m!R−1 cm
∑

β∈{1,...,n}m
qβ(φ)

= pR′,c′
(

ei1 ∨ · · · ∨ eik
) · qR,c(φ) ·

k
∑

p=0

(

k

p

)1−R′
1

p!R′
�
p

c′p (†)

= pR′,c′
(

ei1 ∨ · · · ∨ eik
) · qR,c(φ) ·

k
∑

p=0

(

k!
(k − p)!

)1−R′
1

p!
�
p

c′p . (‡)

From here, (†) gives the case R′ ≥ 1 and (‡) the case R′ ≤ 1 in the same fashion
as before. Note that passing to the series in p makes our estimate independent of
the symmetric order k. Thus we have shown (6.5) on generators. Consider now an
arbitrary function P ∈ Ŝ•

R′(g) in the left factor. Expanding P in the induced basis of
S•(g) corresponding to the basis of g we chose earlier gives

P =
∞
∑

k=0

n
∑

i1≤···≤ik=1

ai1···ik ei1 ∨ · · · ∨ eik ∈ S•
R′(g).
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By distributivity of the standard-ordered star product this now implies

(

qR,c ⊗ pR′,c′
)

(

(1 ⊗ P)�std (φ ⊗ 1)
)

≤ 2 · qR,2c(φ)

∞
∑

k=0

n
∑

i1≤···≤ik=1

∣

∣

∣ai1···ik
∣

∣

∣ · pR′,2c′
(

ei1 ∨ · · · ∨ eik
)

= 2 · qR,2c(φ) · pR′,2c′(P),

where we once again utilized [12, Lem. A.1] to first infer the “orthogonality”

pk

⎛

⎝

∑

i1≤i2≤...≤ik

ai1...ik ei1 ∨ · · · ∨ eik

⎞

⎠ =
∑

i1≤i2≤...≤ik

∣

∣

∣ai1...ik
∣

∣

∣ pk(ei1 ∨ · · · ∨ eik )

within a fixed symmetric degree. Thuswe have shown that (6.5) also holds for arbitrary
polynomial functions P . This finally implies the continuity of the standard ordered
star product. For the holomorphy first note that our estimate works for � in a locally
uniform and bounded way by continuity of the involved weights with respect to �.
Taking another look at the formula for the star product from (2.14) we see that the
star product is an absolutely convergent power series in �, i.e. the limit of polynomials
in �, which are holomorphic. By our estimate the corresponding sequence is Cauchy
with respect to the locally uniform topology, i.e. it converges to some element in the
completion and that element is vector-valued holomorphic, as well. �


We have gathered all the necessary ingredients to prove the continuity of the full
star product. Notably, the sharp condition R′ ≥ 1 from Proposition 6.1 breaks the
symmetry between R and R′ from Lemma 6.2 and reduces the condition R + R′ ≥ 1
to R ≥ 0. Investing moreover the continuity of the pointwise product on ER(G) now
yields our main result:

Theorem 6.3 (Continuity of �std) Let G be a Lie group, R ≥ 0 and R′ ≥ 1. The full
standard-ordered star product

�std : Pol•R,R′(T ∗G) × Pol•R,R′(T ∗G) −→ Pol•R,R′(T ∗G) (6.7)

is well-defined and continuous, extending to a continuous product

�std : ̂Pol
•
R,R′(T ∗G) × ̂Pol

•
R,R′(T ∗G) −→ ̂Pol

•
R,R′(T ∗G). (6.8)

More precisely, for c, c′ ≥ 1 there is a d ≥ 1, which is continuous with respect to �,
such that

(

qR,c ⊗ pR′,c′
)

(P�std Q) ≤ 2 · (

qR,d ⊗ pR′,d
)

(P) · (qR,d ⊗ pR′,d
)

(Q) (6.9)

holds for P, Q ∈ ̂Pol
•
R,R′(T ∗G).
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Proof We first consider factorizing functions. Let φ,ψ ∈ ER(G), η ∈ S•
R′(g) as well

as ξ1, . . . , ξk ∈ g. By Proposition 2.4, (vi), the full star product can be written as

(φ ⊗ ξ1 ∨ · · · ∨ ξk)�std (ψ ⊗ η)

=
k

∑

p=0

(

�

i

)p
φ

p! (k − p)!
∑

σ∈Sk
LXξσ (1)

· · ·LXξσ (p)
ψ ⊗ (ξσ(p+1) ∨ · · · ∨ ξσ(k))�gη.

Note that, compared to (2.14), we left multiply with the function φ in the first tensor
factor and compose with the Lie algebra star product in the second one. Let c, c′ ≥ 1
and write c̃′ = 16(� + 1)c′. Using (6.2), (6.5) as well as the continuity estimate for
pointwise products from (4.38) gives

(

qR,c ⊗ pR′,c′
)

(

(φ ⊗ ξ1 ∨ · · · ∨ ξk)�std (ψ ⊗ η)
)

≤
k

∑

p=0

�
p

p! (k − p)!
∑

σ∈Sk
qR,c

(

φ · LXξσ (1)
· · ·LXξσ (p)

ψ
)

pR′,c′

(

ξσ(p+1) ∨ · · · ∨ ξσ(k)�gη
)

≤
k

∑

p=0

�
p · qR,2Rc(φ) · pR′,c̃′

(

η
)

p! (k − p)!
∑

σ∈Sk
qR,2Rc

(

LXξσ (1)
· · ·LXξσ (p)

ψ
)

pR′,c̃′
(

ξσ(p+1) ∨ · · · ∨ ξσ(k)
)

.

Thus what remains to be estimated is

k
∑

p=0

�
p

p! (k − p)!
∑

σ∈Sk
qR,2Rc

(

LXξσ (1)
· · ·LXξσ (p)

ψ
)

pR′,c̃′
(

ξσ(p+1) ∨ · · · ∨ ξσ(k)
)

,

which is exactly what we obtained by applying the triangle inequality to the mixed
product

(

qR,2Rc ⊗ pR′,c̃′
)

(

(1 ⊗ ξ1 ∨ · · · ∨ ξk)�std (φ ⊗ 1)
)

.

Thuswe can utilize our estimate fromLemma 6.2 to obtain (6.9), taking d as the largest
coefficient we obtain upon putting everything together, which is obviously continuous
in � as a pointwise maximum of continuous functions. Then the bilinear version
of the argument as in the end of Lemma 6.2 extends (6.9) to arbitrary polynomial
functions, as all other factors were already in full generality. Finally, the usual infimum
argument (see e.g. [54, Prop. 43.4]) for projective tensor products gives this estimate
also for arbitrary mixed tensors, which implies continuity of the standard-ordered star
product �std on the entire observable algebra Pol•R,R′(T ∗G). From here it extends to
the completion by continuity, preserving the estimates (6.9). �
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The second main statement is that the star product we obtained is a holomorphic
deformation in the following sense:

Theorem 6.4 (Holomorphic dependence on �) Let G be a connected Lie group and
let R ≥ 0 and R′ ≥ 1. Then

C � � �→ P�std Q ∈ ̂Pol
•
R,R′(T ∗G) (6.10)

is entire for all P, Q ∈ ̂Pol
•
R,R′(T ∗G). Its Taylor series in � coincides with the formal

star product in the sense that the �
k-term is given by (2.16).

Proof As long as P, Q ∈ Pol•R,R′(T ∗G), their star product is a polynomial in �, thus
entire. For general elements P and Q in the completion, we can once again estimate
locally uniformly in � and our explicit formula as well as [17, Lem. 2.8 with z = −i�]
then imply that we have polynomial partial sums, i.e. vector-valued holomorphic
functions. Together, this implies vector-valued holomorphy of the full star product for
fixed factors. The second statement is clear for elements P, Q ∈ Pol•R,R′(T ∗G) and
extends to the completion by virtue of Proposition 5.8. �


A first application of this continuity result is the continuity of the standard-ordered
quantization map:

Corollary 6.5 Let G be a Lie group and R ≥ 0 and R′ ≥ 1. The standard-ordered
quantization map 
std yields a continuous bilinear map


std : ̂Pol
•
R,R′(T ∗G) × ER(G) � ( f , φ) �→ 
std( f )φ ∈ ER(G). (6.11)

In particular, every operator 
std( f ) with f ∈ ̂Pol
•
R,R′(T ∗G) is a continuous endo-

morphism of ER(G).

Proof According to (A.20) we have for f ∈ Pol•R,R′(T ∗G) and φ ∈ ER(G)


std( f )φ = ι∗( f �std π(φ)),

which is a composition of the continuous linear maps π∗ and ι∗, see Proposition 5.3,
and the continuous bilinear star product. As usual, this extends the completion. �


By invoking the semiclassical limit we immediately obtain the continuity of the
Poisson bracket:

Corollary 6.6 Let G be a Lie group, R ≥ 0 and R′ ≥ 1. The Poisson bracket

{ · , · } : Pol•R,R′(T ∗G) × Pol•R,R′(T ∗G) −→ Pol•R,R′(T ∗G) (6.12)

is well-defined and continuous. Moreover, the explicit formula (2.25) extends to the
completion ̂Pol

•
R,R′(T ∗G) order by order.
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Of course, both Corollaries 6.5 and 6.6 can be shown by direct estimation and
the explicit formulas (2.25) and (2.8), as well. Notably, this extends the statements
to arbitrary values of R and R′. The underlying reason for this is that each of the
mappings is an honest differential operator, i.e. only finitelymany differentiations have
to be estimated at once. Analogously, the same is true for the bidifferential operators
Dk ∈ DiffOp(T ∗G) given by

Dk(P, Q) = dk

d�k

(

P�std Q
)∣

∣

∣

�=0
(6.13)

for P, Q ∈ C∞(T ∗G) and k ∈ N0.
After having established the continuity of the structuremaps for classicalmechanics

and its standard-ordered quantization, we turn towards other ordering prescriptions
obtained by means of the Neumaier operator. Instead of directly deriving continuity
estimates for the considerably more complicated formulas, we show the continuity of
the κ-Neumaier operators. From Proposition 2.8 we immediately get the continuity of
N 2 and, ultimately, the continuity of Nκ for all κ ∈ R:

Proposition 6.7 Let G be a Lie group, κ ∈ R and R, R′ ∈ R with R + R′ ≥ 1.

(i) The κ-Neumaier operator

Nκ : Pol•R,R′(T ∗G) −→ Pol•R,R′(T ∗G) (6.14)

is well-defined and continuous.
(ii) The κ-Neumaier operator Nκ extends by continuity to

Nκ : ̂Pol
•
R,R′(T ∗G) −→ ̂Pol

•
R,R′(T ∗G) (6.15)

and its explicit formula extends to the completion ̂Pol
•
R,R′(T ∗G) order by order.

(iii) For all P ∈ ̂Pol
•
R,R′(T ∗G) the map

C � � �→ Nκ(P) ∈ ̂Pol
•
R,R′(T ∗G) (6.16)

is entire.
(iv) Let now in addition R ≥ 0 and R′ ≥ 1. Then the κ-ordered star product extends

to a continuous multiplication

�κ : ̂Pol
•
R,R′(T ∗G) × ̂Pol

•
R,R′(T ∗G) −→ ̂Pol

•
R,R′(T ∗G). (6.17)

(v) For R ≥ 0 and R′ ≥ 1 the κ-ordered star product yields an entire function

C � � �→ P�κQ ∈ ̂Pol
•
R,R′(T ∗G) (6.18)

for all P, Q ∈ ̂Pol
•
R,R′(T ∗G).
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Proof This is a somewhat immediate consequence of (2.27): first we get the continuity
for N 2 = N2 and all �. Rescaling now � appropriately can be re-interpreted as a
rescaling of κ = 2 in the continuity estimates for N2. This gives the continuity for all
κ . The second statement is then an immediate consequence of Proposition 5.8. The
entirety of � �→ Nκ(P) now follows from the entirety of (6.6) and the formula (2.27).
Next,

P�κQ = N−κ

(

(Nκ P)�std (NκQ)
)

(∗)

for P, Q ∈ Pol•R,R′(T ∗G) gives continuity of the κ-ordered star product �κ as a
composition of continuous maps. Being continuous, �κ extends to the completion as
usual. Finally, (∗) implies entirety of the κ-ordered star products for fixed factors as a
composition of entire functions. �

Corollary 6.8 Let G be a connected Lie group and let R ≥ 0 and R′ ≥ 1. Then the
Weyl star product �Weyl is a continuous multiplication

�Weyl : ̂Pol
•
R,R′(T ∗G) × ̂Pol

•
R,R′(T ∗G) −→ ̂Pol

•
R,R′(T ∗G) (6.19)

with entire dependence on �.

Proposition 6.9 Let � : G −→ H be a covering map of Lie groups. Then pullback
with the point transformation

(T∗�)∗ : ̂Pol
•
R,R′(T ∗H) −→ ̂Pol

•
R,R′(T ∗G) (6.20)

is a continuous homomorphism with respect to the κ-ordered star products on T ∗G
and T ∗H, respectively.

Proof The fact that (T∗�)∗ is a homomorphism holds in general since � preserves
the half-commutator connection. The continuity was obtained in Proposition 5.4, (ii).

�
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Appendix A: Star products on cotangent bundles

In this short appendix we recall the basic facts on star products on general cotangent
bundles from [7–9, 41, 42] to put the construction on the cotangent bundle of a Lie
group into the right perspective.

Let Q be a smooth manifold, the configuration space, and denote its cotangent
bundle by the projection π : T ∗Q −→ Q. For the zero section we will write
ι : Q −→ T ∗Q. On a cotangent bundle (as on any vector bundle) we have smooth
functions which are polynomial in the fiber directions. They will be denoted by
Pol•(T ∗Q) ⊆ C∞(T ∗Q), where we write Polk(T ∗Q) for those, which are homoge-
neous polynomials of degree k ∈ N0. Recall that we always consider complex-valued
functions C∞(T ∗Q).

As any vector bundle, T ∗Q has a particular vector field, the Euler vector field ξ ∈
�∞(T (T ∗Q)), whose flow is given by (t, αq) �→ etαq , where t ∈ R and αq ∈ T ∗

q Q

for q ∈ Q. It can be used to characterize Polk(T ∗Q) as the eigenfunctions of the Lie
derivative Lξ to the eigenvalue k ∈ N0 and no other eigenvalues occur. Note that
the canonical map J : �∞(TCQ) −→ Pol1(T ∗Q), sending a complex vector field
X ∈ �∞(TCQ) to the linear function defined by (J(X))(αq) = αq(X(q)), extends to
a graded unital algebra isomorphism

J :
∞

⊕

k=0

�∞(Sk
C
T Q) −→ Pol•(T ∗Q), (A.1)

if we set J(u) = π∗u for u ∈ C∞(Q) = �∞(S0
C
T Q). Here Sk

C
T Q denotes the k-th

complexified symmetric power of the tangent bundle T Q.
To establish a global symbol calculus for the algebra of differential operators

DiffOp(Q) acting on C∞(Q), we choose a torsion-free covariant derivative ∇ on
Q. We use the same symbol for all induced covariant derivatives on the various tensor
bundles. The covariant derivative ∇ induces a symmetrized covariant derivative

D : �∞(Sk
C
T ∗Q) −→ �∞(Sk+1

C
T ∗Q) (A.2)

in such a way that for functions u ∈ C∞(Q) we have Du = du and for one-forms
α ∈ �∞(T ∗

C
Q) we have

(Dα)(X ,Y ) = ∇X (α(Y )) + ∇Y (α(X)) − α(∇XY ) − α(∇Y X). (A.3)

Then D is defined on higher symmetric forms by requiring a Leibniz rule with respect
to the symmetric tensor product ∨, i.e. we have D(α ∨ β) = Dα ∨ β + α ∨ Dβ. In
local coordinates (U , x) of Q this can then be written as

D = dxi ∨ ∇ ∂

∂xi
. (A.4)
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In fact, if e1, . . . , en ∈ �∞(TU ) is a local frame of T Q on an open subset U ⊆ Q
with dual local frame e1, . . . , en ∈ �∞(T ∗U ) then we have

D = ei ∨ ∇ei (A.5)

for sections on U . This (local) formula will play a crucial role whenever we have a
global frame, i.e. on a parallelizable manifold.

There are now various ways to define the global symbol calculus with respect to
∇. Following [8] one defines the standard-ordered quantization map


std : Pol•(T ∗Q) −→ DiffOp(Q) (A.6)

by specifying the differential operators 
std(J(X)) for all X ∈ �∞(SkT Q) on func-
tions ψ ∈ C∞(Q) as


std
(

J(X)
)

ψ = ι∗
(

is(X)e−i�Dψ
)

, (A.7)

where ι∗ : ∏∞
k=0 �∞(Sk

C
T ∗Q) −→ C∞(Q) is the projection onto the symmetric

degree k = 0 and is( · ) denotes the symmetric insertion map, which is defined as
follows: for a vector field X ∈ �∞(TCQ) it is the insertion into the first argument as
usual. For higher degrees we require is(X ∨ Y ) = is(X)is(Y ) to get the correct pre-
factors. For a function X = u ∈ C∞(Q) we set is(u) = u as multiplication operator.
Finally, the formal exponential series of the iterated symmetrized covariant derivatives
of ψ is interpreted as element in the Cartesian product over all symmetric degrees.
Since J is an isomorphism, this indeed specifies 
std on all polynomial functions
Pol•(T ∗Q) as wanted.

We note that (A.6) is a C∞(Q)-linear isomorphism whenever � �= 0, where
Pol•(T ∗Q) is equipped with the canonical C∞(Q)-module structure via π∗ and
DiffOp(Q) is considered as left C∞(Q)-module as usual. Moreover, 
std is com-
patible with the filtrations of the differential operator by the degree of differentiation
and the filtration of Pol•(T ∗Q) induced by the degree of the polynomials. Taking into
account the �-dependence gives the homogeneity

[

�
∂
∂�

, 
std( f )
] = 
std (H f ) (A.8)

for all f ∈ Pol•(T ∗Q) possibly depending on � as well, where H = �
∂
∂�

+Lξ . From
a physical point of view this means that 
std is dimensionless.

The bijection (A.6) allows us to pull back the operator product to Pol•(T ∗Q). This
gives an associative product, the standard-ordered star product �std, for Pol•(T ∗Q)

such that

f �std g = 
−1
std

(


std( f )
std(g)
)

(A.9)

for f , g ∈ Pol•(T ∗Q). The homogeneity properties shows that for f , g ∈ Pol•(T ∗Q)

the standard-ordered star product f �std g is a polynomial in � of degree at most the
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sum of the degree of f and g. More precisely,

H( f �std g) = H f �std g + f �std Hg (A.10)

for all f , g ∈ Pol•(T ∗Q). Hence we have unique bilinear operatorsCr : Pol•(T ∗Q)×
Pol•(T ∗Q) −→ Pol•(T ∗Q) with

f �std g =
∞
∑

r=0

�
rCr ( f , g), (A.11)

where each Cr changes the polynomial degree by −r . In particular, the sum is always
finite as long as f and g are polynomial functions.

It is a not completely obvious fact that the operators Cr in �std are actually bid-
ifferential operators and thus extend to a formal star product for C∞(T ∗Q)���. In
fact, one way to show this is to identify �std with the Fedosov star product based
on standard-ordering, see [8]. Note, however, that for functions in Pol•(T ∗Q) the
usual convergence problem of formal star products is absent since the series (A.11)
terminates after finitely many contributions.

The standard-ordered symbol calculus has one serious flaw: it lacks compatibility
with the ∗-involutions. For the differential operators DiffOp(Q) one has no intrinsic
involution.However, fixing a smooth positive densityμ ∈ �∞(|�n| T ∗Q) one induces
an inner product for C∞

0 (Q) by

〈φ,ψ〉μ =
∫

Q
φψμ, (A.12)

where φ,ψ ∈ C∞
0 (Q). We fix μ once and for all to define the adjoint of a differential

operator D ∈ DiffOp(Q) by requiring

〈D∗φ,ψ〉μ = 〈φ, Dψ〉μ (A.13)

for all φ,ψ ∈ C∞
0 (Q). A non-trivial global integration by parts then computes the

adjoint D∗, explicitly using the standard-ordered symbol calculus, which we briefly
recall:

Firstly, we define the one-form α ∈ �∞(T ∗Q) by ∇Xμ = α(X)μ, thus measuring
how μ is not covariantly constant with respect to the chosen covariant derivative ∇.
In many cases one can achieve α = 0, say for a Levi-Civita covariant derivative ∇ of
a Riemannian metric g and the corresponding Riemannian volume density μg .

Secondly, and more importantly, we note that ∇ allows to horizontally lift tangent

vectors vq ∈ TqQ to tangent vectors vhorq

∣

∣

∣

αq
∈ Tαq T

∗Q. Canonically, we can lift

one-forms βq ∈ T ∗
q Q vertically to tangent vectors βver

q

∣

∣

∣

αq
∈ Tαq T

∗Q. This gives a

splitting Tαq T
∗Q = Horαq ⊕ Verαq for all αq ∈ T ∗

q Q with the additional property,
specific for a cotangent bundle, that the horizontal and the vertical space are equipped
with a natural pairing originating from the pairing of TqQ and T ∗

q Q. Thus we obtain
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a pseudo Riemannian metric g0 on T ∗Q of split signature (n, n). This metric has a
Laplace operator 
0 ∈ DiffOp2(T ∗Q) for functions on T ∗Q, which locally is given
by


0 = ∂2

∂qi∂ pi
+ prπ

∗(�r
i j )

∂2

∂ pi∂ p j
+ π∗(�i

i j )
∂

∂ p j
, (A.14)

where (T ∗U , (q, p)) is a Darboux chart induced by a local chart (U , x) on Q and
where �r

i j are the Christoffel symbols of ∇ with respect to the chart (U , x).
Putting things together we can then consider the Neumaier operator

N = exp
( − i�

2 (
0 + Lαver )
)

, (A.15)

which is a well-defined endomorphism of Pol•(T ∗Q), since both 
0 and the Lie
derivative in direction of the vertical lift of α decrease the polynomial degree by one,
thus making the exponential series terminate on polynomial functions. Using N one
can write the integration by parts to compute the adjoint of a differential operator as


std( f )
∗ = 
std(N

2 f ) (A.16)

for all f ∈ Pol•(T ∗Q), see [8, 9]. Since (A.6) is an isomorphism, this computes the
adjoint of all differential operators explicitly, once we base their description on the
standard-ordered symbol calculus 
std.

One can then use N to pass from the standard-ordering to a Weyl ordering and,
more generally, to a κ-ordering interpolating between the two. For κ ∈ R one defines
a new ordering


κ( f ) = 
std(Nκ f ) where Nκ = exp(−i�κ(
0 + Lαver )) (A.17)

together with a corresponding κ-ordered star product

f �κg = N−1
κ

(

Nκ( f )�std Nκ(g)
)

(A.18)

for f , g ∈ Pol•(T ∗Q), see [7, 41, 42]. The case κ = 1
2 is then called theWeyl ordering


Weyl with the corresponding Weyl star product �Weyl. For the Weyl star product one
has


Weyl( f )
∗ = 
Weyl( f ) and f �Weylg = g�Weyl f (A.19)

for all f , g ∈ Pol•(T ∗Q).
Finally, we note the useful relation


std( f )φ = ι∗( f �std π∗φ) (A.20)

for all f ∈ Pol(T ∗Q) and φ ∈ C∞(Q). This allows to reconstruct the standard-
ordered representation from the standard-ordered star product.
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Appendix B: Noncommutative higher Leibniz rule

The following well-known Leibniz rules are completely algebraic, wherefore we treat
them as such.

Proposition 1 Let R be a (not necessarily associative) ring withQ ⊆ R, D1, . . . , Dn ∈
Der(R) derivations and a, b ∈ R.

(i) We have the higher Leibniz rule

Dn · · · D1(ab) =
n

∑

p=0

∑

σ∈Sh(p,n−p)

(

Dσ(n) · · · Dσ(p+1)a
)(

Dσ(p) · · · Dσ(1)b
)

.

(B.1)

Here Sh(p, n− p) denotes the set of (p, n− p)-shuffles, i.e. permutations σ ∈ Sn
such that

σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) < σ(p + 2) < · · · < σ(n).

(B.2)

(ii) Symmetrizing, it furthermore holds that

∑

σ∈Sn
Dσ(n) · · · Dσ(1)(ab)

=
∑

σ∈Sn

n
∑

p=0

(

n

p

)

(

Dσ(n) · · · Dσ(p+1)a
)(

Dσ(p) · · · Dσ(1)b
)

. (B.3)

Proof Part (i) is a straightforward induction. Use that σ ∈ Sh(p, n − p) satisfies
either σ(p) = n or σ(n) = n by (B.2). The statement (ii) is an easy consequence of
|Sh(p, n − p)| = (n

p

)

. �
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