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Abstract
In this paper, we consider minimizers of integral functionals of the type

F(u) :=
∫

�

[ 1
p

(|Du| − 1)p+ + f · u]
dx

for p > 1 in the vectorial case ofmappings u : Rn ⊃ � → R
N with N ≥ 1. Assuming

that f belongs to Ln+σ for some σ > 0, we prove thatH(Du) is continuous in � for
any continuous function H : RNn → R

Nn vanishing on {ξ ∈ R
Nn : |ξ | ≤ 1}. This

extends previous results of Santambrogio and Vespri (Nonlinear Anal 73:3832–3841,
2010) when n = 2, and Colombo and Figalli (J Math Pures Appl (9) 101(1):94–117,
2014) for n ≥ 2, to the vectorial case N ≥ 1.
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1 Introduction andmain result

In this paper, we study C1-regularity of minimizers of integral functionals of the
Calculus of Variations with widely degenerate convex integrands of the form

F(u) :=
∫

�

[
F(Du) + f · u]

dx, (1.1)

where � ⊂ R
n , n ≥ 2, is a bounded domain and u : � → R

N , N ≥ 1, a possibly
vector valued function.We concentrate ourself on the study of the prototype integrand

F(ξ) := 1
p (|ξ | − 1)p+, (1.2)

for some p > 1. The datum f is required to belong to Ln+σ for some σ > 0. The
functional F with the specific integrand F from (1.2) is the prototype for a class of
more general functionals where F is a convex function vanishing inside some convex
set, and satisfying specific growth and ellipticity assumptions. For sake of clarity,
the results in this paper are stated and proved for the functionals F(u) as in (1.1)–
(1.2). However, we expect our techniques to apply to a general class of integrands
with a widely degenerate structure as well. The functional F(u) and its associated
Euler–Lagrange system

div

((|Du| − 1
)p−1
+

Du

|Du|
)

= f (1.3)
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Higher regularity in congested traffic dynamics 1825

naturally arise in problems of optimal transport with congestion effects. In fact, min-
imizing (1.1) with N = 1 and the integrand from (1.2) is equivalent to the dual
minimization problem

min

{∫
�

H(σ ) dx : σ ∈ Lq(�,Rn), div σ = f , σ · ν∂� = 0

}
, (1.4)

where the integrand

H(σ ) = H(|σ |), with H(t) = t + 1
q t

q and 1
p + 1

q = 1

is the convex conjugate of F , or equivalently F = H∗, and σ represents the traffic
flow. The function g(t) = H ′(t) models the congestion effect. Note that σ 
→ g(σ ) is
increasing and g(0) = 1 > 0, so that moving in an empty street has nonzero cost. As
shown in [4] the unique minimizer σ(x) of (1.4) is given by Dξ F(Du(x)). We refer to
[2–4, 6, 7, 36] and the references therein for detailed motivations and for the physical
meaning of the regularity of minimizers. It would be interesting to investigate if there
are applications of the vectorial problem. However, our main motivation to consider
the very degenerate system (1.3) was from a mathematical point of view.

In connectionwith congested traffic dynamic problems the regularity ofminimizers,
as well as the regularity of weak solutions of the associated autonomous Euler–
Lagrange system has been an active field of research in recent years. For instance,
in [2, 4, 9, 24] Lipschitz regularity of minimizers has been established under suitable
assumptions on the datum f .

At this point it is worthwhile to observe that, in general, no more than Lipschitz
regularity can be expected for solutions of equations or systems as in (1.3). Indeed
when f = 0, every 1-Lipschitz continuous function solves (1.3). On the other hand,
in the scalar case N = 1 assuming f ∈ Ln+σ for some σ > n, it was shown
by Santambrogio and Vespri [36] for n = 2 and Figalli and Colombo [10, 11] for
n ≥ 2, that the composition of an arbitrary continuous function vanishing on the set
{|∇u| ≤ 1} with ∇u is continuous.

Our aim in this paper is to investigate C1-regularity of minimizers in the vectorial
case N ≥ 1. In general, regularity in the vectorial case is much more delicate and
minimizers may be irregular although the integrand is smooth, cf. [15, 38]. In this
respect, regularity can be expected only for integrands with special structure. The first
result in this direction has been obtained by Uhlenbeck [40] for the p-Laplace system
when p ≥ 2. She proved that weak solutions are of class C1,α . The scalar case had
previously been established by Ural’ceva [41], while the case p ∈ (1, 2) was obtained
by Tolksdorf [39]. As already mentioned, we cannot hope for a C1,α-regularity result
for the elliptic system (1.3), since Lipschitz continuity is optimal. However, we are
able to establish in the vectorial setting that the composition K(Du) is continuous
for any continuous function K : RNn → R vanishing on {ξ ∈ R

Nn : |ξ | ≤ 1}. This
phenomenon is somewhat reminiscent of comparable results for the Stefan problem,
in which the continuity of the energy cannot been shown, but the temperature shows
a logarithmic type continuity, cf. [16, 31].
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1826 V. Bögelein et al.

1.1 Statement of themain result

Before formulating the main regularity result, we need to introduce a few notations.
The natural energy space to deal with (local) minimizers of the integral functional F
is the Sobolev space W 1,p(�,RN ). Then, (local) minimizers in W 1,p

loc (�,RN ) of the
functional F are weak solutions of the Euler–Lagrange system

divA(Du) = f (1.5)

and vice versa, where

A(ξ) := h(|ξ |)ξ, with h(t) := (t − 1)p−1
+

t
for t ∈ R+,

for some p > 1. A function u ∈ W 1,p
loc (�,RN ) is a weak solution of the Euler–

Lagrange system (1.5) if and only if

∫
�

A(Du) · Dϕ dx = −
∫

�

f · ϕ dx

holds true for any testing function ϕ ∈ C∞
0 (�,RN ). Our main result proves the

continuity of the composition K(Du) explained above.

Theorem 1.1 Let p > 1, f ∈ Ln+σ (�,RN ) for some σ > 0 and u ∈ W 1,p
loc (�,RN )

be a weak solution of (1.5) in �. Then,

K(Du) ∈ C0(�)

for any continuous function K : RNn → R vanishing on {ξ ∈ R
Nn : |ξ | ≤ 1}.

By carefully tracing the dependence of constants on the parameter δ in the proof
of Theorem 3.6, one could determine an explicit modulus of continuity of G(Du),
where G is defined in (2.2). However, it is not clear if G(Du) is Hölder continuous in
general. For a different very degenerate elliptic equation a counterexample to Hölder
continuity is provided in [11].

Theorem 1.1 can be regarded as the vectorial analog of the regularity results of
Santambrogio and Vespri [36, Theorem 11] and of Figalli and Colombo [11, Theorem
1.1] as far as themodel type integral functional is considered. The vectorial case cannot
be treated with the methods from [11, 36], since these are tailored to the scalar case.
Nevertheless, some steps in our proof are similar, for example, the approximation
procedure by some sequence of uniformly elliptic problems. The main difference
in our proof is that we are establishing a variant of DiBenedetto’s and Manfredi’s
proofs of C1,α-regularity of minimizers to p-energy type functionals [17, 32]. It is
also inspired by the arguments from DiBenedetto and Friedman’s pioneering results
on C1,α-regularity for parabolic p-Laplacian systems [18, 20]. Roughly speaking,
our strategy is the adaptation of De Giorgi’s approach to the level of gradients in
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Higher regularity in congested traffic dynamics 1827

combination with Campanato type comparison arguments. The past has shown that
De Giorgi’s approach is extremely flexible. Therefore, we expect that our approach
can be transferred to larger classes of widely degenerate functionals in the vectorial
case. However, and in order to keep the individual steps as simple as possible, we limit
ourselves to treating the model case.

1.2 Strategy of the proof

Concerning the overall strategy of proof a few words are in order. First, we observe
that weak solutions of (1.5) are Lipschitz continuous. This has been proved in [2, 4, 9].
Moreover, functionals as in (1.1) fit into the broader context of asymptotically convex
functionals, i.e. functionals having a p-Laplacian type structure only at infinity. This
class of functionals has been widely studied, since the local Lipschitz regularity result
by Chipot and Evans [8]. In particular we mention generalizations allowing super- and
sub-quadratic growth [28, 30, 35], lower order terms [34]. Extensions to various other
settings can be found in the non-complete list [12–14, 23–27, 37].

The proof of Theorem 1.1 is divided into several steps and starts by an approx-
imation procedure. Indeed, by replacing h(t) by hε(t) := h(t) + ε for ε > 0 and
considering instead of (1.5) the Dirichlet-problem on a ball compactly contained in �

associated to the regularized coefficients hε and with Dirchlet boundary datum u we
obtain a sequence of approximating more regular mappings uε. In particular, uε has
second weak derivatives in L2

loc. In Sect. 3.1 we summarize the most important prop-
erties, i.e. uniform energy bounds, uniform quantitative interior L∞-gradient bounds,
uniform quantitative higher differentiability W 2,2-estimates, and finally strong L p-
convergence of Gδ(Duε) → Gδ(Du) in the limit δ ↓ 0. The nonlinear mapping
Gδ : RNn → R

Nn with δ ∈ (0, 1] is defined by

Gδ(ξ) := (|ξ | − 1 − δ)+
|ξ | ξ, for ξ ∈ R

Nn .

Observe that Gδ vanishes on the larger set {|ξ | ≤ 1+δ}. The reason for considering Gδ

is that on the complement of {|ξ | > 1 + δ} the system (1.5) behaves non-degenerate
in the sense that the vector field A admits a uniform ellipticity bound from below, of
course, with constants depending on δ. This point of view has already been exploited in
[11, 36]. As a first main result we prove that Gδ(Duε) is Hölder continuous uniformly
with respect to ε. However, the constants in the quantitative estimate, i.e. the Hölder
exponent and the Hölder norm, may blow up when δ ↓ 0. We distinguish between two
different regimes: the degenerate and non-degenerate regime. The degenerate regime
is characterized by the fact that themeasure of those points in a ball inwhich |Gδ(Duε)|
is far from its supremum is large, while the non-degenerate regime is characterized
by the opposite. In the non-degenerate regime we compare uε with a solution of a
linearized system. This allows us to derive a quantitative L2-excess-improvement for
G2δ(Duε) on some smaller ball (see Proposition 3.4). This step utilizes a suitable
comparison estimate and the higher integrability of uε. On the smaller ball we are
again in the non-degenerate regime, so that the argument can be iterated yielding a
Campanato-type estimate for the L2-excess of G2δ(Duε). In the degenerate regime we
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1828 V. Bögelein et al.

establish that Uε := (|Duε| − 1 − δ)2+ is a subsolution to a linear uniformly elliptic
equation with measurable coefficients; of course the ellipticity constants depend on δ

and blow up as δ ↓ 0. At this stage a De Giorgi type argument allows a reduction of
the modulus of Gδ(Duε) on some smaller ball (see Proposition 3.5). However, on this
smaller scale it is not clear whether or not we are in the degenerate or non-degenerate
regime. Therefore one needs to distinguish between these two regimes again. In the
non-degenerate regime we can conclude as above, while in the degenerate regime the
reduction of the modulus of Gδ(Duε) applies again. This argument can be iterated as
long as we stay in the degenerate regime. However, if at a certain scale the switching
from degenerate to non-degenerate occurs, the above Campanato type decay applies.
If no switching occurs, we have at any scale of the iteration process a reduction of
the modulus of Gδ(Duε). This, however, shows that the supremum of |Gδ(Duε)|—
and hence also the one of |G2δ(Duε)|—on shrinking concentric balls converges to 0.
Altogether this leads to a quantitative Hölder estimate for G2δ(Duε) which remains
stable under the already established convergence uε → u as ε ↓ 0. The final step
consits in passing to the limit δ ↓ 0 and conclude that G(Du) := (|Du|−1)+

|Du| Du is
continuous. This can be achieved by an application of Ascoli–Arzela’s theorem. It is
here where we loose control on the quantitative Hölder exponent. At this point the
continuity of K(Du) for any continuous function K vanishing on {|ξ | ≤ 1} is an
immediate consequence.

2 Notation and preliminary results

2.1 Notation

For the open ball of radius � > 0 and center xo ∈ R
n we write B�(xo) ⊂ R

n . The
mean value of a function v ∈ L1(B�(xo),Rk) is defined by

(v)xo,� := −
∫
B�(xo)

v(x) dx .

If the center is clear from the context we omit the reference to the center and write B�

respectively (v)� for short. For the standard scalar product on Euclidean spaces Rk as
well as the space Rkn of k × n matrices, we use the notation ξ · η. Finally, we use the
notion ∇u for the gradient of a scalar function u, while we use Du for a vector field
u.

Throughout this paper we abbreviate

g(t) := (t − 1)p+
t

for t ∈ R+ (2.1)

and

G(ξ) := (|ξ | − 1)+
|ξ | ξ for ξ ∈ R

k, k ∈ N. (2.2)
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Higher regularity in congested traffic dynamics 1829

Observe that

g(|ξ |)ξ = |G(ξ)|p−1G(ξ) for any ξ ∈ R
k .

Moreover, for δ ∈ (0, 1] we define

Gδ(ξ) := (|ξ | − 1 − δ)+
|ξ | ξ for ξ ∈ R

k, k ∈ N (2.3)

and note that G0 ≡ G.
Generic constants are denoted by c. They may vary from line to line. Relevant

dependencies on parameters and special constants will be suitably emphasized using
parentheses or subscripts.

2.2 Algebraic inequalities

In this section, we summarize the relevant algebraic inequalities that will be needed
later on. The first lemma follows from an elementary computation.

Lemma 2.1 For η, ζ ∈ R
k�=0, k ∈ N we have

∣∣∣∣ η

|η| − ζ

|ζ |
∣∣∣∣ ≤ 2

|η| |η − ζ |.

The next lemma can be deduced as in [29, Lemma 8.3].

Lemma 2.2 For any α > 0, there exists a constant c = c(α) such that, for all η, ζ ∈
R
k�=0, k ∈ N, we have

1
c

∣∣|η|α−1η − |ζ |α−1ζ
∣∣ ≤ (|η| + |ζ |)α−1|η − ζ | ≤ c

∣∣|η|α−1η − |ζ |α−1ζ
∣∣.

Lemma 2.3 Let δ ≥ 0 and η, ζ ∈ R
k , k ∈ N. Then, for Gδ as defined in (2.3) we have

|Gδ(η) − Gδ(ζ )| ≤ 3|η − ζ |.

Moreover, if δ > 0 and |η| ≥ 1 + δ there holds

|η − ζ | ≤ (
1 + 2

δ

) |G(η) − G(ζ )|.
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1830 V. Bögelein et al.

Proof We distinguish between different cases. If |η|, |ζ | ≤ 1+ δ the inequality holds
trivially since Gδ(η) = 0 = Gδ(ζ ). If |η|, |ζ | > 1+δ, we apply Lemma 2.1 and obtain

|Gδ(η) − Gδ(ζ )| =
∣∣∣∣ |η| − 1 − δ

|η| η − |ζ | − 1 − δ

|ζ | ζ

∣∣∣∣
≤ |η − ζ | + (1 + δ)

∣∣∣∣ η

|η| − ζ

|ζ |
∣∣∣∣

≤ 3|η − ζ |.

If |η| > 1 + δ and |ζ | ≤ 1 + δ, we have

|Gδ(η) − Gδ(ζ )| = |Gδ(η)| = |η| − 1 − δ ≤ |η| − |ζ | ≤ |η − ζ |.

The case when |η| ≤ 1+ δ and |ζ | > 1+ δ is similar, we just have to interchange the
role of η and ζ . Joining the three cases gives the first assertion of the Lemma.

Now, we come to the proof of the second assertion. First, we consider the case
|ζ | ≤ 1 in which G(ζ ) = 0. In this case we have

|η − ζ |
|G(η) − G(ζ )| = |η − ζ |

|G(η)| = |η − ζ |
|η| − 1

≤ |η| + 1

|η| − 1
= 1 + 2

|η| − 1
≤ 1 + 2

δ
.

Next, we consider the case |ζ | > 1. Recall that by assumption |η| ≥ 1 + δ. We start
with the observation that G : Rk \{|η| ≤ 1} → R

k \{0} is a one to one mapping whose

inverse mapping is given by G−1(ξ̃ ) = |ξ̃ |+1
|ξ̃ | ξ̃ . We let η̃ := G(η) and ζ̃ := G(ζ ) and

estimate with Lemma 2.1

∣∣G−1(η̃) − G−1(ζ̃ )
∣∣

|η̃ − ζ̃ | =
∣∣∣ |η̃|+1

|η̃| η̃ − |ζ̃ |+1
|ζ̃ | ζ̃

∣∣∣
|η̃ − ζ̃ | =

∣∣∣η̃ + η̃
|η̃| − ζ̃ − ζ̃

|ζ̃ |
∣∣∣

|η̃ − ζ̃ | ≤ 1 + 2

|η̃| ≤ 1 + 2

δ
.

In the second to last estimate we used |η̃| > δ. Using in the previous inequality the
definition of η̃ and ζ̃ the claim immediately follows. ��

Lemma 2.4 There exists a constant c = c(p) such that for any a > 1 and b ≥ 0 we
have

|h(b) − h(a)|b ≤ c(p)
[a − 1 + (b − 1)+]p−1

a − 1
|b − a|.
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Proof We apply Lemma 2.2 with α = p − 1 > 0 to obtain

|h(a) − h(b)|b =
∣∣∣h(a)(b − a) + (a − 1)p−1 − (b − 1)p−1

+
∣∣∣

≤ h(a)|b − a| + ∣∣(a − 1)p−1 − (b − 1)p−1
+

∣∣
≤ h(a)|b − a| + c

[
(a − 1) + (b − 1)+

]p−2|b − a|

≤ c(p)
[a − 1 + (b − 1)+]p−1

a − 1
|b − a|.

This proves the claim. ��
Lemma 2.5 For a > 1 we have

|h′(a)| ≤ p(a − 1)p−2

a
.

Moreover, for a, b > 1 there holds

∣∣h′(b)b − h′(a)a
∣∣ ≤ c(p)

[
(a − 1)p−3 + (b − 1)p−3]|b − a|.

Proof By direct computation we have for a > 1 that

h′(a) = (p − 1)(a − 1)p−2a − (a − 1)p−1

a2
= (a − 1)p−2[p − 2 + 1

a ]
a

, (2.4)

from which the first claim immediately follows. We now turn our attention to the
second claim. We may assume that 1 < a < b; otherwise we interchange the role of
a and b. In view of (2.4) we find

|h′(b)b − h′(a)a| ≤ (b − 1)p−2
∣∣ 1
a − 1

b

∣∣ + ∣∣(p − 2) + 1
a

∣∣∣∣(b − 1)p−2 − (a − 1)p−2
∣∣.

For the first term we have

(b − 1)p−2
∣∣ 1
a − 1

b

∣∣ = (b − 1)p−2

ab
|a − b| ≤ (b − 1)p−3|a − b|.

For the second term we estimate

∣∣(p − 2) + 1
a

∣∣∣∣(b − 1)p−2 − (a − 1)p−2
∣∣

≤ p
∣∣(b − 1)p−2 − (a − 1)p−2

∣∣
≤ p|p − 2| max

t∈[a,b](t − 1)p−3|b − a|
≤ p|p − 2| [(a − 1)p−3 + (b − 1)p−3]|b − a|.

This completes the proof of the lemma. ��
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1832 V. Bögelein et al.

Lemma 2.6 For any t ∈ R+ we have

g(t)2 ≤ h(t)(t − 1)p+

and

g(t)2 + g′(t)2t2 ≤ p2

p − 1

[
h(t) + h′(t)t

]
(t − 1)p+.

Proof The first assertion can be achieved, since for t ∈ R+ we have

g(t)2 = (t − 1)2p+
t2

≤ (t − 1)2p−1
+

t
= h(t)(t − 1)p+.

For the second claim, we first observe that both sides are zero for t ≤ 1. Therefore, it
remains to consider t > 1. Recalling (2.4) we compute

h(t) + h′(t)t = (p − 1)(t − 1)p−2. (2.5)

Moreover, we have

g′(t) = (t − 1)p−1[(p − 1)t + 1]
t2

,

so that

g(t)2 + g′(t)2t2 = (t − 1)2p

t2
+ (t − 1)2p−2[(p − 1)t + 1]2

t2

= (t − 1)2p−2

t2

[
(t − 1)2 + [

(p − 1)t + 1
]2]

≤ (t − 1)2p−2

t2

[
(t − 1) + [

(p − 1)t + 1
]]2

= p2(t − 1)2p−2.

Dividing the previous inequality by h(t) + h′(t)t we infer that

g(t)2 + g′(t)2t2

h(t) + h′(t)t
≤ p2(t − 1)2p−2

(p − 1)(t − 1)p−2 = p2

p − 1
(t − 1)p

holds, proving the second claimed inequality. ��

2.3 Bilinear forms

For ε ∈ [0, 1] we define

hε(t) := h(t) + ε, for t ∈ R≥0.
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We note that hε ∈ C1(R≥0) for p > 2, while for p ≤ 2, we have hε ∈ W 1,1(R>0) ∩
C1

([0, 1) ∩ (1,∞)
)
. For p = 2 we additionally have hε ∈ W 1,∞(R≥0). In any case,

hε ≡ ε on the interval [0, 1]. Moreover, we let

Aε(ξ) := hε(|ξ |)ξ, for ξ ∈ R
Nn . (2.6)

For ξ ∈ R
Nn \ {0} with |ξ | �= 1 if 1 < p < 2 we define the bilinear forms

Aε(ξ)(η, ζ ) := hε(|ξ |)η · ζ + h′
ε(|ξ |)|ξ |

N∑
i, j=1

n∑
α,β,γ=1

ξ iαηiαγ ξ
j
β ζ

j
βγ

|ξ |2 for η, ζ ∈ R
Nn2

and

Bε(ξ)(η, ζ ) := hε(|ξ |)η · ζ + h′
ε(|ξ |)|ξ |

N∑
i, j=1

n∑
α,β=1

ξ iαηiα ξ
j
β ζ

j
β

|ξ |2 for η, ζ ∈ R
Nn (2.7)

and

Cε(ξ)(η, ζ ) := hε(|ξ |)η · ζ + h′
ε(|ξ |)|ξ |

N1∑
i=1

n∑
α,β=1

ξ iαηα ξ iβζβ

|ξ |2 for η, ζ ∈ R
n . (2.8)

Observe that all forms are symmetric in the arguments η and ζ . Due to the special struc-
ture of hε and h′

ε the compositions Aε(Dv), Bε(Dv) and Cε(Dv) are well definined
for v ∈ W 1,p as integrable functions. Therefore integral calculations involving these
quantities make sense.

The next Lemma provides the relevant ellipticity and boundedness properties of
the bilinear forms Aε(ξ), Bε(ξ) and Cε(ξ). The following abbreviations

λ(t) := min
{
h(t), (p − 1)(t − 1)p−2} for t > 1,

and

�(t) := max
{
h(t), (p − 1)(t − 1)p−2} for t > 1,

and λ(t) = 0 = �(t) for 0 ≤ t ≤ 1 prove to be useful in the formulation of the
Lemma.

Lemma 2.7 Let ε ∈ [0, 1] and ξ ∈ R
Nn \ {0}. The bilinear formAε(ξ) defined above

satisfies

[
ε + λ(|ξ |)]|ζ |2 ≤ Aε(ξ)(ζ, ζ ) ≤ [

ε + �(|ξ |)]|ζ |2 for any ζ ∈ R
Nn2 .

The analogous estimates hold for the bilinear form Bε and any η, ζ ∈ R
Nn, as well

as for Cε and any η, ζ ∈ R
n.
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Proof If |ξ | ≤ 1 the inequality holds trivially. Therefore, it remains to consider the
case |ξ | > 1. We first establish the lower bound. If h′

ε(|ξ |) ≥ 0 we omit the second
term in the definition of Aε and obtain

Aε(ξ)(ζ, ζ ) ≥ hε(|ξ |)|ζ |2 ≥ [
ε + λ(|ξ |)]|ζ |2,

while for h′
ε(|ξ |) < 0 we use Cauchy-Schwarz inequality and (2.5) to conclude

Aε(ξ)(ζ, ζ ) ≥ [
ε + h(|ξ |) + h′(|ξ |)|ξ |]|ζ |2

= [
ε + (p − 1)(|ξ | − 1)p−2]|ζ |2 ≥ [

ε + λ(|ξ |)]|ζ |2.

Now, we turn our attention to the upper bound. If h′
ε(|ξ |) ≥ 0 we have

Aε(ξ)(ζ, ζ ) ≤ [
hε(|ξ |) + h′

ε(|ξ |)|ξ |]|ζ |2
= [

ε + (p − 1)(|ξ | − 1)p−2]|ζ |2 ≤ [
ε + �(|ξ |)]|ζ |2,

while for h′
ε(|ξ |) < 0 we obtain

Aε(ξ)(ζ, ζ ) ≤ hε(|ξ |)|ζ |2 ≤ [
ε + �(|ξ |)]|ζ |2.

This proves the claim for the bilinear form Aε. The corresponding estimates for Bε

and Cε follow in the same way. ��

It should also be mentioned that the coercive symmetric bilinear forms fulfill
Cauchy-Schwarz inequality. In particular, we have

∣∣Cε(ξ)(η, ζ )
∣∣ ≤ √

Cε(ξ)(η, η)
√
Cε(ξ)(ζ, ζ ) for any η, ζ ∈ R

n .

In the next Lemma we put together the monotonicity and growth properties of the
vector field Aε.

Lemma 2.8 Let ε ∈ [0, 1] and ξ, ξ̃ ∈ R
k with |ξ | > 1. Then, we have

∣∣Aε(ξ̃ ) − Aε(ξ)
∣∣ ≤ c(p)

[
ε + [(|ξ | − 1) + (|ξ̃ | − 1)+]p−1

|ξ | − 1

]
|ξ̃ − ξ |

and

(
Aε(ξ̃ ) − Aε(ξ)

) · (ξ̃ − ξ) ≥
[
ε + min{1, p − 1}

2p+1

(|ξ | − 1)p

|ξ |(|ξ | + |ξ̃ |)
]
|ξ̃ − ξ |2.
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Proof The first inequality results from the following chain of inequalities

|Aε(ξ̃ ) − Aε(ξ)| ≤ hε(|ξ |)|ξ̃ − ξ | + ∣∣h(|ξ̃ |) − h(|ξ |)∣∣|ξ̃ |

≤ hε(|ξ |)|ξ̃ − ξ | + c
[(|ξ | − 1) + (|ξ̃ | − 1)+]p−1

|ξ | − 1

∣∣|ξ̃ | − |ξ |∣∣

≤ c(p)

[
ε + [(|ξ | − 1) + (|ξ̃ | − 1)+]p−1

|ξ | − 1

]
|ξ̃ − ξ |.

From the third last line to the second last we used Lemma 2.4. For the proof of the
second inequality we abbreviate

ξs := ξ + s(ξ̃ − ξ), for s ∈ [0, 1].

Keeping this in mind we compute

(
Aε(ξ̃ ) − Aε(ξ)

) · (ξ̃ − ξ)

=
∫ 1

0

d

ds
Aε(ξs) ds · (ξ̃ − ξ)

=
∫ 1

0

[
hε(|ξs |)(ξ̃ − ξ) + h′

ε(|ξs |)
|ξs | ξs · (ξ̃ − ξ) ξs

]
ds · (ξ̃ − ξ)

=
∫ 1

0
Bε(ξs)(ξ̃ − ξ, ξ̃ − ξ) ds

≥
∫ 1

0

[
ε + λ(|ξs |)

]
ds |ξ̃ − ξ |2

≥
[
ε + min{1, p − 1}

|ξ | + |ξ̃ |
∫ 1

0
(|ξs | − 1)p−1

+ ds

]
|ξ̃ − ξ |2.

In turnwe usedLemma2.7 and the elementary inequality (|ξs |−1)+ ≤ |ξs | ≤ |ξ |+|ξ̃ |.
Now, we distinguish whether or not |ξ̃ | ≤ |ξ |. If |ξ̃ | ≤ |ξ |, then

|ξs | ≥ (1 − s)|ξ | − s|ξ̃ | ≥ (1 − 2s)|ξ | > 1 ∀ s ∈ [
0, |ξ |−1

2|ξ |
)
.

For s ∈ [
0, |ξ |−1

4|ξ |
]
this implies a bound from below in the form

(|ξs | − 1)+ = |ξs | − 1 ≥ (1 − 2s)|ξ | − 1 ≥
[
1 − |ξ | − 1

2|ξ |
]
|ξ | − 1 = 1

2 (|ξ | − 1).

So it follows that

∫ 1

0
(|ξs | − 1)p−1

+ ds ≥
∫ |ξ |−1

4|ξ |
0

(|ξs | − 1)p−1
+ ds = 1

2p+1

(|ξ | − 1)p

|ξ |
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holds true. In the case that |ξ̃ | > |ξ |, we estimate |ξs | from below by

|ξs | ≥ s|ξ̃ | − (1 − s)|ξ | > (2s − 1)|ξ | > 1 ∀ s ∈ ( |ξ |+1
2|ξ | , 1

]
.

Therefore, for s ∈ [ 3|ξ |+1
4|ξ | , 1

]
we obtain

(|ξs | − 1)+ = |ξs | − 1 ≥ (2s − 1)|ξ | − 1 ≥
[
3|ξ | + 1

2|ξ | − 1

]
|ξ | − 1 = 1

2 (|ξ | − 1).

This yields

∫ 1

0
(|ξs | − 1)p−1

+ ds ≥
∫ 1

3|ξ |+1
4|ξ |

(|ξs | − 1)p−1
+ ds ≥ 1

2p+1

(|ξ | − 1)p

|ξ | .

Inserting this above, we obtain the second claim of the Lemma. ��
Lemma 2.9 Let ε, δ ∈ (0, 1] and ξ, ξ̃ ∈ R

Nn. Then, we have

ε
1
2 |ξ − ξ̃ |2 + ∣∣Gδ(ξ) − Gδ(ξ̃ )

∣∣p ≤ ε
1
2 |ξ |2 + cε− 1

2
(
Aε(ξ̃ ) − Aε(ξ)

) · (ξ̃ − ξ)

for a constant c = c(p, δ).

Proof If |ξ |, |ξ̃ | ≤ 1+δ, we haveGδ(ξ) = 0 = Gδ(ξ̃ ). Therefore, the desired inequality
follows from the second inequality in Lemma 2.8 after omitting the positive second
term in the bracket on the right-hand side.

Therefore, it remains to consider the casewhere either |ξ | > 1+δ or |ξ̃ | > 1+δ.We
again distinguish two cases and start with |ξ | ≥ |ξ̃ |. Note that this implies |ξ | > 1+ δ.
If p ≥ 2 we use Lemma 2.3 to conclude

∣∣Gδ(ξ̃ ) − Gδ(ξ)
∣∣p ≤ 3p|ξ̃ − ξ |p ≤ 2p−23p|ξ |p−2|ξ̃ − ξ |2,

while in the case p < 2 we use Young’s inequality and Lemma 2.3 to obtain

∣∣Gδ(ξ̃ ) − Gδ(ξ)
∣∣p = |ξ | p(2−p)

2 |ξ | p(p−2)
2

∣∣Gδ(ξ̃ ) − Gδ(ξ)
∣∣p

≤ 1
2ε

1
2 |ξ |p + cε− 2−p

2p |ξ |p−2
∣∣Gδ(ξ̃ ) − Gδ(ξ)

∣∣2
≤ 1

2ε
1
2 |ξ |2 + cε− 1

2 |ξ |p−2|ξ̃ − ξ |2,

for a constant c = c(p). Combining both cases, taking into account the elementary
inequalities 1

|ξ | ≤ 2
|ξ |+|ξ̃ | and |ξ | ≤ (1+ 1

δ
)(|ξ | − 1), and finally applying Lemma 2.8,

we obtain

ε
1
2 |ξ̃ − ξ |2 + ∣∣Gδ(ξ) − Gδ(ξ̃ )

∣∣p ≤ ε
1
2 |ξ̃ − ξ |2 + 1

2ε
1
2 |ξ |2 + c (|ξ | − 1)p+

ε
1
2 |ξ |(|ξ̃ | + |ξ |)

∣∣ξ̃ − ξ
∣∣2

≤ 1
2ε

1
2 |ξ |2 + c ε− 1

2
(
Aε(ξ̃ ) − Aε(ξ)

) · (ξ̃ − ξ),
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where c = c(p, δ). This proves the claimed inequality in this case. In the remaning
case, i.e. |ξ̃ | > |ξ |, we obtain a similar estimate. We only have to replace on the
right-hand side |ξ |2 by |ξ̃ |2. Then, we use the estimate |ξ̃ |2 ≤ 2(|ξ̃ − ξ |2 + |ξ |2) and
absorb ε

1
2 |ξ̃ − ξ |2 by Lemma 2.8 into the second term on the right-hand side. In this

way, we obtain

ε
1
2 |ξ̃ − ξ |2 + ∣∣Gδ(ξ) − Gδ(ξ̃ )

∣∣p ≤ 1
2ε

1
2 |ξ̃ |2 + c ε− 1

2
(
Aε(ξ̃ ) − Aε(ξ)

) · (ξ̃ − ξ)

≤ ε
1
2 |ξ |2 + c ε− 1

2
(
Aε(ξ̃ ) − Aε(ξ)

) · (ξ̃ − ξ),

proving the claim also in this case. ��
In the following Lemma we quantify the remainder term in the linearization of Aε.

In the application, it can be assumed that the linearization only takes place in points ξ

with |ξ | > 1 in a quantifiable way. The precise statement is

Lemma 2.10 Let ε ∈ [0, 1], and ξ, ξ̃ ∈ R
Nn with |ξ | ≥ 1+ 1

4μ and |ξ |, |ξ̃ | ≤ 1+ 2μ
for some μ > 0. Then, we have

∣∣Bε(ξ)(ξ̃ − ξ, ζ ) − (
Aε(ξ̃ ) − Aε(ξ)

) · ζ
∣∣ ≤ c(p) μp−3|ξ̃ − ξ |2|ζ |, ∀ζ ∈ R

Nn .

Proof We distinguish two cases. We start with the case |ξ − ξ̃ | ≤ 1
8μ. For s ∈ [0, 1]

we write ξs := ξ + s(ξ̃ − ξ). Note that

|ξs | ≥ |ξ | − s|ξ̃ − ξ | ≥ 1 + 1
4μ − 1

8μ = 1 + 1
8μ ∀ s ∈ [0, 1]. (2.9)

Similarly to the computations in the proof of Lemma 2.8 we have

(
Aε(ξ̃ ) − Aε(ξ)

) · ζ =
∫ 1

0

d

ds
Aε

(
ξ + s(ξ̃ − ξ)

) · ζ ds

=
∫ 1

0

[
hε(|ξs |)(ξ̃ − ξ) + h′

ε(|ξs |)
|ξs | ξs · (ξ̃ − ξ) ξs

]
· ζ ds

=
∫ 1

0
Bε(ξs)(ξ̃ − ξ, ζ ) ds.

This allows us to re-write

∣∣Bε(ξ)(ξ̃ − ξ, ζ ) − (
Aε(ξ̃ ) − Aε(ξ)

) · ζ
∣∣ =

∣∣∣∣
∫ 1

0

[Bε(ξ) − Bε(ξs)
]
(ξ̃ − ξ, ζ ) ds

∣∣∣∣.

We decompose and estimate the integrand appearing on the right-hand side and obtain
in this way

∣∣[Bε(ξ) − Bε(ξs)
]
(ξ̃ − ξ, ζ )

∣∣ ≤ I + II,
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where

I := ∣∣h(|ξ |) − h(|ξs |)
∣∣|ξ̃ − ξ ||ζ |

II :=
∣∣∣∣
(
h′(|ξ |)|ξ |ξ

i
α ξ

j
β

|ξ |2 − h′(|ξs |)|ξs |
(ξs)

i
α (ξs)

j
β

|ξs |2
)

(ξ̃ − ξ)iαζ
j

β

∣∣∣∣

In view of Lemma 2.4 we have

∣∣hε(|ξ |) − hε(|ξs |)
∣∣ ≤ c(p)

[|ξ | − 1 + (|ξs | − 1)+
]p−1

|ξs |(|ξ | − 1)
|ξ − ξs |

≤ c(p) μp−3|ξ − ξ̃ |,

which immediately implies

I ≤ c(p)μp−3|ξ − ξ̃ |2|ζ |.

For the second term we use Lemma 2.1, Lemma 2.5, the assumptions on ξ, ξ̃ and (2.9)
to obtain

II ≤
[ n∑

α,β=1

N∑
i, j=1

(
h′(|ξ |)|ξ |ξ

i
α ξ

j
β

|ξ |2 − h′(|ξs |)|ξs |
(ξs)

i
α (ξs)

j
β

|ξs |2
)2] 1

2

|ξ̃ − ξ ||ζ |

=
∣∣∣∣h′(|ξ |)|ξ |ξ ⊗ ξ

|ξ |2 − h′(|ξs |)|ξs |ξs ⊗ ξs

|ξs |2
∣∣∣∣|ξ̃ − ξ ||ζ |

≤
[
|h′(|ξ |)||ξ |

∣∣∣∣ξ ⊗ ξ

|ξ |2 − ξs ⊗ ξs

|ξs |2
∣∣∣∣ + ∣∣h′(|ξ |)|ξ | − h′(|ξs |)|ξs |

∣∣
]
|ξ̃ − ξ ||ζ |

≤
[
2|h′(|ξ |)| |ξ | + |ξs |

|ξ | |ξ − ξs | + ∣∣h′(|ξ |)|ξ | − h′(|ξs |)|ξs |
∣∣
]
|ξ̃ − ξ ||ζ |

≤ c(p)

[
(|ξ | − 1)p−3 |ξ | + |ξs |

|ξ | + (|ξ | − 1)p−3 + (|ξs | − 1)p−3
]
|ξ̃ − ξ |2|ζ |

≤ c(p) μp−3|ξ̃ − ξ |2|ζ |.

Inserting the preceding estimates above, we find that

∣∣Bε(ξ)(ξ̃ − ξ, ζ ) − (
Aε(ξ̃ ) − Aε(ξ)

) · ζ
∣∣ ≤ c(p) μp−3|ξ̃ − ξ |2|ζ |.

At this stage it remains to consider the case |ξ − ξ̃ | > 1
8μ. Note that

Bε(ξ)(ξ̃ − ξ, ζ ) = ε(ξ̃ − ξ) · ζ + B0(ξ)(ξ̃ − ξ, ζ ).
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Therefore, by Lemma 2.7 and the assumption μ < 8|ξ̃ − ξ | we obtain

∣∣Bε(ξ)(ξ̃ − ξ, ζ ) − (
Aε(ξ̃ ) − Aε(ξ)

) · ζ
∣∣

= ∣∣B0(ξ)(ξ̃ − ξ, ζ ) − (
h(|ξ̃ |)ξ̃ − h(|ξ |)ξ) · ζ

∣∣
≤

[
�(|ξ |)|ξ̃ − ξ | + (|ξ̃ | − 1)p−1

+ + (|ξ | − 1)p−1
]
|ζ |

≤ c(p)
[
μp−2|ξ̃ − ξ | + μp−1]|ζ |

≤ c(p) μp−3|ξ̃ − ξ |2|ζ |.

Joining both cases yields the claim. ��

Lemma 2.11 For any ε ∈ [0, 1], any ball BR ⊂ R
n and any v ∈ W 2,2

loc (BR,RN ) we
have

∣∣D[
g(|Dv|)Dv

]∣∣2 ≤ 2p2

p − 1
Aε(Dv)

(
D2v, D2v

)
(|Dv| − 1)p+ a.e. in BR,

where g is defined in (2.1).

Proof For α ∈ {1, . . . , n} we compute

∣∣Dα

[
g(|Dv|)Dv

]∣∣2 = ∣∣g(|Dv|)DαDv + g′(|Dv|)Dα|Dv|Dv
∣∣2

≤ 2
[
g(|Dv|)2∣∣DαDv

∣∣2 + g′(|Dv|)2|Dv|2∣∣Dα|Dv|∣∣2].

Summing with respect to α ∈ {1, . . . , n}, we obtain

∣∣D[
g(|Dv|)Dv

]∣∣2 =
n∑

α=1

∣∣Dα

[
g(|Dv|)Dv

]∣∣2

≤ 2
[
g(|Dv|)2|D2v|2 + g′(|Dv|)2|Dv|2∣∣∇|Dv|∣∣2].

In the preceding inequality we replace the term g(|Dv|)2 by h(|Dv|)(|Dv| − 1)p+,
which is possible by an application of the first inequality in Lemma 2.6. Moreover,
we would also like to replace g′(|Dv|)2|Dv|2 by h′(|Dv|)|Dv|(|Dv| − 1)p+. To this
aim we have to distinguish two cases. If h′(|Dv|) ≥ 0, we use the second inequality
in Lemma 2.6 to replace g′(|Dv|)2|Dv|2 by [h(|Dv|) + h′(|Dv|)|Dv|](|Dv| − 1)p+.
Thereby, we may omit the positive term g(|Dv|)2 on the left-hand side. Inserting this
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above and using also Kato’s inequality in the form |∇|Dv|| ≤ |D2v|, we obtain
∣∣D[

g(|Dv|)Dv
]∣∣2

≤ p2

p − 1
(|Dv| − 1)p+

[
h(|Dv|)|D2v|2 + [

h(|Dv|) + h′(|Dv|)|Dv|]∣∣∇|Dv|∣∣2]

≤ 2p2

p − 1
(|Dv| − 1)p+

[
h(|Dv|)|D2v|2 + h′(|Dv|)|Dv|∣∣∇|Dv|∣∣2]

≤ 2p2

p − 1
Aε(Dv)

(
D2v, D2v

)
(|Dv| − 1)p+.

Otherwise, if h′(|Dv|) < 0 we use Kato’s inequality twice and again the second
inequality in Lemma 2.6 to obtain

∣∣D[
g(|Dv|)Dv

]∣∣2 ≤ 2
[
g(|Dv|)2 + g′(|Dv|)2|Dv|2]|D2v|2

≤ 2p2

p − 1
(|Dv| − 1)p+

[
h(|Dv|) + h′(|Dv|)|Dv|]|D2v|2

≤ 2p2

p − 1
(|Dv| − 1)p+

[
h(|Dv|)|D2v|2 + h′(|Dv|)|Dv|∣∣∇|Dv|∣∣2]

≤ 2p2

p − 1
Aε(Dv)

(
D2v, D2v

)
(|Dv| − 1)p+.

This proves the asserted inequality also in the second case. ��

3 Proof of Theorem 1.1

In this section we will prove Theorem 1.1 under the hypothesis that Propositions 3.4
and 3.5 below are true. The remainder of the paper is then devoted to the proof of
those two propositions.

Here and in the following we denote by u ∈ W 1,p(�,RN ) a weak solution of (1.5).
We first observe that u ∈ W 1,∞

loc (�,RN ); cf [2, 4] for the scalar case and [9] for the
vectorial case. Therefore, we may always assume that Du is locally bounded in �.

3.1 Regularization

The first step in the proof consists in the construction of more regular approximating
solutions. To this aimwe consider a fixed ball BR ≡ BR(yo) � �.We let ε ∈ (0, 1] and
p := max{p, 2} and recall the definition of the regularized coefficients Aε from (2.6).
By uε ∈ u + W 1,p

0 (BR,RN ) we denote the unique weak solution of the regularized
elliptic system

{
divAε(Duε) = f , in BR,

uε = u, on ∂BR .
(3.1)
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The weak formulation of (3.1) is

∫
BR

Aε(Duε) · Dϕ dx = −
∫
BR

f · ϕ dx ∀ϕ ∈ W 1,p
0

(
BR,RN )

. (3.2)

Note that uε ∈ W 1,∞
loc (BR,RN ) ∩ W 2,2

loc (BR,RN ). This can be retrieved similarly as
in [33].

Lemma 3.1 For any ε ∈ (0, 1] we have uε ∈ W 1,∞
loc (BR,RN ) ∩ W 2,2

loc (BR,RN ).
Moreover, for any ball B2�(xo) � BR the (uniform with respect to ε) quantitative
L∞-gradient bound

sup
B�(xo)

|Duε| ≤ c

[
−
∫
B2�(xo)

(|Duε|p + ε|Duε|2 + 1
)
dx

] 1
p

with c = c(n, N , p, σ, ‖ f ‖Ln+σ (BR)) and the quantitative W 2,2-estimate

∫
B�(xo)

|D2uε|2 dx ≤ c

ε�2

[ ∫
B2�(xo)

(|Duε|p + ε|Duε|2
)
dx + �2

ε

∫
B2�(xo)

| f |2 dx
]

with c = c(n, N , p) hold true.

Our first observation is a uniform energy bound for Duε.

Lemma 3.2 There exists a constant c = c(n, p) such that for any ε ∈ (0, 1] we have
∫
BR

(|Duε|p + ε|Duε|2
)
dx ≤ c

∫
BR

(|Du|p + ε|Du|2 + 1
)
dx + c Rn‖ f ‖

p
p−1
Ln(BR).

Proof The desired estimate can be deduced with a standard argument by testing the
weak formulation (3.2) with the test-function ϕ := uε − u. Indeed, we have

∫
BR

[
(|Duε| − 1)p+ + ε|Duε|2

]
dx

≤
∫
BR

hε(|Duε|)Duε · Duε dx

=
∫
BR

hε(|Duε|)Duε · Du dx −
∫
BR

f · (uε − u) dx .
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By Young’s inequality we obtain for the first integral on the right-hand side

∫
BR

hε(|Duε|)Duε · Du dx ≤
∫
BR

[
(|Duε| − 1)p−1

+ |Du| + ε|Duε||Du|] dx

≤ 1
4

∫
BR

(|Duε| − 1)p+ dx + c
∫
BR

|Du|p dx

+ ε
2

∫
BR

(|Duε|2 + |Du|2) dx .

The second integral on the right-hand side is estimated with Hölder’s and Sobolev’s
inequality, so that

∣∣∣∣
∫
BR

f · (uε − u) dx

∣∣∣∣

≤
[ ∫

BR

| f |n dx
] 1

n
[ ∫

BR

|uε − u| n
n−1 dx

] n−1
n

≤ c

[ ∫
BR

| f |n dx
] 1

n
∫
BR

|Duε − Du| dx

≤ c |BR | p−1
p

[ ∫
BR

| f |n dx
] 1

n
[ ∫

BR

[
(|Duε| − 1)p+ + |Du|p + 1

]
dx

] 1
p

≤ c Rn‖ f ‖
p

p−1
Ln(BR) + 1

4

∫
BR

[
(|Duε| − 1)p+ + |Du|p + 1

]
dx,

where c = c(n, p). We insert these inequalities above and reabsorb the terms contain-
ing Duε from the right-hand side into the left. In this way, we get

∫
BR

[
(|Duε| − 1)p+ + ε|Duε|2

]
dx

≤ c
∫
BR

[|Du|p + ε|Du|2 + 1
]
dx + c Rn‖ f ‖

p
p−1
Ln(BR),

with a constant c = c(n, p). The desired uniform energy bound can easily be deduced
from the preceding inequality. ��

The next lemma ensures strong convergence of the approximating solutions, in the
sense that Gδ(Duε) strongly converges to Gδ(Du) in L p.

Lemma 3.3 Let δ ∈ (0, 1] and uε with ε ∈ (0, 1] be the unique solution of theDirichlet
problem (3.1). Then, we have

Gδ(Duε) → Gδ(Du) in L p(BR,RNn) as ε ↓ 0.
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Proof Testing (3.2) and the weak formulation of (1.5) with ϕ := uε − u we have

∫
BR

(
Aε(Duε) − Aε(Du)

) · (Duε − Du) dx = ε

∫
BR

Du · (Du − Duε) dx .

Using Lemma 2.9 and Young’s inequality we find

∫
BR

[
ε

1
2 |Duε − Du|2 + ∣∣Gδ(Duε) − Gδ(Du)

∣∣p] dx

≤ ε
1
2

∫
BR

|Du|2 dx + cε− 1
2

∫
BR

(
Aε(Duε) − Aε(Du)

) · (Duε − Du) dx

≤ ε
1
2

∫
BR

|Du|2 dx + cε
1
2

∫
BR

|Du||Duε − Du| dx

≤ ε
1
2

∫
BR

|Duε − Du|2 dx + cε
1
2

∫
BR

|Du|2 dx .

Re-absorbing the first integral from the right into the left-hand side, we obtain

∫
BR

∣∣Gδ(Duε) − Gδ(Du)
∣∣p dx ≤ cε

1
2

∫
BR

|Du|2 dx .

The integral on the right-hand side is finite, since Du ∈ L∞
loc(�,RNn). There-

fore, the preceding inequality implies strong convergence Gδ(Duε) → Gδ(Du) in
L p(BR,RNn) as ε ↓ 0. ��

3.2 Hölder-continuity ofGı(Du�)

We recall the definition of Gδ from (2.3). In this subsection we will prove that Gδ(Duε)

is locally Hölder continuous in BR for any δ ∈ (0, 1]. This will be achieved in Theo-
rem 3.6. Thereby, it is essential that all constants are independent of ε.

The proof of Theorem 3.6 relies on the distinction between two different regimes—
the degenerate and non-degenerate regime. In the non-degenerate regimewewill prove
an excess-decay estimate for Gδ(Duε) (see Proposition 3.4), while in the degenerate
regime we establish a reduction of the modulus of Gδ(Duε) (see Proposition 3.5).
The precise setup is as follows. We consider a ball BR � � and denote by uε the
unique weak solution of the Cauchy–Dirichlet problem (3.1). For 0 < ro < R we let
r1 := 1

2 (R+ ro). Then, by Lemma 3.1 and Lemma 3.2 we have (uniform with respect
to ε) boundedness of Duε on Br1 . More precisely, there exists a constant

M = M
(
n, N , p, R − ro, ‖Du‖L p(BR), ...

)
(3.3)

independent of ε > 0, such that ‖Duε‖L∞(Br1 ) ≤ M . We may assume that M ≥ 3.
Now, we consider a center xo ∈ Bro and a radius � ≤ r1 such that B2�(xo) ⊂ Br1 . On
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1844 V. Bögelein et al.

this ball we have

sup
B2�(xo)

|Duε| ≤ 1 + δ + μ (3.4)

for some μ > 0 such that

1 + δ + μ ≤ M . (3.5)

Next, for ν ∈ (0, 1) we define the super-level set of |Duε| by

Eν
�(xo) := {

x ∈ B�(xo) : |Duε(x)| − 1 − δ > (1 − ν)μ
}
.

The definition of the super-level set allows us to distinguish between the degenerate
regimewhich is characterized by themeasure condition |B�(xo)\Eν

�(xo)| ≥ ν|B�(xo)|
and the non-degenerate regime which is characterized by the reversed inequality.
Roughly speaking, in the degenerate regime the set of points with |Duε| small has
large measure, while in the non-degenerate regime the set of points with |Duε| small is
small inmeasure.We startwith the latter one. In the followingwe abbreviateβ := σ

n+σ
.

Proposition 3.4 Let ε, δ ∈ (0, 1] and

0 < δ < μ. (3.6)

Then, there exist ν = ν(n, N , p, σ, ‖ f ‖Ln+σ (BR), M, δ) ∈ (0, 1
4 ] and �̂ =

�̂(n, N , p, σ,‖ f ‖Ln+σ (BR), M, δ) ∈ (0, 1] such that there holds:Whenever B2�(xo) ⊂
Br1 is a ball with radius � ≤ �̂ and center xo ∈ Bro , and uε is the unique weak solu-
tion of the Dirichlet problem (3.1) and hypothesis (3.4) and (3.5) and the measure
condition

∣∣B�(xo) \ Eν
�(xo)

∣∣ < ν
∣∣B�(xo)

∣∣ (3.7)

are satisfied, then the limit

�xo := lim
r↓0

(G2δ(Duε)
)
xo,r

(3.8)

exists, and the excess decay estimate

−
∫
Br (xo)

∣∣G2δ(Duε) − �xo

∣∣2 dx ≤
( r
�

)2β
μ2 for any 0 < r ≤ � (3.9)

holds true. Moreover, we have

|�xo | ≤ μ.

The statement for the degenerate regime is as follows.
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Proposition 3.5 Let ε, δ ∈ (0, 1], μ > 0 and ν ∈ (0, 1
4 ]. Then, there exist constants

κ = κ(n, p, σ, ‖ f ‖n+σ , M, δ, ν) ∈ [2−β/2, 1)andco = co(n, p, ‖ f ‖n+σ , M, δ, ν) ≥
1 such that the there holds: Whenever B2�(xo) ⊂ Br1 is a ball with center xo ∈ Bro ,
and uε is the unique weak solution of the Dirichlet problem (3.1) and hypothesis (3.4)
and (3.5) and the measure condition

∣∣B�(xo) \ Eν
�(xo)

∣∣ ≥ ν
∣∣B�(xo)

∣∣ (3.10)

are satisfied, then, either

μ2 < co�
β,

or

sup
B�/2(xo)

∣∣Gδ(Duε)
∣∣ ≤ κμ

hold true.

We postpone the proofs of Proposition 3.4 and 3.5 to Chapters 4–6 and continue with
formulating the main result of this subsection.

Theorem 3.6 Let ε, δ ∈ (0, 1] and uε be the unique weak solution of the Dirichlet
problem (3.1) in BR. Then, Gδ(Duε) is Hölder continuous in Bro for any 0 < ro <

R with Hölder-exponent αδ ∈ (0, 1) and a Hölder constant cδ both depending on
n, N , p, σ, ‖ f ‖Ln+σ (BR), M and δ.

Proof By

ν = ν(n, N , p, σ, ‖ f ‖Ln+σ (BR), M, δ) ∈ (0, 1
4 ]

and

�̂ = �̂(n, N , p, σ, ‖ f ‖Ln+σ (BR), M, δ) ∈ (0, 1]

we denote the constants from Proposition 3.4 and by

κ = κ(n, p, σ, ‖ f ‖n+σ , M, δ, ν) ∈ [2−β/2, 1),

co = co(n, p, ‖ f ‖n+σ , M, δ, ν) ≥ 1

we denote the ones from Proposition 3.5. The dependence of ν on the structural
parameters implies that κ depends on n, N , p, σ, ‖ f ‖n+σ , M and δ. Finally, we let
μ = M − 1 − δ and

�∗ = min

{
�̂,

[
(κμ)2

co

] 1
β
}
.
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1846 V. Bögelein et al.

Weconsider a ball B2�(xo) ⊂ Br1 with center xo ∈ Bro and� ≤ �∗ as described above.
On this ball we have (3.3)–(3.5) satisfied. Our aim now is to prove that G2δ(Duε) is
Hölder continuous in Bro with Hölder exponent

α := − log κ

log 2
∈ (

0, β
2

]
.

In turn, substituting 2δ by δ, this proves the claim of the proposition. We proceed in
two steps.

Step 1: We prove that the limit

�xo := lim
r↓0

(G2δ(Duε)
)
xo,r

exists and that

−
∫
Br (xo)

∣∣G2δ(Duε) − �xo

∣∣2 dx ≤ 8
( r
�

)2α
μ2 for any 0 < r ≤ � (3.11)

holds true for a constant c = c(n, p, σ, ‖ f ‖n+σ , M, δ). To this aim, we define for
i ∈ N0 radii

�i := 2−i� and μi := κ iμ

and observe that

μi = κ iμ ≤ 2−αiμ =
(�i

�

)α

μ for any i ∈ N. (3.12)

Now, suppose that assumption (3.10) holds on B�(xo). Then, Proposition 3.5 yields
that either μ2 < co�β or

sup
B�1 (xo)

|Gδ(Duε)| ≤ κμ = μ1.

Note that the first alternative cannot happen, since it would imply

μ2 < co�
β ≤ co�

β∗ ≤ κ2μ2.

Hence, we conclude that (3.4) holds on B�1(xo)withμ = μ1. If the measure condition
(3.10) is satisfiedwith� = �1 andμ = μ1, then a second application of Proposition 3.5
yields that either μ2

1 < co�
β
1 or

sup
B�2 (xo)

|Gδ(Duε)| ≤ κμ1 = μ2.
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As before, the first alternative cannot happen, since it would imply

μ2
1 < co�

β
1 ≤ 2−β(κμ)2 ≤ κ2μ2

1.

Assume now that (3.10) is satisfied for i = 1, . . . , io − 1 up to some io ∈ N, i.e. that
(3.10) holds true on the balls B�i (xo) with μ = μi . Then, we iteratively conclude that

sup
B�i (xo)

|Gδ(Duε)| ≤ μi , for i = 0, . . . , io. (3.13)

Now assume that (3.10) fails to hold for some io ∈ N0. If μio > δ, the hypothesis of
Proposition 3.4 are satisfied on B�io

(xo) and we conclude that the limit

�xo := lim
r↓0

(G2δ(Duε)
)
xo,r

exists and that

−
∫
Br (xo)

∣∣G2δ(Duε) − �xo

∣∣2 dx ≤
( r

�io

)2β
μ2
io for any 0 < r ≤ �io .

Moreover, we have

|�xo | ≤ μio . (3.14)

Therefore, we obtain from the preceding inequality and (3.12) that

−
∫
Br (xo)

∣∣G2δ(Duε) − �xo

∣∣2 dx ≤
(�io

�

)2α( r

�io

)2β
μ2 ≤

( r
�

)2α
μ2

holds true for any 0 < r ≤ �io . For a radius r ∈ (�io , �] there exists i ∈ {0, . . . , io}
such that �i+1 < r ≤ �i . Using (3.13), (3.14) and (3.12) we obtain

−
∫
Br (xo)

∣∣G2δ(Duε) − �xo

∣∣2 dx ≤ 2 sup
B�i (xo)

|Gδ(Duε)|2 + 2|�xo

∣∣2

≤ 4μ2
i ≤ 4

(�i

�

)2α
μ2 ≤ 8

( r
�

)2α
μ2.

Combining the preceding two inequalities, we have shown (3.11) provided μio > δ.
In the case μio ≤ δ, we have G2δ(Duε) = 0 on B�io

(xo). Combining this with
(3.13) and keeping in mind that G2δ(Duε) ≤ Gδ(Duε), we obtain

sup
B�i (xo)

∣∣G2δ(Duε)
∣∣ ≤ μi , for any i ∈ {0, 1, . . . }. (3.15)
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In the final case when (3.10) holds for any i ∈ N, then (3.13) is satisfied for any i ∈ N

and hence we obtain (3.15) also in this case. (3.15), however, implies

�xo := lim
r↓0

(G2δ(Duε)
)
xo,r

= 0.

For r ∈ (0, �]we find i ∈ {0, 1, . . . } such that �i+1 < r ≤ �i . Then, (3.15) and (3.12)
imply

−
∫
Br (xo)

∣∣G2δ(Duε) − �xo

∣∣2 dx ≤ sup
B�i (xo)

∣∣G2δ(Duε)
∣∣2

≤ μ2
i ≤

(�i

�

)2α
μ2 ≤ 2

( r
�

)2α
μ2.

This establishes (3.11) in the remaining cases.
Step 2: Here, we prove that the Lebesgue representative x 
→ �x of G2δ(Duε)

is Hölder continuous in Bro . The proof is standard once the excess decay (3.11) is
established. For convenience of the reader we give the details. We consider x1, x2 ∈
Bro . If r := |x1 − x2| ≤ �∗ we define x̃ := 1

2 (x1 + x2) and obtain from Step 1 that

∣∣�x1 − �x2

∣∣2 = −
∫
Br/2(x̃)

|�x1 − �x2 |2 dx

≤ c(n)

[
−
∫
Br (x1)

|G2δ(Duε) − �x1 |2 dx + −
∫
Br (x2)

|G2δ(Duε) − �x2 |2 dx
]

≤ c(n)

( |x1 − x2|
�∗

)2α

μ2.

This can be re-written in the form

∣∣�x1 − �x2

∣∣ ≤ c

( |x1 − x2|
�∗

)α

μ.

Otherwise, if r = |x1 − x2| > �∗, we trivially have

∣∣�x1 − �x2

∣∣ ≤ 2μ ≤ 2

( |x1 − x2|
�∗

)α

μ.

Together, this establishes that the Lebesgue representative x 
→ �x of G2δ(Duε)

is Hölder continuous in Bro with Hölder exponent α. Note that α admits the same
dependencies as κ , i.e. α = α(n, N , p, σ, ‖ f ‖n+σ , M, δ). This finishes the proof of
the theorem. ��
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3.3 Continuity ofG(Du)

In this subsection it is important that all estimates are independent of ε. More precisely,
constants might depend on δ, but are independent of ε.

Proof of Theorem 1.1 We let ε ∈ (0, 1] and consider a fixed ball BR ≡ BR(yo) � �.
By uε we denote the weak solution to (3.1) constructed in Sect. 3.1. Next, we fix
δ ∈ (0, 1] and r ∈ (0, R). From Theorem 3.6 we know that Gδ(Duε) is Hölder
continuous in Br with Hölder-exponent αδ ∈ (0, 1) and constant cδ , both depending
at most on n, N , p, σ, ‖ f ‖n+σ , M , and δ. FromLemma 3.3 we know that Gδ(Duε) →
Gδ(Du) in L p(BR,RNn) as ε ↓ 0. This implies that there exists a subsequence εi ↓ 0
as i → ∞ such that Gδ(Duεi ) → Gδ(Du) a.e. in BR . On the other hand, by Ascoli-
Arzelà’s Theoremwe conclude thatGδ(Duεi ) converges uniformly on compact subsets
of BR . Therefore the limit Gδ(Du) is Hölder continuous in Br with Hölder-exponent
αδ ∈ (0, 1) and constant cδ . In particular,Gδ(Du) is continuous in Br for any δ ∈ (0, 1].
Moreover, we have Gδ(Du) → G(Du) uniformly in Br as δ ↓ 0. Indeed

∣∣Gδ(Du) − G(Du)
∣∣ =

∣∣∣∣(|Du| − 1 − δ)+
Du

|Du| − (|Du| − 1)+
Du

|Du|
∣∣∣∣

= ∣∣(|Du| − 1 − δ)+ − (|Du| − 1)+
∣∣ ≤ δ

in Br . As the uniform limit of a sequence of continuous functions, G(Du) itself is
continuous on Br . Observe that G(Du) is also uniformly continuous on Br .

Now, let K : RNn → R be any continuous function vanishing on {ξ ∈ R
Nn :

|ξ | ≤ 1}. Since u ∈ W 1,∞
loc (�,RN ), we find M > 0 such that |Du| ≤ M on Br . By

ω : R+ → R+ we denote the modulus of continuity of K on {ξ ∈ R
Nn : |ξ | ≤ M},

i.e. for any ξ, ζ ∈ R
Nn with |ξ |, |ζ | ≤ M we have |K(ξ)−K(ζ )| ≤ ω(|ξ − ζ |). Next,

given ε ∈ (0, 1) we choose δ > 0 such that

∣∣G(Du(x)) − G(Du(y))
∣∣ < ε for any x, y ∈ Br with |x − y| < δ. (3.16)

We now distinguish two cases. First, we assume |Du(x)| ≤ 1 + √
ε. If |Du(x)| ≥ 1

we use K = 0 on {|ξ | ≤ 1} to conclude

|K(Du(x))| =
∣∣∣∣K(Du(x)) − K

( Du(x)

|Du(x)|
)∣∣∣∣ ≤ ω

(∣∣∣Du(x) − Du(x)

|Du(x)|
∣∣∣
)

≤ ω
(√

ε
)
.

The preceding estimate trivially holds if |Du(x)| ≤ 1. Moreover, by (3.16) we have

(|Du(y)| − 1
)
+ = ∣∣G(Du(y))

∣∣ ≤ ∣∣G(Du(y)) − G(Du(x))
∣∣ + ∣∣G(Du(x))

∣∣
≤ ε + (|Du(x)| − 1

)
+ ≤ ε + √

ε ≤ 2
√

ε.

This implies |Du(y)| ≤ 1 + 2
√

ε. Similarly as above we conclude

|K(Du(y))| ≤ ω
(
2
√

ε
)
.
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Combining the estimates from above, we end up with

∣∣K(Du(x)) − K(Du(y))
∣∣ ≤ ω

(√
ε
) + ω

(
2
√

ε
) ≤ 2ω

(
2
√

ε
)
.

Now, we consider the case |Du(x)| > 1 + √
ε. Here, Lemma 2.3 and (3.16) imply

|Du(x) − Du(y)| ≤ (
1 + 2√

ε

) ∣∣G(Du(x)) − G(Du(y))
∣∣ ≤ ε + 2

√
ε ≤ 3

√
ε ,

proving

∣∣K(Du(x)) − K(Du(y))
∣∣ ≤ ω

(
3
√

ε
)
.

Hence, K(Du) is continuous on Br . Since Br � BR � � were arbitrary, we have
shown that K(Du) is continuous in �. This completes the proof of the theorem. ��

As mentioned above, we have now finished the proof of the main theorem The-
orem 1.1 under the condition that Propositions 3.4 and 3.5 are true. The rest of the
paper is now devoted to the proof of those two propositions.

4 Conclusions from the differentiated system

4.1 Themain integral inequality for second derivatives

Throughout this subsection we assume as a general requirement that uε : BR → R
N

is a weak solution to the regularized system (3.1). Instead of uε, we write u for the
sake of simplicity. In contrast, we will continue to use the subscript ε in the notation
for the coefficients hε and its associated bilinear forms, such as Cε. We recall that the
bilinear forms have been defined in Sect. 2.3.

For some index β = 1, . . . , n we differentiate the regularized system (3.1) with
respect to xβ and obtain

∫
BR

Dβ

[
hε(|Du|)Du

] · Dϕ dx =
∫
BR

f · Dβϕ dx, (4.1)

for any ϕ ∈ W 1,p
0 (BR,RN ). We have

Dβ

[
hε(|Du|)Dαu

i ] = hε(|Du|)DαDβu
i + h′

ε(|Du|)|Du|Dαui Dγ u ju j
xγ xβ

|Du|2

=
[
hε(|Du|)δi jδγα + h′

ε(|Du|)|Du|Dαui Dγ u j

|Du|2
]
u j
xγ xβ

.
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In (4.1) we choose the testing function ϕ = ζφ(|Du|)Dβu, where ζ ∈ C1
0(BR) is

non-negative and φ ∈ W 1,∞
loc (R≥0,R≥0) is non-decreasing. Note that

Dαϕ = ζφ(|Du|)DαDβu + ζφ′(|Du|)Dα|Du|Dβu + Dαζφ(|Du|)Dβu.

The resulting equations are then summed with respect to β from 1 to n. This leads to

∫
BR

[
hε(|Du|)|D2u|2 + h′

ε(|Du|)|Du|∣∣∇|Du|∣∣2]φ(|Du|)ζ dx

+
∫
BR

[
hε(|Du|)|Du|∣∣∇|Du|∣∣2 + h′

ε(|Du|)∣∣Du∇|Du|∣∣2]φ′(|Du|)ζ dx

+
∫
BR

[
hε(|Du|)|Du|∇|Du| · ∇ζ + h′

ε(|Du|)Du∇|Du| · Du∇ζ︸ ︷︷ ︸
=Cε(Du)(∇|Du|,∇ζ )|Du|

]
φ(|Du|) dx

=
∫
BR

f · Dβ

[
ζφ(|Du|)Dβu

]
dx .

Now, we compute the right-hand side.

∫
BR

f · Dβ

[
ζφ(|Du|)Dβu

]
dx

=
∫

�

f · DβDβu φ(|Du|)ζ dx +
∫

�

f · φ′(|Du|)Du∇|Du|ζ dx

+
∫

�

f · φ(|Du|)Du∇ζ dx

= R1 + R2 + R3,

with the obvious meaning of Ri . For the first term, we have by Young’s inequality

R1 ≤ τ

∫
BR

hε(|Du|)|D2u|2φ(|Du|)ζ dx + 1
τ

∫
BR

| f |2φ(|Du|)
hε(|Du|) ζ dx

for any τ ∈ (0, 1). Similarly, we get

R2 ≤ τ

∫
BR

hε(|Du|)|Du|∣∣∇|Du|∣∣2φ′(|Du|)ζ dx + 1
τ

∫
BR

| f |2φ′(|Du|)|Du|
hε(|Du|) ζ dx

and

R3 ≤
∫

�

| f |φ(|Du|)|Du||∇ζ | dx .
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Inserting this above and re-absorbing the terms containing second derivatives from
the right-hand side into the left, we obtain

∫
BR

[
(1 − τ)hε(|Du|)|D2u|2 + h′

ε(|Du|)|Du|∣∣∇|Du|∣∣2]φ(|Du|)ζ dx

+
∫
BR

[
(1 − τ)hε(|Du|)∣∣∇|Du|∣∣2 + h′

ε(|Du|)|Du|
∣∣Du∇|Du|∣∣2

|Du|2
]
φ′(|Du|)|Du|ζ dx

+
∫
BR

Cε(Du)
(∇|Du|, ∇ζ

)
φ(|Du|)|Du| dx

≤ 1
τ

∫
BR

| f |2
[

φ(|Du|)
hε(|Du|) + φ′(|Du|)|Du|

hε(|Du|)
]
ζ dx +

∫
BR

| f |φ(|Du|)|Du||Dζ | dx

for any non-negative function ζ ∈ C1
0(BR). In the preceding inequality the parameter

τ is at our disposal. We choose τ = 1
2 min{1, p − 1}. For the first factor, i.e. the term

[. . . ], in the integrand of the first integral on the left-hand side we have

(1 − τ)hε(|Du|)|D2u|2 + h′
ε(|Du|)|Du|∣∣∇|Du|∣∣2 − 1

2Aε(Du)
(
D2u, D2u

)
= 1

2 max{0, 2 − p}hε(|Du|)|D2u|2 + 1
2h

′
ε(|Du|)|Du|∣∣D|Du|∣∣2 ≥ 0.

In fact, if h′
ε(|Du|) ≥ 0 the inequality is obvious. If otherwise h′

ε(|Du|) < 0, which
can only happen if p < 2 and |Du| > 1, the result follows by an application of Kato’s
inequality and (2.4). Indeed

1
2 max{0, 2 − p}hε(|Du|)|D2u|2 + 1

2h
′
ε(|Du|)|Du|∣∣∇|Du|∣∣2

≥ 1
2

[
(2 − p)h(|Du|) + h′(|Du|)|Du|

]
|D2u|2

= 1
2

[
(2 − p)

(|Du| − 1)p−1
+

|Du| + (|Du| − 1)p−2
+ [(p − 2)|Du| + 1]

|Du|
]
|D2u|2

= (|Du| − 1)p−2
+

2|Du|
[
(2 − p)(|Du| − 1) + (p − 2)|Du| + 1

]
|D2u|2

= (p − 1)
(|Du| − 1)p−2

+
2|Du| |D2u|2 ≥ 0.

For the term in brackets of the second integral on the left-hand side a similar compu-
tation applies. The result of the calculation is

(1 − τ)hε(|Du|)∣∣D|Du|∣∣2 + h′
ε(|Du|)|Du|

∣∣Du∇|Du|∣∣2
|Du|2

− 1
2Cε(Du)

(∇|Du|,∇|Du|) ≥ 0.

Using the last and second last inequality above, we obtain an inequality which can be
interpreted in two ways. On the one hand it can be seen as an energy inequality for
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the second derivatives of u. On the other hand—by discarding on the left-hand side
the two non-negative terms containing second derivatives—the inequality implies that
|Du| is a subsolution of an elliptic equation with measurable coefficients.

Lemma 4.1 Let ε ∈ (0, 1] and u = uε a weak solution to the regularized system
(3.1) on BR. Then, for any non-decreasing function φ ∈ W 1,∞

loc (R≥0,R≥0) and any
non-negative testing function ζ ∈ C1

0(BR) we have

∫
BR

[
Aε(Du)

(
D2u, D2u

)
φ(|Du|) + Cε(Du)

(∇|Du|,∇|Du|)φ′(|Du|)|Du|
]
ζ dx

+ 2
∫
BR

Cε(Du)
(∇|Du|,∇ζ

)
φ(|Du|)|Du| dx

≤ c
∫
BR

| f |2
[

φ(|Du|)
hε(|Du|) + φ′(|Du|)|Du|

hε(|Du|)
]
ζ dx + 2

∫
BR

| f |φ(|Du|)|Du||∇ζ | dx,

where c := 4
min{1,p−1} . �

4.2 Subsolution to an elliptic equation

We start by showing that (|Duε| − 1 − δ)2+ is a sub-solution of a certain elliptic
equation. More precisely

Lemma 4.2 Let ε ∈ (0, 1] and uε ∈ W 1,p(BR,RN ) be a weak solution of the reg-
ularized system (3.1) satisfying (3.4) and (3.5) on B�(xo) ⊂ Bro � BR. Then, the
function

Uε := (|Duε| − 1 − δ
)2
+ (4.2)

is a sub-solution of a linear elliptic equation on B�(xo), in the sense that

∫
B�(xo)

AαβDαUεDβζ dx ≤ c
∫
B�(xo)

| f |2ζ dx + cμ

∫
B�(xo)

| f ||Dζ | dx, (4.3)

holds true for any non-negative test function ζ ∈ C1
0(B�(xo)) and with a universal

constant c = c(p, M, δ). The coefficients Aαβ are given by

Aαβηαζβ = |Duε|Cε(Duε)(η, ζ ) for η, ζ ∈ R
n,

where Cε is the bilinear form defined in (2.8).

Proof We apply Lemma 4.1 with φ(t) = (t − 1 − δ)+. Due to Lemma 2.7 the first
two integrals on the left-hand side are non-negative and therefore can be discarded. In
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this way, we obtain with c = 4
min{1,p−1} that

L :=
∫
B�(xo)

|Duε|Cε(Duε)
(∇|Duε|,∇ζ

)
φ(|Duε|) dx

≤ c
∫
B�(xo)

| f |2
[

φ(|Duε|)
hε(|Duε|) + φ′(|Duε|)|Duε|

hε(|Duε|)
]
ζ dx

+
∫
B�(xo)

| f |φ(|Duε|)|Duε||Dζ | dx =: R (4.4)

holds true for any non-negative ζ ∈ C1
0(B�(xo)). To proceed further we compute

φ(t)

hε(t)
≤ φ(t)

h(t)
= t(t − 1 − δ)+

(t − 1)p−1 ≤ t2

δ p−1

and

φ′(t)t
hε(t)

≤ φ′(t)t
h(t)

= χ {t>1+δ}t2

(t − 1)p−1 ≤ t2

δ p−1 .

The above inequalities together with the general assumptions (3.4), (3.5) allow to
estimate

φ(|Duε|)
hε(|Duε|) + φ′(|Duε|)|Duε|

hε(|Duε|) ≤ 2M2

δ p−1 .

Moreover, we have φ(|Duε|)|Duε| ≤ Mμ. In this way, we obtain for the right-hand
side in (4.4) the estimate

R ≤ c
∫
BR

| f |2ζ dx + cμ

∫
BR

| f ||Dζ | dx,

where c = c(p, M, δ). Now, we consider the left-hand side in (4.4). Observe that
∇Uε = 2φ(|Duε|)∇|Duε|, so that by the linearity of Cε(Duε)with respect to the first
variable we have

Cε(Duε)
(∇|Duε|,∇ζ

)
φ(|Duε|) = 1

2Cε(Duε)
(∇Uε,∇ζ

)
.

For the left-hand side this has the consequence that

L = 1
2

∫
B�(xo)

|Duε|Cε(Duε)
(∇Uε,∇ζ

)
dx = 1

2

∫
B�(xo)

Aαβ(x)DαUεDβζ dx

holds true. Here, we have taken into account the definition of the coefficients Aαβ .
Altogether we have shown the claim (4.3). ��
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The coefficients Aαβ in (4.3) can be explicitly written as

Aαβ := hε(|Duε|)|Duε|
[
δαβ + h′

ε(|Duε|)Dαuε · Dβuε

hε(|Duε|)|Duε|
]
.

They are only degenerate elliptic due to the factor hε(|Duε|)|Duε| which, for ε = 0,
vanishes on the set {|Du| ≤ 1}. On the other hand Uε has its support in the set
BR∩{|Duε| ≥ 1+δ}. This allowsus tomodify the coefficients on BR∩{|Duε| ≤ 1+δ}.
This idea will lead us to an energy estimate for Uε in the next lemma.

Lemma 4.3 Let ε ∈ (0, 1] and uε ∈ W 1,p(BR,RN ) be a weak solution of the regu-
larized system (3.1) satisfying (3.4) and (3.5) on B�(xo) ⊂ Bro � BR and denote by
Uε the function defined in (4.2). Then, for any k > 0 and any τ ∈ (0, 1) we have

∫
Bτ�(xo)

|D(Uε − k)+|2 dx

≤ c

(1 − τ)2�2

∫
B�(xo)

(Uε − k)2+ dx + c ‖ f ‖2n+σ

∣∣B�(xo) ∩ {Uε > k}∣∣1− 2
n + 2β

n ,

where c = c(n, p, M, δ) and β = σ
n+σ

.

Proof We let Aαβ be the coefficients defined in Lemma 4.2 and extend them from
BR ∩{|Duε| > 1+δ} to the complement BR ∩{|Duε| ≤ 1+δ} by letting Aαβ ≡ δαβ .
The new coefficients Ãαβ are thus defined by

Ãαβ(x) :=
{

δαβ, on
{
x ∈ BR : |Duε(x)| ≤ 1 + δ

}
,

Aαβ(x), on
{
x ∈ BR : |Duε(x)| > 1 + δ

}
.

From this definition and Lemma 4.2 we observe that Uε is a weak sub-solution also
with the modified coefficients. More precisely, we have that

∫
B�(xo)

ÃαβDαUεDβζ dx ≤ c
∫
B�(xo)

| f |2ζ dx + cμ

∫
B�(xo)

| f ||Dζ | dx, (4.5)

for any non-negative ζ ∈ C1
0(BR).

We now investigate the upper bound and ellipticity of the coefficients Ãαβ . We will
show that there exist 0 < λ ≤ � < ∞ both depending at most on p, M and δ such
that

λ|ζ |2 ≤ Ãαβ(x)ζαζβ ≤ �|ζ |2

for any x ∈ Bro and ζ ∈ R
n . We start with the former one. On the set where |Duε| ≤

1 + δ the upper bound holds with � = 1, while on the set where |Duε| > 1 + δ we
have from Lemma 2.7 that
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Ãαβζαζβ = |Duε|Cε(Duε)(ζ, ζ )

≤ |Duε|
[
ε + �(|Duε|)

]|ζ |2

=
[
ε|Duε| + max

{
(|Duε| − 1)p−1, (p − 1)|Duε|(|Duε| − 1)p−2}]|ζ |2

≤
[
M + pM p

δ

]
|ζ |2,

which proves the claimwith� = �(p, M, δ) = M+ pM p

δ
. Similarly, on the set where

|Duε| ≤ 1+ δ the ellipticity holds with λ = 1, while on the set where |Duε| > 1+ δ

we have from Lemma 2.7 that

Ãαβζαζβ = |Duε| Cε(Duε)(ζ, ζ )

≥ |Duε|
[
ε + λ(|Duε|)

]|ζ |2
≥ min

{
(|Duε| − 1)p−1, (p − 1)|Duε|(|Duε| − 1)p−2}|ζ |2

≥ min{1, p − 1} δ p−1|ζ |2,

which proves the claim with λ = λ(p, δ) = min{1, p − 1} δ p−1.
Now, the claimed energy estimate follows in a standard way by choosing in (4.5)

a test-function of the form ζ = η2(Uε − k)+ with a cut-off function η ∈ C1
0(B�(xo))

with η ≡ 1 on Bτ�(xo) and |∇η| ≤ 2
τ�
, cf. [19, Chapter 10.1]. ��

4.3 Energy estimates

Here, we assume that the hypothesis of Proposition 3.4 are in force. Our starting point
is again Lemma 4.1. This time we keep the two non-negative terms containing the
quadratic forms Aε and Cε on the left-hand side. For any non-decreasing function
φ ∈ W 1,∞

loc (R≥0,R≥0) and any non-negative function ζ = η2 ∈ C1
0(B�(xo)) we have

∫
B�(xo)

[
Aε(Duε)

(
D2uε, D

2uε

)
φ(|Duε|)

+ Cε(Duε)
(∇|Duε|,∇|Duε|

)
φ′(|Duε|)|Duε|

]
η2 dx

≤ 4

∣∣∣∣
∫
B�(xo)

Cε(Duε)
(∇|Duε|,∇η

)
φ(|Duε|)|Duε|η dx

∣∣∣∣
+ c(p)

∫
B�(xo)

| f |2
[

φ(|Duε|)
hε(|Duε|) + φ′(|Duε|)|Duε|

hε(|Duε|)
]
η2 dx

+ 4
∫
B�(xo)

| f |φ(|Duε|)|Duε||∇η|η dx

=: 4I + c(p)II + 4III
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with the obvious meaning of I–III. For III we have

4III ≤ 2
∫
B�(xo)

[
| f |2φ′(|Duε|)|Duε|

hε(|Duε|) η2 + hε(|Duε|)φ
2(|Duε|)|Duε|
φ′(|Duε|) |∇η|2

]
dx .

Moreover, we estimate the integral I by Cauchy-Schwarz inequality and obtain

4I ≤
∫
B�(xo)

Cε(Duε)
(∇|Duε|,∇|Duε|

)
φ′(|Duε|)|Duε|η2 dx

+ 4
∫
B�(xo)

Cε(Duε)
(∇η,∇η

)φ2(|Duε|)|Duε|
φ′(|Duε|) dx

≤
∫
B�(xo)

Cε(Duε)
(∇|Duε|,∇|Duε|

)
φ′(|Duε|)|Duε|η2 dx

+ 4
∫
B�(xo)

[
ε + �(|Duε|)

]φ2(|Duε|)|Duε|
φ′(|Duε|) |∇η|2 dx .

From the second to last inequality we used the upper bound from Lemma 2.7 to
estimate the second integral. Inserting the results above and re-absorbing the first term
from the right into the left, we find that

∫
B�(xo)

Aε(Duε)
(
D2uε, D

2uε

)
φ(|Duε|)η2 dx

≤ 4
∫
B�(xo)

[
ε + �(|Duε|) + hε(|Duε|)

]φ2(|Duε|)|Duε|
φ′(|Duε|) |∇η|2 dx

+ c
∫
B�(xo)

| f |2 φ(|Duε|) + φ′(|Duε|)|Duε|
hε(|Duε|) η2 dx (4.6)

holds true with a constant c = c(p). We now choose φ(t) := (t − 1)p+φ̃(t), where

φ̃ ∈ W 1,∞
loc (R≥0,R≥0) is non-decreasing. Note that

φ′(t) = (t − 1)p−1
+

[
pφ̃(t) + (t − 1)+φ̃′(t)

]
.

For t ∈ [0, 1 + 2μ] we compute

[
ε + �(t) + hε(t)

]φ2(t)t

φ′(t)

≤ 2
[
ε + �(t)

] (t − 1)p+1
+ t φ̃2(t)

pφ̃(t) + (t − 1)+φ̃′(t)

≤ 2
[
ε(t − 1)p+1

+ t + max
{
(t − 1)2p+ , (p − 1)(t − 1)2p−1

+ t
}] φ̃2(t)

pφ̃(t) + (t − 1)+φ̃′(t)
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≤ c
[
εμp+2 + μ2p] φ̃2(t)

pφ̃(t) + (t − 1)+φ̃′(t)

≤ c(p, M, δ)
μ2pφ̃2(t)

pφ̃(t) + (t − 1)+φ̃′(t)
.

In turn we used δ ≤ μ ≤ M from (3.5) and (3.6), which implies on the one hand
t ≤ 1+ 2μ ≤ (

2+ 1
δ
)μ, and on the other hand μ2 ≤ max{δ2−p, M2−p}μp. Next, we

compute

φ(t) + φ′(t)t
hε(t)

≤ φ(t) + φ′(t)t
h(t)

= [
(t − 1)+φ̃(t) + pt φ̃(t) + (t − 1)+φ̃′(t)t

]
t

≤ c(p, M, δ) [φ̃(t) + φ̃′(t)t].

Due to assumptions (3.4) and (3.6) we know that |Duε| ≤ 1 + 2μ on B�(xo). This
allows us to use the preceding estimates in (4.6) to bound the right-hand side from
above. Moreover, by Lemma 2.11 the left-hand side in (4.6) can be estimated from
below. Proceeding in this way we obain

∫
B�(xo)

∣∣D[
g(|Duε|)Duε

]∣∣2φ̃(|Duε|)η2 dx

≤ c
∫
B�(xo)

μ2pφ̃2(|Duε|)
pφ̃(|Duε|) + (|Duε| − 1)+φ̃′(|Duε|)

|∇η|2 dx

+ c
∫
B�(xo)

| f |2 [
φ̃(|Duε|) + φ̃′(|Duε|)|Duε|

]
η2 dx, (4.7)

for any η ∈ C1
0(B�(xo)). The constant c depends only on p, M , and δ.

Different concrete choices of φ̃ in (4.7) result in two important energy inequalities.
The first one is

Lemma 4.4 Let ε ∈ (0, 1] and uε ∈ W 1,p(BR,RN ) be a weak solution of the
regularized system (3.1) such that hypotheses (3.4), (3.5) and (3.6) are in force on
B�(xo) ⊂ Bro � BR. Then, for any τ ∈ (0, 1) there holds

∫
Bτ�(xo)

∣∣D[
g(|Duε|)Duε

]∣∣2dx ≤ c

[
μ2p

�2(1 − τ)2
+ �− 2n

n+σ ‖ f ‖2Ln+σ (BR)

]
|B�|

for some universal constant c = c(n, p, M, δ).

Proof We apply inequality (4.7) with the choice φ̃ ≡ 1. The cut-off function η ∈
C1
0(B�(xo)) is chosen such that η ≡ 1 in Bτ�(xo), 0 ≤ η ≤ 1, and |∇η| ≤ 2

(1−τ)�
.
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This leads us to

∫
Bτ�(xo)

∣∣D[
g(|Duε|)Duε

]∣∣2 dx ≤ c
∫
B�(xo)

[
μ2p|∇η|2 + | f |2] dx

≤ cμ2p

(1 − τ)2
�n−2 + c �n− 2n

n+σ ‖ f ‖2Ln+σ (BR)

with a constant c = c(n, p, M, δ), which is the claimed energy estimate. ��
The second energy estimate is

Lemma 4.5 Let ν ∈ (0, 1
4 ], ε ∈ (0, 1] and uε ∈ W 1,p(BR,RN ) be a weak solution

of the regularized system (3.1) such that hypotheses (3.4), (3.5), (3.6) and (3.7) are in
force on B�(xo) ⊂ Bro � BR. Then, for any τ ∈ (0, 1) we have

∫
Eν

τ�(xo)

∣∣D[
g(|Duε|)Duε

]∣∣2 dx ≤ c

[
μ2pν

�2(1 − τ)2
+ �− 2n

n+σ

ν
‖ f ‖2Ln+σ (BR)

]
|B�|,

for a constant c = c(n, p, M, δ).

Proof This time we choose

φ̃(t) = (t − 1 − δ − k)2+ with k := (1 − 2ν)μ

in inequality (4.7), and obtain

∫
B�(xo)

η2
∣∣D[

g(|Duε|)Duε

]∣∣2(|Duε| − 1 − δ − k
)2
+ dx

≤ c
∫
B�(xo)

μ2p
(|Duε| − 1 − δ − k

)3
+

p(|Duε| − 1 − δ − k) + 2(|Duε| − 1)
|∇η|2 dx

+ c
∫
B�(xo)

| f |2 |Duε|
(|Duε| − 1 − δ − k

)
+η2 dx .

On B�(xo) ∩ {|Duε| > 1 + δ + k} we have
(|Duε| − 1 − δ − k

)
+ ≤ μ − k = μ − (1 − 2ν)μ = 2νμ,

and

p
(|Duε| − 1 − δ − k

) + 2(|Duε| − 1) ≥ 2(δ + k) ≥ 2k ≥ μ,

since ν ≤ 1
4 . Again, we choose η ∈ C1

0(B�(xo)) to be a non-negative cut-off function
with η ≡ 1 in Bτ�(xo), 0 ≤ η ≤ 1, and |∇η| ≤ 2

(1−τ)�
. This, together with the fact
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that |Duε| ≤ 1+ 2μ on B�(xo), allows us to estimate the right-hand side in the above
inequality. Indeed, we have

∫
Bτ�(xo)

∣∣D[
g(|Duε|)Duε

]∣∣2(|Duε| − 1 − δ − k
)2
+ dx

≤ c

[
ν3μ2p+2

(1 − τ)2
�n−2 + νμ2

∫
B�(xo)

| f |2 dx
]
.

Therefore it remains to estimate the left-hand side from below. The integral has to be
taken only on the set of points x ∈ B�(xo) with |Duε(x)| − 1 − δ > k = (1 − 2ν)μ.
We shrink this set to those points satisfying the stronger condition |Duε(x)|−1−δ >

(1 − ν)μ > k, i.e. to Eν
τ�(xo). On this set we have

|Duε| − 1 − δ − k ≥ (1 − ν)μ − (1 − 2ν)μ = νμ.

Inserting this above we conclude that

ν2μ2
∫
Eν

τ�(xo)

∣∣D[
g(|Duε|)Duε

]∣∣2 dx ≤ c

[
ν3μ2p+2

�2(1 − τ)2
+ νμ2�− 2n

n+σ ‖ f ‖2Ln+σ (BR)

]
|B�|

holds true. This proves the claim. ��

5 The non-degenerate regime

The aim of this section is to prove Proposition 3.4. Throughout this section we
presume the following general assumptions. For given ε ∈ (0, 1] we denote by
uε ∈ W 1,p(BR,RN ) the unique weak solution of the regularized system (3.1). More-
over, we assume that for some δ ∈ (0, 1] and μ > δ and a ball B2�(xo) ⊂ Br1 with
� ≤ 1 assumptions (3.4)–(3.6) are in force. We denote by

�(xo, �) := −
∫
B�(xo)

∣∣Duε − (Duε)xo,�
∣∣2 dx (5.1)

the L2-excess of Duε on B�(xo), i.e. the L2-mean square deviation of Duε from its
mean value (Duε)xo,�.

5.1 Higher integrability

An ingredient in the proof of Proposition 3.4 is the following higher integrability
result.

Lemma 5.1 Under the general assumptions of Sect. 5 there existϑ = ϑ(n, p, σ, M, δ)

∈ (0,min{ 12 , n+σ
2 − 1}] and c = c(n, p, M, δ) such for any ξ ∈ R

Nn satisfying

1 + δ + 1
4μ ≤ |ξ | ≤ 1 + δ + μ,
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we have

−
∫
B�/2(xo)

|Duε − ξ |2(1+ϑ)dx ≤ c

[
−
∫
B�(xo)

|Duε − ξ |2dx
]1+ϑ

+ c −
∫
B�(xo)

(�| f |)2(1+ϑ)dx .

Proof We consider a ball Bs(zo) ⊂ B�(xo). We test the weak form (3.2) of the elliptic
system by the testing function

ϕ := η2w, where w := uε − (uε)zo,s − ξ(x − zo)

and η ∈ C1
0(Bs(zo)) is a standard cut-off function with η ≡ 1 in Bs/2(zo), 0 ≤ η ≤ 1,

and |∇η| ≤ 4
s . We obtain

0 =
∫
Bs (zo)

[
Aε(Duε) · Dϕ + f · ϕ

]
dx

=
∫
Bs (zo)

[(
Aε(Duε) − Aε(ξ)

) · Dϕ + f · ϕ
]
dx

=
∫
Bs (zo)

[(
Aε(Duε) − Aε(ξ)

) · [
η2Dw + 2η∇η ⊗ w

] + f · ϕ
]
dx .

We use the monotonicity of Aε from Lemma 2.8 in order to estimate the first term
from below. Due to our assumption on ξ and (3.4) we have |ξ | + |Duε| ≤ 5|ξ | and
therefore obtain

∫
Bs (zo)

η2
(
Aε(Duε) − Aε(ξ)

) · Dw dx ≥
[
ε + λ

(|ξ | − 1)p

|ξ |2
] ∫

Bs (zo)
η2|Dw|2 dx,

where λ = 1
5·2p+1 min{1, p − 1}. To bound the second integral from above we use the

structural upper bound from Lemma 2.8. Moreover, we observe that (|Duε| − 1)+ ≤
4(|ξ | − 1) due to our assumption on ξ . This allows us to estimate

2

∣∣∣∣
∫
Bs (zo)

η
(
Aε(Duε) − Aε(ξ)

) · ∇η ⊗ w dx

∣∣∣∣
≤ c

[
ε + (|ξ | − 1)p−2] ∫

Bs (zo)
η|Dw||w||∇η| dx

≤
[
ε + 1

2λ
(|ξ | − 1)p

|ξ |2
] ∫

Bs (zo)
η2|Dw|2 dx

+ c
[
ε + |ξ |2(|ξ | − 1)p−4] ∫

Bs (zo)
|w|2|∇η|2 dx .
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for a constant c = c(p). Re-absorbing terms on the left-hand side, we find that

1
2λ

(|ξ | − 1)p

|ξ |2
∫
Bs (zo)

η2|Dw|2 dx

≤ c
[
1 + |ξ |2(|ξ | − 1)p−4] ∫

Bs (zo)
|w|2|Dη|2 dx +

∫
Bs (zo)

| f ||w| dx,

where c = c(p). Due to the assumption on ξ , the assumption (3.5), and the particular
choice of η, we conclude with an application of Hölder’s and Sobolev–Poincaré’s
inequality a reverse Hölder inequality of the form

−
∫
Bs/2(zo)

|Dw|2 dx ≤ c

s2
−
∫
Bs (zo)

|w|2 dx + c s2 −
∫
Bs (zo)

| f |2 dx

≤ c

[
−
∫
Bs (zo)

|Dw| 2n
n+2 dx

] n+2
n + c �2 −

∫
Bs (zo)

| f |2 dx,

with a constant c = c(n, p, M, δ). The dependence of c upon M only occurs in the
sub-quadratic case of p < 2. The claim, i.e. the higher integrability, now follows with
Gehring’s lemma, since Dw = Duε − ξ , cf. [1, Theorem 3.22], [22, Theorem 2.4]
and [42, Theorem 3.3]. Note that ϑ can always be diminished if necessary. ��

5.2 Comparison with a linear system

In this section we will consider the weak solution v ∈ uε + W 1,2
0 (B�/2(xo),RN ) of

the linear elliptic system

∫
B�/2(xo)

Bε

(
(Duε)xo,�/2

)
(Dv, Dϕ) dx = 0, (5.2)

for any ϕ ∈ W 1,2
0 (B�/2(xo),RN ) as comparison function to our solution uε of the

regularized elliptic system (3.1). Recall that Bε has been defined in (2.7).

Lemma 5.2 Let the general assumptions of Sect. 5 be in force and assume that

1 + δ + 1
4μ ≤ ∣∣(Duε)xo,�

∣∣ ≤ 1 + δ + μ. (5.3)

Then, there existsϑ = ϑ(n, p, M, σ, δ) ∈ (0,min{ 12 , n+σ
2 −1}] and c = c(n, p, M, δ,

‖ f ‖Ln+σ (BR)) such that

−
∫
B�/2(xo)

|Duε − Dv|2 dx ≤ c

[
�(xo, �)

μ2

]ϑ

�(xo, �) + c �2β.

Here, v is the unique weak solution of the Dirichlet problem (5.2) and β = σ
n+σ

.
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Proof Throughout the proofwe omit the reference to the center xo andwrite B� instead
of B�(xo). Moreover, we abbreviate ξ := (Duε)�. Using the weak form (3.2) of the
elliptic system we obtain

0 =
∫
B�/2

Aε(Duε) · Dϕ dx +
∫
B�/2

f · ϕ dx

=
∫
B�/2

(
Aε(Duε) − Aε(ξ)

) · Dϕ dx +
∫
B�/2

f · ϕ dx,

for any ϕ ∈ W 1,2
0 (B�/2,R

N ). Using also the fact that v is a weak solution of the linear
elliptic system (5.2), we find that

∫
B�/2

Bε(ξ)(Duε − Dv, Dϕ) dx

=
∫
B�/2

Bε(ξ)(Duε, Dϕ) dx

=
∫
B�/2

Bε(ξ)(Duε − ξ, Dϕ) dx

=
∫
B�/2

[
Bε(ξ)(Duε − ξ, Dϕ) − (

Aε(Duε) − Aε(ξ)
) · Dϕ

]
dx −

∫
B�/2

f · ϕ dx

≤ c(p) μp−3
∫
B�/2

|Duε − ξ |2|Dϕ| dx +
( ∫

B�/2

| f |2 dx
) 1

2
(∫

B�/2

|ϕ|2 dx
) 1

2

.

Here we used from the second to last line Lemma 2.10. This is possible since (3.4) and
(5.3) are in force. Since uε −v ∈ W 1,2

0 (B�/2,R
N ), wemay choose the testing function

ϕ = uε − v. Together with the bound from below from Lemma 2.7 and Hölder’s and
Poincaré’s inequality this leads us to

γμp−2
∫
B�/2

|Duε − Dv|2 dx

≤
∫
B�/2

Bε(ξ)(Duε − Dv, Duε − Dv) dx

≤ c(p) μp−3
∫
B�/2

|Duε − ξ |2|Duε − Dv| dx

+
( ∫

B�/2

| f |2 dx
) 1

2
( ∫

B�/2

|uε − v|2 dx
) 1

2

≤ c(p) μp−3
(∫

B�/2

|Duε − ξ |4 dx
) 1

2
( ∫

B�/2

|Duε − Dv|2 dx
) 1

2

+ c(n) �

( ∫
B�/2

| f |2 dx
) 1

2
(∫

B�/2

|Duε − Dv|2 dx
) 1

2
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for a constant γ = γ (p, δ) > 0. We divide both sides by

γμp−2[ ∫
B�/2

|Duε − Dv|2 dx] 1
2 ,

square the result and finally take means. This implies

−
∫
B�/2

|Duε − Dv|2 dx ≤ c

μ2 −
∫
B�/2

|Duε − ξ |4 dx + c �
2σ
n+σ ‖ f ‖2Ln+σ (BR)

with a constant c = c(n, p, M, δ). Here we have also used δ < μ ≤ M . At this stage
arrived, we want to reduce the integrability exponent on the right-hand side from 4
to 2(1 + ϑ), where ϑ = ϑ(n, p, M, δ) ∈ (0,min{ 12 , n+σ

2 − 1}] is the integrability
exponent from the higher integrability Lemma 5.1. This is possible since |Duε| and
|ξ | are bounded by (2 + 1

δ
)μ on account of (3.4) and (3.6). Then, the application of

the higher integrability lemma yields

−
∫
B�/2

|Duε − ξ |4 dx ≤ c

μ2ϑ −
∫
B�/2

|Duε − ξ |2(1+ϑ) dx

≤ c

μ2ϑ

[
−
∫
B�

|Duε − ξ |2 dx
]1+ϑ

+ c −
∫
B�

(�| f |)2(1+ϑ) dx

≤ c

[
�(�)

μ2

]ϑ

�(�) + c �
2σ(1+ϑ)
n+σ ‖ f ‖2(1+ϑ)

Ln+σ (BR)
,

where c = c(n, p, M, δ). Inserting this inequality above and noting that � ≤ 1 finishes
the proof of the lemma. ��

The following a priori estimate for solutions to linear elliptic systems can be inferred
from [5] once the ellipticity conditions for the quadratic form Bε

(
(Duε)xo,�

)
are

established; see also [21, Theorem 2.3].

Lemma 5.3 Let the general assumptions of Sect. 5 be in force and assume that
(5.3) holds true. Then, the weak solution v ∈ W 1,2(B�/2(xo),RN ) of the linear

elliptic system (5.2) satisfies v ∈ W 2,2
loc (B�/2(xo),RN ) and there exists a constant

co = co(n, N , p, δ) such that for any τ ∈ (0, 1
2 ] we have

−
∫
Bτ�(xo)

|Dv − (Dv)xo,τ�|2 dx ≤ coτ
2 −
∫
B�/2(xo)

|Dv − (Dv)xo,�/2|2 dx .

Proof As mentioned before, the a priori estimate is standard. The constant co depends
on the dimensions n, N and the ellipticity constant and the upper bound of the quadratic
form Bε

(
(Duε)xo,�

)
. Due to assumption (5.3) and Lemma 2.7 these quantities only

depend on p and δ. ��

123



Higher regularity in congested traffic dynamics 1865

5.3 Exploiting themeasure theoretic information

The aim of this subsection is to convert the measure theoretic information (3.7) into a
lower bound for the mean value of Duε and smallness of the excess.

Lemma 5.4 Let the general assumptions of Sect. 5 be in force. Furthermore, assume
that (3.7) holds for some ν ∈ (0, 1

4 ]. Then there exists a constant c = c(n, p, M, δ)

such that for any τ ∈ [ 12 , 1) there holds

�(xo, τ�) ≤ cμ2
[

ν
2
n

(1 − τ)2
+ �2β

ν
‖ f ‖2Ln+σ (BR)

]
.

Proof Throughout the proofwe omit the reference to the center xo andwrite B� instead
of B�(xo). We define ζ ∈ R

Nn by

|ζ |p−1ζ = (|G(Duε)|p−1G(Duε)
)
τ�

and let

ζ̃ := G−1(ζ ).

Note that |ζ | ≤ δ + μ by (3.4) and |ζ̃ | ≤ 1 + δ + μ. Due to the minimality of the
integral average (Duε)τ� with respect to the mapping ξ 
→ ∫

Bτ�
|Duε − ξ |2 dx , we

have

�(τ�) ≤ −
∫
Bτ�

∣∣Duε − ζ̃
∣∣2 dx

= 1

|Bτ�|
∫
Eν

τ�

∣∣Duε − ζ̃
∣∣2 dx + 1

|Bτ�|
∫
Bτ�\Eν

τ�

∣∣Duε − ζ̃
∣∣2 dx =: I + II.

Werecall that |Duε|, |ζ̃ | ≤ 1+δ+μ and hence by (3.6)we have |Duε|, |ζ̃ | ≤ (2+ 1
δ
)μ.

Due to assumption (3.7) we therefore obtain for the second integral

II ≤ c(δ) μ2

|Bτ�|
∣∣B� \ Eν

�

∣∣ ≤ c(δ) νμ2

τ n
.

For the estimate of I we first note that |Duε| ≥ 1 + 3
2δ on Eν

τ� since ν ∈ (0, 1
4 ] and

μ ≥ δ. Therefore, the application of Lemma 2.3 yields

I ≤ c(δ)

|Bτ�|
∫
Eν

τ�

∣∣G(Duε) − ζ
∣∣2 dx .

Next, we note that

|G(Duε)| + |ζ | ≥ |G(Duε)| = (|Duε| − 1)+ > δ + (1 − ν)μ > 1
2μ on Eν

τ�.
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Using this information, Lemma 2.2, the choice of ζ , and Poincaré’s inequality we
obtain

I ≤ c(p, δ)

μ2p−2|Bτ�|
∫
Eν

τ�

(|G(Duε)| + |ζ |)2p−2∣∣G(Duε) − ζ
∣∣2 dx

≤ c(p, δ)

μ2p−2 −
∫
Bτ�

∣∣|G(Duε)|p−1G(Duε) − |ζ |p−1ζ
∣∣2 dx

≤ c(p, δ)�2

μ2p−2

[
−
∫
Bτ�

∣∣D(|G(Duε)|p−1G(Duε)
)∣∣ 2n

n+2 dx

] n+2
n

= c(p, δ)�2

μ2p−2

[
−
∫
Bτ�

∣∣D[
g(Duε)Duε

]∣∣ 2n
n+2 dx

] n+2
n

.

We once again decompose the domain of integration into Eν
τ� and Bτ� \ Eν

τ�. Subse-
quently applying Hölder’s inequality and taking into account assumption (3.7) leads
us to

I ≤ c(p, δ) �2

μ2p−2|Bτ�|
[∫

Eν
τ�

∣∣D[
g(Duε)Duε

]∣∣2 dx + ν
2
n

∫
Bτ�\Eν

τ�

∣∣D[
g(Duε)Duε

]∣∣2 dx
]
.

Wenote that τ ≥ 1
2 and hence |Bτ�| ≥ c(n)�n . For the first integral we use Lemma 4.5,

while for the second one we use Lemma 4.4 and the assumption μ ≥ δ. In this way
we obtain

I ≤ cμ2

(1 − τ)2

[
ν + ν

2
n
] + c �2− 2n

n+σ

νμ2p−2 ‖ f ‖2Ln+σ (BR)

≤ cμ2
[

ν
2
n

(1 − τ)2
+ �

2σ
n+σ

ν
‖ f ‖2Ln+σ (BR)

]
,

for a constant c = c(n, p, M, δ). Inserting this above yields the desired estimate. ��

Lemma 5.5 Let the general assumptions of Sect. 5 be in force. Then, for any θ ∈
(0, 1

64 ] there exist ν = ν(n, p, M, δ, θ) ∈ (0, 1
4 ] and �o = �o(n, p, σ, ‖ f ‖Ln+σ (BR),

M, δ, θ) ∈ (0, 1] such that the smallness assumption� ≤ �o and themeasure theoretic
hypothesis (3.7) imply

∣∣(Duε)xo,�
∣∣ ≥ 1 + δ + 1

2μ and �(xo, �) ≤ θμ2. (5.4)

Proof We let τ ∈ [ 12 , 1), ν ∈ (0, 1
4 ] and �o ∈ (0, 1]. Consider B�(xo) ⊂ BR with

� ≤ �o. For convenience in notation we omit the reference to the center xo. Using
the minimality of (Du)� with respect to the mapping ξ 
→ ∫

B�
|Du − ξ |2 dx and
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decomposing the domain of integration into Bτ� and B� \ Bτ�, we obtain

�(�) ≤ −
∫
B�

∣∣Duε − (Duε)τ�|2 dx

= 1

|B�|
[ ∫

Bτ�

∣∣Duε − (Duε)τ�

∣∣2 dx +
∫
B�\Bτ�

∣∣Duε − (Duε)τ�

∣∣2 dx
]

= I + II.

For the first integral we use Lemma 5.4 and obtain

I = τ n�(τ�) ≤ cμ2
[

ν
2
n

(1 − τ)2
+ �2β

ν
‖ f ‖2Ln+σ (BR)

]
,

where c = c(n, p, M, δ). For the second integral we use |Duε| ≤ 1+ δ + μ ≤ c(δ)μ
and get

II ≤ 4(1 + δ + μ)2|B� \ Bτ�|
|B�| ≤ c(δ) μ2(1 − τ n) ≤ c(n, δ) μ2(1 − τ),

so that

�(�) ≤ cμ2
[

ν
2
n

(1 − τ)2
+ (1 − τ) + �2β

ν
‖ f ‖2Ln+σ (BR)

]
,

for a constant c = c(n, p, M, δ). Now, we first choose τ ∈ [ 12 , 1) in dependence on
n, p, M, δ and θ in such away that c(1−τ) ≤ 1

3θ . Subsequently, we choose ν ∈ (0, 1
4 ]

in dependence on n, p, M, δ and θ such that

ν ≤ min

{(
θ(1 − τ)2

3c

) n
2

,
δ

4(1 + δ)

}
.

Finally, we choose �o ∈ (0, 1] such that

�2β
o ≤ νθ

3c
(
1 + ‖ f ‖2Ln+σ (BR)

) .

In this way we obtain (5.4)2.
To prove (5.4)1, we first observe that themeasure theoretic assumption (3.7) implies

|Eν
� | > (1 − ν)|B�|.
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Hence, due to the definition of the set Eν
� , we obtain

∫
B�

|Duε| dx ≥
∫
Eν

�

|Duε| dx ≥ (
1 + δ + (1 − ν)μ

)|Eν
� |

≥ (1 − ν)
(
1 + δ + (1 − ν)μ

)|B�|.

On the other hand, due to (5.4)2, we have

∣∣∣∣ −
∫
B�

|Duε| dx − ∣∣(Duε)�
∣∣
∣∣∣∣ ≤ −

∫
B�

|Duε − (Duε)�| dx ≤ √
�(�) ≤ √

θ μ,

so that

∣∣(Duε)�
∣∣ ≥ (1 − ν)

(
1 + δ + (1 − ν)μ

) − √
θμ.

Due to the choice of ν and the fact that n ≥ 2 we have ν ≤ ( 13θ)
n
2 ≤ 1

3θ ≤ 1
2

√
θ and

ν ≤ δ
4(1+δ)

. Together with the assumptions δ ≤ μ and θ ≤ 1
64 we obtain

− ν(1 + δ) + (1 − ν)2μ − √
θμ − 1

2μ ≥ − 1
4δ + ( 1

2 − 2ν − √
θ
)
μ

≥ [ 1
4 − 2

√
θ
]
μ ≥ 0.

Inserting this above yields the claim (5.4)1 and finishes the proof of the lemma. ��

5.4 Proof of Proposition 3.4

Our aim in this subsection is to prove Proposition 3.4. We start with an excess-decay
estimate for the excess �(xo, �) of Duε.

Lemma 5.6 Assume that the general hypotheses of Sect. 5 are in force. Let τ ∈ (0, 1
2 ]

and ϑ = ϑ(n, p, M, δ) ∈ (0, 1
2 ] be the exponent from Lemma 5.2. If

|(Duε)xo,�| ≥ 1 + δ + 1
4μ and �(xo, �) ≤ τ

n+2
ϑ μ2, (5.5)

hold true, then we have the quantitative excess decay estimate

�(xo, τ�) ≤ c∗
[
τ 2�(xo, �) + τ−n�2βμ2

]

with a constant c∗ = c∗(n, N , p, ‖ f ‖Ln+σ (BR), M, δ).

Proof Throughout the proofwe omit the reference to the center xo andwrite B� instead
of B�(xo). By v ∈ uε + W 1,2

0 (B�,RN ) we denote the unique weak solution of the
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linear elliptic system (5.2). For τ ∈ (0, 1
2 ], we have

�(τ�) ≤ −
∫
Bτ�

|Duε − (Dv)τ�|2 dx

≤ 2 −
∫
Bτ�

|Duε − Dv|2 dx + 2 −
∫
Bτ�

|Dv − (Dv)τ�|2 dx .

In view of Lemma 5.3 we deduce

−
∫
Bτ�

|Dv − (Dv)τ�|2 dx

≤ c τ 2 −
∫
B�/2

|Dv − (Dv)�/2|2 dx

≤ c τ 2 −
∫
B�/2

|Dv − (Duε)�/2|2 dx

≤ c τ 2 −
∫
B�/2

|Duε − Dv|2 dx + c τ 2 −
∫
B�/2

|Duε − (Duε)�/2|2 dx

≤ c τ 2 −
∫
B�/2

|Duε − Dv|2 dx + c τ 2�(�),

where c = c(n, N , p, δ). Inserting this above and applyingLemma5.2 and assumption
(5.5)2, we end up with

�(τ�) ≤ c

τ n
−
∫
B�/2

|Duε − Dv|2 dx + c τ 2�(�)

≤ c

[
1

τ n

[
�(�)

μ2

]ϑ

+ τ 2
]
�(�) + c τ−n�2β

≤ c∗
[
τ 2�(�) + τ−n�2βμ2

]
.

Note that the constant c∗ depends on n, N , p, ‖ f ‖Ln+σ (BR), M and δ. ��
Proof of Proposition 3.4 By ϑ = ϑ(n, p, σ, M, δ) ∈ (0,min{ 12 , n+σ

2 − 1}] we denote
the constant from Lemma 5.2 and by c∗ = c∗(n, N , p, ‖ f ‖Ln+σ (BR), M, δ) the one
from Lemma 5.6. For β = σ

n+σ
∈ (0, 1) we define τ ∈ (0, 1

8 ] by

τ := min
{
1
8 , 2

− 1
β , (10c∗)−

1
2(1−β)

}
.

For the particular choice θ = τ
n+2
ϑ we let �o = �o(n, p, σ, ‖ f ‖Ln+σ (BR), M, δ) ∈

(0, 1] be the radius from Lemma 5.5. Finally, we define

�̂ := min
{
�o, (2c∗)−

1
2β τ

1+ 2n+2
βϑ

}
,
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so that �̂ depends on n, N , p, σ, ‖ f ‖Ln+σ (BR), M, δ. In the following we consider a
ball B2�(xo) ⊂ Br1 with � ≤ �̂. As before, we omit the reference to the center xo and

write B� instead of B�(xo). By ν = ν(n, p, M, δ, θ = 1
2τ

n+2
ϑ ) ∈ (0, 1

4 ] we denote the
constant from Lemma 5.5 and assume that (3.7) is satisfied for this particular choice of
ν. Note that by our choice of τ the parameter ν depends on n, N , p, σ, ‖ f ‖Ln+σ (BR), M

and δ. From Lemma 5.5 applied with θ = τ
n+2
ϑ we infer that

∣∣(Du)�
∣∣ ≥ 1 + δ + 1

2μ and �(�) ≤ τ
n+2
ϑ μ2. (5.6)

By induction we shall prove that for any i ∈ N we have

�(τ i�) ≤ τ
n+2
ϑ τ 2βiμ2 (I)i

and

∣∣(Du)τ i�
∣∣ ≥ 1 + δ +

[
1

2
− 1

8

i−1∑
j=0

2− j
]
μ. (II)i

For i = 1 we can apply Lemma 5.6, since (5.6) ensures that the assumptions of the
lemma are satisfied. Then, (I)1 follows from Lemma 5.6, (5.6)2 and our choices of τ

and �̂, since

�(τ�) ≤ c∗
[
τ 2�(�) + τ−n�2βμ2

]

≤ 1
2τ

2β�(�) + c∗
τ n

�2βμ2

≤ τ
n+2
ϑ τ 2β

[
1
2 + c∗�̂2β

τ
n+2
ϑ

+n+2β

]
μ2

≤ τ
n+2
ϑ τ 2βiμ2.

For the proof of (II)1 we use (5.6)2 and τ
n+2
ϑ ≤ τ n+2 to obtain

∣∣(Du)τ� − (Du)�
∣∣2 ≤ −

∫
Bτ�

∣∣Du − (Du)�
∣∣2 dx ≤ τ−n�(�) ≤ τ

n+2
ϑ

−n μ2 ≤ τ 2μ2,

so that

∣∣(Du)τ� − (Du)�
∣∣ ≤ τμ ≤ 1

8μ.

Together with (5.6)1 this implies (II)1.
Now,we consider i > 1 andprove (I)i and (II)i assuming that (I)i−1 and (II)i−1 hold.

From (I)i−1 and (II)i−1 we observe that the assumptions of Lemma 5.6 as formulated
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in (5.5) are satisfied on Bτ i−1�. Therefore, applying the lemma with τ i−1� instead of
�, recalling the choices of τ and �̂ and joining the result with (I)i−1 yields

�(τ i�) ≤ c∗
[
τ 2�(τ i−1�) + τ−n(τ i−1�)2βμ2

]

≤ 1
2τ

2β�(τ i−1�) + c∗
τ n

(τ i−1�)2βμ2

≤ τ
n+2
ϑ τ 2βi

[
1
2 + c∗�̂2β

τ
n+2
ϑ

+n+2β

]
μ2

≤ τ
n+2
ϑ τ 2βiμ2.

This proves (I)i . Moreover, from (I)i−1 and τ
n+2
ϑ ≤ τ n+2 we obtain

∣∣(Du)τ i� − (Du)τ i−1�

∣∣2 ≤ −
∫
B

τ i �

∣∣Du − (Du)τ i−1�

∣∣2 dx ≤ τ−n�(τ i−1�)

≤ τ
n+2
ϑ

−nτ 2β(i−1)μ2 ≤ τ 2β(i−1)τ 2 μ2,

so that

|(Du)τ i� − (Du)τ i−1�| ≤ τβ(i−1)τ μ ≤ 1
82

−(i−1) μ,

by our choice of τ . Together with (II)i−1, this proves (II)i .
We now come to the proof of (3.8) and (3.9). For i ∈ N we obtain from the

minimizing property of the mean value, Lemma 2.3, (I)i , (5.6) and our choice of τ

that

�2δ(τ
i�) := −

∫
B

τ i �

∣∣G2δ(Du) − (G2δ(Du)
)
τ i�

∣∣2 dx

≤ −
∫
B

τ i �

∣∣G2δ(Du) − G2δ
(
(Du)τ i�

)∣∣2 dx

≤ 9�(τ i�) ≤ 9 τ
n+2
ϑ τ 2βiμ2 ≤ τ 2n+2τ 2βiμ2. (5.7)

This allows us to compute

∣∣(G2δ(Du)
)
τ i�

− (G2δ(Du)
)
τ i−1�

∣∣2 ≤ −
∫
B

τ i �

∣∣G2δ(Du) − (G2δ(Du)
)
τ i−1�

∣∣2 dx
≤ τ−n�2δ

(
τ i−1�

) ≤ τ n+2τ 2β(i−1)μ2.
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Given j < k, we use the preceding inequality to conclude that

∣∣(G2δ(Du)
)
τ j�

− (G2δ(Du)
)
τ k�

∣∣ ≤
k∑

i= j+1

∣∣(G2δ(Du)
)
τ i�

− (G2δ(Du)
)
τ i−1�

∣∣

≤ τ
n
2+1

k∑
i= j+1

τβ(i−1) μ ≤ τ
n
2+1 τβ j

1 − τβ
μ

≤ 2τ
n
2+1τβ j μ. (5.8)

This shows that ((G2δ(Du))τ i�)∞i=1 is a Cauchy sequence and therefore the limit

�xo := lim
i→∞

(G2δ(Du)
)
τ i�

exists. Passing to the limit k → ∞ in (5.8) yields

∣∣(G2δ(Du)
)
τ j�

− �xo

∣∣ ≤ 2τ
n
2+1τβ jμ for any j ∈ N.

Joining this with (5.7), we find

−
∫
B

τ j �

∣∣G2δ(Du) − �xo

∣∣2 dx ≤ 2�2δ(τ
j�) + 2

∣∣(G2δ(Du)
)
τ j�

− �xo

∣∣2

≤ 10τ n+2τ 2β jμ2.

For r ∈ (0, �] there exists j ∈ N0 such that τ j+1� < r ≤ τ j�. Then, we obtain from
the last inequality

−
∫
Br

∣∣G2δ(Du) − �xo

∣∣2 dx ≤ τ−n −
∫
B

τ j �

∣∣G2δ(Du) − �xo

∣∣2 dx

≤ 10τ 2τ 2β jμ2 ≤
( r
�

)2β
μ2.

This implies

∣∣(G2δ(Du)
)
r − �xo

∣∣2 ≤ −
∫
Br

∣∣G2δ(Du) − �xo

∣∣2 dx ≤
( r
�

)2β
μ2,

so that also

�xo = lim
r↓0

(G2δ(Du)
)
r .

Finally, due to assumption (3.4) we have |(G2δ(Du))r | ≤ μ for any 0 < r ≤ �, which
implies |�xo | ≤ μ. This finishes the proof of Proposition 3.4. ��
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6 The degenerate regime

Our aim in this section is to prove Proposition 3.5, which treats the degenerate regime.
The proof relies on a De Giorgi type reduction argument reducing the supremum of
Uε = (|Duε| − 1 − δ)2+ under the measure theoretic assumption (3.10). The starting
point is the energy estimate for Uε from Lemma 4.3.

As in Section 5, we first formulate the general assumptions. For ε ∈ (0, 1] we
denote by uε ∈ W 1,p(BR,RN ) the unique weak solution to the Dirichlet problem
(3.1) associated to the regularized system. We assume that (3.4) is in force for some
μ, δ > 0 on some ball B2�(xo) ⊂ Br1 � BR . Let Uε := (|Duε| − 1− δ)2+ denote the
function defined in (4.2). Note that (3.4) implies

sup
B2�(xo)

Uε ≤ μ2.

Moreover, we set β := σ
n+σ

∈ (0, 1).
We start by a De Giorgi type lemma for Uε, which can for instance be deduced as

in [19, Chap. 10, Proposition 4.1] by the use of the energy estimate from Lemma 4.3.
For the readers convenience we provide the proof in the appendix Sect. 7.

Lemma 6.1 (Reducing the supremum) Assume that the general assumptions of Sect. 6
are in force and let θ ∈ (0, 1). Then, there exists ν̃ = ν̃(n, p, ‖ f ‖n+σ , M, δ) ∈ (0, 1)
such that the measure theoretic assumption

∣∣{x ∈ B�(xo) : Uε(x) > (1 − θ)μ2}∣∣ < ν̃
∣∣B�(xo)

∣∣,
implies that either

μ2 <
�β

θ
,

or

Uε ≤ (
1 − 1

2θ
)
μ2 in B�/2(xo)

hold true. �
The proof of the next Lemma can be deduced as in [19, Chap. 10, Proposition 5.1]

utilizing the energy estimate from Lemma 4.3; see also Sect. 7.

Lemma 6.2 Assume that the general assumptions of Sect. 6 are in force and assume
that (3.10) is satisfied for some ν ∈ (0, 1). Then, for any i∗ ∈ N we either have

μ2 < 2i∗�β/ν

or ∣∣{x ∈ B�(xo) : Uε(x) > (1 − 2−i∗ν)μ2}∣∣ <
c∗

ν
√
i∗

∣∣B�(xo)
∣∣

for a constant c∗ = c∗(n, p, ‖ f ‖n+σ , M, δ).
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Now, we have all the prerequisites at hand to provide the

Proof of Proposition 3.5 Let ν̃ ∈ (0, 1) and c∗ be the constants from Lemmas 6.1
and 6.2. Note that both depend on n, p, ‖ f ‖n+σ , M and δ. Choose i∗ ∈ N such that

i∗ ≥
( c∗
νν̃

)2
.

Then i∗ depends n, p, ‖ f ‖n+σ , M, δ and ν. Lemma 6.2 implies that either μ2 <

2i∗�β/ν, or

∣∣{x ∈ B�(xo) : Uε(x) > (1 − 2−i∗ν)μ2}∣∣ <
c∗

ν
√
i∗

∣∣B�(xo)
∣∣ ≤ ν̃

∣∣B�(xo)
∣∣.

In the first case the proposition is proved with co = 2i∗/ν, while in the second case
we may apply Lemma 6.1 with θ = 2−i∗ν. Therefore either μ2 < 2i∗�β/ν or

Uε ≤ (
1 − 2−(i∗+1)ν

)
μ2 in B�/2(xo).

The first alternative coincides with the first alternative above, while the second
one implies the sup-bound for Gδ(Duε) for any κ ≥ √

1 − 2−(i∗+1)ν since Uε =
|Gδ(Duε)|2. Therefore we my choose κ ∈ [2−β/2, 1) as required. ��
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7 Appendix

Here, we provide the proofs of Lemmas 6.1 and 6.2. We first state a well known
iteration lemma which can be found for instance in [19, Chap. 9.15.1, Lemma 15.1].

Lemma 7.1 Let (Yi )i∈N0 be a sequence of non-negative numbers satisfying

Yi+1 ≤ κ biY 1+γ

i for all i ∈ N0
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with some positive constants κ, γ and b > 1. If

Y0 ≤ κ
− 1

γ b
− 1

γ 2 ,

then Yi → 0 as i → ∞.

The next lemma can be seen as a discrete version of the isoperimetric inequality,
cf. [19, Chap. 10.5.1, inequality (5.4)].

Lemma 7.2 Let v ∈ W 1,1(B�(xo)) and k, � ∈ R with k < �. Then, there exists a
constant c depending on n such that

(� − k)|B�(xo) ∩ {v < k}| ≤ c�n+1

|B�(xo) ∩ {v > �}|
∫
B�(xo)∩{k<v<�}

|Dv| dx .

Proof of Lemma 6.1 For i ∈ N we let

Bi := B�i (xo), where �i := 1
2�(1 + 2−i ),

and consider for the levels

ki := (
1 − 1

2θ − 2−(i+1)θ
)
μ2

the normalized measure of the associated super-level sets

Y i := |Ai |
|Bi | , where Ai := {x ∈ Bi : Uε(x) > ki }.

In view of Hölder’s, Sobolev’s inequality and Lemma 4.3 we now estimate1

∫
Bi+1

(Uε − ki )
2+ dx ≤ |Ai | 2n

[ ∫
Bi+1

(Uε − ki )
2n
n−2+ dx

] n−2
n

≤ c |Ai | 2n
∫
Bi+1

[∣∣D(Uε − ki )+
∣∣2 + (Uε − ki )2+

�2
i+1

]
dx

≤ c 4i

�2 |Ai | 2n
∫
Bi

(Uε − ki )
2+ dx + c ‖ f ‖2n+σ |Ai |1+ 2β

n

≤ c 4iθ2μ4

�2 |Ai |1+ 2
n + c |Ai |1+ 2β

n ,

where c = c(n, p, ‖ f ‖n+σ , M, δ). On the other hand, by the definition of ki we have

|Ai+1| ≤ 4i+2

θ2μ4

∫
Bi+1

(Uε − ki )
2+ dx .

1 If n = 2 we may choose any exponent > 2 instead of 2n
n−2 .
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Here we used thatUε −ki ≥ ki+1−ki on Ai+1. Joining the preceding two inequalities
and recalling the definition of Y i shows

Y i+1 = |Ai+1|
|Bi+1|

≤ c 42i |Ai |1+ 2β
n

|Bi |1+ 2β
n

[ |Ai | 2(1−β)
n |Bi | 2βn
�2 + |Bi | 2βn

θ2μ4

]

≤ c 42iY
1+ 2β

n
i

[
1 + �2β

θ2μ4

]
.

If μ2 < �β/θ , the lemma is proved. Otherwise, the term in brackets on the right-hand
side is bounded by 2, so that

Y i+1 ≤ c 42iY
1+ 2

n
i ,

where c = c(n, p, ‖ f ‖n+σ , M, δ). Therefore, Lemma 7.1 ensures that Yi → 0 in the
limit i → ∞, provided that Y0 ≤ 2−n2c− n

2 =: ν̃ and hence Uε ≤ (1 − 1
2θ)μ2 on

B�/2(xo). ��
Proof of Lemma 6.2 For convenience in notation we omit the reference to the center
xo. For i ∈ {0, . . . , i∗} we consider the super-level sets

Ai := {
x ∈ B� : Uε(x) > ki

}
, where ki := (1 − 2−iν)μ2.

Then, due to assumption (3.10) we have |B� \ Ai | ≥ ν|B�| for any i ∈ {0, . . . , i∗}.
Applying Lemma 7.2 toUε on B� with k = ki and � = ki+1, we obtain with a constant
c = c(n) that

νμ2

2i+1 |Ai+1| ≤ c �n+1

|B� \ Ai |
∫
Ai\Ai+1

|DUε| dx

≤ c �

ν

[ ∫
B�

|D(Uε − ki )+|2 dx
] 1

2 (|Ai | − |Ai+1|
) 1
2 .

In view of the energy estimate from Lemma 4.3 and the definition of ki we have

∫
B�

|D(Uε − ki )+|2 dx ≤ c

�2

∫
B2�

|(Uε − ki )+|2 dx + c ‖ f ‖2n+σ �n−2+2β

≤ c ν2μ4

22i�2

[
1 +

(2i�β

νμ2

)2]|B�|

with a constant c = c(n, p, ‖ f ‖n+σ , M, δ). If μ2 < 2i�β/ν, the lemma is proved.
Otherwise, the term in brackets on the right-hand side is bounded by 2. Inserting this
above yields
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|Ai+1|2 ≤ c

ν2

(|Ai | − |Ai+1|
)|B�|,

for c = c(n, p, ‖ f ‖n+σ , M, δ). Now,we add these inequalities for i = 0, 1, . . . , i∗−1
and obtain

i∗|Ai∗ |2 ≤ c

ν2
|B�|

i∗−1∑
i=0

(|Ai | − |Ai+1|
) ≤ c

ν2
|A0||B�| ≤ c

ν2
|B�|2.

Therefore, we have

|Ai∗ | ≤ c

ν
√
i∗

|B�|.

This proves the assertion of the lemma. ��
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