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Abstract
Minimizing the bending energy within knot classes leads to the concept of elastic
knots which has been initiated by von der Mosel (Asymptot Anal 18(1–2):49–65,
1998). Motivated by numerical experiments in Bartels and Reiter (Math Comput
90(330):1499–1526, 2021) we prescribe dihedral symmetry and establish existence of
dihedrally symmetric elastic knots for knot classes admitting this type of symmetry.
Among other results we prove that the dihedral elastic trefoil is the union of two circles
that form a (planar) figure-eight. We also discuss some generalizations and limitations
regarding other symmetries and knot classes.
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1 Introduction

The study of elastic knots was initiated byGerlach et al. in [24]. Inspired by toymodels
of springy knotted wires (see the images in [24, Figure 7]) the existence of energy
minimizing knotted configurations γϑ has been established in any prescribed tame1

knot class K [24, Theorem 2.1]. The total energy considered,

Eϑ := E + ϑR, for ϑ > 0, (1.1)

consists of the classic Euler–Bernoulli bending energy

E(γ ) :=
∫

γ

κ2 ds (1.2)

as the leading order term, together with a small multiple of a repulsive potentialR to
avoid self-intersections. In order to analyse the approximative shape of theminimizing
knots γϑ for small ϑ the authors study the limit ϑ → 0. It is shown that the minimizers
γϑ converge in C1 to closed curves γ0 that minimize the bending energy

E(γ0) ≤ E(β) for all β ∈ C (K),

where

C (K) := {γ ∈ W 2,2(R/Z,R3) : L (γ ) = 1,
∣∣γ ′∣∣ > 0, [γ ] = K}. (1.3)

Here, R/Z denotes the periodic interval of unit length. These limiting curves γ0 are
called elastic knots for K according to [24, Definition 2.3], although they are not
embedded unless K is trivial; see [24, Proposition 3.1]. One of the central results is
the complete classification of elastic knots for all torus knot classes T (2, b) for odd
b ∈ Z\{1,−1}.
Theorem ([24, Corollary 6.5(i)]) The elastic torus knot γ0 for T (2, b) for any odd
b ∈ Z\{1,−1} is the doubly covered circle.

1 A knot class is called tame if it contains a polygonal representative [14, Definition 1.3], or equivalently,
if and only if it contains a continuously differentiable representative [17, App. I].
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Symmetric elastic knots 813

Fig. 1 Final states of the numerical gradient flow of Bartels et al. [7] for the total energy Eϑ for small
ϑ > 0 in the case of the trefoil knot class. Left: The doubly covered circle is the usual limit configuration
as predicted by [24]. Right: There are a few initial configurations that move towards an almost flat torus
knot with dihedral symmetry under the gradient flow

This result is confirmed by mechanical experiments with thin elastic knotted
wires, as well as by various numerical simulations performed by different groups
of researchers as documented in [24, Introduction p. 94]. Also the more recent work
on the corresponding numerical gradient flow of Bartels et al. [6,7] provides strong
numerical evidence for the doubly covered circle as the only possible elastic knot for
T (2, b); see the left of Fig. 1.

Symmetric configurations

Sometimes, however, this numerical gradient flow produces a different limiting con-
figuration exhibiting a dihedral symmetry as depicted on the right of Fig. 1. This
indicates the presence of a dihedrally symmetric critical point2 of the total energy
Eϑ .

It is the purpose of the present paper to analytically support these infrequent but
reproducible numerical observations. Namely, we use the principle of symmetric
criticality of Palais [33] to prove the existence of symmetric critical points for the
constrained variational problem

Minimize the total energy Eϑ on the set C (K). (Pϑ )

Palais’s principle, however, requires energy functionals of class C1. To meet this pre-
condition (and to avoid the technical issues connected with an alternative nonsmooth

2 This symmetric knot might be a saddle point, since there exist—as reported in [6]—symmetry breaking
perturbations with smaller energy. Amore systematic numerical investigation is under way to produce more
evidence of the nature of this critical point.
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814 A. Gilsbach et al.

variant [15] of this principle) we replace the nonsmooth ropelength functional used in
[24] by a suitable power of the tangent-point energy TPq . It is a self-avoiding energy
defined on absolutely continuous regular closed curves γ : R/Z → R as

R(γ ) := TP
1

q−2
q (γ ) :=

(∫
R/Z

∫
R/Z

1

rqtp(γ (s), γ (t))

∣∣γ ′(s)
∣∣ ∣∣γ ′(t)

∣∣ dsdt
) 1

q−2

,(1.4)

where we restrict to exponents q ∈ (2, 4]. Here, rtp(γ (s), γ (t)) stands for the radius
of the unique circle through the points γ (s) and γ (t) that is tangent to γ at γ (s). This
energy was first suggested by Buck and Orloff [13] in the case q = 2 and for general
q > 2 by Gonzalez andMaddocks in [27, p. 4773], and it was investigated analytically
in detail in [38], [9], and [10]. Note that the Sobolev spaceW 2,2 continuously embeds
into the fractional Sobolev space W 2−(1/q),q for q ∈ (2, 4], which provides the exact
regularity framework to guarantee a finite and continuously differentiable tangent point
energy [10, Remark 3.1], [42], so that the total energy Eϑ is continuously differentiable
on the open subset W 2,2

ir (R/Z,R3) of injective regular closed curves of class W 2,2.
Consequently, Palais’s principle of symmetric criticality is applicable. Furthermore,
a suitably discretized version of TPq for q ∈ (2, 4] was used for R in the numerical
gradient flow in [7] and [6].

Existence results

Theorem 1.1 (Existence of symmetric critical knots) Given a knot class K, assume
that there is at least one knot with dihedral symmetry contained in C (K). Then for
every ϑ > 0 there exists an arclength parametrized knot �ϑ of knot type K with
dihedral symmetry that is critical for the constrained minimization problem (Pϑ ).
More precisely, we have

DEϑ(�ϑ)h + λDL (�ϑ)h = 0 for all h ∈ W 2,2(R/Z,R3), (1.5)

where λ := Eϑ(�ϑ).

Here, the term dihedral symmetry3 or, synonymously, D2-symmetry refers to the
action of the classic dihedral group D2 (see Table 1) on parametrized space curves
by rotating the curve’s image by an angle of π about any of the three coordinate axes
combined with an appropriate (dihedral) transformation of the periodic domain R/Z

of the curve. All this is made precise in Sect. 3; see the examples in Figs. 3 and 4
for a preliminary impression of D2-symmetric curves. In particular, Fig. 4 depicts a
dihedrally symmetric torus knot of class T (2, 5) constructed in Example 3.10 with a
method which works for any odd b ∈ Z\{1,−1}, so that the torus knot classes T (2, b)
satisfy the hypothesis of Theorem 1.1.

3 There are different definitions of a symmetry group for knots in the literature, cf. [1,14,28] and references
therein. In the present paper we consider Euclidean symmetries of an actual space curve.
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Symmetric elastic knots 815

Corollary 1.2 (Existence of symmetric critical torus knots) Let b ∈ Z\{−1, 1} be
odd. Then for every ϑ > 0 there exists an arclength parametrized torus knot �ϑ ∈
C (T (2, b))with dihedral symmetry, which is critical for the constrained minimization
problem (Pϑ ) for K = T (2, b).

Apart from the D2-symmetry these existence results contain no information about
the actual shape of the critical knots �ϑ . In fact, there is a large variety of possible
shapes of dihedrally symmetric curves. In Lemma 3.5we provide a generalmechanism
how to construct space curves with dihedral symmetry from just one arc satisfying
rather mild conditions on its endpoints. To obtain more specific information on the
shape of the symmetric critical points �ϑ obtained in Theorem 1.1 and Corollary 1.2
it seems hard to exploit the variational equation (1.5) because of the complicated dif-
ferential DTPq of the non-local tangent-point energy TPq as part of the total energy
Eϑ . Following the idea in [24] we study the limit ϑ → 0 instead, to obtain limit con-
figurations whose shape can then be analyzed more easily to yield the approximative
shape of the D2-symmetric critical knots �ϑ for small ϑ > 0.

Theorem 1.3 (Existence of symmetric elastic knots) Let K be a fixed knot class that
contains a D2-symmetric representative in C (K), and consider a sequence ϑ j → 0
and the corresponding (Pϑ j )-critical D2-symmetric knots �ϑ j obtained in Theorem
1.1. Then there exists an arclength parametrized curve �0 ∈ W 2,2(R/Z,R3) with
dihedral symmetry, and a subsequence

(
�ϑ jk

)
k ⊂ (

�ϑ j

)
j
such that the �ϑ jk

converge

weakly in W 2,2 and strongly in C1 to �0 as k → ∞. Moreover,

E(�0) ≤ E(β) for all D2-symmetric β ∈ C (K). (1.6)

Definition 1.4 (Symmetric elastic knots) Any such curve �0 obtained in Theorem 1.3
is called a dihedral (or D2-) elastic knot for K.

Shapes of symmetric elastic knots

The unknot class and the torus knot class T (2, b) for any odd b ∈ Z\{1,−1} satisfy
the hypothesis of Theorem 1.3; see Examples 3.8 and 3.10 . Consequently, there are
D2-elastic knots for the unknot class and for T (2, b), and we can determine their
shapes, which also turn out to characterize these knot classes.

Theorem 1.5 (The D2-elastic unknot)Up to reparametrization and isometry, the only
D2-elastic unknot is the once covered circle of length one. Moreover, if a D2-elastic
knot for some knot classK is the once covered circle, thenK is the unknot class. Only
the unknot class K satisfies

inf
β∈C (K)

β is D2-symmetric

E(β) = inf
β∈W 2,2

L (β)=1

E(β) = (2π)2. (1.7)

If we have specific information about the infimal bending energy on non-trivial
knots with dihedral symmetry, then we can identify the shape of the corresponding
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816 A. Gilsbach et al.

D2-elastic knot. To make this more precise, recall that the natural lower bound for
the total curvature TC(γ ) := ∫

γ
κ ds is 2π by virtue of Fenchel’s theorem [22].

Applying Hölder’s inequality it transfers to the natural lower bound (2π)2 for the
bending energy of closed curves of length one. Therefore, (1.7) is in fact equivalent
to inf {E(β)|β ∈ C (K), β is D2-symmetric} ≤ (2π)2. In case of non-trivial knots,
the total curvature is bounded below by 4π according to the famous result of Fáry and
Milnor (see [21,30]) which gives rise to the lower bound (4π)2 for the bending energy
for any non-trivial knot class K.

Knot classesK for which the infimal bending energy equals the natural lower bound
(4π)2, i.e., for which

inf
β∈C (K)

β is D2-symmetric

E(β) = (4π)2 = inf
C (K)

E(·) (1.8)

are of particular interest, since they provide the variational problemwith a high degree
of rigidity; see Theorem 4.5.

In Sect. 5 we analyze a sequence of specific D2-symmetric (2, b)-torus knots like in
Fig. 4 to show that all torus knot classes T (2, b) for odd integers b ∈ \{−1, 1} satisfy
condition (1.8). It actually turns out that there are no other knot classes satisfying (1.8).
This leads to the following central characterization of D2-elastic (2, b)-torus knots.

Theorem 1.6 (D2-elastic (2, b)-torus knots) The following statements hold up to isom-
etry and reparametrization.

(i) The unique D2-elastic (2, b)-torus knot for any odd b ∈ Z\{1,−1} is the tangential
pair of co-planar circles with exactly one point in common, denoted by tpcπ . Any
sequence of D2-symmetric Eϑ -critical (2, b)-torus knots �ϑ converges strongly
in W 2,2 to tpcπ as ϑ → 0.

(ii) If a D2-elastic knot for some knot class K is tpcπ then K = T (2, b) for some odd
b ∈ Z\{1,−1}.

(iii) If any non-trivial knot class K satisfies

inf
β∈C (K)

β is D2-symmetric

E(β) ≤ (4π)2 (1.8*)

then K = T (2, b) for some odd b ∈ Z\{1,−1}.
Note that (1.8) and (1.8*) are in fact equivalent due to the Fáry–Milnor theorem.
The one-parameter family of tangential pairs of circles tpcϕ for ϕ ∈ [0, π ] was

introduced in [24]; see Fig. 2. It consists of (isometric images of) pairs of circles each
with radius 1/(4π) that intersect each other tangentially in at least one point. The
parameter ϕ describes the angle between the two planes spanned by the two circles.
Only for ϕ = 0 and ϕ = π the two planes coincide, and the tangential pair of co-planar
circles addressed in the rigidity result, Theorem4.5, is (an isometric image of) tpcπ ; see
Example 3.9. Part (i) of Theorem 1.6 improves the weakW 2,2-subconvergence of D2-
symmetric Eϑ -critical knots �ϑ , established in Theorem 1.3 for general knot classes
K, now to the strong convergence of every sequence of D2-symmetric Eϑ -critical
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Symmetric elastic knots 817

Fig. 2 The family of tangential
pairs of circles tpcϕ
parametrized by the opening
angle ϕ between the two planes
containing the circles

points �ϑ to tpcπ for all torus knot classes T (2, b). Therefore, the limit curve tpcπ

describes the approximate shape of the �ϑ for small ϑ , thus supporting the sometimes
experimentally observed final configurations of the numerical gradient flow of Bartels
et al. [7]; see Fig. 1 (right). However, as pointed out before, it seems unlikely that these
D2-symmetric critical points�ϑ are local minimizers of Eϑ . To clarify this, one would
need to analyze the second variation of the total energy containing the complicated
non-local terms of the tangent-point energy TPq .

Outline

The paper is structured as follows. In Sect. 2.1 we briefly review the basics of the
principle of symmetric criticality along the lines of the presentation in [25] and [26,
Section 2], from which we adopted our approach to apply symmetric criticality to
knotted space curves. The relevant facts about the tangent-point energy are presented
in Sect. 2.2.

In Sect. 3 we discuss the group action in detail, show how to construct and charac-
terize dihedrally symmetric space curves with increasing regularity (Definition 3.3 and
Proposition 3.4). Of particular importance in our context are dihedrally symmetric cir-
cles and planar tangential pairs of circles whose exact location in space is determined
in Corollary 3.11. We also prove in Lemma 3.12 that reparametrization to arclength
does not destroy the symmetry and provide a sharp a priori estimate on the size of D2-
symmetric curves; see Lemma 3.13. We finally identify the suitable Banach manifold
of W 2,2-regular knots in Lemma 3.14, on which the group D2 acts in a sufficiently
regular way required by Palais’s symmetric criticality principle (Lemma 3.15).

Section 4 is devoted to proving the existence of the D2-symmetric critical points
as stated in Theorem 1.1, by first minimizing a rescaled total energy on symmetric
knots (Theorem 4.1). By symmetric criticality these minimizers turn out to be critical
points among all knots in the given knot class (Corollary 4.2) satisfying the desired
Euler–Lagrange equation (1.5) as shown in Corollary 4.3. Moreover, the existence of
D2-symmetric elastic knots in any given tame knot class, i.e., the proof of Theorem
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818 A. Gilsbach et al.

1.3, is established. The remainder of Sects. 4 and 5 deal with the shape of symmetric
elastic knots, that is, the proofs of Theorems 1.5 and 1.6, the latter with the help of
a general rigidity result (Theorem 4.5) for all knot classes satisfying (1.8) and an
explicit convergence proof of the torus knots of Example 3.10 towards tpcπ carried
out in Lemma 5.1.

In Sect. 6 we briefly touch on higher regularity of the symmetric critical knots
obtained in Theorem 1.1, as well as on the question whether symmetric elastic knots
are embedded. The concept of symmetric knots also applies to other symmetry classes
than D2. We give a brief outlook on the general case in that section.

The simulations shown in Figs. 1 and 5 have been carried out using the algorithm
described in [6] which bases on an earlier work by Bartels [4]. We also refer to the
app KNOTevolve [5].

2 Preliminaries

2.1 Principle of symmetric criticality

Let us briefly recall the notion of a group action on a Banach manifold modeled
over a Banach space to describe symmetry in a mathematically rigorous way, cf. [33,
pp. 19–20, 26].

Definition 2.1 For k ∈ N let M be a Ck-Banach manifold modeled over a Banach
space B, and suppose that (G, ◦) is a group.

(i) If there is a mapping τ assigning to each (g, x) ∈ G × M a point τg(x) ∈ M
such that

τg◦h(x) = τg(τh(x)) for all g, h ∈ G, x ∈ M , (2.1)

then the group G is said to act onM, and τ is called a representation of G onM.
(ii) If for each g ∈ G the mapping τg : M → M is a Ck-diffeomorphism, then M

is called a G-manifold (of class Ck). For an infinite Lie group G one additionally
requires that the representation τ is of class Ck on G×M . IfM is itself a Banach
space and τg is linear then M is said to be a G-space.

(iii) For a G-manifold M the G-symmetric subset � ⊂ M is defined as

� := {x ∈ M : τg(x) = x for all g ∈ G}. (2.2)

(iv) A function F : M → R is called G-invariant if and only if

F(τg(x)) = F(x) for all g ∈ G, x ∈ M . (2.3)

Palais proved the following symmetric criticality principle.

Theorem ([33, Theorem 5.4]) Suppose G is a compact Lie group andM a G-manifold
of classC1 over the Banach spaceB with the non-empty G-symmetric subset� ⊂ M ,
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Symmetric elastic knots 819

and let F : M → RbeaG-invariant functionof classC1. Then� is aC1-submanifold
of M, and x ∈ � is a critical point of F if and only if x is critical for the restricted
functional F |� : � → R. That is, if D(F |�)(x)v = 0 for all v ∈ Tx�, then also
DF(x)w = 0 for all w ∈ TxM .

As every finite group is a Lie group, cf., e.g., [16, p. 48, Example 5], we infer the
following result that we apply in Sect. 4 to obtain dihedrally symmetric critical knots
for the total energy Eϑ .

Corollary 2.2 (Symmetric criticality for finite groups) If G is a finite group andM aG-
manifold of class C1 with non-empty G-symmetric subset� ⊂ M , and if F ∈ C1(M )

is G-invariant, then any critical point of F |� is also a critical point of F.

Our choice of a Banach manifold will simply be an open subset � of a Banach
space B. This allows us to identify the differential of the energy F : � → R with
the classic Fréchet-differential DF(x) : Tx� 	 B → TF(x)R 	 R, which can be
computed by means of the first variation

DF(x)h = δF(x, h) := lim
ε→0

ε−1[F(x + εh) − F(x)
]

for h ∈ B.

2.2 Tangent-point energy

As mentioned in the introduction, Gonzalez and Maddocks suggested in [27, p. 4773]
to consider the tangent-point energy (1.4) as a candidate for a valuable knot energy.This
was confirmed in the work of P. Strzelecki and the third author [38] starting at a rather
low level of regularity with just rectifiable curves. In fact, arclength parametrizations
� ∈ C0,1(R/Z,R3)of rectifiable curveswithfinite tangent-point energyTPq(�) < ∞
for q ≥ 2 are either injective or they are multiple coverings of one-dimensional
manifolds [38, Theorem 1.1]. In addition, such curves � are of class C1,1−(2/q) if
q > 2; see [38, Theorem 1.3].

In the present context, however, dealing with the bending energy E we start
at the already higher regularity level of closed W 2,2-curves which—according to
the Morrey–Sobolev embedding theorem—are automatically of class C1,1/2. Con-
sequently, it suffices to review Blatt’s regularity results [9,10] onC1-curves with finite
tangent-point energy.4 One of the central results [9,10, Theorem 1.1] characterizes
finite energy among embedded curves by fractional Sobolev regularity W 2−(1/q),q .
Here, we only need one part of that statement explicitly, in fact, in a slightly sharp-
ened version for not necessarily arclength parametrized curves established in [26,
Theorem 3.2 (ii)].5

Theorem 2.3 Let q ∈ (2,∞) and suppose that γ ∈ W 2−(1/q),q(R/Z,R3) is injective
and satisfies |γ ′| > 0 on R/Z . Then TPq(γ ) < ∞.

4 Notice that the two-parameter family of energies TP(p,q) considered in [10] contains the tangent-point
energy, more precisely TPq = 2qTP(2q,q).
5 For the proof of [26, Lemma A.1], which is used to establish [26, Theorem 3.2 (ii)], see the updated arXiv
version.
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820 A. Gilsbach et al.

The other part of Blatt’s characterization (or [38, Theorem 1.3] for that matter) can
be used to quantify the degree of embeddedness for arclength parametrized curves
� : R/Z → R

3 by means of the bi-Lipschitz constant

BiLip(�) := inf
s,t∈R/Z

s �=t

|�(s) − �(t)|
|s − t |R/Z

.

Lemma 2.4 (Bi-Lipschitz estimate for finite TP-energy [10, Proposition 2.7]) For any
q > 2 and T > 0 there is a constant C = C(q, T ) > 0 such that any arclength
parametrized and injective curve � ∈ C0,1(R/Z,R3) with TPq(�) ≤ T satisfies

BiLip(�) ≥ C .

So far, we have reported on the effects that finite tangent-point energy has on the
curve. Let us conclude this short review with continuity and regularity properties of
the energy itself.

Theorem 2.5 (Regularity of the tangent-point energy) Let q > 2. The tangent-point
energy TPq is sequentially lower semicontinuous with respect to C1-convergence.
Moreover, TPq is continuously differentiable on regular embedded closed curves of
fractional Sobolev regularity W 2−(1/q),q .

Proof Lower semicontinuity of the tangent-point energy was shown in [37, p. 1513],
whereas continuous differentiability was verified in [42] using the first variation for-
mula in [10, Theorem 1.4] and the line of arguments used for the corresponding
regularity statement for integral Menger curvature in [11, Theorem 3].

2.3 Isotopy stability

Several times in the proofs we will rely on the fact that knot classes are stable with
respect to C1-perturbations. Variants of the following statement can be found in [8,
18,19,34].

Lemma 2.6 (Ambient isotopy is open in C1) For any embedded γ ∈ C1(R/�Z,R3)

there is an ε > 0 such that any γ̃ ∈ C1(R/�Z,R3) with ‖γ̃ − γ ‖C1 < ε is also
embedded and belongs to the same knot class as γ .

3 Group action on parametrized curves

In order to describe the dihedral symmetry of parametrized closed curves γ :
R/�Z → R

3 we use two different representations of the dihedral group D2 := {d0 ≡
e, d1, d2, d3} with the multiplication table depicted in Table 1, where e denotes the
identity element. Namely, in view of the symmetry of the curves’ images we consider
the subgroup {IdR3 ≡ R0, R1, R2, R3} ⊂ SO(3) containing the rotations Ri about
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Symmetric elastic knots 821

Table 1 The multiplication table
of the dihedral group D2

e d1 d2 d3

e e d1 d2 d3
d1 d1 e d3 d2
d2 d2 d3 e d1
d3 d3 d2 d1 e

the coordinate axes Rei for i = 1, 2, 3, with rotational angle π , that is, written as
matrices with respect to the standard coordinate basis {e1, e2, e3} ⊂ R

3,

R1 :=
⎛
⎝1 0 0
0 −1 0
0 0 −1

⎞
⎠ , R2 :=

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ , R3 :=

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ . (3.1)

To take into account the curves’ parametrizations, we use in addition the mappings
ψ�
i : R/�Z → R/�Z on the periodic domain R/�Z, defined as

ψ�
i (t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t (mod �) for i = 0,

−t + �
2 (mod �) for i = 1,

t − �
2 (mod �) for i = 2,

−t + � (mod �) for i = 3.

(3.2)

It is easy to check that for allmutually distinct i, j, k ∈ {1, 2, 3} the following identities
hold.

Ri ◦ Ri = IdR3 and ψ�
i ◦ ψ�

i = IdR/�Z, (3.3)

Ri ◦ R j = Rk and ψ�
i ◦ ψ�

j = ψ�
k , (3.4)

Ri |Rei = IdRei and Ri |Rek = R j |Rek = −Id|Rek . (3.5)

Now we define how D2 acts on the Banach space C0(R/Z,R3) of continuously
parametrized closed curves (equipped with the norm ‖·‖C0 ).

Definition 3.1 Let τ � : D2 × C0(R/�Z,R3) → C0(R/�Z,R3), mapping (di , γ ) �→
τ �
di

(γ ) for di ∈ D2, i = 0, 1, 2, 3, and γ ∈ C0(R/�Z,R3), be given by

τ �
di (γ )(t) := Ri ◦ γ

(
ψ�
i (t)

)
for t ∈ R/�Z, i = 0, 1, 2, 3. (3.6)

Lemma 3.2 (C0(R/�Z,R3) is a smooth D2-space) The mapping τ � acts on
C0(R/�Z,R3), and under this action C0(R/�Z,R3) becomes a smooth D2-space.

Proof It is obvious that τ �
di

(γ ) ∈ C0(R/�Z,R3) for each i = 0, 1, 2, 3, and γ ∈
C0(R/�Z,R3), since any rotation in the image and affine linear transformation of the
periodic domain neither changes the C0-regularity nor the �-periodicity.
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822 A. Gilsbach et al.

According to the multiplication table of the group D2 (see Table 1) and by the
properties (3.3)–(3.5) we have

τ �
di◦di (γ )(t)

Table 1= τ �
e (γ )(t)

(3.6),(3.2)= γ (t) for all t ∈ R/�Z, i = 0, 1, 2, 3.

On the other hand, again by (3.6) and (3.3),

τ �
di

(
τ �
di (γ )

)
(t)

(3.6)= Ri ◦ (τ �
di (γ )(·))(ψ�

i (t))

(3.6)= Ri ◦ Ri ◦ γ (ψ�
i (ψ

�
i (t)))

(3.3)= γ (t) for all t ∈ R/�Z, i = 0, 1, 2, 3,

which proves the homomorphism property (2.1) for identical group elements in D2.
For i �= j = 0 there is nothing to prove since j = 0 corresponds to the identity
elements in the respective representations of D2. For i �= j , i, j ∈ {1, 2, 3} we use
the multiplication rules in Table 1 and the definition (3.6) to find, on the one hand,

τ �
di◦d j

(γ )(t)
Table 1= τ �

dk (γ )
(3.6)= Rk ◦ γ (ψ�

k (t)), (3.7)

whereas (3.6), as well as (3.4) lead to

τ �
di

(
τ �
d j

(γ )
)
(t)

(3.6)= τ �
di

(
R j ◦ γ (ψ�

j (·))
)
(t)

(3.6)= Ri ◦ R j ◦ γ (ψ�
j (ψ

�
i (t)))

(3.4)= Rk ◦ γ (ψ�
k (t)),

which equals the expression in (3.7). We have shown so far that τ is indeed a repre-
sentation of D2 on C0(R/Z,R3). Since τ �

di
(σγ + η)(t) = Ri ◦ (σγ + η)(ψ�

i (t)) =
σ Ri ◦ γ (ψ�

i (t)) + Ri ◦ η(ψ�
i (t)) = στ�

di
(γ ) + τ �

di
(η) for all γ, η ∈ C0(R/�Z,R3)

and σ ∈ R, one finds that τ �
di

: C0(R/�Z,R3) → C0(R/�Z,R3) is linear for all

i = 0, 1, 2, 3, so that the Banach space C0(R/�Z,R3) is indeed a D2-space in the
sense of Definition 2.1, part (ii).

Symmetric curves are of particular interest here, which are defined as follows.

Definition 3.3 (Dihedrally symmetric curves) A curve is called dihedrally symmetric
or D2-symmetric if it belongs to the D2-symmetric set

�� := {γ ∈ C0(R/�Z,R3) : 0 < L (γ ) < ∞, τ �
di (γ ) = γ for all di ∈ D2}.(3.8)

Now we provide a method to systematically construct examples of D2-symmetric
curves (of finite length). For thatwe glue copies of an open or closed arcα : [0, �/4] →
R
3 of finite length together to obtain a mapping g : [0, �) → R

3 as

g(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(t) for t ∈ [0, �/4),
R1 ◦ α(ψ�

1 (t)) for t ∈ [�/4, �/2),
R2 ◦ α(ψ�

2 (t)) for t ∈ [�/2, 3�/4),
R3 ◦ α(ψ�

3 (t)) for t ∈ [3�/4, �),
(3.9)
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Symmetric elastic knots 823

and investigate first under which circumstances this glueing process leads to a closed
curve with a certain regularity. Notice that ψ�

i ([i�/4, (i + 1)�/4)) = (0, �/4] for
i = 1, 3, and ψ�

2 ([�/2, 3�/4)) = [0, �/4) by definition of the ψ�
j in (3.2), so that g in

(3.9) is well-defined. It turns out that this construction does not only produce examples
of D2-symmetric curves but also characterizes this symmetry6.

Proposition 3.4 (i) γ ∈ �� if and only if there exists an arc α ∈ C0([0, �/4],R3) of
positive and finite length satisfying

α(0) ∈ Re3 and α(�/4) ∈ Re1, (3.10)

such that γ coincides with the �-periodic extension of g defined in (3.9). In par-
ticular, the points γ (0) and γ (�/2) are contained in Re3, whereas γ (�/4) and
γ (3�/4) are contained in Re1.

(ii) γ ∈ �� ∩ W 1,p(R/�Z,R3) for some p ∈ [1,∞] if and only if γ = g, where α is
of class W 1,p and satisfies (3.10).

(iii) γ ∈ �� ∩ C1(R/�Z,R3) if and only if γ = g in the sense of (i), where α ∈
C1([0, �/4],R3) satisfies (3.10) and

α′(0) ∈ span{e1, e2} and α′(�/4) ∈ span{e2, e3}. (3.11)

Moreover, γ ∈ �� ∩ W 2,p(R/�Z,R3) for some p ∈ [1,∞] if and only if, in
addition to the above properties, α is of class W 2,p.

(iv) Let Si be the reflection in the coordinate plane e⊥
i for i = 1, 2, 3. Then, Si (��) ⊂

��, Si (�� ∩ C1) ⊂ �� ∩ C1, and Si (�� ∩ Wk,p) ⊂ �� ∩ Wk,p for p ∈ [1,∞],
k = 1, 2.

The proof of this proposition will follow from the following partial results.

Lemma 3.5 (Glueing produces closed curves) Suppose α ∈ C0([0, �/4],R3) has
length L (α) ∈ (0,∞), then the mapping g defined according to (3.9) has length
L (g) = 4L (α). Moreover, g is closed and continuous, i.e., of class C0(R/�Z,R3)

if and only if (3.10). Finally, if α is continuously differentiable, the curve g is of class
C1(R/�Z,R3) if and only if in addition to (3.10) the tangents of α satisfy (3.11).

Proof Since α is continuous one hasL[0,�/4)(g) = L (α) (see, e.g., [31, VIII, Section
5, Theorem 1, p. 223]), and because the rotated images of α have the same length as
α, the statement about L (g) is immediate.

The �-periodic extension of the piecewise defined curve g is continuous if and only
if the following four identities hold true:

g(0) = lim
t↗�

R3 ◦ α(−t + �), g(�/4) = lim
t↗�/4

α(t), (3.12)

g(�/2) = lim
t↗�/2

R1 ◦ α(−t + �/2), g(3�/4) = lim
t↗3�/4

R2 ◦ α(t − �/2), (3.13)

6 Fixing the rotational axes with (3.1) and the corresponding parameter transformations in (3.2) enforces
a rigidity on the class of D2-symmetric curves, which is reflected in the statements of Proposition 3.4 and
Corollary 3.11 below.
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824 A. Gilsbach et al.

where we have already plugged in the definition (3.9) in the respective limits on
the right-hand sides. Using the continuity of α on the right-hand side we obtain the
conditions α(0) = R3 ◦ α(0) and α(�/4) = R1 ◦ α(�/4) that are equivalent to (3.12),
and with the help of (3.3) and (3.4) exactly the same conditions equivalent to (3.13).
From (3.5) we infer ker (Id − Ri ) = Rei for i = 1, 2, 3, which implies that these
identities on the endpoints α(0) and α(�/4) are equivalent to (3.10).

Provided that α is continuosly differentiable, C1-regularity of g is equivalent to the
pointwise conditions (3.12) and (3.13) in combination with the tangential conditions

g′(0) = lim
t↗�

R3 ◦ ( − α′(−t + �)
)
, g′(�/4) = lim

t↗�/4
α′(t), (3.14)

g′(�/2) = lim
t↗�/2

R1 ◦ ( − α′(−t + �/2)
)
, g′(3�/4) = lim

t↗3�/4
R2 ◦ α′(t − �/2),

(3.15)

where the minus signs in the respective left equations are a consequence of the chain
rule. Now by continuity of α′ we obtain from (3.14) the equivalent conditions α′(0) =
−R3 ◦ α′(0) and α′(�/4) = −R1 ◦ α′(�/4). From ker (Id + Ri ) = span

{
e j , ek

}
we

deduce that they are equivalent to (3.11). Exploiting (3.15) again with the help of (3.3)
and (3.4) leads to the same conditions on α′(0) and α′(�/4).

From the Morrey–Sobolev embedding in one dimension together with well-known
glueing properties for Sobolev functions [2, E3.6 & E3.7] one readily obtains the
following corollary.

Corollary 3.6 [Glueing Sobolev arcs] If α ∈ W 1,p((0, �/4),R3) for any p ∈ [1,∞],
then g defined in (3.9) is a closed curve of class W 1,p(R/�Z,R3) if and only if the
continuous representative of α satisfies (3.10). If α ∈ W 2,p((0, �/4),R3), then g is
a closed curve of class W 2,p(R/�Z,R3) if and only if the C1-representative of α

satisfies (3.10) and (3.11).

Now we are in the position to prove that the constructed curve g in (3.9) is also
D2-symmetric.

Lemma 3.7 (D2-symmetric curves) If α ∈ C0([0, �/4],R3) has finite and positive
length and satisfies (3.10), then the curve g defined in (3.9) is D2-symmetric, that is,
g ∈ ��. If α is of class W 1,p for some p ∈ [1,∞], then so is the D2-symmetric curve
g, and if α ∈ C1([0, �/4],R3) or if α is of class W 2,p, and satisfies (3.11) in addition,
then g is a D2-symmetric closed curve of class C1, or W 2,p, respectively.

Proof The regularity statements follow from Lemma 3.5 and Corollary 3.6, so it suf-
fices to prove D2-symmetry, for which we merely need to show that

τ �
di (g) = g for i = 1, 2, 3. (3.16)

We only treat the case i = 1 in full detail, the cases i = 2, 3 are very similar.
For t ∈ [0, �/4) we have ψ�

1 (t) ∈ (�/4, �/2], and therefore by definition of g

τ �
d1(g)(t)

(3.6)= R1 ◦ g(ψ�
1 (t))

(3.9)= R1 ◦ R1 ◦ α(ψ�
1 ◦ ψ�

1 (t))
(3.3)= α(t) = g(t).
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Notice that we have also used the continuity of g established in Lemma 3.5 to treat
the parameter t = 0, since ψ�

1 (0) = �/2, so that

g(ψ�
1 (0)) = g(�/2) = lim

t↗�/2
g(t)

(3.9)= lim
t↗�/2

R1 ◦ α(ψ�
1 (t)) = R1 ◦ α(0).

For t ∈ [�/4, �/2) one has ψ�
1 (t) ∈ (0, �/4], so that

τ �
d1(g)(t)

(3.6)= R1 ◦ g(ψ�
1 (t))

(3.9)= R1 ◦ α(ψ�
1 (t))

(3.9)= g(t),

where again, we have used the continuity of g to treat t = �/4 by means of
g(ψ�

1 (�/4)) = g(�/4) = limt↗�/4 g(t) similarly as above.
For t ∈ [�/2, 3�/4) we have ψ�

1 (t) ∈ (−�/4, 0] ≡ (3�/4, �] (mod �), so that

τ �
d1(g)(t)

(3.6)= R1 ◦ g(ψ�
1 (t))

(3.9)= R1 ◦ R3 ◦ α(ψ�
3 ◦ ψ�

1 (t))

(3.4)= R2 ◦ α(ψ�
2 (t))

(3.9)= g(t),

where the parameter t = �/2 was treated as before via g(ψ�
1 (�/2)) = g(0) =

limt↗� g(t). Finally, for t ∈ [3�/4, �), one has ψ�
1 (t) ∈ (−�/2,−�/4] ≡ (�/2, 3�/4]

(mod �), so that

τ �
d1(g)(t)

(3.6)= R1 ◦ g(ψ�
1 (t))

(3.9)= R1 ◦ R2 ◦ α(ψ�
2 ◦ ψ�

1 (t))

(3.4)= R3 ◦ α(ψ�
3 (t))

(3.9)= g(t),

the parameter t = 3�/4 treated by continuity of g via g(ψ�
1 (3�/4)) = g(−�/4) =

g(3�/4) = limt↗3�/4 g(t) by �-periodicity of g.
Thus,we have finished the detailed argument for i = 1. The case i = 3 is analogous,

and i = 2 is somewhat simpler, since there is no inversion in the domain which saves
us the additional continuity argument to treat the respective boundary parameters.

Now we can present the

Proof of Proposition 3.4 For part (i) assume that γ ∈ �� so γ = Ri ◦ γ (ψ�
i (·)) for

i = 0, 1, 2, 3. Let α := γ |[0,�/4] and define g according to (3.9). Then

g(t) = R j ◦ α(ψ�
j (t)) = R j ◦ γ (ψ�

j (t)) = γ (t)

for t ∈ [ j�/4, ( j + 1)�/4), j = 0, 1, 2, 3.

The other implication in part (i) and also parts (ii) and (iii) follow from Lemmata 3.5
and 3.7, and Corollary 3.6. Finally, part (iv) follows from the characterizations of ��,
�� ∩ C1 and �� ∩ Wk,p for k = 1, 2 in terms of the generating arc α, established
in the previous parts (i)–(iii). These characterizations can be combined with the fact
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826 A. Gilsbach et al.

Fig. 3 D2-symmetric curves generated by (3.9). A The once covered circle in the e1-e3-plane from Exam-
ple 3.8. B–D A tangential pair of co-planar circles exhibiting symmetries with respect to the coordinate
axes as described in Example 3.9. 180◦ rotations about the coordinate axes Rei indicated in green are
accompanied by parameter transformations ψ�

i that reverse orientation for i = 1, 3 in B and D, while
preserving it for i = 2 in C; see red and green arrows along the curves

that the conditions (3.10) and (3.11) on α are invariant under the reflections Si for
i = 1, 2, 3.

We use the glueing mechanism (3.9) to construct a few explicit examples of dihe-
drally symmetric curves parametrized on R/�Z.

Example 3.8 As a first generating arc α1 ∈ C∞([0, �/4],R3) we choose a quadrant
(i.e., one quarter of a circle) in the e1-e3-plane with arclength �/4, that is,

α1(t) := �

2π

⎛
⎝sin(2π t/�)

0
cos(2π t/�)

⎞
⎠ for t ∈ [0, �/4], (3.17)

so that α := α1 satisfies the conditions (3.10), (3.11), and the regularity assumptions
of Lemma 3.5, Corollary 3.6, and Lemma 3.7. According to these results the curve
g ≡ g1 defined in (3.9) for this particular choice of α = α1 is a C1,1-closed and
D2-symmetric curve, that is, g1 ∈ �� ∩C1,1(R/�Z,R3). It is easy to check that g1 is
the once covered circle whose parametrization equals (3.17) if one extends the domain
of the latter to all of [0, �], so g1 is actually C∞ on R/�Z; see Fig. 3A.

Example 3.9 We construct a dihedrally symmetric tangential pair of co-planar circles
with exactly one self-intersection point within the e1-e2-plane; see Fig. 3B–D. For that
we take as a generating arc α2 ∈ C∞([0, �/4],R3) a semicircle of radius �/(4π). To
be more precise, we set

α2(t) := �

4π

⎛
⎝1 − cos(4π t/�)

sin(4π t/�)
0

⎞
⎠ for t ∈ [0, �/4], (3.18)

and easily check that conditions (3.10) and (3.11) as well as the regularity assumptions
of Lemma 3.5, Corollary 3.6, and Lemma 3.7 are satisfied for α := α2. Glueing
according to (3.9) yields the D2-symmetric tangential pair of co-planar circles with
parametrization g ≡ g2 ∈ �� ∩ C1,1(R/�Z,R3), which in the case � = 1 we also
denote by tpcπ . This curve has the same trace as the corresponding curve in [24,
Formula (3.2) for ϕ := π ], only with reversed orientation.
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Fig. 4 Dihedrally symmetric torus knots of class T (2, 5) constructed in Example 3.10 for ε = 0.03 (left)
and for ε = 0.003 (right)

In a similar manner, we may construct a tpcπ -curve in the e2-e3-plane by letting

α2(t) := �

4π

⎛
⎝ 0

sin(4π t/�)
1 + cos(4π t/�)

⎞
⎠ for t ∈ [0, �/4]. (3.19)

We will show in Corollary 3.11 that (3.18) and (3.19) are the only two options for the
generating arc to construct D2-symmetric tangential pairs of circles tpcπ .

Our third example produces dihedrally symmetric torus knots of class T (2, b) for
any odd b ∈ Z\{1,−1}; see Fig. 4.

Example 3.10 The generating curve α3 consists of a helical part h, which after the
glueing forms together with its rotated copies a rational tangle that determines the
knot class [1, Section 2.3], and a piece σ of a stadium curve, which after the glueing
closes the tangle to form the knot; see Fig. 4. For the precise formulas, which we
are going to take up again in Sect. 5 to compute the infimal bending energy on D2-
symmetric torus knots, it suffices to consider a fixed odd integer b ≥ 3. Indeed,
the reflection of a D2-symmetric representative of the torus knot class T (2, b) in a
coordinate plane ei for i = 1, 2, 3, produces a representative of T (2,−b) that still
possesses the D2-symmetry according to part (iv) of Proposition 3.4. We also fix two
parameters ε, � > 0, and define the helical part h = hε of the generating arc as

hε(t) :=
⎛
⎝�(−1)(b−1)/2 sin φε(t)

t
� cosφε(t)

⎞
⎠ for t ∈ [0,∞), (3.20)

where φε(t) := π · φ(t/ε) for the piecewise smooth parameter transformation φ ∈
C1,1([0,∞)) given by

φ(t) :=

⎧⎪⎨
⎪⎩
t for t ∈ [

0, b−1
2

]
,

b
2 − 1

2

(
t − b+1

2

)2
for t ∈ [ b−1

2 , b+1
2

]
,

b
2 for t ≥ b+1

2 .

(3.21)
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Note that

hε(
(b+1)ε

2 ) =
⎛
⎝�(−1)(b−1)/2 sin bπ

2
(b+1)ε

2
0

⎞
⎠ =

⎛
⎝ �

(b+1)ε
2
0

⎞
⎠ . (3.22)

The portion σ = σε of a stadium curve of class C1,1 consists of a semicircle of radius
r = r(ε) satisfying

(b + 1)ε + πr = �/4, (3.23)

and a (short) straight segment attached in a C1-manner to the semicircle. The precise
definition is

σ ε(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

� + r − r cos
( 1
r (t − (b + 1)ε/2)

)
(b + 1)ε/2 + r sin

( 1
r (t − (b + 1)ε/2)

)
0

⎞
⎟⎠ for t ∈

[
(b+1)ε

2 , �
4 − (b+1)ε

2

]
,

⎛
⎜⎝

� + 2r

(�/4) − t

0

⎞
⎟⎠ for t ∈

[
�
4 − (b+1)ε

2 , �
4

]
.

(3.24)

The generating arc αε
3 for fixed ε > 0 satisfying (3.23) is now defined as

αε
3(t) :=

{
hε(t) for t ∈ [

0, b+1
2 · ε

]
,

σ ε(t) for t ∈ ( b+1
2 · ε, �

4

]
,

(3.25)

and one easily checks with the help of (3.23) and (3.22) that αε
3 itself is of

class C1,1 on [0, �/4]. Moreover, αε
3(0) = hε(0) = (0, 0, �)T ∈ Re3 and

αε
3(�/4) = (� + 2r , 0, 0)T ∈ Re1 as required in (3.10) of Lemma 3.5. Finally,

(αε
3)

′(0) = (�(−1)(b−1)/2π/ε, 1, 0)T ∈ span{e1, e2} and (αε
3)

′(�/4) = (0,−1, 0)T ∈
span{e2, e3}, so that also (3.11) is satisfied. Therefore, all assumptions of Lemma 3.5,
Corollary 3.6, and Lemma 3.7 are satisfied, so that the glueing (3.9) yields a D2-
symmetric torus knot gε

3 ∈ �� ∩C1,1(R/�Z,R3) representing the knot class T (2, b).
We establish in Section 5 the strong W 2,2-convergence of these torus knots gε

3 for
� = 1 to the tangential pair of co-planar circles constructed in Example 3.9, i.e., to
tpcπ as ε → 0.

In light of the above examples, it is in order to ask about the location of the dihedrally
symmetric curves appearing in the main theorems, namely the round circle and the
tangential pair of circles tpcπ .

Corollary 3.11 (D2-symmetric circle and tpcπ ) Up to reparametrization there are a
unique D2-symmetric circle and precisely two D2-symmetric tpcπ -curves (which are
of course isometric).
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(i) Any D2-symmetric circle c : R/Z → R
3 is centered at the origin and contained

in the plane perpendicular to e2 with initial point c(0) ∈ Re3.
(ii) A D2-symmetric tpcπ : R/Z → R

3 is located in one of the two coordinate
planes e⊥

1 and e⊥
3 . The self-intersection point is at the origin and its tangent is

parallel to e2 in both cases.

Proof (i) The center M of any circle C ⊂ R
3, which – as a set – is D2-symmetric, is

the origin, since if not, we could find i ∈ {1, 2, 3}, such that Ri M �= M and hence
RiC is a circle of the same length as C , but with a center Ri M different from
M . Therefore, the sets RiC and C differ which contradicts the dihedral symmetry
of C . Consequently, any injective arclength parametrization c : R/Z → R

3 of
the once covered circle with D2-symmetry satisfies the antipodal relation c(t) =
−c(t + 1/2) for all t ∈ R/Z. If there is one such parametrization c with D2-
symmetry then its image c(R/Z) must be contained in span{e1, e3} since, by
1-periodicity,

c(t)
(3.6)= R2 ◦ c(t − 1/2) = R2 ◦ c(t + 1/2) = −R2 ◦ c(t) (3.26)

for all t ∈ R/Z. Moreover, we infer c(0) ∈ Re3 from (3.10) in Proposition 3.4.
The existence of such a parametrization was established in Example 3.8, cf. (3.17).

(ii) For tpcπ we can argue in a similar way to see that the self-intersection point is
at the origin. By Lemma 3.12 below we may assume that tpcπ is an arclength
parametrized curve R/Z → R

3. Let the unit tangent of tpcπ at the origin be
denoted by ν ∈ S

2. Due to symmetry, tpcπ (t + 1
2 ) is just the image of a 180-

degree rotation Rν of tpcπ (t) about ν. Thus we obtain

Rν ◦ tpcπ (t) = tpcπ (t + 1
2 )

(3.6)= R2 ◦ tpcπ (t) for all t ∈ R/Z.

This implies that the matrix product R−1
ν R2 is the identity on the hyperplane

which contains (the image of) tpcπ . As it belongs to SO(3), it must even be IdR3 ,
in particular ν = e2.
From part (i) of Proposition 3.4 we infer that the image of tpcπ must contain
points in Rek\ {0} for k = 1 or k = 3. Together with ν = e2 we conclude that the
planar curve tpcπ belongs either to e⊥

1 or e⊥
3 . Both configurations are realized by

Example 3.9, cf. (3.18) and (3.19).

According to the following result one can reparametrize D2-symmetric curveswith-
out affecting the symmetry. This, as well as the subsequent uniform a priori bound
on the size of dihedrally symmetric curves, turns out to be useful ingredients in the
existence proofs of Sect. 4.

Lemma 3.12 (Symmetry of arclength parametrization) If γ ∈ �� has lengthL (γ ) =
L, then its arclength parametrization � is also D2-symmetric, that is, � is contained
in the D2-symmetric set �L defined as in (3.8).

123



830 A. Gilsbach et al.

Proof Differentiating the symmetry relation γ = τ �
di

(γ ) on R/�Z we obtain by (3.6)
and (3.2)

∣∣γ ′(t)
∣∣ =

∣∣∣τ �
di (γ )′(t)

∣∣∣ (3.6)=
∣∣∣Ri ◦ γ ′(ψ�

i (t)
)
(ψ�

i )
′(t)

∣∣∣ (3.2)=
∣∣∣γ ′(ψ�

i (t)
)∣∣∣ (3.27)

for all t ∈ R/�Z and i = 0, 1, 2, 3. This identity can be used to compute the arclength
parameter

s
(
ψ�
i (t)

) = L
(
γ |[0,ψ�

i (t)]
)

=
∫ ψ�

i (t)

0

∣∣γ ′(τ )
∣∣ dτ

(3.27)=
∫ ψ�

i (t)

0

∣∣∣γ ′(ψ�
i (τ ))

∣∣∣ dτ

=
∫ t

ψ�
i (0)

∣∣γ ′(z)
∣∣ 1

(ψ�
i )

′(ψ�
i (z))

dz =
(
sign(ψ�

i )
′) [s(t) − s(ψ�

i (0))
]
,

(3.28)

where we changed variables to z := ψ�
i (τ ) with z(0) = ψ�

i (0), z(ψ
�
i (t)) = ψ�

i ◦
ψ�
i (t) = t by virtue of (3.3). Notice also that (ψ�

i )
′(·) = (−1)i for i = 0, 1, 2, 3.

Using (3.28) with i = 2 and t = � we infer 2s( �
2 ) = s(�) = L . Now it is easy to

check that
(
sign(ψ�

i )
′)[s(t)−s(ψ�

i (0))
]=ψ L

i (s(t)) for all t ∈ R/�Z, i = 0, 1, 2, 3, (3.29)

where ψ L
i is the transformation defined in (3.2) only with � replaced by L . In other

words, D2 acts on the domain R/LZ of the arclength parametrization � via the trans-
formations ψ L

i , i = 0, 1, 2, 3. Combining (3.28) with (3.29) we arrive at

s
(
ψ�
i (t)

) = ψ L
i (s(t)) for all t ∈ R/�Z, i = 0, 1, 2, 3, (3.30)

so that the symmetry of γ leads to

�
(
s(t)

) = γ (t) = τ �
di (γ )(t)

(3.6)= Ri ◦ γ (ψ�
i (t)) = Ri ◦ �

(
s(ψ�

i (t))
)

(3.30)= Ri ◦ �
(
ψ L
i (s(t))

) (3.6)= τ L
di (�)

(
s(t)

)
(3.31)

for all t ∈ R/�Z, i = 0, 1, 2, 3, which establishes the symmetry of �.

Lemma 3.13 (Optimal L∞-bound) A closed curve γ ∈ C0(R/�Z,R3) of length � ∈
(0,∞) whose image has dihedral symmetry is contained in the closure of the ball
B�/4(0).

Proof Assume to the contrary that there is a point (x1, x2, x3) = x := γ (s) such that
|x | > �/4. We may assume without loss of generality that |x1| ≥ |x2| ≥ |x3|. The
symmetry assumption means

R1 ◦ γ (R/�Z) = R2 ◦ γ (R/�Z) = R3 ◦ γ (R/�Z) = γ (R/�Z), (3.32)
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so that we have Ri (x) ∈ γ (R/�Z) for i = 1, 2, 3, and some permutation of the four
points A := x , B := R1(x), C := R2(x), D := R3(x) forms a polygon inscribed in
γ . By direct computation we infer

S := |A − B| = |C − D| = 2
√
x22 + x23 ,

M := |A − C | = |B − D| = 2
√
x21 + x23 ,

L := |A − D| = |B − C | = 2
√
x21 + x22 , (3.33)

with 0 ≤ S ≤ M ≤ L according to our assumption on the coordinates of x . Of all the
possible choices of permutations of the points A, B,C, D, the two closed polygons
P1 := ABDCA and P2 := ACDBA have the shortest length L (P1) = L (P2) =
2S + 2M , which by means of (3.33) leads to the contradictive inequality

� ≥ 2S + 2M
(3.33)= 4

(√
x22 + x23 +

√
x21 + x23

)
≥ 4|x | > �.

This L∞ bound is optimal, since one can think of a sequence of ellipses of length
L , all centered at the origin and contained in a fixed coordinate plane, converging to a
straight segment of length L/2 on one coordinate axis. All such ellipses are contained
in the ball of radius L/4 centered at the origin (cf. [32]).

Recall from the introduction the setW 2,2
ir (R/�Z,R3) of closed, regular and embed-

ded W 2,2-curves, each of which represents a tame knot class. Thus, for a given knot
class K we introduce the subset

��
K := {γ ∈ W 2,2

ir (R/�Z,R3) : [γ ] = K}, (3.34)

which – according to the Morrey–Sobolev embedding W 2,2 ↪→ C1 – is the empty set
unless K is tame; see Footnote 1. First we observe that ��

K is a Banach manifold.

Lemma 3.14 (��
K is a Banach manifold) For any fixed tame knot class K the set ��

K
is a non-empty open subset of the Banach space W 2,2(R/�Z,R3), hence a Banach
manifold.

Proof By the Morrey–Sobolev embedding result any curve γ ∈ ��
K is a regular

C1-knot representing the knot class K, so that according to Lemma 2.6 the curve γ

possesses a neighbourhood U ⊂ C1(R/�Z,R3) such that any curve ξ ∈ U is regular
and of the same knot type K. Again by means of the Morrey–Sobolev embedding
theorem we can choose the radius δ of the ball Bδ(γ ) ⊂ W 2,2(R/�Z,R3) so small
that Bδ(γ ) ⊂ U , which proves the claim.

Restricting the group action (3.6) to ��
K yields a smooth D2-manifold.

Lemma 3.15 (��
K is D2-manifold) Themapping τ � defined in (3.6) acts on theBanach

manifold ��
K, and under this action ��

K becomes a smooth D2-manifold.
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832 A. Gilsbach et al.

Proof It is easy to see that τ �
di

(γ ) is contained in ��
K for i = 0, 1, 2, 3, and γ ∈ ��

K,
since any rotation in the image and affine linear transformation of the periodic domain
does not change theW 2,2-regularity and injectivity on [0, �). Moreover, the knot class
K is preserved as well, and

∣∣∣τ �
di (γ )′(t)

∣∣∣ =
∣∣∣∣Ri ◦ γ ′(ψ�

i (t))
(
ψ�
i

)′
(t)

∣∣∣∣ =
∣∣∣γ ′(ψ�

i (t))
∣∣∣ > 0 for all t ∈ R/�Z.

The algebraic property (2.1) as well as the linearity of τ �
di

: ��
K → ��

K for i =
0, 1, 2, 3 was verified in the proof of Lemma 3.2. Indeed, the linearity of τ �

di
leads to

the differential

(dτ �
di )γ η = τ �

di (η) for all γ ∈ ��
K, η ∈ Tγ ��

K 	 W 2,2(R/�Z,R3)

and i = 0, 1, 2, 3. Therefore, ��
K is a smooth D2-manifold, since τ �

di
: ��

K → ��
K

is a diffeomorphism with (smooth) inverse
(
τ �
di

)−1 := τ �
di
for each i = 0, 1, 2, 3 by

means of the properties (3.3).

4 Existence theory under theD2-symmetry constraint

Throughout this sectionwe set � = 1. Instead of the total energy Eϑ = E+ϑTP1/(q−2)
q

which is positively (−1)-homogeneous, i.e., Eϑ(rγ ) = r−1Eϑ(γ ) for all γ ∈
W 2,2(R/Z,R3) and r > 0, we consider the scale-invariant version

Sϑ(γ ) := L (γ ) · Eϑ(γ ) = L (γ ) ·
(
E(γ ) + ϑTP

1
q−2
q (γ )

)
. (4.1)

We first minimize this scale-invariant total energy on the class of W 2,2-knots with
dihedral symmetry, that is, we minimize Sϑ on the D2-symmetric subset

�K := �1 ∩ �1
K, (4.2)

where �� for general � > 0 was defined in (3.8) and ��
K in (3.34).

Theorem 4.1 (Symmetric minimizers of total scaled energy) Assume that �K �= ∅
for a given knot class K. Then for any ϑ > 0 there exists an arclength parametrized
knot �ϑ ∈ �K with length L (�ϑ) = 1, such that

Sϑ(�ϑ) = inf
�K

Sϑ(·). (4.3)

Before proving this crucial existence result, let us draw some immediate conclusions
that also lead to the proofs of Theorems 1.1 and 1.3 stated in the introduction.
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Corollary 4.2 (Symmetric Sϑ -critical points) Any symmetric locally minimizing knot
γ ∈ �K of Sϑ |�K is Sϑ -critical, that is,

DSϑ(γ )h = 0 for all h ∈ W 2,2(R/Z,R3). (4.4)

Proof Small D2-symmetric variations of a locally minimizing knot γ ∈ �K
remain regular and in the same knot class K, so that γ is (Sϑ |�K)-critical, that is,
D(Sϑ |�K)(γ )h = 0 for all h ∈ Tγ �K. Using the definition of the group action (3.6),
(3.2) one easily checks that Sϑ is a D2-invariant energy. Indeed, both E and TPq are
invariant under Euclidian transformations and reparametrization; here we even do not
change the speed due to | (ψ�

i

)′
(·)| = 1 for all i = 0, 1, 2, 3. Furthermore, Sϑ is of

class C1 by means of Theorem 2.5.
Moreover, �K is the non-empty D2-symmetric subset of the smooth D2-manifold

�1
K, cf. Lemma3.15, so thatwe can apply the version of Palais’s principle of symmetric

criticality stated in Corollary 2.2.

Criticality of Sϑ is directly related to criticality for the constrained variational
problem (lPϑ ) for the original total energy Eϑ .

Corollary 4.3 (Euler–Lagrange equation) Any arclength parametrized critical point
� ∈ W 2,2(R/Z,R3) of Sϑ satisfies

DEϑ(�) + λ · DL (�) = 0 (4.5)

for the Lagrange multiplier λ := Eϑ(�). Moreover, any arclength parametrized crit-
ical point for the variational problem (Pϑ ) satisfies the same variational equation
(4.5).

Proof The Euler–Lagrange equation (4.5) is a direct consequence of (4.4) via the
product rule and because L (�) = 1. The variational equation for the constrained
variational problem (Pϑ ) is

DEϑ(�) + μ · DL (�) = 0 (4.6)

for some Lagrange multiplier μ ∈ R, since small variations � + εh for h ∈
W 2,2(R/Z,R3) remain regular and in the same knot class K by Morrey’s compact
embedding W 2,2 into C1. Testing (4.6) with � itself we can use the fact that

∣∣�′∣∣ ≡ 1
to find

0 = DEϑ(�)� + μ

∫
R/Z

∣∣�′(τ )
∣∣2 dτ = DEϑ(�)� + μ,

so that μ = −DEϑ(�)� = Eϑ(�) by the positive (−1)-homogeneity of Eϑ .

Before proving Theorem 4.1 itself, we turn to another immediate application,
namely the existence of symmetric critical knots for the total energy Eϑ as stated
in Theorem 1.1, and the existence of symmetric elastic knots; see Theorem 1.3.
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834 A. Gilsbach et al.

Proof of Theorem 1.1 Since by assumption there is at least one D2-symmetric knot
contained in C (K) one has �K �= ∅ so that Theorem 4.1 is applicable. The Sϑ -
minimizing knots �ϑ ∈ �K obtained in that theorem have length one, so �ϑ ∈ C (K).
They are Sϑ -critical according to Corollary 4.2. Moreover,

∣∣�′
ϑ

∣∣ ≡ 1 on R/Z so that
Corollary 4.3 implies that the Euler–Lagrange equation (4.5) holds true, which is
the variational equation (1.5) stated in Theorem 1.1 with the exact same Lagrange
multiplier.

Proof of Theorem 1.3 For any ϑ > 0 we find by virtue of Theorem 4.1 an arclength
parametrized knot �ϑ ∈ �K (of length L (�ϑ) = 1 hence �ϑ ∈ C (K)) such that

Eϑ(�ϑ)
(4.1)= Sϑ(�ϑ)

(4.3)≤ Sϑ(β) = Eϑ(β)

for all D2-symmetric β ∈ C (K), since such β are contained in �K. By definition of
the total energy Eϑ we infer a uniform bound on the bending energies E(�ϑ),

E(�ϑ) ≤ Eϑ(�ϑ) ≤ Eϑ(β) ≤ E(β) + TP
1

q−2
q (β) < ∞ for all ϑ ∈ (0, 1] (4.7)

for all D2-symmetric curves β ∈ C (K). Notice that the right-hand side is finite by
virtue of Theorem 2.3. Together with the uniform L∞-bound ‖�ϑ‖L∞(R/Z,R3) ≤ 1/4,
which follows from Lemma 3.13 since L (�ϑ) = 1, we obtain the uniform bound

‖�ϑ‖W 2,2(R/Z,R3) ≤ C < ∞ for all ϑ ∈ (0, 1]. (4.8)

Hence, for any given sequence ϑ j → 0 there exists a subsequence (ϑ jk )k ⊂ (ϑ j ) j
such that the corresponding symmetric minimizing knots �ϑ jk

converge weakly in

W 2,2 and strongly in C1 to a limiting curve �0 as k → ∞. Therefore �0 satisfies
|�′

0| ≡ 1 on R/Z, L (�0) = 1, the dihedral symmetry relation τ 1di
(�0) = �0 for

i = 0, 1, 2, 3. By the lower semicontinuity of the bending energy E and by means of
(4.7),

E(�0) ≤ lim inf
k→∞ E(�ϑ jk

) ≤ lim inf
k→∞ Eϑ jk

(�ϑ jk
)

(4.7)≤ lim inf
k→∞ Eϑ jk

(β) = E(β)

for all D2-symmetric curves β ∈ C (K), which is the minimizing property (1.6).

Proof of Theorem 4.1 Since �K was assumed to be non-empty, we have inf�K Sϑ ∈
[(2π)2,∞), where we used that the Sobolev space W 2,2 continuously embeds7 into
the fractional Sobolev spaceW 2−(1/q),q for q ∈ (2, 4] so that the tangent-point energy
of a regular embedded W 2,2-curve is finite according to Theorem 2.3. Hence there
exists a minimal sequence (γ j ) j ⊂ �K with lim j→∞ Sϑ(γ j ) = inf�K Sϑ . Due to the
scale-invariance of Sϑ we may assume that L (γ j ) = 1 for all j ∈ N, and we can

7 This follows, e.g., by the characterization of Sobolev spaces of real positive smoothness in terms of
Triebel–Lizorkin and Besov spaces [35, Prop. 2.1.2] applied to an embedding with constant differential
dimension [35, Rem. 2.2.3/2].
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reparametrize to arclength to obtain a minimal sequence � j with
∣∣∣�′

j

∣∣∣ = 1 for all j ,

and with

lim
j→∞ Eϑ(� j ) = lim

j→∞ Sϑ(� j ) = inf
�K

Sϑ(·). (4.9)

Note that the first equation holds since we have L (� j ) = 1 for all j ∈ N. Moreover,
� j ∈ �K for all j due to Lemma 3.12 for � = L = 1, and therefore, ‖� j‖L∞ ≤ 1/4
for all j ∈ N by virtue of Lemma 3.13. Now (4.9) implies that

∫
R/Z

∣∣∣�′′
j (s)

∣∣∣2 ds = E(� j ) ≤ Eϑ(� j ) ≤ inf
�K

Sϑ(·) + 1 < ∞ for all j � 1,

which together with the uniform L∞-bound and with
∣∣∣�′

j

∣∣∣ ≡ 1 for all j , yields a

uniform bound on the fullW 2,2-norm of the � j for j � 1. Consequently, there exists
a subsequence (� jk )k ⊂ (� j ) j convergingweakly inW 2,2 and strongly inC1 to a limit
curve �ϑ ∈ W 2,2(R/Z,R3) as k → ∞. The C1-convergence implies that

∣∣�′
ϑ

∣∣ ≡ 1,
and that L (�ϑ) = 1. Moreover, taking the limit k → ∞ in the symmetry relation

τ 1di (� jk )(t) = � jk (t) for all t ∈ R/Z

we find τ 1di
(�ϑ) = �ϑ . To prove that �ϑ is contained in �K it suffices to show

that �ϑ is embedded since then [�ϑ ] = K by Lemma 2.6. The uniform W 2,2-bound
on the � jk implies by the Morrey–Sobolev embedding also a uniform bound on the
W 2−(1/q),q -norms of the � jk . This in turn yields a uniform positive lower bound B
on the the bi-Lipschitz constants BiLip(� jk ) according to Lemma 2.4. Passing to the
limit k → ∞ in the corresponding inequality

∣∣� jk (s) − � jk (t)
∣∣ ≥ B |s − t |R/Z for all s, t ∈ R/Z

one obtains from the C1-convergence � jk → �ϑ

|�ϑ(s) − �ϑ(t)| ≥ B |s − t |R/Z for all s, t ∈ R/Z.

By Theorem 2.5 the tangent-point energy is lower-semicontinuous with respect to the
strong C1-convergence, and therefore also the total scaled energy Sϑ with respect to
the combined weak W 2,2- and strong C1-convergence, which implies by virtue of the
fact that L (�ϑ) = 1,

inf
�K

Sϑ ≤ Sϑ(�ϑ) = Eϑ(�ϑ) ≤ lim inf
k→∞ Sϑ(� jk ) = inf

�K
Sϑ(·).

We can now identify the shape of the D2-elastic unknot as the once covered circle
contained in the e1-e3-plane with starting point on the e3-axis. This information is
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836 A. Gilsbach et al.

even more concrete than stated in Theorem 1.5, because of our choice of rotational
axes in (3.6) representing the dihedral group D2 on R3 and of the dihedral parameter
transformations of the domain R/Z described in (3.2).

Proof of Theorem 1.5 The once covered circle of length one uniquely minimizes the
bending energy E in C (K) where K is the unknot class according to the stability
result by Langer and Singer [29]. But it also uniquely minimizes the tangent-point
energy TPq by the two uniqueness proofs of Volkmann and Blatt; see [39, Cor. 5.12].
Therefore the once covered circle of length one and all its isometric images also
uniquely minimize the total energy Eϑ within C (K) for any ϑ > 0. The dihedral
symmetry forces the Eϑ -minimizing circles to lie in the e1-e3-plane, with initial point
contained in Re3; see Corollary 3.11. These properties transfer via C1-convergence
of Eϑ j -minimizers as ϑ j → 0 to the elastic unknot.

Now assume that a D2-elastic knot for some knot class K is the once covered
circle, which represents the unknot class. According to Lemma 2.6 there is an entire
C1-neighborhood of the once covered circle that only consists of unknots. But by
definition of elastic knots this once covered circle is the C1-limit of Eϑ j -minimizing
knots�ϑ j ,ϑ j → 0, all representing the knot classK. This implies thatK is the unknot.

Notice finally, for the proof of (1.7), that Fenchel’s lower bound of 2π for the total
curvature of any closed curve combined with Hölder’s inequality implies that (2π)2

is the infimal bending energy for the trivial knot class. This value is attained by the
once covered circle. Now (1.7) immediately follows from the fact that according to
Corollary 3.11 there are round D2-symmetric circles.

Now we turn to non-trivial knot classes satisfying assumption (1.8) on the infimal
bending energy. Here we need [24, Theorem A.1] where the Fáry–Milnor theorem on
the lower bound for total curvature of non-trivially knotted curves has been extended
to the C1-closure of knots. We restate it for the convenience of the reader.

Theorem 4.4 (Fáry–Milnor extension) Let K be a non-trivial (tame) knot class and
suppose γ belongs to the C1-closure of C (K). Then TC(γ ) ≥ 4π.

This result permits to prove the following rigidity result, which is the essential
ingredient for the proof of Theorem 1.6 presented in Section 5.

Theorem 4.5 (Rigidity & strong convergence) If a knot classK satisfies (1.8) then any
D2-elastic knot �0 forK is (up to reparametrization) the tangential pair of co-planar
circles with exactly one point in common described in Corollary 3.11. In addition,
any subsequence of D2-symmetric Eϑ -minimizers �ϑ ∈ C (K) converges strongly in
W 2,2 to (an isometric image of) �0 as ϑ → 0.

Proof From Theorem 1.5 we infer that K is nontrivial. Applying the extended Fáry–
Milnor Theorem 4.4 to any D2-elastic knot �0 which according to Theorem 1.3 lies
in the C1-closure of C (K), we estimate by means of Hölder’s inequality

(4π)2
Thm. 4.4≤

(∫
�0

κ�0 ds

)2

≤ E(�0)
(1.6)≤ inf

β∈C (K)
β D2-symmetric

E(β)
(1.8)= (4π)2.

(4.10)
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Consequently, we have equality everywhere, in particular equality in Hölder’s inequal-
ity, which implies a constant integrand κ�0 = 4π a.e. on R/Z.

Next we prove that �0 has at least one double point. Indeed, otherwise, by
Lemma 2.6 the curve �0 would be contained in C (K) since �0 is the strong C1-limit
of the Eϑ j -minimizers �ϑ j ∈ C (K) as ϑ j → 0. Combining the minimizing property
(1.6) of �0 with our assumption (1.8), which also implies that (4π)2 = infC (K) E , we
find that �0 is an embedded minimizer of the bending energy within C (K), hence a
stable critical point of E . Applying the stability result of Langer and Singer [29], we
find �0 to be the once covered circle representing the unknot class, which contradicts
the fact that K is nontrivial. So, we have shown that �0 is not injective.

According to [24, Cor. 3.4] the elastic D2-symmetric knot �0 belongs, up to isom-
etry and reparametrization, to the one-parameter family of tangentially intersecting
circles tpcϕ for ϕ ∈ [0, π ] explicitly given in [24, Formula (3.2)]. One easily checks
that the only possible candidates that may respect the D2-symmetry are the doubly
covered circle tpc0 and the tangential pair of co-planar circles tpcπ with only one
touching point.

But (any isometric image of) tpc0 is not only 1-periodic but also 1/2-periodic, so
that the symmetry assumption τ 1d2(tpc0) = tpc0 would lead to

tpc0(t) = tpc0(t + 1/2) = τ 1d2(tpc0)(t + 1/2)
(3.6)= R2 ◦ tpc0

(
ψ1
2 (t + 1/2)

)
(3.2)= R2 ◦ tpc0(t) for all t ∈ R/Z, (4.11)

so that tpc0(t) ∈ Re2 for all t ∈ R/Z, which is a contradiction.
So, (up to isometry) the only remaining option is �0 = tpcπ , and that this curve

indeed has the D2-symmetry has been verified in Example 3.9.
It remains to establish strong convergence. Now that we have identified the weak

W 2,2-limit of the Eϑ j -minimizers for any sequence ϑ j → 0, we can use our assump-
tion (1.8) to find for any given δ > 0 a D2-symmetric curve β ∈ C (K) such that
E(β) ≤ (4π)2 + δ. The minimizing property of the �ϑ yields

(4π)2 ≤ E(�ϑ) ≤ Eϑ(�ϑ) ≤ Eϑ(β) ≤ (4π)2 + δ + ϑTPq(β)
1

q−2 < ∞,

where we used the classic Fáry-Milnor theorem for the first inequality. Taking the
limit ϑ → 0 gives

(4π)2 ≤ lim inf
ϑ→0

E(�ϑ) ≤ lim sup
ϑ→0

E(�ϑ) ≤ (4π)2 + δ for all δ > 0.

Therefore, limϑ→0 E(�ϑ) = (4π)2 = E(�0), since κ�0 = 4π a.e. on R/Z. This,
together with the C1-convergence of the �ϑ to the same limit (up to permutation of
the axes and reparametrization) leads to convergence in the W 2,2-norm. Combining
this with the weak convergence to the now unique weak limit �0 (up to permutation
of the axes and reparametrization) gives finally strong convergence in W 2,2 by the
subsequence principle.
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5 Infimal bending energy on torus knots with dihedral symmetry

We now investigate the convergence properties of the D2-symmetric torus knots gε
3

introduced in Example 3.10 fixing � := 1 and � := ε2.

Lemma 5.1 (W 2,2-convergence of D2-symmetric torus knots) Let � = 1, � = ε2, and
b ∈ Z\{1,−1} be odd. Then the D2-symmetric torus knots gε

3 ∈ �T (2,b) constructed
in Example 3.10 for � = 1 and � = ε2 converge strongly in W 2,2 to the tangential
pair of co-planar circles tpcπ (see Example 3.9) as ε → 0.

Corollary 5.2 (Minimal bending energy for D2-symmetric torus knots) The torus knot
classes T (2, b) for odd b ∈ Z\{1,−1} are the only knot classes K that satisfy

inf
β∈C (K)

β D2-symmetric

E(β) = (4π)2 = inf
C (K)

E(·). (1.8)

Proof The convergence of torus knots established in Lemma 5.1 together with an
appropriate rescaling to unit length, i.e., the W 2,2-convergence of gε

3/L (gε
3) ∈

�T (2,b) to tpcπ , allows us to identify the infimal bending energy (4π)2 = E(tpcπ )

on the class of D2-symmetric curves in C (T (2, b)), since by the Morrey–Sobolev
embedding we have gε

3 → tpcπ in C1, and henceL (gε
3) → L (tpcπ ) = 1, and there-

fore also gε
3/L (gε

3) → tpcπ in W 2,2 as ε → 0. That the torus knot classes T (2, b)
are the only possible knot classes to satisfy the right equality in (1.8) was proven in
[24, Corollary 4.4].

Proof of Lemma 5.1 For simplicity we restrict the explicit arguments to the case that
b ≥ 3. By symmetry it suffices to prove the W 2,2-convergence of the generating arcs
αε := αε

3 of g
ε
3 to the corresponding generating arc α2 of tpcπ defined in Example 3.9.

Since αε
3 is piecewise defined (see (3.25)) we focus first on the interval I1(ε) :=

[0, (b + 1)ε/2] where αε
3 = hε , and obtain by direct computation from the explicit

expressions (3.20) and (3.21) for the helical part hε and the parameter transformation
φ (for � = ε2)

∣∣(hε)′′(t)
∣∣2 = π4φ′4(t/ε) + π2φ′′2(t/ε) for all t ∈ I1(ε), (5.1)

which implies

∥∥(hε)′′
∥∥2
L2(I1(ε),R3)

≤ επ2
∫ (b+1)/2

0

(
π2φ′4(z) + 1

)
dz, (5.2)

where we changed variables to z := t/ε and used that
∣∣φ′′∣∣ ≤ 1 on [0, (b+1)/2). Now,

φ′ = 1 on [0, (b−1)/2]whereasφ′(t) = −(t−(b+1)/2) for t ∈ [(b−1)/2, (b+1)/2]
according to (3.21) so that we obtain from (5.2)

∥∥(hε)′′
∥∥2
L2(I1(ε),R3)

≤ επ2
[
π2

(
b − 1

2
+ 1

5

)
+ b + 1

2

]
< επ4(b + 1). (5.3)
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The prospective arclength parametrized limit curve tpcπ has constant curvature∣∣tpc′′
π

∣∣ = 4π a.e., so that by virtue of (5.3)

∥∥(αε)′′ − α′′
2

∥∥2
L2(I1(ε),R3)

(5.3)≤ 2επ4(b + 1) + (4π)2(b + 1)ε. (5.4)

Now we consider the interval I2(ε) := [(b + 1)ε/2, (1/4) − (b + 1)ε/2] and recall
our condition (3.23) on the radius r of the stadium curve σε , namely (now for � = 1)

(b + 1)ε + πr = 1/4. (5.5)

This implies that the auxiliary function f (t, s) := ∣∣r−1(t − (b + 1)s/2) − 4π t
∣∣2 sat-

isfies for any ε ∈ (0, (8(b + 1))−1)

0 ≤ f (t, s) < 1024π2(b + 1)2ε2 for all (t, s) ∈ [0, 1] × [0, 2ε] (5.6)

since
√

f (t, s) < 4π(b + 1) |8εt − s| ≤ 4π(b + 1)max (8ε, 2ε) ≤ 32π(b + 1)ε.
Inequality (5.6) can be used to estimate

‖(αε)′′ − α′′
2‖2L2(I2(ε),R3)

≤ 2
∫
I2(ε)

∣∣(1/r) − 4π
∣∣2 dt

+2 · (4π)2
∫
I2(ε)

∣∣∣∣∣∣

⎛
⎝ cos((t − (b + 1)ε/2)/r) − cos(4π t)

− sin((t − (b + 1)ε/2)/r) + sin(4π t)
0

⎞
⎠
∣∣∣∣∣∣
2

dt .

The first integrand equals f (1, 0), and the second integrand can be estimated from
above by 2 f (t, ε) for t ∈ I2(ε), since both, cos and sin, have Lipschitz constant 1.
Therefore, we can apply the auxiliary estimate (5.6) to arrive at

‖(αε)′′ − α′′
2‖2L2(I2(ε),R3)

<
1

2
(1 + 2(4π)2)1024π2(b + 1)2ε2, (5.7)

where we also used thatL 1(I2(ε)) < 1/4. Finally, on the interval I3(ε) := [(1/4) −
(b + 1)ε/2, 1/4] the stadium curve σ |I3(ε) = αε is a straight segment so that

‖(αε)′′ − α′′
2‖2L2(I3(ε),R3)

= ‖α′′
2‖2L2(I3(ε),R3)

= (4π)2(b + 1)ε/2. (5.8)

Summarizing (5.4), (5.7), and (5.8) we obtain a constant C1 ≥ 1 independent of ε

such that

‖(αε)′′ − α′′
2‖L2([0,1/4],R3) ≤ C1

√
ε for all 0 < ε <

1

8(b + 1)
, (5.9)

which by means of Poincaré’s inequality [20, Section 5.8.1] applied to γ ′ (satisfying∫
R/Z

γ ′(τ ) dτ = 0 because γ is 1-periodic) implies that there is a constant C2 ≥ 1
such that
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‖(αε)′ − α′
2‖W 1,2([0,1/4],R3) ≤ C2

√
ε for all 0 < ε <

1

8(b + 1)
. (5.10)

To conclude the proof it therefore suffices to prove the uniform convergence of the αε

to α2 on [0, 1/4] as ε → 0. We have for any t ∈ [0, 1
4 ]

∣∣αε(t) − α2(t)
∣∣ = ∣∣αε(0) − α2(0)

∣∣ +
∣∣∣∣
∫ t

0

((
αε
)′ − α′

2

)∣∣∣∣
≤ � + √

t
∥∥∥(αε

)′ − α′
2

∥∥∥
L2

≤ ε2 + 1
2C2

√
ε.

Taking the supremum over t ∈ [0, 1
4 ] concludes the proof.

Proof of Theorem 1.6 (i) Corollary 5.2 implies that the torus knot classes T (2, b) for
odd b ∈ Z\{1,−1} satisfy condition (1.8), so that Theorem 4.5 is applicable.

(ii) If a D2-symmetric elastic knot for someknot classK is tpcϕ then there is a sequence
of curves (γk)k∈N ⊂ C (K) such that γk → tpcπ with respect to the C1-norm. For
all γk sufficiently close to tpcπ with respect to the C1-norm, we obtain some
cumulative angle �β as described in [24, Prop. 4.2] which yields the existence of
some odd integer b such that γk is a (2, b)-torus knot if |b| ≥ 3 and unknotted if
b = ±1. The latter is ruled out by Theorem 1.5.

(iii) This is an immediate consequence of Corollary 5.2.

6 Discussion and open problems

6.1 Higher regularity of D2-symmetric E#-critical knots

The Euler–Lagrange operator of TPq for q > 2 studied in [10] seems to be related
to the q-Laplacian for which one cannot expect full regularity, at least in the non-
fractional case. So it is openwhether the arclength parametrized D2-symmetric critical
points of the constrained variational problem (Pϑ ) obtained in Theorem 1.1 are of class
C∞(R/Z,R3).

Choosing instead of TPq the decoupled tangent-point functionals TP(p,2) for
p ∈ (4, 5), cf. Footnote 4, whose domain is a Hilbert space, we can generalize the
bootstrapping argument from [10] to obtain C∞-regularity. We might even derive
analyticity by extending the arguments given in [12,36,41].

6.2 Non-embeddedness of symmetric elastic knots

Similarly as in [24, Proposition 3.1] we expect that also symmetric elastic knots for
non-trivial knot classes must have double points. According to the stability result of
Langer and Singer [29], the only stable critical point of the bending energy E is the
once covered circle. However, due to the fact that the symmetry constraint only permits
to apply symmetry preserving variations in (1.6), we cannot immediately apply this
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tool in the present work. Consequently, in contrast to the case of (not necessarily
symmetric) elastic knots treated in [24], we are presently not able to show that

• every D2-elastic knot for a non-trivial knot class K must have self-intersection
points, and that

• inequality (1.6) is strict unless K is the unknot class.

It is an interesting question whether one may derive a weaker version of the stability
result in [29], that is applicable in our situation, e.g., stating that the round circle
would be the only local minimizer within the D2-symmetric subclass �1 introduced
inDefinition 3.3. In this case, one could argue as in [24] to conclude that any embedded
minimizer of the bending energy within the set �K of D2-symmetric knots defined
in (4.2) would in fact be a local minimizer within �1. Hence, K would be the unknot
contradicting the assumption of a non-trivial knot class K. Thus, the D2-symmetric
minimizer of the bending energy could not be embedded, and the infimum of the
bending energy could not be attained in �K.

6.3 Other knot classes and symmetries

In a similar manner as in Definition 1.4 wemay defineG-elastic knots for any symme-
try group G. Most results from the Introduction, namely Theorems 1.1, 1.3, and 1.5 as
well as Corollary 1.2, carry over to more general symmetry groups while Theorem 1.6
is restricted to D2. We briefly speculate about some examples involving other knot
classes or symmetry groups different from D2.

General torus knots

Let a, b ∈ N be coprime with 2 ≤ a < b. We expect the elastic knot to be the a-times
covered circle [24] which then would agree with the Db-elastic knot.

Consequently, the Da-elastic knot is likely to be the union of a circles of radius
1/(2πa) that tangentially meet in one common point. The angle between two consec-
utive circles amounts to 2π/a, which is also observed experimentally by means of the
numerical gradient flow of Bartels et al.; see Fig. 5A. An animation is available as an
ancillary file at arXiv:2105.08558v2.

Fig. 5 Numerical approximations of candidates for A the D3-elastic (3, 4)-torus knot, B the elastic figure-
eight knot, C the D2-elastic figure-eight knot
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The figure-eight knot

Simulations that have been carried out earlier suggest that an elastic figure eight (41)
is either planar [3] or spherical [23,24]; see Fig. 5B, C. Recent numerical experiments
[6] support the former. So the planar configuration (B) could be a global minimizer
within the figure-eight class whereas the spherical configuration (C) might merely be
a local minimizer.

Assuming that this is true and that there are no further candidates,wemay conjecture
that the planar configuration is an elastic knot, while the spherical configuration is a
D2-elastic knot. In contrast to the latter, the former does not enjoy a D2-symmetry.
Using the theory developed above, we can only state that there exists a D2-elastic
figure-eight knot which may or may not coincide with the elastic figure-eight.
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