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Abstract
Many geometric structures associated to surface groups can be encoded in terms of
invariant cross ratios on their circle at infinity; examples include points of Teichmüller
space, Hitchin representations and geodesic currents. We add to this picture by study-
ing cocompact cubulations of arbitrary Gromov hyperbolic groups G. Under weak
assumptions, we show that the space of cubulations of G naturally injects into the
space of G-invariant cross ratios on the Gromov boundary ∂∞G. A consequence of
our results is that essential, hyperplane-essential, cocompact cubulations of hyperbolic
groups are length-spectrum rigid, i.e. they are fully determined by their length func-
tion. This is the optimal length-spectrum rigidity result for cubulations of hyperbolic
groups, as we demonstrate with some examples. In the hyperbolic setting, this con-
stitutes a strong improvement on our previous work [4]. Along the way, we describe
the relationship between the Roller boundary of a CAT(0) cube complex, its Gromov
boundary and—in the non-hyperbolic case—the contracting boundary of Charney and
Sultan. All our results hold for cube complexes with variable edge lengths.
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1 Introduction

Let G be a Gromov hyperbolic group. We denote by ∂∞G(4) the set of 4-tuples of
pairwise distinct points in the Gromov boundary ∂∞G. A map B : ∂∞G(4) → R is
said to be a cross ratio if the following are satisfied:

(i) B(x, y, z, w) = −B(y, x, z, w);
(ii) B(x, y, z, w) = B(z, w, x, y);
(iii) B(x, y, z, w) = B(x, y, z, t) + B(x, y, t, w);
(iv) B(x, y, z, w) + B(y, z, x, w) + B(z, x, y, w) = 0.

We say that B is invariant if it is preserved by the diagonal action of G on ∂∞G(4).
Similar notions appear e.g. in [39,49,50,57].

Cross ratios provide a unified interpretation of many geometric structures, thus
proving a valuable tool to study various spaces of representations.

For instance, when S is a closed hyperbolic surface and G = π1S, every point
of Teichmüller space yields identifications ∂∞G � ∂∞H

2 � RP
1 and the projective

cross ratio on RP
1 can be pulled back to an invariant cross ratio1 on ∂∞G. The latter

uniquely determines the original point of Teichmüller space [11]. More generally, the
space of all negatively curved Riemannian metrics on S embeds into the space of
invariant cross ratios on ∂∞G [56].

Another setting where cross ratios play a central role is the study of representa-
tions of surface groups into higher-rank Lie groups. A striking result of Labourie
identifies the space of Hitchin representations ρ : G → PSLnR with a space of
Hölder-continuous invariant cross ratios on ∂∞G [50].

In this paper, we consider yet another significant geometric structure that groups
can be endowed with. More precisely, we study the space of cubulations of a non-
elementary hyperbolic group G. Our main result is that the space of cocompact
cubulations of G naturally injects2 into the space of invariant Z-valued cross ratios
on ∂∞G (Theorem A). An important consequence is that most cubulations of G are
length-spectrum rigid (Corollary B).

Recall that a cocompact cubulation is a proper cocompact action of G on a CAT(0)
cube complex X . A group is said to be cocompactly cubulated if it admits a cocom-

1 To be precise, one has to take the logarithm of the absolute value of the projective cross ratio if this is to
satisfy conditions (i)–(iv).
2 Some mild and inevitable assumptions are required; cf. Theorem A below.
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pact cubulation.Cocompactly cubulated hyperbolic groups are ubiquitous in geometric
group theory: they include surface groups, hyperbolic 3-manifold groups [14], hyper-
bolic free-by-cyclic groups [45,46], hyperbolic Coxeter groups [54], finitely presented
small cancellation groups [64], random groups at low density [58] and many arith-
metic lattices in SO(n, 1) [7,44]. Cocompactly cubulated hyperbolic groups are also
particularly significant due to recent advances in low-dimensional topology [2,43,65].

Among cubulations of a group G, a subclass is especially relevant for us: that of
essential, hyperplane-essential cubulations3. Indeed, due to the extreme flexibility of
cube complexes, it is all too easy to perturb any cubulation by adding “insignificant
noise” (say, a few loose edges around the space). Essential, hyperplane-essential cube
complexes are those from which all “noise” has been removed. A simple procedure
for this removal is provided by Sect. 3 in [23] and Theorem A in [42].

More precisely, every cocompact group action on a CAT(0) cube complex X can
be collapsed to an action on an essential, hyperplane-essential CAT(0) cube complex
X•. This procedure will preserve most additional properties of the original action.
In particular, the collapsing map X � X• has uniformly bounded fibres and it is an
equivariant quasi-isometry.

Essential hyperplane-essential cube complexes are the appropriate setting to study
cross ratios. Our first result is the following:

Theorem A Let G be a non-elementary Gromov hyperbolic group.

(1) Every proper cocompact action of G on an essential CAT(0) cube complex X
canonically determines an invariant cross ratio

crX : ∂∞G(4) → Z.

There exists a co-meagre4 subset C ⊆ ∂∞G such that crX is continuous at all
points of C(4) ⊆ ∂∞G(4).

(2) Let in addition X be hyperplane-essential and consider another action G � Y
satisfying the same hypotheses. If there exists a co-meagre subsetD ⊆ ∂∞G such
that the cross ratios crX and crY coincide on D(4) ⊆ ∂∞G(4), then X and Y are
G-equivariantly isomorphic.

In particular, two essential, hyperplane-essential, cocompact cubulations yield the
same boundary cross ratio if and only if they are G-equivariantly isomorphic.

Essentiality and hyperplane-essentiality are absolutely crucial to part (2) of The-
orem A. Examples 5.4 and 5.5 show that—in a very strong sense—neither of these
assumptions can be dropped.

It is not surprising that crX takes integer values in Theorem A, after all cube
complexes are fundamentally discrete objects. Our cross ratio can be regarded as an
exact discretisation of Paulin’s coarse cross ratio on Gromov boundaries of arbitrary
Gromov hyperbolic spaces [59].

3 We refer the reader to [23,42] or Sect. 2.1 below for definitions.
4 A set is co-meagre if its complement is a countable union of sets whose closures have empty interior. By
Baire’s theorem, co-meagre subsets of ∂∞G are dense.
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Themain ingredient in the proof of TheoremA is TheoremCbelow.Wewill discuss
this result at length later in the introduction, but let us first describe one more of its
applications.

Let us endow our CAT(0) cube complexes with their �1 (aka combinatorial) metric
d and let us associate to each action G � X the function �X : G → N given by:

�X (g) = inf
x∈X d(x, gx).

This is normally known as length function, or marked length spectrum by analogy
with the corresponding notion in the setting of Riemannian manifolds. Theorem C
below will also have the following consequence.

Corollary B Let aGromov hyperbolic group G act properly and cocompactly on essen-
tial, hyperplane-essential CAT(0) cube complexes X and Y . The two actions have the
same �1 length function if and only if X and Y are G-equivariantly isomorphic.

The same result is conjectured to hold for actions of G on Hadamard manifolds
(Problems 3.1 and 3.7 in [8]). This is known as the “marked length-spectrum rigidity
conjecture” and it is a notorious open problem. Progress on the conjecture has been
remarkably limited, with most results only handling 2-dimensional spaces [16,22,56],
or extremely rigid settings such as symmetric spaces [25,40].

In this perspective, Corollary B is particularly interesting as—along with our pre-
vious work in [4]—it is the first length-spectrum rigidity result to cover such a
broad family of non-positively curved spaces. The proof of Corollary B relies on
a reduction—obtained in [4]—to the problem of extending certain boundary maps to
isomorphisms of cube complexes. However, we stress that the core argument in the
proof of Corollary B lies in the ensuing extension procedure, and this requires com-
pletely different techniques from those in [4]. See the statement of Theorem C below
and the subsequent discussion for a detailed description.

When X and Y have no free faces (i.e. when their CAT(0) metrics are geodesically
complete), Corollary B follows fromTheoremA in [4]. Having no free faces, however,
is an extremely strong restriction when studying cubulations of hyperbolic groups, as
most known cubulating procedures will not yield spaces satisfying this requirement.
As an example, consider the casewhenG is the fundamental group of a closed, oriented
surface S of genus ≥ 2. It is well-known that every finite filling collection of closed
curves on S gives rise to an essential, hyperplane-essential, cocompact cubulation ofG
[14,61,62]. On the other hand, most cube complexes resulting from this construction
will have dimension ≥ 3, which forces the existence of free faces5.

Examples 5.4 and 5.5 show that essentiality and hyperplane-essentiality are nec-
essary assumptions on the CAT(0) cube complex X for any form of length-spectrum
rigidity to hold. Thus, Corollary B is the optimal result of this type for cubulations
of hyperbolic groups. In addition, note that any cocompact cubulation can be made

5 More generally, given a CAT(0) cube complex X with no free faces and any group G acting on X
cocompactly and with virtually cyclic hyperplane-stabilisers, we necessarily have dim X ≤ 2. This can be
shown by noticing that R is the only cube complex with no free faces that admits a cocompact action of the
group Z.
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Cross ratios and cubulations of hyperbolic groups 1551

essential and hyperplane-essential by means of the collapsing procedure of [23,42]. In
many settings, however, the two assumptions are automatically satisfied, even without
resorting to any collapsing: for instance, this is the case for any cubulation of a hyper-
bolic 3-manifold group arising from Sageev’s construction applied to quasi-Fuchsian
immersed surfaces [47].

Remark Although we have preferred to state Theorem A and Corollary B for cube
complexes, they more generally hold for cuboid complexes. In such complexes, edges
can have arbitrary (positive) real lengths, so the cross ratio crX and the length function
�X will take arbitrary real values. The price to pay is that, in both results, we can only
conclude that actions with the same cross ratio/length function are G-equivariantly
isometric, i.e. said isometries will in general not take vertices to vertices.

All results in this paper equally apply to CAT(0) cuboid complexes, without requir-
ing any significant changes to proofs—although of course all cubical isomorphisms
need to be replaced with mere isometries. The reader can consult Sect. 2.5 for a brief
discussion of this.

On the proofs of Theorem A and Corollary B. As mentioned, the core result of
this paper is an extension procedure for certain partially-defined, cross-ratio preserving
boundary maps (Theorem C below). In order to make things precise, let us introduce
some terminology.

The horofunction boundary of the cube complex (X , d) is known as the Roller
boundary ∂X . In our setting, this space is always compact and totally disconnected—
unlike the Gromov/visual6 boundary ∂∞X . As we observed in [4,5], the Roller
boundary is naturally endowed with a continuous, Z-valued cross ratio:

cr(x, y, z, w) = #W (x, z|y, w) − #W (x, w|y, z).

Here, the notation W (x, z|y, w) refers to the collection of hyperplanes of X that
separate x, z ∈ ∂X from y, w ∈ ∂X .

When X is Gromov hyperbolic, the two boundaries ∂X and ∂∞X share a “large”
subset. More precisely, a co-meagre subset of ∂∞X is naturally identified with a subset
of ∂X and therefore inherits the cross ratio of ∂X . We will denote this common subset
by ∂ntX , as it coincides with the collection of non-terminating ultrafilters introduced
in [55]. Equivalently, we can describe ∂ntX ⊆ ∂∞X as the subset of points that do not
lie in the Gromov boundary of any hyperplane of X (Lemma 4.7).

The following is the crucial ingredient in the proofs of part (2) of Theorem A and
of Corollary B.

Theorem C Let a non-elementary Gromov hyperbolic group G act properly and
cocompactly on essential, hyperplane-essential CAT(0) cube complexes X and Y .
Let f : ∂∞X → ∂∞Y be the unique G-equivariant homeomorphism. Suppose that
there exists a nonempty, G-invariant subset � ⊆ ∂ntX such that f (�) ⊆ ∂ntY and

6 For the visual boundary of a CAT(0) space and Gromov boundary of a Gromov hyperbolic space, we
refer the reader, respectively, to Chapters II.8 and III.H.3 in [6]. We denote both boundaries by ∂∞X , as
these coincide whenever both defined.
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such that cross ratios of elements of�4 are preserved by f . Then, there exists a unique
G-equivariant isomorphism F : X → Y extending f .

It is possible that Theorem C will find further application in the proof of rigidity
results for certain classes of cubulated hyperbolic groups. Indeed, since �1 metrics on
cube complexes fall in the setting of Section 5.1 of [38], cross-ratio preserving bound-
ary maps should arise naturally from commensurations or quasi-isometries between
cubulated hyperbolic groups with suitable properties. At present, however, a major
obstruction to pursuing approaches of this kind is that not much is known on confor-
mal dimension and Loewner property for boundaries of cubulated hyperbolic groups.
A notable exception are Bourdon groups [12]; also see [9,10].

It is interesting to compare Theorem C with two old results obtained in different
settings. The first is Paulin’s classical theorem that homeomorphisms of Gromov
boundaries arise fromquasi-isometries if and only if they almost preserve the boundary
cross ratio (Theorem 1.2 in [59]). Paulin’s techniques are of no help in our context, as
we want our extensions to be genuine isometries.

A more fitting comparison is with Proposition 2.4.7 in [12], whose statement strik-
ingly resembles that of Theorem C. This is not a coincidence, as Bourdon’s buildings
Ip,q—and, more generally, all Fuchsian buildings without triangular chambers—can
be given a natural structure of CAT(0) square complex; see e.g. Section 2.2 in [35].
The hyperplanes of the CAT(0) square complex correspond to Bourdon’s arbre-murs,
along with a choice of a preferred side. With these observations in mind, Bourdon’s
birapport combinatoire on ∂∞ Ip,q � ∂∞�p,q becomes a special case of part (1) of
our Theorem A. Proposition 2.4.7 in [12] and part of Theorem 1.5 in [66] become a
special case of Theorem C above.

It is important to remark that, unlike the 2-dimensional settingofFuchsianbuildings,
the cube complexes in Theorem C can have arbitrarily high dimension. This will
seriously complicate proofs due to a strictly 3-dimensional phenomenon which we
now describe.

Given points x, y, z, w ∈ ∂X , the three sets of hyperplanes W (x, y|z, w),
W (x, z|y, w) and W (x, w|y, z) are pairwise transverse. If dim X ≤ 2, one of these
sets must be empty and their three cardinalities can be deduced from their respective
differences, i.e. cr(x, y, z, w), cr(y, z, x, w) and cr(z, x, y, w). On the other hand,
when dim X ≥ 3, it may be impossible to recover all three cardinalities just from
cross ratios of 4-tuples involving only the points x, y, z, w (see e.g. Figure 1 in [4]
and the related discussion).

In order to resolve part of this issue, we will be led to consider trustworthy 4-tuples
(x, y, z, w) ∈ (∂ntX)4, i.e. those 4-tuples for which one of the three setsW (x, y|z, w),
W (x, z|y, w) andW (x, w|y, z) is empty. A key point will be that, even in boundaries
of high-dimensional cube complexes, it is always possible to find several trustworthy
4-tuples (Lemma 4.22).

We now briefly sketch the proof of Theorem C, denoting by W (X) and H (X),
respectively, the collections of all hyperplanes and all halfspaces of the cube complex
X . The rough idea is that it should be possible to reconstruct the structure of the
halfspace pocset (H (X),⊆, ∗) simply by looking at the Gromov boundary ∂∞X and
the cross ratio (where defined).
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Overlooking various complications, there are two (bipartite) steps.

(Ia) For every h ∈ H (X), we have ∂∞h \ ∂∞h∗ 
= ∅.
(Ib) Given h, k ∈ H (X), we have h ⊆ k if and only if ∂∞h ⊆ ∂∞k. 7

(IIa) For every w ∈ W (X), there exists w′ ∈ W (Y ) with f (∂∞w) = ∂∞w′.
(IIb) For every h ∈ H (X), there exists h′ ∈ H (Y ) with f (∂∞h) = ∂∞h′.
Theboundaryhomeomorphism f then induces aG-equivariant bijection f∗ : H (X)→
H (Y ) bySteps (Ia) and (IIb). Step (Ib) shows that f∗ preserves inclusion relations and,
by general theory of CAT(0) cube complexes, f∗ must be induced by a G-equivariant
isomorphism F : X → Y .

Steps (Ia) and (Ib) are the key points where, respectively, essentiality and
hyperplane-essentiality come into play. Example 5.4 shows that, if X is not essential,
some halfspaces may be invisible in ∂∞X , i.e. Step (Ia) fails. Without hyperplane-
essentiality, instead, ∂∞X may not be able to tell whether two halfspaces are nested
or not. This is exactly the problem in Example 5.5, where transverse halfspaces h and
k have ∂∞h = ∂∞k.

Regarding Step (IIa), it is not hard to use the cross ratio to characterise which
pairs of points ξ, η ∈ ∂∞X lie in the Gromov boundary of a common hyperplane
(Proposition 4.14). This property is then preserved by f , which is all one needs if no
two hyperplanes share asymptotic directions (e.g. in Fuchsian buildings). In general,
we will require more elaborate arguments (Lemma 4.24 and Proposition 4.26) based
on the fact that ∂∞G cannot be covered by limit sets of infinite-index quasi-convex
subgroups.

Finally, there is a deceiving similarity between the statements of Steps (IIa)
and (IIb), but the proof of the latter is significantly more involved. Given w ∈ W (X)

bounding h ∈ H (X), the set ∂∞h \ ∂∞w is a union of connected components of
∂∞X \∂∞w. However, ∂∞X \ ∂∞wwill in general have many more components than
there are halfspaces bounded by w.

The case to keep in mind is when G = π1S, for a closed oriented surface S, and
the hyperplane-stabiliser Gw < G is the fundamental group of a subsurface of S
with at least 3 boundary components. Not all Gw-invariant partitions of the set of
connected components of ∂∞X \ ∂∞w arise from a halfspace of X . Thus, one cannot
recover ∂∞h from the knowledge of ∂∞w purely through topological and dynamical
arguments.

We will instead rely again on the cross ratio in order to circumvent these issues.
Step (IIb) will finally be completed in Theorem 4.33.
On the relationship between ∂X and ∂∞X . We still have not discussed the first half of
Theorem A, which is mostly based on transferring the cross ratio from ∂X to ∂∞X .
As the required techniques are quite similar, we do not assume hyperbolicity of the
CAT(0) cube complex X and we more generally describe the relationship between the
Roller boundary ∂X and the contracting boundary ∂cX . The latter was introduced in
[24].

Fixing a basepoint p ∈ X , every point of ∂X is represented by a combinatorial
ray based at p. We denote by ∂cuX ⊆ ∂X the subset of points that are represented

7 This is not true in general, but it is how one should think about things. It only fails when ∂∞h = ∂∞k
and k � h, in which case k and h are at finite Hausdorff distance anyway.
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1554 J. Beyrer, E. Fioravanti

by contracting combinatorial rays. We endow ∂cuX with the restriction of the (totally
disconnected) topology of ∂X . We moreover denote by ∂visc X the space obtained by
endowing the contracting boundary ∂cX with the restriction of the visual topology on
the visual boundary ∂∞X .

Responding to a suggestion in the introduction of [24], we prove:

Theorem D Let X be a uniformly locally finite CAT(0) cube complex.

(1) There exists a natural continuous surjection
 : ∂cuX −→ ∂visc X with finite fibres.
Collapsing its fibres, 
 descends to a homeomorphism.

(2) If X is hyperbolic, we have ∂cuX = ∂X and ∂visc X = ∂∞X.

The reader will find additional details on the map 
 in Sect. 3.2, especially in
Remark 3.8 and Theorem 3.10. We stress that—whenever flats are present—it is not
possible to represent the entire visual boundary ∂∞X as a quotient of a subset of the
Roller boundary.

Now, part (1) of Theorem A is obtained by considering a canonical section to the
map 
. The latter is built through a new construction of barycentres for bounded cube
complexes, which we describe in Sect. 2.3.

Alongwith our previouswork in [4], TheoremDalso allows us to extendTheoremA
to the context of non-hyperbolic groups acting on CAT(0) cube complexes with no
free faces.

Recall that the Morse boundary of an arbitrary finitely generated group G was
introduced in [21]. In accordance with [19], we prefer to refer to it as the contract-
ing boundary8 of G (denoted ∂cG), as this simplifies notation and terminology (the
topology of ∂cG will not be relevant to us).

Corollary E Let G be a finitely generated, non-virtually-cyclic group.

(1) Every proper cocompact action of G on an irreducibleCAT(0) cube complex with
no free faces X canonically determines an invariant cross ratio:

crX : ∂cG
(4) → Z.

(2) Given another action G � Y as above, the cross ratios crX and crY coincide if
and only if X and Y are G-equivariantly isomorphic.

It is worth pointing out that, under the hypotheses of Corollary E, the contracting
boundary ∂cG is always nonempty. When G is hyperbolic, ∂cG is naturally identified
with the Gromov boundary ∂∞G.

The cross ratio provided by Corollary E is again continuous9 at a “large” subset of
∂cG(4), but it does not make sense to speak of meagre subsets in this context. Indeed,
the entire contracting boundary is often itself meagre, even in the Cashen–Mackay

8 This is justified by the fact that a quasi-geodesic is Morse if and only if it is sublinearly contracting [1].
However, we acknowledge that the word “contracting” is normally taken to mean “strongly contracting”
(as we also do in Sect. 3) and these quasi-geodesics would not provide a satisfactory notion of boundary
for a general group G.
9 Both endowing ∂cG with the visual topology and with the topologies of [19,21].
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topology. In fact, ∂cG is likely to be a Baire space if and only if G is hyperbolic.
The latter observation follows from Theorem 7.6 in [19] when G is a toral relatively
hyperbolic group. We thank Chris Cashen for pointing this out to us.

We conclude the introduction with the following question, which is naturally
brought to mind by Theorem A.

Question Let G be a non-elementary hyperbolic group. Is it possible to provide a
set of conditions completely characterising which invariant, Z-valued cross ratios on
∂∞G arise from cocompact cubulations of G?

Theorem 1.1 in [50] is a result of this type in the context of Hitchin representations.
A complete answer to the above question might provide a new procedure to cubulate
groups.

In this regard, note that ∂∞G is endowed with a continuous, invariant, R-valued
cross ratio whenever G acts properly and cocompactly on a CAT(−1) space. So it
would also be interesting to determine under what circumstances an invariant R-
valued cross ratio can be discretised to an invariant Z-valued cross ratio. Of course,
one should be very careful whenmaking speculations, as, for instance, uniform lattices
in SU (n, 1) and Sp(n, 1) are not cubulable [27,53].
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and Anna Wienhard for his visits at UZH and Universität Heidelberg, respectively.

JB was supported by the Swiss National Science Foundation under Grant
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2 Preliminaries

2.1 CAT(0) cube complexes

We will assume a certain familiarity with basic properties of cube complexes. The
reader can consult for instance [63] and the first sections of [17,20,23,55] for an
introduction to the subject. This subsection is mainly meant to fix notation and recall
a few facts that we shall rely on.

Let X be a simply connected cube complex satisfying Gromov’s no--condition;
see 4.2.C in [37] and Chapter II.5 in [6]. The Euclideanmetrics on its cubes fit together
to yield a CAT(0) metric on X . We can also endow each cube [0, 1]k ⊆ X with the
restriction of the �1 metric of R

k and consider the induced path metric d(−,−).
We refer to d as the combinatorial metric (or �1 metric). In finite dimensional cube
complexes, the CAT(0) and combinatorial metrics are bi-Lipschitz equivalent and
complete.
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The metric space (X , d) is a median space. This means that, given any three
points p1, p2, p3 ∈ X , there exists a unique point m = m(p1, p2, p3) ∈ X such that
d(pi , p j ) = d(pi ,m)+d(m, p j ) for all 1 ≤ i < j ≤ 3. We refer tom(p1, p2, p3) as
the median of p1, p2 and p3; if the three points are vertices of X , so is m(p1, p2, p3).
The map m : X3 → X endows X (and its 0-skeleton) with a structure of median alge-
bra. We refer the reader to [15,30,60] for a definition of the latter and more on median
geometry.

Wewill use the more familiar and concise expression “CAT(0) cube complex” with
the meaning of “simply connected cube complex satisfying Gromov’s no--condi-
tion”. However, unless specified otherwise, all our cube complexes X will be endowed
with the combinatorial metric, all points of X will be implicitly assumed to be vertices
and all geodesics will be combinatorial geodesics contained in the 1-skeleton. In some
situations, especially in Sects. 2.2 and 3.2 ,wewill also need to consider geodesicswith
respect to the CAT(0)metric. In this case, we will use the terminology “combinatorial
geodesic/segment/ray/line” and “CAT(0) geodesic/segment/ray/line”.

We denote by X ′ the cubical subdivision of X . This is the CAT(0) cube complex
obtained by adding a vertex v(c) at the centre of each cube c ⊆ X ; we then join the
vertices v(c) and v(c′) by an edge if c is a codimension-one face of c′ or vice versa.
Each k-cube of X gives rise to 2k k-cubes of X ′.

WewriteW (X) andH (X), respectively, for the sets of hyperplanes and halfspaces
of X . Given a halfspace h ∈ H (X), we denote its complement by h∗. Endowing
H (X) with the order relation given by inclusions, the involution ∗ is order-reversing.
The triple (H (X),⊆, ∗) is thus a pocset, in the sense of [63].

We say that two distinct hyperplanes are transverse if they cross. Similarly, we
say that two halfspaces—or a halfspace and hyperplane—are transverse if the corre-
sponding hyperplanes are. Halfspaces h and k are transverse if and only if all four
intersections h ∩ k, h∗ ∩ k, h ∩ k∗ and h∗ ∩ k∗ are nonempty. We say that subsets
A, B ⊆ W (X) are transverse if every element of A is transverse to every element of
B.

Every hyperplane w can itself be regarded as a CAT(0) cube complex; its cells are
precisely the intersections w ∩ c, where c ⊆ X is a cube. The set of hyperplanes of
the cube complex w is naturally identified with the set of hyperplanes of X that are
transverse to w. We thus denote by W (w) this subset of W (X). We also denote by
C(w) the carrier of w, i.e. its neighbourhood of radius 1

2 in X .
Three hyperplanes w1, w2 and w3 form a facing triple if we can choose pairwise

disjoint sides h1, h2 and h3; the three halfspaces are then also said to form a facing
triple. Halfspaces h and k are nested if either h ⊆ k or k ⊆ h.

Given a vertex p ∈ X , we denote byσp ⊆ H (X) the set of all halfspaces containing
p. It satisfies the following properties:

(1) any two halfspaces in σp intersect non-trivially;
(2) for every hyperplane w ∈ W (X), a side of w lies in σp;
(3) every descending chain of halfspaces in σp is finite.

Subsets σ ⊆ H (X) satisfying (1)–(3) are known as DCC ultrafilters. If a set σ ⊆
H (X) only satisfies (1) and (2), we refer to it simply as an ultrafilter.
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Let ι : X → 2H (X) denote the map that takes each vertex p to the set σp. Its image
ι(X) coincides with the collection of all DCC ultrafilters. Endowing 2H (X) with
the product topology, we can consider the closure ι(X), which happens to coincide
with the set of all ultrafilters. Equipped with the subspace topology, this is a totally
disconnected, compact, Hausdorff space known as the Roller compactification of X
[55]; we denote it by X .

The Roller boundary ∂X is defined as the difference X \ X . The inclusion ι : X →
X is always continuous10. If, moreover, X is locally finite, then ι is a topological
embedding, X is open in X and ∂X is compact. Even though elements of ∂X are
technically just sets of halfspaces, we will rather think of them as points at infinity. In
analogy with vertices of X , we will then write x ∈ ∂X and reserve the notation σx for
the ultrafilter representing x .

According to an unpublished result of U. Bader and D. Guralnik (and [18,31]),
the identity of X extends to a homeomorphism between ∂X and the horofunction
boundary of (X , d) (at least when X is proper, see Remark 6.19 in [31]). However, the
characterisation of X in terms of ultrafilters additionally provides a natural structure
of median algebra on X , corresponding to the map

m(σx , σy, σz) = (σx ∩ σy) ∪ (σy ∩ σz) ∪ (σz ∩ σx ).

Under the identification of p ∈ X and σp ⊆ H (X), this map m : X3 → X restricts
to the usual median-algebra structure on X . Given x, y ∈ X , the interval between
x and y is the set I (x, y) = {z ∈ X | m(x, y, z) = z}. If x, y, z ∈ X , the median
m(x, y, z) is the only point of X that lies in all three intervals I (x, y), I (y, z) and
I (z, x). Observe that I (p, q) ⊆ X if p, q ∈ X .

In some instances, wewill also have to consider the visual boundary of X associated
to the CAT(0)metric. To avoid confusion with the Roller boundary ∂X , we will denote
the visual boundary by ∂∞X ; note that ∂∞X is the horofunction boundary of X with
respect to the CAT(0)metric (Theorem II.8.13 in [6]). When X is Gromov hyperbolic,
∂∞X is also naturally identified with the Gromov boundary of X , for which we will
adopt the same notation.

Given p ∈ X and h ∈ H (X), we have p ∈ h if and only if h ∈ σp. By analogy, we
say that a point x ∈ X lies in a halfspace h ∈ H (X) (written x ∈ h), if the halfspace
h is an element of the ultrafilter σx . This should be regarded as a way of extending
halfspaces into the boundary, yielding a partition X = h � h∗ for every h ∈ H (X).

Given subsets A, B ⊆ X , we adopt the notation:

H (A|B) = {h ∈ H (X) | B ⊆ h, A ⊆ h∗},
W (A|B) = {w ∈ W (X) | one side of w lies inH (A|B)}.

Ifw ∈ W (A|B), we say thatw separates A and B. We denote byW (A) the set of all
hyperplanes separating two points of A. To avoid possible ambiguities, we adopt the
convention that hyperplanes w are not contained in either of their sides; in particular,
w /∈ W (w|A) for every A ⊆ X .

10 Note that ι is only defined on the 0-skeleton, which has the discrete topology.
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Lemma 2.1 Given points x, y, z, w ∈ X, the sets W (x, y|z, w), W (x, z|y, w) and
W (x, w|y, z) are pairwise transverse.
Proof Consider h ∈ H (x, y|z, w) and k ∈ H (x, z|y, w). Since we have x ∈ h∗ ∩ k∗,
y ∈ h∗ ∩ k, z ∈ h ∩ k∗ and w ∈ h ∩ k, we conclude that h and k are transverse. Hence
W (x, y|z, w) and W (x, z|y, w) are transverse; the same argument shows that they
are also transverse to W (x, w|y, z). ��

We will generally conflate all geodesics (and quasi-geodesics) with their images in
X . Every geodesic γ ⊆ X can be viewed as a collection of edges; distinct edges e, e′ ⊆
γ must cross distinct hyperplanes. We write W (γ ) for the collection of hyperplanes
crossed by (the edges of) γ . If two geodesics γ and γ ′ share an endpoint p ∈ X , their
union γ ∪ γ ′ is again a geodesic if and only if W (γ ) ∩ W (γ ′) = ∅.

Given a ray r ⊆ X , we denote by r(0) its origin and, given n ∈ N, by r(n) the only
point of r with d(r(0), r(n)) = n. Given a hyperplanew ∈ W (X), there is exactly one
side ofw that has unbounded intersection with r . The collection of all these halfspaces
is an ultrafilter on H (X) and it therefore determines a point r(+∞) ∈ ∂X .

Fixing a basepoint p ∈ X , every point of ∂X is of the form r(+∞) for a ray r
with r(0) = p. We obtain a bijection between points of ∂X and equivalence classes
of rays based at p, where two rays r1 and r2 are equivalent if W (r1) = W (r2). See
Proposition A.2 in [34] for details.

Given two vertices p, q ∈ X , we have d(p, q) = #W (p|q). By analogy, we
can define d(x, y) = #W (x |y) for all points x, y ∈ X . The resulting function
d : X × X → N ∪ {+∞} satisfies all axioms of a metric, except that it can indeed
take the value +∞. We write x ∼ y if x and y satisfy d(x, y) < +∞. This is an
equivalence relation on X ; we refer to its equivalence classes as components.

Given x ∈ X , we denote by Z(x) the only component of X that contains the point
x . When x ∈ X , we have Z(x) = X . For every component Z ⊆ X , the pair (Z , d)

is a metric space. Joining points of Z by an edge whenever they are at distance 1 and
adding k-cubes whenever we see their 1-skeleta, we can give (Z , d) a structure of
CAT(0) cube complex.

We obtain here a couple of simple results which will be needed later on.

Lemma 2.2 Suppose that dim X < +∞. Let h and k be disjoint halfspaces with
h 
= k∗. Suppose that there exist points x ∈ h∩ ∂X and y ∈ k∩ ∂X with x ∼ y. There
exists an infinite chain j0 � j1 � ... of halfspaces of X transverse to both h and k.

Proof Since h 
= k∗, there exists a point p ∈ X lying in h∗ ∩ k∗; see Fig. 1. The
set W (p|x, y) is infinite, as W (p|x) is infinite and W (x |y) is finite. Since σp is a
DCC ultrafilter, the sets W (p|h) and W (p|k) are finite and the set A = H (p|x, y) \
(H (p|h) ∪ H (p|k)) is infinite. Any halfspace in A is transverse to both h and k.
Any two elements of H (p|x, y) are either transverse or nested, and any subset of
pairwise transverse halfspaces has cardinality at most dim X . The required chain is
thus obtained by applying Ramsey’s theorem to A. ��

Lemma 2.3 Let r ⊆ X be a ray and set x = r(+∞). Given a point x ′ ∈ ∂X with
x ′ ∼ x, there exists a ray r ′ satisfying r ′(0) = r(0), r ′(+∞) = x ′ and such that the
Hausdorff distance dHaus(r , r ′) is at most d(x, x ′).
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Fig. 1 The setup in the proof of
Lemma 2.2

Proof It suffices to consider the case when d(x, x ′) = 1. Letw be the only hyperplane
separating x and x ′; let h denote the side of w containing x . Note that w must be
transverse to all but finitely many hyperplanes in W (r). Thus, r intersects the carrier
C(w) in a sub-ray γ ⊆ r .

If r(0) ∈ h, the ray γ does not crossw. Let γ ′ be the ray such thatW (γ (n)|γ ′(n)) =
{w} for all n ≥ 0. In this case, the ray r ′ is obtained by following r up to γ (0), crossing
w, and finally following γ ′ all the way to x ′.

If instead r(0) ∈ h∗, there exists k ≥ 0 such that W (γ (k)|γ (k + 1)) = {w}.
Let γ ′′ be the ray with W (γ ′′(n)|γ (n + k + 1)) = {w} for all n ≥ 0; in particular,
γ ′′(0) = γ (k) and γ ′′(+∞) = x ′. We construct r ′ by following r up to γ (k) and then,
rather than crossing w, following γ ′′ until x ′. ��

We say that a subset C ⊆ X is convex if every geodesic with endpoints in C is
entirely contained in C ; equivalently, I (x, y) ⊆ C for every x, y ∈ C . Halfspaces
are precisely those nonempty convex subsets of X whose complement is convex and
nonempty. Given any subset A ⊆ X , we denote by Hull(A) the smallest convex subset
of X that contains A. This coincides with the intersection of all halfspaces containing
A. The subcomplex Hull(A) is itself a CAT(0) cube complex and its hyperplane set
is identified with W (A).

Given pairwise-intersecting convex subsets C1, ...,Ck ⊆ X , we always have
C1 ∩ ... ∩ Ck 
= ∅. This is known as Helly’s lemma (Theorem 2.2 in [60]).

Every convex subset C ⊆ X comes equipped with a 1-Lipschitz projection
πC : X → C , with the property that πC (x) ∈ I (x, y) for every x ∈ X and every
y ∈ C . We refer to πC as the gate-projection to C . For all x, y ∈ X , we have
W (x |πC (x)) = W (x |C) and W (x |y) ∩ W (C) = W (πC (x)|πC (y)), so πC is the
nearest-point projection with respect to the combinatorial metric.

Consider now two disjoint halfspaces h and k. We set

M(h, k) = {(x, y) ∈ h × k | d(x, y) = d(h, k)}

and denote by B(h, k) the union of all intervals I (x, y) with (x, y) ∈ M(h, k). The set
B = B(h, k) is usually known as the bridge and it is a convex subcomplex of X . Let S1
and S2 denote the projections of M(h, k) ⊆ h × k to the factors h and k, respectively.
We refer to S1 and S2 as the shores; note that S1 = B ∩ h and S2 = B ∩ k, so shores
are also convex subcomplexes.

The restrictions πS1 |S2 and πS1 |S2 define cubical isomorphisms between S1 and S2.
In fact, the intervals I (x, y) associated to pairs (x, y) ∈ M(h, k) are pairwise disjoint
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and all isomorphic to each other, giving rise to isometric splittings B � I (x, y) × S.
Here S1 corresponds to {x} × S and S2 corresponds to {y} × S.

We refer to the cube complex S = S(h, k) simply as the abstract shore when we do
not want to identify it with any specific subcomplex of X . It is precisely the restriction
quotient of X (in the sense of p. 860 of [23]) associated to the set of hyperplanes
transverse to both h and k. Finally, we remark that, for every x ∈ h and every y ∈ k,
we have

d(x, y) = d(x, S1) + d(πS1(x), πS1(y)) + d(h, k) + d(y, S2). (∗)

The reader can consult for instance Section 2.G of [17] or Section 2.2 of [29] for a
more detailed treatment of bridges and shores.

We say that two disjoint halfspaces h and k are strongly separated if the correspond-
ing shores are singletons. Equivalently, no hyperplane of X is transverse to both h and
k. Similarly, we say that two hyperplanes are strongly separated if they bound strongly
separated halfspaces.

The cube complex X is irreducible if it cannot be split as a product of lower-
dimensional cube complexes. Every finite dimensional cube complex admits a
canonical decomposition as product of irreducible cube complexes (Proposition 2.6
in [23]); we refer to it as the De Rham decomposition.

Throughout the paper, all groups will be implicitly assumed to be finitely generated.
When a group G acts on a CAT(0) cube complex X , we will assume that the action
is by cubical automorphisms, i.e. by isometries taking vertices to vertices. We say
that G � X is essential if no G-orbit is contained in a metric neighbourhood of a
halfspace. Similarly, we say that X is essential if no halfspace is contained in a metric
neighbourhood of the corresponding hyperplane. IfG acts cocompactly, X is essential
if and only if the action G � X is essential.

Remark 2.4 Every essential, Gromov hyperbolic CAT(0) cube complex is irreducible.
Indeed, essentiality guarantees that X has no bounded factors in its De Rham decom-
position, whereas hyperbolicity implies that there is at most one unbounded factor.

The action G � X is hyperplane-essential if each hyperplane-stabiliser acts essen-
tially on the corresponding hyperplane. Similarly, X is hyperplane-essential if all
its hyperplanes are essential cube complexes. Again, if G acts cocompactly, X is
hyperplane-essential if and only if the action G � X is hyperplane-essential. This
follows from Exercise 1.6 in [63], which we record here for later use:

Lemma 2.5 Let w ∈ W (X) be a hyperplane and Gw < G its stabiliser. If G � X is
cocompact, the action Gw � w also is.

The following notion appeared in Definition 7.3 in [28] and Definition 5.8 in [31];
also see Proposition 7.5 in [28].

Definition 2.6 Let X be irreducible. A point x ∈ ∂X is regular if, for every h ∈ σx ,
there exists k ∈ σx such that k and h∗ are strongly separated. Equivalently, σx contains
a chain h0 � h1 � ... such that h∗

n and hn+1 are strongly separated for every n ≥ 0.
We refer to the latter as a strongly separated chain and denote by ∂regX ⊆ ∂X the
subset of regular points.
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With reference to the proof sketch of TheoremC in the introduction, the following is
the formulation of Steps (Ia) and (Ib) that we will actually use. Note that hyperbolicity
is not required here.

Proposition 2.7 Let X be irreducible, essential and endowed with a proper cocompact
action G � X of a non-virtually-cyclic group. Consider two halfspaces h1, h2 and a
nonempty G-invariant subset A ⊆ ∂regX.

(1) The intersections hi ∩ A and h∗
i ∩ A are always nonempty. If moreover X is

hyperplane-essential, the following also hold.
(2) The halfspaces h1 and h2 are transverse if and only if the set A intersects each

of the four sectors h1 ∩ h2, h∗
1 ∩ h2, h1 ∩ h∗

2 and h∗
1 ∩ h∗

2.
(3) If we have h1 ∩ A � h2 ∩ A, then h1 � h2.

Proof Part (1) follows fromLemmas 2.9 and 2.19 in [4]. If h1 and h2 are not transverse,
one of the four intersections h1 ∩ h2, h∗

1 ∩ h2, h1 ∩ h∗
2, h

∗
1 ∩ h∗

2 is empty by definition;
in particular, it cannot contain any point ofA. This proves one implication of part (2),
while the other follows from part (1) and Proposition 2.11 in [4]. We conclude by
proving part (3).

If h1 ∩ A � h2 ∩ A, part (2) shows that h1 and h2 cannot be transverse. We then
have either h1 � h2, or h2 ⊆ h1, or h∗

2 ⊆ h1 or h2 ⊆ h∗
1. In the second case we would

have h1 ∩ A � h2 ∩ A ⊆ h1 ∩ A, and in the third case h1 ∩ h∗
2 ∩ A ⊇ h∗

2 ∩ A 
= ∅,
which both lead to contradictions. In the fourth case, taking complements we obtain
h1 ⊆ h∗

2, hence h1∩h∗
2 ∩A ⊇ h1∩A 
= ∅, which is also a contradiction. We conclude

that h1 � h2. ��
In relation to part (3) of Proposition 2.7, note however that h1 ∩ A ⊆ h2 ∩ A does

not imply h1 ⊆ h2, as we might actually have h2 � h1 in this case.

2.2 Combinatorial geodesics vs CAT(0) geodesics

The next result is probably well-known to experts, but a proof does not seem to appear
in the literature. We provide it in this subsection for completeness.

We will always specify whether geodesics are meant with respect to the CAT(0)
metric on X , or rather with respect to the combinatorial metric d. We stress that Haus-
dorff distances, however, will always be calculated with respect to the combinatorial
metric.

Proposition 2.8 Let X be a D-dimensional CAT(0) cube complex. Every CAT(0) ray
based at a vertex of X is at Hausdorff distance at most D from a combinatorial ray
with the same origin.

Given a combinatorial geodesic γ , the hyperplanes of W (γ ) can be arranged in a
sequence (wn)n≥0 according to the order in which they are crossed by γ after γ (0).
We denote this sequence by s(γ ).

Lemma 2.9 Let (wn)n≥0 be a (finite or infinite) sequence of pairwise distinct hyper-
planes of X and let p ∈ X be a vertex. There exists a combinatorial geodesic γ
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based at p such that s(γ ) = (wn)n≥0 if and only if, for every n ≥ 0, we have
W (p|wn) = {w0, ...,wn−1} \ W (wn).

Proof If there exists a geodesic γ such that γ (0) = p and s(γ ) = (wn)n≥0, each
point γ (n) lies in the carrier C(wn). Thus W (p|wn) ⊆ W (p|γ (n)) and every
element of W (p|γ (n)) either crosses wn or lies in W (p|wn). We conclude that
W (p|wn) = {w0, ...,wn−1} \ W (wn) for all n ≥ 0.

Assuming instead that the sequence (wn)n≥0 satisfies the latter condition, we are
going to construct points pn ∈ C(wn) with W (p|pn) = {w0, ...,wn−1}. We then
obtain γ by setting γ (n) = pn . We proceed by induction on n ≥ 0, observing that the
case n = 0 immediately follows from W (p|w0) = ∅.

Given pn ∈ C(wn) with W (p|pn) = {w0, ...,wn−1}, let pn+1 ∈ X be the only
point with W (pn|pn+1) = {wn}. As W (p|pn+1) = {w0, ...,wn}, we only need
to show that pn+1 lies in the carrier C(wn+1). If this failed, there would exist a
hyperplane u ∈ W (pn+1|wn+1) and we would have either u ∈ W (p, pn+1|wn+1)

or u ∈ W (pn+1|p,wn+1). The former is forbidden by W (p|wn+1) ⊆ {w0, ...,wn},
whereas the latter would clash with the fact that, for 0 ≤ i ≤ n, eachwi either crosses
wn+1 or lies in W (p|wn+1). ��

Proof of Proposition 2.8 Let ρ be a CAT(0) ray based at a vertex p ∈ X . For every
hyperplane w ∈ W (X) there exists exactly one side of w that has unbounded inter-
section with ρ. The collection of these halfspaces forms an ultrafilter σ ⊆ H (X)

representing a point x ∈ ∂X .
A hyperplane is crossed by ρ if and only if it lies in the set W (p|x); thus, ρ is

entirely contained in the subcomplex I (p, x) ∩ X . Let (wn)n≥0 be an ordering of the
elements ofW (p|x), so that m < n if wm is crossed by ρ before wn . By Lemma 2.9,
there exists a combinatorial ray r from p to x such that s(γ ) = (wn)n≥0. It remains
to prove that dHaus(r , ρ) ≤ D.

Let u ∈ r and v ∈ ρ be points (not necessarily vertices) that are not separated by
any hyperplane of X . Note that for every point u ∈ r there exists such a point v ∈ ρ

and vice versa. Let ι : I (p, x) ∩ X → R
D be an �1-isometric cubical embedding; it

exists for instance by Theorem 1.14 in [3]. Under the map ι, preimages of convex sets
are convex and, therefore, preimages of halfspaces are halfspaces. It follows that the
points ι(u) and ι(v) are not separated by any hyperplane of R

D , hence they lie in a
translate of a unit cube of R

D . Thus d(u, v) = d(ι(u), ι(v)) ≤ D. ��

2.3 Median barycentres

Let S be a bounded CAT(0) cube complex.
Considering the CAT(0) metric on S, there exists a unique barycentre cS ∈ S. This

is the centre of the unique smallest closed ball containing S; see e.g. Proposition II.2.7
in [6] or Proposition 3.73 in [26]. However, the point cS is in general not a vertex of
S, nor a vertex of any iterated cubical subdivision. This is illustrated in Fig. 2.

In Sect. 5 we will need a different notion of barycentre, which we now introduce.
It will always be a vertex of the first cubical subdivision S′.
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y

x
v cS

Fig. 2 The pictured cube complex S consists of three squares. The CAT(0) geodesic from x to y is the
unique longest geodesic in S. The CAT(0) distance between v and the barycentre cS is 1

2 (
√
5− √

2). This

number is not of the form 1
2n

√
a2 + b2 for any a, b, n ∈ N, so cS is not a vertex of any iterated cubical

subdivision of S

In the discussion below, points of S are assumed to be vertices and we only consider
the combinatorial metric on X , as in the rest of the paper.

Let h ∈ H (S) be a side of the hyperplane w and let x ∈ h and y ∈ h∗ be vertices
maximising the distance fromw. We say thatw is balanced if d(x,w) = d(y,w) and
unbalanced otherwise. If d(x,w) > d(y,w), we call h heavy and h∗ light.

Lemma 2.10 Given halfspaces h, k ∈ H (S) with h ∩ k = ∅ and h 
= k∗, at least one
of them is light.

Proof Let w and u be the hyperplanes associated to h and k, respectively. Pick x ∈ h
and y ∈ k maximising the distance from w and u, respectively. Note that k ⊆ h∗ and
h ⊆ k∗. If h and k were both not light, we would have

d(x,w) ≥ d(y,w) ≥ d(y, u) + d(u,w) > d(y, u)

and similarly d(y, u) > d(x,w). This is a contradiction. ��
In particular, any two heavy halfspaces intersect and any two balanced hyperplanes

are transverse. ByHelly’s Lemma, the intersection of all heavy halfspaces is nonempty.
It is a cube c ⊆ S cut by all balanced hyperplanes.

The centre of c is a vertex mS of the cubical subdivision S′. We refer to it as the
median barycentre of S. Note that mS is a vertex of S if and only if every hyperplane
is unbalanced. For instance, mS = v in Fig. 2.

We remark that, given bounded CAT(0) cube complexes S1 and S2 and an isomor-
phism F : S1 → S2, we have F(mS1) = mS2 .

2.4 Cross ratios on cube complexes

Let X be a CAT(0) cube complex. Fixing a vertex p ∈ X , the Gromov product of two
points x, y ∈ X is:

(x · y)p = #W (p|x, y) = d(p,m(p, x, y)) ∈ N ∪ {+∞}.

The following is Lemma 2.3 in [4].

Lemma 2.11 Consider x, y, z ∈ X and p ∈ X.
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(1) We have m(x, y, z) ∈ X if and only if each of the three intervals I (x, y), I (y, z),
I (z, x) intersects X.

(2) We have (x · y)p < +∞ if and only if I (x, y) intersects X.

Let A ⊆ (X)4 be the subset of 4-tuples (x, y, z, w) such that at most one of the
values (x · y)p + (z · w)p, (x · z)p + (y · w)p and (x · w)p + (y · z)p is infinite; by
Lemma 2.11, the set A is independent of the choice of p.

In our previous work with Incerti-Medici [5], we introduced a cross ratio cr : A →
Z ∪ {±∞}, which admits the following equivalent characterisations:

(1) cr(x, y, z, w) = #W (x, z|y, w) − #W (x, w|y, z);
(2) cr(x, y, z, w) = (x · z)p + (y · w)p − (x · w)p − (y · z)p;
(3) cr(x, y, z, w) = d(x, w) + d(y, z) − d(x, z) − d(y, w), if x, y, z, w ∈ X .

In particular, the second characterisation does not depend on the choice of p ∈ X .
Note that cr satisfies symmetries (i)–(iv) from the introduction, as long as all involved
4-tuples lie in A . We will sometimes write crX when we wish to specify the cube
complex under consideration.

EndowingA ⊆ (X)4 with the subspace topology, the following is Proposition 3.3
in [4]. Note that X and A are totally disconnected.

Proposition 2.12 If X is locally finite, the cross ratio cr is continuous.

2.5 CAT(0) cuboid complexes

As mentioned in the introduction, all results in this paper equally hold for cube com-
plexes with variable edge lengths: cuboid complexes in our terminology.

For the sake of simplicity and clarity, we will only treat CAT(0) cube complexes
in most of the paper. Only very minor changes are required in order to adapt our
arguments to general CAT(0) cuboid complexes. We briefly describe them here, along
with the relevant definitions.

Consider for a moment a genuine CAT(0) cube complex X . Every function
μ : W (X) → R>0 determines a weighted combinatorial metric dμ on X . For ver-
tices v,w ∈ X , this is given by:

dμ(v,w) =
∑

w∈W (v|w)

μ(w).

For instance, the usual combinatorial metric d arises from the function that assigns
value +1 to each hyperplane.

Definition 2.13 A CAT(0) cuboid complex X is any metric cell complex (X , dμ)

arising from this construction.

Two cuboid complexes X = (X , dμ) and Y = (Y , dν) are isomorphic if there
exists an isometric cellular isomorphism f : X → Y. In other words, f : X → Y is an
isomorphism of CAT(0) cube complexes inducing a map f∗ : W (X) → W (Y ) such
that μ = ν ◦ f∗.
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Note, however, that there can be isometriesX → Y that do not preserve the cellular
structures. For instance, consider the cuboid complex X

′ arising from the cubical
subdivision X ′. If we assign each edge of X

′ half the length of the corresponding edge
of X, the identity map X → X

′ is a (surjective) isometry, but never an isomorphism.
When dealingwithCAT(0) cuboid complexes, rather thanCAT(0) cube complexes,

the following adaptations and conventions are required.

(1) All group actions on cuboid complexes will be assumed to be by automorphisms
(i.e. self-isomorphisms).

(2) We consider two actions to be the same when they are equivariantly isometric.
In Theorems A, C and in Corollaries B, E, equivariant isomorphisms of cube
complexes need to be replaced with equivariant isometries of cuboid complexes.
It is easy to see that it is not possible to map vertices to vertices in general.

(3) We define hyperplanes and halfspaces of X = (X , dμ) to coincide with hyper-
planes and halfspaces of the underlying cube complex X . This also explains how
to interpret notations like W (A|B) in this context.

(4) Given a subsetU ⊆ W (X) = W (X), the cardinality #U should always be replaced
by the weight

∑
w∈U μ(w). Nonempty subsets are still precisely those that have

positive weight.
(5) The cross ratio cr will no longer take values in Z ∪ {±∞}, but rather in M ∪

{±∞}, where M is the Z-module generated by the image of the map μ. A similar
observation applies to length functions.

3 TheMorse property in cube complexes

Other than the proof of Theorem D (consisting of Theorem 3.10 and Remark 3.8),
most of this section will be devoted to collecting more or less well-known facts from
the literature. Throughout:

Standing Assumptions Let the CAT(0) cube complex X be finite dimensional and
locally finite.

3.1 Contracting geodesics

Recall that we only endow X with its combinatorial metric. All geodesics will be
combinatorial in this subsection.

Definition 3.1 Let Y be a proper metric space. Given a closed subset A ⊆ Y , we
denote by πA : Y → 2A the nearest-point projection to A. If B ⊆ Y , we write πA(B)

instead of
⋃

b∈B πA(b).
A closed subset A ⊆ Y is (strongly) contracting if there exists D > 0 such that

every metric ball B disjoint from A satisfies diam(πA(B)) ≤ D.
Given a function M : [1,+∞) → [0,+∞), a quasi-geodesic γ ⊆ Y is M-Morse

if, for every C > 0 and every (C,C)-quasi-geodesic η with endpoints on γ , the entire
η is contained in the (open) M(C)-neighbourhood of γ . We say that γ is Morse if it
is M–Morse for some function M .
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We refer the reader to [1] for a detailed discussion of contracting subsets and the
Morse property in general metric spaces.

Definition 3.2 We say that a geodesic γ ⊆ X is C-lean if there do not exist transverse
subsets U ⊆ W (γ ) and V ⊆ W (X) such that min{#U , #V} > C and such that U � V
does not contain facing triples. We say that γ is lean if it is C-lean for some C ≥ 0.

The following is due to A. Genevois; see Corollary 3.7 in [34] and Lemma 4.6 in
[33].

Theorem 3.3 For a ray γ ⊆ X, we have: lean ⇔ contracting ⇔ Morse.

Given rays γ and γ ′ at finite Hausdorff distance, it is clear from definitions that γ
satisfies the above conditions if and only if γ ′ does.

Lemma 3.4 Let α and γ be rays in X with α(+∞) ∼ γ (+∞). If γ is contracting,
then α is at finite Hausdorff distance from γ , hence contracting.

Proof By Lemma 2.3, it suffices to consider the case when α(+∞) = γ (+∞). By
Theorem 3.3, there exists C > 0 such that γ is C-lean. Set p = γ (0), q = α(0),
x = α(+∞) = γ (+∞) and I = I (x, p). Since W (q|I ) = W (q|x, p) is a finite
subset of W (q|x) = W (α), the intersection α ∩ I is a sub-ray of α. We conclude by
showing that d(u, γ ) ≤ 2C for every point u ∈ I .

Pick a point v ∈ γ with d(u, p) = d(v, p) and set m = m(p, u, v). Note
that W (m|u) and W (m|v) are contained in W (x |p) = W (γ ). Every halfspace
h ∈ H (m|u) is transverse to every halfspace k ∈ H (m|v); indeed, we have
m ∈ h∗ ∩ k∗, u ∈ h ∩ k∗, v ∈ h∗ ∩ k and x ∈ h ∩ k. Moreover, the sets W (m|u)

and W (m|v) have the same size and contain no facing triples. Since γ is C–lean, we
conclude that #W (m|u) = #W (m|v) ≤ C . This shows that d(u, v) ≤ 2C . ��

3.2 Roller boundaries vs contracting boundaries

Unlike the rest of the paper, this subsection employs both the combinatorial and
CAT(0) metrics on X ; we will specify each time whether geodesics are meant with
respect to the former or latter. Still, the notation d(·, ·) will always refer to the combi-
natorial metric.

The contracting boundary ∂cX was introduced in [24]. Disregarding topologies for
the moment, ∂cX is the subset of the visual boundary ∂∞X that consists of points
represented by contracting CAT(0) rays.

In order to relate the contracting boundary ∂cX and the Roller boundary ∂X , we
introduce the following (see Lemma 3.4 for the equivalence in the definition):

Definition 3.5 We say that a point x ∈ ∂X is contracting (or a contracting ultrafilter)
if one (equivalently, each) combinatorial ray representing x is contracting. We denote
the set of contracting ultrafilters by ∂cuX ⊆ ∂X .

We stress that our definition of contracting point is not equivalent to the one in
Remark 6.7 of [31]; in fact, our notion is weaker.
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In general, the inclusion ∂cuX ⊆ ∂X is strict. If however X is Gromov hyperbolic,
every combinatorial ray in X is contracting (see e.g. Theorem 3.3 in [32]) and we have
∂cuX = ∂X .

Lemma 3.4 shows that the set ∂cuX is a union of ∼-equivalence classes. The fol-
lowing result provides more information.

Lemma 3.6 (1) Every component of ∂cuX is bounded.
(2) Points x ∈ ∂cuX and y ∈ ∂X lie in the same component if and only if they satisfy

I (x, y) ∩ X = ∅.
Proof Consider a point x ∈ ∂cuX and a C–lean combinatorial ray r with x = r(+∞);
set p = r(0). We simultaneously prove both parts of the lemma by showing that, for
y ∈ ∂X , the condition (x · y)p = +∞ implies d(x, y) ≤ C .

Suppose for the sakeof contradiction thatW (p|x, y) is infinite andW (x |y) contains
a finite subset U with #U > C . Given w ∈ W (x |y) and a halfspace h ∈ H (p|x, y),
either w ⊆ h or w and h are transverse. Fixing w, there are at most d(p,w) < +∞
halfspaces h ∈ H (p|w). Thus, all but finitely many hyperplanes in W (p|x, y) are
transverse to all elements of U . As W (p|x, y) and U contain no facing triples, this
violates C-leanness of r . ��
Lemma 3.7 Consider a point x ∈ ∂cuX. There exists an infinite descending chain of
halfspaces h0 � h1 � ... such that

⋂
hn = Z(x) and such that the shores S(h∗

n, hn+1)

are finite cube complexes of uniformly bounded diameter.

Proof Let r be a contracting combinatorial ray with x = r(+∞). Theorem 3.9 in
[34] yields an infinite chain of halfspaces h0 � h1 � ... such that the shores Sn =
S(h∗

n, hn+1) have uniformly bounded diameter and such that x ∈ hn for every n ≥ 0.
Since shores embed as subcomplexes of X , they are locally finite. Boundedness then
implies that each Sn is finite.

Now, observe that h∗
n ∩ Z(x) = ∅ for all n ≥ 0. Otherwise, there would exist an

integer k ≥ 0 and a point y ∈ h∗
k ∩ Z(x). We would then have y ∈ h∗

n ∩ Z(x) for all
n ≥ k, violating the fact that d(x, y) < +∞.

This shows that Z(x) is contained in each hn . Given a point z ∈ ⋂
hn , we have

I (x, z) ⊆ ⋂
hn and hence I (x, z) ∩ X = ∅. Lemma 3.6 then shows that z ∈ Z(x).

This proves that
⋂

hn = Z(x) and concludes the proof. ��
Remark 3.8 If X is uniformly locally finite, part (1) of Lemma 3.6 can actually be
promoted to say that components of ∂cuX are finite.

Indeed, let x and h0 � h1 � ... be as in the statement of Lemma 3.7. Given
y ∈ Z(x), every w ∈ W (x |y) must be transverse to all but finitely many of the hn .
In particular, w must be a hyperplane of almost all shores S(h∗

n, hn+1). The latter are
uniformly finite, as they embed as uniformly bounded subcomplexes of the uniformly
locally finite cube complex X . We conclude that only finitely many hyperplanes of X
can separate two points of Z(x), i.e. that Z(x) is finite.

Since X is finite dimensional, its combinatorial and CAT(0) metrics are quasi-
isometric. In particular, the notion of Morse quasi-geodesic is independent of our
choice of one of the two metrics.
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We remark that Morse quasi-geodesics in complete CAT(0) spaces always stay
within bounded distance of contracting CAT(0) geodesics (see e.g. Lemma 2.5, The-
orem 2.9 and the proof of Corollary 2.10 in [24]). Along with Theorem 3.3 and
Proposition 2.8, this observation yields the following.

Corollary 3.9 Every contracting combinatorial ray is at finite Hausdorff distance from
a contractingCAT(0) ray. Every contractingCAT(0) ray is at finiteHausdorff distance
from a contracting combinatorial ray.

Every point x ∈ ∂cuX is represented by combinatorial rays in X . These rays are all
contracting by Lemma 3.4 and Corollary 3.9 shows that they are at finite Hausdorff
distance from a unique family of pairwise-asymptotic contracting CAT(0) rays. This
yields a map


 : ∂cuX −→ ∂cX .

We endow ∂cuX with the restriction of the topology of ∂X . We write ∂visc X to refer to
the contracting boundary ∂cX endowed with the restriction of the visual topology on
∂∞X . Although this is not one of the standard topologies on ∂cX ( [19,24]), it is all
that we will need in most of the paper.

The next result describes a few properties of themap
. Recall the standing assump-
tion that X be finite dimensional and locally finite.

Theorem 3.10 The map 
 : ∂cuX → ∂visc X is a continuous surjection, whose fibres
are precisely the ∼-equivalence classes in ∂cuX. Moreover, 
 descends to a homeo-
morphism 
 : ∂cuX/∼ → ∂visc X.

Proof Surjectivity is immediate from Corollary 3.9. Lemma 3.4 shows that 
 is con-
stant on ∼-equivalence classes. On the other hand, if γ and γ ′ are combinatorial rays
with γ (+∞) � γ ′(∞), it is clear that the distance d(γ (n), γ ′(n)) diverges as n goes
to infinity. We conclude that the fibres of 
 are precisely the components of ∂cuX .

We now prove continuity of
. Fix a vertex p ∈ X and let D = dim X . Given points
x, y ∈ ∂cuX , let ρx and ρy be the CAT(0) rays from p to
(x) and
(y), respectively.
Let rx and ry be combinatorial rays based at p and satisfying dHaus(rx , ρx ) ≤ D,
dHaus(ry, ρy) ≤ D, as provided by Proposition 2.8. The points x ′ = rx (+∞) and y′ =
ry(+∞) lie in the components Z(x) and Z(y), respectively. Theorem 3.3 moreover
shows that rx and ry are C-lean for some constant C > 0.

Given an integer n ≥ 0, we define an open neighbourhood Un(x) of x in ∂cuX as
follows. Pick halfspaces h3 ⊆ h2 ⊆ h1 with Z(x) ⊆ h3, d(p, h1) > n, #W (h∗

1|h2) >

C and #W (h∗
2|h3) > C . Their existence is ensured by Lemma 3.7. The neighbourhood

Un(x) is then the subset of ∂cuX consisting of points that lie within h3.
Claim. For all y ∈ Un(x), we have d(rx (n), ry(n)) ≤ 5C .

As dHaus(rx , ρx ) ≤ D and dHaus(ry, ρy) ≤ D, the claim shows that, given any open
neighbourhood V of 
(x) in ∂visc X , we must have 
(Un(x)) ⊆ V for all sufficiently
large n. We thus complete the proof of continuity of 
 by proving the claim.

Proof of Claim. Let the halfspaces h1, h2 and h3 be as above. Since y ∈ h3,
Lemma 2.2 implies that x ′, y′ ∈ h2. Indeed, as #W (h∗

2|h3) > C and rx is C–lean, no
infinite chain of halfspaces can be transverse to both h2 and h3.
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We set qx = rx (n), qy = ry(n) and m = m(p, qx , qy). Note that the points qx , qy
and m lie in h∗

1 as d(p, h1) > n. Let Ax ⊆ H (m|qx ) and Ay ⊆ H (m|qy) be the
subsets of halfspaces containing h2; set ax = #Ax and ay = #Ay .

Each k ∈ H (m|qx ) \ Ax satisfies k∗ ∩ h2 
= ∅, but also m ∈ k∗ ∩ h∗
2, qx ∈ k ∩ h∗

2
and x ′ ∈ k∩h2. We conclude that each halfspace inH (m|qx ) \ Ax is transverse to h2
and, similarly, to h1. Since W (h∗

1|h2) ⊆ W (rx ) and #W (h∗
1|h2) > C , the fact that rx

is C-lean implies that d(m, qx ) − ax ≤ C . Similarly, we obtain d(m, qy) − ay ≤ C .
The sets Ax and Ay are transverse. As Ax ⊆ W (rx ), leanness of rx implies that

min{ax , ay} ≤ C . Since d(m, qx ) = d(m, qy) by construction, we have

|ax − ay | = ∣∣(d(m, qx ) − ax ) − (d(m, qy) − ay)
∣∣ ≤ C .

Hence max{ax , ay} ≤ 2C and

d(qx , qy) = d(m, qx ) + d(m, qy) ≤ (ax + C) + (ay + C) ≤ 5C . �

In order to prove that 
 is a homeomorphism, let us first obtain the following
property: Given x, xn ∈ ∂cuX and y ∈ ∂X with 
(xn) → 
(x) and xn → y, we
must have y ∈ Z(x).

Fix a basepoint p ∈ X . Letρn andρ beCAT(0) rays from p to xn and x , respectively.
Proposition 2.8 yields combinatorial rays rn and r based at p, with dHaus(rn, ρn) ≤ D
and dHaus(r , ρ) ≤ D. By Theorem 3.3, there exists C ≥ 0 such that r is C-lean. Let
h0 � h1 � ... be a chain in σx \ σp with

⋂
hn = Z(x), as provided by Lemma 3.7.

Up to passing to a subchain, we can assume that #W (h∗
k |hk+1) > C for all k ≥ 0

Given any k ≥ 0, there exists N (k) ≥ 0 such that rn enters hk for all n ≥ N (k).
Indeed, the rays ρn converge to ρ uniformly on compact sets and rn, r are uniformly
Hausdorff-close to ρn, ρ. We conclude that the points zn := rn(+∞) lie in hk for
all n ≥ N (k). Since xn ∈ Z(zn), we must also have xn ∈ hk−1. This follows from
Lemma 2.2, as, by leanness of r , there is no infinite chain of halfspaces transverse to
both hk and hk−1. We conclude that y = lim xn lies in

⋂
hn = Z(x), as required.

Now, since ∂∞X is metrisable, so is ∂visc X . The fact that
 is a homeomorphismwill

thus follow if we prove that 

−1

is sequentially continuous (see e.g. Theorem 30.1(b)
in [51]). Denote by p : ∂cuX → ∂cuX/∼ the quotient projection. Suppose for the
sake of contradiction that points x, xn ∈ ∂cuX are given so that 
(xn) → 
(x), but
p(xn) 
→ p(x). Possibly passing to a subsequence, there exists an open neighbourhood
V of p(x) in ∂cuX/∼ such that no p(xn) lies in V ; hence no xn lies in p−1(V ). Since
∂X is compact and metrisable, a subsequence xnk converges to a point y ∈ ∂X ; as
p−1(V ) is open, we have y /∈ p−1(V ). However, the set p−1(V ) is a union of ∼-
equivalence classes and we have shown above that y ∼ x ∈ p−1(V ), a contradiction.

��

Remark 3.11 Given points x, xn ∈ ∂cuX satisfying 
(xn) → 
(x) and Z(x) = {x},
we always have xn → x . Otherwise, compactness of ∂X would yield a subsequence
xnk converging to a point y ∈ ∂X different from x . However, we have shown during
the proof of Theorem 3.10 (right after the claim) that y ∈ Z(x) = {x}.
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When X is Gromov hyperbolic, we have ∂cuX = ∂X and ∂visc X coincides with the
Gromov boundary ∂∞X . This case is worth highlighting:

Corollary 3.12 If X is Gromov hyperbolic, the map 
 : ∂X → ∂∞X descends to a
homeomorphism 
 : ∂X/∼ → ∂∞X.

3.3 Contracting non-terminating ultrafilters

In this subsection:

Standing Assumptions Let, in addition, X be irreducible.

The following definition is originally due to Nevo and Sageev (cf. Section 3.1 in
[55]).

Definition 3.13 A point x ∈ ∂X is non-terminating if Z(x) = {x}. Equivalently11, the
poset (σx ,⊆) does not have minimal elements.

We denote by ∂ntX ⊆ ∂X the subset of non-terminating ultrafilters and set ∂cntX =
∂cuX ∩∂ntX . By Theorem 3.10, the restriction to ∂cntX of the map
 : ∂cuX → ∂cX is
injective. Therefore, we will generally identify the sets ∂cntX ⊆ ∂ntX and
(∂cntX) ⊆
∂cX , even writing simply ∂cntX ⊆ ∂cX .

Remark 3.14 It follows from Theorem 3.10 and Remark 3.11 that ∂cntX inherits the
same topology from ∂cuX ⊆ ∂X and ∂visc X .

It will be useful to make the following observation.

Lemma 3.15 We have ∂cntX = ∂cuX ∩ ∂regX.

Proof We have ∂cntX ⊇ ∂cuX∩∂regX since it is clear fromDefinition 2.6 that ∂regX ⊆
∂ntX . For the other inclusion, consider a point x ∈ ∂cntX . Lemma 3.7 yields an infinite
descending chain of halfspaces h0 � h1 � ... such that the shores S(h∗

n, hn+1) are
finite and

⋂
hn = {x}. In particular, for every n ≥ 0, only finitely many hyperplanes

are transverse to both hn and hn+1. We are going to show that, for every k ≥ 0, there
exists N > k such that the halfspaces h∗

k and hN are strongly separated. This implies
that h∗

k and hn are strongly separated for every n ≥ N , providing a strongly separated
chain in σx and hence showing that x is regular.

Suppose for the sake of contradiction that, for some k ≥ 0 and every n > k, there
exists a hyperplanewn transverse to both hk and hn . Note that eachwn is in particular
transverse to hk and hk+1 and that there are only finitely many such hyperplanes. We
conclude thatwn = w for a hyperplanew and infinitelymany values of n. In particular,
w is transverse to all hn with n ≥ k. It follows that there exists a point y ∈ ∂X such
that y ∈ hn for all n ≥ 0 and w ∈ W (x |y), violating the fact that

⋂
hn = {x}. ��

Contracting non-terminating ultrafilters are plentiful, as they for instance arise in
relation to the following notion (see Propositions 3.17 and 3.18 ).

11 This is because, given an ultrafilter σ and a halfspace h ∈ σ , the set (σ \ {h}) ∪ {h∗} is an ultrafilter (at
distance 1 from σ ) if and only if h is minimal in (σ, ⊆).
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Definition 3.16 (Definition 4.1 in [4]) We say that g ∈ Aut(X) is neatly contracting if
there exist halfspaces h1 and h2 such that gh1 ⊆ h2 ⊆ h1 and both pairs (h2, h

∗
1) and

(gh1, h∗
2) are strongly separated.

We collect here various facts on neatly contracting automorphisms that will be
needed later on.

Proposition 3.17 Every neatly contracting automorphism g ∈ Aut(X) has exactly
two fixed points g± ∈ ∂cntX. Given any x ∈ X \ {g±}, we have gnx → g+ and
g−nx → g− for n → +∞.

Proof This is essentially Proposition 4.3 in [4]; we only need to prove that the points
g± are represented by contracting rays. By Propositions 2.7 and 4.4 in [4], there exists
a 〈g〉–invariant line γ ⊆ X with endpoints g±. As γ must cross all hyperplanes
bounding the halfspaces gnh1, Theorem 3.9 in [34] shows that γ is contracting. This
concludes the proof. ��

Wewillwrite g±
X ∈ ∂cntX when it is necessary to specify the cube complex. The next

proposition follows from Lemmas 2.9 and 4.7 in [4], although the main ingredients
are actually from [31]. The same result holds for any finite collection of (irreducible,
essential, cocompact) cubulations.

Proposition 3.18 Let a non-virtually-cyclic group G act properly and cocompactly on
irreducible, essential CAT(0) cube complexes X and Y . There exists g ∈ G simulta-
neously acting as a neatly contracting automorphism on X and Y .

Given a finitely generated group G, its contracting boundary12 ∂cG was introduced
in [19,21]; we will not endow ∂cG with any topology.

Fixing a word metric on G, we say that g ∈ G is Morse if n �→ gn is a Morse
quasi-geodesic in G. This notion is independent of the chosen word metric. Every
Morse element g ∈ G fixes exactly two points g±∞ ∈ ∂cG (see e.g. Definition 9.1,
Theorem 2.2 and Theorem 9.4 in [19]).

Given an action G � X as in the statement of Proposition 3.18, the Milnor–
Schwarz lemma shows that orbit maps G → X are G-equivariant quasi-isometries.
They are at finite distance from each other and all yield the same G-equivariant bijec-
tion oX : ∂cG → ∂cX . This follows from either Proposition 4.2 in [21] or Corollary 6.2
in [19].

Now, if g ∈ G acts on X as a neatly contracting automorphism, we can consider
the points g± ∈ ∂cntX ⊆ ∂cX introduced in Proposition 3.17. Note that, in this case,
g is also a Morse element in G by Theorem 3.3.

Lemma 3.19 Let G � X be as in Proposition 3.18. For every neatly contracting
element g ∈ G, we have oX (g+∞) = g+ and oX (g−∞) = g−.

Proof The discussion above already shows that oX ({g±∞}) = {g±} as these are the
only two G-fixed points in ∂cG and ∂cX , respectively. Let ∂FQ

c X denote the con-
tracting boundary of X , endowed with the Cashen–Mackay topology (Definition 5.4

12 This is also known as Morse boundary. See the discussion in the introduction for a justification of our
terminology.
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in [19]). By Theorem 9.4 and Corollary 6.2 in [19], the element g acts on ∂FQ
c X

with north-south dynamics. Note that g also acts on ∂visc X with north-south dynamics,
by Proposition 3.17 and Theorem 3.10. Since the identity map ∂FQ

c X → ∂visc X is
continuous (Section 7 in [19]), we conclude that the attracting/repelling fixed points
of g are the same for the two topologies. ��

If G is Gromov hyperbolic, every infinite-order element g ∈ G is Morse and acts
on the Gromov boundary ∂∞G with north-south dynamics.

4 Cubulations of hyperbolic groups

This section is devoted to the proof of Theorem C. Referring to the sketch given in the
introduction, we only need to carry out Steps (IIa) and (IIb), as Step (I) is provided
by Proposition 2.7. The crucial results are thus Proposition 4.26 in Sect. 4.4 and
Theorem 4.33 in Sect. 4.5. Before that, Sects. 4.1, 4.2 and 4.3 develop all necessary
ingredients.

For the convenience of the reader, we recall here a couple of standard lemmaswhich
do not require any action on a cube complex.

Lemma 4.1 Let G be Gromov hyperbolic and let H < G be an infinite-index quasi-
convex subgroup. The limit set ∂∞H ⊆ ∂∞G is nowhere-dense.

Proof ByLemma 2.9 in [36], there exists a point ξ ∈ ∂∞G\∂∞H .We can assume that
H is non-elementary, otherwise the lemma is trivial. Given any infinite-order element
h ∈ H , the orbit 〈h〉 · ξ accumulates on the point h+∞ ∈ ∂∞H . Since the action
H � ∂∞H is minimal, the subset H · h+∞ is dense in ∂∞H . Thus ∂∞H ⊆ H · ξ ,
while H · ξ ⊆ ∂∞G \ ∂∞H . Along with the fact that ∂∞H is closed in ∂∞G, this
concludes the proof. ��
Lemma 4.2 Let G beGromov hyperbolic and let H and K be quasi-convex subgroups.
If H and K have the same limit set, they are commensurable.

Proof Let L ≤ G denote the stabiliser of the limit set � = ∂∞H = ∂∞K . By
Lemma 3.8 in [48], the limit set of L coincides with �. Since H ≤ L and H is
quasi-convex in G, Proposition 3.4 in [48] shows that L is quasi-convex in G. Finally,
Lemma 2.9 in [36] implies that H and K have finite index in L , hence H ∩ K has
finite index in both H and K . ��

4.1 Traces at infinity

Throughout this subsection:

Standing Assumptions Let G be a Gromov hyperbolic group (not necessarily non-
elementary) with a proper cocompact action on a CAT(0) cube complex X . We
denote by oX : ∂∞G → ∂∞X the only G-equivariant homeomorphism and by

 : ∂X → ∂∞X the map from Corollary 3.12. As usual, we will only endow X
with its combinatorial metric.
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Note that every (combinatorial) ray r ⊆ X determines a point of ∂X , but, by
hyperbolicity, it also determines a point of ∂∞X .

The carrier C(w) of each hyperplane w ∈ W (X) is a convex subcomplex of X ;
in particular, it is itself hyperbolic and we can consider its boundary ∂∞w ⊆ ∂∞X .
A point ξ ∈ ∂∞X lies in ∂∞w if and only if one/all rays representing ξ are at finite
Hausdorff distance from w.

Definition 4.3 We refer to ∂∞w ⊆ ∂∞X as the trace at infinity of w.

Denoting by Gw ≤ G the stabiliser of w, Lemma 2.5 guarantees that Gw acts
properly and cocompactly onC(w). In particular, the homeomorphism o−1

X : ∂∞X →
∂∞G takes ∂∞w to the limit set ∂∞Gw ⊆ ∂∞G.

We now make a few simple observations on traces at infinity.

Lemma 4.4 Consider a hyperplane w ∈ W (X) and its two sides h and h∗.

(1) The subsets ∂∞h and ∂∞h∗ are closed in ∂∞X. Moreover, we have ∂∞X =
∂∞h ∪ ∂∞h∗ and ∂∞h ∩ ∂∞h∗ = ∂∞w.

(2) If X is essential, the sets ∂∞h \ ∂∞w and ∂∞h∗ \ ∂∞w are nonempty.

Proof Since h and h∗ are closed convex subsets of X , their boundaries are well-defined
closed subsets of ∂∞X . Every ray in X intersects either h or h∗ in a sub-ray, so every
point of ∂∞X lies in either ∂∞h or ∂∞h∗.

It is clear that ∂∞w ⊆ ∂∞h ∩ ∂∞h∗. Conversely, if ξ ∈ ∂∞h ∩ ∂∞h∗, we can
consider rays r and r∗ representing ξ and entirely contained, respectively, in h and
h∗. The function t �→ d(r(t), r∗(t)) must be uniformly bounded and, observing that
d(r(t),C(w)) < d(r(t), h∗) ≤ d(r(t), r∗(t)), we see that r is contained in a metric
neighbourhood of C(w). Hence ξ ∈ ∂∞w.

Finally, regarding part (2), consider a sequence of points xn ∈ h whose distances
from h∗ diverge. Lemma2.5 ensures that xn can be chosen so that their gate-projections
xn to C(w) lie in a compact set. The Arzelà–Ascoli theorem guarantees that, up to
passing to a subsequence, the geodesics joining xn and xn converge to a ray that is
contained in h but in no metric neighbourhood of h∗. The corresponding point of ∂∞X
lies in ∂∞h \ ∂∞w. Similarly, ∂∞h∗ \ ∂∞w is also nonempty. ��
Remark 4.5 In the setting of Lemma 4.4, it is interesting to observe that ∂∞h \ ∂∞w
is a union of connected components of ∂∞X \ ∂∞w. This is because the partition
∂∞X \ ∂∞w = (∂∞h \ ∂∞w)� (∂∞h∗ \ ∂∞w) consists of two disjoint closed subsets.

Remark 4.6 By Lemma 2.5, we have ∂∞w = ∅ if and only if w is compact. If X is
hyperplane-essential, this means that w consists of a single point, i.e. w is dual to an
edge that disconnects X .

We remind the reader that, due to Corollary 3.12 and Remark 3.14, we feel entitled
to implicitly identify the sets ∂ntX ⊆ ∂X and 
(∂ntX) ⊆ ∂∞X .

Lemma 4.7 A point ξ ∈ ∂∞X lies in ∂ntX if and only if there does not exist any
w ∈ W (X) with ξ ∈ ∂∞w.
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Proof By part (1) of Lemma 4.4, a point ξ ∈ ∂∞X lies in some trace at infinity ∂∞w if
and only if there exists a halfspaceh ∈ H (X) such that ξ ∈ ∂∞h∩∂∞h∗. Equivalently,
there exist two rays representing ξ , one contained in h and the other contained in h∗.
Thus, ξ lies in a trace at infinity if and only if there exist distinct points x, y ∈ ∂X
with 
(x) = 
(y) = ξ . On the other hand, a point ξ ∈ ∂∞X is non-terminating if
and only if 
−1(ξ) is a singleton (cf. Theorem 3.10 and Definition 3.13). ��

In the rest of the subsection, we collect various facts that will be needed in the proof
of Step (IIa). The key ingredient is Proposition 4.11 below.

Given hyperplanes u,w ∈ W (X), we denote by B(u,w) ⊆ X the bridge associated
to their carriers. When u and w are transverse, B(u,w) is simply the intersection of
the two carriers.

Proposition 4.8 Given u,w ∈ W (X), the group Gu ∩ Gw acts properly and cocom-
pactly on B(u,w). Furthermore, ∂∞B(u,w) = ∂∞u ∩ ∂∞w.

Proof Let S denote the intersection of B = B(u,w) with the carrier of u and consider
its stabiliser GS ≤ G. The action GS � S is cocompact by Proposition 2.7 in [41].
There exists a constant D > 0 such that S is contained in the D-neighbourhood of
both u andw. The finitely many hyperplanes that contain S in their D-neighbourhood
are permuted by GS and it follows that Gu∩Gw sits in GS as a finite-index subgroup.
Hence Gu ∩Gw acts cocompactly on S and it also acts cocompactly on the bridge B,
which is at finite Hausdorff distance from S. Finally, as B ⊆ X is a subcomplex and
G � X is proper, the action Gu ∩ Gw � B is also proper.

It is clear that ∂∞B = ∂∞S ⊆ ∂∞u. The same argument applied to the other shore
of B shows that ∂∞B ⊆ ∂∞u ∩ ∂∞w. Now, consider a point ξ ∈ ∂∞u \ ∂∞S and a
geodesic γ ⊆ C(u) representing ξ ; note that the function t �→ d(γ (t), S)must diverge
with t . As soon as γ (t) /∈ S, equation (∗) in Sect. 2.1 implies that d(γ (t),C(w)) =
d(γ (t), S) + d(S,C(w)). In particular, the function t �→ d(γ (t),C(w)) must also
diverge and ξ /∈ ∂∞w. This shows that we have ∂∞u ∩ ∂∞w ⊆ ∂∞S = ∂∞B,
concluding the proof. ��

We now introduce a preorder on W (X). We write u1 � u2 if ∂∞u1 ⊆ ∂∞u2 and
u1 ∼ u2 if ∂∞u1 = ∂∞u2. The latter is an equivalence relation.

Recall that W (w) denotes the set of hyperplanes transverse to w ∈ W (X).

Proposition 4.9 Let X be hyperplane-essential.

(1) We have u1 � u2 if and only ifW (u1) ⊆ W (u2). Equivalently, u1 and u2 are not
transverse and u1 stays at bounded distance from u2.

(2) If there exists w with u1 � w and u2 � w, the hyperplanes u1 and u2 are not
transverse.

(3) There exists N = N (X) ≥ 0 such that, given any hyperplane u with ∂∞u 
= ∅,
there exist at most N hyperplanes w with u � w.

Proof We start by proving part (1). Let B denote the bridge B(u1, u2) and let S1 be the
shore B ∩ C(u1). If W (u1) ⊆ W (u2), we have u2 /∈ W (u1) and the carrier C(u1) is
at finite Hausdorff distance from B. Thus, u1 is contained in a metric neighbourhood
of u2 and this implies that u1 � u2.
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Conversely, suppose that u1 � u2. Proposition 4.8 implies ∂∞u1 = ∂∞S1. Since S1
is a convex subcomplex of C(u1), we will also denote by S1 its projection to a convex
subcomplex of the CAT(0) cube complex u1. Note that S1 = u1, or there would exist
a halfspace k of u1 with S1 ⊆ k. In this case, applying part (2) of Lemma 4.4 to u1,
we would obtain a point of ∂∞k∗ \ ∂∞k ⊆ ∂∞u1 \ ∂∞S1, a contradiction. The fact that
S1 = u1 yields W (u1) = W (S1) = W (u1) ∩ W (u2) ⊆ W (u2), completing part (1).

If u1 and u2 are transverse and u1 � w, it follows from part (1) that u2 and w are
transverse. In particular u2 � w and this proves part (2).

We finally address part (3). By hyperbolicity of X , there exists a constant D =
D(X) > 0 such that, for any two hyperplanes w1,w2 with ∂∞B(w1,w2) 
= ∅, we
have d(C(w1),C(w2)) ≤ D. If u � w, Proposition 4.8 ensures that ∂∞B(u,w) =
∂∞u 
= ∅, hence d(C(u),C(w)) ≤ D. Part (1) now shows that C(u) is contained in
the (D + 1)-neighbourhood of C(w). Since X admits a proper cocompact action, it is
uniformly locally finite and there exist only uniformly finitely many such hyperplanes
w. ��
Definition 4.10 Given a hyperplane w, a point ξ ∈ ∂∞w is generic if the only hyper-
planes u with ξ ∈ ∂∞u are those that satisfy w � u.

Proposition 4.11 For everyw ∈ W (X), the subset of generic points is dense in ∂∞w.
In particular, generic points exist as soon as ∂∞w 
= ∅.
Proof LetB be the family of subsets of ∂∞w of the form ∂∞w∩∂∞u, with u ∈ W (X)

and w � u. By definition, a point ξ ∈ ∂∞w is generic if and only if it does not lie in
the union of the elements of B. Since W (X) is countable, so is B. The proposition
then follows from Baire’s theorem, if we show that every B ∈ B is nowhere-dense
in ∂∞w.

If B = ∂∞w ∩ ∂∞u, set H = Gw ∩ Gu. Proposition 4.8 shows that the home-
omorphism oX : ∂∞G → ∂∞X takes ∂∞H ⊆ ∂∞Gw to B ⊆ ∂∞w. Since w � u,
the difference ∂∞w \ B is nonempty and H must have infinite index in Gw. As H is
quasi-convex, we conclude via Lemma 4.1. ��
Remark 4.12 Assume that X is hyperplane-essential and consider a generic point ξ ∈
∂∞w. Viewing w itself as a CAT(0) cube complex, we have ξ ∈ ∂ntw. This follows
from Lemma 4.7 since, if u ∈ W (w), part (1) of Proposition 4.9 shows that w � u
and hence ξ /∈ ∂∞u.

This is a good point to make the following simple observation, which will only be
needed in the proof of Proposition 4.28 later on.

Lemma 4.13 Let X be essential and suppose that G = 〈g〉 � Z. Then:

(1) every hyperplane of X is compact;
(2) for every h ∈ H (X), there exists N > 0 such that gNh and h∗ are strongly

separated.

Proof Since ∂∞X contains only two points ξ and η, part (2) of Lemma 4.4 shows that
∂∞w = ∅ for every w ∈ W (X). Lemma 2.5 then yields part (1).
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Given any halfspace h, we have ∂∞h∩∂∞h∗ = ∅. Up to swapping ξ and η, we have

−1(ξ) ⊆ h and 
−1(η) ⊆ h∗. Squaring g if necessary, we can assume that g fixes
ξ and η. Since X admits a cocompact action, it is finite dimensional and there exists
n > 0 such that gnh and h are not transverse. Observe that gnh∩ h and gnh∗ ∩ h∗ are
both nonempty, as they contain 
−1(ξ) and 
−1(η), respectively. Replacing g with
its inverse if necessary, we can assume that gnh ⊆ h. As the hyperplane bounding
h is compact, there exist only finitely many hyperplanes transverse to h; they are all
compact. Choosing a sufficiently large k > 0, we can thus ensure that none of them
is transverse to gknh � h, hence gknh and h∗ are strongly separated. ��

4.2 Towards hyperplane recognition

This subsection is devoted to Propositions 4.14 and 4.18 . The latter, in particular,
will be our main tool in overcoming the difficulties, described in the introduction,
regarding the passage from Step (IIa) to Step (IIb).

Standing Assumptions Let again G be Gromov hyperbolic and let the action G � X
be proper and cocompact. Let oX : ∂∞G → ∂∞X denote the only G-equivariant
homeomorphism.

Proposition 4.14 Consider two distinct points ξ, η ∈ ∂∞X and four sequences
xn, yn, zn, wn ∈ ∂ntX, where xn and zn converge to ξ while yn and wn converge
to η. There exists N ≥ 0 such that, for every n ≥ N and everyw ∈ W (xn, yn|zn, wn),
the points ξ and η lie in ∂∞w.

Proof Consider a geodesic αn whose endpoints in ∂X are xn and yn ; similarly, let βn

be a geodesic with endpoints zn and wn . We also pick a geodesic γ whose endpoints
in ∂∞X are precisely ξ and η. The convergence of the four sequences yields a constant
D > 0 such that, for every point p ∈ γ , there exists N ≥ 0 and points an ∈ αn ,
bn ∈ βn with d(an, p) ≤ D and d(bn, p) ≤ D for all n ≥ N . Every hyperplane w in
W (xn, yn|zn, wn) separates αn and βn and must thus satisfy d(p,w) ≤ D.

Since there are only finitely many hyperplanes at distance at most D from p, we
are only left to show that every hyperplane lying infinitely often in W (xn, yn |zn, wn)

contains ξ and η in its trace at infinity. Let us consider a hyperplanew that separatesαnk
and βnk for a diverging sequence of integers nk . Up to passing to a further subsequence,
the Arzelà–Ascoli theorem allows us to assume that the geodesics αnk converge locally
uniformly to a geodesic α. The discussion above then shows that α is contained in a
metric neighbourhood of C(w) and has endpoints ξ and η in ∂∞X . Hence ξ and η lie
in ∂∞w. ��
Lemma 4.15 For an infinite-order element k ∈ G and a hyperplane w, the following
are equivalent:

(1) a non-trivial power of k preserves w;
(2) the points oX (k±∞) lie in ∂∞w.

Fixing k, there are only finitely many hyperplanes satisfying these conditions.

123



Cross ratios and cubulations of hyperbolic groups 1577

Proof Since X is hyperbolic, there exists a constant D = D(X) > 0 such that any two
geodesic lines in X with the same endpoints in ∂∞X are at Hausdorff distance at most
D. If γ ⊆ X is a geodesic with oX (k±∞) as endpoints at infinity, every hyperplane
satisfying condition (2) must contain γ in its D-neighbourhood. It follows that only
finitely many hyperplanes of X satisfy condition (2). If w is such a hyperplane, knw
also satisfies condition (2) for all n > 0, so we must have knw = w for some n > 0.
Conversely, if kn ∈ Gw for some n > 0, we have k±∞ = (kn)±∞ ∈ ∂∞Gw. ��
Definition 4.16 If k ∈ G is infinite-order, we denote by W (k) the set of hyperplanes
satisfying the equivalent conditions inLemma4.15.We say that k is good if it preserves
every halfspace bounded by an element of W (k).

Remark 4.17 Every infinite-order element has a good power, as the setW (k) is always
finite by Lemma 4.15.

We are interested in good elements because of the following result.

Proposition 4.18 Consider distinct points x, y ∈ ∂ntX and a good infinite-order ele-
ment k ∈ G that fixes neither of them. There exists N ≥ 0 such that, for every n ≥ N,
we have:

W (x |y) ∩ W (k) = W (knx, k−nx |kn y, k−n y).

Proof Let us setWn = W (knx, k−nx |kn y, k−n y) for the sake of simplicity. Since 〈k〉
acts with north-south dynamics on ∂∞X , the points knx and kn y converge to oX (k+∞),
while k−nx and k−n y tend to oX (k−∞) for n → +∞. Proposition 4.14 then yields
an integer N ≥ 0 such that Wn ⊆ W (k) for all n ≥ N . On the other hand, it is clear
from the fact that k is good that Wn ∩ W (k) = W (x |y) ∩ W (k) and this concludes
the proof. ��

4.3 Trust issues

Throughout this subsection:

Standing Assumptions Let the Gromov hyperbolic group G act properly and cocom-
pactly on CAT(0) cube complexes X and Y . We fix two subsets A ⊆ ∂ntX and
B ⊆ ∂ntY .

Given U ⊆ W (X), we employ the notation U(A|B) = W (A|B) ∩ U and

crU (x, y, z, w) = #U(x, z|y, w) − #U(x, w|y, z)

for all subsets A, B ⊆ X and pairwise distinct points x, y, z, w ∈ ∂ntX . Given V ⊆
W (Y ), the same notation applies to subsets of Y and points of ∂ntY .

As mentioned in the introduction, a key complication in the proof of Theorem C is
the fact that crU (x, y, z, w) does not provide any direct information on #U(x, z|y, w)

and #U(x, w|y, z), only on their difference. The following notion is devised to address
this problem.
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Definition 4.19 We say that a 4-tuple (a, b, c, d) ∈ (∂ntX)4 is U-trustworthy if at least
one among the setsU(a, b|c, d),U(a, c|b, d) andU(a, d|b, c) is empty. IfU = W (X),
we just say that (a, b, c, d) is trustworthy.

Lemma 4.20 Given subsets U ⊆ W (X) and V ⊆ W (Y ), consider pairwise distinct
points x1, x2, x3, x4 ∈ A and a bijection f : A → B satisfying:

crU
(
xσ(1), xσ(2), xσ(3), xσ(4)

) = crV
(
f (xσ(1)), f (xσ(2)), f (xσ(3)), f (xσ(4))

)

for every permutation σ ∈ S4. If the 4-tuples ( f (x1), f (x2), f (x3), f (x4)) and
(x1, x2, x3, x4) are, respectively, V-trustworthy and U-trustworthy, then, for every
σ ∈ S4, we have:

#U
(
xσ(1), xσ(2)|xσ(3), xσ(4)

) = #V
(
f (xσ(1)), f (xσ(2))| f (xσ(3)), f (xσ(4))

)
.

Proof Since (x1, x2, x3, x4) is U-trustworthy, we can permute the four points
so that U(x1, x2|x3, x4) = ∅. This implies that crU (x1, x3, x4, x2) ≥ 0 and
crU (x1, x4, x3, x2) ≥ 0. We then have crV ( f (x1), f (x3), f (x4), f (x2)) ≥ 0 and
crV ( f (x1), f (x4), f (x3), f (x2)) ≥ 0, which imply that the cardinality #V( f (x1),
f (x2)| f (x3), f (x4)) is at most as large as the minimum between #V( f (x1),
f (x3)| f (x2), f (x4)) and #V( f (x1), f (x4)| f (x2), f (x3)).
Since the 4-tuple ( f (x1), f (x2), f (x3), f (x4)) is V-trustworthy, this means that

V( f (x1), f (x2)| f (x3), f (x4)) = ∅. We thus have:

#U(x1, x3|x2, x4) = crU (x1, x4, x3, x2)

= crV ( f (x1), f (x4), f (x3), f (x2))

= #V( f (x1), f (x3)| f (x2), f (x4)).

The equality between #U(x1, x4|x2, x3) and #V( f (x1), f (x4)| f (x2), f (x3)) is
obtained similarly. ��

The following will be our main source of trustworthy 4-tuples.

Definition 4.21 Let ξ and η be distinct points of ∂∞X . We say that the pair (ξ, η)

is trustworthy if there do not exist transverse hyperplanes u1 and u2 with ξ, η ∈
∂∞u1 ∩ ∂∞u2.

Lemma 4.22 Consider twodistinct points ξ, η ∈ ∂∞X and sequencesan, bn, cn, dn ∈ ∂ntX,
where an and cn converge to ξ , while bn and dn converge to η. If (ξ, η) is trustworthy,
then there exists N such that (an, bn, cn, dn) is trustworthy for all n ≥ N.

Proof If (an, bn, cn, dn) is not trustworthy for infinitely many values of n, we can pass
to a subsequence in order to ensure that the setsW (an, bn |cn, dn) andW (an, dn|bn, cn)
are all nonempty. Proposition 4.14 provides N such that, for all n ≥ N , every ele-
ment of W (an, bn|cn, dn) ∪ W (an, dn|bn, cn) contains ξ and η in its trace at infinity.
Lemma 2.1, however, shows that the sets W (an, bn|cn, dn) and W (an, dn |bn, cn) are
transverse, contradicting the fact that (ξ, η) is trustworthy. ��
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The next result applies e.g. to the case when no three elements of U are transverse
(Lemma 2.1). It will only be needed in the proof of Theorem 4.33.

Lemma 4.23 Suppose that, for a subset U ⊆ W (X), every element of A4 is U-
trustworthy. Consider a partition A = P � Q with #P, #Q ≥ 2 and such that
U(x, y|z, w) 
= ∅ for all x, y ∈ P and z, w ∈ Q. Then, there exist x, y ∈ P and
z, w ∈ Q such that U(x, y|z, w) = U(P|Q).

Proof Pick points x, y ∈ P and z, w ∈ Q so as to minimise the cardinality of
U(x, y|z, w); since #P, #Q ≥ 2, this set is finite. It is clear that U(x, y|z, w) contains
U(P|Q). Consider any hyperplane w ∈ U(x, y|z, w) and let h be its side containing
x and y. We are going to show that h ∩ A ⊆ P and the same argument will yield
h∗ ∩A ⊆ Q. This will conclude the proof as then h∩A = P and h∗ ∩A = Q, which
shows that w separates P and Q.

Suppose for the sake of contradiction that a point u ∈ h∩A lies inQ. By hypothesis,
there exist hyperplanes u1 ∈ U(x, y|u, z) and u2 ∈ U(x, y|u, w). As U(x, y|u, z) and
U(x, y|u, w) do not containw and cannot have fewer elements than U(x, y|z, w), we
must be able to choose u1 and u2 outside U(x, y|z, w). In conclusion:

w ∈ U(x, y, u|z, w) ⊆ U(y, u|z, w),

u1 ∈ U(x, y, w|u, z) ⊆ U(y, w|u, z),

u2 ∈ U(x, y, z|u, w) ⊆ U(y, z|u, w),

which violates the assumption that every 4-tuple, in particular (u, y, z, w), be U-
trustworthy. ��

4.4 Traces vs cross ratios

Throughout this subsection:

Standing Assumptions Wenowassume that the hyperbolic groupG is non-elementary.
We consider proper cocompact actions ofG on essential, hyperplane-essential CAT(0)
cube complexes X and Y . These are irreducible by Remark 2.4.

Let A ⊆ ∂ntX and B ⊆ ∂ntY be nonempty G-invariant subsets with f (A) = B,
where f is the homeomorphism oY ◦ o−1

X : ∂∞X → ∂∞Y .
Throughout the subsection, we also fix subsets U ⊆ W (X) and V ⊆ W (Y ) such

that:

crU (x, y, z, w) = crV ( f (x), f (y), f (z), f (w))

for all pairwise distinct points x, y, z, w ∈ A. It will become clear in Sect. 4.5 how
this relates to the proof of Theorem C.

The reader can think of the case where U = W (X) and V = W (Y ), although we
will need the full generality of the previous setup in Sect. 4.5.
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Lemma 4.24 Given a hyperplane u ∈ U , a generic point ξ ∈ ∂∞u and an arbitrary
point η ∈ ∂∞u \ {ξ}, there exists a hyperplane v ∈ V with f (ξ), f (η) ∈ ∂∞v.

Proof Consider a (combinatorial) line γ ⊆ C(u) with endpoints ξ and η. Pick w0 ∈
W (γ ) and label the other elements of W (γ ) as wn , n ∈ Z, according to the order
in which they are crossed by γ and so that positive indices correspond to the half of
γ ending at ξ . Let h be any side of the hyperplane u and let hn be the side of wn

that contains the positive half of γ . For all n > 0, part (2) of Proposition 2.7 allows
us to pick points of A as follows: xn ∈ h ∩ hn , yn ∈ h ∩ h∗−n , zn ∈ h∗ ∩ hn and
wn ∈ h∗ ∩ h∗−n .

Note that every limit point of the xn within ∂X must have infinite Gromov product
with γ (+∞) ∈ ∂X . Since 
(γ (+∞)) = ξ , Lemma 3.6 and Corollary 3.12 show that
xn ∈ ∂ntX converge to ξ . Similarly, zn converge to ξ , while yn and wn converge to η.

By Remark 4.12 and Lemma 3.15, the generic point ξ ∈ ∂∞u is represented by
a regular point in the Roller boundary of the CAT(0) cube complex u. For all suf-
ficiently large n > 0, it follows that wn ∩ u and w−n ∩ u are strongly separated
as hyperplanes of the cube complex u. In other words, no hyperplane of X is trans-
verse to u ∈ U(xn, yn|zn, wn) and wn,w−n ∈ W (xn, zn|yn, wn) at the same time.
By Lemma 2.1, the sets W (xn, wn|yn, zn) are then all empty for large n > 0. It fol-
lows that crU (xn, zn, yn, wn) > 0, hence crV ( f (xn), f (zn), f (yn), f (wn)) > 0 and
V( f (xn), f (yn)| f (zn), f (wn)) 
= ∅. Since f (xn) and f (zn) converge to f (ξ), while
f (yn) and f (wn) converge to f (η), Proposition 4.14 yields the required hyperplane
v. ��
Definition 4.25 A hyperplane w ∈ U is U-boundary-maximal if ∂∞w 
= ∅ and every
hyperplane u ∈ U withw � u actually satisfies u ∼ w. When U = W (X), we simply
speak of boundary-maximal hyperplanes.

Part (3) of Proposition 4.9 and Remark 4.6 show that boundary-maximal hyper-
planes exist as soon as X is not a tree. In fact, for every hyperplane u there exists a
boundary-maximal hyperplane w with u � w.

The next result can be viewed as Step (IIa) from the introduction.

Proposition 4.26 If u ∈ U is U-boundary-maximal, there exists a V-boundary-
maximal hyperplane v ∈ V with ∂∞v = f (∂∞u).

Proof Proposition 4.11 allows us to pick a generic point ξ ∈ ∂∞u. Note that u is acted
on properly and cocompactly by its stabiliser (Lemma 2.5), so ∂∞u \ {ξ} 
= ∅; in
particular, Lemma 4.24 shows that there exists a hyperplane v ∈ V with f (ξ) ∈ ∂∞v.
By part (3) of Proposition 4.9, we can take v to be V-boundary-maximal. Let ζ ∈
∂∞v \ { f (ξ)} be generic.

Since f (ξ) and ζ both lie in ∂∞v, Lemma 4.24 shows that ξ and f −1(ζ ) lie in
the trace at infinity of some u′ ∈ U . Since ξ is generic, we have u � u′ and, as u is
U-boundary-maximal, we conclude that ∂∞u = ∂∞u′. In particular f −1(ζ ) ∈ ∂∞u,
showing that the closed subset f (∂∞u) contains every generic point in ∂∞v \ { f (ξ)}.
By Proposition 4.11, we have ∂∞v ⊆ f (∂∞u) and we will now obtain the opposite
inclusion with a similar argument.
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Given generic points ζ ∈ ∂∞v and η ∈ ∂∞u \ { f −1(ζ )}, we apply Lemma 4.24 to
the points η, f −1(ζ ) ∈ ∂∞u. This shows that f (η) and ζ lie in the trace at infinity of
an element of V , which, by genericity of ζ and V-boundary-maximality of v, can be
taken to coincide with v. Hence f (η) ∈ ∂∞v and, by density of generic points, we
have f (∂∞u) ⊆ ∂∞v. ��

We now prepare for Step (IIb), which will be completed in Theorem 4.33. Given a
hyperplane w ∈ W (X) with ∂∞w 
= ∅, we denote by TU (w) the set of hyperplanes
u ∈ U satisfying u ∼ w. We also write T̃U (w) ⊆ H (X) for the set of halfspaces
bounded by elements of TU (w). By Proposition 4.9, the set TU (w) is finite and no
two of its elements are transverse.

Consider for a moment a subset W ⊆ W (X) and the collection W̃ ⊆ H (X) of
halfspaces bounded by the elements of W . Recall from [23, p. 860] that each such
subset W determines a quotient CAT(0) cube complex whose halfspace-pocset is
isomorphic to W̃ . As customary, we will refer to this as the restriction quotient of X
determined byW .

Definition 4.27 The dual tree T (w) is the restriction quotient determined by the subset
TU (w) ⊆ U ⊆ W (X).

Note that, since TU (w) is finite and no two of its elements are transverse, the cube
complex T (w) is a finite tree. Being a restriction quotient of X , it comes equipped
with a projection πw : X → T (w) = T (w). More precisely, πw takes the point x ∈ X
to the point of T (w) represented by the ultrafilter σx ∩ T̃U (w). We will be interested
in the pseudo-metric δw defined on the set A ⊆ ∂ntX by the formula

δw(x, y) = d(πw(x), πw(y)) = #(TU (w) ∩ U(x |y)).

The same construction can be applied to hyperplanes w ∈ W (Y ), yielding a subset
TV (w) ⊆ V , a projection to a finite tree πw : Y → T (w) and a pseudo-metric δw on
B ⊆ ∂ntY .

The next result is the main ingredient of Step (IIb) (cf. Theorem 4.33). We will
employ Definitions 4.16 and 4.21 in its proof.

Proposition 4.28 Let u ∈ U and v ∈ V be, respectively, U-boundary-maximal and
V-boundary-maximal, with f (∂∞u) = ∂∞v. Given any two points x, y ∈ A, we have
δv( f (x), f (y)) = δu(x, y).

Proof By Lemma 4.2, the subgroups Gu and Gv are commensurable. Let H be a
commonfinite-index subgroup; in particular, H acts properly and cocompactly on both
u and v. Given an infinite-order element h ∈ H , wewriteU(h) andV(h) for the subsets
of U and V , respectively, corresponding to hyperplanes that contain oX (h±∞) or
oY (h±∞) in their trace at infinity.Note thatwehaveTU (u) ⊆ U(h) andTV (v) ⊆ V(h)

by Lemma 4.15.
Claim. There exists an infinite-order element h0 ∈ H that is good in both X

and Y , for which the pairs (oX (h−∞
0 ), oX (h+∞

0 )) and (oY (h−∞
0 ), oY (h+∞

0 )) are
trustworthy, and for which we have TU (u) ∩ U(x |y) = U(h0) ∩ U(x |y) and
TV (v) ∩ V( f (x)| f (y)) = V(h0) ∩ V( f (x)| f (y)).
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The claim concludes the proof as follows. Lemma 4.22 shows that the 4-
tuples (hn0x, h

−n
0 x |hn0 y, h−n

0 y) are trustworthy for large n > 0; the same is
true of (hn0 f (x), h

−n
0 f (x)|hn0 f (y), h−n

0 f (y)). Equivariance of f and Lemma 4.20
then imply that the set U(hn0x, h

−n
0 x |hn0 y, h−n

0 y) has the same cardinality as
V(hn0 f (x), h

−n
0 f (x)|hn0 f (y), h−n

0 f (y)) for all large n > 0.
Since x, y ∈ ∂ntX , Lemma 4.7 shows that x, y /∈ ∂∞u. On the other hand h0

preserves u and its two fixed points in ∂∞X lie within ∂∞u by Lemma 4.15. We
conclude that h0 does not fix x, y and Proposition 4.18 finally yields #(U(h0) ∩
U(x |y)) = #(V(h0) ∩ V( f (x)| f (y))). By our choice of h0, these two cardinalities
are precisely δu(x, y) and δv( f (x), f (y)).

Proof of claim. The points x, y are regular by Lemma 3.15. It follows that, among
hyperplanes of X separating x and y, only finitely many are not strongly separated
from u. In light of Proposition 4.8, there are only finitely many hyperplanes u′ that
separate x and y and satisfy ∂∞u′ ∩ ∂∞u 
= ∅; let us denote by u1, ..., ur those that
lie in U \ TU (u). Similarly let v1, ..., vs be the elements of V \ TV (v) that separate
f (x) and f (y) and satisfy ∂∞vi ∩ ∂∞v 
= ∅.
By boundary-maximality of u and v, we have ∂∞ui ∩ ∂∞u � ∂∞u and ∂∞v j ∩

∂∞v � ∂∞v for all i and j . Lemma4.1 and Proposition 4.8 then show that each of these
subsets is nowhere-dense. Hence, the union K ⊆ ∂∞H of all sets o−1

X (∂∞ui ∩ ∂∞u)

and o−1
Y (∂∞v j ∩ ∂∞v) is nowhere-dense.

Observe that there exists h ∈ H that acts as a neatly contracting automorphism on
both u and v. This follows from Proposition 3.18 if H is not virtually cyclic and from
Lemma 4.13 otherwise. Since K is nowhere-dense, there exists a conjugate h0 of h in
H such that h+∞

0 /∈ K .
Now, we have oX (h+∞

0 ) /∈ ∂∞ui and oY (h+∞
0 ) /∈ ∂∞v j for all i and j , which

implies that the inclusions TU (u) ∩ U(x |y) ⊆ U(h0) ∩ U(x |y) and TV (v) ∩
V( f (x)| f (y)) ⊆ V(h0) ∩ V( f (x)| f (y)) are equalities.

Since h0 acts as a neatly contracting automorphism on u, we have oX (h±∞
0 ) ∈ ∂ntu.

Lemma 4.7 then shows that the pair (oX (h−∞
0 ), oX (h+∞

0 )) is trustworthy. Similarly,
we see that (oY (h−∞

0 ), oY (h+∞
0 )) is trustworthy. Finally, as h0 has infinite order,

Remark 4.17 ensures that a power of h0 is good. This concludes the proof of the claim
and of the proposition. ��

In the setting of Proposition 4.28, we get the commutative diagram:

A πu(A) T (u)

B πv(B) T (v).

πu

f ψ �

πv

Here πu(A) and πv(B) are precisely the quotient metric spaces associated to the
pseudo-metric spaces (A, δu) and (B, δv). The map ψ is then provided by Proposi-
tion 4.28 and it is an isometry.

By part (1) of Proposition 2.7, we see that πu(A) and πv(B) contain all vertices
of degree one in T (u) and T (v), respectively. The dashed arrow � is then obtained
through the following general fact about trees.
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Lemma 4.29 Let T1 and T2 be finite trees with all edges of length one13. Let Vi ⊆ Ti
be sets of vertices containing all degree-one vertices of Ti . Every distance preserving
bijection ψ : V1 → V2 uniquely extends to an isometry � : T1 → T2.

Proof Let V ′
i ⊆ Vi denote the subsets of vertices of degree one. If #V ′

i ≤ 2, the tree
Ti is a segment and the lemma is clear. Let us therefore assume that V ′

1 and V ′
2 both

contain at least three elements. Observe that a point x ∈ Vi lies outside V ′
i precisely

when we can find y, z ∈ Vi \ {x} with x = m(x, y, z). Since ψ preserves distances,
it follows that ψ(V ′

1) = V ′
2.

Extending every leaf of Ti to a ray, we embed Ti in a geodesically complete tree
Ti with a natural bijection φi : V ′

i → ∂Ti . Observing that the maps φi preserve cross
ratios and ψ is an isometry, we conclude that the bijection φ2ψφ−1

1 : ∂T1 → ∂T2
preserves cross ratios. It then follows from Theorem 4.3 in [13] that φ2ψφ−1

1 admits
a unique extension to an isometry � : T1 → T2.

Note that m(x, y, z) = m(φi (x), φi (y), φi (z)) for all pairwise distinct points
x, y, z ∈ V ′

i . It follows that, given pairwise distinct points x, y, z ∈ V ′
1, the map

� takes m1 := m(x, y, z) to m2 := m(ψ(x), ψ(y), ψ(z)). Moreover, � takes the ray
from m1 to φ1(x) to the ray from m2 to φ2(ψ(x)). Since

d(m2, �(x)) = d(m1, x) = 1
2 · [d(x, y) + d(x, z) − d(y, z)]

= 1
2 · [d(ψ(x), ψ(y)) + d(ψ(x), ψ(z)) − d(ψ(y), ψ(z))]

= d(m2, ψ(x)),

we conclude that �(x) = ψ(x). Thus � and ψ coincide on V ′
1. For every other point

w ∈ V1, we can find x, y ∈ V ′
1 such that d(x, y) = d(x, w) + d(w, y). It is then clear

that � and ψ coincide on the entire V1. ��
Corollary 4.30 Let u and v be as in Proposition 4.28. For all h ∈ H (X):

#{j ∈ T̃U (u) | j ∩ A = h ∩ A} = #{m ∈ T̃V (v) | m ∩ B = f (h ∩ A)}.

Proof We begin by observing that it suffices to prove the inequality

#{j ∈ T̃U (u) | j ∩ A = h ∩ A} ≤ #{m ∈ T̃V (v) | m ∩ B = f (h ∩ A)}. (∗)

This already yields an equality if the right-hand side vanishes. Otherwise, there exists
m′ ∈ T̃V (v) with m′ ∩ B = f (h ∩ A) and we can apply the same argument to f −1

and m′ to obtain the opposite inequality.
Now, if the left-hand side of (∗) vanishes, there is nothing to prove. Otherwise,

there exists a halfspace j′ ∈ T̃U (u) with j′ ∩ A = h ∩ A and our setup is not affected
if we replace h with j′. We can thus assume that h ∈ T̃U (u).

The projection πu(h) is a halfspace of the tree T (u), with complement πu(h∗). Let
C and C∗ be the convex hulls, respectively, of πu(h ∩ A) and πu(h∗ ∩ A). These

13 When proving Theorem C for cuboid complexes, one should allow edges of arbitrary length in T1 and
T2. The proof of the lemma does not change.
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are disjoint subtrees of T (u) and the union C � C∗ contains all degree-one vertices
of T (u). The complement of C � C∗ must be an open arc α ⊆ T (u) such that every
vertex in α has degree two and lies outside πu(A). Thus, the hyperplanes associated
to the set {j ∈ T̃U (u) | j ∩ A = h ∩ A} are precisely the elements of TU (u) that are
dual to edges of α.

Observing that � ◦ πu = πv ◦ f , we see that the sets �(C) and �(C∗) are the
convex hulls, respectively, of πv( f (h ∩ A)) and πv( f (h∗ ∩ A)) in T (v). Moreover,
the arc �(α) has the same length of α and its edges correspond to pairwise distinct
elements of the set {m ∈ T̃V (v) | m ∩ B = f (h ∩ A)}. This yields the desired
inequality. ��

4.5 Concluding the proof

In this subsection:

Standing Assumptions Let the group G, the cube complexes X and Y and the map
f be as in the statement of Theorem C. We set A = � and B = f (�), so that we
are in the general setup of Section 4.4. Here, however, we do not fix sets U and V .
Instead, we observe that, by the hypotheses of Theorem C, we have crX (x, y, z, w) =
crY ( f (x), f (y), f (z), f (w)) for all pairwise distinct points x, y, z, w ∈ A.

Given subsets U ⊆ W (X) and V ⊆ W (Y ), we denote by Ũ ⊆ H (X) and
Ṽ ⊆ H (Y ) the collections of halfspaces bounded, respectively, by the elements
of U and V .

Definition 4.31 We say that subsets U ⊆ W (X) and V ⊆ W (Y ) are well-paired if,
for every h ∈ H (X) and k ∈ H (Y ), we have:

#{j ∈ Ũ | j ∩ A = h ∩ A} = #{m ∈ Ṽ | m ∩ B = f (h ∩ A)},
#{m ∈ Ṽ | m ∩ B = k ∩ B} = #{j ∈ Ũ | j ∩ A = f −1(k ∩ B)}.

In particular, if h ∈ Ũ and k ∈ Ṽ , the right-hand sides must be nonempty.

The following observation is immediate from definitions.

Lemma 4.32 If the sets U ⊆ W (X) and V ⊆ W (Y ) are well-paired and the points
x, y, z, w ∈ A are pairwise distinct, we have:

#U(x, y|z, w) = #V( f (x), f (y)| f (z), f (w)),

crU (x, y, z, w) = crV ( f (x), f (y), f (z), f (w)).

The next result provides the correct formulation of Step (IIb) from the introduction,
as traces at infinity need to be counted “with multiplicity”.

Theorem 4.33 The sets W (X) and W (Y ) are well-paired.
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Proof We set U0 = W (X) and define inductively Uk+1 � Uk as the subset of hyper-
planes that are not Uk-boundary-maximal. Let Uc

k = W (X) \ Uk and similarly define
the sets Vk and Vc

k starting from V0 = W (Y ).
We will now show by induction on k that the sets Uc

k and Vc
k are well-paired. The

base case k = 0 is trivial, as Uc
0 and Vc

0 are empty. Assuming that Uc
k and Vc

k are
well-paired for some k ≥ 0, Lemma 4.32 yields

crU c
k
(x, y, z, w) = crVc

k
( f (x), f (y), f (z), f (w)) ,

whenever x, y, z, w ∈ A are pairwise distinct. On the other hand, observing that
crX = crUk + crU c

k
and crY = crVk + crVc

k
, the fact that f takes crX to crY implies

that

crUk (x, y, z, w) = crVk ( f (x), f (y), f (z), f (w)) .

We are now in the setting of Sect. 4.4 and can apply Proposition 4.26. It follows that,
for each u ∈ Uk \ Uk+1, there exists v ∈ Vk \ Vk+1 with ∂∞v = f (∂∞u). Applying
Corollary 4.30 to both f and f −1, we see that the sets TUk (u) and TVk (v) are well-
paired. Letting u vary, these sets partition Uk \ Uk+1 and Vk \ Vk+1; we conclude
that the latter are also well-paired. Observing that Uc

k+1 = Uc
k � (Uk \ Uk+1) and

Vc
k+1 = Vc

k � (Vk \ Vk+1), we have finally shown that the sets Uc
k+1 and Vc

k+1 are
well-paired, completing the proof of the inductive step.

Part (3) of Proposition 4.9 shows that, for sufficiently large values of k, the sets Uk

and Vk are reduced to the subsets U ⊆ W (X) and V ⊆ W (Y ) of hyperplanes with
empty trace at infinity.We conclude the proof by showing thatU andV arewell-paired.
Note that the arguments above already yield

crU (x, y, z, w) = crV ( f (x), f (y), f (z), f (w))

for all pairwise distinct points x, y, z, w ∈ A. By Remark 4.6, no two elements of
U or V are transverse; in particular, Lemma 2.1 shows that every element of A4 is
U-trustworthy and every element of B4 is V-trustworthy. Lemma 4.20 guarantees that

#U (x, y|z, w) = #V ( f (x), f (y)| f (z), f (w)) .

Thus, if h ∈ H (X) is bounded by an element ofU , the setV(x ′, y′|z′, w′) is nonempty
for all x ′, y′ ∈ f (h ∩ A) and z′, w′ ∈ f (h∗ ∩ A). Lemma 4.23 then provides x, y ∈
f (h ∩ A) and z, w ∈ f (h∗ ∩ A) with

#V
(
f (h ∩ A)

∣∣ f (h∗ ∩ A)
) = #V

(
x, y

∣∣z, w
)

= #U
(
f −1(x), f −1(y)

∣∣ f −1(z), f −1(w)
) ≥ #U

(
h ∩ A

∣∣h∗ ∩ A
)

> 0.

The opposite inequality is obtained with a similar argument and we conclude that
#U (h ∩ A|h∗ ∩ A) = #V ( f (h ∩ A)| f (h∗ ∩ A)). This shows that U and V are well-
paired, thus completing the proof of the theorem. ��
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Proof of Theorem C We are going to show that f : ∂∞X → ∂∞Y induces a G-
equivariant pocset isomorphism f∗ : (H (X),⊆, ∗) → (H (Y ),⊆, ∗). This will then
yield a G-equivariant cubical isomorphism F : X → Y by Roller duality; see e.g.
[20,52,63]. Uniqueness and the fact that F and f coincide on � will be clear from the
construction.

We start by observing that the setH(h) := {j ∈ H (X) | j ∩ A = h ∩ A} is totally
ordered by inclusion for eachh ∈ H (X). Indeed, given j1, j2 ∈ H(h), the intersections
j1 ∩ j2 ⊇ h ∩ A and j∗1 ∩ j∗2 ⊇ h∗ ∩ A are nonempty by part (1) of Proposition 2.7.
Moreover, j1 and j2 cannot be transverse, or part (2) of Proposition 2.7 would yield
h ∩ h∗ ⊇ j1 ∩ j∗2 ∩ A 
= ∅. Hence j1 ⊆ j2 or j2 ⊆ j1.

Note that H(h) is finite as, by part (2) of Lemma 3.6, the set W (x, y|z, w) is
finite for all distinct points x, y ∈ h ∩ A, z, w ∈ h∗ ∩ A. By Theorem 4.33, the set
f∗H(h) := {m ∈ H (Y ) | m∩B = f (h∩A)} is a chain of the same length asH(h).
Thus, there exists a unique order-preserving bijection betweenH(h) and f∗H(h) and
this is exactly how we define f∗ onH(h).

Since the setsH(h) partitionH (X), we have actually defined amap f∗ : H (X) →
H (Y ). This is a bijection, an inverse being provided by the same construction applied
to f −1. It is also clear that f∗(h∗) = f∗(h)∗, asH(h∗) is exactly the set of complements
of the elements of H(h). We are thus only left to show that f∗ preserves inclusions.

Consider h, k ∈ H (X) with h ⊆ k. We can assume that k /∈ H(h), as we already
know that f is order-preserving onH(h). Hence h∩A � k∩A and, by construction,
f∗(h) ∩ B = f (h ∩ A) � f (k ∩ A) = f∗(k) ∩ B. Part (3) of Proposition 2.7 finally
yields f∗(h) � f∗(k), concluding the proof. ��
Remark 4.34 When dealing with cuboid complexes X and Y, the proof of Theorem C
needs to be slightly adapted. In general, the setsH(h) and f∗H(h) will have the same
weight, but not the same cardinality. This prevents us from defining an isomorphism
f∗ between the halfspace pocsets of X, Y.
One should instead observe that CAT(0) cuboid complexes are median spaces and,

thus, naturally endowed with a structure of space with measured walls [15]. The
map f : ∂∞X → ∂∞Y then induces a G-equivariant isomorphism of their measured
halfspace pocsets (see Sections 2.2 and 3.1 in [30]). In this context, an analogue of
Roller duality is provided by Corollaries 3.12 and 3.13 in [30] and we obtain a G-
equivariant isometry F : X → Y. In general, F will not take vertices of X to vertices
of Y.

5 Epilogue

In this section we apply Theorem C to obtain Theorem A and Corollary B. Relying
on [4], we also prove Corollary E.

5.1 Cross ratios on contracting boundaries

By Remark 2.4, the following are common hypotheses to TheoremA and Corollary E.
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Standing Assumptions Let G be a non-virtually-cyclic group. We consider proper
cocompact actions of G on irreducible, essential CAT(0) cube complexes X and Y .

In Sect. 3.3, we defined a G-equivariant bijection oX : ∂cG → ∂cX arising from
orbit maps. We now want to exploit the map 
 introduced in Section 3.2 to transfer
the cross ratio on ∂X to a G-invariant cross ratio on ∂cX and ∂cG. To this end, we will
need the following notion.

Definition 5.1 A subset A ⊆ ∂cuX is a section (of the map 
) if A intersects each
fibre of 
 at exactly one point. In particular, ∂cntX ⊆ A.

Remark 5.2 If A is a section of 
 and x, y ∈ A are distinct points, Lemma 3.6
shows that x and y have finite Gromov product. In particular, if x, y, z, w ∈ A are
pairwise distinct, the median m(x, y, z) lies in X and the cross ratio cr(x, y, z, w) is
well-defined and finite (cf. Lemma 2.11).

Note that it is always possible to find a G-invariant section A ⊆ ∂cuX , up to
subdividing X . Indeed, since every component of ∂cuX is finite by Remark 3.8, we can
consider the first cubical subdivision X ′ and pick the median barycentre (cf. Sect. 2.3)
of each component of ∂cuX ′. The resulting subsetA ⊆ ∂cuX ′ is a G-invariant section
of 
′ : ∂cuX ′ → ∂cX ′ � ∂cX .

We stress that we assign length 1 to every edge of X ′. In particular, the inclusion
X ↪→ X ′ is a homothety doubling distances.

Restricting the cross ratio on ∂X ′ to the set A and identifying A � ∂cG via the
composition o−1

X ◦ 
′, we obtain an invariant cross ratio

crX : ∂cG
(4) −→ Z.

By Remark 5.2, the value crX (x, y, z, w) is well-defined and finite as soon as
x, y, z, w ∈ ∂cG are pairwise distinct. We refer to crX as the cubical cross ratio
on ∂cG associated to the cubulation G � X .

We can extend crX to 4-tuples (x, y, z, w) with #{x, y, z, w} ≤ 3 as long as no
three of the four points coincide. If x 
= y and x 
= z, we set crX (x, x, y, z) = 0
and crX (x, y, x, z) = +∞, while the other values of crX can be recovered using its
symmetries.

We can endow ∂cG with the pull-back of the topology of ∂visc X , or with one of the
topologies of [19,21], but crX will rarely be continuous on its entire domain. Indeed,
crX takes integer values, whereas ∂cG can be connected (for instance when G is a
one-ended hyperbolic group).

Nevertheless, we have the following:

Proposition 5.3 Endowing ∂cG with any of the three topologies above, crX is contin-
uous at every 4-tuple with coordinates in ∂cntX ⊆ ∂cX.

Proof It suffices to consider ∂cG endowed with the pull-back of the topology of ∂visc X ,
as this is the coarsest of the three (see Section 3.1 in [24] and Section 7 in [19]). In
this case, the result follows from Proposition 2.12 and Remark 3.14. ��
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Proof of TheoremA Since X is essential and G acts cocompactly, every hyperplane-
stabiliser has infinite index in G. Lemmas 4.1 and 2.5 thus imply that the union of the
Gromov boundaries of the hyperplanes of X is meagre in ∂∞X . By Lemma 4.7, this
means that C := ∂ntX is co-meagre in ∂∞X . Part (1) now follows fromProposition 5.3.

Regarding part (2), suppose in addition that X is hyperplane-essential. Let G � Y
be another proper cocompact action on an essential, hyperplane-essential CAT(0) cube
complex and consider the G-equivariant homeomorphism f = oY ◦ o−1

X : ∂∞X →
∂∞Y . Suppose that crX and crY coincide on D(4) ⊆ ∂∞G(4), for a co-meagre subset
D ⊆ ∂∞G. The set D ∩ ∂ntX ∩ f −1(∂ntY ) is co-meagre and so is the intersection of
all its G-translates, which we denote by �. By Baire’s theorem, � is nonempty and
we conclude by applying Theorem C. ��

Proof of Corollary E Part (1) is immediate from the previous discussion, as cube com-
plexes with no free faces are essential.

Let now G � X and G � Y be two cubulations satisfying the hypotheses of the
theorem and inducing the same cubical cross ratio on ∂cG. Proposition 3.18 yields an
element g ∈ G that acts as a neatly contracting automorphism on both X and Y . The
G-equivariant bijection f = oY ◦ o−1

X : ∂cX → ∂cY takes g+
X ∈ ∂cntX to g+

Y ∈ ∂cntY
by Lemma 3.19. Setting A = G · g+

X ⊆ ∂cntX , we have f (A) = G · g+
Y ⊆ ∂cntY

and cross ratios of these points are preserved. The setsA ⊆ ∂cntX and f (A) ⊆ ∂cntY
consist of regular points by Lemma 3.15.We conclude by Theorem E in [4], observing
that the actions ofG on X and Y are non-elementary (in the sense of [4]) by Lemma 2.9
in [4]. ��

5.2 Marked length-spectrum rigidity

Proof of Corollary B If G is non-elementary, Theorem D in [4] provides a G-
equivariant, cross-ratio preserving bijection f : A → B, where A ⊆ ∂regX and
B ⊆ ∂regY are nonempty G-invariant subsets. The reader will not have trouble
realising that this map is a restriction of the unique G-equivariant homeomorphism
f : ∂∞X → ∂∞Y (see Section 4.2 in [4] for details). Regular points are non-
terminating and we conclude by Theorem C.

We are left to consider the case when G is virtually cyclic. If G is finite, X and Y
must be single points, by essentiality; so let us assume that G is virtually isomorphic
to Z. By part (1) of Lemma 4.13, every hyperplane of X is compact and, since now X
is hyperplane-essential, we must have X � R. The action G � X factors through a
faithful action of either Z or D∞. In the former case, the only g ∈ G with �X (g) = 0
are those in the (finite) kernel of the actionG � X . In the latter case, we have infinitely
many g ∈ G with �X (g) = 0, for instance all reflections.

Since �X = �Y , the actionsG � X andG � Y either both factor through a faithful
action of Z or both factor through a faithful action of D∞. In the former case, the two
actions must coincide, as both the kernel and the Z-action can be described in terms of
length functions. In the latter, the two actions are G-equivariantly isomorphic, since
actions D∞ � R are determined, up to conjugacy, by the restriction to the maximal
Z subgroup. ��
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Fig. 3 Giving a hedgehog back
its spines

Fig. 4 Part of a 4-regular tree T and its squarisation S(T )

As the next two examples demonstrate, there is no way of removing the essentiality
and hyperplane-essentiality requirements from Theorem A and Corollary B.

Example 5.4 Let G � X be any proper cocompact action on a CAT(0) cube complex.
Fix a basepoint x ∈ X and let Gx ≤ G denote its stabiliser. The disjoint union
Y = X � G/Gx is endowed with a natural G-action and we give it a structure of
CAT(0) cube complex by adding edges connecting gGx and gx for every g ∈ G. The
procedure is depicted in Fig. 3 in a more general context. The CAT(0) cube complex
Y is irreducible and the action G � Y is proper and cocompact. Note that Y is
hyperplane-essential if and only if X is, but Y is never going to be essential, as all
points of G/Gx are vertices of degree 1. It is easy to see that �X = �Y and crX = crY .

We now describe a general procedure that takes any finite dimensional CAT(0)
cube complex X as input and gives out another CAT(0) cube complex S(X) as output.
We will refer to S(X) as the squarisation of X . One can already get a good idea of the
definition by looking at Fig. 4.

Let H ′ denote the disjoint union of two copies of the pocset (H (X),⊆, ∗),
labelling by h1 and h2 the two elements arising from h ∈ H (X). We turn H ′ into a
pocset by declaring that, given h, k ∈ H (X) with h /∈ {k, k∗}, we have hi ⊆ k j if and
only if h ⊆ k, no matter what the indices i and j are. On the other hand, the halfspaces
h1 and h2 are transverse for all h ∈ H (X).

Now, S(X) is obtained by applying Sageev’s construction [61,63] to the pocset
(H ′,⊆, ∗). Note that, if we had instead declared that h1 and h2 are nested, we would
have obtained the first cubical subdivision X ′.

Example 5.5 Let G � X be any proper cocompact action on an essential, irreducible
CAT(0) cube complex. The cube complexes X ′ and S(X) are both essential, irreducible
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and naturally endowed with proper cocompact actions of G. It is easy to see that the
actions G � X ′ and G � S(X) determine the same length function, namely the
double of the length function associated to G � X . Moreover, the (co-meagre) subset
of ∂∞G arising from non-terminating ultrafilters is the same for X , X ′ and S(X) and
there we have crS(X) = crX ′ = 2 · crX .

The failure of Theorem A and Corollary B is to be traced back to hyperplane-
essentiality. Indeed, S(X) is never hyperplane-essential. All its hyperplanes split as
S(w) × [0, 1], where w is the corresponding hyperplane of X .
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