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Abstract
We study spaces and moduli spaces of Riemannian metrics with non-negative Ricci
or non-negative sectional curvature on closed and open manifolds. We construct, in
particular, the first classes of manifolds for which these moduli spaces have non-trivial
rational homotopy, homology and cohomology groups. We also show that in every
dimension at least seven (respectively, at least eight) there exist infinite sequences of
closed (respectively, open) manifolds of pairwise distinct homotopy type for which the
space and moduli space of Riemannian metrics with non-negative sectional curvature
has infinitely many path components. A completely analogous statement holds for
spaces and moduli spaces of non-negative Ricci curvature metrics.

1 Introduction

Consider a smooth manifold M with a Riemannian metric satisfying some sort of geo-
metric constraints like, for example, having positive scalar curvature, non-negative
Ricci or sectional curvature, negative sectional curvature, being Einstein, Kähler,
Sasaki, etc. A natural question to ponder is what the space of all such metrics on
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M looks like. One can also ask a similar question for its moduli space, i.e., its quotient
by the full diffeomorphism group of M , acting by pulling back metrics.

These spaces are customarily equippedwith the topology of smooth convergence on
compact subsets and the quotient topology, respectively (and precise definitions of all
of these concepts will be given in the following section). The topological properties
of these objects hence provide the right means to measure “how many" different
metrics and geometries the manifold M does exhibit, and since Weyl’s early result
on the connectedness of the space of positive Gaussian curvature metrics on S2 [72]
and the foundings of Teichmüller, infinte-dimensional manifold and Lie group theory,
uniformization and geometrization, the study of spaces of metrics and their moduli
has been a topic of interest for differential geometers, global and geometric analysts
and topologists alike.

Especially in recent years there has been intensive activity and substantial further
progress on these issues, compare, for example, [2,3,6–11,13–18,20–22,25–31,33–
35,37–54,58,60,61,65–67,69–71,73,74,76–78].

Many of theworks just cited either address (spaces and/or)moduli spaces of positive
scalar curvature metrics as well as corresponding modified moduli spaces like, for
example, the so-called observer moduli space, or else are concerned with spaces or
moduli spaces of metrics with negative sectional curvature.

On the other hand, results on non-negative Ricci or non-negative sectional curvature
metrics have remained quite scarce so far.

Indeed, for closed manifolds and the (genuine) moduli spaces of metrics of these
types, all results in general dimension that are known so far (compare [30,31]) only
show that there aremanifolds forwhich themoduli spaces ofmetricswith non-negative
sectional curvature are not connected and can even have an infinite number of compo-
nents. Moreover, in [65] an analogous result is shown for spaces of non-negative Ricci
curvature metrics. Also, there are results about topological properties of the space
of non-negatively curved metrics on two-spheres and real projective planes and on
the Gromov–Hausdorff metric on the set of isometry classes of non-negatively curved
two-spheres, compare [3,6]. (For the results which are known in the non-compact case
please see the paragraph following Remark 1.7 below.)

In particular, to the best of the authors’ knowledge, the following theorem is the
very first result about the rational homotopy groups and the rational cohomology of
the moduli space of Ricci non-negative metrics on closed manifolds:

Theorem 1.1 Let M be a simply connected closed smooth manifold which admits a
metric with non-negative Ricci curvature and let T be a torus of dimension n ≥ 4,
n �= 8, 9, 10. Then the moduli spaceMRic≥0(M × T ) of non-negatively Ricci curved
metrics on M × T has non-trivial higher rational cohomology groups and non-trivial
higher rational homotopy groups.

We can even say more than is stated in the above theorem: If n = 4 it is the third
rational cohomology group (rational homotopy group, respectively) of the moduli
space which is always non-trivial. In the case where n > 4 it is the fifth rational
cohomology group (rational homotopy group, respectively) which is non-trivial.

Hence, by taking products of spheres with tori we obtain in particular:
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Corollary 1.2 In every dimension n ≥ 6 there exist closed smooth manifolds Mn with
π1(M) ∼= Z

4 for which the third rational cohomology group H3(MRic≥0(M);Q)

and the third rational homotopy group π3(MRic≥0(M)) ⊗ Q of the moduli space of
non-negatively Ricci curved metrics are non-trivial.

Notice that in the above corollary the rank of π1(Mn) is constant and, in particular,
independent of the dimension n. If one does not want to impose a bound on the rank
of the fundamental group, one could also take M to be a high-dimensional torus and
arrive at a similar conclusion as in the corollary (see below). We think that it is an
interesting question if this bound on the rank can be further improved. In particular,
we would like to ask if there are simply connected manifolds for which the conclusion
of the above corollary also holds.

Since products of Ricci flat K3 surfaces and flat tori are Ricci flat (but not flat nor
do admit positive scalar curvature), another new consequence of Theorem 1.1 is that
in each dimension n ≥ 8 there exist closed smooth manifolds M for which the moduli
space of Ricci flat metrics has non-trivial higher rational homotopy and cohomology
groups.

Let us now turn to other consequences and applications, namely, estimates for the
number of path components of moduli spaces of metrics with non-negative Ricci or
non-negative sectional curvature. Notice here in particular that a lower bound on the
number of components in a moduli space is always also a lower bound on the number
of components for the respective space of metrics.

Theorem 1.3 Let M bea simply connected closed smoothmanifoldwhich admits aRie-
mannian metric with non-negative Ricci curvature, and let T k denote a k-dimensional
standard smooth torus, where k ∈ N.

Then the moduli spaceMRic≥0(M×T k) of Riemannian metrics with non-negative
Ricci curvature on M ×T k has at least as many path components as the moduli space
MRic≥0(M) of metrics with non-negative Ricci curvature on M.

Moreover, this statement carries over to all manifolds and moduli spaces of Rie-
mannian metrics for which the Cheeger–Gromoll Splitting Theorem holds, e.g., for
metrics of non-negative sectional curvature as well as Ricci flat metrics.

By [31], in each dimension 4k + 3 ≥ 7 there exist infinite sequences of closed
manifolds M such that the moduli space Msec≥0(M) of Riemannian metrics with
non-negative sectional curvature on M has infinitely many path components. Taking
products of these examples with tori and applying Theorem 1.3, we obtain:

Corollary 1.4 In every dimension n ≥ 7 there exist infinite sequences of closed
smooth manifolds M of pairwise distinct homotopy type for which the moduli
space Msec≥0(M) of Riemannian metrics with non-negative sectional curvature has
infinitely many path components.

Remark 1.5 We note that such examples have so far been known only in dimensions
4k + 3 where k ≥ 1, compare [31]. Furthermore, by taking products of the manifolds
from the above corollary with the real line and applying Theorem 1.8 below, we can
extend results of [31] on non-compact spaces which were only known for manifolds
of dimension 8n, n ≥ 1 and obtain:
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Corollary 1.6 In every dimension n ≥ 8 there exist infinite sequences of non-compact
connected smooth manifolds M of pairwise distinct homotopy type for which the mod-
uli space Msec≥0(M) of complete Riemannian metrics with non-negative sectional
curvature has infinitely many path components.

Remark 1.7 The first examples of closed (respectively, open) smooth manifolds
whose space of metrics with non-negative Ricci curvature has infinitely many path-
components were constructed only recently by Schick and Wraith [65]. Note that by
Theorem 1.8 in that paper, the moduli space MRic≥0(M), where M is one of the
examples constructed in [31] has infinitely many components. Therefore we can state
our Corollaries 1.4 and 1.6 verbatim also for moduli spaces of Riemannian metrics
with non-negative Ricci curvature.

Staying with non-compact manifolds, we would also like to point out that the
soul theorem of Cheeger and Gromoll [23] has been used by Kapovitch–Petrunin–
Tuschmann [50], Belegradek–Kwasik–Schultz [10,11] and Belegradek–Farrell–Ka-
povitch [8] to study spaces and moduli spaces of complete non-negative sectional
curvature metrics on open manifolds. Both [10,50] obtain examples of manifolds for
which the moduli spaces of non-negative sectional curvature metrics have an infi-
nite number of components, but in each dimension produce only finitely many such
manifolds. In [8] it is shown that the space (not moduli space) of non-negative sec-
tional curvature metrics can have higher homotopy groups which can be non-trivial
and contain elements of infinite order. In [7] it is shown that the space of complete
Riemannianmetrics of nonnegative sectional curvature on certain open spinmanifolds
has nontrivial homotopy groups with elements of order two in infinitely many degrees.

These are the only results on (moduli) spaces on non-negative sectional curvature
metrics on open manifolds of dimension greater than two known so far. For the space
of such metrics on the two-plane there are also results about connectedness properties
by Belegradek and Hu [9].

In conjunction with Corollary 1.2, the following theorem therefore also implies
the first non-triviality results for higher rational cohomology and homotopy groups
of moduli spaces of non-negatively sectional or Ricci-curved metrics on certain open
manifolds:

Theorem 1.8 Let M be a closed manifold with non-negative Ricci curvature. Then
MRic≥0(M) is homeomorphic to an open and closed subset of MRic≥0(M × R). In
particular, MRic≥0(M × R) has at least as many path components (and at least as
complicated homotopy and cohomology) as MRic≥0(M).

(For a more precise version of Theorem 1.8 see Corollary 3.3.)
To obtain the results of the present paper, we employ in a new way the splitting

theorem of Cheeger and Gromoll [24]. It allows us to construct maps from moduli
spaces to other spaces whose topology is easier to understand.

For example, by the splitting theorem, a closed non-negatively Ricci-curved man-
ifold (M, g) with π1(M) = Z

n is isometric to a bundle with simply connected
non-negative Ricci curved fiber (N , h) over a flat n-dimensional torus (T n, h′). We
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define maps

MRic≥0(M) → MRic≥0(N ) MRic≥0(M) → Msec=0(T
n)

[g] 	→ [h] [g] 	→ [h′].

If M is diffeomorphic to the product N × T n , a crucial step in our arguments is then
to prove that these maps are retractions. Therefore the topology of MRic≥0(M) is at
least as complicated as the topology of MRic≥0(N ) and Msec=0(T n).

It is known that for certain choices of (4k + 3)-dimensional manifolds N , where
k ≥ 1, themoduli spaceMRic≥0(N ) is non-connected. Hence, by the above argument,
we obtain non-connectedness results for moduli spaces in arbitrary dimensions 4k +
3 + n ≥ 7 with n = 0, 1, 2, . . . ∈ N.

Another ingredient in the proofs of the above results consists in having knowl-
edge about the moduli space of flat metrics on an n-dimensional torus. By classical
work of Wolf [75], it is known that the moduli space Msec=0(T n) of such metrics
is homeomorphic to the biquotient space O(n)\GL(n,R)/GL(n;Z). However, and
quite surprisingly, it seems that until now the topology of this moduli space has never
been further studied by geometers (compare here, e.g., also the corresponding remarks
in [4]).

But let us now observe that this latter space is actually a model for the classifying
space BFINGL(n,Z) for the family of finite subgroups of GL(n,Z). This fact does
not seem to have been noticed before in the context of moduli spaces. But it was,
of course, observed in the context of classifying spaces (see for example [56]) which
indeed have been studied intensively by topologists. Employing their work (see Propo-
sition 5.5 for details) in our study of moduli spaces, we can then detect non-trivial
classes in rational cohomology groups and rational homotopy groups ofMRic≥0(M).

Remark 1.9 A natural question to ask is if the main results of this paper do also apply
when the products with tori used here will get replaced by products with some general
closed flat manifold. Thus, let M be diffeomorphic to N × F , where N is a closed
simply connected manifold with non-negative Ricci curvature and F is a closed flat
manifold.

Then, using arguments similar to the ones outlined above and detailed in the fol-
lowing sections, one can define corresponding retractions

M′
Ric≥0(M) → MRic≥0(N ) and MRic≥0(M) → Msec=0(F)

from a suitable open and closed subsetM′
Ric≥0(M) ofMRic≥0(M) ontoMRic≥0(N )

and from MRic≥0(M) onto Msec=0(F), respectively.
Therefore Theorem1.3 does also holdwhen the k-torus T k figuring there is replaced

by any other closed flat manifold F . Moreover, Theorem 1.1 and its conclusions will
carry over as well, provided that the moduli space of flat metrics on F does exhibit
corresponding topological properties as the moduli space of flat metrics on T k . In
particular, it is likely that, with respect to the number of dimensions that they are
covering in their present form, both Theorem 1.1 and Corollary 1.2 can still be slightly
improved.
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The remaining parts of this article are organised as follows: in Sect. 2 we intro-
duce relevant notations and state some preliminaries. We discuss non-negatively Ricci
curved metrics on products M × R in Sect. 3. In Sect. 4 we investigate metrics on
M × S1. Section 5 is devoted to a study of products of simply connected manifold
M with higher dimensional tori and the components and cohomology groups of their
moduli spaces.

It is our pleasure to thank Igor Belegradek, Boris Botvinnik, AnandDessai, Stephan
Klaus, and DavidWraith for their comments on an earlier version of this paper, as well
as the anonymous referees for providing further remarks and their careful reading.

2 Spaces andmoduli spaces of metrics and Ricci souls

2.1 Spaces andmoduli spaces of Riemannianmetrics

In this subsectionwe recall someproperties of spaces andmoduli spaces ofRiemannian
metrics. Let us start with introducing some notation.

Definition 2.1 Let M be a smooth manifold. Then we denote by

1. Rr (M) the space of complete smooth (i.e. C∞) Riemannian metrics on M
equipped with the Cr -topology of uniform convergence on compact subsets of
M .

2. Mr (M) = Rr (M)/Diff(M) the moduli space of metrics on M equipped with the
quotient topology. Here the diffeomorphism group Diff(M) of M acts by pulling
back metrics.

3. Rr (M × R, M) the space of metrics on M × R which are isometric to product
metrics h + dt2, where h is a complete Riemannian metric on M , equipped with
the Cr -topology of uniform convergence on compact subsets of M × R.

4. Mr (M × R, M) = Rr (M × R, M)/Diff(M × R) equipped with the quotient
topology.

We will add subscripts to the above notation to indicate curvature constraints.

Note that the space Rr (M) is convex. Therefore all of its open subsets (and also
all open subsets of the moduli spaceMr (M)) are locally path connected. Hence their
connected components coincide with their path components.

Notice also that since the natural map from a given space of metrics to its corre-
sponding moduli space is surjective, the number of components of the moduli space
is a lower bound for the number of components of the space itself.

Wewill show in Theorem 3.1 thatRr
Ric≥0(M×R, M) (andMr

Ric≥0(M×R, M)) is
an open and closed subspace ofRr

Ric≥0(M ×R) (andMr
Ric≥0(M ×R), respectively).

So lower bounds for the number of components of the former space (andmoduli space)
give lower bounds for the number of components of the latter space (andmoduli space,
respectively).
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2.2 Souls and Ricci souls

Recall that the Cheeger–Gromoll Soul Theorem [23] states that a complete open
Riemannian manifold (M, g) of non-negative sectional curvature is diffeomorphic
to the normal bundle of a closed convex totally geodesic submanifold S ⊂ M , the
so-called soul of M .

Moreover, the Cheeger–Gromoll Splitting Theorem [24] says that if (M, g) is a
complete manifold of non-negative Ricci curvature which contains a line, then (M, g)
is isometric to aRiemannian product (N , h)×R

k , where (N , h) is a completemanifold
of non-negative Ricci curvature which does not contain a line, and where R

k is flat
k-dimensional Euclidean space.

Notice that if (M, g) is the Riemannian universal covering of a closed non-
negatively Ricci curvedmanifold, then the manifold N given by the Splitting Theorem
is closed.

Motivated by the Soul Theoremwe introduce for non-negatively Ricci curved man-
ifolds the following notation.

Definition 2.2 1. If (M, g) is a simply connected non-negatively Ricci curved com-
plete Riemannian manifold that is isometric to a Riemannian product (N , h)×R

k

with N closed, we call (N , h) the Ricci soul of (M, g).
2. If (M, g) is a closed Riemannian manifold of non-negative Ricci curvature, we

call the Ricci soul (N , h) of the Riemannian universal covering of (M, g) theRicci
soul of (M, g).

2.3 Geodesics and lines

In this sectionwecollect some facts about geodesics and lines inRiemannianmanifolds
that we will put to use in later sections of this work.

Lemma 2.3 Let (M, g) = (N , h) × R with N compact and x ∈ N. Then there is a
unique unit speed line γx : R → M passing from −∞ to +∞ with γx (0) = (x, 0).
Indeed, γx is given by γx (t) = (x, t).

Proof Let γ : R → M be a unit speed line such that

γ (t) = (γN (t), γR(t)) γ (0) = (x, 0) lim
t→±∞ γR(t) = ±∞.

Then γN and γR are geodesics in N and R, respectively. In particular, γR is of the
form γR(t) = ct, with 0 ≤ c ≤ 1. We then get from the triangle inequality

|t | = d(γ (0), γ (t))

≤ d((x, 0), (γN (t), 0)) + d((γN (t), 0), (γN (t), γR(t)))

≤ diam(N , h) + c|t |.

Since N is compact, for t → ±∞, this inequality can only hold if c = 1. Because γ

has unit speed it follows that γ = γx and the claim follows. 
�
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Remark 2.4 In the same way one can prove a generalised version of Lemma 2.3 for
products of the form (N , h) × R

k , k ≥ 1, with N compact. In these products all unit
speed lines are then of the form γ (t) = (x, v1t + v2) with x ∈ N , v1, v2 ∈ R

k and
‖v1‖ = 1.

Lemma 2.5 Let M bea smoothmanifold and (gn)be a sequence ofRiemannianmetrics
on M which converges in the C1-topology of uniform convergence on compact subsets
of M to a metric g0. Moreover, let γn : T M × R → M be mappings such that, for
v ∈ T M, γn(v, ·) is the geodesic with initial values γn(v, 0) = π(v), and such that
γ ′
n(v, 0) = ∂γn

∂t (v, 0) = v with respect to the metric gn, where π : T M → M is the
canonical projection.

Then (γn, γ
′
n) converges in the C0-topology of uniform convergence on compact

subsets of T M ×R to (γ0, γ
′
0). In particular, γn(v, ·) converges in the C1-topology of

uniform convergence on compact subsets of R to γ0(v, ·).
Proof This fact can easily be deduced from [62], but for the convenience of the reader
let us include a short own proof here. Indeed, in local coordinates we may write

γn = (γ i
n)i=1,...,m γ ′

n = (ξ in)i=1,...,m .

Then (γn, γ
′
n) is a solution to the system of ODEs

∂γ i
n

∂t
= ξ in i = 1, . . . ,m,

∂ξ in

∂t
= −

m∑

j,k=1

�i
n jkξ

j
n ξ kn i = 1, . . . ,m,

with initial value (γn(v, 0), γ ′
n(v, 0)) = (π(v), v). Here the �i

n jk are the Christoffel

symbols of the metric gn . Note that the �i
n jk converge in C

0-topology to �i
0 jk because

the metrics converge in C1-topology.
Since the solution of a system of ODEs depends continuously on the parameters,

the claim follows. 
�

3 Metrics on products with the Euclidean lineR

In this section we prove the following theorem and apply it to moduli spaces.

Theorem 3.1 Let (M, g0) be a complete connected Riemannian manifold which is
isometric to (N0, h0)×Rwhere (N0, h0) is closed andR is equipped with the standard
metric. Moreover, let gn be metrics on M which converge, as n → ∞, for r > 1 to g0
with respect to the Cr - topology of uniform convergence on compact subsets. Assume
that there exist isometries ψn : (M, gn) → (Nn, hn) × R where (Nn, hn) is closed.
Then

• for sufficiently large n there are diffeomorphisms φn : N0 → Nn, such that
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• the metrics φ∗
nhn converge in the C

r - topology to h0.

Proof Notice that M has two ends and that we can assume that under ψn the first end
is mapped to −∞ and the second end to +∞.

For x ∈ M let γx,n : R → (M, gn) be the unique line from the first end to the
second end passing through γx,n(0) = x .

By assumption gn converges in the C2- topology to g0. Moreover, the set {v ∈
TxM; 1

2 ≤ g0(v, v) ≤ 2} is compact and contains, for sufficiently large n, the
unit sphere in TxM with respect to the metric gn . Therefore, by Lemma 2.5, for every
subsequence γx,nl , there is a subsequence γx,nl j

such that the γx,nl j
converge in theC1-

topology of uniform convergence on compact subsets of R to a geodesic in (M, g0).
This geodesic stretches from the first end to the second end and passes through x . We
claim that this geodesic γ is a line in (M, g0) and hence is equal to γx,0. Indeed, if
t1, t2 ∈ R, t1 < t2, then we have for all nl j :

dnl j (γx,nl j (t1), γx,nl j (t2)) = t2 − t1.

Since gn converges uniformly on compact subsets to g0 and γx,nl j
converges uniformly

on compact sets to γ , we have that the left hand side of the above equation converges
to d0(γ (t1), γ (t2)). Because the right hand side is constant, it follows that γ is a line
and hence equal to γx,0.

The above argument holds for all subsequences γx,nl . Therefore we have that
γx,n → γx,0 in C1- topology uniformly on compact subsets. Note, moreover, that
the lines γx,n depend continuously on x ∈ M . Furthermore, the above convergence is
also uniform on compact subsets of M .

Now let Xn be the vector field on M given by Xn(x) := dγx,n
dt (0). Since the integral

curve of Xn passing through x is given by γx,n , Xn then converges in C0-topology to
X0 uniformly on compact sets.

Let us now identify each Nn with the image under the inclusion map

Nn = Nn × {0} ↪→ Nn × R →
ψ−1
n

M .

This identifies TpNn with 〈Xn(ψ
−1
n (p, 0))〉⊥gn ⊂ T

ψ−1
n (p,0)M .

Moreover, the differential of the projection

ψ ′
n : M →ψn Nn × R → Nn

is then just the orthogonal projection

dψ ′
n(v) = v − gn(v, Xn)Xn .

This means that, for sufficiently large n, φn = ψ ′
n ◦ ψ−1

0 ◦ ι0 is an immersion and
therefore a covering. Here ι0 : N0 × {0} ↪→ N0 × R denotes the inclusion.

Since φn induces an isomorphism on fundamental groups, it follows that φn is a
diffeomorphism.
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Therefore if X ,Y , Z are vector fields on N0, we can compute

X(φ∗
nhn(Y , Z)) = Xgn(Y , Z) − X(gn(Y , Xn)gn(Z , Xn))

= Xgn(Y , Z) − (gn(∇n
XY , Xn) + gn(Y ,∇n

X Xn))gn(Z , Xn)

− (gn(∇n
X Z , Xn) + gn(Z ,∇n

X Xn))gn(Y , Xn)

= Xgn(Y , Z) − gn(∇n
XY , Xn)gn(Z , Xn) − gn(∇n

X Z , Xn)gn(Y , Xn)

→ Xg0(Y , Z) − g0(∇0
XY , X0)g0(Z , X0) − g0(∇0

X Z , X0)g0(Y , X0)

= Xg0(Y , Z) = Xh0(Y , Z) as n → ∞.

Here ∇n denotes the Riemannian connection on (M, gn). Note here that under the
isometry (M, gn) ∼= (Nn × R, hn + dt2), the vector field Xn corresponds to the
constant length vector field ∂/∂t on Nn × R tangent to the second factor. Hence,
∇n Xn = 0 follows. Notice, moreover, that the above convergence is uniform on N0.

We can deal with higher derivatives of the metrics in a similar way, and hence the
claim follows. 
�
Remark 3.2 In Theorem 5.1 below we will generalize Theorem 3.1 and its proof to the
case of products of M with R

k , k > 1. However, treating the case k = 1 separately
allows for keeping the notation in both the proofs simpler. Moreover, we think it might
be also helpful for the reader to see the arguments in the simplest case first.

Corollary 3.3 Let M be a closed manifold. Then for r > 1 there is a homeomorphism

Mr
Ric≥0(M × R, M) → Mr

Ric≥0(M).

Proof The inverse map of the above map is induced by the map which assigns to a
metric on M its metrical product with a line.

Therefore it suffices to construct a continuous Diff(M × R)-invariant map

Rr
Ric≥0(M × R, M) → Mr

Ric≥0(M).

We define this map to be the map which assigns to a metric on M ×R of non-negative
Ricci-curvature the restriction of that metric to an integral submanifold MD of the
distribution D on M × R which is orthogonal to the lines with respect to this metric.

In a Riemannian product (M, h) × R, where M is closed, all lines are of the
form γx (t) = (x, t) for x ∈ M . Hence the integral submanifold MD exists and is
diffeomorphic to M . Moreover, the metric on the integral submanifold MD is non-
negatively Ricci-/sectional curved if and only if the metric on the product is curved in
this way.

Furthermore, by Theorem 3.1 above this assignment is continuous. Hence the claim
follows. 
�
Remark 3.4 In the special case of non-negative sectional curvature, the proof of Corol-
lary 3.3 also yields a homeomorphism

Mr
sec≥0(M × R, M) → Mr

sec≥0(M).
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This homeomorphism is given by sending a metric g + dt2 on M × R to its soul
(M, g).

Remark 3.5 In the case 2 ≤ r < ∞ our argument above corrects and fills a gap in the
proof of Proposition 2.8 of [10]. There, based on the Splitting Theorem, it is claimed
that the map φ sending a metric g in Mr0

sec≥0(Mi ) to its product g + dt2 with a line
gives a homeomorphism

∐

i

Mr0
sec≥0(Mi ) → Mr

sec≥0(M × R),

where r0 = r if r = 0 or r = ∞ and r0 = r − 1 otherwise. Here the union is taken
over all manifolds Mi such that Mi ×R and M ×R are diffeomorphic. The map φ can
be understood as being the inverse of sending a metric on M × R to its soul (M, g).
But φ is discontinuous unless r = 0 or r = ∞. (See also [12].)

4 Metrics on products with the circle S1

In this section we consider connectedness properties of the space and moduli space of
non-negative Ricci-curved metrics on M × S1, where M is a simply connected closed
manifold. The following lemma will turn out to be the key structural result in this
study.

Lemma 4.1 Let M be a closed connected Riemannian manifold with torsion free fun-
damental group π1(M) and non-negative Ricci curvature. Then there is a simply
connected closed Riemannian manifold (N , h) with non-negative Ricci curvature and
a closed flat manifold F with fundamental group π1(F) ∼= π1(M) such that M is
isometric to an (N , h)-bundle with structure group π1(F) associated to the universal
covering R

n → F. Here π1(F) acts via a homomorphism ϕ : π1(F) → Iso(N , h)

on N.

Proof By the Splitting Theorem of Cheeger and Gromoll [24] the universal covering
of M is isometric to (N , h) × R

n and π1(M) is a discrete subgroup of Iso((N , h) ×
R
n) ∼= Iso(N , h) × Iso(Rn). Since π1(M) is torsion free and Iso(N , h) compact,

π1(M)∩Iso(N , h) = {1} and the projectionπ1(M) → Iso(Rn) is injective.Moreover,
also because π1(M) is torsion free, the image of this map is a Bieberbach group and
therefore acts freely and isometrically onRn . We let F denote the quotientRn/π1(M).
The lemma follows then by letting ϕ be the projection from π1(M) to Iso(N , h). 
�
Remark 4.2 The torsion-freeness of π1(M) is necessary to guarantee that F is a mani-
fold. If this is not the case, one might write M as an orbifold-bundle over a flat orbifold
F with fiber a manifold N . But in this case the fundamental groups of F and N as
well as the structure group might not be the same as in Lemma 4.1. (Compare here
also [5])

Remark 4.3 By the Bieberbach theorems, the manifold F in the above lemma is deter-
mined up to affine diffeomorphism by π1(M).
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Theorem 4.4 Let (M, g0) be a closed connected Riemannian manifold with non-
negative Ricci curvature and fundamental group π1(M) ∼= Z. Moreover, let gn be
a sequence of metrics of non-negative Ricci curvature on M which converges in the
C∞- topology to the metric g0. Then there is a sequence of simply connected Rieman-
nian manifolds (Nn, hn) and an > 0 for n ≥ 0 such that for sufficiently large n the
following holds:

• there are isometries ψn : (M, gn) → (Nn, hn) ×anZ R as in the above lemma,
which induce the identity on Z = π1(M).

• there are diffeomorphisms φn : N0 → Nn, such that
• the φ∗

nhn converge in the C
∞- topology to h0.

• the isometry groups Iso(N0, φ
∗
nhn) are, for n sufficiently large, conjugate in

Diff(N0) to subgroups of Iso(N0, h0) .
• the homomorphisms ϕn : Z ∼= anZ → Iso(N0, φ

∗
nhn) ⊂ Diff(N0) converge in

Diff(N0)/ Iso(N0, h0) to ϕ0. Here Iso(N0, h0) acts on Diff(N0) by conjugation.

Proof The first claim follows from Lemma 4.1 above. The second and third claim
follow fromTheorem3.1 by considering the pullbackmetrics on the universal covering
of M .

The fourth claim then follows from the previous claims by Ebin’s slice theorem
[32], which shows that every metric g on N0 has a neighborhood V in the space of
metrics on N0 such that the isometry group of every g′ ∈ V is conjugate to a subgroup
of the isometry group of g.

To see the last claim we argue as follows: Let τ ∈ π1(M) ⊂ Iso((N0, φ
∗
nhn) ×

R) ⊂ Diff(N0 × R) be a generator of π1(M). Using the natural isomorphism
Iso((N0, φ

∗
nhn) × R) ∼= Iso(N0, φ

∗
nhn) × Iso(R), we may write τ = (ϕn(1), ln).

Then ln is the translation by ±an , or in other words ln = f±an where ft is the flow of
the vector field ∂

∂t on R.
Therefore we have a commutative diagram of the form

(N0, φ
∗
nhn)

ϕn(1)
��

�� (N0 × R, g̃n)

τ◦l−1
n

��
(N0, φ

∗
nhn) �� (N0 × R, g̃n)

Here ln is given by following the flow of the parallel norm-one vector field Xn

which is tangent to the lines in (N0 × R, g̃n) for time an (compare the proof of 3.1).
Moreover, τ is given by the action of a generator of the fundamental group of M on
the universal covering N0 × R.

The horizontal maps are given by ψ̃−1
n ◦ (φn × {0}), where the ψ̃n are lifts of the

mapsψn to universal coverings. They are clearly isometric embeddings, and therefore
every subsequence of these maps has a subsequence which converges to an isometric
embedding of (N0, h0) in (N0 ×R, g̃0) by the Arzela-Ascoli lemma. This embedding
restricts to an isometry of (N0, h0).

Since the vector fields Xn converge to the field X0, it thus suffices to show that the
sequence of numbers an converges to a0.
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By shrinking the fibers of 1
m Nn → (M, gn) → Fn = R/anZ, one obtains a

sequence of manifolds which Gromov–Hausdorff converge to Fn for m → ∞. But
if we fix m and consider the limit n → ∞, these manifolds converge to 1

m N0 →
(M, g0) → F0 = R/a0Z. To see this, note that if Y , Z are tangent vectors to M then
the shrunk metric gn,m is given by

gn,m(Y , Z) = 1

m
(gn(Y , Z) − gn(Y , Xn)gn(Z , Xn)) + gn(Y , Xn)gn(Z , Xn).

Hence it follows that if gn and g0 are ε - close in the C0-topology and if Xn is ε - close
to X0 for some ε > 0, then gn,m is Cε - close to g0,m for some constant C > 0 which
is independent of ε and m.

Thus, by interchanging the order of taking limits, it follows that Fn Gromov–
Hausdorff converges to F0 as n → ∞. Whence an converges to a0 and the claim
follows. 
�
Corollary 4.5 Let M be a simply connected closed smooth manifold of dimension at
least 5 which admits a Riemannian metric with non-negative Ricci curvature. Then
there is a retraction

MRic≥0(M × S1) → MRic≥0(M).

In particular, the moduli space MRic≥0(M × S1) of Riemannian metrics with non-
negative Ricci curvature on M × S1 has at least as many path components as the
moduli space MRic≥0(M) of metrics with non-negative Ricci curvature on M.

Proof The map

MRic≥0(M × S1) → MRic≥0(M)

in the above claim is given by first pulling back a metric g on M × S1 to the universal
covering M × R and then sending it to its Ricci soul.

To see that this yields a retraction, note first that by the dimension assumption and
the h-cobordism theorem, every Ricci soul of a non-negatively Ricci curved metric
on M × R is diffeomorphic to M . Thus the map sending a metric on M × S1 to its
Ricci soul is well-defined and continuous by the above theorem. A section to this map
is given by sending a metric on M to the product metric with the circle of length 2π .
Therefore the claim follows. 
�

The following corollary allows a concrete description of the moduli space of non-
negatively Ricci curved metrics on N0 × S1 to be given in terms of the space of
non-negatively Ricci curved metrics on N0.

Corollary 4.6 Let M be a closed connected non-negatively Ricci curved manifold with
fundamental group π1(M) ∼= Z. By Lemma 4.1, M is then a fiber bundle over S1 with
closed simply connected fiber N0.
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LetM′
Ric≥0(M) be the moduli space of non-negatively Ricci curved metrics whose

Ricci soul is diffeomorphic to N0. Then there is an embedding

� : M′
Ric≥0(M) → RRic≥0(N0) ×Diff(N0) (Diff(N0)/τ) × R>0,

[g] 	→ ([h, ϕ(1)], a),

where h and ϕ are as in Lemma 4.1. Here τ denotes the involution on Diff(N0) which
sends a diffeomorphism to its inverse. Moreover, Diff(N0) acts on on Diff(N0)/τ by
conjugation and a is the length of the circle F as defined in Lemma 4.1.

This embedding identifies M′
Ric≥0(M) with its image

A = {([g, ϕ], a); g ∈ RRic≥0(N0), ϕ ∈ Iso(g) ∩ B, a > 0},

where B is the set of those diffeomorphisms of N0 whose mapping torus is diffeomor-
phic to M.

Proof To prove that � is continuous, it suffices to show that the map

R′
Ric≥0(M) → RRic≥0(N0) ×Diff(N0) (Diff(N0)/τ) g 	→ [h, ϕ(1)]

is well-defined, continuous andDiff(M)-invariant. HereR′
Ric≥0(M) denotes the space

of metrics on M whose Ricci soul is diffeomorphic to N0.
To prove well-definedness, let h0 and h1 be two metrics on N0 and ϕ0 and ϕ1 be

the corresponding elements of the diffeomorphism groups of N0 such that M is of
the form described in Lemma 4.1 for both pairs (h0, ϕ0) and (h1, ϕ1). Then we have
isometries which are compatible with the deck transformation groups

ψ̃i : (N0, hi ) × R → M̃

Since the isometry φ = ψ̃−1
0 ◦ ψ̃1 maps lines to lines and N0 is perpendicular

to all lines in (N0, hi ) × R, it follows that φ is of the form φ0 × ± IdR where φ0 :
(N0, h0) → (N0, h1) is an isometry.

Since the deck transformation groups in (N0, hi )×R → M , i = 1, 2 are conjugate
via φ, it follows that the ϕi are conjugate via φ0. This shows that the map � is also
well-defined.

Moreover, the Diff(M) invariance is clear by the following argument: if (h0, ϕ0)

are as in Lemma 4.1 for the metric g on M , then for any diffeomorphism φ of M one
has that (h0, ϕ0) will also work in Lemma 4.1 for the metric φ∗g.

Therefore it remains to show the continuity. To do so, let g0 be a metric on M and
gn be a sequence of metrics on M converging to g0. By the above theorem, we can find
sequences hn of metrics on N0 and diffeomorphisms ϕn of N0 such that the following
holds:

• the (hn, ϕn) are as in Lemma 4.1 for (M, gn);
• the hn converge to h0;
• there are isometries αn of (N0, h0) such that αn ◦ϕ0◦α−1

n is close to ϕn in Diff(N0)

for n large.
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Since, moreover,

[h0, ϕ0] = [α∗
nh0, ϕ0] = [h0, αn ◦ ϕ0 ◦ α−1

n ],

in the target of our map � the continuity follows.
It is clear that A is the image of our map �. Moreover, it follows from Lemma 4.1

that � is also injective. Indeed, if �([g1]) = �([g2]) = ([h, ϕ], a), then there are
Riemannian normal coverings βi : (N0, h) × R → (M, gi ) for i = 1, 2. Therefore
we have to show that the deck transformation groups �i of these coverings are con-
jugate in Iso(N0, h) × Iso(R). Let τi be generators of these groups. Then we have
τi = (ϕ±1, f±a), where f±a = f −1∓a is the translation by a in the R-factor. Since
(IdN0 ,± IdR) ∈ Iso(N0, h) × Iso(R), it follows that τ1 is conjugate to τ2 or τ−1

2 . In
particular �1 and �2 are conjugate in Iso(N , h) × Iso(R) and the injectivity follows.

Therefore, it only remains to show the continuity of the inverse map �−1 on A.
Denote by

π : R(N0) × Diff(N0) × R>0 → R(N0) ×Diff(N0) (Diff(N0)/τ) × R>0

the projection.
Let (hn, ϕn, an) ∈ π−1(A) converge to (h0, ϕ0, a0). Moreover, let δn be a dif-

feomorphism from M to the mapping torus N0 × [0, an]/ ∼n of ϕn . Here we have
(x, 0) ∼n (ϕn(x), an) for x ∈ N0.

Let h̃n be the metric on N0 ×anZ R induced from the product metric hn + dt2 on
N0 × R. Here an ∈ anZ acts as ϕn on N0 and as translation by an on R.

The inclusion N0 × [0, an] ↪→ N0 ×R induces a natural diffeomorphism from the
mapping torus of ϕn to N0 ×anZ R. So we can use this diffeomorphism to identify
these two manifolds.

Let gn = δ∗
n h̃n be the induced metric on M .

For n large enough, we can find a path φn,t from the identity in Diff(N0) to ϕ0◦ϕ−1
n .

Denote by φn the diffeomorphism

N0 × [0, an]/ ∼n→ N0 × [0, a0]/ ∼0, (x, t) 	→ (φn,t (x), t)

induced by φn,t on mapping tori. Since (ϕn, an) converges to (ϕ0, a0), we can assume
that the lift of φn to N0 × [0, an] is close to the identity. Since the hn converge to h0,
it also follows that (φ−1

n )∗h̃n is close to h̃0 for large n.
Therefore

(δ−1
n ◦ φ−1

n ◦ δ0)
∗gn = δ∗

0 ◦ (φ−1
n )∗h̃n

is close to g0 = δ∗
0 h̃0 for large n. Hence it follows that the assignment (hn, ϕn, an) 	→

[gn] is continuous. Because this assignment induces the map �−1 on A and A is
equipped with the quotient topology, it follows that �−1 in continuous.

Therefore the proof of the corollary is complete. 
�
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5 Path components and rational cohomology groups of products
with flat tori

In this section we investigate the components and rational cohomology groups of
moduli spaces of non-negative Ricci curved metrics on products of manifolds with
tori. To this means, we first generalize Theorem 3.1 as follows:

Theorem 5.1 Let (M, g0) be isometric to (N0, h0) × R
k with (N0, h0) a compact

Riemannian manifold and R
k equipped with the standard flat metric. Assume that

there are metrics gn on M which converge in the Cr -topology, r > 1, to g0 uniformly
on compact subsets and assume furthermore that (M, gn) is isometric to (Nn, hn)×R

k

with Nn compact and R
k as above.

Then for large enough n ∈ N the following is true:

• there are diffeomorphisms φn : N0 → Nn, such that
• the metrics φ∗

nhn converge in the C
r -topology to h0.

Proof Letψn : (M, gn) → (Nn, hn)×R
k be isometries. For each n, let Yin = ψ∗

n
∂

∂xi
,

i = 1, . . . , k, where the ∂
∂xi

denote the standard coordinate vector fields on R
k . Then

the Yin are parallel vector fields on M whose integral curves are lines in (M, gn).
Moreover, Y1n(x), . . . ,Ykn(x) form an orthonormal basis of Dψn(x)ψ

−1
n (Rk) for each

x ∈ M .
Since lines in (M, gn) converge to lines in (M, g0), for each i and each subsequence

Yinl there is a subsequence Yinl j which converges to some vector field Yi0 whose
integral curves are lines. The Yi0 might still depend on the subsequences. But as we
will show next, their span does not. Their common span is equal to Dψ−1

0 (Rk).
Indeed, since the integral curves of the Yi0 are lines, we have Yi0(x) ∈ Dψ−1

0 (Rk)

for all x ∈ M and i = 1, . . . , k. Moreover, because the Y1nl j (x), . . . ,Yknl j (x) are
orthonormal and the whole sequence of the gn converges to g0, the Y10(x), . . . ,Yk0(x)
form an orthonormal basis of Dψ0(x)ψ

−1
0 (Rk).

Therefore the orthogonal projections TxM → Dψn(x)ψ
−1
n (Rk) converge to the

orthogonal projection TxM → Dψ0(x)ψ
−1
0 (Rk).

Let us now identify each Nn with the image under the inclusion map

Nn = Nn × {0} ↪→ Nn × R
k →

ψ−1
n

M .

This identifies TpNn with 〈Y1n(ψ−1
n (p, 0)), . . . ,Ykn(ψ−1

n (p, 0))〉⊥gn ⊂
T

ψ−1
n (p,0)M .
Moreover, the differential of the projection

ψ ′
n : M →ψn Nn × R

k → Nn

is then just the orthogonal projection

dψ ′
n(v) = v −

k∑

i=1

gn(v,Yin)Yin .
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This means that, for sufficiently large n, φn = ψ ′
n ◦ ψ0 is an immersion and therefore

a covering. Since φn induces an isomorphism on fundamental groups, it follows that
φn is a diffeomorphism. A similar computation as in the proof of Theorem 3.1 then
shows that the metrics φ∗

nhn converge in C
r -topology to h0.

Indeed, if X ,Y , Z are vector fields on N0, we can compute

X(φ∗
nhn(Y , Z)) = Xgn(Y , Z) −

k∑

i=1

X(gn(Y ,Yin)gn(Z ,Yin))

= Xgn(Y , Z) −
k∑

i=1

[
(gn(∇n

XY ,Yin) + gn(Y ,∇n
XYin))gn(Z ,Yin)

+ (gn(∇n
X Z ,Yin) + gn(Z ,∇n

XYin))gn(Y ,Yin))
]

= Xgn(Y , Z) −
k∑

i=1

[
gn(∇n

XY ,Yin)gn(Z ,Yin)

+ gn(∇n
X Z ,Yin)gn(Y ,Yin)

]

→ Xg0(Y , Z) = Xh0(Y , Z) as n → ∞.

Here ∇n denotes the Riemannian connection on (M, gn). Note here that under the
isometry (M, gn) ∼= (Nn ×R

k, hn +∑k
i=1 dx

2
i ), the vector field Yin corresponds to a

constant length vector field on Nn×R
k tangent to the second factor. Hence,∇nYin = 0

follows.
Moreover, to see that gn(∇n

XY ,Yin)gn(Z ,Yin) converges to zero as n grows to
infinity one can argue as follows. It suffices to show that for every sequence nk ∈ N

with limk→∞ nk = ∞ there is subsequence nkl such that

lim
l→∞ gnkl (∇

nkl
X Y ,Yinkl )gnkl (Z ,Yinkl ) = 0.

Notice that we already know that there is a subsequence nkl such that Yinkl converges

to a parallel vector field tangent to the Rk-factor. Moreover, ∇nkl
X Y converges to ∇0

XY
which is tangent to the N0-factor of M , because N0 is totally geodesic in M . Since gn
converges to g0 the claim follows.

Notice, moreover, that the above convergence is uniform on N0.
We can deal with higher derivatives of the metrics in a similar way, and hence the

claim follows. 
�
Now we are in the position to generalize Corollary 4.5 to products M × T k with

tori of dimension greater than one. To do this we first state the following consequence
of the s-cobordism theorem.

Lemma 5.2 Let M1 and M2 be simply connected closedmanifolds of dimension at least
5 and Ei → T k, i = 1, 2, be Mi -bundles such that E1 and E2 are diffeomorphic.
Then M1 and M2 are diffeomorphic.

123



1646 W. Tuschmann , M. Wiemeler

Proof We prove this lemma by induction on k. If k = 0 there is nothing to show. Let
us therefore assume k ≥ 1 and that the claim is proved for (k − 1)-dimensional tori
T k−1.

Note that π1(E1) = π1(E2) = π1(T k) = Z
k−1 ⊕ Z. Consider the coverings Ẽ1

and Ẽ2 of E1 and E2 corresponding to the Z
k−1-summand of π1(Ei ). Then Ẽi is

diffeomorphic to E ′
i × R, where E ′

i is an Mi -bundle over T k−1. Moreover, Ẽ1 is
diffeomorphic to Ẽ2.

Note now that the Whitehead torsion of the free abelian group π1(E ′
i ) = Z

k−1

vanishes. Therefore it follows from the s-cobordism theorem that E ′
1 and E ′

2 are
diffeomorphic. Hence the claim follows from the induction hypothesis. 
�
Corollary 5.3 Let M be a simply connected closed manifold of dimension at least 5
that admits a metric with non-negative Ricci curvature. Then there is a retraction

MRic≥0(M × T k) → MRic≥0(M),

In particular, themoduli spaceMRic≥0(M×T k) has at least asmany path components
as MRic≥0(M).

Proof Note first that by Lemmas 4.1 and 5.2 the Ricci soul of any non-negatively Ricci
curved metric on M × T k is diffeomorphic to M .

By Theorem 5.1, the map which sends a metric on M × T k to its Ricci soul is
continuous and well-defined. A section to this map is given by sending a metric on
M to the product metric with a product of k circles of length 2π . Hence the claim
follows. 
�
Theorem 5.4 Let M be a non-negatively Ricci-curvedmanifold as in Lemma 4.1. Then
there is a continuous map

MRic≥0(M) → Msec=0(F) [g = h′ ⊕s h] 	→ [h],

where h′ and h are the metrics on the fiber and base of the Riemannian submersion
(M, g) → F as in Lemma 4.1.

Moreover, if M is diffeomorphic to N × F for some non-negatively Ricci curved
manifold N, then the above map has a section. Therefore it is a retraction.

Proof Note that convergence in the moduli space means convergence up to isometries.
Let [gn] ∈ MRic≥0(M) converge to [g0]. By Lemma 4.1, (M, gn) is isometric to

the total space of a fiber bundle with base space a flat manifold (F, hn). Moreover, by
construction, the isometry class of hn depends only on the isometry class of gn .

Note that Gromov–Hausdorff convergence of flat metrics on F coincides with
convergence in C∞-topology. To prove the first claim, it thus suffices to show that the
isometry classes of the metrics hn on F Gromov–Hausdorff converge to the isometry
class of h0. If we shrink the fibers of the Riemannian submersions (M, gn) → (F, hn),
then the isometry classes of the shrunkmetrics (M, gn,m)Gromov–Hausdorff converge
to the one of (F, hn). Thus limm→∞[M, gn,m] = [F, hn]. Now limn→∞[F, hn] =
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[F, h0] follows as in the proof of Theorem 4.4 by interchanging the limits. Hence the
first claim is proved.

If M is diffeomorphic to N × F , a section is given by sending a metric on F to its
product metric with some fixed non-negatively Ricci-curved metric on N . 
�
Proposition 5.5 If T n is an n-dimensional standard torus, then the following holds:

1. The moduli space Msec=0(T n) of flat metrics on T n is simply connected.
2. If n = 1, 2, 3, then Msec=0(T n) is contractible.
3. If n = 4, then π3(Msec=0(T n)) ⊗ Q ∼= Q.
4. If n > 4, and n �= 8, 9, 10, then π5(Msec=0(T n)) ⊗ Q ∼= Q.

Proof By [75], the space M = Msec=0(T n) is homeomorphic to the biquotient

O(n)\GL(n,R)/GL(n,Z).

The space O(n)\GL(n,R) of scalar products on Rn is a model for the classifying
space EFINGL(n,Z) for the family FIN of finite subgroups of GL(n,Z). Hence
it follows from Lemma 4.14 of [57] thatM has the same rational cohomology groups
as the classifying space BGL(n,Z).

The rational cohomology groups H3(BGL(n,Z);Q) and H5(BGL(n,Z);Q) of
this space have been computed for n = 4 [55], for n = 5, 6, 7 [36], and for n ≥ 11
[19,68]. In the first case the first group is isomorphic to Q, whereas in the other cases
the second group is isomorphic to Q. Note that in all these cases these groups are the
first non-trivial rational cohomology groups.

Hence the last two claims follow from the Hurewicz theorem once we have proved
the first claim.

The second claim for n = 1 is trivial because GL(1,Z) is a finite group. For n = 3
this claim was proven by Soulé [64]. For n = 2 one can argue as follows.

Taking thefirst claim for granted,O(n)\GL(n,R)±/GL(n,Z) is a two-dimensional
simply connected model for

BFINGL(2,Z) = (EFINGL(2,Z))/GL(2,Z).

Here GL(2,R)± is the subgroup of GL(2,R) consisting of those n × n-matrices A
with det A = ±1.

Hence the only possibly non-trivial homology group of this space with integer
coefficients is H2. Moreover, H2 must be torsion-free. But it is a classical result (see
for example [63]), that

H2(BFINGL(2,Z);Q) ∼= H2(BGL(2,Z);Q)

is the trivial group. Therefore this also holds with integer coefficients and the claim
follows.

Hence it remains to prove that O(n)\GL(n,R)/GL(n,Z) is simply connected for
n ≥ 2, and this can be done as follows:
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From [1] we obtain that the fundamental group

π1 (O(n)\GL(n,R)/GL(n,Z))

is isomorphic to GL(n,Z)/N , where N is the normal subgroup of GL(n,Z) gen-
erated by those elements which have fixed points in O(n)\GL(n,R). By the above
discussion, it follows that the group N is the subgroup ofGL(n,Z)which is generated
by all elements of finite order.

By Corollary 16.3 from [59] and the remark following it, the group SL(n,Z) is
generated by elementarymatrices if n ≥ 3.Hence, it follows that SL(n,Z) is generated
by the images of finitely many group homomorphisms SL(2,Z) → SL(n,Z). Since
SL(2,Z) is generated by two elements of finite order, it follows that SL(n,Z) is
generated by finitely many elements of finite order for every n ≥ 1.

Because GL(n,Z) is a semi-direct product of SL(n,Z) and Z/2, this implies in
turn that GL(n,Z) = N . Hence the biquotient space

O(n)\GL(n,R)/GL(n,Z)

is simply connected. 
�

Corollary 5.6 Let M be a simply connected closed smooth manifold which admits a
metric with non-negative Ricci curvature, and let T be a torus of dimension n ≥ 4,
n �= 8, 9, 10. Then the moduli spaceMRic≥0(M × T ) of non-negatively Ricci curved
metrics on M × T has non-trivial higher rational cohomology groups and non-trivial
higher rational homotopy groups.

Proof By Theorem 5.4, the map MRic≥0(M × T ) → Msec=0(T ) is a retraction.
Therefore the cohomology ofMRic≥0(M × T ) is at least as complicated as the coho-
mology of Msec=0(T ). Hence the claim follows from Proposition 5.5 above. 
�
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