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Abstract
We present a family of radial solutions (given in Eulerian coordinates) to the three-
dimensional Euler equations in a fluid domain with a free surface and having finite
depth. The solutions that we find exhibit vertical structure and a non-constant vorticity
vector. Moreover, the flows described by these solutions display a density that depends
on the depth. While the velocity field and the pressure function corresponding to these
solutions are given explicitly through (relatively) simple formulas, the free surface
defining function is specified (in general) implicitly by a functional equation which is
analysed by functional analytic methods. The elaborate nature of the latter functional
equation becomes simpler when the density function has a particular form leading to
an explicit formula of the free surface.We subject these solutions to a stability analysis
by means of a Wentzel–Kramers–Brillouin (WKB) ansatz.

Mathematics Subject Classification 35Q31 · 35Q35 · 76B15 · 76B70

1 Introduction

The momentum conservation equations together with the equation of mass conserva-
tion (proposed by Euler in the middle of the eighteenth century) are widely used today
when tackling fluid flow problems. In spite of tremendous progress made over the past
two and a half centuries many important questions concerning fluids still remain unan-
swered.Along the previous lineswenote, for instance, the scarcity of explicit solutions.
Motivated by this circumstance we set out for a study of the three-dimensional Euler
equations with a free surface from the perspective of explicit solutions. While less
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significant for engineering applications, explicit solutions are interesting for a variety
of reasons. Indeed, such solutions may play an appreciable role in the validation of the
governing equations. On the other hand, in an oceanographical context, they provide
the basis for physically more realistic flows by way of asymptotic, or perturbative
methods [40]; the latter is also a line of work that we undertake here.

It is to note that the only known explicit solution to the nonlinear (two-dimensional)
gravity water wave problem for an inviscid, incompressible and homogeneous flow
of infinite depth was pointed out by Gerstner in 1809, cf. [25], rediscovered by Rank-
ine [51] and describes the evolution of individual fluid particles in a flow: particles
move on circles with radius decreasing with depth. The physical acceptability of the
Gerstner’s solution was demonstrated by Constantin [4] who, availing of an interplay
of analytical and topological ideas, showed that the motion suggested by Gerstner’s
ansatz is dynamically possible. For in-depth studies of the Gerstner wave solution we
refer the reader to [4,27]. A family of explicit solutions for the case of water waves
driven by surface tension was provided by Crapper [19]. These solutions were proved
to be unique by Okamoto [48].

The Gerstner wave solution was extended by Constantin [10,12] and adapted to
bear relevance to the important case of geophysical water flows, that is, flows looked
at from the perspective of a frame that rotates with the Earth. Further descriptions
of geophysical flows based on extensions of the Gerstner’s wave were performed in
[15,29,33,45,46]. Theflowpattern of these solutions is given inLagrangian coordinates
and it is inherently three-dimensional, a typical feature displayed by geophysical flows,
cf. [17].

The unsatisfactory situation regarding the lack of explicit solutions is mitigated by
the availability of rigorous studies on the existence of exact solutions to the nonlinear
water wave problem [2,5,14,18,26,37,38,52,54] as well as on qualitative properties of
the solutions [6–8,22,49].

Certainly, the Lagrangian perspective offers important insights into the flow evo-
lution by following the path of a particular particle, but, on the other hand, it is highly
significant to know the velocity field, the pressure function and the shape of the free
surface at any given time instant and physical location, setting known as the Eulerian
picture. Complying with the previous ideas we present in this paper some explicit
solutions (in Eulerian coordinates) to the nonlinear inviscid and incompressible three-
dimensional water wave problem. While the Gerstner wave solution supplies explicit
formulas for the velocity field and for the pressure function, (some) of the solutions
presented here are explicit also in terms of the free surface. A further by-product of
our solutions is that they also accommodate a variable pressure on the free surface
which appears to be of relevance in modeling the event of storms in the ocean [50]. In
the same strain, it seems that the adjustment of surface pressure conditions represents
an important avenue leading to the appearance of critical layers [39].

Another remarkable feature of the solution is that the flow it prescribes accom-
modates a density stratification that varies (in the most general way) with depth. A
noteworthy aspect is that the density is instrumental in conferring the velocity field a
non-trivial vertical structure.

Density stratification has an essential role in geophysical fluid dynamics, particu-
larly in the equatorial region where large scale ocean flows display marked density
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variations leading to a layering of the flow: fluid layers of different densities organize
themselves so that the higher densities are found below lower densities, cf. [13,16,20].
Nevertheless, allowing for variable density significantly complicates themathematical
analysis of an already convoluted problem. Indeed, even in the simpler case of two-
dimensional gravity water waves (without Coriolis effects) stratified fluids remained
to a large extent unapproachable to a thorough mathematical analysis until recently:
we refer the reader to [13,16,21,28,30–32,43,44,47,53,55] for a selection of recent
advances in the field. On a similar note we would like to remark the very recent
results by Escher et al. [23] on stratified water waves exhibiting a very general density
distribution allowing for singular gradients.

After a brief presentation of the water wave problem in Sect. 2 we indicate at
the beginning of Sect. 3 the ansatz for the velocity field and we subsequently derive
the formula for the pressure function satisfying the Euler’s equations. Afterwards,
from the dynamic condition on the surface we determine an implicit equation for the
surface defining function. Functional analytic methods are applied to the latter implicit
equation to prove the existence of the surface defining function. Section 4 is concerned
with the search for obtaining other (almost) solutions to the water wave problem, the
latter task being achieved by means of a perturbation of the basic flow solutions (3.1).
Although these perturbed solutions are not explicit they present bounded amplitude.
To reach our goal we will avail of the short-wavelength perturbation method for three-
dimensional flows, devised byBayly [1], Friedlander andVishik [24] and Lifschitz and
Hameiri [41] and which examines whether the amplitude of the perturbations to the
basic flow remains bounded as a function of time. The short-wavelength perturbation
method emerged as an essential tool for boosting up the relevance of some recently
derived exact solutions in geophysical fluid dynamics [11,30–32,34–36]. To be more
specific, we start our attempt by searching for perturbations (of the velocity field and of
the pressure) in the formof theWentzel–Kramers–Brillouin (WKB) ansatz, cf. formula
(4.1). As it turns out, the components of the amplitude vector of the perturbation to
the basic flow satisfy a system of ordinary differential equations. We then prove that
the latter system is equivalent to the Hill’s equation. A quite involved analysis is then
used to show the boundedness of solutions to the Hill’s equation.

2 The three-dimensional Euler equations with free surface boundary
conditions

We formulate here the governing equations for free surface water flows. Working in
a Cartesian coordinate system of coordinates x, y, z, we assume the water flow to be
bounded below by the bed z = −d and above by the free surface z = η(x, y, t), where
η is a function that is determined as part of the solution and t denotes the time variable.

The guiding principles for water flow propagation refer to mass conservation
and Newton’s second law of motion. The equation of mass conservation relates
the rate of change of density to the field of motion. More precisely, denoting with
ρ = ρ(x, y, z, t) the density function the equation of mass conservation has the form

ρt + (ρu)x + (ρv)y + (ρw)z = 0, (2.1)
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where (u, v, w) represents the velocity field. Under the assumption that the water is
inviscid, the equations of momentum conservation are

ut + uux + vuy + wuz = − 1

ρ
Px ,

vt + uvx + vvy + wvz = − 1

ρ
Py,

wt + uwx + vwy + wwz = − 1

ρ
Pz − g,

(2.2)

where P is the pressure function and g denotes the gravitational constant.
While both (2.1), (2.2) are required to holdwithin the bulk of the fluid, the specification
of the water wave problem is completed by the boundary conditions pertaining to the
free surface z = η(x, y, t) and to the bed z = −d. These are the kinematic boundary
conditions

w = ηt + uηx + vηy on z = η(x, y, t) (2.3)

and
w = 0 on z = −d, (2.4)

together with the dynamic boundary condition

P = p(x, y, t) on z = η(x, y, t), (2.5)

for some given function (x, y) → p(x, y, t).
In the next section we introduce a family of solutions to the problem (2.2)–(2.5).

3 A family of solutions exhibiting vertical structure

We first lay out the ansatz giving the explicit formulas of the velocity field and then,
availing of the Euler’s equations (2.2), we derive the formula for the pressure function.
The dynamic surface condition (2.5) will then be used to derive an implicit equation
for the surface defining function. The latter equation is analysed by way of the implicit
function theorem.More precisely, wewill show that there is a unique function describ-
ing the shape of the surface, as soon as one applies on the surface a continuous pressure
which is a small deviation from the pressure required to maintain a flat surface. In cer-
tain scenarios (defined by the choice of the density function) the free surface can also
be determined explicitly. To begin with, let us set

u(x, y, z) = − y f (x2 + y2)√
ρ(z)

, v(x, y, z) = x f (x2 + y2)√
ρ(z)

and w(x, y, z) = 0,

(3.1)
where f : R → R is such that the functions (x, y) → −y f (x2 + y2) and (x, y) →
x f (x2 + y2) are differentiable and the density function z → ρ(z) (assumed here to
depend only on the depth variable) is positive and differentiable. We would like to
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note that the velocity field given in (3.1) has a purely radial character with streamlines
given by circles x2 + y2 = k for some constant k > 0. A computation shows that

uux + vuy = − x f 2(x2 + y2)

ρ(z)

uvx + vvy = − y f 2(x2 + y2)

ρ(z)
.

(3.2)

This means that, in order to find the pressure P we have to solve the system

Px (x, y, z, t) = x f 2(x2 + y2)

Py(x, y, z, t) = y f 2(x2 + y2)

Pz(x, y, z, t) = −gρ.

(3.3)

Solving for P in the above system we obtain

P(x, y, z, t) = 1

2

∫ x2+y2

0
f 2(s)ds − g

∫ z

−d
ρ(s) ds + c, (3.4)

for some constant c.
Clearly,

(ρu)x = −2xy
√

ρ(z) f ′(x2 + y2), (ρv)y = 2xy
√

ρ(z) f ′(x2 + y2),

which shows that equation of mass conservation is verified by the velocity field (3.1).
We set out to determine the free surface η and to check the boundary conditions

(2.3)–(2.5). Using the dynamic surface condition (2.5) the free surface η is determined
implicitly by the equation

1

2

∫ x2+y2

0
f 2(s)ds − g

∫ η(x,y)

−d
ρ(s) ds + c − p(x, y) = 0. (3.5)

Let us recast the previous equation as the functional equation

F(η, p) = 0, (3.6)

where

F(η, p) := 1

2

∫ x2+y2

0
f 2(s)ds − g

∫ η(x,y)

−d
ρ(s) ds + c − p(x, y). (3.7)

Note that η0 ≡ 0 is a solution of (3.6) provided

p = p0(x, y) = 1

2

∫ x2+y2

0
f 2(s)ds − g

∫ 0

−d
ρ(s) ds + c,
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that is F(0, p0) = 0.
We will resort now to the implicit function theorem to prove the existence of η

satisfying (3.6). To this end we denote with Cb(R
2) the Banach space of continuous

and bounded functions defined on R2. Note that

Fη(0, p0)(η) = −gρ(0)η, (3.8)

which shows that Fη(0, p0) : Cb(R
2) → Cb(R

2) is a homeomorphism. This implies
that for all continuously prescribed surface pressure functions p(x, y), which represent
a small deviation from the pressure p0 required to maintain a flat free surface η0 ≡ 0,
there is a unique continuous η satisfying (3.5). The surface defining function η is in
fact differentiable as it can be derived from (3.5) by building the appropriate difference
quotients and applying the mean value theorem. We obtain

gρ(η(x, y))ηx = x f 2(x2 + y2) − px

gρ(η(x, y))ηy = y f 2(x2 + y2) − py .
(3.9)

If the given pressure on the free surface is a function of type p(x, y) = G(x2 + y2)
we see from (3.9) that uηx + vηy = 0. The latter implies that the surface kinematic
condition (2.3) is satisfied.

While, in general, is not possible to establish an explicit formula for the shape of
the free surface z = η(x, y), some special choices of density functions will render an
easy determination of it. We present below some examples of such density functions,
which are decreasing with depth, thus holding physical grounds.

Remark 3.1 Let us assume that ρ(z) = 1
(z+d+e−d )k where k > 0, k �= 1. We then have

from (3.5)

1

2

∫ x2+y2

0
f 2(s)ds + c − p(x, y) = g

(
(η(x, y) + d + e−d)1−k

1 − k
− ed(k−1)

1 − k

)
,

that is

η(x, y) =
[

ed(k−1) + 1 − k

g

(
1

2

∫ x2+y2

0
f 2(s) ds − p(x, y) + c

)] 1
1−k

− d − e−d ,

(3.10)
formula which for k > 1 makes sense only if p(x, y) is chosen such that

ged(k−1) + (1 − k)

(
1

2

∫ x2+y2

0
f 2(s) ds − p(x, y) + c

)
> 0,

a condition that is easily verified as soon as the imposed pressure at the surface satisfies

p(x, y) >

(
1

2

∫ x2+y2

0
f 2(s) ds + c

)
− ged(k−1)

k − 1
. (3.11)
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Remark 3.2 Taking k = 1 in the formula for ρ from Remark 3.1 we get that η is given
as

η(x, y) = exp

(
1

g
·
(
1

2

∫ x2+y2

0
f 2(s) ds + c − p(x, y)

)
− d

)
− d − e−d . (3.12)

4 Stability of the perturbations along the streamlines of the basic
flow

To reinforce the relevance of the explicit solutions to the full nonlinear governing
equations (2.1)–(2.5)weperform in this section aperturbation analysis of the basicflow
solutions (3.1) along the streamlines of (3.1). The (linear) stability/instability of the
basic flow refers to the boundedness/unboundedness of the amplitude of perturbations
of the basic flow along the streamlines of the basic flow. Determining the stability of
a flow is of paramount physical importance. Indeed, the stability in the sense defined
above is equivalent to finding time-dependent (nearly) solutions to the water wave
problem. Here, the term “nearly” refers to the obstruction by which the perturbations
of the basic flow (3.1) fail to be exact solutions. More precisely, this obstruction is
represented by the quadratic terms (U · ∇)U, often neglectable.

However, proving stability is a task that raises serious mathematical challenges. We
choose to use the short-wavelength stability method developed by Bayly [1], Friedlan-
der and Vishik [24] and Lifschitz and Hameiri [41]. As it turns out the components of
the amplitude vector of the perturbation to the basic flow (u, v, w) from (3.1) satisfy
a system of ordinary differential equations. The latter system is proved to be equiva-
lent to the Hill’s equation. We then study the boundedness of solutions to the Hill’s
equation by means of a criterion of Zukovskii, cf. [56].

4.1 On the general setting

We consider perturbations U = (U , V , W ) and P of the velocity field (u, v, w) given
in (3.1) and of the pressure P given in (3.4), respectively. These perturbations are
analyzed along the streamlines of the basic flow (u, v, w). To be more precise, we use
for U and P the WKB ansatz

U(t, x, y, z) = A(t, x, y, z)e
i
ε

F(t,x,y,z) + O(ε)

P(t, x, y, z) = εB(t, x, y, z)e
i
ε

F(t,x,y,z) + O(ε2),
(4.1)

where A = (A1, A2, A3) denotes the amplitude of the perturbation, F is a scalar
function (called the phase of the perturbation) and ε > 0 denotes a small parameter.
We set as initial condition

U0 := U(0, x, y, z) = A(0, x, y, z)e
i
ε

F(0,x,y,z) =: A0(x, y, z)e
i
ε

F0(x,y,z). (4.2)
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We say that the basic flow u = (u, v, w) is stable if the amplitudeA remains uniformly
bounded in time.

From the requirement that the perturbed quantities U + u and P + P satisfy the
equations of conservation of mass and of momentum (2.1) and (2.2), respectively, we
obtain (by way of neglecting the quadratic term (U · ∇)U) the system

Ut + (u · ∇)U + (U · ∇)u = − 1

ρ
∇P

div(ρU) =0.
(4.3)

Using now the WKB ansatz (4.1) and identifying the coefficients of ε−1, ε0, ε1 from
(4.3) we obtain

A1,t + u A1,x + vA1,y + wA1,z + A1ux + A2uy + A3uz = −i
B

ρ
Fx ,

A2,t + u A2,x + vA2,y + wA2,z + A1vx + A2vy + A3vz = −i
B

ρ
Fy,

A3,t + u A3,x + vA3,y + wA3,z + A1wx + A2wy + A3wz = −i
B

ρ
Fz .

(4.4)

Moreover, B satisfies

Bx (t, x, y, z) = By(t, x, y, z) = Bz(t, x, y, z) = 0, (4.5)

while the phase F is solution to the equation

Ft + uFx + vFy + wFz = 0, (4.6)

which, since w = 0, reduces to

Ft + uFx + vFy = 0. (4.7)

We proceed to solve (4.7) by the method of characteristics and so obtain the existence
of a function (X , Y , Z) → �(X , Y , Z) such that

F(t, x, y, z) =
�

(
x cos(C(t − c)) + y sin(C(t − c)),−x sin(C(t − c)) + y cos(C(t − c)), z

)
,

(4.8)
where C = f (c̃)√

ρ(c3)
and c, c̃ and c3 are some constants.

4.2 Stability of the flows (3.1) for positive f and f′

The purpose of the first part of this section is to show that there are choices for the
phase function F for which the right hand side in system (4.4) vanishes. To begin with
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let us denote now with (x(t), y(t), z(t)) the streamlines of the basic flow (u, v, w)

given in (3.1). This means that the equalities

dx

dt
= u(x(t), y(t), z(t)) = − y(t) f (x2(t) + y2(t))√

ρ(z(t))
,

dy

dt
= v(x(t), y(t), z(t)) = x(t) f (x2(t) + y2(t))√

ρ(z(t))
,

dz

dt
= w(x(t), y(t), z(t)) = 0,

(4.9)

hold for all t . Proceeding to solve (4.9) we infer first that there is a constant c such
that

x2(t) + y2(t) = c for all t .

Consequently,we obtain the existence of constants z0, a1 anda2 such that the equalities

z(t) = z0

x(t) = a1 cos

(
f (c)√
ρ(z0)

t

)
+ a2 sin

(
f (c)√
ρ(z0)

t

)
,

y(t) = a1 sin

(
f (c)√
ρ(z0)

t

)
− a2 cos

(
f (c)√
ρ(z0)

t

)
,

(4.10)

hold for all t . It follows that

Fx (t, x(t), y(t), z(t))

= �X
(
X(t),Y(t),Z(t)

)
cos(C(t − c)) − �Y

(
X(t),Y(t),Z(t)

)
sin(C(t − c)),

(4.11)

Fy(t, x(t), y(t), z(t))

= �X
(
X(t),Y(t),Z(t)

)
sin(C(t − c)) + �Y

(
X(t),Y(t),Z(t)

)
cos(C(t − c)),

(4.12)

and
Fz(t, x(t), y(t), z(t)) = �Z

(
X(t),Y(t),Z(t)

)
, (4.13)

where

X(t) : = x(t) cos(C(t − c)) + y(t) sin(C(t − c)) ≡ a1 cos(c) + a2 sin(c),

Y(t) : = −x(t) sin(C(t − c)) + y(t) cos(C(t − c)) ≡ a1 sin(c) − a2 cos(c),

Z(t) : = z(t) ≡ z0.
(4.14)

After picking a certain streamline (x(t), y(t), z(t)) of the basic flow (u, v, w) (by
assigning initial values z0, a1, a2 for x(t), y(t), z(t) in (4.10)) we choose � in the
expression of the phase F of the perturbation such that

�X (a1 cos(c) + a2 sin(c), a1 sin(c) − a2 cos(c), z0) = 0,

�Y (a1 cos(c) + a2 sin(c), a1 sin(c) − a2 cos(c), z0) = 0,

�Z (a1 cos(c) + a2 sin(c), a1 sin(c) − a2 cos(c), z0) = 0.

(4.15)
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Inserting the streamlines (4.10) of the basic flow

u(x, y, z) = − y f (x2 + y2)√
ρ(z)

, v(x, y, z) = x f (x2 + y2)√
ρ(z)

, w(x, y, z) ≡ 0

into the system (4.4) we obtain (taking also into account the choice (4.15)) that the
amplitude triple (A1, A2, A3) satisfies the homogeneous system

⎛
⎜⎜⎜⎜⎝

d
dt

(
A1(t, x(t), y(t), z(t)

)

d
dt

(
A2(t, x(t), y(t), z(t)

)

d
dt

(
A3(t, x(t), y(t), z(t)

)

⎞
⎟⎟⎟⎟⎠ = M(t)

⎛
⎜⎜⎜⎜⎝

A1(t, x(t), y(t), z(t)

A2(t, x(t), y(t), z(t)

A3(t, x(t), y(t), z(t)

⎞
⎟⎟⎟⎟⎠ (4.16)

where

M(t) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2x(t)y(t) f ′(c)√
ρ(z0)

− f (c)+2y2(t) f ′(c)√
ρ(z0)

y(t)ρ′(z0) f (c)

2ρ(z0)
3
2

f (c)+2x2(t) f ′(c)√
ρ(z0)

2x(t)y(t) f ′(c)√
ρ(z0)

−x(t)ρ′(z0) f (c)

2ρ(z0)
3
2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.17)

More explicitly, denoting Ai (t, x(t), y(t), z(t)) = Ãi (t) we obtain from the previous
system that

Ã3(t) = Ã3(0) =: β for all t(
Ã′
1(t)

Ã′
2(t)

)
= M(t)

(
Ã1(t)
Ã2(t)

)
+

(−αβ y(t)
αβx(t)

)
,

(4.18)

where

M(t) =
⎛
⎝

2x(t)y(t) f ′(c)√
ρ(z0)

f (c)+2y2(t) f ′(c)√
ρ(z0)

− f (c)+2x2(t) f ′(c)√
ρ(z0)

−2x(t)y(t) f ′(c)√
ρ(z0)

⎞
⎠ (4.19)

and α := ρ′(z0) f (c)

2ρ(z0)
3
2
. We will prove in the sequel that Ã1, Ã2 are bounded in t . We will

be concerned first with the homogeneous system

(
Ã′
1(t)

Ã′
2(t)

)
= M(t)

(
Ã1(t)
Ã2(t)

)
, (4.20)
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which can be equivalently written as

d

dt

(
Ã1(t)e

− ∫ t
0

2x(s)y(s) f ′(c)√
ρ(z0)

ds
)

= ( f (c) + 2y2(t) f ′(c))√
ρ(z0)

Ã2(t)e
− ∫ t

0
2x(s)y(s) f ′(c)√

ρ(z0)
ds

d

dt

(
Ã2(t)e

∫ t
0

2x(s)y(s) f ′(c)√
ρ(z0)

ds
)

= − ( f (c) + 2x2(t) f ′(c))√
ρ(z0)

Ã1(t)e

∫ t
0

2x(s)y(s) f ′(c)√
ρ(z0)

ds
.

(4.21)
Denoting

Ā1 := Ã1(t)e
− ∫ t

0
2x(s)y(s) f ′(c)√

ρ(z0)
ds

, Ā2 := Ã2(t)e

∫ t
0

2x(s)y(s) f ′(c)√
ρ(z0)

ds
, (4.22)

we see that the previous system can be written as

d Ā1

dt
= ( f (c) + 2y2(t) f ′(c))√

ρ(z0)
e
− ∫ t

0
4x(s)y(s) f ′(c)√

ρ(z0)
ds

Ā2

d Ā2

dt
= − ( f (c) + 2x2(t) f ′(c))√

ρ(z0)
e

∫ t
0

4x(s)y(s) f ′(c)√
ρ(z0)

ds
Ā1.

(4.23)

Eliminating Ā2 from above we get that Ā1 satisfies the equation

d

dt

⎛
⎜⎝

√
ρ(z0)e

∫ t
0

4x(s)y(s) f ′(c)√
ρ(z0)

ds

f (c) + 2y2(t) f ′(c) · d Ā1

dt

⎞
⎟⎠ = − ( f (c) + 2x2(t) f ′(c))√

ρ(z0)
e

∫ t
0

4x(s)y(s) f ′(c)√
ρ(z0)

ds
Ā1,

(4.24)
while, Ā2 verifies

d

dt

⎛
⎜⎝

√
ρ(z0)e

− ∫ t
0

4x(s)y(s) f ′(c)√
ρ(z0)

ds

f (c) + 2x2(t) f ′(c) · d Ā2

dt

⎞
⎟⎠ = − ( f (c) + 2y2(t) f ′(c))√

ρ(z0)
e
− ∫ t

0
4x(s)y(s) f ′(c)√

ρ(z0)
ds

Ā2.

(4.25)
Upon setting

p1(t) :=
√

ρ(z0)e

∫ t
0

4x(s)y(s) f ′(c)√
ρ(z0)

ds

f (c) + 2y2(t) f ′(c)
, q1(t) := ( f (c) + 2x2(t) f ′(c))√

ρ(z0)
e

∫ t
0

4x(s)y(s) f ′(c)√
ρ(z0)

ds
,

(4.26)
we obtain

d2 Ā1

dt2
+ p′

1(t)

p1(t)

d Ā1

dt
+ q1(t)

p1(t)
Ā1 = 0. (4.27)

With the substitution
Â1 := √

p1(t) Ā1 (4.28)
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we can convert (4.27) into the Hill’s equation

d2 Â1

dt2
+ Q1(t) Â1 = 0 (4.29)

for

Q1(t) = −1

2
· d

dt

(
p′
1(t)

p1(t)

)
− 1

4

(
p′
1(t)

p1(t)

)2

+ q1(t)

p1(t)
.

Moreover, setting

p2(t) :=
√

ρ(z0)e
− ∫ t

0
4x(s)y(s) f ′(c)√

ρ(z0)
ds

f (c) + 2x2(t) f ′(c) , q2(t) := ( f (c) + 2y2(t) f ′(c))√
ρ(z0)

e
− ∫ t

0
4x(s)y(s) f ′(c)√

ρ(z0)
ds

,

(4.30)
we obtain

d2 Ā2

dt2
+ p′

2(t)

p2(t)

d Ā2

dt
+ q2(t)

p2(t)
Ā2 = 0. (4.31)

Substituting
Â2 := √

p2(t) Ā2 (4.32)

we can convert (4.31) into the Hill’s equation

d2 Â2

dt2
+ Q2(t) Â2 = 0 (4.33)

for

Q2(t) = −1

2
· d

dt

(
p′
2(t)

p2(t)

)
− 1

4

(
p′
2(t)

p2(t)

)2

+ q2(t)

p2(t)
.

Answering the question of boundedness of solutions to the Hill’s equation is a result
of Zukovskii which we formulate below and refer the reader to [3,56] for details.

Theorem 4.1 [56] Assume that t → Q(t) is a continuous periodic function (of period
L). Then all solutions y of the Hill’s equation

y′′ + Q(t)y = 0

are bounded if there exists some n ∈ N with the property that the inequality

n2
(π

L

)2 ≤ Q(t) ≤ (n + 1)2
(π

L

)2
(4.34)

holds for all t .
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Lemma 4.2 Let L := π
√

ρ(z0)
f (c) be the (principal) period of Q1 and choose constants

a1, a2 in formula (4.10) such that

(a2
1 + a2

2) · f ′(c)
f (c)

≤ 1

5
.

Then the inequality (π

L

)2
< Q1(t) < 3

(π

L

)2
(4.35)

holds for all t , provided the functions f and f ′ are positive.

Proof Taking into account formula (4.26) we obtain (after tedious calculations and
some algebraic manipulations) that

Q1(t) = f 2(c)

ρ(z0)

⎡
⎣1 + 2y2(t)

f ′(c)
f (c)

+ 4y4(t)

(
f ′(c)
f (c)

)2

· 1

1 + 2y2(t) f ′(c)
f (c)

⎤
⎦

+ f 2(c)

ρ(z0)
·
2x2(t) f ′(c)

f (c)

[
1 + 8y4(t)

(
f ′(c)
f (c)

)2]

(
1 + 2y2(t) f ′(c)

f (c)

)2 .

(4.36)

To check condition (4.34) from Theorem 4.1 we remark that Q1 is periodic of period

π
√

ρ(z0)
f (c) =: L . Acting on the assumption that f and f ′ are positive functions we

clearly have that

Q1(t) >
f 2(c)

ρ(z0)
=

(π

L

)2
. (4.37)

Moreover, we also see that for all t holds

Q1(t) <
f 2(c)

ρ(z0)

[
1 + 2y2(t)

f ′(c)
f (c)

+ 4y4(t)

(
f ′(c)
f (c)

)2

+ 4x2(t)
f ′(c)
f (c)

]
, (4.38)

where, to obtain the last term in the bracket above, we have used that

1 + 8y4(t)

(
f ′(c)
f (c)

)2

< 2

(
1 + 2y2(t)

f ′(c)
f (c)

)2

.

In the quest to establish the bound on the right hand side of (4.35) we will seek to
find a1, a2 (from the formula (4.10) defining the trajectories of the basic flow) such
that the inequalities

y2(t)
f ′(c)
f (c)

≤ 1

5
and x2(t)

f ′(c)
f (c)

≤ 1

5
(4.39)
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hold for all t . From (4.38) and (4.39) we conclude

Q1(t) <
f 2(c)

ρ(z0)

(
1 + 2

5
+ 4

25
+ 4

5

)
< 3 · f 2(c)

ρ(z0)
. (4.40)

Inequalities (4.37) and (4.40) can be restated as

(π

L

)2
< Q1(t) < 3

(π

L

)2
for all t,

that is, we have proved (4.35) which guarantees the boundedness of solutions to (4.29).
To ensure that (4.39) holds we impose the conditions

sup
t∈R

x2(t)
f ′(c)
f (c)

≤ 1

5
, sup

t∈R
y2(t)

f ′(c)
f (c)

≤ 1

5
, (4.41)

Taking into account that

2x2(t) = a2
1 + a2

2 + (a2
1 − a2

2) cos

(
2 f (c)√
ρ(z0)

t

)
+ a1a2 sin

(
2 f (c)√
ρ(z0)

t

)
,

2y2(t) = a2
1 + a2

2 + (a2
2 − a2

1) cos

(
2 f (c)√
ρ(z0)

t

)
− a1a2 sin

(
2 f (c)√
ρ(z0)

t

)
,

(4.42)

we obtain

sup
t∈R

x2(t)
f ′(c)
f (c)

= sup
t∈R

y2(t)
f ′(c)
f (c)

=
a2
1 + a2

2 +
√

(a2
1 − a2

2)
2 + a2

1a2
2

2
· f ′(c)

f (c)
=: M .

(4.43)

Hence, inequalities (4.41) are equivalent with

M ≤ 1

5
. (4.44)

Under the condition

(a2
1 + a2

2)
f ′(c)
f (c)

≤ 2

5
,

we can square in inequality (4.44)and obtain that (4.44) is satisfied precisely when

(a2
1 + a2

2) · f ′(c)
f (c)

≤ 2

5

4(a2
1 + a2

2) · f ′(c)
f (c)

≤ 4

5
+ 15a2

1a2
2

(
f ′(c)
f (c)

)2 (4.45)
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where, we recall, c = a2
1 + a2

2 . Obviously, any (a1, a2) with (a2
1 + a2

2) · f ′(c)
f (c) ≤ 1

5 also
satisfies the second inequality in the latter system. 
�

Analogously, we have

Lemma 4.3 Let a1, a2 from formula (4.10) be such that

(a2
1 + a2

2) · f ′(c)
f (c)

≤ 1

5
.

Then the inequality (π

L

)2
< Q2(t) < 3

(π

L

)2
(4.46)

holds for all t , provided the functions f and f ′ are positive.

Proof A computation similar to the one in Lemma 4.2 shows that

Q2(t) = f 2(c)

ρ(z0)

⎡
⎣1 + 2x2(t)

f ′(c)
f (c)

+ 4x4(t)

(
f ′(c)
f (c)

)2

· 1

1 + 2x2(t) f ′(c)
f (c)

⎤
⎦

+ f 2(c)

ρ(z0)
·
2y2(t) f ′(c)

f (c)

[
1 + 8x4(t)

(
f ′(c)
f (c)

)2]

(
1 + 2x2(t) f ′(c)

f (c)

)2 .

(4.47)

Undertaking now an analysis similar to the one in Lemma 4.3 by interchanging the
role x(t) and y(t) we obtain the claim (4.46). 
�

Remark 4.4 Lemma (4.2) and Lemma 4.3 show via Theorem 4.1 that all the solutions
of the two Hill equations (4.29) and (4.33) are bounded. Availing now of the bound-
edness of the functions p1, p2, t → ∫ t

0
2x(s)y(s) f ′(c)√

ρ(z0)
ds and of the formulas (4.22),

(4.28),(4.32) we infer now that all solutions

(
Ã1

Ã2

)
of the homogeneous system (4.20)

are bounded.

Lemma 4.5 Let t → (x(t), y(t), z(t)) be trajectories of the basic flow (3.1) given by
(4.10) where the coefficients a2, a2 are chosen so that (a2

1 + a2
2) · f ′(c)

f (c) ≤ 1
5 , where,

c = a2
1 + a2

2 . Then all solutions of the system (4.18), and thus, all solutions of the
system (4.16) are bounded.

Proof We will seek to find a particular solution

(
Ã1

Ã2

)
p

of the system (4.18) that is

bounded. Then, any solution of (4.18) is bounded since it is obtained as the sum
between a solution of the homogeneous system (4.20) and the particular solution
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(
Ã1

Ã2

)
p

. To this end, we make the ansatz

(
Ã1

Ã2

)
p

=
⎛
⎝ A cos

(
f (c)t√
ρ(z0)

)
+ B sin

(
f (c)t√
ρ(z0)

)

−B cos
(

f (c)t√
ρ(z0)

)
+ A sin

(
f (c)t√
ρ(z0)

)
⎞
⎠ , (4.48)

whereA,B are to be determined so that

(
Ã1

Ã2

)
p

satisfies (4.18). Routine calculations

show that the first equation of the system (4.18) can be written as

[
f ′(c)√
ρ(z0)

(
(a2

1 − a2
2 + c)A + 2a1a2B

)
+ 2 f (c)√

ρ(z0)
A

]
sin

(
f (c)t√
ρ(z0)

)

+
[

f ′(c)√
ρ(z0)

(
(a2

1 − a2
2 − c)B − 2a1a2A

)
− 2 f (c)√

ρ(z0)
B

]
cos

(
f (c)t√
ρ(z0)

)

= αβ y(t) = αβ

[
a1 sin

(
f (c)t√
ρ(z0)

)
− a2 cos

(
f (c)t√
ρ(z0)

)]
,

(4.49)

which, after identification of the coefficients of sin
(

f (c)t√
ρ(z0)

)
and cos

(
f (c)t√
ρ(z0)

)
, respec-

tively, is equivalent with the system in the unknowns A,B

2a2
1 f ′(c) + 2 f (c)√

ρ(z0)
A + 2a1a2 f ′(c)√

ρ(z0)
B = αβa1

2a1a2 f ′(c)√
ρ(z0)

A + 2a2
2 f ′(c) + 2 f (c)√

ρ(z0)
B = αβa2.

(4.50)

Analogously, we find that the second equation of (4.18) becomes

[
f ′(c)√
ρ(z0)

(
(a2

1 − a2
2 − c)B − 2a1a2A

)
− 2 f (c)√

ρ(z0)
B

]
sin

(
f (c)t√
ρ(z0)

)

+
[

f ′(c)√
ρ(z0)

(
(a2

2 − a2
1 − c)A − 2a1a2B

)
− 2 f (c)√

ρ(z0)
A

]
cos

(
f (c)t√
ρ(z0)

)

= −αβx(t) = −αβ

[
a1 cos

(
f (c)t√
ρ(z0)

)
+ a2 sin

(
f (c)t√
ρ(z0)

)]
.

(4.51)

Identifying the coefficients of sin
(

f (c)t√
ρ(z0)

)
and cos

(
f (c)t√
ρ(z0)

)
, respectively, we obtain

that A and B satisfy the system

2a1a2 f ′(c)√
ρ(z0)

A + 2a2
2 f ′(c) + 2 f (c)√

ρ(z0)
B = αβa2

2a2
1 f ′(c) + 2 f (c)√

ρ(z0)
A + 2a1a2 f ′(c)√

ρ(z0)
B = αβa1,

(4.52)
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which coincides with the system (4.50). From the previous considerations we can draw

the conclusion that the ansatz

(
Ã1

Ã2

)
p

from (4.48) represents a particular solution of

(4.18) if and only (A,B) is a solution of (4.52). We remark that the determinant

of the matrix of the system in (4.52) equals −4 f 2(c)−4c f (c) f ′(c)
ρ(z0)

< 0 since f (c) and
f ′(c) were assumed to be positive. Hence, there are unique A,B that verify (4.52),
assertion equivalent to the existence of a unique solution to (4.18) of the type (4.48).
Nevertheless, this suffices for our purposes. 
�
We state now the main result on the stability of perturbations along the streamlines of
the basic flow (3.1).

Theorem 4.6 Let us consider the flow

u(x, y, z) = − y f (x2 + y2)√
ρ(z)

, v(x, y, z) = x f (x2 + y2)√
ρ(z)

and w(x, y, z) = 0,

(4.53)
with positive f and f ′ and let

x(t) = a1 cos

(
f (c)√
ρ(z0)

t

)
+ a2 sin

(
f (c)√
ρ(z0)

t

)
,

y(t) = a1 sin

(
f (c)√
ρ(z0)

t

)
− a2 cos

(
f (c)√
ρ(z0)

t

)
,

z(t) = z0,

(4.54a)

be trajectories of (4.53), where a1, a2 satisfy

(a2
1 + a2

2) · f ′(c)
f (c)

≤ 1

5
. (4.54b)

Then, regardless of the density ρ, the flow (4.53) is (linearly) stable under the short-
wavelength perturbations (4.1) along the streamlines (4.54) provided the phase F of
the perturbation is constant or satisfies (4.15).

4.3 On the stability of some particular flows

We address now the stability issue of the basic flow (3.1) for the situation when the
function f from the definition of u, v is equal to 1. In this case it is possible to derive
explicit formulas for the trajectories of the amplitudes of the trajectories of the basic
flow. More precisely, we easily see that the amplitudes Ã1, Ã2, Ã3 verify the system

Ã3(t) ≡ Ã3(0) =: β,

Ã′
1(t) = 1√

ρ(z0)
Ã2(t) − αβ y(t),

Ã′
2(t) = − 1√

ρ(z0)
Ã1(t) + αβx(t),

(4.55)
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where α := ρ′(z0)
2ρ(z0)

3
2
. From (4.18) and appealing also to (4.9) we find that

Ã′′
1(t) = − 1

ρ(z0)
Ã1(t) + αβ√

ρ(z0)
x(t) − αβ y′(t) = − 1

ρ(z0)
Ã1(t),

Ã′′
2(t) = − 1

ρ(z0)
Ã2(t) + αβ√

ρ(z0)
y(t) + αβx ′(t) = − 1

ρ(z0)
Ã2(t).

(4.56)

Therefore, there are constants γ1, γ2 and θ1, θ2 such that

Ã1(t) = γ1 cos

(
t√

ρ(z0)

)
+ γ2 sin

(
t√

ρ(z0)

)

Ã2(t) = θ1 cos

(
t√

ρ(z0)

)
+ θ2 sin

(
t√

ρ(z0)

)
,

(4.57)

fromwhichwe see that Ã1 and Ã2 are clearly bounded.We therefore have the following
result.

Theorem 4.7 The flow

u(x, y, z) = −y√
ρ(z)

, v(x, y, z) = x√
ρ(z)

and w(x, y, z) = 0 (4.58)

is stable under the short-wavelength perturbations (4.1) along the streamlines of the
basic flow

x(t) = a1 cos

(
t√

ρ(z0)

)
+ a2 sin

(
t√

ρ(z0)

)
,

y(t) = a1 sin

(
t√

ρ(z0)

)
− a2 cos

(
t√

ρ(z0)

)
,

z(t) = z0,

(4.59)

provided the phase F of the perturbation (4.1) is constant or satisfies (4.15).

Acknowledgements The author would like to thank two anonymous referees whose suggestions signif-
icantly improved the paper. The support of the Austrian Science Fund (FWF) through research grant P
33107-N is gratefully acknowledged.

Funding Open access funding provided by University of Vienna.

Data availability My manuscript has no associated data.

Declarations

Conflict of interest The author states that there is no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123



Some explicit solutions of the three-dimensional... 1671

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bayly, B.J.: Three-dimensional instabilities in quasi-two dimensional inviscid flows. In: Miksad, R.W.,
et al. (eds.) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)

2. Berti,M.,Montalto, R.:Quasi-periodic standingwave solutions of gravity-capillarywaterwaves.Mem.
Am. Math. Soc. 263(1273), v+171 pp (2020)

3. Cesari, L.: Asymptotic behavior and stability problems in ordinary differential equations. In: Hal-
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