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Abstract
This paper establishes extension results for harmonic functions which vanish on a
conical surface. These are based on a detailed analysis of expansions for the Green
function of an infinite cone.

Mathematics Subject Classification 31B05

1 Introduction

The Schwarz reflection principle gives a simple formula for extending a harmonic
function h on a domain ω ⊂ R

N through a relatively open subset E of ∂ω on which h
vanishes, provided E lies in a hyperplane. A corresponding reflection formula holds
when E lies in a sphere. When N ≥ 3 and N is odd, Ebenfelt and Khavinson [6]
(cf. Chapter 12 of [16]) have shown that a point to point reflection law can only hold
when the containing real analytic surface is either a hyperplane or a sphere. Thus more
sophisticated methods are needed for extending a harmonic function which vanishes
on any other type of set E .

This is the background to the following problem,whichwas posed byDimaKhavin-
son at various international conferences: if h is harmonic on an infinite cylinder and
vanishes on the boundary, does it extend harmonically to all of R

N ? Of course,
in the planar case, where h is harmonic on an infinite strip, the answer is read-
ily seen to be positive by repeated application of the Schwarz reflection principle.
In higher dimensions the problem was eventually also shown to have an affirma-
tive answer [7] by analysis of the Green function of the cylinder. Subsequently, the
authors investigated extension properties of harmonic functions on an annular cylinder
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{x ′ ∈ R
N−1 : a <

∥
∥x ′∥∥ < b} × R that vanish on either one or both of the cylindri-

cal boundary components (see [8,10,11]). The domain reflection results that emerged
were noteworthy, given that reflection formulae for the harmonic functions themselves
fail to exist. This raises the following general question.

Problem 1 For a domain ω in R
N and a subset E of ∂ω identify a larger domain

ωE such that each harmonic function on ω which vanishes continuously on E has a
harmonic extension to ωE .

Naturally we should assume that E is contained in a real-analytic surface, but the
question is interesting even in the particular casewhere E is contained in the zero set of
a polynomial. The cylindrical case corresponds to the polynomial (x ′, xN ) �→ ∥

∥x ′∥∥2−
1. The next most natural case to consider is a cone. The analogue of Khavinson’s
question above would then be: if h is harmonic on an infinite cone and vanishes on
the boundary, does h extend harmonically to all of RN , except for the negative axis of
the cone? Again, in the planar case, such extension follows by repeated application of
the Schwarz reflection principle.

A typical point of RN (N ≥ 3) will be denoted by x = (x ′, xN ), where x ′ ∈ R
N−1

and xN ∈ R, and we will write θx = cos−1(xN / ‖x‖) when x 	= 0. Let 0 < θ∗ < π .
We will show that harmonic functions h on the infinite cone

� = �(θ∗) = {x ∈ R
N \{0} : θx < θ∗}

that vanish on ∂� have an extension to the set

�(π) = {x ∈ R
N \{0} : θx < π} = R

N \({0′} × (−∞, 0]).

In fact, it is unnecessary to require that h vanishes at 0.

Theorem 1 Let 0 < θ∗ < π . If h is a harmonic function on �(θ∗) that continuously
vanishes on ∂�(θ∗)\{0}, then h has a harmonic extension to �(π).

The proof of Theorem 1 is technically more challenging than the corresponding
result for the cylinder. However, it also yields tools applicable to reflection results for
functions that are harmonic on a domain of the form

�(θ0, θ∗) = {x ∈ R
N \{0} : θ0 < θx < θ∗}

and vanish on ∂�(θ∗). Strikingly, a dichotomy emerges between the cases where
θ∗ ≤ π/2 and θ∗ > π/2 , as we will now see.

Theorem 2 Let 0 ≤ θ0 < θ∗ ≤ π/2. If h is a harmonic function on the domain
�(θ0, θ∗) that continuously vanishes on ∂�(θ∗)\{0} , then h has a harmonic extension
to the domain {x ∈ R

N \{0} : θ0 < θx < 2θ∗ − θ0}.
Theorem 3 Let 0 ≤ θ0 < θ∗ < π , where θ∗ > π/2. If h is a harmonic function on the
domain �(θ0, θ∗) that continuously vanishes on ∂�(θ∗)\{0}, then h has a harmonic
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Harmonic extension through conical surfaces 1595

extension to the domain
{

x ∈ R
N \{0} : θ0 < θx and tan

θx

2
tan

θ0

2
<

(

tan
θ∗
2

)2
}

.

The conditions arising in Theorems 2 and 3, and their sharpness, will be discussed
in Sect. 2. Theorems 1–3 answer particular cases of Questions 4 and 5 in [9]. Theorem
3 also has the following immediate corollary.

Corollary 4 Let π/2 ≤ θ∗ < π , and suppose that h is a harmonic function on the
domain �(0, θ∗) that continuously vanishes on ∂�(θ∗)\{0}. Then h has a harmonic
extension to the domain

(

R
N−1\{0′})× R.

We now have a reasonably complete set of harmonic extension results for conical
surfaces to complement those known for cylinders. Our hope is that these will suggest
further steps towards addressing the broader question in Problem 1.

The extension of harmonic functions through conical surfaces is obviously related
to extension properties of the Green function for a cone, and harmonic functions on
conical domains are naturally related to Legendre functions. The plan of the paper is
thus as follows. In Sect. 3 we assemble and develop some relevant material concerning
Legendre functions. This is subsequently used, in conjunctionwith contour integration,
to establish an expansion of the fundamental function that is adapted to the geometry
of cones, and then two different expansions for the Green function of the cone �(θ∗).
The first of these latter expansions is used to establish the second and also has later
application. The second yields extension properties of the Green function that are used
in proving Theorem 1. Theorems 2 and 3 rely on both Theorem 1 and further extension
properties of the Green function. These latter properties are established using bounds
for ratios of conical functions that may be of independent interest.

2 Sharpness of results

The domain of extension in Theorem 2 is formed by angular reflection. This is natural,
since in the planar analogue of the result the function h is harmonic in an angle and
would extend to an angle of twice the aperture by Schwarz reflection. The sharpness
of this result in higher dimensions is demonstrated by the following example.

Example 1 Let N = 4 and 0 < θ0 < θ∗ < π , where 2θ∗ − θ0 < π , and define the
planar angle

ω(θ) = {(s, t) ∈ R
2 : s > 0 and t > ‖(s, t)‖ cos θ} (0 < θ < π).

Further, let u be the Green potential inω(θ∗) of a dense sum of point masses on the half
line ∂ω(θ0)∩ω(θ∗), and extend u to ω(2θ∗ − θ0) by the Schwarz reflection principle.
The function

(x ′, x4) �→ ∥
∥x ′∥∥−1

u(
∥
∥x ′∥∥ , x4)
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1596 S. J. Gardiner, H. Render

is, by computation of the Laplacian, harmonic on �(2θ∗ − θ0)\�(θ0), and it vanishes
on ∂�(θ∗)\{0}. It cannot be extended as a harmonic function because it is unbounded
near every point of ∂�(θ0) ∪ ∂�(2θ∗ − θ0).

Surprisingly, however, when θ∗ > π/2 and 2θ∗ − θ0 < π the above example no
longer gives a sharp bound for how far h can be extended. To compare the domains
of extension in Theorems 2 and 3 we note that, if 0 ≤ θ0 < θ∗ < θx < π , where
θ∗ > π/2, then

θ0 + θx ≤ π �⇒ tan
θx

2
tan

θ0

2
<

(

tan
θ∗
2

)2

,

tan
θx

2
tan

θ0

2
≤
(

tan
θ∗
2

)2

�⇒ θ0 + θx < 2θ∗, (1)

where the latter inequality follows from the observation that

tan(θx/2)

tan(θ∗/2)
tan(θ0/2)

tan(θ∗/2)
= exp

(∫ θx

θ∗
csc θ dθ −

∫ θ∗

θ0

csc θ dθ

)

≥ exp

(∫ θ∗

2θ∗−θx

csc θ dθ −
∫ θ∗

θ0

csc θ dθ

)

= tan(θ0/2)

tan (θ∗ − θx/2)
.

(By csc we mean 1/ sin.)
The sharpness of Theorem 3 is shown by the next example.

Example 2 Let N = 3 and 0 < θ0 < θ∗ < π , let y = (sin θ0, 0, cos θ0) and wθ =
(sin θ, 0, cos θ), and let S denote the unit sphere in R

3. The Green function Gθ∗ for
the Laplace-Beltrami operator on S ∩ �(θ∗) satisfies

Gθ∗(wθ , y) = log

∣
∣tan2(θ∗/2) − tan(θ/2) tan(θ0/2)

∣
∣

|tan(θ/2) − tan(θ0/2)| tan(θ∗/2)
.

(See, for example, formula (13) in [12].) Hence the function defined by h(x) =
Gθ∗(x/ ‖x‖ , y), which satisfies the hypotheses of Theorem 3, has a singularity at
wθ if tan(θ/2) tan(θ0/2) = (tan(θ∗/2))2.

Let T denote the stereographic projection thatmaps a typical point x of S\{(0′,−1)}
to the point where the line through (0′,−1) and x meets the plane R

2 × {1}. Then
any point of S ∩ ∂�(θ) is mapped by T to a point of the form (y′, 1), where

∥
∥y′∥∥ =

2 tan(θ/2). Hence, in Theorem 3, the intersection of the enlarged domain with S is
mapped by T to an annulus, of which the outer boundary circle is the image of the
inner boundary circle under inversion in T (S ∩ ∂�(θ∗)).
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Harmonic extension through conical surfaces 1597

3 Preparatorymaterial

Theultraspherical (orGegenbauer) polynomialsC (λ)
n , whereλ > 0 andn = 0, 1, 2, ...,

are defined by the equation

(1 − 2tξ + ξ2)−λ =
∞
∑

n=0

C (λ)
n (t)ξn (ξ ∈ (−1, 1), t ∈[−1, 1]) (2)

(see (4.7.23) in Szegö [21], where the notation P(λ)
n is used instead). They satisfy the

differential equation

(1 − t2) f ′′(t) − (2λ + 1)t f ′(t) + n(n + 2λ) f (t) = 0 (3)

and clearly

C (λ)
n (−t) = (−1)nC (λ)

n (t) (4)

(see (4.7.4) and (4.7.5) in [21]). We will also need the fact that

∣
∣
∣C (λ)

n (t)
∣
∣
∣ ≤ C (λ)

n (1) =
(

n + 2λ − 1
n

)

(|t | ≤ 1) (5)

(see Lemma 6(i) of [7]).
The Legendre (or Ferrers) functions of the first and second kinds, Pμ

ν and Qμ
ν ,

respectively, are defined on the interval (−1, 1) by equations (14.3.1) and (14.3.2) of
[19]. (That source uses Roman type, Pμ

ν and Qμ
ν , to distinguish functions defined on

(−1, 1) from functions on (1,∞).) They satisfy the equation

(1 − t2) f ′′(t) − 2t f ′(t) +
(

ν(ν + 1) − μ2

1 − t2

)

f (t) = 0 (−1 < t < 1) (6)

(see (14.2.2) in [19]). We collect below some properties of these functions.

Lemma 5 (i) The ultraspherical polynomials are connected to the Legendre func-
tions by the formula

C

(
N−2
2

)

n (t)= 2
N−3
2 


( N−1
2

)


(n + N − 2)

(1 − t2)
N−3
4 
(N − 2)
(n + 1)

P
3−N
2

n+ N−3
2

(t) (|t |<1, n = 0, 1, . . .).

(ii) If μ ∈ R and p ∈ Z, then P−μ
μ+p(t) = (−1)p P−μ

μ+p(−t).
(iii) If μ ∈ R, then

(1 − t2)
d P−μ

ν

dt
(t) = (ν + 1)t P−μ

ν (t) − (μ + ν + 1)P−μ
ν+1(t).
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1598 S. J. Gardiner, H. Render

(iv) If −1 < t < 1, then

(1 − t2)

(

P−μ
ν (t)

d Q−μ
ν

dt
(t) − Q−μ

ν (t)
d P−μ

ν

dt
(t)

)

= 
(ν − μ + 1)


(ν + μ + 1)
, (7)

(1 − t2)

(

P−μ
ν (t)

d

dt
P−μ
ν (−t) − P−μ

ν (−t)
d

dt
P−μ
ν (t)

)

= 2


(ν + μ + 1)
(μ − ν)
.

(8)

(v) [Mehler–Dirichlet formula] If μ ≥ 0, 0 < θ < π and ν ∈ C, then

P−μ
ν (cos θ) =

√
2√

π(sin θ)μ
(μ + 1
2 )

∫ θ

0
cos

((

ν + 1

2

)

t

)

(cos t − cos θ)μ− 1
2 dt .

(9)

In particular, P−μ
−ν−1 = P−μ

ν .

(vi) If μ ≥ 0 and 0 < θ < π , then the function ν �→ P−μ
ν (cos θ) has infinitely many

zeros, all of which are real and simple. The positive zeros form an increasing
sequence (νm) which satisfies νm > μ + m − 1. All the remaining zeros are of
the form {−ν − 1 : ν is a positive zero}.

(vii) If ν ∈ C, then

∣
∣P−μ

ν (cos θ)
∣
∣ ≤ 23/2

√
π

(
sin θ

1 + cos θ

)μ e|Imν|θ


(μ + 1
2 )

(

0 ≤ θ ≤ π

2

)

,

∣
∣P−μ

ν (cos θ)
∣
∣ ≤ 23/2

√
π

(
1 − cos θ

sin θ

)max{μ, 12 } e|Imν|θ


(μ + 1
2 )

(π

2
< θ < π

)

.

(viii) If ν ≥ μ ≥ 0 and −1 < t < 1, then

{

P−μ
ν (t)

}2 +
{
2

π
Q−μ

ν (t)

}2
≤ 4μ

π
(

1 − t2
)max{μ, 12 }

⎧

⎨

⎩



(

ν+μ+1
2

)


(ν − μ + 1)



(

ν−μ
2 + 1

)


(ν + μ + 1)

⎫

⎬

⎭

2

.

(ix) If ν ≥ μ ≥ 0 and −1 < t < 1, then

∣
∣
∣
∣
∣

d

dt

P−μ
ν (t)

(1 − t2)μ/2

∣
∣
∣
∣
∣
≤ 2μ+1

√
π
(

1 − t2
)max{μ+1,μ/2+5/4}


(ν − μ + 1)

(

ν+μ
2 + 1

)


(ν + μ + 1)

(

ν−μ+1
2

) .

(x) If −1 < t < 1 and μ ≥ 0, then

2ν(ν + 1)
∫ 1

t
τ
{

P−μ
ν (τ )

}2
dτ =

(

(1 − t2)
d P−μ

ν

dt

)2

123



Harmonic extension through conical surfaces 1599

+ {P−μ
ν (t)

}2
{

ν(ν + 1)(1 − t2) − μ2
}

. (10)

Proof (i)–(v). See (14.3.21), (14.9.10), (14.10.4), (14.2.4), (14.2.3) and (14.12.1) of
[19].

(vi) It is shown in [17] (cf. Section 238 of [14]) that the function ν �→ P−μ
ν (cos θ)

has infinitely many zeros, all of which are real. The argument in [18] shows that these
zeros are simple and νm > μ + m − 1. (These results are given for the case where
μ > 0, but the arguments extend easily to cover also the case where μ = 0.) The final
assertion of (vi) is a consequence of (v), since P−μ

−ν−1 = P−μ
ν and it follows from (9)

that P−μ
ν 	= 0 when −1 ≤ ν ≤ 0.

(vii) To see that this follows from (v) we note that

∣
∣cos

((

ν + 1
2

)

t
)∣
∣ = 1

2

∣
∣
∣
∣
e

i
(

ν+ 1
2

)

t + e
−i
(

ν+ 1
2

)

t
∣
∣
∣
∣
≤ e|Imν|t ,

(cos t−cos θ)μ− 1
2 ≤ (1 − cos θ)μ− 1

2
(

0≤ t ≤θ, μ≥ 1
2

)

,

and

∫ θ

0
(cos t − cos θ)μ− 1

2 dt =
∫ θ

0

(

2 sin
t + θ

2
sin

θ − t

2

)μ− 1
2

dt

≤ 2μ− 1
2

(min{sin(θ/2), sin θ}) 1
2−μ

∫ θ

0

(
θ − t

π

)μ− 1
2

dt

≤ 2θμ+ 1
2 π

1
2−μ

(sin θ)
1
2−μ

(

0 ≤ μ <
1

2

)

,

since sin φ ≥ 2φ/π on (0, π/2), and sin is concave and satisfies sin(φ/2) ≥ (sin φ)/2
on (0, π). If 0 ≤ θ ≤ π/2, the desired estimate now follows on noting that 1−cos θ =
(

sin2 θ
)

/ (1 + cos θ) . If π/2 < θ < π , we instead note that min{sin(θ/2), sin θ} ≥
(sin θ)/

√
2.

(viii) When μ ≥ 1
2 this follows on combining equations (5) and (19) in Durand [4],

and when 0 ≤ μ < 1
2 we instead use (5) and (23) there.

(ix) This follows on combining the first two lines of (29) with (5) in [4].
(x) This is equivalent to formula (5.3) in [15]. We recall the short proof here for

completeness. Let F(t) denote the right hand side of (10). Then, by (6),

F ′(t) = 2(1 − t2)
d P−μ

ν

dt

{

(1 − t2)
d2P−μ

ν

dt2
− 2t

d P−μ
ν

dt

}

+2P−μ
ν (τ )

d P−μ
ν

dt

{

ν(ν + 1)(1 − t2) − μ2
}

− 2ν(ν + 1)t
{

P−μ
ν (t)

}2

= −2ν(ν + 1)t
{

P−μ
ν (t)

}2
.

We see from (iii) and (vii) that F(t) → 0 as t → 1−, so the result follows. ��
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1600 S. J. Gardiner, H. Render

If x ′, y′ ∈ R
N−1, then we define φx ′,y′ ∈ [0, π ] by the equation

cosφx ′,y′ =
〈

x ′, y′〉

‖x ′‖ ‖y′‖
whenever the denominator is non-zero. We also recall that cos θx = xN / ‖x‖. The
following result shows how some of the above functions relate to harmonicity.

Proposition 6 Let w ∈ C, y′ ∈ R
N−1\{0′} and k ∈ N ∪ {0}. Then the function

h(x) = (sin θx )
3−N
2

ew log‖x‖

‖x‖ N−2
2

P
3−N
2 −k

w− 1
2

(cos θx )C

(
N−3
2

)

k (cosφx ′,y′) (N ≥ 4),

h(x) = ew log‖x‖

‖x‖ 1
2

P−k
w− 1

2
(cos θx ) cos(kφx ′,y′) (N = 3)

is harmonic on �(π) when suitably interpreted on the positive xN -axis.

Proof We will give the details when N ≥ 4 and leave the adjustments required when
N = 3 to the reader. Let r = ‖x‖, θ = θx and φ = φx ′,y′ . Then


h = ∂2h

∂r2
+ N − 1

r

∂h

∂r
+ 1

r2

(

�1 + �2

(sin θ)2

)

h,

where

�1 = 1

(sin θ)N−2

∂

∂θ

{

(sin θ)N−2 ∂

∂θ

}

, �2 = 1

(sin φ)N−3

∂

∂φ

{

(sin φ)N−3 ∂

∂φ

}

.

Since

∂2h

∂r2
+ N − 1

r

∂h

∂r
= h

r2

{

w2 −
(

N − 2

2

)2
}

,

it is enough to show that

(

�1 + �2

(sin θ)2
+ w2 −

(
N − 2

2

)2
){

f (cos θ)

(sin θ)
N−3
2

C

(
N−3
2

)

k (cosφ)

}

= 0,

where f (t) = P
3−N
2 −k

w− 1
2

(t).

Now

d

dφ

{

sinN−3 φ
d

dφ

(

C

(
N−3
2

)

k (cosφ)

)}

= sinN−1 φ
d2C

(
N−3
2

)

k

dφ2 (cosφ)
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Harmonic extension through conical surfaces 1601

−(N − 2) sinN−3 φ cosφ
dC

(
N−3
2

)

k

dφ
(cosφ),

so (3) yields

�2

(

C

(
N−3
2

)

k (cosφ)

)

= −k(k + N − 3)C

(
N−3
2

)

k (cosφ).

Thus it remains to check that

(

�1 − k(k + N − 3)

sin2 θ

)
f (cos θ)

(sin θ)
N−3
2

=
((

N − 2

2

)2

− w2

)

f (cos θ)

(sin θ)
N−3
2

. (11)

Next,

(sin θ)N−2 d

dθ

f (cos θ)

(sin θ)
N−3
2

= 3 − N

2
(sin θ)

N−3
2 cos θ f (cos θ) − (sin θ)

N+1
2 f ′(cos θ).

Thus

(sin θ)
1−N
2

d

dθ

(

(sin θ)N−2 d

dθ

{

f (cos θ)

(sin θ)
N−3
2

})

= f (cos θ)

{

N − 3

2
−
(

N − 3

2

)2

cot2 θ

}

+ {sin2 θ f ′′(cos θ) − 2 cos θ f ′(cos θ)
}

= f (cos θ)

{(
N − 3

2

)2

+ N − 3

2
− w2 + 1

4

}

+ f (cos θ)

sin2 θ
k(k + N − 3),

by (6), and (11) follows.
The above calculation is not valid when θx = 0, or when φx ′,y′ ∈ {0, π}. In the

latter case we can use the continuity of C

(
N−3
2

)

k to see that the set

{x ∈
(

R
N−1\{0}

)

× R : φx ′,y′ = 0 or π}

is a removable singularity for the harmonic function h, by Corollary 5.2.3 of [1]. A
similar argument, combined with Lemma 5(vii), shows that the positive xN -axis is
also removable for h. ��
Corollary 7 Let ν > 0, y′ ∈ R

N−1\{0} and k ∈ N ∪ {0}. Then any function of the
form

x �→ A ‖x‖ν + B ‖x‖2−N−ν

(sin θx )
N−3
2

P
3−N
2 −k

ν+ N−3
2

(cos θx )C

(
N−3
2

)

k (cosφx ′,y′) (N ≥ 4),
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1602 S. J. Gardiner, H. Render

x �→
(

A ‖x‖ν + B ‖x‖−ν−1
)

P−k
ν (cos θx ) cos(kφx ′,y′) (N = 3),

where A, B ∈ R, is harmonic on �(π) when suitably interpreted on the positive
xN -axis.

Proof We put w = ± (ν + N−2
2

)

in the proposition and use the fact that P−μ
λ =

P−μ
−λ−1, by Lemma 5(v). ��

Corollary 8 Let λ, c ∈ R, y ∈ R
N \{0} and k ∈ N ∪ {0}. Then the function

x �→ cos(λ log ‖x‖ + c)

‖x‖ N−2
2 (sin θx )

N−3
2

P
3−N
2 −k

− 1
2+iλ

(cos θx )C

(
N−3
2

)

k (cosφx ′,y′) (N ≥ 4),

x �→ cos(λ log ‖x‖ + c)

‖x‖ 1
2

P−k
− 1

2+iλ
(cos θx ) cos(kφx ′,y′) (N = 3)

is harmonic on �(π) when suitably interpreted on the positive xN -axis.

Proof We put w = iλ in the proposition, take real and imaginary parts of h, and
expand cos(λ log ‖x‖ + c) using the addition formula. ��

Functions of the form P−μ

− 1
2+iλ

are known as conical (or Mehler) functions. We

record below some of their further properties for future reference.

Lemma 9 (i) P−μ

− 1
2+iλ

> 0 and P−μ

− 1
2+iλ

= P−μ

− 1
2−iλ

on (−1, 1).

(ii) If μ ≥ 0, then the function θ �→ P−μ

− 1
2+iλ

(− cos θ)/P−μ

− 1
2+iλ

(cos θ) is decreasing

on (0, π).
(iii) If μ ≥ 0, then the function θ �→ P−μ

− 1
2+iλ

(cos θ) is increasing on (0, π).

Proof (i) This is clear from the Mehler–Dirichlet formula (9).
(ii) Since 
(z) = 
(z), it follows from (8) that the function t �→ P−μ

− 1
2+iλ

(−t)/

P−μ

− 1
2+iλ

(t) is increasing on (−1, 1).

(iii) By definition,

P−μ
ν (t) = 1


(1 + μ)

(
1 − t

1 + t

)μ/2

2F1

(

ν + 1,−ν; 1 + μ; 1 − t

2

)

,

so

P−μ

− 1
2+iλ

(cos θ) = 1


(1 + μ)

(
1 − cos θ

1 + cos θ

)μ/2

2F1

(
1

2
+ iλ,

1

2
− iλ; 1 + μ; 1 − cos θ

2

)

.

Since the coefficients in the expansion

2F1

(
1

2
+ iλ,

1

2
− iλ; 1 + μ; s

)

= 1 +
∣
∣ 1
2 + iλ

∣
∣
2

(1 + μ) 1! s +
∣
∣ 1
2 + iλ

∣
∣
2 ∣
∣ 3
2 + iλ

∣
∣
2

(1 + μ) (2 + μ) 2! s2 + · · ·
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Harmonic extension through conical surfaces 1603

are all positive, we now see that the function θ �→ P−μ

− 1
2+iλ

(cos θ) is the product of

two positive increasing functions on (0, π). ��

In the next three sectionswewill adapt an argument outlined onpp.69–72ofDougall
[3] for R3 to establish expansions of the Green function for �(θ∗) in all dimensions.

4 An expansion of the fundamental function

If x, y ∈ R
N , then we define γx,y ∈ [0, π ] by the equation

cos γx,y = 〈x, y〉
‖x‖ ‖y‖

whenever the denominator is non-zero. Since 〈x, y〉 = 〈

x ′, y′〉 + xN yN and
∥
∥x ′∥∥ =

‖x‖ sin θx , it follows that

cos γx,y = cos θx cos θy + sin θx sin θy cosφx ′,y′ .

It will be convenient to define

R−μ
ν (t) = 
(ν + μ + 1)
(μ − ν)P−μ

ν (−t). (12)

We recall from p. 1938 of [5] (cf. equation (80) in [13]) an addition formula for
P−μ

ν , namely

P−μ
ν (cos γx,y)

(sin γx,y)μ
= 2μ
(μ)

(sin θx sin θy)μ

∞
∑

k=0

(k + μ)

(k + ν + μ + 1)
(k + μ − ν)


(ν + μ + 1)
(μ − ν)

×P−μ−k
ν (cos θx )P−μ−k

ν (cos θy)(−1)kC (μ)
k

(

cosφx ′,y′
)

(13)

when θx +θy < π . (The restriction in [5] thatφx ′,y′ < π maybe removed by dominated
convergence, in the light of (5) and the asymptotic behaviour of P−μ

ν for large μ, as
described in (14.15.1) of [19].) Since

cos γ−x,y = − cos γx,y, sin γ−x,y = sin γx,y ,

and analogous formulae hold for θ−x and φ−x ′,y′ , we can replace x by −x in (13), and
use (4) and (12) to obtain

R−μ
ν (cos γx,y)

(sin γx,y)μ
= 2μ
(μ)

(sin θx sin θy)μ

∞
∑

k=0

(k+μ) R−μ−k
ν (cos θx )P−μ−k

ν (cos θy)C
(μ)
k

(

cosφx ′,y′
)

(14)
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1604 S. J. Gardiner, H. Render

when θ−x + θy < π , that is, when θy < θx . When μ = 0 the appropriate analogue of
(13) may be found by combining equations (14.18.1) and (14.9.3) of [19]. This leads
to the formula

R0
ν (cos γx,y) =

∞
∑

k=0

′ R−k
ν (cos θx )P−k

ν (cos θy) cos
(

kφx ′,y′
)

, (15)

where

∞
∑

k=0

′g(k) = g(0) + 2 {g(1) + g(2) + · · · } .

Equations (14) and (15) are valid when γx,y, θx , θy ∈ (0, π) and θy < θx .
Let

aN = 2
N−3
2 


( N−1
2

)


(N − 2)
(N ≥ 3),

and suppose that ‖y‖ < ‖x‖ and 0 < γx,y < π . Then (2) and parts (i), (ii) of Lemma
5 show that

‖x − y‖2−N = ‖x‖2−N

(

1 − 2
〈x, y〉
‖x‖2 +

(‖y‖
‖x‖

)2
) 2−N

2

= ‖x‖2−N
∞
∑

n=0

(‖y‖
‖x‖

)n

C
( N−2

2 )
n

(

cos γx,y
)

= aN
‖x‖2−N

(sin γx,y)
N−3
2

∞
∑

n=0

(‖y‖
‖x‖

)n

(n + N − 2)


(n + 1)
P

3−N
2

n+ N−3
2

(cos γx,y)

= aN
(‖x‖ ‖y‖) 2−N

2

(sin γx,y)
N−3
2

∞
∑

n=0

(−1)n
(‖y‖

‖x‖
)n+ N−2

2 
(n + N − 2)


(n + 1)
P

3−N
2

n+ N−3
2

(− cos γx,y).

Hence

‖x − y‖2−N = aN
(‖x‖ ‖y‖) 2−N

2

(sin γx,y)
N−3
2

∞
∑

n=0

(−1)n f (n), (16)

where

f (z) = e

(

z+ N−2
2

)

log
( ‖y‖

‖x‖
)


(z + N − 2)


(z + 1)
P

3−N
2

z+ N−3
2

(− cos γx,y).

For any κ ∈ N let c(κ) denote the contour around the boundary of the rectangle

{

z ∈ C : 2 − N

2
< Rez < κ + 1

2
and |Imz| < κ

}

, (17)
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Harmonic extension through conical surfaces 1605

oriented anticlockwise. The function z �→ P
3−N
2

z+ N−3
2

(− cos γx,y) is entire (see (14.3.1)

and §15.2(ii) of [19]). Thus the residue theorem yields

1

2π i

∫

c(κ)

f (z)

cos
(

π
(

z + 1
2

))dz = −1

π

κ
∑

n=0

(−1)n f (n), (18)

since the singularities of the integrand in Z ∩ [ 2−N
2 , 0

)

are removable. By Lemma
5(vii) the above integrand is bounded in modulus by

C(N , γx,y)κ
N−3e−κγx,y

on the top and bottom sides of the contour, and by

C(N , γx,y)κ
N−3eκ log ‖y‖

‖x‖

on the right hand side. Since we can parametrize the reverse path −c(κ) on the left
hand side of the rectangle as (2 − N )/2 + iλ (−κ ≤ λ ≤ κ), we can let κ → ∞ in
(18) to see that

1

2

∫ ∞

−∞

exp
(

iλ log ‖y‖
‖x‖
)

cos
(

π
(

iλ + 3−N
2

))



(

iλ + N−2
2

)



(

iλ + 4−N
2

) P
3−N
2

− 1
2+iλ

(− cos γx,y)dλ =
∞
∑

n=0

(−1)n f (n).

(The convergence of this integral will become clear below.) Since


(1 − z)
(z) = π

sin(π z)
(z /∈ Z) and 
(z) = 
(z), (19)

we see that



(

iλ + N−2
2

)

cos
(

π
(

iλ + 3−N
2

))



(

iλ + 4−N
2

) = 1

π



(

−iλ + N − 2

2

)




(

iλ + N − 2

2

)

= 1

π

∣
∣
∣
∣



(

iλ + N − 2

2

)∣
∣
∣
∣

2

. (20)

Hence

∞
∑

n=0

(−1)n f (n) = 1

π

∫ ∞

0
cos

(

λ log
‖y‖
‖x‖

) ∣
∣
∣
∣



(

iλ + N − 2

2

)∣
∣
∣
∣

2

P
3−N
2

− 1
2+iλ

(− cos γx,y)dλ,
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1606 S. J. Gardiner, H. Render

because P
3−N
2

− 1
2+iλ

(− cos γx,y) is real and symmetric in λ, by Lemma 9(i). Combining

this with (16), we see that

‖x − y‖2−N = aN

π

(‖x‖ ‖y‖) 2−N
2

(sin γx,y)
N−3
2

∫ ∞

0
cos

(

λ log
‖y‖
‖x‖

) ∣
∣
∣
∣



(

iλ + N − 2

2

)∣
∣
∣
∣

2

×P
3−N
2

− 1
2+iλ

(− cos γx,y)dλ. (21)

Noting that

∣
∣
∣
∣



(

iλ + N − 2

2

)∣
∣
∣
∣

2

= 2πλN−3e−πλ(1 + o(1)) (λ → ∞), (22)

by (5.11.9) in [19], we see from Lemma 5(vii) that the integral in (21) converges abso-
lutely even when ‖y‖ = ‖x‖. It follows from dominated convergence and symmetry
that (21) is valid for any non-zero choices of ‖y‖ and ‖x‖, provided γx,y ∈ (0, π).
Since

R
3−N
2

− 1
2+iλ

(cos θx ) =
∣
∣
∣
∣



(

iλ + N − 2

2

)∣
∣
∣
∣

2

P
3−N
2

− 1
2+iλ

(− cos θx ), (23)

by (12) and (20), we see from (21) that

‖x − y‖2−N = aN

π
(‖x‖ ‖y‖) 2−N

2

∫ ∞

0
cos

(

λ log
‖x‖
‖y‖

) R
3−N
2

− 1
2+iλ

(cos γx,y)

(sin γx,y)
N−3
2

dλ.

(24)

We now make the additional assumption that 0 < θy < θx < π , and deal first with
the case where N ≥ 4. We can combine (24) with (14) to see that

‖x − y‖2−N = aN

π

2
N−3
2 


( N−3
2

)

(sin θx sin θy)
N−3
2 (‖x‖ ‖y‖) N−2

2

∫ ∞

0

∞
∑

k=0

cos

(

λ log
‖y‖
‖x‖

)

×
(

k + N − 3

2

)

R
3−N
2 −k

− 1
2 +iλ

(cos θx )P
3−N
2 −k

− 1
2 +iλ

(cos θy)C

(
N−3
2

)

k

(

cosφx ′,y′
)

dλ.

(25)

In view of the positivity of P
3−N
2 −k

− 1
2+iλ

(see Lemma 9(i)) and (5) the summand in (25) is

bounded in absolute value by

(

k + N − 3

2

)

R
3−N
2 −k

− 1
2+iλ

(cos θx )P
3−N
2 −k

− 1
2+iλ

(cos θy)C

(
N−3
2

)

k (1).
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Harmonic extension through conical surfaces 1607

In addition,

aN

π

2
N−3
2 


( N−3
2

)

(sin θx sin θy)
N−3
2 (‖x‖ ‖y‖) N−2

2

∫ ∞

0

∞
∑

k=0

(

k + N − 3

2

)

×R
3−N
2 −k

− 1
2+iλ

(cos θx )P
3−N
2 −k

− 1
2+iλ

(cos θy)C

(
N−3
2

)

k (1)

=
∥
∥
∥
∥
∥

(‖y‖
‖x‖

)1/2
(∥
∥x ′∥∥
‖y′‖ y′, xN

)

−
(‖x‖

‖y‖
)1/2

y

∥
∥
∥
∥
∥

2−N

=
{

2
√‖x‖ ‖y‖ sin θx − θy

2

}2−N

< ∞. (26)

Thus the integral in (25) still converges when we replace the summand by its abso-
lute value. In particular, we can thus allow γx,y to range over (0, π ], by dominated
convergence.

When N = 3 we instead combine (15) with (24) to see that

‖x − y‖−1 = 1

π
√‖x‖ ‖y‖

∫ ∞

0

∞
∑

k=0

′ cos
(

λ log
‖y‖
‖x‖

)

×R−k
− 1

2+iλ
(cos θx )P−k

− 1
2+iλ

(cos θy) cos
(

kφx ′,y′
)

dλ. (27)

The analogue of (26) again holds, so the expansion in (27) has the same absolute
convergence property.

We have established (25) and (27) for any x, y ∈ R
N \{0} satisfying 0 < θy <

θx < π . The integrals and summations are interchangeable, by Fubini’s theorem.

5 An expansion for the Green function

We assume in this section that x, y ∈ R
N \{0} and θx , θy ∈ (0, π).

When N ≥ 4, y ∈ � and x ∈ � we define

hy(x) = aN

π

2
N−3
2 


( N−3
2

)

(sin θx sin θy)
N−3
2 (‖x‖ ‖y‖) N−2

2

∫ ∞

0

∞
∑

k=0

cos

(

λ log
‖y‖
‖x‖

)

×
(

k + N − 3

2

)

P
3−N
2 −k

− 1
2+iλ

(cos θx )P
3−N
2 −k

− 1
2+iλ

(cos θy)

R
3−N
2 −k

− 1
2+iλ

(cos θ∗)

P
3−N
2 −k

− 1
2+iλ

(cos θ∗)

×C

(
N−3
2

)

k

(

cosφx ′,y′
)

dλ. (28)
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1608 S. J. Gardiner, H. Render

Since the function θ → P
3−N
2 −k

− 1
2+iλ

(cos θ) is positive and increasing on (0, π), byLemma

9, we see that

P
3−N
2 −k

− 1
2+iλ

(cos θx )P
3−N
2 −k

− 1
2+iλ

(cos θy)

R
3−N
2 −k

− 1
2+iλ

(cos θ∗)

P
3−N
2 −k

− 1
2+iλ

(cos θ∗)
≤ P

3−N
2 −k

− 1
2+iλ

(cos θy)R
3−N
2 −k

− 1
2+iλ

(cos θ∗)

when θx ≤ θ∗. It now follows from (26), with θx = θ∗, and (5), that the right hand
side of (28) is absolutely convergent, and from dominated convergence that hy is
continuous on �, when suitably interpreted at points where θx = 0. Further, by
Fubini’s theorem and Corollary 8, the function hy satisfies the volume mean value
property in �, and so is harmonic there. It tends to 0 at infinity, by (26) again with
θx = θ∗. Since hy(x) = ‖x − y‖2−N on ∂�, by (25), it follows from the minimum
principle that hy is the greatest harmonic minorant of ‖· − y‖2−N on �. Hence, when
0 < θy < θx < θ∗, it follows from (25) and (28) that the Green function of � is given
by

G�(x, y) = ‖x − y‖2−N − hy(x)

= aN

π

2
N−3
2 


( N−3
2

)

(sin θx sin θy)
N−3
2 (‖x‖ ‖y‖) N−2

2

∫ ∞

0

∞
∑

k=0

cos

(

λ log
‖y‖
‖x‖

)

×
(

k + N − 3

2

)

gk(λ, θx , θy)C

(
N−3
2

)

k

(

cosφx ′,y′
)

dλ, (29)

where

gk(λ, θx , θy) =

⎧

⎪⎪⎨

⎪⎪⎩

R
3−N
2 −k

− 1
2+iλ

(cos θx )

P
3−N
2 −k

− 1
2+iλ

(cos θx )

−
R

3−N
2 −k

− 1
2+iλ

(cos θ∗)

P
3−N
2 −k

− 1
2+iλ

(cos θ∗)

⎫

⎪⎪⎬

⎪⎪⎭

P
3−N
2 −k

− 1
2+iλ

(cos θx )P
3−N
2 −k

− 1
2+iλ

(cos θy).

The integration and summation can be interchanged in (29), by the absolute conver-
gence of the expansions in (25) and (28). If θx < θy , then we replace gk(λ, θx , θy) by
gk(λ, θy, θx ) in (29), by the symmetry of the Green function.

When N = 3 analogous reasoning shows that

G�(x, y) = 1

π
√‖x‖ ‖y‖

∫ ∞

0

∞
∑

k=0

′ cos
(

λ log
‖y‖
‖x‖

)

gk(λ, θx , θy) cos
(

kφx ′,y′
)

dλ

(30)

when θy < θx . This was asserted long ago in p.71(1) of [3], though full details of the
proof were not provided. (That paper used Pμ

ν to denote what today is called P−μ
ν , as

can seen from the definition on p.48.)
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Harmonic extension through conical surfaces 1609

6 A second expansion for the Green function

We denote by nk,m the mth positive zero of the entire function ν �→ P
3−N
2 −k

ν+ N−3
2

(cos θ∗)
and note from Lemma 5(vi) that

nk,m > k + m − 1. (31)

Suppose that ‖y‖ < ‖x‖ and θx , θy ∈ (0, π), and let

f (z) = e

(

z+ N−2
2

)

log
( ‖y‖

‖x‖
) P

3−N
2 −k

z+ N−3
2

(cos θy)

P
3−N
2 −k

z+ N−3
2

(cos θ∗)

×
{

R
3−N
2 −k

z+ N−3
2

(cos θx )P
3−N
2 −k

z+ N−3
2

(cos θ∗) − R
3−N
2 −k

z+ N−3
2

(cos θ∗)P
3−N
2 −k

z+ N−3
2

(cos θx )

}

.

We recall that 
(z) is holomorphic except for simple poles at the nonpositive integers,
and that

Res(
,−p) = (−1)p

p! (p = 0, 1, 2, . . .).

Hence, by (12), the singularities of the function

z �→ R
3−N
2 −k

z+ N−3
2

(cos θ)=
(z + N − 2 + k)
(k − z)P
3−N
2 −k

z+ N−3
2

(− cos θ) (Rez > 2−N )

lie at the integers j satisfying j ≥ k, and the residue at j is then

(−1) j−k

( j − k)! ( j + k + N − 3)!P
3−N
2 −k

j+ N−3
2

(− cos θ).

The singularities of f at such points are thus removable, in view of Lemma 5(ii).
The remaining singularities of f in {Rez > 2 − N } are simple poles at the points
(nk,m)m≥1.

We will apply the residue theorem to the contour integral of f around the boundary
d(κ) of the rectangle

{

z ∈ C : 2 − N

2
< Rez <

π

θ∗

(

κ + N − 2

4
+ k

2

)

− 1

2
and |Imz| < κ

}

,

oriented anticlockwise, where κ ∈ N. We recall from p.291 of [22] that, for fixed
μ ≥ 0 and γ, δ ∈ (0, π) ,

P−μ
ν (cos γ ) =

√
2
(ν + 1)√

νπ sin γ
(ν + μ + 1)

{(

1 + O
( 1

ν

))

cos
((

ν + 1
2

)

γ − μπ
2 − π

4

)

+O
( 1

ν

)

sin
((

ν + 1
2

)

γ − μπ
2 − π

4

)

}
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1610 S. J. Gardiner, H. Render

as |ν| → ∞ in the set {|Arg(ν)| ≤ π − δ}, whence
R−μ

ν (cos θx )P−μ
ν (cos θ∗) − R−μ

ν (cos θ∗)P−μ
ν (cos θx )

= 2

ν
√
sin θx sin θ∗

{(

1 + O

(
1

ν

))

sin

((

ν + 1

2

)

(θ∗ − θx )

)}

as |ν| → ∞ in the set {|Arg(ν)| ≤ π − δ, dist(ν − μ,N) > ε} for any ε > 0, by (12),
(19) and Stirling’s formula. It follows that, for large κ ,

| f (z)| ≤ C(θx , θy, θ∗)
κ

e
κ(θy−θx )+(Rez+ N−2

2 ) log
( ‖y‖

‖x‖
)

on the top and bottom sides of d(κ), and that

| f (z)| ≤ C(θx , θy, θ∗)
κ

e
κ π

θ∗ log
( ‖y‖

‖x‖
)

+(θy−θx )|Imz|

on the right hand side of d(κ). If we temporarily assume that θy < θx , then we can
apply the residue theorem and let κ → ∞ to see that

1

π

∫ ∞

0
cos

(

λ log
‖y‖
‖x‖

)

gk(λ, θx , θy)dλ

=
∞
∑

m=1

e

(

nk,m+ N−2
2

)

log
( ‖y‖

‖x‖
)

P
3−N
2 −k

nk,m+ N−3
2

(cos θy)P
3−N
2 −k

nk,m+ N−3
2

(cos θx )

×
R

3−N
2 −k

nk,m+ N−3
2

(cos θ∗)

∂
∂ν

P
3−N
2 −k

ν+ N−3
2

(cos θ∗)
∣
∣
∣
∣
ν=nk,m

. (32)

For any μ ≥ 0, ν > 0 and τ0 ∈ (−1, 1) satisfying P−μ
ν (τ0) = 0, we know from

§11(I) of [2] (cf. §7 of [17]; the result is stated for the case where μ > 0, but remains
valid also when μ = 0) that

∫ 1

τ0

{

P−μ
ν (τ )

}2
dτ = − (1 − τ 20 )

2ν + 1

∂

∂τ0
P−μ

ν (τ0)
∂

∂ν
P−μ

ν (τ0),

and from (8) that

−(1 − τ 20 )P−μ
ν (−τ0)

∂

∂τ0
P−μ

ν (τ0) = 2


(μ + ν + 1)
(μ − ν)
.

Hence, by (12),

∫ 1

τ0

{

P−μ
ν (τ )

}2
dτ = 2

2ν + 1

∂

∂ν
P−μ

ν (τ0)

R−μ
ν (τ0)

.
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Harmonic extension through conical surfaces 1611

When N ≥ 4 we then see from (29), an interchange of summation and integration,
and (32), that

G�(x, y) = aN2
N−3
2 


( N−3
2

)

(sin θx sin θy)
N−3
2 (‖x‖ ‖y‖) N−2

2

∞
∑

k=0

(

k + N − 3

2

)

C

(
N−3
2

)

k

(

cosφx ′,y′
)

×
∞
∑

m=1

(‖y‖
‖x‖

)nk,m+ N−2
2 P

3−N
2 −k

nk,m+ N−3
2

(cos θy)P
3−N
2 −k

nk,m+ N−3
2

(cos θx )

(

nk,m + N−2
2

)
∫ 1

cos θ∗

{

P
3−N
2 −k

nk,m+ N−3
2

(τ )

}2

dτ

,

(33)

and when N = 3 we use (30) in place of (29) to see that

G�(x, y) = 1√‖x‖ ‖y‖
∞
∑

k=0

′ cos
(

kφx ′,y′
)

×
∞
∑

m=1

(‖y‖
‖x‖

)nk,m+ 1
2 P−k

nk,m
(cos θy)P−k

nk,m
(cos θx )

(

nk,m + 1
2

)
∫ 1

cos θ∗

{

P−k
nk,m (τ )

}2
dτ

. (34)

We temporarily assumed above that θy < θx . If θx < θy , then we define
x∗ = (‖x‖ / ‖y‖)y and y∗ = (‖y‖ / ‖x‖)x . We then observe that G�(x∗, y∗) =
G�(y, x) = G�(x, y), by (29) (or (30)) and the symmetry of the Green function,
to arrive at (33) (or (34)) again. Our earlier assumption that θx , θy are non-zero can
be dropped provided the formulae are suitably interpreted. Thus these formulae hold
when θx 	= θy and ‖y‖ < ‖x‖. The corresponding formulae when ‖x‖ < ‖y‖ are
obtained by interchanging x and y in (33) and (34).

7 Extending the Green function of the cone

In preparation for the main result of this section we note the following lemma.

Lemma 10 If ν ≥ μ ≥ 0, −1 < t0 < 1 and P−μ
ν (t0) = 0, then

∫ 1

t0

{

P−μ
ν (τ )

}2
dτ ≥ (1 − t20 )max{μ, 12 }

22μ−1π(ν + 1
2 )

2

⎧

⎨

⎩



(

ν−μ
2 + 1

)



(

ν+μ+1
2

)

⎫

⎬

⎭

2

.

Proof It follows from parts (x), (iv) and then (viii) of Lemma 5 that
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1612 S. J. Gardiner, H. Render

2

(

ν + 1

2

)2 ∫ 1

t0

{

P−μ
ν (τ )

}2
dτ ≥ 2ν(ν + 1)

∫ 1

t0
τ
{

P−μ
ν (τ )

}2
dτ

=
(

(1 − t20 )
d P−μ

ν

dt
(t0)

)2

=
{

1

Q−μ
ν (t0)


(ν − μ + 1)


(ν + μ + 1)

}2

≥ (1 − t20 )max{μ, 12 }

4μ−1π

⎧

⎨

⎩



(

ν−μ
2 + 1

)



(

ν+μ+1
2

)

⎫

⎬

⎭

2

.

��
Theorem 11 Let y ∈ � and a > 1, and define

ω(1)
y,a =

{

x ∈ �(π) : ‖x‖ sin θx >
a ‖y‖

(min{sin(θ∗/2), sin θ∗})3
}

,

ω(2)
y,a =

{

x ∈ �(π) : ‖y‖ sin θx >
a ‖x‖

(min{sin(θ∗/2), sin θ∗})3
}

.

Then the formulae in (33) and (34) converge absolutely and uniformly to a harmonic
function on ω

(1)
y,a, and when x and y are interchanged they converge absolutely and

uniformly to a harmonic function on ω
(2)
y,a. In particular, G�(·, y) has a harmonic

extension G̃�(·, y) to the set (�\{y}) ∪ ω
(1)
y,a ∪ ω

(2)
y,a. Further,

∣
∣G̃�(x, y)

∣
∣ ≤ C(N , a, θ∗)

(

θ∗ − θy
)

(‖x‖ ‖y‖) N−2
2 (sin θx )N−3

(x ∈ ω(1)
y,a ∪ ω(2)

y,a). (35)

Proof Suppose first that N ≥ 4 and ‖x‖ > a ‖y‖. We assume, without loss of gener-
ality, that 1 < a ≤ 2, and define

a j = 1 + j

4
(a − 1) ( j = 1, 2, 3).

By (31) we see that

nk,m + N − 3

2
>

N − 3

2
+ k,

which will allow us to apply Lemma 10 and some results from Lemma 5.
By Lemma 5(viii),

∣
∣
∣
∣
P

3−N
2 −k

nk,m+ N−3
2

(cos θx )

∣
∣
∣
∣
≤ 2k+ N−3

2

√
π(sin θx )

k+ N−3
2



(

nk,m+k+N−2
2

)


(nk,m − k + 1)



(

nk,m−k
2 + 1

)


(nk,m + k + N − 2)

(36)
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Harmonic extension through conical surfaces 1613

and, by Lemma 10,

I 2k,m ≥ (sin θ∗)2k+N−3

22k+N−4π
(

nk,m + N−2
2

)2

⎧

⎨

⎩



(

nk,m−k
2 + 1

)



(

nk,m+k+N−2
2

)

⎫

⎬

⎭

2

, (37)

where

Ik,m =
(
∫ 1

cos θ∗

{

P
3−N
2 −k

nk,m+ N−3
2

(τ )

}2

dτ

)1/2

.

Using the Legendre duplication formula,


(z)


(

z + 1

2

)

= 21−2z√π
(2z), (38)

we see that

⎧

⎨

⎩



(

nk,m+k+N−2
2

)



(

nk,m−k
2 + 1

)

⎫

⎬

⎭

2

≤ C(N )2−2k 
(nk,m + k + N − 2)


(nk,m − k + 1)
.

Thus, by (36) and (37),

∣
∣
∣
∣
P

3−N
2 −k

nk,m+ N−3
2

(cos θx )

∣
∣
∣
∣

Ik,m
≤ C(N )

(

nk,m + N−2
2

)

(sin θx sin θ∗)k+ N−3
2

. (39)

When θ∗/2 < θy < θ∗ we combine Lemma 5(ix) with the mean value theorem and
use the concavity of sin θ on (0, π) to see that

∣
∣
∣
∣
∣
∣
∣

P
3−N
2 −k

nk,m+ N−3
2

(cos θy)

(

sin θy
) N−3

2 +k

∣
∣
∣
∣
∣
∣
∣

≤ C(N )

(

cos θy − cos θ∗
)

2k

(min{sin(θ∗/2), sin θ∗})N−1+2k

×

(nk,m − k + 1)


(
nk,m+k+N−1

2

)


(nk,m + k + N − 2)

(

nk,m−k+1
2

) .

Using (38) again we see that



(

nk,m+k+N−1
2

)


(nk,m − k + 1)



(

nk,m−k+1
2

)


(nk,m + k + N − 2)



(

nk,m+k+N−2
2

)



(

nk,m−k
2 + 1

) = 23−N−2k,
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1614 S. J. Gardiner, H. Render

so
∣
∣
∣
∣
C

( N−3
2 )

k (cosφx ′,y′)P
3−N
2 −k

nk,m+ N−3
2

(cos θy)

∣
∣
∣
∣

(sin θy)
N−3
2 Ik,m

≤ C(N , θ∗)
(

θ∗ − θy
) (

nk,m + N−2
2

)

C
( N−3

2 )

k (1)

(min{sin(θ∗/2), sin θ∗})2k
(θ∗/2 < θy < θ∗), (40)

in view of (37) and (5).
We next consider the case where 0 ≤ θy ≤ θ∗/2. Let

By,a =
{

w ∈ R
N : ‖w − y‖ < ‖y‖ a − 1

4
sin

(
θ∗
2

)}

,

whence

By,a ⊂ � ∩
{

w ∈ R
N : |‖w‖ − ‖y‖| < ‖y‖ a − 1

4
sin

(
θ∗
2

)}

.

If h is a harmonic function on �, then h2 is subharmonic there, and so we can use the
volume mean value inequality to see that

{h(y)}2 ≤ C(N )

{‖y‖ sin(θ∗/2)(a − 1)/4}N

∫

By,a

{h(w)}2 dw

≤ C(N , a, θ∗)
‖y‖N

∫

�∩{|‖w‖−‖y‖|<‖y‖ sin(θ∗/2)(a−1)/4}
{h(w)}2 dw.

By Corollary 7 we can apply this inequality to the harmonic function given by

h(w) = ‖w‖nk,m

(sin θw)
N−3
2

P
3−N
2 −k

nk,m+ N−3
2

(cos θw)C

(
N−3
2

)

k (cosφx ′,w′)

(interpreted, as usual, in the limiting sense on {0}N−1 × (0,∞)) to see that

‖y‖nk,m

(sin θy)
N−3
2

∣
∣
∣
∣
∣
C

(
N−3
2

)

k (cosφx ′,y′)P
3−N
2 −k

nk,m+ N−3
2

(cos θy)

∣
∣
∣
∣
∣
≤ C(N , a, θ∗) (a1 ‖y‖)nk,m

×C

(
N−3
2

)

k (1)Ik,m,

whence

∣
∣
∣
∣
C

( N−3
2 )

k (cosφx ′,y′)P
3−N
2 −k

nk,m+N−3
2

(cos θy)

∣
∣
∣
∣

(sin θy)
N−3
2 Ik,m

≤ C(N , a, θ∗)a
nk,m
1 C

(
N−3
2

)

k (1) (0 ≤ θy ≤ θ∗/2).

(41)
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Harmonic extension through conical surfaces 1615

Since the sets

{

t2
(

a1
a2

)t

: t ≥ 0

}

and

{(
a2
a3

)k ( k + N − 4
k

)

: k ∈ N

}

are bounded above by a constant C(a, N ), we can use (39)–(41), (5) and (31), to see
that

∞
∑

m=1

(

k + N − 3

2

)(‖y‖
‖x‖

)nk,m+ N−2
2

∣
∣
∣
∣
P

3−N
2 −k

nk,m+ N−3
2

(cos θy)P
3−N
2 −k

nk,m+ N−3
2

(cos θx )

∣
∣
∣
∣

(sin θy)
N−3
2
(

nk,m + N−2
2

)

I 2k,m

×
∣
∣
∣
∣
C

( N−3
2 )

k (cosφx ′,y′ )

∣
∣
∣
∣

≤ C(N , a, θ∗)C
(

N−3
2

)

k (1)
(

θ∗ − θy
)

(sin θx )
k+ N−3

2 (min{sin(θ∗/2), sin θ∗})3k

∞
∑

m=1

(

nk,m + N − 2

2

)2 (a1 ‖y‖
‖x‖

)nk,m+ N−2
2

≤ C(N , a, θ∗)
(

θ∗ − θy
)

(sin θx )
k+ N−3

2 (min{sin(θ∗/2), sin θ∗})3k

(

k + N − 4
k

) ∞
∑

m=1

(
a2 ‖y‖
‖x‖

)nk,m+ N−2
2

≤ C(N , a, θ∗)
(

θ∗ − θy
)

(sin θx )
k+ N−3

2 (min{sin(θ∗/2), sin θ∗})3k

(

k + N − 4
k

)(
a2 ‖y‖
‖x‖

)k

≤ C(N , a, θ∗)
(

θ∗ − θy
)

(sin θx )
k+ N−3

2 (min{sin(θ∗/2), sin θ∗})3k

(
a3 ‖y‖
‖x‖

)k

≤ C(N , a, θ∗)
(

θ∗ − θy
)

(sin θx )
N−3
2

(a3
a

)k
(x ∈ ω(1)

y,a).

It follows that the expression for G�(x, y) in (33) converges absolutely to a harmonic
function in ω

(1)
y,a and satisfies the estimate (35) there.

For the set ω(2)
y,a we interchange x and y in (33) and argue similarly.

Analogous reasoning applies when N = 3. ��

8 Proof of Theorem 1

We will adapt the approach taken in Theorem 19 of [10]. Theorem 1 follows from the
result below on letting c → ∞. We define

A(c) = {x ∈ R
N : c−1 < ‖x‖ < c} (c > 1).

Theorem 12 Let c > 1 and let h be a harmonic function on the set �∩ A(c) which con-
tinuously vanishes on ∂�∩ A(c). Then h has a harmonic extension to the intersection
of the sets

{

x ∈ A(c) : c−1 < ‖x‖ sin θx (min{sin θ∗, sin(θ∗/2)})3
}
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1616 S. J. Gardiner, H. Render

and
{

x ∈ A(c) : ‖x‖ < c sin θx (min{sin θ∗, sin(θ∗/2)})3
}

.

Proof Let 1 < c′′ < c′ < c. On � ∩ A(c′) we can write h as the difference, h1 − h2,
of two positive harmonic functions that vanish on ∂� ∩ A(c′). (Each of these is a
Dirichlet solution with non-negative boundary data.) Next, let h∗

i (i = 1, 2) be defined
as hi on � ∩ A(c′′), as 0 on ∂� and also on �\A(c′), and extended to � by solving

the Dirichlet problem in � ∩
[

A(c′)\A(c′′)
]

. Then h∗
i is subharmonic on �\A(c′′)

and superharmonic on � ∩ A(c′), and continuously vanishes on ∂� . By the Riesz
decomposition theorem (Theorem 4.4.1 of [1]) and standard estimates of the Green
function (cf. Theorems 4.2.4 and 4.2.5 of [1]) we can represent h∗

i as a Green potential
G��i , where �i is a signed measure on � ∩ [∂ A(c′) ∪ ∂ A(c′′)

]

satisfying

∫

(θ∗ − θy) |d�i | (y) < ∞.

(More precisely, the Riesz decomposition theorem shows that h∗
i −G��i is harmonic

on �, and the representation then follows from the fact that h∗
i and G��i both vanish

at the boundary.)
Let a > 1. It follows from Theorem 11 that the formula

h̃(x) =
∫

�∩[∂ A(c′)∪∂ A(c′′)]
G̃�(x, y)d(�1 − �2)(y)

defines a harmonic extension of h from � ∩ A(c′′) to the intersection of the sets

{

x ∈ A(c′′) : a

c′′ < ‖x‖ sin θx (min{sin θ∗, sin(θ∗/2)})3
}

(42)

and
{

x ∈ A(c′′) : ‖x‖ <
c′′

a
sin θx (min{sin θ∗, sin(θ∗/2)})3

}

. (43)

Since c′′ may be arbitrarily close to c, and a may be arbitrarily close to 1, the result
follows. ��

9 Bounds for ratios of conical functions

Several authors have considered bounds on ratios of modified Bessel functions: see,
for example, [20] and the references provided there. In this section we establish cor-
responding bounds on ratios of conical functions in preparation for the proofs of
Theorems 2 and 3. We begin with two elementary lemmas concerning Riccati equa-
tions.
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Harmonic extension through conical surfaces 1617

Lemma 13 Let h, α β and γ be differentiable functions on an interval (a, b) such that

h′(t) = α(t){h(t)}2 + β(t)h(t) + γ (t). (44)

If β ′h > 0, α′ ≥ 0, γ ′ ≥ 0 and lim inf t→a+ h′(t) > 0, then h′ > 0 on (a, b).

Proof Let

t0 = sup{t ∈ (a, b) : h′ > 0 on (a, t)}.

Then t0 > a, by hypothesis. If t0 < b, then h′(t0) = 0 and so

h′′(t0) = α′(t0){h(t0)}2 + β ′(t0)h(t0) + γ ′(t0) > 0.

This yields a contradiction, since h′ > h′(t0) on (a, t0). Thus t0 = b as claimed. ��
Lemma 14 Suppose that

h′(t) = −A(t) {h(t) − B(t)} {h(t) + C(t)} (t ∈ (a, b)),

where h, A, B and C are all positive.

(i) If h′ > 0 on (a, b), then 0 < h < B.
(ii) If h′ < 0 on (a, b), then 0 < B < h.

Proof Since h + C > 0 and A > 0, we see that h′ and h − B have opposite signs. ��
Proposition 15 Let 0 < θ1 < θ2 < π and μ, λ ∈ R. Then

P−μ

− 1
2+iλ

(cos θ2)

P−μ

− 1
2+iλ

(cos θ1)
=exp

(
∫ θ2

θ1

{

μ cot θ+
(

λ2 +
(

μ + 1

2

)2
)

hμ(θ)

}

dθ

)

, (45)

where

hμ(θ) =
P−μ−1

− 1
2+iλ

(cos θ)

P−μ

− 1
2+iλ

(cos θ)
(0 < θ < π).

Proof We note from (14.10.2) in [19] that

√

1 − t2P1−μ
ν (t) − (ν + μ + 1)P−μ

ν+1(t) + (ν − μ + 1)t P−μ
ν (t) = 0,

and combine this with Lemma 5(iii) to see that

(1 − t2)
d P−μ

ν

dt
= −

√

1 − t2P1−μ
ν (t) + μt P−μ

ν (t). (46)
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1618 S. J. Gardiner, H. Render

We also know from (14.10.1) in [19] that

P1−μ
ν (t) − 2μ

t√
1 − t2

P−μ
ν (t) + (ν + μ + 1)(ν − μ)P−μ−1

ν (t) = 0, (47)

and combine this with (46) to see that

(1 − t2)
d P−μ

ν

dt
= −μt P−μ

ν (t) + (ν + μ + 1)(ν − μ)
√

1 − t2P−μ−1
ν (t). (48)

Hence

1

P−μ

− 1
2+iλ

(t)

d P−μ

− 1
2+iλ

dt
= − μt

1 − t2
− λ2 + (μ + 1

2 )
2

√
1 − t2

P−μ−1
− 1

2+iλ
(t)

P−μ

− 1
2+iλ

(t)
,

and so

log
P−μ

− 1
2+iλ

(t2)

P−μ

− 1
2+iλ

(t1)
= −

∫ t2

t1

⎧

⎨

⎩

μt√
1 − t2

+
(

λ2 +
(

μ + 1

2

)2
) P−μ−1

− 1
2+iλ

(t)

P−μ

− 1
2+iλ

(t)

⎫

⎬

⎭

dt√
1 − t2

.

Equation (45) follows on substituting t = cos θ . ��
Theorem 16 If λ ∈ R and μ > − 1

2 , then

f1(θ) ≤ hμ(θ) ≤ f2(θ) (0 < θ < π),

where hμ is as in Proposition 15,

f1(θ) = 1
√

λ2 + {(μ + 3
2

)

csc θ
}2 + (μ + 1

2

)

cot θ

and

f2(θ) = 1
√

λ2 + {(μ + 1
2

)

csc θ
}2 + (μ + 1

2

)

cot θ
.

Proof Let Fμ(θ) = P−μ

− 1
2+iλ

(cos θ). We note from (46) and (48) that

F ′
μ+1(θ) = Fμ(θ) − (μ + 1) (cot θ) Fμ+1(θ)

and

F ′
μ(θ) =

{

λ2 +
(

μ + 1

2

)2
}

Fμ+1(θ) + μ (cot θ) Fμ(θ).
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Harmonic extension through conical surfaces 1619

Since hμ = Fμ+1/Fμ we now see that

h′
μ(θ) = 1 − (2μ + 1) (cot θ) hμ(θ) −

{

λ2 +
(

μ + 1

2

)2
}

{

hμ(θ)
}2

. (49)

Further,


(1 + μ)Fμ(θ)

(
2

1 − cos θ

)μ/2

→ 1 (θ → 0+),

by (14.8.1) of [19], so it follows from (49) that

lim
θ→0+ h′

μ(θ) = 1 − (2μ + 1) lim
θ→0+

Fμ+1(θ)

(sin θ) Fμ(θ)
− 0

= 1 − 2μ + 1

μ + 1
lim

θ→0+

√

1 − cos θ

2 sin2 θ
= 1

2(μ + 1)
> 0. (50)

The derivative of the function θ �→ −(2μ + 1) cot θ is positive, because μ > − 1
2 .

Since also hμ > 0, we can apply Lemma 13 to Eq. (49) to conclude that h′
μ > 0 on

(0, π).
It follows from Lemma 14 that hμ(θ) is bounded above by the positive root of the

equation

1 − (2μ + 1) (cot θ) t −
{

λ2 +
(

μ + 1

2

)2
}

t2 = 0,

namely,

√

λ2 + {(μ + 1
2

)

csc θ
}2 − (μ + 1

2

)

cot θ

λ2 + (μ + 1
2

)2 , (51)

which equals f2(θ). Further, from (47),

Fμ−1(θ)

Fμ(θ)
= 2μ cot θ +

{

λ2 +
(

μ + 1

2

)2
}

Fμ+1(θ)

Fμ(θ)

≤ 2μ cot θ +
{

λ2 +
(

μ + 1

2

)2
}

f2(θ)

=
√

λ2 +
{(

μ + 1

2

)

csc θ

}2

+
(

μ − 1

2

)

cot θ,

whence hμ(θ) ≥ f1(θ). ��
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1620 S. J. Gardiner, H. Render

10 Proofs of Theorems 2 and 3

Proposition 17 Let y ∈ � and δ > 0. If θ∗ ≤ π/2, then G�(·, y) has a harmonic
extension G�(y, ·) to the set

{

x ∈ R
N \{0, y} : θx < 2θ∗ − θy

}

,

and G�(·, ·) is bounded on the set

ω1,δ = {(x, y) : ‖x‖ > δ, ‖y‖ > δ, δ < θy ≤ θ∗, θ∗ ≤ θx ≤ 2θ∗ − θy − δ}.

Proof We will give the argument when N ≥ 4. Only slight adjustments are required
when N = 3. It is enough, by Corollary 8, to show that the expansion (29) (or,
indeed, the expansion (28)) converges absolutely and uniformly when x, y ∈ ω1,δ .

Let μ = (N − 3)/2 + k and � = λ2 + (μ + 1
2

)2
.

By Lemma 9(ii),

∣
∣gk(λ, θx , θy)

∣
∣ ≤

R−μ

− 1
2+iλ

(cos θ∗)

P−μ

− 1
2+iλ

(cos θ∗)
P−μ

− 1
2+iλ

(cos θx )P−μ

− 1
2+iλ

(cos θy)

= R−μ

− 1
2+iλ

(cos θ∗)P−μ

− 1
2+iλ

(cos(θy + θx − θ∗))Q (52)

when (x, y) ∈ ω1,δ , where

Q =
P−μ

− 1
2+iλ

(cos θx )

P−μ

− 1
2+iλ

(cos θ∗)

P−μ

− 1
2+iλ

(cos θy)

P−μ

− 1
2+iλ

(cos(θy + θx − θ∗))
.

By Theorem 16 and the formula (51) for f2(θ),

hμ(θ) ≤ f2(θ) = 1

�

{

H(θ) −
(

μ + 1

2

)

cot θ

}

, (53)

where

H(θ) =
√

λ2 +
{(

μ + 1

2

)

csc θ

}2

, (54)

so

μ cot θ + �hμ(θ) ≤ H(θ) − 1

2
cot θ.
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Hence, by Proposition 15,

P−μ

− 1
2+iλ

(cos θx )

P−μ

− 1
2+iλ

(cos θ∗)
= exp

(∫ θx

θ∗

{

μ cot θ + �hμ(θ)
}

dθ

)

≤ exp

(∫ θx

θ∗

{

H(θ) − 1

2
cot θ

}

dθ

)

. (55)

We claim that

∫ θx

θ∗
H(θ)dθ ≤

∫ θy+θx −θ∗

θy

H(θ)dθ.

If θx ≤ π/2, this is clear from the monotonicity of H on (0, π/2] and the fact that
θy < θ∗. If θx > π/2, we use the symmetry of H about π/2 as well as the above
monotonicity to see that

∫ θx

θ∗
H(θ)dθ =

∫ π/2

θ∗
H(θ)dθ +

∫ π/2

π−θx

H(θ)dθ

≤
∫ π/2

π/2−(θx −θ∗)
H(θ)dθ ≤

∫ θy+θx −θ∗

θy

H(θ)dθ,

because θy + θx − θ∗ ≤ θ∗ ≤ π/2.
Since also θx < 2θ∗ − θy ≤ π − θy , and so |cot| ≤ cot θy on (θ∗, θx ), we now see

from (55) that

P−μ

− 1
2+iλ

(cos θx )

P−μ

− 1
2+iλ

(cos θ∗)
≤ exp

(
∫ θy+θx −θ∗

θy

{

H(θ) + 1

2
cot θy

}

dθ

)

≤ exp

(
∫ θy+θx −θ∗

θy

{

μ cot θ + � f2(θ) + cot θy
}

dθ

)

,

by the equality in (53). Proposition 15 and Theorem 16 also show that

P−μ

− 1
2+iλ

(cos θy)

P−μ

− 1
2+iλ

(cos(θy + θx − θ∗))
= exp

(

−
∫ θy+θx −θ∗

θy

{

μ cot θ + �hμ(θ)
}

dθ

)

≤ exp

(

−
∫ θy+θx −θ∗

θy

{μ cot θ + � f1(θ)} dθ

)

.
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1622 S. J. Gardiner, H. Render

Hence

Q ≤ exp

(
∫ θy+θx −θ∗

θy

{

�( f2(θ) − f1(θ)) + cot θy
}

dθ

)

. (56)

Now

f2(θ) − f1(θ)

f1(θ) f2(θ)
=
√

λ2 +
{(

μ + 3

2

)

csc θ

}2

−
√

λ2 +
{(

μ + 1

2

)

csc θ

}2

= 2(μ + 1) csc2 θ
√

λ2 + {(μ + 3
2

)

csc θ
}2 +

√

λ2 + {(μ + 1
2

)

csc θ
}2

≤ csc θ, (57)

and

f1(θ) ≤ f2(θ) ≤ �−1/2 (0 < θ ≤ π/2),

so

� { f2(θ) − f1(θ)} ≤ �(csc θ) f1(θ) f2(θ) ≤ csc θ (0 < θ ≤ π/2).

Since θy + θx − θ∗ ≤ π/2, we now see from (56) that

Q ≤ exp

(
∫ θy+θx −θ∗

θy

(csc θ + cot θy)dθ

)

≤ exp (π csc δ)

when (x, y) ∈ ω1,δ . It follows from (52) that

∣
∣gk(λ, θx , θy)

∣
∣ ≤ C(δ)R−μ

− 1
2+iλ

(cos θ∗)P−μ

− 1
2+iλ

(cos(θy + θx − θ∗)).

Since, by (26),

aN

π

2
N−3
2 


( N−3
2

)

(sin θx sin θy)
N−3
2 (‖x‖ ‖y‖) N−2

2

∫ ∞

0

∞
∑

k=0

(

k + N − 3

2

)

×R
3−N
2 −k

− 1
2+iλ

(cos θ∗)P
3−N
2 −k

− 1
2+iλ

(cos(θy + θx − θ∗))C
(

N−3
2

)

k (1)

=
(
sin θ∗ sin(θy + θx − θ∗)

sin θx sin θy

) N−3
2
{

2
√‖x‖ ‖y‖ sin

(

θ∗ − θx + θy

2

)}2−N

≤ C(N , δ),

the proof is complete. ��
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Proposition 18 Let θ∗ > π/2, y ∈ � and 0 < δ < min{θ∗ − θy, θ∗ − π/2}. Then
G�(·, y) has a harmonic extension G�(y, ·) to the set

{

x ∈ R
N \{0} : θy < θx and tan

θx

2
tan

θy

2
<

(

tan
θ∗
2

)2
}

,

and G�(y, ·) is bounded on the set

ω2,δ =
{

(x, y) : ‖x‖ > δ, ‖y‖ > δ, δ < θy ≤ θ∗ ≤ θx ,

tan(θx/2) tan(θy/2) < tan2((θ∗ − δ)/2)

}

.

Proof Wemodify the previous proof.Againwewill assume, for simplicity, that N ≥ 4.
This time we note that

∣
∣gk(λ, θx , θy)

∣
∣ ≤

R−μ

− 1
2+iλ

(cos θ∗)

P−μ

− 1
2+iλ

(cos θ∗)
P−μ

− 1
2+iλ

(cos θx )P−μ

− 1
2+iλ

(cos θy)

= R−μ

− 1
2+iλ

(cos θ∗)P−μ

− 1
2+iλ

(cos (θ∗ − δ))T , (58)

where

T =
P−μ

− 1
2+iλ

(cos θx )

P−μ

− 1
2+iλ

(cos θ∗)

P−μ

− 1
2+iλ

(cos θy)

P−μ

− 1
2+iλ

(cos (θ∗ − δ))
. (59)

It follows from our choice of δ that

θ∗ − δ > π/2, (60)

and from (1) that

θx − θ∗ < θ∗ − θy − δ when (x, y) ∈ ω2,δ. (61)

Also, if 0 ≤ a < b, then

λ �→
√

λ2 + b −
√

λ2 + a is decreasing on [0,∞). (62)

Let H(θ) be as in (54). Then

∫ θx

θ∗
H(θ)dθ =

∫ θx −θ∗

0

√

λ2 +
{(

μ + 1

2

)

csc(ϑ + θ∗)
}2

dϑ (63)
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and

∫ θ∗−δ

θy

H(θ)dθ =
∫ θ∗−θy−δ

0

√

λ2 +
{(

μ + 1

2

)

csc(θ∗ − δ − ϑ)

}2

dϑ

≥
∫ θx −θ∗

0

√

λ2 +
{(

μ + 1

2

)

csc(θ∗ − δ − ϑ)

}2

dϑ

+
∫ θ∗−θy−δ

θx −θ∗

(

μ + 1

2

)

csc(θ∗ − δ − ϑ)dϑ, (64)

by (61). Also,

sin(ϑ + θ∗) ≤ sin(θ∗ − δ − ϑ) (0 < ϑ < θx − θ∗), (65)

in view of (60). It follows from (63), (64), (62) and then (65) that

∫ θx

θ∗
H(θ)dθ −

∫ θ∗−δ

θy

H(θ)dθ ≤
∫ θx −θ∗

0

⎧

⎪⎪⎨

⎪⎪⎩

√

λ2 + {(μ + 1
2

)

csc(ϑ + θ∗)
}2

−
√

λ2 + {(μ + 1
2

)

csc(θ∗ − δ − ϑ)
}2

⎫

⎪⎪⎬

⎪⎪⎭

dϑ

−
∫ θ∗−θy−δ

θx −θ∗

(

μ + 1

2

)

csc(θ∗ − δ − ϑ)dϑ

≤
∫ θx −θ∗

0

(

μ + 1

2

)

{csc(ϑ + θ∗) − csc(θ∗ − δ − ϑ)} dϑ

−
∫ θ∗−θy−δ

θx −θ∗

(

μ + 1

2

)

csc(θ∗ − δ − ϑ)dϑ

=
(

μ + 1

2

)(∫ θx

θ∗
csc θ dθ −

∫ θ∗−δ

θy

csc θ dθ

)

=
(

μ + 1

2

)

log

(
tan(θx/2) tan(θy/2)

tan(θ∗/2) tan((θ∗ − δ)/2)

)

≤ 0.

Hence, by (55), (53) and the fact that log sin is a primitive for cot,

P−μ

− 1
2+iλ

(cos θx )

P−μ

− 1
2+iλ

(cos θ∗)
≤ exp

(∫ θx

θ∗

{

H(θ) − 1

2
cot θ

}

dθ

)

=
√

sin θ∗
sin θx

exp

(∫ θx

θ∗
H(θ)dθ

)

≤
√

sin θ∗
sin θx

exp

(
∫ θ∗−δ

θy

H(θ)dθ

)

=
√

sin θ∗
sin θx

exp

(
∫ θ∗−δ

θy

{

� f2(θ) +
(

μ + 1

2

)

cot θ

}

dθ

)

.
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Since, by Proposition 15 and Theorem 16,

P−μ

− 1
2+iλ

(cos θy)

P−μ

− 1
2+iλ

(cos (θ∗ − δ))
= exp

(

−
∫ θ∗−δ

θy

{

μ cot θ + �hμ(θ)
}

dθ

)

≤ exp

(

−
∫ θ∗−δ

θy

{μ cot θ + � f1(θ)} dθ

)

,

we now see from (59) that

T ≤
√

sin θ∗
sin θx

exp

(
∫ θ∗−δ

θy

{

�( f2(θ) − f1(θ)) + 1

2
cot θ

}

dθ

)

=
√

sin θ∗ sin(θ∗ − δ)

sin θx sin θy
exp

(
∫ θ∗−δ

θy

�( f2(θ) − f1(θ)) dθ

)

.

Now

f2(θ) = csc θ

�

⎧

⎨

⎩

√

λ2 sin2 θ +
(

μ + 1

2

)2

−
(

μ + 1

2

)

cos θ

⎫

⎬

⎭

≤ 2 csc θ

�

⎧

⎨

⎩

√

λ2 sin2 θ +
(

μ + 1

2

)2
⎫

⎬

⎭
≤ 2 csc θ√

�
,

so from (57) we have

�( f2(θ) − f1(θ)) ≤ �(csc θ) f1(θ) f2(θ) ≤ �(csc θ) { f2(θ)}2 ≤ 4 csc3 θ.

Hence

T ≤
√

sin θ∗ sin(θ∗ − δ)

sin θx sin θy
exp

(

4
∫ θ∗−δ

θy

csc3 θdθ

)

≤ C(θ∗, δ)

when (x, y) ∈ ω2,δ , since

1

sin θx
≤ 1 − cos θx

sin θx
= tan

θx

2
≤ {tan(θ∗/2)}2

tan(θy/2)
.

It follows from (58) that

∣
∣gk(λ, θx , θy)

∣
∣ ≤ C(θ∗, δ)R−μ

− 1
2+iλ

(cos θ∗)P−μ

− 1
2+iλ

(cos (θ∗ − δ)).
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The argument is completed by observing from (26) that

aN

π

2
N−3
2 


( N−3
2

)

(sin θx sin θy)
N−3
2 (‖x‖ ‖y‖) N−2

2

∫ ∞

0

∞
∑

k=0

(

k + N − 3

2

)

×R
3−N
2 −k

− 1
2+iλ

(cos θ∗)P
3−N
2 −k

− 1
2+iλ

(cos(θ∗ − δ))C

(
N−3
2

)

k (1)

=
(
sin θ∗ sin(θ∗ − δ)

sin θx sin θy

) N−3
2
{

2
√‖x‖ ‖y‖ sin

(
δ

2

)}2−N

≤ C(N , δ, θ∗),

when (x, y) ∈ ω2,δ . ��

Proof of Theorem 2 Let θ0 < θ− < θ+ < θ∗ and 1 < c′′ < c′. As in the proof of

Theorem 12, we can represent h in
[

�(θ∗)\�(θ+)
]

∩ A(c′′) as the potential G�� of

a signed measure � on the union of the sets

∂
(

A(c′) ∩ [�(θ∗)\�(θ−)]
)

∩ �(θ∗) and ∂
(

A(c′′) ∩ [�(θ∗)\�(θ+)]
)

∩ �(θ∗).

Then h = ha + hb, where

ha(x) =
∫

�\A(c′′)
G�(x, y)d�(y)

and

hb(x) =
∫

A(c′′)∩[∂�(θ−)∪∂�(θ+)]
G�(x, y)d�(y).

It follows from Theorem 12 that ha has a harmonic extension to the intersection of the
sets (42) and (43), and from Proposition 17 that hb has a harmonic extension to the set
�(2θ∗ − θ+)\�(θ+). The result now follows on letting c′′ → ∞ and θ+ → θ0+. ��

Proof of Theorem 3 We follow the above argument except that we use Proposition 18
to see that hb has a harmonic extension to the set

{

x ∈ R
N \{0} : θ+ < θx and tan

θx

2
tan

θ+
2

<

(

tan
θ∗
2

)2
}

.

��
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