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Abstract

In this paper we introduce a refined multiplicity for rational tropical curves in arbi-
trary dimension, which generalizes the refined multiplicity introduced by Block and
Gottsche (Compositio Mathematica 152(1): 115-151, 2016). We then prove an invari-
ance statement for the count of rational tropical curves in several enumerative problems
using this new refined multiplicity. This leads to the definition of Block—Gottsche poly-
nomials in any dimension.
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1 Introduction
1.1 Enumerative geometry, classical and tropical

Tropical enumerative geometry takes its roots in the founding paper [16] by Mikhalkin.
He there proved a correspondence theorem that allows one to compute several clas-
sical geometric invariants for toric surfaces, namely Gromov—Witten type invariants
and Welschinger invariants whenever defined, through the solving of some associated
enumerative problem in planar tropical geometry. Other approaches to the correspon-
dence theorem were later provided by Shustin [21] and Tyomkin [23] along with a
generalization for rational curves in higher dimensional toric varieties by Nishinou
and Siebert [19]. Some progress has even been made in the non-toric case, for instance
in the case of abelian surfaces by Nishinou [18].

In each situation, the spirit of the tropical approach is the same: the goal is to
make a count of algebraic curves satisfying some constraints and which is known to
be invariant when the constraints vary in some family, e.g. a count of curves passing
through some points and which does not depend on the choice of the points as long
as it is generic. One then degenerates the constraints to the so-called tropical limit,
where the classical enumerative problem becomes a tropical enumerative problem. The
desired curve count might then be recovered by counting the tropical curves solution
to this new problem with a suitable multiplicities depending on the problem.

Example 1.1 Explicitly, in the case of rational curves in the projective plane CP2,
one of these enumerative problems consists in finding the degree d rational curves
passing through a chosen configuration of 3d — 1 points chosen in CP?. The result
does not depend on the chosen points if their choice is generic, and is known as Ny,
a Gromov—Witten invariant of CP?.

Over the real numbers, Welschinger showed in [26] that if the configuration of
3d — 1 points is chosen invariant by conjugation and the curves are counted with
a suitable sign, the count only depends on d and the number s of pairs of complex
conjugated points. It is denoted by Wy . In particular Wy o corresponds to the signed
count of real rational curves passing through a generic configuration of 3d — 1 real
points. O
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Refined count for rational tropical curves... 1201

We keep in mind the case of degree d rational curves in the pursue of this introduc-
tion. To the tropical limit, the enumerative problems leading to the definition of Ny
and Wy o degenerate to the following tropical enumerative problem: finding degree d
rational tropical curves passing through a chosen configuration of 3d — 1 points. For
a definition of tropical curves, see Sect. 2, but for the reading of the introduction, one
only needs to know that they are some finite graphs inside an affine space R”, and that
they have some infinite edges whose slopes form the degree of the curve. According
to [16], to recover both invariants Ny and Wy o, it suffices to count tropical curves I
passing through a generic choice of 3d — 1 points with different multiplicities m(lg and
mllg, defined as follows: there exists a natural vertex multiplicity my, and one then
sets

my —1
C _ R _ (=) 2 ifmy =1]2]
ml—_l_[mvandmr_l_[
% v 0 else.

Both multiplicities are a product over the vertices of the tropical curve. The count with
m(lg gives Ny and the count with mﬂ1§ gives Wy o. In [3], Block and Géttsche introduced
a refined multiplicity for tropical curves, which is also a product over the vertices of
the tropical curve:

BG qmv/Z _q—mv/2

+1/2
mp _H 12— g2 € Zlg= "7
v

This multiplicity is a Laurent polynomial in one variable g, which specializes to
m(lg and mH§ when g goes respectively to 1 and —1. The count of tropical solutions
using this refined multiplicity was proven to also lead to an invariant by Itenberg and
Mikhalkin [13]. The classical meaning of these tropically defined invariants remains
quite mysterious. Conjecturally [11], they relate to the computation of the x_-genera
of the relative Hilbert schemes of some linear systems of curves. Some attempts in
this direction have been made by Nicaise et al. [18].

Another lead to understand these invariants was provided by Mikhalkin [17].
Though his approach is valid for curves in a general toric surface, we still consider
the degree d rational curves in the case of the projective plane, and a configuration P
of 3d — 1 points which are this time chosen on the coordinate axis of the projective
plane. Mikhalkin introduced a signed count for the oriented real rational curves pass-
ing through =£p for each p € P. This count is refined according to the value of a so
called quantum index, which is defined more generally for each oriented real curve
of type 1. He then proved that the result of the count only depends on the number of
pairs of complex conjugated points on each axis. If the points are all chosen real, he
relates the refined count to the tropical invariant obtained solving the analog tropical
enumerative problem, and using Block—Gottsche multiplicities. The tropical analog
problem is finding degree d rational tropical curves whose infinite edges are contained
in some fixed lines. The result was extended by the author in [7] and [6] in case there
are complex conjugated points.
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1202 T.Blomme

Since, many other tropical enumerative problems have been shown to support a
refinement, i.e. the existence of a non-trivial polynomial multiplicity such that the
count of solution using this multiplicity does not depend on the chosen constraints.
See for instance [2,20] or [10]. However, in every of these situations, the new refined
multiplicity of a tropical curve is a product over its vertices, just as is the complex
multiplicity. In higher dimension, the complex multiplicity is also not necessarily a
product over the vertices. This a priori prevents anyone to find a simple multiplic-
ity which is a product over the vertices and leads to an invariant. Finding a refined
multiplicity which is not a product over the vertices seems even more complicated.
Here, we show an in-between approach, providing a multiplicity which is up to sign
a product over the vertices. The definition of this sign, which is at the center of the
proof, carries the “non-vertex” information.

Remark 1.2 Notice that it might happen even in the planar setting that the complex
multiplicity of a tropical curve is not a product over its vertices, as shown by Mandel
and Ruddat [15]. This occurs when dealing with tropical curves which are not trivalent,
for instance, imposing that the curves meets some line at one of its vertices. O

1.2 Moment problem and refined invariance

A natural generalization of the tropical enumerative problem considered by Mikhalkin
[17] is the following, which we call w-problem. Let N be a lattice of rank r and M its
dual lattice. From now on, Ng = N ®z R will be our workspace for tropical curves
and every enumerative problem. We consider tropical curves of degree A, which is a
multiset of vectors in N of total sum 0, and not containing the zero vector. Let w be a
2-form on N, and for each n, € A, fix a hyperplane H, with slope ker ¢,,w. We look
for degree A rational tropical curves such that the unbounded end directed by #n, is
contained in H,. As this is not enough to ensure having a finite number of solutions,
we add the condition that a chosen unbounded end e is contained in a fixed plane
D C Ng transverse to He,.

Remark 1.3 In the planar case, there is only one possible choice of non-zero 2-form w
up to multiplication by a scalar, and no need to choose a plane D. For each choice of
A, the w-problems coincide with the enumerative problem considered by Mikhalkin
[17]. O

Such an enumerative problem where tropical curves have constraints imposed on
their unbounded ends by a 2-form also appear in the work of Mandel [14]. In his
paper, the author deals with the refinement of some classical invariants appearing in
the balancing of some scattering diagrams, thus expanding to higher dimension the
refined approach of Filippini and Stoppa [8] to the tropical vertex group considered
by Gross et al. [12].

The tropical solutions to the w-problem are trivalent, and are counted with the
following multiplicity:

Bé(“’ _ l—l(qav/\bv _ qbv/\aV) c Z[AZN/K(U],
4
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Refined count for rational tropical curves... 1203

where ay and by are two among the three outgoing slopes at the vertex V, chosen
such that w(ay, by) > 0. The space K,, is the space generated by the ay A by in the
kernel of w : a A b € A’N +— w(a, b) € Z. Implicitly in the notation, the exponents
of the variable g are taken modulo K. For a generic choice of w, one has K, = 0
and there is no quotient. This multiplicity is a product over the vertices of the curve,
and can be seen as a Laurent polynomial in several variables, whose number depends
on the rank of the quotient lattice A>N /K,,. This multiplicity also appears in [22] to
prove a local invariance statement in a similar but different setting. One recovers the
refined multiplicity from Mandel [14] by evaluating the 2-form ® on the exponents,
and divising by a suitable power of ¢ — ¢~ !. However, and surprisingly, such an
evaluation is not necessary to get an invariance statement.

Remark 1.4 Getting back to the planar case, denoting by det the 2-form, and identifying
A’N = Zdet with Z, the refined multiplicity BX® is given by

Ko _
Br* =[]w@" —q¢™).
14

Lat

m

It is thus equal to the refined multiplicity of Block—Géttsche up to a factor g — g~
each vertex and a dilatation by 2 in the exponents. It comes from the fact that g —g ™
is always divisible by ¢ —g ', but in the general case, there is no such canonical choice
to divide all vertex multiplicities. O

We have the following invariance statement, asserting that the curve count does not
depend on the choice of the hyperplanes H, nor the choice of D.

Theorem 3.14 The count of solutions to the w-problem using the refined multiplicity
Blg “ does not depend on the choice of H, and D as long as it is generic. It only
depends on the choice of w and the unbounded end ey.

In particular the curve count does not depend on the choice of D, including the
choice of its slope. The obtained invariant is denoted by BZ"”O. Thus, we get a family
of invariants B‘Z’eo € Z[A*N/K,]. Furthermore, we prove that this map is continuous
in the following sense. The map w +— K|, is constant on the cones of some fan 2 in
A% M. Denoting K, the value on some cone o of Q,, for 7 < o, one has K, C K-,
leading to a projection p’. : Z[AzN/KU] — Z[AZN/KT]. ‘We then have the following
theorem.

Theorem 5.3 The function w — BCA”’e" is constant on the interior of the cones of Qa,

and for T < o, the value on T is the image of the value on o under the projection pt.

1.3 Main results

Theorem 3.14 is an invariance result with little improvement compared to already
known tropical refined invariants since its proof relies on the fact that for the w-
problem, the complex multiplicity of a tropical curve is still a product over its vertices,
just as in the planar case. To some extent, it might even be seen as a particular case of
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1204 T.Blomme

the balancing of scaterring diagrams done by Mandel [14]. However, this especially
simple observation can then be used to provide an invariance statement in a larger class
of enumerative problems for which the complex multiplicity is no longer a product
over the vertices.

Consider rational tropical curves of degree A in N, and for each n, € A, choose
L, a sublattice of N/(n.) such that ), corkL, = |A| +r — 3. Let L, be a affine
subspace of Ng/(n.) with slope L.. We look for rational tropical curves of degree A
such that image of the unbounded end e in Ng/(n.) lies in L,. The dimension count
ensures that if the £, are chosen generically, there is a finite number of solutions. Now,
let w be a 2-form such that

m?’(L”) =0= m(lg’w’eo =0,

C,(L

where m® () denotes the complex multiplicity in the hereby considered enumerative

problem, while m?’w’eo denotes the complex multiplicity in the w-problem associated
to w. See Sect. 2.5 for a proper definition of the complex multiplicity. The choice
o = 0 always suits the hypothesis, but provides a trivial result. However, in many
cases, it is possible to choose a non-trivial w, see Example 4.4. Under this technical

hypothesis, we have the following invariance result.

Theorem 4.5 There exists signs er only depending on the combinatorial type of T’

and the constraints (L) such that the count of solutions with multiplicity er Bf “ only
depends on the choice of the slopes L, and not the affine subspaces L,.

The obtained invariant is denoted by Bf“(Le). The proof of the existence of the
signs er is combined with the proof of invariance since the signs are in fact chosen
so that the count of solutions remains invariant. Moreover, the signs er can be inter-
preted as orientations on the cones of the moduli space of tropical curves. With this
interpretation, the multiplicities leading to invariant counts can be viewed as cycles
in the star complex of the moduli space. The star complex of a fan F is the CW-
complex (F\{0}) /R . It can be seen as the space over which F is the cone. Such an
interpretation may lead to further interesting invariants.

The idea that drives the proof is that with an additional technical assumption, a
multiplicity that leads to an invariant in a specific enumerative problem may be used
to get a new invariant in another enumerative problem.

We also prove a statement of continuity of the invariants Bf‘” (L) in terms of the
slopes (L,). See Theorem 5.5.

Finally, we prove some enhancements of the main Theorem 4.5 by imposing con-
ditions on marked points and not only unbounded ends, and study the possibility of
replacing the affine constraints by tropical cycles.

1.4 Motivations

The study of the aforementioned tropical enumerative problems using the proposed
refined multiplicity is justified by their connection to a family of classical enumerative
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Refined count for rational tropical curves... 1205

problems, through the use of a correspondence theorem. We now make this connection
explicit.

In the planar case, the classical counterpart to the tropical enumerative problems
are as follows: let CA be a toric surface endowed with its canonical real structure, the
problem consists in finding the real rational curves in CA with fixed intersection with
the toric boundary of CA. This intersection comprises real points and pairs of complex
conjugated points. This is the problem studied by Mikhalkin [17]. The general case
takes place in a toric variety CA, and consists in finding the real rational curves whose
intersection points with the toric boundary belong to some chosen orbits of subtori of
the toric variety.

As mentioned above, in the planar case, Mikhalkin proved that there exists a refined
signed count of the solutions to each classical enumerative problem that leads to an
invariant. The refinement is provided by the value of quantum index, which up to
a shift corresponds to the log-area of the oriented curves solutions to the problem.
Recall that the log-area defined by the integral of the volume form of Ng ~ R?
pull-backed by the logarithmic map Log : N ® C* ¢ CA — Ng. For more
details, see [6,17]. Preferably to the Block—Gottsche multiplicity mff G the refined
multiplicity Bl{< “ = T], (g™ —q~™v) is the one involved in the correspondence
result of Mikhalkin [17] that relates the tropical refined invariant to the classical refined
invariant. As a matter of fact, denoting by \Va the classical refined invariant introduced
in the same paper in case all intersection points are real, one has

_ pw.e
Na = B2,

In other terms, the multiplicity furnished by the correspondence theorem to count a
tropical solution I', which corresponds to the signed refined number of solutions to
the classical enumerative problem which tropicalize to I, is Bl{< det_This is no surprise
since through the use of the correspondence theorem, the product over the vertices of
the quantity g?V/\?v — g=4v/ bV carries a deep connection to the set of all families of
real oriented curves tropicalizing to I'. This connection stays in higher dimension.

In higher dimension, although some signed counts for real curves are known, for
instance by Welschinger [25], there are at the time of writing no generalization for
the refined signed count of Mikhalkin. A desirable generalization would be to make
a signed count of the solutions to the aforementioned classical enumerative problem
according to the value of a quantum class for which we now sketch a definition.
For a toric variety CA with dense torus N ® C*, one still has a logarithmic map
Log : N ® C* —> Ng. However, there is no canonical choice of a 2-form to pull-
back in order to measure the area of an oriented curve (except maybe w in the case of
the w-problem). For an oriented real curve ¢ : S --» CA, the map that associates to a
2-form @ € A>Mp the log-area / o(S) Log*w of the curve under @ is linear, and up

to a shift corresponds to an element of Hom(AzM , L) ~ A2N. This element is called
the quantum class and is introduced in [5], to which we refer for more details. It is a
generalization in higher dimension of the quantum index introduced by Mikhalkin [17]
and shares many common properties with it. In particular it can be computed close
to the tropical limit as a sum over the vertices of the limit tropical curve. The refined
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1206 T.Blomme

multiplicity of a tropical curve thus appears as a signed count of the solutions close to
the tropical limit, refined by the value of their quantum class.

The existence of tropical invariants in the tropical enumerative problems considered
in the paper proves the existence of a refined signed count of classical curves close
to the tropical limit using this quantum class. Moreover, it suggests the existence of
classical refined invariants generalizing the refined invariants from [17] in the general
case. As the definition of the signs in the classical setting is currently unknown, this
paper only deals with the tropical side of the invariants, and will hopefully be connected
to some classical refined invariant in a future work.

1.5 Plan of the paper

In the second section we gather the notions about tropical curves, their moduli spaces
and the definition of the various involved multiplicities. The proofs for the computation
of the complex multiplicities and the invariance statement it leads to are postponed
to the appendices. Next, we introduce the w-problem, a specific kind of enumerative
problem in higher dimension for which we prove an invariance statement. This result
is used in the fourth section to provide a new invariance result in the case of larger class
of tropical enumerative problems. In the fifth section we study the first properties of
the new refined invariants, more precisely their dependence on the constraints of the
enumerative problems, and their possible enhancements. Last but not least, we give
some examples.

2 Tropical forest

2.1 Abstract tropical curves

Let T be a finite connected graph without bivalent vertices. Let FOOO be the set of 1-

valent vertices of T, and I' = F\FOOO. We denote by I'” the set of vertices of I', and
by I'! the set of edges of I'. The non-compact edges resulting from the eviction of
1-valent vertices are called unbounded ends. The set of unbounded ends is denoted by
Féo, while its complement, the set of bounded edges, is denoted by l"},. An element
of Féo is usually denoted by e. Letl : y € Fg — |yl e Ri =]0; 4+o0[ be a function,
called length function. It endows I" with the structure of a metric graph by declaring
that a bounded edge y is isometric to [0; |y|], and an unbounded end is isometric to
[0; 4-o0.

Definition 2.1 Such a metric graph I' is called an abstract tropical curve.

An isomorphism between two abstract tropical curves I' and I is an isometry
[’ — TI"". In particular an automorphism of I" does not necessarily respect the labeling
of the unbounded ends since it only respects the metric. Therefore, an automorphism
of T induces a permutation of the set '} of unbounded ends.
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Refined count for rational tropical curves... 1207

An abstract tropical curve is said to be rational if the first betti number b1 (I") of
the underlying graph, also called genus of the graph, is equal to 0. In graph theory, it
is also called a tree.

2.2 Parametrized tropical curves

Let N be a lattice of rank r > 2, and M = Hom(N, Z) be the dual lattice, which has
the same rank. We denote by Ng = N ®z R the associated vector space, isomorphic
to R”. We now consider tropical curves inside Ng.

Definition 2.2 A parametrized tropical curve in N is a pair (T, h), where ' is an
abstract tropical curve and /& : I' — Np is a map such that:

— the restriction of & to each edge of I is affine with slope in N,

— at each vertex V € I'°, one has the balancing condition: let ey, ..., e, be the
edges adjacent to V, and let uy, ..., ux € N be the outgoing slope of 4 on them
respectively, then one has

k
ZMiZOEN.
1

Two parametrized tropical curves (I, h) and (I'/, &) are isomorphic if there exists an
isometry ¢ : I' — I"" such that & = h’ o ¢. A parametrized tropical curve is rational
if the underlying abstract tropical curve is itself rational.

For a parametrized tropical curve i : I' — Np, the set of slopes of /& on the
unbounded ends is called the degree of the curve and is usually denoted by A. Itis a
multiset of elements of NV, and due to balancing condition, one has

Zne=0.

eel"éc

An abstract tropical curve I is said to be trivalent if every vertex V e I'V is
adjacent to precisely three edges. Let 7 : ' — Np be a parametrized tropical curve
with I" trivalent. For a vertex V, letay, by, cy be the outgoing slopes of &, satisfying
ay + by 4+ cy = 0. Then we define the associated bivector

ﬂv:av/\bv:bv/\c‘/zc‘//\avEAzN,

defined up to sign.
If a tropical curve I is not trivalent, we define the overvalence of the graph to be

ov(l) = Z val(V) — 3,

Vero

where val(V) is the valency of a vertex. The overvalence measures the default of
trivalency of the graph.
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1208 T.Blomme

Remark 2.3 If N is of rank 2, i.e. r = 2, then 7y is a multiple of a generator of AZN,
which is a lattice of rank 1. The absolute value of the scalar is called vertex multiplicity.
O

2.3 Moduli space of rational tropical curves

We now focus on the structure of the moduli spaces of rational tropical curves, both
abstract and parametrized. These spaces serve as parameter spaces for tropical curves.
They are the domain of some suitable composed evaluation maps allowing us to work
conveniently with the enumerative problems considered in the following sections.

Definition 2.4 Let I" be an abstract rational tropical curve. The combinatorial type of
I', denoted by Comb(I") is the homeomorphism type of the underlying graph, i.e. the
labeled graph without the metric.

Conversely, to give a graph a tropical structure, one just needs to assign a length to
the bounded edges of the graph. If the curve is trivalent, there are precisely |1"é0| -3
bounded edges. Otherwise, there are |F<1>Q | =3 —ov(I") bounded edges, where ov(I") is
the overvalence of the graph. The set of tropical curves having the same combinatorial

13—
type is then parametrized by ]Rl_‘l_““’l 3 OV(F), where the coordinates are given by the
lengths of the bounded edges.
L |=3—ov(I)

oo

For a given combinatorial type Comb(I"), the boundary of the orthant RE
corresponds to tropical curves for which at least one edge has length 0. Those tropical
curves can be identified with curves whose underlying graph has been suitably mod-
ified: edges with zero length are deleted and their extremities are merged together.
These identifications allow us to glue together the cones corresponding to the finitely
many combinatorial types of graphs. One obtains the moduli space M, |- L of rational

curves with |FC1>O| marked points which has thus the structure of a fan.

The space My, is a simplicial fan of pure dimension m — 3. The top-dimensional
cones parametrize curves whose underlying graph is trivalent. Codimension 1 cones,
which are called facets, correspond to combinatorial types whose underlying graph
is trivalent except for one vertex which is quadrivalent. Each facet belongs to exactly
three faces, which correspond to the three possible smoothings of the quadrivalent
vertex into a pair of trivalent vertices.

Given an abstract rational tropical curve I', and a degree A C N assigning a slope
ne € N to each unbounded end of I', there is a unique way up to translation to define
amap h : ' — Np which makes (T, /) into a parametrized tropical curve of degree
A: the slope of the unbounded ends is fixed by the degree, and the slope of interior
edges is fixed by the balancing condition. The translation is fixed by the position of a
vertex in I'. This observation gives a bijection between the moduli space M (A, NR)
of parametrized rational tropical curves of degree A in Ng and Mg |a| X Nr, where
the bijection is given by the projection to the underlying graph and the position of a
chosen vertex, for instance the vertex adjacent to a fixed unbounded end eg.

The cones of the moduli space My(A, Nr) are of the form Rf|_3 X NR, whose
tangent space contains the lattice Z!*1—3 x N.
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Refined count for rational tropical curves... 1209

Remark 2.5 The multiset A is allowed to contain the O vector. Unbounded ends on
which the map 4 has zero slope are sometimes called marked points because their
image inside Np is a point. O

Remark 2.6 Notice that by abuse of notation, the set of unbounded ends of parametrized
tropical curves in Mo (A, NRr) are canonically identified since they are labeled. Thus,
one can speak about F}X) without having to specify a curve I'. The degree A is then a
mape € Il > n, € N. u]

The set of combinatorial types of parametrized tropical curves of degree A is
denoted Ca, where the C stands both for combinatorial and for cones. Among them,

the set of top-dimensional combinatorial types is denoted by C[AOp. Otherwise, the set

of cones of a given dimension is denoted by C(Ak). A combinatorial type is usually
denoted by the letter C, whose notation is also used to denote the associated cone
in the moduli space My(A, Ngr). Moreover, for a given parametrized tropical curve
h : " — N, we sometimes forget the / in the notation, and use the same notation I"
for the curve and the combinatorial type Comb(I") that it belongs to.

At some point, we need to orient the cones of the moduli space Mo (A, Nr), which

means find an orientation for the underlying lattice Z21=3 x N of each cone C € CtAOp ,

or similarly, its linear span. If C € CtAOp is a combinatorial type, associated to an orthant
of the moduli space Mo(A, Ngr) and denoted by the same letter, we denote by or(C)
an orientation of the linear span of the cone. If W is a facet adjacent to C, W belongs
to the boundary of C. Then, as the normal bundle of W in C is canonically oriented, an
orientation ot(C) induces an orientation of the tangent bundle to W, which is denoted
by dwor(C). Notice that a reversing of the orientation of C also reverses the induced
orientation on W.

2.4 Evaluation map

For each unbounded end e € Féo, let n, be the slope assigned by the degree A. One
has a well-defined evaluation map on the moduli space My(A, Nr), which sends a
parametrized tropical curve to the image of the unbounded end inside the quotient
Ngr/(n.), where (n.) denotes the saturation of the sublattice spanned by n,. If the
slope is 0, this quotient is just N itself and the image is a point, justifying the name
marked point. Otherwise, the image corresponds to the line that contains the image
of the unbounded end under 4. Putting all these maps together, we get the evaluation
map:

ev: Mo(A, Np) — Heel“go Nr/(ne),
T, h)y > (h(pe)),

where p, is any point chosen in e € Féo.

By definition, the evaluation map is linear on every cone of Mo(A, Nr) 2~ Mo a| X
N but is not necessarily injective on top-dimensional cones. For instance, it is not
the case when some bounded edge has zero slope, or when the combinatorial type
contains a flat vertex, which is a vertex whose adjacent edges are contained in a line.

@ Springer



1210 T.Blomme

2.5 Complex multiplicity of tropical curves

One main feature of tropical enumerative geometry is to count tropical curves solution
to a given enumerative problem P, which means finding the curves which are subject
to some constraints. It is often necessary to use suitable multiplicities m to get a count
that does not depend on the choice of the constraints when those vary in some family.
Such a count using multiplicity m is said to lead to an invariant for the problem P.
Here, we describe the main multiplicities that are of interest to us, procrastinating the
proper introduction to the associated enumerative problems.

Remark 2.7 In some particular enumerative problems, some multiplicities leading to
an invariant are provided through the use of some correspondence theorems, such as
Mikhalkin’s [16], Shustin’s [21], Nishinou and Siebert’s [19] or Tyomkin’s [24]. The
use of these multiplicities leads to tropical invariants which have the value of some
classical invariants, e.g. Gromov—Witten invariants, Welschinger invariants, or refined
invariants introduced by Mikhalkin [17]. Such a relation to classical invariants is not
systematic although is sometimes suspected, as it is the case for refined invariants
introduced by Block and Géttsche [3]. O

In this section, we recall the definition of the complex multiplicity, which is the
multiplicity that comes from the correspondence theorem [16] in the planar case, or
[19] in the higher dimensional case. Let I" be a parametrized tropical curve of degree
A C N.For each unbounded end e, let L, be a full sublattice of N /(n,), meaning that
the quotient is without torsion. In order to simplify the notation, we denote by Q. the
quotient of N /(n.) by L., which is a lattice of rank rk N /(n,) —rk L, = cork L,. We
denote by QF = 0.®zR the associated vector space. We assume that ) eer! corkL,
is equal to the dimension of Mo(A, Nr), which is |[A| +r — 3. We thenoéompose
the evaluation map with the quotient maps Nr/(n.) — Q., getting what we call a
composed evaluation map:

evlh): Mo(A, Np) > [] -

1
eel'y,

For a combinatorial type C € CtAOP, we denote by eV(CL"') the restriction to the orthant
of the combinatorial type C, which is linear. Due to the assumption on the ranks of
the lattices, both spaces have the same dimension.

Definition 2.8 We set the complex multiplicity to be

C.(Le Le
mS o — (Lo,

|det ev

where the domain is endowed with a basis of the lattice Z!21=3 x N, and the codomain
a basis of the lattice [ [, Q..

Remark 2.9 One other way to describe the complex multiplicity is as follows: consider
the sublattice [ [, L. C [], N/(n.), whichis afull sublattice of codimension |A|+r—3
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by assumption. Let a(z,) € A2+ =3 ([T, N/(n.))" be its Pliicker vector obtain as
follows: take the wedge product of a basis of the dual orthogonal of [ [, L.. Then the
pull-back of ¢(;,,y by the evaluation map ev ¢ restricted to a cone C is a top-dimensional
form. Thus, it is a scalar multiple of the determinant form on the lattice of the orthant.
The absolute value of the scalar factor is the multiplicity.

It also follows from standard tropical intersection theory (see [1]) that the complex
multiplicity corresponds to the index of the lattice spanned by eve (ZI217 3 x N) and
[1, Lcinside [ ], N/(n.), which are of complementary dimension if ev is injective on
the cone relative to the combinatorial type. If not, the complex multiplicity is 0. O

The complex multiplicity can be computed in the hereby described fancy way. This
can be seen as a particular case of a result of Mandel and Ruddat [15], which we restate
in our setting for sake of completeness. To keep a general setting, here and only here,
we consider tropical curves (T, ) that are not necessarily trivalent. Nevertheless, for
such a curve and an evaluation map

evlle) o Mo(A, Np) — l_[ QIE,

eel"},o

the complex multiplicity is still defined as the determinant of ev(’e) restricted to the
cone of the combinatorial type, provided that it has the same dimension as the target
space. We assume it is the case.

For each primitive sublattice L C N of corank /, there is an orthogonal dual primitive
sublattice LY C M of rank [, and an associated Pliicker vector p E A'M defined up
to sign. This polyvector is defined as follows: let m1, ..., m; be a basis of L. Then,
one has

p:ml/\u-/\mleAlM.

This polyvector does not depend on the chosen basis up to sign. Hence, given a
parametrized rational tropical curve i : I' — Np, one has a polyvector p, associated
to each of the unbounded ends e of the curve: the Pliicker vector associated to the full
sublattice spanned by n, and L,.

We choose one vertex of T to be the sink of the curve and orient every edge toward it.
We then cut the branches of the tropical curve with the following rule: let V be a vertex
different from the sink, with incoming unbounded ends directed by n1, ..., ng, and
respective polyvectors p1, ..., ps, and a unique outgoing bounded edge, thus directed
by n1 + - - - 4+ ns. The polyvector associated to the outgoing edge of V is

0 = lnytotng (LA == A Ps).

Recall that,,, forn € N, denotes the interior product by n. Geometrically, the polyvec-
tor associated to an edge and to an unbounded end is a multiple of the Pliicker vector
associated to the space described by the edge when it moves. This means the following:
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— For an unbounded end ¢ € Féo associated to a sublattice L., the unbounded end
can move in the direction L., thus describe the space with slope spanned by n,
and L,.

— At a vertex V with incoming edges having respective polyvectors p1, ..., ps.
Assume by induction that the incoming edges move in an affine space directed
by a vector subspace whose Pliicker vector is p; respectively. Then, the vertex
moves in the intersection of all these subspaces. Therefore, the affine subspace has
Pliicker vector p; A -« A ps.

— Finally, for the outgoing edge of V, it moves in an affine space equal to the affine
space where V lives, enlarged by the direction of the edge: n| + - - - 4+ n. Hence,
the polyvector is obtained by making the interior product with ny + - - - + ng.

At the sink, let py, ..., ps be the polyvectors associated to the incoming adjacent
edges. Because of the assumption on dimensions, we have

PLA--Aps € N'M >~ 7.

Thus, it is an integer multiple of a generator of A” M. The absolute value of the propor-
tionality constant, obtained by evaluating on a basis of N, is the desired determinant.
The proof that it does not depend on the choice of the sink and that it computes the
determinant is proved in the appendix.

Theorem 6.8 The value obtained by the preceding algorithm is equal to the complex
multiplicity m(lg

2.6 Refined multiplicities of a trivalent tropical curve

To finish this section about tropical curves, we define the refined multiplicities that we
use in the following sections. Let VA be the set of types of trivalent vertices that occur
in some combinatorial type of My(A, Nr). A trivalent vertex is determined by the
slopes of the three outgoing edges. Using the balancing condition, the type of a vertex
is fully determined by the partition of A into three subsets that it induces. Hence, Va
is finite.

Let wg be a 2-form such that for any V € VA with my # 0, wo(wry) # 0. This
condition means that for any non-flat vertex, the restriction of wy to the plane spanned
by the outgoing edges is non-zero. The refined multiplicity is defined as follows.

Definition 2.10 The refined multiplicity of a parametrized tropical curve & : I' — Np
is

Bl = [] @™ —q™) € ZIA*N],
Vvero

where the bivector ry of V is chosen such that wy(ry) > 0. If the curve contains
some flat vertex W, then mw = 0 and then B? =0.
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The refined multiplicity is a Laurent polynomial in several variables. The number
r
2

the choice of wq, but the pair {:EBIQ} does not depend on the choice of wy.
Let K C AN be a sublattice. Then we can compose the definition of BIQ with the
projection px : Z[A>N] — Z[A*N /K] to get a slightly less refined multiplicity.

of indeterminates is equal to the rank of A2N, which is < ) . It depends up to sign on

Definition 2.11 For a sublattice K C AZN, let Bll( = pk (BIQ), obtained by reducing
the exponents modulo K.

Notice that this notation is consistent with the notation for BIQ, which corresponds to
the choice K = {0}. Although the relation pg (BIQ) = Bll( shows that Bg determines
the other refined multiplicities, the use of these multiplicities is necessary since the
multiplicity BIQ might fail to provide an invariant, while some Bli( might do so.

Remark 2.12 1f N is of rank 2, then A2N =~ Z, and the choice of a generator of AZN
identifies Z[AQN] with Z[gq, q_l]. Up to a division by (g — q—1)|A\—2, we recover the
definition of the refined multiplicity proposed by Block and Géttsche [3]. O

Remark 2.13 The refined multiplicity depends up to a sign on the choice of wg. In every
occurrence of the refined multiplicity, the choice of wy is fixed in a non-ambiguous
way so it does not bring up any problem. O

3 @-problem and first refinement

Before turning to more general enumerative problems and providing them with a
refined way to count the solutions, we present a family of enumerative problems,
called w-problems, where it is slightly easier to show the existence of an associated
refined invariant, i.e. a refined way to count the solutions of the problem leading to a
result independent of the constraints.

In the planar case, meaning that r = 2, one can consider the classic enumerative
problem of finding degree A rational tropical curves passing through |A| — 1 points.
In that case, the complex multiplicities of rational tropical curves split as a product over
the vertices of the curve. This fact, which is specific to the two-dimensional case and
fails in arbitrary dimension, is used to prove invariance with the refined multiplicity of
Block—Gottsche [3], see [13]. The w-problems also share this property of the complex
multiplicity splitting into a product over the vertices of the curve.

Remark 3.1 In the planar case, the w-problem amounts to find rational tropical curves
passing through |A| — 1 points when these points are located on the toric divisors,
meaning that the unbounded ends are contained in fixed lines of the same slope. O

3.1 Enumerative problem
Let A C N be a tropical degree consisting only of non-zero vectors, and let v € A>M

be a 2-form chosen such that w(n., —) # 0 for every n, € A. Before getting to the
enumerative problem, let us define what we mean by moment.
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Definition 3.2 For a parametrized tropical curve 4 : I' — N of degree A, the moment
e (e) of an unbounded end e € Féo with respect to w is defined as follows: let n, be
the slope of & on e and let p be any point in A(e),

Ho(e) = o(ne, p).

This definition may be extended to the bounded edge of I' if an orientation is
specified. Geometrically, the moment corresponds to the position of the affine space
H, of slope H, = ker,, w that contains the image of the unbounded end e. Using
the balancing condition at each vertex of the curve, one easily proves the following
proposition.

Proposition 3.3 For h : I' — Np a parametrized tropical curve, one has

Z Hole) =0,

1
ecly,

meaning that the family (v of moments of the curve belongs to M = {u : Y, e =
0} C RA.

Remark 3.4 This fact generalizes the planar Menelaus relation noticed by Mikhalkin
[17]. That is why we also call it tropical Menelaus relation. O

We now state the w-problem. Consider the global moment map
mom : (', h) € Mo(A, Nr) —> (1w (e)), € M C RA.

The moment map, which has image in 9t due to the tropical Menelaus relation, is a
specific case of composed evaluation map, where one chooses L, = H,.

Problem 3.5 Let u € H. How many parametrized rational tropical curves of degree
A satisfy mom(T", &) = u? In other words, for each e € I‘éo\{eo}, fix H, an affine
hyperplane with slope H,. How many parametrized rational tropical curves of degree
A satisfy h(e) C H,?

Unfortunately, the codomain has dimension | A |— 1, while the domain has dimension
|A| + r — 3. Therefore, unless r = 2, this is not enough to ensure a finite number of
solutions. We then add the following condition: let ¢g € Fcl,o be a specific unbounded
end and let § € N/(n,,) be a primitive vector such that w(n,,,5) # 0 and D be a
line with slope 6. We add the condition that h(ep) € D C Nr/(ne,), getting to the
w-problem denoted by P(w, ).

Problem 3.6 Let n € H and D be a line with slope § inside Nr/(n.,). How many
parametrized rational tropical curves of degree A satisfy mom(I", #) = w and h(ep) €
D?

Remark 3.7 The condition i(egp) € D means that the image of the unbounded end e
is contained in a plane. O

@ Springer



Refined count for rational tropical curves... 1215

We denote the associated composed evaluation map as follows:

ev” 0 s Mo(A, Ng) — Ng/{8) x [ R,
eF#ep

where the R terms correspond to the evaluation of the moments of the unbounded ends
different from eg.

Remark 3.8 We omit § from the notation P(w, eg), since, as proven in Theorem 3.14,
the solutions do not depend on §. O

Remark 3.9 There are other ways to impose further constraints on the curves to get a
finite number of tropical curves:

— The problem depends on the chosen end ep.

— The constraint could have been split into two constraints on two different
unbounded ends.

— One could have impose constraints on one or several new marked points on the
curve.

Some of these possibilities are studied later on in Sect. 5. O

3.2 Count of solutions and complex invariance statement

We now get to the invariance statement for the count of solutions to P(w, ep) using
first the complex multiplicity, meaning that the count does not depend on the choice of
(u, D) as long as it is generic. The invariance of the count using complex multiplicity
has already been proven in various ways: by hand showing the local invariance around
walls, using tropical intersection theory, or using the invariance in the complex setting
and some correspondence theorem. In any case, the statement is a particular case of a
more general statement which is proved in the appendix. Yet, as the invariance with
the complex multiplicity is a key ingredient in the proof of invariance using refined
multiplicity, we give here the main steps of what could be called the pedestrian proof.

Proposition 3.10 For a generic choice of u and D, there are finitely many tropical
curves solution to P(w, eg). Moreover, such curves are trivalent.

Proof The set of top-dimensional combinatorial types CtAOp decomposes between the
types on which the composed evaluation map ev®-“? is non-injective, and the ones
where itis bijective. The image of the cones where the composed evaluation map is non-
injective is nowhere dense inside the codomain since ev®> is linear and non-surjective
either. The same applies for the image of the cones which are not top-dimensional.
Therefore, if (u, D) is chosen outside the image of these cones, the only cones that
may provide a solution are top-dimensional ones where the evaluation map is injective.
Such a solution, if it exists, is unique. As there are finitely many combinatorial types,
the conclusion follows. O

Remark 3.11 This fact can also be proven using tropical intersection theory: for a
generic choice of constraints, the spaces ev(Mo(A, Nr)) and D x [, £eo ‘H. intersect

@ Springer



1216 T.Blomme

transversally inside [ [, Nr/(n.) and intersection points belong to the interior of top-
dimensional faces. The conclusion follows along with the invariance of the count using
complex multiplicity. O

We now compute the complex multiplicities of the solutions.

Lemma 3.12 For each trivalent solution h : I' — NR to the w-problem, the complex
multiplicity takes the following form:

C,w,e
mp 0 = w(ne,, 8) 1_[ w(my)|.
vero

Proof We use the algorithm to compute the complex multiplicity by choosing as sink
the vertex adjacent to the unbounded end ep. Then, the recursion uses the following
identity:

lat+b(Lla@ A 1pw) = (La+bla®)lp® — g (Lat+blp®)
=w(a,a+ b)ypw— wb,a+ b),w
=w(a, b)gtpw.

Hence, the computation reduces to the case there is just one vertex. Noticing that the
constraint on eq is associated to the polyvector Lg[nEOQ, where €2 is a generator of
A" M, we have

law A L@ A Lslg+p2 = w(a + b, S)w(a, b)2.

To conclude, for a generic choice (1, D), let

NSw.Dy= 3 mp”e,
mom([,h)=un
h(ep)eD

be the count of solutions to P(w, ep) using the complex multiplicity. This count is
well-defined since the solutions I" are trivalent. Then one has the following invariance
statement.

Proposition 3.13 The value of the count Ng (i, D) does not depend on the choice of
W nor the choice of D as long as these choices are generic. It only depends on the

choice of w and the slope § of D.

The proof follows from tropical intersection theory, or from the computations done
in the appendix.
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3.3 Refined invariance statement

We conclude this section by showing an invariance statement for the same enumerative
problem 3.6, using this time the refined multiplicities BX« introduced in Sect. 2.6.
Let Ky, = (my : o(my) = O)yey, C A2N be the space spanned by the vertices
spanning a plane where w restricts to 0. If w is chosen generically with respect to A,
then K, = 0. Otherwise, the 2-form w might take value 0 on some vertex V occurring
in a rational tropical curve of degree A. We use the refined multiplicity Bé( “ of a
tropical curve, which is

Bre =[] @™ —q™™) € ZIA’N/Ko).
Vero

The 2-vector my is chosen so that w(wy) > 0. If w(wry) = 0, then 7y € K, and
the multiplicity is equal to O since the exponents are taken modulo K. Then, for a
generic choice (i, D), let

Ba(u.D)= > Bf“ e Z[A’N/K,].

mom(T",h)=p
h(eg)eD

Theorem 3.14 The refined count Ba (., D) does not depend on the choice of i and D
as long as it is generic. Neither does it depend on the slope § of D. It only depends on
the choice of w and the choice of the unbounded end ey with the additional constraint.
It is denoted by BY“.

Proof We already know that the count of solutions with complex multiplicity m©-®-¢0
leads to an invariant. This means that the repartition of the solutions around a wall
matches the invariance of the count with complex multiplicities. Recall that here, a
wall is a tropical curve with a unique quadrivalent vertex. Therefore, we need to check
for each wall that the count with refined multiplicities is also invariant.

We check the local invariance around the wall corresponding to a quadrivalent
vertex of the tropical curve. Let a1, a», a3, as be the slopes of the outer edges, with
index taken in Z/4Z. Up to a relabeling, we assume that w(a;, a;+1) > 0 for every i:
the vectors span a 3-dimensional subspace, and w restricted to the subspace is either
0 or has a non-trivial kernel. Thus, we can can quotient by the kernel and restrict
to the planar case. In the planar case, the 2-form induces an orientation, and we can
choose ay, az, az, a4 in the counterclock-wise order. Then, foreach i, w(a;, aj+1) > 0,
otherwise w(a;, aj+1), w(a;, ajy+2), w(a;, aj+3) would all be negative and their sum
could not be 0, contradicting the balancing condition. If some value is equal to 0,
the proof remains unchanged. Moreover, we assume that w(a», a3) > w(ai, az). The
invariance of the complex count amounts to the following relation:

w(ay, ax)w(a) +az,a3) + w(ay, az)w(ag, ay +a3z) + w(a, az)wlay +az,a;) =0,
for 12//34 for 13//24 for 14//23
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and the repartition of combinatorial types around the wall is given by the sign of
each term. It means up to sign that one is positive and is on one side of the wall,
and the two other ones are negative, on the other side of the wall. Hence, we just
need to study the signs of each term to know which curve is on which side. We know
that w(ay, az) and w(a; + a», az) = w(as, as) are positive. Therefore, their product,
which is the term of 12//34, is also positive. We know that w (a3, a3) is positive, but
w(az + a3, a;) = —w/(as, ay) is negative. Therefore, their product is negative and
14//23 is on the other side of the wall. It means that the combinatorial types 12//34
and 14//23 are on opposite sides of the wall. We need to determine on which side the
type 13//24 is, and that is given by the sign of the middle term. As by assumption
w(az, a1+a3) = w(az, az) —w(ay, az) > 0, itis determined by the sign of w (a1, a3).

— Ifw(ai, az) > 0,then 12//34 and 13//24 are on the same side, and the invariance
for refined multiplicities is dealt with the identity

aAaz qa3Aa2)(qa1/\(a2+a3) (a2+a3)Aa1)

(q —q

a\Aay azAal)(q(a1+a2)/\a3 _ qa3A(a1+a2))

=(q —q
+ (qalAa3 . qu3Aa1)(qa2A(a1+a3) _ q(a|+a3)m2)7

— and if w(ay, a3z) < 0, then 14//23 and 13//24 are on the same side and then the
invariance for refined multiplicities is true since
axNajz

a3/\a2)(qa| Aax+az) _ (ax+az)Aay )

(g —q q

+ (g — qa1Aa3)(qazA(a1+a3) _ q(a1+as)/\az)

ajnay az/\al)(q (a1+ax)naz __ qa3A(a1+a2))‘

= (g —9q

This completes the proof if each complex multiplicity is non-zero. If the multiplicity
of some side of the wall is 0, it does not provide any solution to the enumerative problem
for generic values, and one needs to cancel its refined multiplicity, which might not be
0 if one chooses the refined multiplicity Bg. If some combinatorial type has complex
multiplicity 0, it means that for some W among the two displayed vertices, @ (7w ) = 0.
The same relations between refined multiplicity lead to the invariance provided that
one mods out the exponent by my, which sends the refined multiplicity to 0. One
just obtains that the curves on the two remaining sides of the wall have the same
multiplicity.

The result also does not depend on § since the refined multiplicity does not depend
on §, and the set of solutions for a given choice of (u, D) only depends on w and the
intersection point of D with the hyperplane H,,. O

Remark 3.15 We have proven a refined invariance statement for every w such that for
every n € A, 1,0 # 0. For every w not taking the value 0 on Va, we have a refined
invariant in Z[A2N]. If for some V one has w(y) = 0, the space of the exponents
where the refined invariant takes value is reduced by my . O
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4 Refined count for rational tropical curves

We now use the refined invariance proven in the setting of the w-problem to prove a
refined invariance for a larger class of enumerative problems, where the constraints
we ask a tropical curve to satisfy do not necessarily come from the choice of a 2-form
.

4.1 New enumerative problems

Let A C N be a tropical degree without any zero vector. For each n, € A, let L, be
a saturated sublattice of N/(n.), and let L, be an affine subspace of Ng/(n.) with
slope L.. A full sublattice means that the quotient is without torsion. Assume that
Y ocotkL, = |A| +7r —3.

Problem 4.1 How many rational tropical curves & : [' — Np of degree A satisfy for
each unbounded end e € T’ éo h(e) € L,?

In other words, using previous notations, solving this enumerative problem means
finding the preimages of a generic point for the following composed evaluation map

evile) : Mo(A, Ng) — H Q..

The enumerative problem is referred as P(L,), and is related to an analogous complex
enumerative problem through the use of a correspondence theorem. The count with
the complex multiplicity m(lg’(L") is already known to lead to an invariant. The result

is recalled here is proven in the appendix.

Theorem 6.10 For a generic choice of (L.), the count Ng (Le) = ZF:h(e)eﬁe m(l(—:’(L”)

does not depend on the choice of (L.). It only depends on the choice of A and (L.).

Furthermore, the result of this count is equal to the complex invariant provided by
the analogous complex problem. However, the involved complex multiplicity m© (L)
does not in general split into a product over the vertices of the curve. Nevertheless, we
prove that for a suitable choice of K and up to a change of sign, the refined multiplicity
B{< , which is a product over the vertices, does lead to a invariant. Meanwhile, let us
describe the combinatorial types that have complex multiplicity O.

Lemma 4.2 A parametrized tropical curve h : I' — N with complex multiplicity O
falls into at least one of the following categories:

(1) The curve has a contracted bounded edge, i.e. it is reducible.
(i) The curve has a flat vertex, i.e. wy = 0 for some V.
(iii) For some bounded edge y € F;, the ranks of the constraints are improperly
distributed: let A U B be the partition of l"éo induced by y, then

> cork Ly > r+|A|=2o0r Y cork L, > r + |B| - 2.

ecA ecB
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(iv) The curve has no flat vertex or contracted edge, the ranks of constraints are
properly distributed but non-generic.

Proof In the first two cases, the multiplicity is zero since the evaluation map is non-
injective, so neither is the composed evaluation map. Let us focus on the third case
and assume there is a bounded edge y € I' lg such that the constraints are improperly
distributed. Out of symmetry, let assume that ) ,_, cork L, > r + |A| — 2 and the
sink used to compute the multiplicity is in the B part of the curve. The recursive
formula p = t,,4,7(p1 A p2) used to compute the complex multiplicity shows that the
polyvector p, obtained applying the algorithm is the interior product with a polyvector
belonging to A2-akLe—IAI+2 A1 By assumption, this space is 0 since the weight is
strictly bigger than r, and so is the multiplicity.

By disjunction, the last case contains indeed the remaining cases. Using the
Pliicker embedding, the space of corank [ sublattices of a given lattice N is A'M.
As Hom(N /(n,), Z) ~ (ne)* C M, the complex multiplicity can be seen as a multi-
linear form on the space [], A®*L¢(n, )L of possible slopes for the lattices L., once
their dimensions are fixed. The assumption ensures that the multilinear form itself is
non-zero, but it might still take the zero value on some specific choice of slopes. This
is avoided if the slopes are chosen generically. O

4.2 Main results

For a choice of slope constraints (L,), let v € A%M be a 2-form satisfying the
following property: for every top-dimensional combinatorial type I,

mg’(L”) =0= m(lg’w’eo =0.

In particular, if for some combinatorial type I" which is not of type (i) or (ii) one has
mig’(L") = 0, then K, # {0}. Such a w is often not unique and in some cases might
even be 0. However, the choice of w does not really matter, only the space K, matters.
See Corollary 4.9 for a precise statement.

Remark 4.3 1t is an interesting question to decide whether there exists a non-trivial w
satisfying these requirements. These conditions need only be checked on combinatorial
types having neither contracted edges nor flat vertices. Nevertheless, to prove the
interest of the results, we provide a wide class of examples which admit such an w. O

Example 4.4 Choose the boundary constraints on every unbounded end to be at least
codimension 1 and having generic slope, and let @ be a 2-form such that K, = {0},
meaning that the only combinatorial types with complex multiplicity relative to w
equal to O are the curves with a flat vertex or a contracted edge. Then, we prove that
the complex multiplicity relative to (L.) is never O unless there is a flat vertex or
contracted edge.

According to the classification of Lemma 4.2, we can only be in the case (iii).
Thus, we show that the dimensions are properly distributed. Let y € Fé be an edge

@ Springer



Refined count for rational tropical curves... 1221

and AuB = Féo the associated partition. Then by assumption,

ZcorkLe > |A| and ZcorkLe > |B|.

ecA eeB

Moreover, one has ), corkL, = |A| +r — 3. Thus,

(ZcorkLe - |A|> + (ZcorkLe — |B|> =r —3,

ecA eEeB

and as each term on the left-hand side is positive, neither can be bigger than r — 2.
Hence, constraints are properly distributed. O

We now get to the main result. We use the refined multiplicity B1{< “, where the

bivectors my are chosen such that w(ry) > 0. If w(7ry) = 0, then Blg ® = (0 and the
sign does not matter.

Theorem 4.5 There exists a collection of signs er indexed by the combinatorial types
CtAOp such that the following refined count

Ba((L))= Y erBL” e ZIA*N/K,),
I:h(e)el,

does not depend on the choice of the constraints L, as long as it is generic. It only
depends on the choice of L.

Remark 4.6 1t might happen that for some combinatorial type m(lg’(L"”) # 0 and still
Bl{( ® = 0, but not the other way around. O

The construction of the collection of signs is given in the proofs. They can be
obtained as follows. Let C be a top-dimensional combinatorial type in CtAOp with non-
zero complex multiplicity m(g’ (Le) We have two evaluation maps restricted to the cone

C:

eV(CLe) : le‘% x Np — [, Qe,
evy @ :le‘_3 x Nr —> Nr/(8) X [Touze, R-

Let us assume that the maps are invertible, otherwise the definition of the sign does
not matter since Bg"’ = 0. Let us choose once and for all an orientation of the
codomains, i.e. not depending on the chosen combinatorial type I". For any orientation
onC = RI_,_Al_3 X NR, if the maps both preserve the orientation or both reverse it, the
sign is +. If one of them preserves the orientation and the other reverses it, the sign
is — The signs ¢¢ are thus defined up to a global sign depending on the choice of the
identification between the codomains of both evaluation maps.

In other words, if one identifies the codomains with RI21H7=3 and one chooses an
orientation on it, the sign ec compares the orientations on C which are induced by
both composed evaluation maps.
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4.3 Proofs of invariance

We give two different proofs of the result. Both proofs use a trick that might be of
an interest in other situations as well: without giving too much context, given two
tropical enumerative problems P and P’ for tropical curves having the same walls,
assuming some additional condition on the combinatorial types not providing any
solution, it is possible to use a multiplicity m leading to an invariant in P to get an
invariant in P’, eventually twisting the multiplicity m with a sign. In our case, we use
the invariance with respect to the refined multiplicity BXo in the w-problem P(w, ep)
to get an invariance in the problem P(L,).

First proof of Theorem 4.5 The first way of proving the existence of the signs is choos-
ing the sign of one combinatorial type and spreading the signs so that one has local
invariance around the walls, which are here the curves with a quadrivalent vertex.
Then, one just has to check that the signs are well-defined.

Let Wa be the set of walls, i.e. combinatorial types of curves with a quadrivalent
vertex. Consider the graph on CtAOp where the two combinatorial types C and C’ are
adjacent if they are adjacent to a common wall W € Wa. We consider the subgraph

Greg C CtAOp only containing the combinatorial types with non-zero multiplicity BX®,
and thus non-zero complex multiplicity m C. (L) , along with the edges between them.
This graph might not be connected anymore For a given connected component let
Co be a fixed combinatorial type, thus having non-zero complex multiplicity m - ’(L ),

Let ec, = 1. For a given wall W € Wx, we write the local invariance relatlon for

BXo around W in the following way:
Ko Ko Ko
e, Be? + 0l Bel + ¢y Boe =0 € ZIA*N/K,),

where ng/ are equal to =1, and depend on the repartition of the sides of the wall in
the enumerative problem P(w, ep). The triple (ncl ’7C2 ’70 ) is defined up to global
change of sign. If for a given combinatorial type C one has BC = 0, the signs ng
are not uniquely defined but their definition is unimportant. Now, for a combinatorial
type C € Greg C CtAOP, let

Wan—1
Co8ce .. e, =c

be a path going from Cp to C in G, where W; € W, is a wall adjacent to both
combinatorial types C; and C;41. Now, we use the following rule to define the signs
ec; let Cl e CtAoP be the last combinatorial type adjacent to W;, so that the adjacent
combinatorial types are C;, C; 11 and C;. We are in one of the following situations:

— The combinatorial types C; and C; are on the same side of the wall, so that the
invariance relation for the complex multiplicity m© (L) writes itself

& S o
a
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We write the invariance relation for BX~ mimicking the previous relation, and
multiply it so that the coefficient of m gf" is &¢;, leading to

ne! Net
Ko Civ1 K, _ ¢ K,
ec;me” + &g W Mme, = _gci_w,-mc; .
C; e,
Thus, we choose
ne.!
_ Cit1
ECiy1 = EC; 7N
Ne;

— If C; and C;4 are on different sides of the walls, the invariance for the complex
multiplicity writes itself

C.(Lo)

C,(L C C,(Le) C,(Le) _  C.(Le)
e i =Me, T G

e) J(Le) _
+mCl_, =me Corme

We then proceed similarly and choose

Wi
_ o
8Cip = —ECi T
Ne;

- If m(C:}(LE) = 0, C; and C; 41 are on different sides of the wall, and the combinatorial
type C; never provides any solution to the enumerative problem for a generic value.
As by assumption Bgf" is also 0, the previous case still works.

For each connected component of G, the choice of a sign on one combinatorial type
Cy thus propagates to define a sign for every other combinatorial type in the connected
component. The rule to propagate the sign from one side of the wall to another might
be reformulated in the following closed way. Fix an orientation on the codomain of
the composed evaluation map ev(“<). Let ot(C) be the orientation of C induced ev(CL").
For a combinatorial type on which the composed evaluation map is not invertible, the
orientation is chosen at random and does not matter. Then, two combinatorial types C;
and C; 1 stand on the same side of the wall W; if and only if the induced orientations
dw, 0t(C;) and dw, 0t(C;4+1) on W; coincide. Thus, we can use the closed formula

Wi
ow, 0t(Cit1) ey,
8Wi Ot(ci) ngi )

€Cip1 = &C;

We now check that the signs are well-defined, meaning that the definition of e¢ does
not depend on the chosen path between C¢ and C. Notice that the rule of propagation
is reversible: the sign of C; determines the sign of C;; in the same way that the sign
of Cjy1 determines the sign C;. Thus, we only have consider a loop from Cj to itself,
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and prove that the sign obtained by the propagation rule is equal to the original sign
ec, = +1. Let

Wo (41 Wit W,
Co—Ci — -+ =5 C, —= Cy

be such a loop inside a connected component of Gre,. Then, the iteration of the rule of
signs gives the following sign on Cy:

n

Wi
l—[ 8Wi Ot(ci-‘rl) nC,ur]
. w;
8W,' Ot(cl) T]Ci

i=0

and needs to be equal to 1. This can be written as a condition on the signs 7:

Wi
z nC,ur] _ﬁaint(Ci+l)
W N
i=0 Nc; im0 Owior(Ci)

Splitting the right-hand side product and reindexing its numerator, we get to

Wi
. nCi+1 o ﬁ aWi—IOt(Ci)
w; T A
i=0 Nc; i dwior(Ci)

Each triple (r;évI , TIEVZ , 77(‘};‘2 ) is defined up to sign. Notice that the above condition does
not depend on the choice of this sign. Neither does it depend on the ng for C with

Bg @ = 0 since the loop stays inside a component of Gys. As each factor of the right-
hand side is unchanged if the orientation of a combinatorial type C; is reversed, then
the condition does not depend on the orientations of each C. Therefore, the rule to
propagate signs depends on the orientations ot(C) chosen on the combinatorial types,
but the condition to ensure that these signs are uniquely defined only depends on the
nCW , not on the chosen orientations. Thus, we can choose any orientation to check the
formula, for instance, the orientation induced by the composed evaluation map ev®-€°,
related to P(w, ep).

As the refined multiplicity BX~ is known to give an invariant in the problem
P(w, ep), the local invariance around a wall W; gives by definition ng/ = %,
for a fixed orientation ot(W) of W. Thus,

Wi
nC,'_H _ BW,' Utw(ci+])
ne! dw, 0t (Ci)

It implies that the relation is verified, which concludes the proof since by construction
the local invariance is satisfied at each wall. O
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Remark 4.7 We could have noticed from the start that the n CW are given by the formula
% and conclude that the necessary relation to guarantee that signs were well-
defined is satisfied. However, this wouldn’t emphasize the fact the condition solely
depends on the signs in front of the multiplicities in the dependence relations given

by the walls. O

This first proof gives the existence of the signs but fails to provide a useful definition,
which is given in the following second proof, whose idea consists in interpreting the
multiplicities leading to an invariant as cycles on the moduli space M(A, NR).

Second proof of Theorem 4.5 Consider the orientation ot(C) of C € CZ’P induced by
the composed evaluation map ev(’e) and a fixed orientation of its codomain. If the
restriction to a given combinatorial type is not invertible, the chosen orientation does
not matter. We then consider the following top dimensional chain

top
E= Y mge(C,or(C)) € Z = Ciop(Mo(A, NR)).

ceCy?

Technically, this is a chain in the star complex of the fan My(A, Nr), obtained as
the quotient of Mo (A, Ngr)\{0} by R% . The fan Mo(A, NR) is the cone over its star
complex, which is a compact CW-complex. Again, by abuse of notation, we write
Mo (A, Nr) to avoid further notations which are not essential to the proof, denoting
the cells of the star complex by their associated cone in Mg(A, Nr). Choosing an
arbitrary orientation ot(W) of every wall, the boundary of Z is

= Le L, L,
E= Y (77CW1m(C1 D ndmee + ntmg )) (W, ot(W)),
WeWa

where C1, C and C3 are the sides adjacent to the wall W, and the sign ng = a‘gta(tv[(/C)')

is given by the boundary map. Then, the local invariance relation needed to show
that multiplicities m ‘") lead to an invariant for the enumerative problem P(L,) is
equivalent to the fact that E is a cycle, i.e. 98 = 0. Conversely, any m = (m¢)c such
that

o > mec.ov©)) | =0andmg ™ = 0= me =0,

top
CeCy,

provides an invariant for the enumerative problem P(L,.). The first relation ensures
the local invariance statement while the second condition ensures that combinatorial
types which do not provide any solution do not interfere in the local invariance.

Now, let ot (C) be the orientation of C induced by the composed evaluation map
ev®0_Then, as the refined multiplicity BX« provides an invariance in the enumerative
problem P(w, egp), one has
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a| Y. BE(CLor,(O) | =0.

top
CeC,

Thus, twisting the signs, one gets

o[ 3 L pkec ooy | =0,

ot(C)
Cecgp
As by assumption m(C:’(Le) =0= Bg‘” = 0, the choice ¢¢ = °0tt‘"((cc)) gives an
invariant in the enumerative problem P(L.) and concludes the proof. O

Remark 4.8 The second proof allows one to view the multiplicities leading to an invari-
ant as some homology class in Hiqp, (Star(Mo(A, Ngr)), R) with values in some ring
R, 7 or Z[A%N] for instance. O

The second proof gives an explicit description of signs that provide invariance
using the w. However, the first proof provides all possible signs: one choice of signs
for each connected component of the graph G, (Recall that G, is the graph of
combinatorial types whose multiplicity is non-zero). It would be interesting to know
whether this graph is always connected or not. If the graph was not connected, the sum
of multiplicities of curves solution to an enumerative problem and whose combinatorial
type belongs to a given component of Gy, would lead to refined invariants of a new
kind. Thus, we have the following proposition that follows from the first proof of
Theorem 4.5.

Corollary 4.9 Let c be the number of connected components of Greg. Up to a global
change of signs, one has 2~ choices of signs that provide invariance. In particular,
if Greg is connected, the choice is unique and signs do not depend on the choice of w.

In other words, the choice of w has only an influence on the number of combinatorial
types whose refined multiplicity vanishes: for some of them it always has to be O (those
for which m(Ig (Le) — 0), but some other might also have a vanishing refined multiplicity
(for instance if w = 0). The choice of w has an influence on this last part. This only

depends on K.

5 First properties and possible enhancements of refined invariants
We now focus on some properties of these new refined invariants, including their

relation to the complex multiplicities. We then provide some directions to enlarge and
improve the family of refined invariants.
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5.1 Relation to the complex multiplicities

In the case of the w-problem P (w, ep), we first prove a connection between the refined
multiplicity and the complex multiplicity. In the general setting, to some extent with
prove the non-existence of such a relation. The goal of this section is to find a way to
recover mclg from 815 .

Let us first consider the planar setting, i.e. r = 2, and let det be a generator of
A%M . Recall that the refined multiplicity of Block-Géttsche is defined as follows: for
a trivalent parametrized tropical curve & : I' — Np,

det(my)/2 —det(ry)/2

—q
g2 _g-12

BG _ q
mI- =

Vero

€ Zlg*=',

where my is chosen so that det(zry) > 0. This refined multiplicity is related to our
choice of refined multiplicity through the relation

(q1/2 _ q_l/2)m|_2m1§c = Qdet <qu) ’

where @get : ZI[A%N] — Z[qil/ 2] is the morphisms that evaluates det/2 on the

BG q—>1 C ge . .
exponents. Asmp” ——> ]_[V det(ry) = my, the refined multiplicity determines the

complex multiplicity in the planar case, and so the refined invariant Bi’eo determines
the complex invariant Ny .

Getting back to the general case, this limit relation extends to any dimension, and
thus proves that the refined multiplicity determines the complex multiplicity in the
w-problem P(w, ep) for any w, which is stated in the following proposition.
Proposition 5.1 For any choice of w, one has (g —q~" )2*|A|¢w(31{<‘”) E) mi(«:’w‘eo
and thus

’

10— qg—1 0
(g — ¢ PleuBR) = N

In the general case of the enumerative problem P (L,), the question remains to know
whether the complex multiplicity can be recovered using the refined multiplicity and
some clever function involving the constraints. Due to the finite number of refined
multiplicities for a fixed degree A, the complex multiplicity cannot be determined
solely with the refined multiplicity.

Remark 5.2 Itis possible to find tropical curves satisfying constraints of the same slope,
and with the same refined multiplicity but different complex multiplicities, preventing
from finding a simple relation between the refined multiplicity and the complex mul-
tiplicity. Indeed, for each combinatorial type, the algorithm from Sect. 2.5 expresses
the complex multiplicity as a multilinear function depending on the Pliicker vectors of
the constraints. If two unbounded ends point in the same direction, the corresponding
function has no reason to be the same when you switch the constraints imposed on
these unbounded ends, and the complex multiplicity depends on the repartition of the
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constraints. Meanwhile, the refined multiplicity only depends on the combinatorial
type. m}

5.2 Regularity of the invariants

For a fixed degree A, the invariants Bi’eo and 5 Ig (L.) form alarge family of invariants
depending on w for the first family, and (L, ) for the second. The 2-form w varies on the
space A2M @R, while (L,) varies in ]_[e Ale (ne)l, where [, = corkL,. In this section
we study the dependence of these invariants in their respective parameter spaces.
The following theorem adresses the case of the invariants Bz,eo_ First, let us introduce
the fan structure 24 on A%Mg, which is induced by the linear forms w +— w(wy),
for every V € V. Notice that the function w > K, = (ny : w(7wy) = 0)ycyp, is
constant on the cones of the subdivision, and thus denoted by K, for a given cone
o of Qa. Furthermore, if t < o are cones, then K, C K;. The top-dimensional
cones are those for which K, = {0}. Remember that BZ’QO is defined whenever
AN{n : 1,0 = 0} = @. The set of w not satisfying this assumption is some subfan of
Qa, where one can set By = 0.

Theorem 5.3 - The function w — B‘A‘)’eo is constant on the interior of the cones of
QA where it is defined.
— If T < o and t are cones of Qa, with values B(c) and B(t), then B(t) is the
image of B(c') under the projection ZIA*N /K] — Z[A*N/K.].

Proof Let wq be a fixed 2-form where B is defined. Let C € CtAOp be a combinatorial

type with non-zero multiplicity m(g’w"’eo and I'y be a curve belonging to the interior

of C. We consider ev®>“" as a function of both w and I' € C. This way, the partial
differential aegal:eo at (wo, Ip) is the usual differential of ev®0:¢0, Recall that ev®0:¢0
is linear on C. Therefore, the differential is invertible since its determinant is equal
to the complex multiplicity m%wo’e", which is non-zero by assumption. Thus, the
Implicit Function Theorem ensures that at the neighborhood (wg, I'g), the equation
ev? 0 (T") = ev® 0 (Ig) in (w, I') solves with I" being a function I' (w), with ' (wg) =
To.

For a generic value (i, D), at wg, one has

K,
wp,e0 __ 2 : 2!
BAO 0 — BF 0.
ev0(I)=(u, D)

For the combinatorial types that contribute a solution in the above sum, the previous
fact using implicit functions theorem shows that they still provide a solution when w
moves in the neighborhood of wy. For the same reasons, combinatorial types where the
composed evaluation map is invertible but which do not provide a solution continue
not to provide a solution. The remaining combinatorial types never provide a solution
for P(wo, ep), but might start to do so for some P(w, ep). However, their multiplicity

Koy . .
B “0 s 0. Moreover, the function
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wr— Bf =[]@™ —q ™) € ZIA’N /Ky,
\%4

is constant in a neighborhood of wy: if the value is 0, it stays zero since some 7y belongs
to K, otherwise the conditions w(ry) > 0 remains valid for @ in a neighborhood
of wp. In particular, for @ belonging to the same cone of 24, since then one has
K, = K,, the multiplicity stays the same, and @ +— B‘Z’eo is locally constant for
o in the neighborhood of w( and in the same cone. The first statement follows since
cones are connected.

If w is still in the neighborhood of wg but does not belong to the same cone of
Qa, then the same observation applies. And By = B € Z[A?N /K] which
means that BY"“ is the image of By"” under the map that projects the exponents
ZIA*N /K] — Z[A*N /K4, ], thus proving the second statement. ]

Remark 5.4 Clearly, the w-problem P(w, eg) depends on w only up to multiplication
by a scalar. The fan Q induces a subdivision on the projective space P(A%Mg), which
is a hyperplane arrangement. Then, [w] > B} is a function constant on the cells
of the subdivision and satisfying the compatibility condition when going from a cell
to one of its faces. On the cells where BZ’e" is not defined, the map can be extended
by 0. This choice is natural since for such 2-forms, the composed evaluation map is
never surjective, and there is an invariant which has value 0. O

For the general enumerative problem P(L,), the same reasoning applies. Let (LS)
be a specific set of slope constraints. Let [, = corkLg, so that the tuple (L.) varies in
L =], Ale(n,)*.

Theorem 5.5 Let (Lg) € L be a specific set of slopes constraints. Let w be a 2-form
satisfying

w,eq

C.(LY)
me =0=m-" =0,
leading to an invariant Bf‘” (Lg) € Z[AZN/Kw]. Then w also satisfies the condition

for (L,) in a neighborhood of (LS), and the function (L,) — Bf”) (L,) is constant in
a neighborhood of (L(e)).

Proof The condition

w,eq

C,(L?
mc’( “)=0:>mc =0,

can be restated as

0
m2e £ 0= me " 20,

Furthermore, for each combinatorial type C € CYP, the complex multiplicity seen

as a function (L,) — m(g’(L")

one still has mg’(LE) # 0. Thus, the 2-form w also satisfies the condition for (L,) and

is continuous on L. Thus, in a neighborhood of (LS),
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thus provides an invariantin Z[ A% N / K ,]. The implicit functions theorem provides the
local invariance in the same way as for the w-problem case: combinatorial types where
the complex multiplicity is non-zero provide or not a solution for a specific value of the
constraints, and we apply the implicit functions theorem, and combinatorial type where
the complex multiplicity vanishes might provide a solution for (L.) in a neighborhood
of (L9) but their multiplicity B5 is 0 by assumption. O

5.3 Tropical cycles constraints

We now try to enlarge the scope of the refined invariance theorems by generalizing
the family of enumerative problems P(L,) considered in Theorem 4.5. A possible
generalization would be to replace the affine constraints in Nr/(n.) by tropical cycles
of the same dimension. Let (Z,) be a family of tropical cycles E, C Nr/(n.) such
that ), codimE, = |A| +r — 3.

Problem 5.6 The problem referred as P(E,) is counting rational tropical curves of
degree A which intersect E, for every e € Féo.

The dimension count ensures that if the cycles E, are chosen generically, there is
a finite number of solutions. In this situation, general theory still provides a complex
multiplicity which leads to an invariant. However, the proof of Theorem 4.5 for the
refined invariance fails in this context for the following reasons.

— First, in the case of affine constraints, each tropical curve i : ' — Np determines
uniquely the constraints that it satisfies: £, is the affine space with slope L, passing
through h(e) € Nr/(n.). This can be reprased as the existence of the composed
evaluation map Mo (A, Ngr) — [], Qﬂf, where Qﬂf is amoduli space for the affine
subspaces L, of slope L.. The proof of invariance then consists in showing that
this map has a well-defined degree for various multiplicities. This is not the case
for tropical cycle constraints (E,) since they vary in a wider moduli space: there
is no composed evaluation map anymore. Thus, there is no suitable definitions of
the “walls” inside My (A, Np) that could lead to an analogous proof.

— Then, if one tries instead to mimic the invariance proof for the complex multiplicity,
whether it uses tropical intersection theory or not, we have to check invariance
around one new kind of wall: where the intersection point between one tropical
curve I" solution to the enumerative problem and one of the constraints &, belongs
to a facet of E,. This intersection is not generic among the choices of E,, and the
invariance for the complex multiplicity is provided by the balancing condition of
E., which would express as p; + p2 + p3 = 0 for the Pliicker vectors of the
adjacent facets of E,. However, at this wall, two solutions on one side of the wall
become one on the other side, but the combinatorial types of the solutions are the
same. This prevents any local invariance using a multiplicity solely depending on
the combinatorial type of the curve, such as Blg .

— Despite the impossibility of the multiplicity Bli( to provide a local refined invari-
ant, there might exists a clever way to find another refined multiplicity leading
to an invariant. However, such a multiplicity would not have the close relation-
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ship that BIQ shares with the count of real curves tropicalizing to I' through the
correspondence theorem.

Nevertheless, we can prove refined invariance in the following particular case. Let
Bey C Nr/(eo) be a tropical cycle of dimension 1, i.e. a tropical curve, and w € A’M
be a 2-form. We consider the following variant of the w-problem.

Problem 5.7 How many rational tropical curves & : ' — Ng of degree A have fixed
family of moments 1., and satisfy i(eg) € E,?

We count the solutions to the problem with multiplicity | (n,, 5)|BK‘”, where §
is the slope of &, at the intersection point with I'":

BR (o Beg) = Y | (ney. 8)|BE®.

0=ty
h(eo)€Ee

We have the following invariance result.

Theorem 5.8 For a generic choice of (liy, Ee,), the count does not depend on the
choice of 1, nor the choice of Ee,. It only depends on w and the degree of Ee,.
Moreover, its value is

- -~ 5 €
X(‘:“eo) = (- ‘:‘60)82 07

where w - E,, is the intersection index between E, and an affine hyperplane of slope
H,,.
0

Proof The proof is immediate because due to Theorem 3.14, for each intersection
point between H,, and E,,, the refined count is | (n,, 8)|BZ’EO, the result follows
by definition of the intersection index. O

5.4 Constraints on marked points

The other main direction to generalize the refined invariance theorems by staying in
the realm of cycle constraints would be to allow the constraints to live in the main
strata Nr. This would mean to allow unbounded ends with slope 0 and impose cycle
constraints on them.

The first problem that occurs is that the w-problem, which is at the core of the proof
of invariance, does not allow unbounded ends to have slope 0. If we are to go by the
same proof as for Theorem 4.5, the first step is then to find a suitable enumerative
problem that does so. For instance, the following variant of the w-problem. The idea
is to add marked points that do not add any constraints for the curves.

Let g1, ..., 9, € M be p non-zero linear forms, and let H; C N be affine hyper-
planes with respective slope ker ¢;. Let w be a 2-form, u € 91 a family of moments
and D C Ngr/(eo), all chosen generically. We consider the following enumerative
problem P (w, eo, (¢;)). We consider curves of degree A LI {07}, which means that
curves have now p new unbounded ends of slope 0, which are called marked points
and are denoted by i € [[1; p].
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Problem 5.9 P (w, ep, (¢;)) How many parametrized rational tropical curves 4 : I" —
N of degree A U {07} satisfy mom(I") = u, h(eg) € D, and h(i) € H; ?

Remark 5.10 The new additional conditions are kind of void for the following reason.
Forgetting the marked points, each solution of P (w, ep, (¢;)) gives a solution of the
usual w-problem P(w, ep). Conversely, every solution to P (w, e, (¢;)) is obtained
from a solution to the standard w-problem P(w, eg) by choosing intersection points
with the hyperplanes H; . Such points always exist. Therefore, the solutions are morally
the same solutions as for the w-problem. The new marked points on the curve just have
to be chosen at the intersection points between the solutions to the w-problem and H;.

O

Standard intersection theory ensures that the count of solutions with complex mul-
tiplicity yields an invariant. Using the algorithm to compute the complex multiplicity
of asolution & : I' — Np, one sees that the vertex corresponding to the marked point
i just contributes a factor |¢; (SI.F )|, where 8ir is the slope of I' at the marked point.
Hence, the complex multiplicity tales the following form:

C,w.e0,(¢i) r C.w.e
mp O = [Tl G < mp .
i

Using Remark 5.10, one obtains that by adding all the multiplicities over the curves
solutions to problem 5.9,

ng,w,em(wi) _ (1‘[ i - A) Ng’w’eo,
r i

where ¢; - A =3, r.,
of degree A and a hyperplane of slope ker ¢;. The combinatorial types where ¢; (Sic )
have thus zero complex multiplicity. They were previously part of the fourth type.
They do not occur if (¢;) are chosen generically with respect to A.

We now get to the refined count of this enhanced w-problem.

=0 Pi (n) denotes the intersection index between a curve

Proposition 5.11 The count of solutions to problem P (w, ey, (¢;)) with refined mul-
tiplicity [ ; |oi (8}")|BI{(“ yields an invariant which is equal to ([]; ¢i - A) BX.

Proof The proof uses Remark 5.10 which describes solutions to problem 5.9 in terms
of solutions to the usual moment problem. The direct computations yields the result.
O

We can then proceed, applying the same trick as in the proof of Theorem 4.5, to
get a new invariance result. Let L, C N/(n,) fore € Féo and L; C N fori € [1; p]l
be saturated sublattices such that

p
Z corkL, +ZcorkLi =|Al+r+p—3.

zel'ly i=1
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Let L., £; be affine subspaces of respective slopes L., L;. There is no relation between
¢; and L;. The first are involved in the toy problem for which we have an easy invari-
ance, and the second are the constraints in the new following enumerative problem:

Problem 5.12 How many rational curves of degree A U {07} satisfy h(e) € L, and
h(i) e L; ?

Remark 5.13 The infinite constraints associated to the £, can be forgotten by taking
L. = N/{ne). o

Standard intersection theory yields that the use of the complex multiplicity
m((C:’(L“)'(Li ) Jeads to an invariant. Meanwhile, the use of refined multiplicity gives
an invariant as follows. Let w, ¢; be such that

C,(Le),(Li) _ C,w,e0,(¢i) _
me =0= me =0.

Theorem 5.14 There exists signs er such that the refined count of solutions to prob-
lem 5.12 using multiplicity ec [ |; ¢ (5ic)|Bg‘° leads to an invariant.

Proof The proof is identical to the proof of Theorem 4.5. O

Remark 5.15 One gets many new invariants depending on the choice of the linear
forms ¢;. Clearly, the invariants are 1-homogeneous in the linear forms ¢;. Yet, it
would be interesting to study the various obtained invariants. O

As before, there is a subtle condition for the existence of refined invariants, which is
the existence of w, (¢;). To see that this generalization is still of an interest, notice that
the class of enumerative problems for which constraints on the unbounded ends and
marked points are of codimension at least 1 provide a family of examples for which
a generic choice of w and ¢; satisfy the assumption, leading to refined invariants in
Z[A*N].

As in the case of tropical cycle constraints, the appearance of factors [ [; |¢; ((Sic )|
makes the new multiplicity lose its relationship to the real curves tropicalizing to the
tropical curve.

6 Examples of refined invariants

We now give a few examples, limited for the two following computational technical-
ities: first, we do not have yet a way of solving efficiently either of the enumerative
problems P(w, ep) and P(L.), secondly, in the case of P(L.), finding a 2-form w
satisfying the assumptions might be difficult.

Example 6.1 First, assume that ® = ¢ A Y is a generic 2-form of rank 1, where
@, ¥ € M. Then, the 2-form has a (r — 2)-dimensional kernel ker = ker ¢ N ker
which is contained in every ker t,, . Therefore, the translate of a curve 4 : I' — Ng
by a vector in ker w has the same moments. Hence, solving the w-problem in N can
be done by solving the w-problem in N/ ker @ and then lifting the solutions to Np:
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asolution 7 : I' — N to P(w, eg) gives a solution to P(w) to the w-problem in
NRr/ ker w by composing with the quotient map Ng — Np/ ker w, which is endowed
with the quotient form w. Conversely, any solution in the quotient can be lifted uniquely
to a solution in N such that % (ep) belongs to the line D chosen for the enumerative
problem. Therefore, we reduce to the planar case and the computation can be done
using the recursive formula from [4]. In particular, as the solutions are determined
uniquely up to translation by a solution in the quotient, for such 2-forms, the value of
BX ' does not depend on the choice of ej. O

In all the following examples, we now consider tropical lines in R?, i.e. curves
of degree A = {ey, e2, €3, e4, €5}, where (e, e2, €3, e4) is the canonical basis of VA
and es = — 2‘1‘ e;. Up to a change of basis of the lattice N = Z* and maybe a
change of lattice, this includes all cases of degree A of cardinal 5 which span a 4-
dimensional space. The moduli space M(A, R*) is of dimension 6, in bijection with
Mos x R*. The moduli space M s is the cone over the Petersen graph. It has 15
cones of dimension 2 corresponding to the 15 top-dimensional combinatorial types,
and 10 rays, which are the walls of our enumerative problem. This small number
of possibilities allows one to solve the enumerative problems by brute force using a
computer, providing us with the following examples, which we use to illustrate the
various results of the paper more than to provide useful values. We identify Z[ A2Z*]
with Z[qij/:l]]fi<j§4 through its canonical basis: g;; = qéinei.

Example 6.2 Let us start with a simple example. We consider the w-problem with the
generic 2-form whose matrix in the canonical basis is given by

0 —68 =53 86
[w)] = 68 0 46 —43
53 =46 0 30
—86 43 =30 O

The genericity means that the 2-form does not vanish any wy for V. € Va. The
w-problem P (w1, e1) with chosen unbounded end directed by e gives

1
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Bwlsel —
A = — q12913914923924934 +
q4129139149239244934
+ 261126]1361146]236124 _» q34
q34 q12913914923924
912913914923 n q244934
424434 4129134144923
+ 412913914934 4234924
q23924 412913914434
412913 n 4149239244934
4144923924934 q12413
412914924434 n 4134923
4134923 4129149244934
q124934 q139144923424
413914923924 quq3
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Example 6.3 Similarly, we now consider the 2-form whose matrix is

0 94 23 21
[wy] = —94 0 86 11
23 —86 0 —27
—21-1127 0O

For different choices of the unbounded end with the plane constraint, one has

sz,el _Bw2,23 _ q1249134914923924 _ q34
A =PA =
q34 q129139144923924
412913923 n 414924934
414924934 412913923
_ 9129134914 4 423424434

423424434 49124913914
. 412914924434 + 4134923

q13423 412914924934
+ 912913914934 q234q24
423924 412913414934
q12 _ 913914923924934
413914923924434 q12 ’
B¢ — q12913914923924 q34
A q34 q1249139144234924

_ 41249134923 + 41449244934

4144924434 41249134923
. 4124913914 + 4234924434

4234244934 4124913914
_ 412414924434 + 4134923

413923 412914924934
412913 4914923924434
414923924934 q12913

912914934 413923424

+ .
413423424 4124914934

In particular, we see that in general the value of the invariant B} “° depends on the
choice of ¢y since in that case the invariants BY*“' and BY>'“* are different: the last
row of their expression are differents. O

Example 6.4 We now look at the 2-form wq given by

0 0 8 —20
o 0-4-2
ol =1 _g6 4 0 —s6
20 22 56 0
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This 2-form is non-generic since it has value zero at the vertex formed by the meeting
of the unbounded ends directed by e and e,. The invariant lives in Z[A2Z*/(e] Ae2)],
which is identified with Z[g;;];, j)-(1,2). One gets

wo.e1 1 413914934 423924
By =q13q14923924q34 — — +
q13914923924434 923924 413914934
L duds 413923924 N q13 414923924434
413923924 q14934 414923924934 q13 '

There are two ways to deform slightly the 2-form wy, getting the following 2-forms:

0 1 8 —20 0 —186 —20

(o)] = -1 0 —4-22 and [o_] = 1 0 —4-22
+ —86 4 0 —56 - -8 4 0 —56
20 2256 0 20 22 56 0

In fact, wg belongs to a facet of the fan 25, and w4 belongs to each of the adjacent
maximal cones. They have the following invariants:

BO+el — 913914923924934 qi12 912913914934 + 423924
A qi12 q13914923924934 423924 412913914934
+ 412914934 413923924 + q12913 9149239244934
413923924 q12914934 414923924934 q12413
w_ el 1 412913914934 423924
B, =q12913914923924934 — - +
q12913914923924934 423924 412913914934
n 912914934 413923924 n q12913 914923924434
413923924 q129144934 414923924434 q12413
9129149244934 i 413923 912913923 n 414924934
413923 412914924934 4914924934 412913923

In particular, one can see that although BY™' # B(‘A)"el, they both project to
’ the quotient ma — el A e2)], which 1in our notations
B! by the quoti p ZIA*Z*] — Z[APZY)( )], which i i

-1
is identified with the map Z[g;;] = Z1gijli, jy=a1,2): for BT it is immediate,

and for BY !, the first two rows give the value of B3"“! while the last rows cancels
when g2 goes to 1. O

Example 6.5 We now give an example of refined invariant in the general case. We
consider the enumerative problem with the following constraints:

— The unbounded end directed by e; lies in an affine subspace of slope
L., =ker (O 3780 —315 —2543) N ker (0 —6958 7243 39()4) .
— The unbounded end directed by e; lies in an affine hyperplane of slope

Lo, =ker (<250 —16 —72).
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— The unbounded end directed by e3 lies in an affine hyperplane of slope

L, = ker (—4387 564 0 2857) .

— e4 lies in an affine hyperplane of slope directed by L, =
ker (—720 —843 —718 0).

—es lies in an affine hyperplane of slope directed by L, =
ker (—1091 —562 653 1000).

These particular constraints are in the family of problems described in example 4.4.
Thus, a generic choice of w satisfies the condition of Theorem 4.5. We choose

0 20 —51 38
(3] = -20 0 8 13
51 4 0 =24
—38—-13 24 0

The rule of sign and computation of the invariants then gives

B(LE) _ q129139144923924 _ q34 _ q1249139144924934 + q23
A q34 q12913914923924 93 q12913914924934
+ 4124913914434 _ q23424 _ q124913923 + q14924934
q23q24 4129139144934 q144924934 412913923
_ q12914934 + q13923924 + q12934 _ 4139149234924
4134923924 412914934 4134914923424 q124934

]

Example 6.6 Last, we give an example where a generic choice of w does not satisfy the
assumption m(lg’(LE) =0= m?’w’eo = (0. We consider the enumerative problem of
lines passing through two points which are located on the unbounded ends directed by
e1 and es5. Notice that by standard geometry, there is always exactly one line passing
through two points. Hence, the complex multiplicity can only be O or 1. Furhermore,
a combinatorial type can provide at most one solution.

The combinatorial type where some of the unbounded ends directed by e», 3 and e4
are adjacent to a common vertex have complex multiplicity 0. One can check that the
other combinatorial types, of the form 1i//j//k5 have complex multiplicity 1. This
notation denotes the combinatorial type where unbounded ends directed by e; and ¢;
are adjacent to the same vertex, as well as e; and es. In order to apply Theorem 4.5,
we can choose a 2-form w that vanishes on ey A e3, ex A e4 and e3 A e4. For instance,

take

0111
(4] = —-1000
—-1000
-1000
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One has K,,, = (e2 Ae3, ez Aes, e3 Aey). Thus, the invariant lives in Z[AZZ4/Kw4] ~
Z[q12, q13, q14]. The invariance stated in Theorem 4.5 means that every tropical line
with non-zero complex multiplicity has the same refined multiplicity. For instance,

Ky Ko _ -1 - 1 -1 —

BA™ = Byyy3,/45 = (q12 — 412 )(@13923 — 415 423 )(q14924438 — 414 450 452
= (q12 — szl)(Q13 — g3 )(q1a — 611]1) € Zlq12, q13, q14].

Ko Ko, 1. {912 g3

B\™ = B3}, =(q13—¢q 1)(———

A 13//2//45 ERA P

= (q12 — 41, (q13 — 41_31)(414 — a1 € ZIg1a, 13, q1al.

11 1
) (914924934 — 414 94 934 )

Recall that the term of each product are obtained as g™ — ¢~V where w4(y) >
0. For instance, for the midle vertex of the combinatorial type 13//2//45, one has
w4((e] +e3) Aep) =1 > 0, thus,

e1teres _ einer  —eanes _ 412
q(l 3) 2 = gahegmanes — 12
q23
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Appendix: Computation of the complex multiplicity

We here prove that the algorithm described in Sect. 2.5 computes the complex mul-
tiplicity. This result also appears in a paper of Mandel and Ruddat [15] in a slightly
different context. We include a proof in our setting for the sake of completeness.

Lemma 6.7 The result of the algorithm does not depend on the chosen sink.

Proof We prove that the obtained value does not change if we replace the sink V
by one of its neighbors. Let V be a vertex, W one of its neighbors, and E the edge
between them, directed by n. Let py, ..., ps be the polyvectors of the edges adjacent
to V different from E, and p}, . .., p, the polyvectors associated to the edges adjacent
to W different from E. The computation leads to the two following results:
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— If V is the sink, we get
PLA = A Ps Atg(py A= A pl).

— If W is the sink, we get

w(PLA - AP APYA - A P

Therefore, the equality (up to sign) comes from the fact that p; A- - - A ps A pi A A ,0;,
is 0 since it is in A"t M = {0}, and that ¢, is a derivation on A*M. O

Theorem 6.8 The value obtained by the algorithm from Sect. 2.5 is equal to the complex
multiplicity m(lg

Proof We proceed by induction on the number of vertices of the curve I', and cut the
branches one by one.

— If the curve has just one vertex, let p; = m;1 A --- A m;,, be the polyvectors
associated to the lattices L; for the s unbounded edges of the curve. The evaluation
matrix of ev(’e), denoted by [ f], has the following form:

Therefore, we have
detevlh =myg Ao  Amiy Ao A = pL A A py.

— If I" has more than one vertex, let V be a vertex adjacent to a unique neighbor
vertex W. Let p1, ..., ps be the polyvectors associated to the ends adjacent to
V. We keep the same notations p; = m;1 A - -- A mj,,. We choose a basis of the
cone associated to the combinatorial type of I consisting of the canonical basis

of RZ 370V "and the N factor corresponding to the position of W. Then, the

matrix of ev(Ze) has the following form:
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where the first columns correspond to the evaluation of the vertex W, the last
column to the evaluation corresponding to the edge between V and W, and n is
its slope. We expand the determinant with respect to the last column. We get the
following result:

* k ok - k

Xk k ok k

s oon myy 0---0
detevtd =3y g "
pariey oot

Mij 00

Mg, 0---0

Each determinant in the sum is the determinant of the evaluation matrix ev(l<)
for a tropical curve where the vertex V is deleted and the edge between V and
W replaced by an unbounded end, associated with a constraint having polyvector
(—=D*(mij, nymiy A -+~ Amjj A -+ - A mgy,. The sum of these vectors is precisely
(1 Ao A ps).

The result follows by induction. O

Appendix: Invariance for the complex multiplicity

We consider parametrized rational tropical curves of degree A in Nr. We allow vectors
of A to be 0, so that the unbounded ends associated to these vectors are marked points
on the curves. For each unbounded end e, let L, be a primitive sublattice of N /(n,),
and let /, be its corank. We denote by L§ = L, ® R. Notice that if e corresponds to a
marked point, L, is a sublattice of N. Let £, be a generic affine space in Ng/(n;) with
slope L. This amounts to the choice of a point A, in Ng/ ((n.) & L¥). We prove the
invariance of the solutions to problem P(L,) using the complex multiplicity m© (L)

Lemma 6.9 Fora generic choice of (L.), there is a finite number of solutions to P(L,).
Moreover, these solutions are trivalent.

Proof There is a finite number of cones in the moduli space Mo(A, Ngr). Moreover,
on each cone, i.e. each combinatorial type, ev(Le) is linear. If the restriction of ev(Le)
to this cone is injective, the combinatorial type contributes at most one solution.

The point (X.) can always be chosen outside the image of the non top-dimensional
cones, since these lie in proper subspaces of [ [, QJE. For a combinatorial type of top-
dimension, as by assumption its dimension is equal to the dimension of [], Q];R, if
ev(le) is not injective, it is not surjective either, and its image is thus contained in a
proper subspace. Finally, a choice of (A.) outside the image of the non top-dimensional
cones and the cones where ev(¢) is not injective is called generic.

For such a choice of (A.), there is a finite number of solutions, and the corresponding
curves are trivalent since they belong to top dimensional cones of Mg(A, Nr). O
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Now, let (1) be chosen generically. We set

Nalle)= ) mr

eviLe)(T,h)=(1e)

Notice that if the subspaces L, are chosen generically, there is no curve with zero
multiplicity that contributes to the sum, otherwise ev'’<) is neither injective nor sur-
jective on the cone corresponding to the combinatorial type of the curve, and thus (X,)
has been chosen away from its image.

Theorem 6.10 The value of Na(L.) only depends on the slopes L, of the affine sub-
spaces and not on the specific choice of the subspaces as long as it is generic.

This invariant is thus denoted by N (L, ). Using Theorem 5.1 from [24], it coincides
with the complex count.

Proof As many proofs of tropical invariance, the proof goes by the study of local
invariance at the walls of the tropical moduli space. The proof is similar to Proposition
4.4 in [9]. We proceed in two steps: first, we show that the sum of the determinants of
the composed evaluation maps around a wall is zero, and then we show that the sign
of these determinants characterizes the existence of solutions, thus proving the local
invariance.

e We consider the wall associated to a quadrivalent vertex in the tropical curve. Let
the adjacent edges be denoted by the indices 1, 2, 3, 4. The three adjacent combi-
natorial types are determined by the splitting of the quadrivalent vertex into two
trivalent vertices. These possibilities are denoted by 12//34, 13//24 and 14//23.
The cone in the moduli space Mo(NR, A) corresponding to each combinatorial
type is the quadrant of the vector space Ng x R”~* x R, consisting of the points
with positive coordinates on the R entries, where the Ng factor corresponds to
the vertex V adjacent to the edge 1, the R”~* has canonical basis indexed by the
edges of the curve with the quadrivalent vertex, which are common to all curves
in the adjacent combinatorial types, and the R factor corresponds to the length of
the edge resulting from the splitting of the quadrivalent vertex.

Let v; be a directing vector of the edge j, oriented outward the quadrivalent
vertex. For each marked point or unbounded end i, associated to a constraint L;,
let m;yq, ..., m;,, be linear forms defining the sublattice L;: L; = ﬂ;’zl kerm;;.
Then, for the combinatorial type 12//34, the matrix of the composed evaluation
map evLe) takes the following form:

12//34 |Ng| R™8 | 1 | 2 | 3 | 4 | R
behind 1|m;;|0 or (m;;, v)|(m;j, v1) 0 0 0 0
behind 2 mjj 0 or (m,‘j, v) 0 (mij, vz) 0 0 0 .
behind 3 mij 0 or (m,‘j, v) 0 0 (mij, v3) 0 (m,-j, V] + v2)
behind 4|m;; |0 or (m;;, v) 0 0 0 (mij, v4)|{mij, v1 + v2)

The columns are separated according to the decomposition of the moduli space
as Nr x R™™* x R. Moreover, we separate the coordinates corresponding to
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the lengths of the edges 1, 2, 3, 4, assuming they are bounded edges. The rows
are separated according to which of the four edges 1, 2, 3,4 is on the shortest
path between the vertex V and the unbounded end or marked point i. For each
unbounded end or marked point i, we evaluate the linear forms (m;;) ;. For each
edge e directed by v, the evaluation for the unbounded end or marked point i is
(m;j, v) if the edge e is part of the shortest path between V and unbounded end
or marked point i, otherwise it is 0. This fact allows us to complete the middle
entries of the matrix. The same rule apply for the entries of the last columns. The
matrices for the combinatorial types 13//24 and 14//23 are respectively

13//24 |[Ng| Rm-3 1 2 3 4 R
behind 1{m;;|0 or {m;;, v)|{m;j, v1) 0 0 0 0
behind 2|m;; |0 or (m;;, v) 0 (mij, v2) 0 0 (mij, v +v3),
behind 3|m;; |0 or (m;;, v) 0 0 (mij, v3) 0 0
behind 4 mj; 0 or (m,-j,v) 0 0 0 (mij,v4) (m,'j,vl +U3)
14//23 |Ng| R™8 1 2 3 4 R
behind 1 mi;j 0 or (m,,, ) (m,-j, vl) 0 0 0 0
behind 2|m;; |0 or (m;;, v) 0 (mij, v2) 0 0 (mij, v +v4).
behind 3|m;; |0 or (m;;, v) 0 0 (mij, v3) 0 (mij, v1 + vg)
behind 4|m;; |0 or (m;;, v) 0 0 0 (mij, v4) 0

We make the sum of the three determinants for the three adjacent combinatorial
types, and use the linearity with respect to the last column, since all the other
columns are equal. We get

|Ng| R™8 | 1 | 2 | 3 4 | R
behind 1|m;;|0 or (m;;, v)|{m;;, v1) 0 0 0 0
behind 2{m;;|0 or {m;;, v) 0 (mij, v2) 0 0 (mij, 2v1 + v3 +v4) .
behind 3|m;;|0 or (m;;, v) 0 0 (mij, v3) 0 (mjj, 2v) + vz + v4)
behind 4|m;; |0 or (m;;, v) 0 0 0 (mij, v4)|(mij, 2v1 + v2 + v3)

Using a combination of the columns corresponding to Ny applied to vy, and the
balancing condition v; + vy + v3 4+ v4 = 0, we get

[Ve| R"® | 1 | 2 | 3 | 4 | R
behind 1|m;; |0 or (m;;, v)|(m;j, v1) 0 0 0 (mjj, vy)
behind 2|m;; |0 or (m;;, v) 0 (mij, v2) 0 0 (mij, v2)
behind 3|m;; |0 or (m;;, v) 0 0 (mij, v3) 0 (mij, v3)
behind 4 |m;; |0 or (m;;, v) 0 0 0 (mij, va)|[{mij, va)

Now, we see that the last column is the sum of the columns indexed 1, 2, 3, 4. Thus,
the sum of the determinants is 0. If some of the edges 1, 2, 3, 4 was unbounded, the
columns with the corresponding indices would not appear, but for the linear forms
m;; that would be evaluated on the corresponding unbounded end, one would
already have (m;;, v;) = 0 and the result is unchanged. Finally, one has

detAjn//34 + detAy3) 04 + detAyy) 23 = 0.
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e We now use the previous statement to prove the invariance of the count. We denote
by L the tuple (L.). Let L£(¢) be a generic path between two generic configura-
tions £(0) and £(1), i.e. a pathin [, QIE. Outside a finite set of values of ¢, the
configuration £(t) is generic and N (L£(¢)) is given by a sum over some combi-
natorial types with non-zero multiplicity. More precisely, on each combinatorial
type with non-zero multiplicity, the composed evaluation map ev(’) is a linear
map associated with a matrix A. If the coordinates on the combinatorial type are
denoted by (V, 1), the equation can be formally solved: (V, 1) = A~!£, and this
provide a true solution of evle) (I, h) = L if the coordinates of [ are non-negative.

As the multiplicity only depends on the combinatorial type, the value of Na (L(?))
is locally constant at generic £(¢), thus, we only need to show invariance around the
special values t where £(¢) is not generic. Let r* be such a value. At least one of the
curves of (ev(£e))~1(7*) has a quadrivalent vertex, and it deforms into the adjacent
combinatorial types when ¢ moves slightly around #*. Let A //34>» A13//24 and
A14//23 be the matrices of ev(Le) on the three adjacent combinatorial types. On each
combinatorial type, we can solve uniquely A.(V,[l) = L(t): (V,]) = A:lk(t),
where x is one of the three adjacent combinatorial types, and we get a true solution
if all the coordinates of [ are non-negative. This is the case for all the edges except

the edge that appears with the splitting of the quadrivalent vertex. Using Cramer’s

detA,
detA,’

A* is the matrix A, with the last column (the one that corresponds to the length of
the new edge) being replaced with £ € []; Q]f. As the matrices A12//34, A13//24
and Ay4//23 only differ in their last column, the numerators are all equal, and the
sign of the length of the new edge is thus determined by the sign of detA,. Finally,
the sign of the determinant determines which combinatorial type provide a true
solution, and the local invariance follows from the relation

where

rule to solve A,(V, 1) = L(t), the length of the new edge is equal to

detA12//34 + detAy3/ 24 + detA14//23 = 0.

]

Remark 6.11 The invariance also follows from general results of tropical intersection
theory [1]. Had we worked with more general tropical cycles E., the proof with
intersection theory would also work, but in that case, we would have more walls to
study. These walls correspond to the cases where the parametrized tropical curves do
not intersect the cycles E, in their top-dimensional faces. The invariance would then
result from the balancing condition for the cycles E,. O
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