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Abstract
We investigate the norm of a degree 2 Siegel modular form of asymptotically large
weight whose argument is restricted to the 3-dimensional subspace of its imaginary
part. On average over Saito–Kurokawa lifts an asymptotic formula is established that
is consistent with the mass equidistribution conjecture on the Siegel upper half space
as well as the Lindelöf hypothesis for the corresponding Koecher–Maaß series. The
ingredients include a new relative trace formula for pairs of Heegner periods.

Mathematics Subject Classification Primary 11F37 · 11F46 · 11F67 · 11F72

1 Introduction

1.1 Restriction norm of eigenfunctions

The question, ‘to what extent can the mass of a Laplace eigenfunction φ on a Rieman-
nian manifold X localize?’, is a classical problem in analysis and is often quantified
by upper (or lower) bounds for L p-bounds for the restriction of φ to suitable subman-
ifolds Y ⊆ X . The prototypical example is the case where X is a surface and Y is a
curve, often a geodesic; see e.g. [13,15,18,30,62,67,68] and references therein.

If X is the quotient of a symmetric space by an arithmetic lattice (often called an
arithmeticmanifold), an additional layer of number theoretic structure enters. Not only
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1324 V. Blomer, A. Corbett

can this be used to obtain stronger bounds [61], but sometimes the period integrals can
be expressed in terms of special values of L-functions. A typical such case is the L2-
restriction of aMaaß form for the group SLn+1(Z) to its upper left n-by-n block, which
can be expressed as an average of central values of GL(n)×GL(n+1)Rankin–Selberg
L-functions [56,57]. Other potential cases arise from theGross-Prasad conjecture [38],
see [69] for an illuminating discussion. Often in this context, optimal restriction norm
bounds are equivalent to the Lindelöf conjecture on average over the spectral family
of L-functions in question.

In this paper we consider a new and somewhat different instance of the interplay
between mass equidistribution and L-functions in the context of certain Siegel mod-
ular forms F for the symplectic group Sp4(Z): we investigate the L2-restriction of
a Saito–Kurokawa lift F(Z) on the 6-dimensional Siegel upper half space H

(2) to
the 3-dimensional subspace where the argument Z = X + iY ∈ H

(2) is restricted to
its imaginary part. This is geometrically a very natural set-up, it is a direct higher-
dimensional analogue of the classical problem of bounding a cusp form f for SL2(Z)

on the vertical geodesic, mentioned at the beginning; cf. [11, Sect. 7]. While the latter
leads, via Hecke’s integral representation, directly to the corresponding L-function
L( f , s), things become much more involved for Siegel modular forms.

We start by stating the corresponding period formula. For an even positive integer k
let S(2)

k denote the space of Siegel modular forms of degree 2 of weight k for the group
Sp4(Z), equipped with the standard Petersson inner product; see Sect. 2. We think of
k as tending to infinity and are interested in asymptotic results with respect to k. We
restrict the argument of a cusp form F ∈ S(2)

k to its imaginary part iY with Y ∈ P(R)

where P(R), equipped with the measure dY/(det Y )3/2, is the set of positive definite
symmetric 2-by-2 matrices. Consider the restriction norm

N (F) := π2

90
· 1

‖F‖22

∫

SL2(Z)\P(R)

|F(iY )|2(det Y )k dY

(det Y )3/2
, (1.1)

where SL2(Z) acts on P(R) by γ �→ γ �Yγ . Letting H denote the usual upper half
plane, we observe that SL2(Z)\P(R) ∼= SL2(Z)\H × R>0 has infinite measure; see
(6.1) below. The factor

π2

90
= 3

π
· π3

270
= vol(Sp4(Z)\H

(2))

vol(SL2(Z)\H)

accounts for the fact that, in accordance with the literature, we choose the standard
measures on Sp4(Z)\H

(2) and SL2(Z)\H which are not probability measures.
Let � denote a set of spectral components of L2(SL2(Z)\H) consisting of the

constant function
√
3/π , an orthonormal basis of Hecke–Maaß cusp forms and the

Eisenstein series E(., 1/2 + i t) for t ∈ R. The set � is equipped with the counting
measure on its discrete part and with the measure dt/4π on its continuous part. We
denote by

∫
�
the corresponding combined sum/integral. For F ∈ S(2)

k and u ∈ �

let L(F × u, s) denote the Koecher–Maaß series defined in (6.3). This series has a
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A symplectic restriction problem 1325

functional equation featuring the gamma factors G(F × u, s) as defined in (6.4), but
has no Euler product. The following proposition is proved in Sect. 6.

Proposition 1 For F ∈ S(2)
k with even k we have

N (F) = π2

90
· 1

32
· 1

‖F‖22

∞∫

−∞

∫

� ev

|G(F × u, 1/2 + i t)L(F × u, 1/2 + i t)|2du dt,

where � ev denotes the set of all even u ∈ �.

An arithmetically interesting subfamily of Siegel modular forms are the Saito–
Kurokawa lifts Fh (sometimes called the Maaß Spezialschar) of half-integral weight
modular forms h ∈ S+

k−1/2(4) in Kohnen’s plus-space or equivalently their Shimura
lifts fh ∈ S2k−2 (see Sect. 2 for details). In this case, the Koecher–Maaß series
L(Fh × u, s) roughly becomes a Rankin–Selberg L-function of two half-integral
weight cusp forms, namely of h and the weight 1/2 automorphic form whose Shimura
lift equals u; see Proposition 16 below and cf. [24]. Of course, this series also has no
Euler product. The convexity bound for L-functions along with trivial bounds implies

N (Fh) � k2+ε,

whilst the statement

N (Fh) � kε (1.2)

would follow from the Lindelöf hypothesis for these L-functions. It should be noted,
however, that in absence of an Euler product it is not expected that these L-functions
satisfy the Riemann hypothesis, but one may still hope that the Lindelöf hypothesis is
true; see [49] for some support of this conjecture. However, even if it is, then proving
(1.2) appears to be far out of reach by current technology—it corresponds to an average
of size k3/2 of a family of L-functions of conductor k8. (This is analogous to the genus
1 situation in which the L2-restriction norm of a holomorphic cusp form of weight
k leads to an average of size k1/2 of a family of L-functions of conductor k4; see
[11, (1.12)].) These problems belong to the hard cases where sharp bounds for the
L2-restriction norm imply very strong subconvexity bounds.

1.2 Themain result andmass equidistribution in higher rank

Fix a smooth, non-negative test function W with non-empty support in [1, 2]. Let
ω := ∫ 2

1 W (x)x dx and consider

Nav(K ) := 1

ω
· 12

K 2 ·
∑
k∈2N

W

(
k

K

) ∑
h∈B+

k−1/2(4)

N (Fh) (1.3)
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1326 V. Blomer, A. Corbett

for a large parameter K and a Hecke eigenbasis B+
k−1/2(4) of S+

k−1/2(4). Note that

dim S+
k−1/2(4) ∼ k/6. The first main result of this paper is the following asymptotic

formula.

Theorem 2 We have N av(K ) = 4 log K + O(1) as K → ∞.

Thismay be interpreted as an asymptotic average version of the Lindelöf hypothesis
for twisted Koecher–Maaß series. This restriction problem, however, is structurally
quite different from all previously considered restriction problems with connections
to L-functions: (a) the period formula features L-functions that are not in the Selberg
class and (b) Theorem 2 reveals that the restriction norm does generally not remain
bounded.

There is a strong connection between Theorem 2 and the mass equidistribution
conjecture that we now explain. Let g be a test function on Sp4(Z)\H

(2). Then the
(arithmetic) mass equidistribution conjecture for the Siegel upper half space states
that

1

‖F‖2
∫

Sp4(Z)\H(2)

g(Z)|F(Z)|2(det Y )k d X dY

(det Y )3
−→

∫

Sp4(Z)\H(2)

g(Z)
d X dY

(det Y )3

as F traverses a sequence of Hecke–Siegel cusp forms of growing weight. While the
corresponding statement for classical cusp forms of degree 1 was proved by Holowin-
sky and Soundararajan [36], no such statement has been obtained for Siegel modular
forms of higher degree (but see [70] for certain cases of the quantum unique ergodicity
conjecture in higher rank and [19] for an averaged version). Nevertheless, one may
even go one step further and conjecture that the above limit holds when one restricts
the full space Sp4(Z)\H

(2) to a lower-dimensional submanifold. In particular, one
might conjecture that

vol(Sp4(Z)\H
(2))

‖F‖2
∫

SL2(Z)\P(R)

g(Y )|F(iY )|2(det Y )k dY

(det Y )3/2

−→
∫

SL2(Z)\P(R)

g(Y )
dY

(det Y )3/2

holds. As the right hand side has infinite measure, we cannot simply replace g with the
constant function. This is precisely the reason whyNav(K ) is unbounded as K → ∞.
However, since F is a cusp form, the L2-normalized and Sp4(Z)-invariant function
|F(iY )|2(det Y )k/‖F‖2 decays exponentially quickly if Y is (in a precise sense) very
large or very small. So effectively g may be restricted to the characteristic function
of a compact set depending on k. We quantify this in Appendix C and show that, for
such g, the right hand side equals

vol(SL2(Z)\H) · 4 log k + O(1).
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A symplectic restriction problem 1327

In this case the previous asymptotic reads

N (F) ∼ 4 log k (1.4)

as k → ∞. The asymptotic (1.4) is, of course, highly conjectural, and as mentioned
above even the ordinary higher rankmass equidistribution conjecture (without restrict-
ing to a thin subset) is currently out of reach. As an aside we remark that one has to
be careful with such conjectures. For instance, the L2-norm restriction of even Maaß
forms for SL2(Z) to the vertical geodesic is twice as big as one might think [74].

Theorem 2 provides an unconditional proof of (1.4) on average over Saito–
Kurokawa lifts in agreement with the mass equidistribution conjecture for the rank
two Siegel upper half space.

In particular, the constant 4 in Theorem 2 is very relevant, and this constant has a
story of its own. It is the outcome of several archimedean integrals, numerical values
in period formulae and a gigantic Euler product whose special value can be expressed
in terms of zeta values (cf. (12.8)). In deducing its value we have corrected several
numerical constants in the literature. We shall come back to this point in due course;
see for instance the remark after Lemma 8. The authors would like to thank Gergely
Harcos for useful and clarifying discussions in this respect.

Theorem 2 opens the door for several other related problems. The reader may
wonder as to how the norms of the other Siegel cusp forms behave; that is, those forms
which are not obtain via global parabolic induction (non-CAP), unlike the Saito–
Kurukawa lifts. Any reasonable spectral average would include at least the space of
Siegel modular forms S(2)

k of weight k which is of dimension∼ ck3 for some constant
c (in fact c = 1/8640). This leads to a bigger average than the one presently considered
over about k2 Saito–Kurokawa lifts. The starting point for the L2-restriction norm of
all Siegel modular forms is again the period formula in Proposition 1. Coupled with an
approximate functional equation (as in Lemma 17), this is amenable to the Kitaoka–
Petersson formula [50] and an analysis along the lines of [9]. We hope to return to this
interesting problem soon.

A different symplectic restriction problem was treated in [59] and [11], where the
argument Z ∈ H

(2) of Saito–Kurokawa lifts was restricted to the diagonal, a four-
dimensional subspace of H

(2). The corresponding analogue of Proposition 1, due to
Ichino [37], leads to an average of size k of Langlands L-functions of conductor k4.

Whilst the proof of Theorem 2 rests on many ingredients which we address in detail
in the coming sections, we would like to highlight a few results which may be of stand
alone interest. We describe these in the remainder of the introduction.

1.3 A relative trace formula for pairs of Heegner periods

Here we focus on a novel trace formula of independent interest beyond its application
in proving Theorem 2.

Let D be a discriminant, i.e. a non-square integer≡ 0, 1 (mod 4). For a discriminant
D < 0 let HD ⊆ SL2(Z)\H denote the set of all Heegner points; that is, the set of all
z = (

√|D|i − B)/(2A)where AX2+ B XY +CY 2 is a�-equivalence class of integral
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1328 V. Blomer, A. Corbett

quadratic forms of discriminant D = B2 − 4AC . For a function f : SL2(Z)\H → C

define the period (“trace”)

P(D; f ) =
∑

z∈HD

f (z)

ε(z)
(1.5)

where ε(z) ∈ {1, 2, 3} is the order of the stabilizer of z in PSL2(Z). Its counterparts for
positive discriminants D are periods over geodesic cycles. These periods are classical
objects with myriad interwoven connections to half-integral weight modular forms,
base change L-functions, quadratic fields and quadratic forms. The key point is that the
corresponding generating series has (metaplectic) modular properties. An interesting
special case is the constant function f = 1 in which case P(D; 1) = H(D) is, by
definition, the Hurwitz class number.

With applications to the above mentioned symplectic restriction problem in mind,
we are interested in pairs of Heegner periods in the spectral average

∫

�ev

P(D1;u)P(D2;u)h(tu)du

for a suitable test functionh, twodiscriminants D1, D2 < 0 and�ev as inProposition1.
While pairs of geodesics have been studied in a few situations [63–65] (but only for
compact Riemann surfaces and not from an arithmetic point of view), to the best of
our knowledge nothing seems to be known about spectral averages of pairs of Heegner
periods. Opening the sums in the definition of P(D1;u) and P(D2;u), this can be
expressed as a double sum of an automorphic kernel

∑
z1∈HD1

∑
z2∈HD2

1

ε(z1)ε(z2)

∑
γ∈�

k(z1, γ z2)

in the usual notation which resembles the set-up of a relative trace formula. However,
the standard methods in this situation (e.g. [32]) do not easily apply here as the stabi-
lizers of z1 and z2 are essentially trivial. We thus take a different approach to establish
the following relative trace formula for which we need some notation. For n > 0 and
t ∈ R let

Wt (n) := 1

2π i

∫

(2)

�( 12 (
1
2 + s + 2i t))�( 12 (

1
2 + s − 2i t))

�( 14 + i t)�( 14 − i t)π s
es2n−s ds

s
.

For t ∈ R, x > 0 and κ ∈ R let

F(x, t, κ) = Jit (x) cos(πκ/2 − π i t/2) − J−i t (x) cos(πκ/2 + π i t/2) (1.6)
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A symplectic restriction problem 1329

where Jit (x) is the Bessel function. Finally, for κ ∈ Z + 1/2, n, m ∈ Z and c ∈ N

define the modified Kloosterman sums

K +
κ (m, n, c) =

∑
d (mod c)
(d,c)=1

ε2κd

( c

d

)
e

(
md + nd̄

c

)
·

⎧⎪⎨
⎪⎩
0, 4 � c,

2, 4 | c, 8 � c,

1, 8 | c,

(1.7)

where

εd =
{
1, d ≡ 1 (mod 4),

i, d ≡ 3 (mod 4).
(1.8)

Note that K +
κ (n, m, c) is symmetric in m and n and 2-periodic in κ . They satisfy the

Weil-type bound

K +
κ (m, n, c) � c1/2+ε(m, n, c)1/2, (1.9)

see e.g. [73, Lemma 4] in the case n = m, the general case being analogous. In order
to simplify the notation we assume that D1, D2 are fundamental discriminants. In
Section 7 we state the general version for arbitrary negative discriminants.

Theorem 3 Let �1,�2 be negative fundamental discriminants and let h be an even
function, holomorphic in |
t | < 2/3 with h(t) � (1 + |t |)−10. Then

1

|�1�2|1/4
∫

� ev

P(�1;u)P(�2;u)h(tu)du = 3

π

H(�1)H(�2)

|�1�2|1/4 h(i/2)

+
∞∫

−∞

∣∣∣�1�2

4

∣∣∣i t/2 �(− 1
4 + i t

2 )e(1/2−i t)2

√
8π�( 14 + i t

2 )

L(χ�1 , 1/2 + i t)L(χ�2 , 1/2 + i t)

ζ(1 + 2i t)
h(t)

dt

4π

+ δ�1=�2

∑
m

χ�1 (m)

m

∞∫

−∞
Wt (m)h(t)t tanh(π t)

dt

4π2

+ e(3/8)
∑

n,c,m

K +
3/2(|�1|n2, |�2|, c)χ�1 (m)

n1/2cm

∞∫

−∞

F(4πn
√|�1�2|/c, t, 1/2)

cosh(π t)
h(t)Wt (nm)t

dt

π
.

The experienced reader will spot the strategy of the proof from the shape of the for-
mula: A Katok-Sarnak-type formula translates P(�;u) into a product of a first and
a �-th half-integral weight Fourier coefficient. In this way, a pair of two Heegner
periods becomes a product of four half-integral weight Fourier coefficients. A quadri-
linear form of half-integral weight Fourier coefficients is not directly amenable to
any known spectral summation formula, so this looks like a dead end, but we can use
a Waldspurger-type formula a second time, now in the other direction, to translate
the two first coefficients into a central L-value. This L-value can be written explic-
itly as a sum of Hecke eigenvalues by an approximate functional equation. We can
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1330 V. Blomer, A. Corbett

now use the correspondence between half-integral and integral weight forms a third
time, namely by combining the Hecke eigenvalues into the half-integral weight coef-
ficients by means of metaplectic Hecke relations. Finally, the Kuznetsov formula for
the Kohnen plus space provides the desired geometric evaluation of the relative trace.
This particular version of the Kuznetsov formula is also new and will be stated and
proved in Sect. 5. The same strategy works also with minor modifications for pairs of
(traces of) geodesic cycle integrals.

1.4 Mean values of L-functions

Wehighlight another ingredient of independent interest, a special case ofwhich (Corol-
lary 5) is a hybrid Lindelöf-on-average bound for central values of twisted L-functions.
Its proof is deferred to Sect. 8.

Proposition 4 Let D, T ≥ 1 and ε > 0. For a fundamental discriminant � let χ� =
(�

.
) be the Jacobi–Kronecker symbol.
(a) We have

∑
tu≤T

α(u)
∑

|�|≤D� fund. discr.

L(u × χ�, 1/2) �
( ∑

tu≤T
|α(u)|2

)1/2
(T D)1+ε

where the sum is over an orthonormal basis of Hecke–Maaß cusp forms u with spectral
parameter tu, and α(u) is any sequence of complex numbers, indexed by Maaß forms.

(b) We have

T∫

−T

α(t)
∑

|�|≤D
�fund. discr.

|L(χ�, 1/2 + i t)|2dt �
( T∫

−T

|α(t)|2dt

)1/2

(T 1/2D)1+ε

for an arbitrary function α : [−T , T ] → C.

The proof uses, among other things, the spectral large sieve ofDeshouillers-Iwaniec
[21] and Heath-Brown’s large sieve for quadratic characters [34]. Note that L(u ×
χ�, 1/2) ≥ 0 is non-negative [47, Corollary 1]. The key point here is that there is
complete uniformity in T and D.

We give an immediate application. Let us choose α(u) = L(u, 1/2) and note that

L(u, 1/2)L(u × χ�, 1/2) = L(BCK (u), 1/2)

where the right hand side is the base change L-function to K = Q(
√

�). We can now
use a standard mean value bound for L(u, 1/2), e.g. [41, Theorem 3], to conclude

Corollary 5 For T ,D ≥ 1 and ε > 0 we have

∑
tu≤T

∑
deg K/Q=2

| disc(K )|≤D

L(BCK (u), 1/2) � (T 2D)1+ε
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A symplectic restriction problem 1331

where the first sum runs over a basis of Hecke–Maaß cusp forms u with spectral
parameter tu ≤ T .

Again this bound is completely uniform and best-possible in the D and T aspect.
We give another interpretation of Proposition 4(a). For odd u, the root number of
L(u × χ�, s) is −1 (see [10, Lemma 2.1]), so the central value vanishes. For even u
the central L-values L(u × χ�, 1/2), as in (4.9) below, are proportional to squares
of Fourier coefficients bv(�) of weight 1/2 Maaß forms v in Kohnen’s subspace
for �0(4), normalized as in (3.7). We refer to Sect. 3 for the relevant definitions.
In particular, for the usual choice of the Whittaker function the normalized Fourier
coefficient b̃v(�) = e−π |tv |/2|tv|sgn(�)/4|�|1/2bv(�) is of size one on average. In
this way we conclude bounds for linear forms in half-integral weight Rankin–Selberg
coefficients:

∑
1/4≤tv≤T

α(v)
∑

|�|≤D
� fund. discr.

|b̃v(�)|2 �
( ∑

tv≤T
|α(v)|2

)1/2

(T D)1+ε, (1.10)

where the v-sum runs over an L2-normalized Hecke eigenbasis of non-exceptional
weight 1/2 Maaß forms in Kohnen’s subspace for �0(4) with spectral parameter tv .
We refer to the remark after the proof of Lemma 8 for more details.

1.5 Organization of the paper

Sections 2–5 prepare the stage and compile all necessary automorphic information.
New results include versions of the half-integral Kuznetsov formula and a Voronoi
formula for Hurwitz class numbers in Sect. 5.

Proposition 1, Theorem 3, and Proposition 4 are proved in Sects. 6–8 respectively.
This is followed by an interlude on the analysis of special functions and oscillatory
integrals in Sect. 9.

In the remainder we complete the proof of Theorem 2. In Sect 10 we first prove
an upper bound Nav(K ) � K ε by a preliminary argument. This will be useful and
necessary to control certain auxiliary variables and error terms later. The full asymp-
totic formula is derived in Sects. 11–14. Due to several applications of certain spectral
summation formulae, we have various diagonal and off-diagonal terms. Section 12
treats the total diagonal term that extracts the leading term 4 log K in Theorem 2.
Sections 13 and 14 deal with the diagonal off-diagonal and the off-off-diagonal term.

1.6 Common notation

For c �= 0 we extend the Jacobi-Symbol χc(d) = ( c
d ) for positive odd integers d to all

integers d �= 0 as the completely multiplicative function defined by χc(−1) = sign(c)
and χc(2) = 1 if c ≡ 1 (mod 8), χc(2) = −1 if c ≡ 5 (mod 8), χc(2) = 0 if c is even.
The value of χc(2) remains undefined only if c ≡ 3 (mod 4).
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1332 V. Blomer, A. Corbett

We call an integer D ∈ Z \ {0} a discriminant if D ≡ 0 or 1 (mod 4). Every
discriminant D can uniquely be written as D = � f 2 for some f ∈ N and some
fundamental discriminant� (possibly� = 1). For each discriminant D, themapχD is
a quadratic character ofmodulus |D| that is induced by the characterχ� corresponding
to the field Q(

√
�). (If � = 1, then χ� is the trivial character.) Throughout, the

letters D and� are always reserved for discriminants resp. fundamental discriminants,
usually negative.

The letter � is used for the gamma function and also for the group � = SL2(Z);
confusion will not arise. We write � = PSL2(Z).

For a, b ∈ N we write a | b∞ to mean that all prime divisors of a divide b. We
also write (a, b∞) = a/a1 where a1 is the largest divisor of a that is coprime to b. We
use the usual exponential notation e(z) := e2π i z for z ∈ C. The letter ε denotes an
arbitrarily small positive constant, not necessarily the same at every occurrence. The
Kronecker symbol δS takes the value 1 if the statement S is true and 0 otherwise. The
notation

∫
(σ )

denotes a complex contour integral over the vertical line with real part
σ . We use the usual Vinogradov symbols � and �, and we use � to mean both �
and �. We always assume that the number K in Theorem 2 is sufficiently large.

2 Holomorphic forms of degree one and two

For a positive integer k let S+
k−1/2(4) denote Kohnen’s plus [51] space of holomorphic

cusp forms of weight k −1/2 and level 4. These have a Fourier expansion of the form

h(z) =
∑

(−1)k n≡0,3 (mod 4)

ch(n)e(nz) (2.1)

and form a finite-dimensional Hilbert space with the inner product

〈h1, h2〉 =
∫

�0(4)\H

h1(z)h2(z)yk−1/2 dx dy

y2
. (2.2)

This space is isomorphic (as a module of the Hecke algebra) to the space S2k−2 of
holomorphic cusp forms of weight 2k − 2 and level 1 [51, Theorem 1]. We denote by
fh ∈ S2k−2 the (unique up to scaling) image of a newform h ∈ S+

k−1/2(4). The Hecke

algebra on S+
k−1/2 is generated by the operators T (p2), p prime, and for p = 2 we

follow Kohnen’s definition [51, p. 250] of T (4) that allows a uniform treatment of all
primes including p = 2. If λ(p) are the Hecke eigenvalues of fh (normalized so that
the Deligne’s bound reads |λ(p)| ≤ 2), then

λ(p)ch(n) = p3/2−kch(p2n) + p−1/2χ(−1)k+1n(p)ch(n) + pk−3/2ch(n/p2)

(2.3)
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A symplectic restriction problem 1333

for all primes p with the convention ch(x) = 0 for x /∈ {n ∈ N | (−1)kn ≡
0, 3 (mod 4)}. Iterating this formula gives

λ(m)ch(n) =
∑

d1|d2|m
(d1d2)2|m2n

(
d1
d2

)1/2

χ(−1)k+1n(d1d2)ch

(
m2

(d1d2)2
n

) (
m

d1d2

)3/2−k

(2.4)

for squarefree m ∈ N.
The space S+

k−1/2(4) can be characterized as an eigenspace of a certain operator
acting on the space Sk−1/2(4) of all holomorphic cusp forms of weight k − 1/2 and
level 4 [51, Proposition 2]. It possesses Poincaré series P+

n ∈ S+
k−1/2(4) satisfying the

usual relation1 [52, (4)]

〈h, P+
n 〉 = �(k − 3/2)

(4πn)k−3/2 ch(n)

for all (−1)kn ≡ 0, 3 (mod 4) and all h ∈ S+
k−1/2(4) with Fourier expansion (2.1).

These Poincaré series are the orthogonal projections of the Poincaré series Pn ∈
Sk−1/2(4) onto S+

k−1/2(4) and their Fourier coefficients are computed explicitly in
[52, Proposition 4]. This gives us the following Petersson formula for Kohnen’s plus
space.

Lemma 6 Let k ≥ 3 be an integer, κ = k − 1/2. Let {h j } be an orthogonal basis of
S+
κ (4) with Fourier coefficients c j (n) as in (2.1). Let n, m be positive integers with

(−1)kn, (−1)km ≡ 0, 3 (mod 4). Then

�(κ − 1)

(4π)κ−1

∑
j

c j (n)c j (m)

‖h j‖2(√nm)κ−1

= 2

3

(
δm=n + 2πe(−κ/4)

∑
c

K +
κ (n, m, c)

c
Jκ−1

(
4π

√
mn

c

))
.

For a positive integer k we denote by S(2)
k the space of Siegel cusp forms of degree

2 of weight k for the symplectic group Sp4(Z) with Fourier expansion

F(Z) =
∑

T ∈P(Z)

a(T )e(tr(T Z)) (2.5)

for Z = X + iY ∈ H
(2) on the Siegel upper half plane, where P(Z) is the set of

symmetric, positive definite 2-by-2 matrices with integral diagonal elements and half-
integral off-diagonal elements. This is a finite-dimensional Hilbert space with respect

1 Note that Kohnen normalizes the inner product (2.2) differently.
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1334 V. Blomer, A. Corbett

to the inner product

〈F, G〉 =
∫

Sp4(Z)\H(2)

F(Z)G(Z)(det Y )k d X dY

(det Y )3
.

Remark: In the generic case, the abovenormmaybeused to determine the associated
adjoint L-function at s = 1 by a recent work of Chen and Ichino [17]. However Siegel
cusp forms are not globally generic, albeit that they are equivalent to a generic form
everywhere but the archimedean place. Nevertheless, their Petersson norm may be
expressed in terms of its adjoint L-function via Böcherer’s conjecture (now a theorem
due to the breakthrough result of Furusawa and Morimoto [29] alongside the explicit
formulation in [23]).

There is a special family of Siegel cusp forms that are derived from elliptic cusp
forms (Saito–Kurokawa lifts or Maaß Spezialschar). Let k be an even positive integer.
Let h ∈ S+

k−1/2(4) be a Hecke eigenform of weight k − 1/2 with Fourier expansion
as in (2.1), and let fh ∈ S2k−2 denote the corresponding Shimura lift. The Saito–
Kurokawa lift associates to h (or fh) a Siegel cusp form Fh of weight k for Sp4(Z)

with Fourier expansion (2.5), where

a(T ) =
∑

d|(n,r ,m)

dk−1ch

(
4 det T

d2

)
, T =

(
n r/2

r/2 m

)
∈ P(Z), (2.6)

see e.g. [27, §6]. If L( fh, s) is the standard L-function of fh (normalized so that the
functional equation sends s to 1− s), then the norms of Fh and h are related by ( [53,
p. 551], [14, Lemma 4.2 & 5.2 with M = 1])

‖Fh‖2 = ‖h‖2�(k)L( fh, 3/2)

144πk
. (2.7)

Remarks: (1) This inner product relation was generalized to Ikeda lifts in [48]. Their
case n = 2 is consistent with (2.7) taking into account the different normalization of
the inner product (2.2) with an additional factor 1/6 imported from [54].
(2) Note that the formula three lines after (4) in [53] is off by a factor of 2 (and also
based on a different inner product). The proof of [14, Lemma 5.2] contains a number
of typos (the powers of π in (10) and the preceding display seem to be incorrect as
well as the normalizing factor after (10)), but the final result for M = 1 is independent
of this and consistent with (2.7).
(3) For future reference we note that for �s > 1 we have

1

L( fh, s)
=

∏
p

(
1 − λ(p)

ps
+ 1

p2s

)
=

∑
(n,m)=1

λ(n)μ(n)μ2(m)

nsm2s
(2.8)

if λ(n) denotes the n-th Hecke eigenvalue of fh .
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3 Non-holomorphic automorphic forms

We recall the spectral decomposition of L2(�\H) with � = SL2(Z), consisting of
the constant function u0 = √

3/π , a countable orthonormal basis {u j , j = 1, 2, . . .}
of Hecke–Maaß cusp forms and Eisenstein series E(., 1/2 + i t), t ∈ R. As in the
introductionwe call the collection of these functions� and the subset of evenmembers
�ev, and we write

∫
�

resp.
∫
�ev

for the corresponding spectral averages. We also

introduce the notation
∫ ∗
�ev

du for a spectral average without the residual spectrum
which in this case consists only of the constant function. We use the general notational
convention that an element in � or �ev is denoted by u while a cusp form is usually
denoted by u.

For t ∈ R let U ev
t denote the space of even weight zero Maaß cusp forms for �

with Laplacian eigenvalue 1/4 + t2. It is equipped with the inner product

〈u1, u2〉 =
∫

�\H

u1(z)u2(z)
dx dy

y2
. (3.1)

We write the Fourier expansion as

u(z) =
∑
n �=0

a(n)W0,i t (4π |n|y)e(nx)

with a(−n) = a(n), where W0,i t (4π y) = 2y1/2Kit (2π y) is the Whittaker function.
The Hecke operators T (n), normalized as in [47, (1.1)], act on U ev

t as a commutative
family of normal operators. We call t = tu the spectral parameter of u. The Eisenstein
series

E(z, s) =
∑

γ∈�∞\�
(
γ z)s =

∑
(c,d)∈Z

2/{±1}
gcd(c,d)=1

ys

|cz + d|2s

for � = PSL2(Z) are eigenfunctions of all T (n) with eigenvalue

ρs(n) :=
∑

ab=n

(a/b)s−1/2 = ns−1/2σ1−2s(n), σs(n) =
∑
d|n

ds, (3.2)

and an eigenfunction of the Laplacian with eigenvalue s(1 − s). We call (s − 1/2)/i
the spectral parameter of E(., s). If u is an Eisenstein series or a Hecke–Maaß cusp
formwithHecke eigenvalues λu(n)we define the corresponding L-function L(u, s) =∑

n λu(n)n−s . In particular

L(E(., 1/2 + i t), s) = ζ(s + i t)ζ(s − i t). (3.3)

If u ∈ U ev
t is a cuspidal Hecke eigenform with eigenvalues λ(n), then |n|1/2a(n) =

a(1)λ(|n|), and by Rankin–Selberg theory (and [33, 6.576.4] with a = b = 4π ,
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1336 V. Blomer, A. Corbett

ν = μ = i t)

‖u‖2 = π

3
res
s=1

〈|u|2, E(., s)〉 = 2π

3
res
s=1

∑
n>0

|a(n)|2
|n|s−1

∞∫

0

W0,i t (4π y)2ys−2dy

= 2π |a(1)|2
3

res
s=1

∑
n>0

|λ(n)|2
|n|s

π1/2�(s/2)�(s/2 − i t)�(s/2 + i t)

(2π)s�((1 + s)/2)

= 2|a(1)|2L(sym2u, 1)

cosh(π t)
.

(3.4)

We recall the Kuznetsov formula [55] and combine directly the “same sign” and the
“opposite sign” formula to obtain a version for the even part of the spectrum. The
conversion between Hecke eigenvalues and Fourier coefficients in the cuspidal case
follows from (3.4).

Lemma 7 Let n, m ∈ N. Let h be an even holomorphic function in |
t | ≤ 2/3 with
h(t) � (1+ |t |)−3. For non-constant u ∈ � let L(u) = L( sym2u, 1) if u is cuspidal
and2 L(u) = 1

2 |ζ(1 + 2i t)|2 if u = E(., 1/2 + i t) is Eisenstein.3 Then

∗∫

� ev

λu(n)λu(m)

L(u)
h(tu)du =δn=m

∞∫

−∞
h(t)t tanh(π t)

dt

4π2

+
∑

c

S(m, n, c)

c
h∗(√

nm

c

)

+
∑

c

S(m,−n, c)

c
h∗∗(√

nm

c

)
(3.5)

where

h∗(x) = 2i

∞∫

−∞

J2i t (4πx)

sinh(π t)
h(t)t tanh(π t)

dt

4π
,

h∗∗(x) = 4

π

∞∫

−∞
K2i t (4πx) sinh(π t)h(t)t

dt

4π
. (3.6)

We turn to half-integral weight forms. Let V +
t (4) denote the (“Kohnen”) space of

weight 1/2 Maaß cusp forms for �0(4) with eigenvalue 1/4 + t2 with respect to the

2 Note that the measure du is dt/4π in the Eisenstein case which explains the factor 1/2 in the definition
of L(E(., 1/2 + i t)).
3 with the obvious interpretation in (3.5) for t = 0
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A symplectic restriction problem 1337

weight 1/2 Laplacian and Fourier expansion

v(z) =
∑
n �=0

n≡0,1 (mod 4)

b(n)W 1
4 sgn(n),i t (4π |n|y)e(nx). (3.7)

The congruence condition on the indices can be encoded in an eigenvalue equation:
the functions v ∈ V +

t (4) are invariant under the operator L defined in [47, (0.7), (0.8)],
cf. also [5, (A.1)]. The space V +

t (4) is a finite-dimensional Hilbert space with respect
to the inner product

〈v1, v2〉 =
∫

�0(4)\H

v1(z)v2(z)
dx dy

y2
. (3.8)

The Hecke operators T (p2), p prime, act on V +
t (4) as a commutative family of

normal operators that commute with the weight 1/2 Laplacian (again we use Kohnen’s
modification for T (4) in order to treat all primes uniformly). Explicitly, if T (p2)v =
λ(p)v, then (see [47, (1.3)]) the Fourier coefficients of v satisfy

λ(p)b(n) = pb(np2) + p−1/2χn(p)b(n) + p−1b(n/p2) (3.9)

for all primes p and all n ∈ Z \ {0} with n ≡ 0, 1 (mod 4) with the convention
b(x) = 0 for x /∈ Z. If v ∈ V +

t (4) is an eigenfunction of all Hecke operators T (p2)
with eigenvalues λ(p), the relation (3.9) can be captured in the identity

∞∑
f =1

b(� f 2)

f s−1 = b(�)
∏

p

1 − χ�(p)p−s−1/2

1 − λ(p)p−s + p−2s

for a fundamental discriminant�. Extendingλ(p) to all n by the usualHecke relations,
we see that the denominator is just

∑
ν λ(pν)p−νs , so that

f b(� f 2) = b(�)
∑
d| f

μ(d)χ�(d)λ( f /d)d−1/2 (3.10)

for a fundamental discriminant � and f ∈ N.

4 Period formulae

Let v ∈ V +
t (4). Katok and Sarnak proved in [47, Proposition 4.1] that there is a linear

map (a theta lift) S sending v to a non-zero element in U ev
2t if b(1) �= 0 and to 0

otherwise. A calculation [47, pp. 221–223] shows that if v is an eigenform of T (p2),
then S v is an eigenform of T (p) with the same eigenvalue, and this computation
works verbatim for p = 2, too. Conversely, given an eigenform u ∈ U ev

2t with Hecke
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1338 V. Blomer, A. Corbett

eigenvalues λ(p), by [4, Theorem 1.2]4 there is a unique (up to scaling) v ∈ V +
t (4)

having eigenvalues λ(p) for T (p2), p > 2, (and then automatically also for T (4),
since T (4) commuteswith the other operators) whichmay ormay not satisfy b(1) �= 0.
In particular, for a given eigenform u ∈ U ev

2t there is at most one eigenform v ∈ V +
t

(up to scaling) withS v = u ∈ U ev
2t . If it exists, we normalize it to be L2-normalized

and denote its Fourier coefficients b(n) as in5 (3.7). If no such v exists, we define b(n)

to be 0.
If u is a Hecke–Maaß cusp form or an Eisenstein series, the absolute square of the

periods P(D;u) can be expressed in terms of central L-functions. We introduce the
relevant notation. For a discriminant D = � f 2 with a fundamental discriminant �

let

L(D, s) := L(χ�, s)
∑
d| f

μ(d)χ�(d)σ1−2s( f /d)d−s =:
∞∑

n=1

εD(n)

ns
. (4.1)

With ρs as in (3.2) we can re-write this as

L(D, s) = L(χ�, s) f 1/2−s
∑
d| f

μ(d)χ�(d)ρs( f /d)d−1/2. (4.2)

Since ρs = ρ1−s , we see that L(D, s) satisfies the same type of functional equation
as L(�, s) namely

�(D, s) := L(D, s)|D|s/2�
( s + a

2

)
π−s/2 = �(D, 1 − s) (4.3)

with a = 1 if D < 0 and a = 0 if D > 0. For a Hecke–Maaß cusp form or an
Eisenstein series u define

L(u, D, s) =
∞∑

n=1

εD(n)λu(n)

ns
. (4.4)

The key point is that

L(u,� f 2, 1/2) = L(u,�, 1/2)
(∑

d| f

μ(d)χ�(d)λu( f /d)d−1/2
)2

(4.5)

as one can check by a formal computationwith Euler products using theHecke relation
for the eigenvalues λu (which are identical for Maaß forms and Eisenstein series), see

4 Hecke operators and inner products are normalized differently in [4], but this plays no role in the present
discussion.
5 This determines b(n) only up to a constant of absolute value 1, but we will only encounter products of
the type b(n1)b(n2), so that this constant is irrelevant.
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[54, p. 188-189]. For later purposes we record the simple bound

(∑
d| f

μ(d)χ�(d)λu( f /d)d−1/2
)2 � f 1/3 (4.6)

uniformly in� and u, which follows from the Kim-Sarnak bound with 2 ·7/64 < 1/3.
From (4.2), the fact that |L(χ�, 1/2+ i t)|2 = L(E(., 1/2+ i t),�, 1/2) and (4.5)

we have

|L(� f 2, 1/2 + i t)|2

= |L(χ�, 1/2 + i t)|2
∣∣∣∑

d| f

μ(d)χ�(d)λE(.,1/2+i t)( f /d)d−1/2
∣∣∣2

= L(E(., 1/2 + i t),� f 2, 1/2).

(4.7)

The next key lemma expresses the periods P(D; u) defined in (1.5) for cusp forms
u as half-integral weight Fourier coefficients, and then their squares as L-functions.
The first formula (4.8) is essentially a formula of Katok-Sarnak [47, (0.16) & (0.19)],
the passage from squares of metaplectic Fourier coefficients to L-functions in (4.9)
is a Kohnen-Zagier type formula of Baruch-Mao [4, Theorem 1.4]. The combination
(4.10) of these two is a special case of a formula of Zhang [76, Theorem 1.3.2] or [77,
Theorem 7.1], derived independently by a different method.

Lemma 8 If u ∈ U ev
2t is an even Hecke–Maaß cusp form and D1, D2 < 0 are two

discriminants, then

P(D1; u)P(D2; u)‖u‖−2

|D1D2|1/4
= 3

π
L(u, 1/2)�(1/4 + i t)�(1/4 − i t)|D1D2|1/2b(D1)b(D2). (4.8)

For a discriminant D of either sign we have

|b(D)|2

= 1

24π

L(u, D, 1/2)

L(sym2u, 1)

cosh(2π t)�( 12 − 1
4 sgn(D) + i t)�( 12 − 1

4 sgn(D) − i t)

|D| .

(4.9)

For D < 0 we have

|P(D; u)|2‖u‖−2

|D|1/2 = L(u, 1/2)L(u, D, 1/2)

4L(sym2u, 1)
. (4.10)

Remark: The exact shape of these formulas is an unexpectedly subtle matter, and
the attentive reader might well be confused by the various and slightly contradictory
versions in the literature. There are at least four sources of possible conflict:
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1340 V. Blomer, A. Corbett

• the Whittaker functions can be normalized in different ways;
• the inner products can be normalized in different ways;
• the translation from adelic language to classical can cause problems;
• there can be ambiguities related to the groups GL(2) vs. SL(2) vs. PSL(2).

The Katok-Sarnak formula exists in the literature with proofs given in at least in three
different versions: [47, (0.16)], [6, Theorem A1] and [25, Theorem 4]. The original
version of Katok-Sarnak was carefully revised by Biró, but the latter seems to be still
off by a factor 2 compared to the version in Duke-Imamoğlu-Toth, which was checked
numerically.

The Baruch-Mao formula [4, Theorem 1.4] is quoted in [25, (5.17)] with an addi-
tional factor 2. Zhang’s result [77, Theorem 7.1] (and also the remark after [76,
Theorem 1.3.2], the theorem itself being correct) is missing the stabilizer ε(z) in the
period P(D; u). This formula is slightly incorrectly reproduced in [58] and several
follow-up papers, based on a different normalization of theWhittaker function. Finally,
neither combination of one of the three Katok-Sarnak formulae with the Baruch-Mao
formula in [4, Theorem 1.4] coincides with Zhang’s formula.

We therefore feel that these beautiful and important results should be stated with
correct constants and normalizations. For the proof of Theorem 2 and its connection
to the mass equidistribution conjecture this is absolutely crucial. As [25, Theorem 4]
was checked numerically by the authors, we follow their version of the Katok-Sarnak
formula. This gives (4.8). We verified and confirmed the constant in Zhang’s formula
independently by proving an averaged version in Appendix A. This gives (4.10). By
backwards engineering, we established the numerical constant in the Baruch-Mao
formula, which gives (4.9) and coincides with [25, (5.17)].

Note that (4.10) is essentially universal: the right hand side of (4.10) is independent
of any normalization, the left hand side depends only on the normalization of the inner
product (3.1) which is standard.

Proof We start with the formula [47, (0.16)] for a general discriminant D < 0, but
use the numerical constants as in [25, Theorem 4] (proved only for fundamental
discriminants there). This formula expresses P(D; u) for an arbitrary discriminant
D < 0 as a sum over Fourier coefficients of all v with S v = u. By the above
remarks, there is at most one such v. If there is none, then both sides of (4.8) and
(4.10) vanish by [47, (0.16), (0.19)] and our convention that b(n) = 0 in this case,
and there is nothing to prove. Also note that the left hand side of (4.8) and both sides
of (4.10) are independent of the normalization of u, so without loss of generality we
may assume that u is Hecke-normalized as in [47]. We obtain

P(D1; u)P(D2; u)‖u‖−2

|D1D2|1/4 = 6|D1D2|1/2b(D1)b(D2)|b(1)|2‖u‖2.

Next we insert [47, (0.19)] (again keeping in mind the different normalization of
(3.8) and observing that this is coincides with the numerically checked version of [25,
Theorem 4]) getting (4.8).

If D is a fundamental discriminant, then (4.9) follows from [25, (5.17)] together
with (3.4) with a(1) = 1 and 2t in place of t . By (3.10) and (4.5) this remains true
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for arbitrary discriminants. The formula (4.10) is a direct consequence of (4.8), (4.9)
and well-known properties of the gamma function, and was proved independently by
Zhang [76, Theorem 1.3.2]. ��

Remark: The argument at the beginning of this proof shows that the u-sum in
Proposition 4(a), up to terms of size 0, can be replaced with the v-sum in (1.10), using
(4.9). This completes the proof of (1.10).

A similar result holds for Eisenstein series. If aX2 + bXY + cY 2 is an integral
quadratic form of discriminant D = b2 − 4ac < 0 with Heegner point z = (

√|D|i −
b)/(2a), then

E(z, s) = 1

ζ(2s)

∑
(u,v)∈(Z2\(0,0))/{±1}

(
√|D|/2)s

(au2 − buv + cv2)s
.

Hence

P(D; E(., s)) = 1

ζ(2s)

(√|D|
2

)s
ζ(D, s)

where ζ(D, s) is defined6 in [75, (6)]. By [75, Proposition 3 iii] (or [25, Theorem 3])
we obtain the following lemma in analogy to Lemma 8.

Lemma 9 If D < 0 is a discriminant, then

P(D; E(., s)) = 1

ζ(2s)

(√|D|
2

)s
ζ(s)L(D, s), (4.11)

and hence

|P(D; E(., 1/2 + i t))|2
|D|1/2 = L(E(., 1/2 + i t), 1/2)L(E(., 1/2 + i t), D, 1/2)

2|ζ(1 + 2i t)|2 .

(4.12)

Remarks: (1) The second formula follows from the first by (3.3) and (4.7).
(2) Here the verification of the numerical constants is much easier than in the

cuspidal case. Taking residues at s = 1 in (4.11) for a fundamental discriminant
� < 0 returns the class number formula for Q(

√
�), which confirms the numerical

constants.
(3) For future reference we recall the standard bounds

ζ(1 + i t) � |t |−ε, |tu |ε � L(sym2u, 1) � |tu |−ε (4.13)

6 Note that Zagier defines � = PSL2(Z), so his definition of equivalence coincides with ours. The quotient
by {±1} in the u, v-sum is not spelled out explicitly in [75, (6)], but implicitly used in the proof of [75,
Proposition 3] on p. 131.
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for ε > 0. This is in particular relevant to obtain upper bounds in (4.12) and (4.10).

We close this section by stating a standard approximate functional equation [44,
Theorem 5.3] for the L-functions occurring in the previous period formulae. For
u ∈ U ev

t and a fundamental discriminant � (possibly � = 1) we have

L(u,�, 1/2) = L(u × χ�, 1/2) = 2
∑

n

λ(n)χ�(n)

n1/2 Wt

(
n

|�|
)

(4.14)

where

Wt (n) = 1

2π i

∫

(2)

�( 12 (
1
2 + a + s + i t))�( 12 (

1
2 + a + s − i t))

�( 12 (
1
2 + a + i t))�( 12 (

1
2 + a − i t))π s

es2n−s ds

s
(4.15)

with a = 1 if � < 0 and a = 0 if � > 0. Note that Wt depends on � only in terms
of its sign. If we want to emphasize this we write W +

t and W −
t with ± = sgn(�).

A similar expression holds for E(., 1/2 + i t) in place of u except that in the case
� = 1 we have L(E(., 1/2+ i t), 1, s) = ζ(s + i t)ζ(s − i t) and there is an additional
polar term7. We have

L(E(., 1/2 + i t),�, 1/2) = 2
∑

n

ρ1/2+i t (n)χ�(n)

n1/2 Wt

( n

|�|
)

− δ�=1

∑
±

ζ(1 ± 2i t)�( 12 ± i t)π∓i t e(1/2±i t)2

( 12 ± i t)�( 14 + i t
2 )�( 14 − i t

2 )

(4.16)

with ρ1/2+i t as in (3.2).

5 Half-integral weight summation formulae

In this section we compile the Voronoi summation and the Kuznetsov formula for
half-integral weight forms in the plus space.

5.1 Voronoi summation

As before let

v(z) =
∑
n �=0

b(n)W k
2 sgn(n),i t (4π |n|y)e(nx) (5.1)

7 Note that there is a sign error in [44, Theorem 5.3]: the residue R should be subtracted.
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be aMaaß form in the plus space of weight k ∈ {1/2, 3/2} and spectral parameter t for
�0(4) with respect to the usual theta multiplier. We start with the Voronoi summation
formula [16, Theorem 3].

Lemma 10 Let c ∈ N, 4 | c, (a, c) = 1. Let φ be a smooth function with compact
support in (−∞, 0) ∪ (0,∞) and for y > 0 define

�(±y) =
∞∫

0

J ±,+(t y)φ(t) + J ±,−(t y)φ(−t)dt, (5.2)

where

J ±,±(x) = cos(πk/2 ∓ iπr)

sin(2π ir)
J−2ir (2

√
x) − cos(πk/2 ± iπr)

sin(2π ir)
J2ir (2

√
x)

= − F(2
√

x, 2r ,∓k)

sin(2π ir)
,

J ±,∓(x) = 2K2ir (2
√

x)

�(1/2 ± k/2 + ir)�(1/2 ± k/2 − ir)

with F as in (1.6). Then

∑
n �=0

b(n)
√|n|e

(an

c

)
φ(n) =

(−c

a

)
ε2k

a e
(k

4

) ∑
n �=0

b(n)
√|n|2π

c
e
(

− ān

c

)
�

( (2π)2n

c2

)

with εa as in (1.8).

The proof of the Voronoi formula (Lemma 10) follows from a certain vector-valued
functional equation satisfied by the L-functionswith coefficients b(±n)e(±an/c). The
same functional equation holds if v is not cuspidal (this is clear from general principles
and worked out explicitly in [22] along the same lines), but in this case the L-functions
are not entire; they have various poles. We use this observation for two non-cuspidal
modular forms. The first is a half-integral weight Eisenstein series

E∗(z,
1

2
+ i t

)
=21+2i tπ−i t�(1/2 + 2i t)ζ(1 + 4i t)

�(3/4 + i t)�(1/4 + i t)
y1/2+i t

+ 21−2i tπ3i t�(1/2 − 2i t)ζ(1 − 4i t)

�(3/4 + i t)�(1/4 + i t)
y1/2−i t

+
∑

D

L(D, 1/2 + 2i t)|D|i t
|D|1/2

W 1
4 sgn(D),i t (4π |D|y)

�( 12 + 1
4 sgn(D) + i t)

e(Dx)

(5.3)

which transforms under�0(4) as a weight 1/2 automorphic formwith thetamultiplier;
see [25, p. 964]. As usual, D runs over all discriminants. The other is Zagier’s weight
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1344 V. Blomer, A. Corbett

3/2 Eisenstein series8

H(z) =
∑
D<0

H(D)

|D|3/4 e(|D|x)W3/4,1/4(4π |D|y) − (4π y)3/4

12

+ 1

4
√

π

∑
n=�

e(−nx)

n1/4 W−3/4,1/4(4πny) + y1/4√
8π1/4

(5.4)

which transforms under�0(4) as a weight 3/2 automorphic formwith theta multiplier.
As before H(D) is the Hurwitz class number. For ε ∈ {±1}, (a, c) = 1, 4 | c, the
Dirichlet series

∑
εD>0

L(D, 1/2 + 2i t)e(aD/c)|D|i t
|D|1/2+w

has possible poles at w = 1/2 ± i t with certain residues Rε(±t, a/c), say (cf. [7,
Lemma 2] in the case c = 1, the general case being analogous). Consequently we
obtain the following analogue of Lemma 10.

Lemma 11 Let c ∈ N, 4 | c, (a, c) = 1, t ∈ R \ {0}. Let φ be a smooth function with
compact support in (−∞, 0) ∪ (0,∞) and for y > 0 define � as in (5.2). Then

∑
D �=0

L(D, 1/2 + 2i t)|D|i t
�( 12 + i t + 1

4 sgn(D))
e
(aD

c

)
φ(D)

=
(−c

a

)
εae

(
1

8

)[ ∑
ε∈{±1}

∑
±

Rε(±t, a/c)

�( 12 + i t + 1
4ε)

∞∫

0

φ(εx)x±i t dx

+
∑
D �=0

L(D, 1/2 + 2i t)|D|i t
�( 12 + i t + 1

4 sgn(D))

2π

c
e

(
− āD

c

)
�

(
(2π)2D

c2

)]
.

For t = 0 one combines the±-terms and takes the limit as t → 0. In our application,
the values Rε(t, a/c) are irrelevant (as long as they are polynomial in c and t) since
we apply the formula with a function φ that oscillates much more strongly that x±i t

so that the integral is negligible.
We obtain a similar summation formula for Hurwitz class numbers. Although we

do not need it for the present result, we compute in Appendix B the residues explicitly
and get the following handsome formula.

8 This corresponds to (4π y)3/4F (z) in [35, Theorem 2, p. 91]. We have multiplied Zagier’s definition by
a factor (4π y)3/4 in order to make our |H(z)| invariant under �0(4).
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Lemma 12 Let c ∈ N, 4 | c, (a, c) = 1. Let φ be a smooth function with compact
support in (0,∞). Then

∑
D<0

H(D)

|D|1/4 e

(
a|D|

c

)
φ(|D|)

=
(−c

a

)
ε̄ae

(
3

8

)[ ∑
D<0

H(D)

|D|1/4
2π

c
e

(
− ā|D|

c

) ∞∫

0

J +
(

t
(2π)2|D|

c2

)
φ(t)dt

+ 1

4
√

π

∑
n=�

n1/4 2π

c
e

(
ān

c

) ∞∫

0

J −
(

t
(2π)2n

c2

)
φ(t)dt

+
∞∫

0

φ(x)

(
1√
8c1/2

x−1/4 −
√
2π

3c3/2
x1/4

)
dx

]

where

J +(x) = sin(2
√

x)√
πx1/4

, J −(x) = 2e−2
√

x

x1/4
. (5.5)

Remark: Observing that for negative D ≡ 0, 1 (mod 4) we have

e(|D|/4) + e(3|D|/4) = 2δD≡0 (mod 4), −e(|D|/4) + e(3|D|/4) = 2iδD≡1 (mod 4),

it is a straightforward exercise to conclude

∑
−X<D<0

D≡δ (mod 4)

H(D) = π

36
X3/2 − 1

8
X + O(X3/4)

for δ = 0, 1. Further congruence conditions on D can be imposed, and the error term
can be improved by a more careful treatment of the dual term in the Voronoi formula.
See [72] for the corresponding result for the ordinary class number h(d). The following
table provides some numerical results (here we combined the cases δ = 0 and δ = 1).

X 1000 2000 4000 6000 8000 10,000

∑
D≤X

H(D) 5280.5 15,131.3 43,189.5 79,685.7 122,967 172,106

π

18
X3/2 − 1

4
X 5269.22 15,110.7 43,153.7 79,615.6 122,885.6 172, 032.9
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1346 V. Blomer, A. Corbett

5.2 The Kuznetsov formula

The Kuznetsov formula was generalized by Proskurin [66] to arbitrary weights and
by Andersen–Duke [2] to Kohnen’s subspace. Interestingly, only the direction from
Kloosterman sums to spectral sums appears to be in the literature, but no complete
version in the other direction. Biró [5, p. 151] has a version only valid for test functions
on the spectral side whose spectral mean value is 0, Ahlgren–Andersen [1, Sect. 3]
use an approximate version.

We take this opportunity to state and prove the relevant Kuznetsov formula both
for the full space of half-integral weight forms and for Kohnen’s subspace. Starting
with the former, for κ ∈ {1/2, 3/2} the relevant Kloosterman sums are

Kκ(n, m, c) =
∑

d (mod c)
(d,c)=1

ε2κd

( c

d

)
e

(
nd + md̄

c

)
(5.6)

for 4 | c. The Eisenstein series belong to the two essential cusps a = ∞, 0. We
normalize and denote their Fourier coefficients by φam(1/2+ i t) = φ

(κ)
am(1/2+ i t) as

in [66, (12)–(14)]. We denote by
∑ (κ) a sum over an orthonormal basis of the space

of cusp forms of weight κ and label the members by v j , j = 1, 2, . . . with Fourier
coefficients b j (n) as in (5.1) and spectral parameters by t j . We recall the definition of
F from (1.6).

Proposition 13 Let κ ∈ {1/2, 3/2}, m, n > 0. Let h be an even function, holomorphic
in |
t | < 2/3 with h(t) � (1 + |t |)−4. Then

∑
j

(κ)
√

mnb j (m)b j (n)

cosh(π t j )
h(t j )

+
∑
a

∞∫

−∞

(
n

m

)i t
φ

(κ)
am(1/2 + i t)φ(κ)

an (1/2 + i t)

4 cosh(π t)�( 1+κ
2 + i t)�( 1+κ

2 − i t)
h(t)dt

= δn=m

∞∫

−∞
h(t)t sinh(π t)�

(1 − κ

2
+ i t

)
�

(1 − κ

2
− i t

) dt

4π3

+ e
(1 − κ

4

)∑
c

Kκ(m, n, c)

c

∞∫

0

F(4π
√

nm/c, 2t,−κ)

cosh(π t)

�
(1 − κ

2
+ i t

)
�

(1 − κ

2
− i t

)
h(t)t

dt

2π2

if in addition h(±i/4) = 0. Moreover, regardless of the value of h(±i/4) we have

∑
j

(κ)
√

mnb j (−m)b j (−n)

cosh(π t j )
h(t j )
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+
∑
a

∞∫

−∞

( n

m

)i t φ
(κ)
a,−m(1/2 + i t)φ(κ)

a,−n(1/2 + i t)

4 cosh(π t)�( 1−κ
2 + i t)�( 1−κ

2 − i t)
h(t)dt

= δn=m

∞∫

−∞
h(t)t sinh(π t)�

(1 + κ

2
+ i t

)
�

(1 + κ

2
− i t

) dt

4π3

+ e
(1 + κ

4

)∑
c

K−κ(m, n, c)

c

∞∫

0

F(4π
√

nm/c, 2t, κ)

cosh(π t)

�
(1 + κ

2
+ i t

)
�

(1 + κ

2
− i t

)
h(t)t

dt

2π2 .

Remark: Note that the space of weight 1/2 Maaß forms v with spectral parameter
i/4 are in the kernel of the Maaß lowering operator. Hence y−1/4v is holomorphic,
so that v has no non-vanishing negative Fourier coefficients. This is consistent with
the fact that the Eisenstein contribution vanishes in this case because of the gamma
factors in the denominator.

Proof By [66, Lemma 3] with σ = 1, t = 2τ ∈ R and the first formula in [66, Lemma
6] we have the “pre-Kuznetsov” formula

−
∑

c

Kκ(m, n, c)

c2
x−κ π

sinh(2πτ)

x∫

0

F(y, 2τ, 1 − κ)yκ−1dy + δn=me((1 + κ)/4)

4π(n + m)

= π2e((1 + κ)/4)

2�(1 − κ
2 + iτ)�(1 − κ

2 − iτ)

( ∑
j

b j (m)b j (n)

cosh(π(t j − τ)) cosh(π(t j + τ))

+ 1

4
√

nm

∑
a

∞∫

−∞

(m

n

)−i t φam(1/2+i t)φan(1/2+i t)

�( 1+κ
2 +i t)�( 1+κ

2 −i t) cosh(π(t−τ)) cosh(π(t+τ))
dt

)
.

where

x = 4π
√

mn/c.

Note that taking σ = 1 is admissible in the present situation because we have the same
Weil-type bounds for the Kloosterman sums Kκ(n, m, c) as for K +

κ (n, m, c) in (1.9).
Also note that there is a typo in [66, Lemma 6] in the upper limit of the integral.

For h as in the lemma and t ∈ R we have the following inversion formula

∞∫

−∞

(
h(τ + i/2) + h(τ − i/2)

) cosh(πτ)

cosh(π(τ − t)) cosh(π(τ + t))
dτ = 2h(t)

cosh(π t)
.
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1348 V. Blomer, A. Corbett

This is the lemma on p. 327 of [55]9 which is readily proved by residue calculus. We
now integrate the pre-Kuznetsov formula against

(
h(τ + i/2) + h(τ − i/2)

)
cosh(πτ)�(1 − κ/2 + iτ)�(1 − κ/2 − iτ).

Our assumptions on h ensure absolute convergence and the possibility to shift the
contour up and down to 
t = ±1/2 without crossing poles. In this way the δ-term
becomes

δm=n
e((1 + κ)/4)

4π(m + n)

∞∫

−∞
h(τ )�(1/2 − κ/2 + iτ)�(1/2 − κ/2 − iτ)2τ sinh(πτ)dτ.

For the Kloosterman term we insert the definition in (1.6) getting

−
∑

c

Kκ(m, n, c)

c2
π i

2xκ

∞∫

−∞

x∫

0

h(τ )
�((1 − κ)/2 + iτ)�((1 − κ)/2 − iτ)

cosh(πτ)

∑
ε1,ε2∈{±1}

Jε1+ε22iτ (y) cos(π(κ/2 + ε2iτ))((1 − κ)/2 + ε1ε2iτ)yκ−1dy dτ.

We note that

y1−κ d

dy

( J2iτ (y)

y1−κ

)
= J ′

2iτ (y) − (κ − 1)J2iτ (y)

y

= J2iτ+1(y)(iτ + (1 − κ)/2) + J2iτ−1(y)((1 − κ)/2 − iτ)

−2iτ

where the last equality follows from the recurrence relations [33, 8.471.1&2]. Sub-
stituting this, we can evaluate the y-integral by the fundamental theorem of calculus,
arriving at

−
∑

c

Kκ(m, n, c)

c2
π

x

∞∫

−∞
τh(τ )

�((1 − κ)/2 + iτ)�((1 − κ)/2 − iτ)

cosh(πr)
F(x, 2τ,−κ)dτ

after some elementary manipulations. We multiply the resulting expression by
√

mn
to obtain the first formula. Note that the c-sum is absolutely convergent by the power
series expansion of the Bessel function contained in F(x, 2t,−κ) and the fact that
h(±i/4) = 0, as we can shift the t-contour up and down to |
t | = 1/2 − ε.

There are two ways to derive the second formula from the first. We can either
observe that in Proskurin’s notation we can compute 〈Um(., s1),Un(., s̄2)〉 instead

9 We have corrected a sign error. This sign error is cancelled by another sign error in [55, (6.6)]. The
inversion formula was re-produced in [44, Lemma 16.4] with the same sign error. There the sign error is
cancelled by sign errors in the first and fifth display on p. 410.
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of 〈Um(., s1),Un(., s̄2)〉. This changes the signs of the coefficients in the spectral
expansion and has the effect of changing κ into −κ . Note that in this case we do not
need the extra condition h(±i/4) = 0 to shift contours. Alternatively, we use the
following fact (cf. [26, (4.17),(4.18),(4.27),(4.28),(4.64), p. 507, p. 509]): the map

Tκ =
((

κ−1
2

)2 + t2
)

X�κ

with X : f (z) �→ f (−z̄) and �κ = κ/2 + y(i∂x − ∂y) the weight lowering operator
is a bijective isometry between weight κ and weight 2−κ that exchanges positive and
negative Fourier coefficients:

Tκ

( ∑
n �=0

b(n)e(nx)Wsgn(n) κ
2 ,i t (4π |n|y)

)

=
∑
n �=0

b(−n)sgn(n)
((κ − 1

2

)2 + t2
)− 1

2 sgn(n)

e(nx)Wsgn(n) 2−κ
2 ,i t (4π |n|y).

This yields again the second formula from the first. ��

In order to get a corresponding formula for the Kohnen space, we apply the L
operator

1

2(1 + i2κ)

∑
wmod 4

(
1 + w 1/4
4w 1

)

to the formula. As in the case of the Petersson formula (Lemma 6), this has the effect
that

• the cuspidal term is restricted to forms in the Kohnen space;
• the δ-term is multiplied by 2/3; the reason for the number 2/3 is that the dimension
of the Kohnen space is 1/3 of the full space, but only half of the coefficients appear;

• the Kloosterman sums (5.6) are replaced with the Kloosterman sums (1.7) and the
Kloosterman term is also multiplied by 2/3.

The hardest part is to compute the Eisenstein coefficients. All of this has been worked
out in detail in [2, Sect. 5]. The corresponding formula [2, Theorem5.3] can be inverted
in the same way. In the following lemma let

∑+ denote a sum over an orthonormal
basis of weight 1/2 Maaß cusp forms in Kohnen’s space. We recall the definition (4.1)
and (4.2) of L(D, s) for a discriminant D.
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1350 V. Blomer, A. Corbett

Lemma 14 Let κ = 1/2 and let n, m ∈ Z that are congruent 0 or 1 modulo 4. Let h
be an even function, holomorphic in |
t | < 2/3 with h(t) � (1 + |t |)−4. Then

∑
j

+ √
mnb j (m)b j (n)

cosh(π t j )
h(t j )

+ 1

12

∞∫

−∞

( n

m

)i t L(m, 1/2 − 2i t)L(n, 1/2 + i t)

|ζ(1 + 4i t)|2 cosh(π t)�( 1+κ
2 + i t)�( 1+κ

2 − i t)
h(t)dt

= 2

3
δn=m

∞∫

−∞
h(t)t sinh(π t)�

(1 − κ

2
+ i t

)
�

(1 − κ

2
− i t

) dt

4π3

+ 2

3
e
(1 − κ

4

) ∑
c

K +
κ (m, n, c)

c

∞∫

0

F(4π
√

nm/c, 2t,−κ)

cosh(π t)

�
(1 − κ

2
+ i t

)
�

(1 − κ

2
− i t

)
h(t)t

dt

2π2

for n, m > 0 if in addition h(±i/4) = 0. Moreover, regardless of the value of h(±i/4)
we have

∑
j

(+)
√|mn| b j (m)b j (n)

cosh(π t j )
h(t j )

+ 1

12

∞∫

−∞

( |n|
|m|

)i t L(m, 1/2 − 2i t)L(n, 1/2 + i t)

|ζ(1 + 4i t)|2 cosh(π t)�( 1−κ
2 + i t)�( 1−κ

2 − i t)
h(t)dt

= 2

3
δn=m

∞∫

−∞
h(t)t sinh(π t)�

(1 + κ

2
+ i t

)
�

(1 + κ

2
+ i t

) dt

4π3

+ 2

3
e
(1 + κ

4

) ∑
c

K +−κ(|m|, |n|, c)

c

∞∫

0

F(4π
√|nm|/c, 2t, κ)

cosh(π t)

�
(1 + κ

2
+ i t

)
�

(1 + κ

2
− i t

)
h(t)t

dt

2π2

if n, m < 0.

6 Harmonic analysis on positive definite matrices

Here we prove Proposition 1. We identify the Hilbert spaces

(H, y−2dx dy) × (R>0, r−1dr) ∼= (P(R), (det Y )−3/2dY ) (6.1)

123



A symplectic restriction problem 1351

via

ι : (x + iy, r) �→ √
r

(
y−1 −xy−1

−xy−1 y−1(x2 + y2)

)
.

Note that for Y = ι(x + iy, r) with r = det Y we have

∣∣∣ det dY

d(r , x, y)

∣∣∣ =
√

r

y2
,

so that the measures coincide. The group � = PSL2(Z) acts faithfully on P(R) and
P(Z) (as defined after (2.5)) by T �→ U�T U for U ∈ �. This is compatible with the
action of � on H by Möbius transforms. Every smooth function f ∈ L2(�\H) has a
spectral decomposition

f (z) =
∑
j≥0

〈 f , u j 〉u j (z) +
∞∫

−∞
〈 f , E(., 1/2 + i t)〉E(z, 1/2 + i t)

dt

4π

=
∫

�

〈 f ,u〉u(z)du.

We recall the notion of the spectral parameter tu for u ∈ �; the constant function has
spectral parameter i/2. Combining the spectral decomposition on �\H with Mellin
inversion, we conclude that, for a smooth function � ∈ L2(�\P(R)), the spectral
decomposition

�(Y ) = �(ι(x + iy, r)) =
∫

(0)

∫

�

〈�̂(s),u〉u(x + iy)du r−s ds

2π i

holds provided � is sufficiently rapidly decaying as r → 0 and r → ∞. Here,

�̂(s)(x + iy) =
∞∫

0

�(ι(x + iy, r))rs dr

r

is the Mellin transform with respect to the r -variable. This gives the Parseval formula

‖�(Y )‖2 =
∫

�\P(R)

|�(Y )|2 dY

(det Y )3/2
=

∞∫

−∞

∫

�

|〈�̂(i t),u〉|2du
dt

2π
. (6.2)

For an automorphic form u ∈ � and a Siegel cusp form F ∈ S(2)
k with Fourier

expansion (2.5) we define the twisted Koecher–Maaß series by

L(F × u, s) :=
∑

T ∈P(Z)/�

a(T )

ε(T )(det T )s+(k−1)/2
u

(
(det T )−1/2T

)
(6.3)
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where ε(T ) = {U ∈ � | U�T U = T } is the stabilizer and �s is (initially) suffi-
ciently large. This series is often defined in terms of GL2(Z)-equivalence instead of
�-equivalence, but for us the present version is more convenient. This function has no
Euler product, but it does have a functional equation. Let

G(F × u, s) := 4(2π)−k+1−2s
∏
±

�

(
k − 1

2
+ s − 1

4
± i tu

2

)
. (6.4)

Let us assume that k is even. Then for all even u (including Eisenstein series and the
constant function), the function L(F × u, s) has an analytic continuation to C that is
bounded in vertical strips and satisfies the functional equation [39, Theorem 3.5]

L(F × u, s)G(F × u, s) = L(F × u, 1 − s)G(F × u, 1 − s).

The functional equation is a consequence of the following period formula. For �s
sufficiently large we have (cf. [39, pp. 927–928])

∞∫

0

〈F(ι(., r)),u〉r k−1
2 +s dr

r
=

∫
�\H

∞∫

0

F(ι(z, r))r
k−1
2 +s dr

r
u(z)

dx dy

y2

=
∫

�\P(R)

∑
T ∈P(Z)

a(T )e−2π tr(Y T )(det Y )
k−1
2 +su

(
(det Y )−1/2Y

) dY

(det Y )3/2
.

Now splitting the T -sum into equivalence classesmodulo� and unfolding the integral,
this equals

∑
T ∈P(Z)/�

a(T )

ε(T )

∫

P(R)

e−2π tr(Y T )(det Y )
k−1
2 +su

(
(det Y )−1/2Y

) dY

(det Y )3/2
.

Note that it is important that the action of � is faithful. The last integral over P(R)

was evaluated by Maaß [60, p. 85 and p. 94]:

∫

P(R)

e−tr(Y T )(det Y )su
(
(det Y )−1/2Y

) dY

(det Y )3/2

= π1/2

(det T )s
u

(
(det T )−1/2T

) ∏
±

�
(

s − 1

4
± i tu

2

)

for any u ∈ �. Thus we obtain

∞∫

0

〈F(ι(., r)),u〉r k−1
2 +s dr

r
=

√
π

4
L(F × u, s)G(F × u, s),
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initially for �s sufficiently large, but then by analytic continuation for all s ∈ C. For
odd u, the left hand side vanishes, since 〈F(ι(., r)),u〉 = 0 for every r . The Parseval
formula (6.2) now implies Proposition 1 in the introduction.

In the special case where F is a Saito–Kurokawa lift, the Koecher–Maaß series
simplifies.

Lemma 15 If k is even and F = Fh ∈ S(2)
k is a Saito–Kurokawa lift with Fourier

expansion as in (2.5) and (2.6) and u ∈ �, then

L(Fh × u, s) = 4s+ k−1
2 ζ(2s)

∑
D<0

D≡0,1 ( mod 4)

ch(|D|)P(D;u)

|D|s+ k−1
2

for �s sufficiently large and P(D;u) as in (1.5).

Remark:Onewould expect that ch(|D|) is roughly of size |D| k
2− 3

4 and that P(D;u)

is roughly of size |D| 14 (for non-constant u) so that typically ch(|D|)P(D;u)|D|− k−1
2

is roughly of constant size (with respect to D). Using trivial bounds for P(D;u) and

ch(|D|), the quantity ch(|D|)P(D;u)|D|− k−1
2 is certainly � |D|3/4+ε.

Proof We copy the argument from [12, p. 22]. Let � be a negative fundamental
discriminant, D = � f 2 a negative discriminant and T ∈ P(Z)/�. For such T =(

n r/2
r/2 m

)
we write e(T ) = (n, r , m) for the greatest common divisor of n, m, r . It

follows from (2.6) that

L(Fh × u, s) = 4s+ k−1
2

∑
D=� f 2

∑
t | f

1

|D|s+ k−1
2

∑
det(T )=−D/4

e(T )=t

a(T )

ε(T )
u((det T )−1/2T )

= 4s+ k−1
2

∑
D=� f 2

∑
d|t | f

dk−1ch(|D|/d2)

|D|s+ k−1
2

∑
det(T )=−D/4

e(T )=t

u((det T )−1/2T )

ε(T )
.

Writing t = t ′d with t ′ | f /d, we can evaluate the t ′-sum getting

L(Fh × u, s) = 4s+ k−1
2

∑
D=� f 2

∑
d| f

dk−1ch(|D|/d2)

|D|s+ k−1
2

P(D/d2,u)

= 4s+ k−1
2 ζ(2s)

∑
D

ch(|D|)P(D;u)

|D|s+ k−1
2

as desired. ��
We combine Proposition 1 and Lemma 15 with (2.7) and use the notation of these

formulas to derive the following basic spectral formula for the restricted normN (Fh)

of a Saito–Kurokawa lift Fh ∈ S(2)
k .
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1354 V. Blomer, A. Corbett

Proposition 16 Let k be even and let F = Fh ∈ S(2)
k be a Saito–Kurokawa lift with

Fourier expansion as in (2.5) and (2.6). Let fh ∈ S2k−2 denote the corresponding
Shimura lift of h. Then

N (Fh) = π2

90
· 9

√
π

L( fh, 3/2)

∞∫

−∞

∫

� ev

|G(k, tu, 1/2 + i t)L(h,u, 1/2 + i t)|2du dt,

where

G(k, tu, s) = π−2s 2
k�( k−1

2 + s − 1
4 + i tu

2 )�( k−1
2 + s − 1

4 − i tu
2 )

(�(k)�(k − 3/2))1/2
(6.5)

and L(h,u, s) is the analytic continuation of

L(h,u, s) =
(

�(k − 3/2)

(4π)k−3/2

)1/2

ζ(2s)
∑
D<0

D≡0,1 ( mod 4)

ch(|D|)P(D;u)

‖h‖2 · |D|s+ k−1
2

(6.6)

for �s sufficiently large.

The renormalized functions still satisfy the functional equation

L(h,u, s)G(k, tu, s) = L(h,u, 1 − s)G(k, tu, 1 − s).

The inclusion of the gamma factor in (6.6) is motivated by the formula in Lemma 6.
From the Dirichlet series expansion and the functional equation we obtain an

approximate functional equation, cf. [44, Theorem 5.3].

Lemma 17 Let F = Fh ∈ S(2)
k be a Saito–Kurokawa lift and u ∈ � with spectral

parameter tu. For t, x ∈ R let

Vt (x; k, tu) := 1

2π i

∫

(3)

ev2G(k, tu, v + 1/2 + i t)G(k, tu, v + 1/2 − i t)x−v dv

v
.

(6.7)

Then

|G(k, tu, 1/2 + i t)L(h,u, 1/2 + i t)|2

= 2
�(k − 3/2)

(4π)k−3/2

∑
f1, f2

∑
D1,D2<0

ch(|D1|)ch(|D2|)P(D1;u)P(D2;u)

‖h‖2 · f 1+2i t
1 f 1−2i t

2 |D1|k/2+i t |D2|k/2−i t

Vt (|D1D2|( f1 f2)
2; k, tu).
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Combining Proposition 16, Lemma 17 and (2.8) we obtain the following basic for-
mula:

N (Fh) = π2

90
· 9√π · 2

∑
(n,m)=1

λ(n)μ(n)μ2(m)

n3/2m3

∞∫

−∞

∫

� ev

�(k − 3/2)

(4π)k−3/2‖h‖2

∑
f1, f2,D1,D2

c(|D1|)c(|D2|)P(D1;u)P(D2;u)

f1 f2|D1D2|k/2

( |D2| f 22
|D1| f 21

)i t

Vt (|D1D2|( f1 f2)
2; k, tu)du dt .

(6.8)

7 A relative trace formula

In this section we prove a slightly more general formula than that stated in Theorem 3.
Let D1 = �1 f 21 , D2 = �2 f 22 < 0 be two arbitrary negative discriminants and h as
specified in Theorem 3. Combining (4.8) (with t/2 in place of t) and (4.11) we have

1

|D1D2|1/4
∫

�ev

P(D1;u)P(D2;u)h(tu)du = 3

π

H(D1)H(D2)

|D1D2|1/4 h(i/2)

+
∑

u cuspidal, even

3

π
L(u, 1/2)�(1/4+i tu/2)�(1/4−i tu/2)|D1D2|1/2b(D1)b(D2)h(tu)

+
∞∫

−∞

( |D1|
|D2|

)i t/2

|ζ(1/2 + i t)|2 L(D1, 1/2 + i t)L(D2, 1/2 − i t)

2|ζ(1 + 2i t)|2 h(t)
dt

4π
.

By the argument of the proof of Lemma 8 we can re-write the sum over even cusp
forms u as a sum over weight 1/2 cusp forms v in Kohnen’s space. Thus the last two
terms of the preceding display become

∑
j

(+) 3

π
L(u j , 1/2)�(1/4 + i t j )�(1/4 − i t j )|D1D2|1/2b j (D1)b j (D2)h(2t j )

+
∞∫

−∞

( |D1|
|D2|

)i t

|ζ(1/2 + 2i t)|2 L(D1, 1/2 + 2i t)L(D2, 1/2 − 2i t)

2|ζ(1 + 4i t)|2 h(2t)
dt

2π
.

Here, as in Lemma 14,
∑(+) indicates a sum over an orthonormal basis of weight 1/2

cusp forms v j in Kohnen’s space with spectral parameter t j and Fourier coefficients
b j (D), and u j is the corresponding Shimura lift with spectral parameter 2t j = tu . If
λ j (n) are the Hecke eigenvalues of u j , then by the approximate functional equations
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1356 V. Blomer, A. Corbett

(4.14) and (4.16) with � = 1 we can write

L(u j , 1/2) = 2
∑

n

λ j (n)

n1/2 W2t j (n)

and

|ζ(1/2 + 2i t)|2

= 2
∑

n

ρ1/2+2i t (n)

n1/2 W2t (n) −
∑
±

ζ(1 ± 4i t)�( 12 ± 2i t)π∓2i t e(1/2±2i t)2

( 12 ± 2i t)�( 14 + i t)�( 14 − i t)

with Wt as in (4.15) with a = 0. Note that W2t (x) is even and holomorphic in |
t | <

2/3, satisfying the uniform bound W2t (x) � (1 + |t |2)/x2 in this region (by trivial
bounds). Moreover W2t (x) vanishes at t = ±i/4. We first deal with residue term in
the formula for |ζ(1/2+ 2i t)|2 and substitute this back into the Eisenstein term. This
gives

−
∑
±

∞∫

−∞

( |D1|
|D2|

)i t �( 12 ± 2i t)π∓2i t e(1/2±2i t)2

( 12 ± 2i t)�( 14 + i t)�( 14 − i t)

L(D1, 1/2 + 2i t)L(D2, 1/2 − 2i t)

2ζ(1 ∓ 4i t)
h(2t)

dt

2π
.

We can slightly simplify this by applying in the plus-term the functional equation for
L(D1, 1/2+2i t) and changing t to−t , and in the minus-term the functional equation
(4.3) for L(D2, 1/2 − 2i t). In this way we see that the two terms are equal and after
some simplification we obtain

2

∞∫

−∞
|D1D2|i t 2

− 3
2−2i t�(− 1

4 + i t)e(1/2−2i t)2

√
π�( 14 + i t)

L(D1, 1/2 + 2i t)L(D2, 1/2 + 2i t)

2ζ(1 + 4i t)
h(2t)

dt

2π
.

Our next goal is to use the half-integral weight Hecke relations to combine
λ j (n)b j (D1). For notational simplicity let us define b̃ j (D1) = √|D1|b j (D1). From
(3.10) we obtain

λ(n)b̃ j (D1) = b̃ j (D1) = b̃(�1)
∑
d| f1

μ(d)χ�1(d)

d1/2 λ
( f1

d

)
λ(n)

= b̃ j (�1)
∑

d1rs= f1
r |n

μ(d1)χ�1(d1)

d1/2
1

λ
( sn

r

)

=
∑

d1rs= f1
r |n

μ(d1)χ�1(d1)

d1/2
1

∑
m|sn/r

χ�1(m)√
m

b̃ j

(
�1

( sn

rm

)2)
.
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In the last step we used (3.10) again together with Möbius inversion. This yields

∑
n

λ j (n)

n1/2
W2t (n)b̃ j (D1)

=
∑

d1rs= f1

μ(d1)χ�1(d1)

d1/21

∑
n

W2t (rn)√
rn

∑
m|sn

χ�1(m)√
m

b̃ j

(
�1

( sn

m

)2)

=
∑

d1rs= f1

μ(d1)χ�1(d1)

d1/21

∑
n,m

W2t (rnm/(m, s))√
rnm/(m, s)

χ�1(m)√
m

b̃ j

(
�1

( sn

(m, s)

)2)

=
∑

d1rs= f1

μ(d1)χ�1(d1)

d1/21

∑
τu=s

∑
n

∑
(m,u)=1

W2t (rnm)√
rnm

χ�1(mτ)√
mτ

b̃ j (�1(un)2)

=
∑

d1rs= f1

μ(d1)χ�1(d1)

d1/21

∑
τu=s

∑
n,m

∑
v|u

μ(v)
W2t (rnvm)√

rnvm

χ�1(vmτ)√
vmτ

b̃ j (�1(un)2)

=
∑

d1rτvw= f1

∑
n,m

μ(d1)μ(v)χ�1(d1vmτ)√
d1rnτvm

W2t (rnvm)b̃ j (�1(vwn)2).

Comparing (3.10) and (4.2), we see that the same Hecke relations hold for Eisenstein
series, and we therefore have

∑
n

ρ1/2+2i t (n)

n1/2 W2t (n)|D1|i t L(D1, 1/2 + 2i t)

=
∑

d1rτvw= f1

∑
n,m

μ(d1)μ(v)χ�1(d1vmτ)√
d1rnτvm

W2t (rnvm)(�1(vwn)2)i t

L(�1(vwn)2, 1/2 + 2i t).

We are now in a position to apply the secondKohnen-Kuznetsov formula in Lemma 14
with

6

π
�(1/4 + i t)�(1/4 − i t) cosh(π t)W2t (rnvm)h(2t)

in place of h(t). This function satisfies the hypotheses of that formula (and decays
rapidly enough in n and m), recall that W2t (n) vanishes at t = ±i/4. The diagonal
exists only if �1 = �2 and vwn = f2. For a function H we introduce the integral
transform

H†(x) =
∞∫

−∞

F(x, t, 1/2)

cosh(π t)
H(t)t

dt

π
(7.1)

with F as in (1.6).

Theorem 18 Let D1 = �1 f 21 , D2 = �2 f 22 be negative discriminants and let h be an
even function, holomorphic in |
t | < 2/3 with h(t) � (1 + |t |)−10. Define Wt as in
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1358 V. Blomer, A. Corbett

(4.15), L(D, s) as in (4.1) and K +
3/2(a, b, c) as in (1.7). Then

1

|D1D2|1/4
∫

�ev

P(D1;u)P(D2;u)h(tu)du = 3

π

H(D1)H(D2)

|D1D2|1/4 h(i/2)

+
∞∫

−∞

∣∣∣ D1D2

4

∣∣∣i t/2�(− 1
4 + i t

2 )e(1/2−i t)2

√
8π�( 14 + i t

2 )

L(D1, 1/2 + i t)L(D2, 1/2 + i t)

ζ(1 + 2i t)
h(t)

dt

4π

+ δ�1=�2

∑
d1rτvw= f1

vwn= f2

∑
m

μ(d1)μ(v)χ�1(d1vmτ)√
d1rnτvm

∞∫

−∞
Wt (rnvm)h(t)t tanh(π t)

dt

4π2

+ e(3/8)
∑

d1rτvw= f1

∑
n,c,m

μ(d1)μ(v)χ�1(d1vmτ)√
d1rnτvm

K +
3/2(|�1|(vwn)2, |D2|, c)

c
H†

rnvm

(4πvwn
√|�1D2|
c

)

where Hb(t) = h(t)Wt (b) and H† is given by (7.1).

Remarks:
(1) Specializing f1 = f2 = 1 we obtain Theorem 3.
(2) Recall again that Wt (x) = 0 for t = ±i/2, so that contour shifts in the t-integral
ensure that the c, n-sum is absolutely convergent.
(3) The first term on the right hand side corresponds to the constant function and is
obviously indispensable. In all practical applications, the t-integral in the second term
is of bounded length due to the factor exp((1/2−i t)2), so that by subconvexity bounds
for L(D, 1/2+ i t) this term is dominated by the class number term. The last term can
be analyzed in the same way as a typical off-diagonal term in the Kuznetsov formula
except that it contains an extra n-sum of length ≈ |t | from the approximate functional
equation, cf. (9.17) below. Contrary to its appearance, the diagonal term is symmetric
in f1, f2 (as it should be) and can be written as

δ�1=�2

∞∫

−∞

∫

(2)

�( 12 (
1
2 + s + 2i t))�( 12 (

1
2 + s − 2i t))

�( 14 + i t)�( 14 − i t)π s

es2

s
L(χ�1 , s)

P( f1, f2, s)h(t)t tanh(π t)
ds

2π i

dt

4π2

where

P( f1, f2, s) =
∏

p

p−αp(s+1/2) − p(βp−2)(s+1/2) − χ�1 (p)p2s−1/2(p−αp(s+1/2) − p−βp(s+1/2))

1 − p2s+1

with αp = max(vp( f1), vp( f2)) and βp = min(vp( f1), vp( f2)) for the usual p-adic
valuation vp.
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8 Mean values of L-functions

This section is devoted to the proof of Proposition 4. To begin with, we recall Heath-
Brown’s large sieve in two variations [34, Corollaries 3 & 4]10

Lemma 19 (a) Let N , Q ≥ 1, let S(Q) denote the set of real primitive characters of
conductor up to Q and let (an) be a sequence of complex numbers with |an| ≤ 1. Then

∑
χ∈S(Q)

∣∣∣ ∑
n≤N

anχ(n)

∣∣∣2 � N (Q + N )(QN )ε

for every ε > 0.
(b) Let D, N ≥ 1, (an), (b�) be two sequences of complex numbers with

|am |, |b�| ≤ 1, where b� is supported on the set of fundamental discriminants �.
Then

∑
|�|≤D

∑
n≤N

anb�χ�(n) � (DN )1+ε(D−1/2 + N−1/2).

We start with part (a) of the proposition. As mentioned in the introduction, L(u ×
χ, 1/2) = 0 if u is odd for root number reasons. For even u we use the approximate
functional equation (4.14) and write

L(u × χ�, 1/2) = 1

2π i

∫

(2)

∑
n

λu(n)χ�(n)

n1/2+s
|�|s G(s, tu)ds (8.1)

with

G(s, tu) = 2es2�((1/2 + a + s + i tu)/2)�((1/2 + a + s − i tu)/2)

�((1/2 + a + i tu)/2)�((1/2 + a − i tu)/2)π ss

where a = 1 if � < 0 and a = 0 if � > 0. We can treat positive and negative
discriminants separately, so that we may assume that G(s, tu) is independent of �.
Eventually we would like to apply the Cauchy-Schwarz inequality, the spectral large
sieve inequality and Heath-Brown’s large sieve for quadratic characters. The latter
requires that the n-sum is restricted to odd squarefree integers. Therefore we uniquely
factorise n = 2αn1n2

2 with n1, n2 odd, n1 squarefree and use the Hecke relations to

10 In the original version of [34, Corollary 4], the n-sum is restricted to odd numbers n, but in the case of
fundamental discriminants �, the symbol (�

n ) is also defined for even n, and the proof works in the same
way.
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1360 V. Blomer, A. Corbett

write

∑
n

λu(n)χ�(n)

n1/2+s
=

∑
α

λu(2α)χ�(2α)

2α(1/2+s)

∑
2�n1

μ2(n1)λu(n1)χ�(n1)

n1/2+s
1

∑
(n2,2�)=1

λu(n2
2)

n1+2s
2

∑
2�d

μ(d)χ�(d)

d3/2+3s
.

We use Möbius inversion to detect the condition (n2,�) = 1 and we observe that the
α-sum depends only on � modulo 8. Therefore

∑
|�|≤D

∑
n

λu(n)χ�(n)

n1/2+s
|�|s

=
∑
2�d f

μ(d)μ( f )χ f (d)

d3/2+3s f 1+s

∑
δ∈{0,1,4,5}

P(s; u, δ, f )

∑
|�′|≤D/ f

�′≡ f̄ δ (mod 8)

∑
2�n1

μ2(n1)χ f (n1)λu(n1)(
�′
n1d )

n1/2+s
1

|�′|s

where �′ f is restricted to negative fundamental discriminants and

P(s; u, δ, f ) :=
∑
α

λu(2α)χ(δ, 2α)

2α(1/2+s)

∑
2�n2

λu( f 2n2
2)

n1+2s
2

� f 2θ+ε

uniformly in �s ≥ ε for θ = 7/64 by the Kim-Sarnak bound. In the above formula
we define χ(δ, 2α) := χ�(2α) for any � ≡ δ (mod 8).

We substitute this back into (8.1). Shifting the contour to the far right, we can
truncate the n1-sum at n1 ≤ (DT )1+ε for |tu | ≤ T at the cost of a negligible error.
Having done this, we shift the contour back to �s = ε, truncate the integral at |
s| ≤
(DT )ε, again with a negligible error, so that

∑
tu≤T

∑
|�|≤D

� fund. discr.

α(u)L(u × χ�, 1/2) � (DT )O(ε) sup
N≤(DT )1+ε

�s=ε

∑
2�d f

μ2(d)

d3/2+ε f 1−2θ

×
∑

tu≤T

∣∣∣∣α(u)
∑

N≤n1≤2N
2�n1

μ2(n1)χ f (n1)λu(n1)

n1/2+s
1

∑
|�′|≤D/ f

�′≡ f̄ δ (mod 8)

( �′

n1d

)
|�′|s

∣∣∣∣.

A priori, the right hand side is restricted to even u, but by positivity we can extend it to
all u. Nextwe apply theCauchy-Schwarz inequality. In the second factorwe artificially
insert 1/L(sym2u, 1) at the cost of a factor of T ε (by (4.13)) to convert the Hecke
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eigenvalues into Fourier coefficients and apply the spectral large sieve inequality [21,
Theorem 2]. This leaves us with bounding

(DT )O(ε)
( ∑

tu≤T
|α(u)|2

)1/2 ∑
2�d f

μ2(d)

d3/2+ε f 1−2θ

(T 2 + N

N

∑
N≤n1≤2N

2�n1

μ2(n1)

∣∣∣ ∑
|�′|≤D/ f

�′≡ f̄ δ (mod 8)

( �′

n1d

)
|�′|s

∣∣∣2
)1/2 (8.2)

for N ≤ (DT )1+ε.
For a given odd, squarefree d ∈ N, the n1-sum equals

∑
r1r2=d

∑
N/r1≤n1≤2N/r1

(n1,2r2)=1

μ2(r1n1)

∣∣∣∣
∑

|�′|≤D/ f
�′≡ f̄ δ (mod 8)

(�′,r1)=1

( �′

n1r2

)
|�′|s

∣∣∣∣
2

≤
∑

r1r2=d

∑
n≤2Nr2

2�n

τ(n)μ2(n)

∣∣∣∣
∑

|�′|≤D/ f
�′≡ f̄ δ (mod 8)

(�′,r1)=1

(�′

n

)
|�′|s

∣∣∣∣
2

.

For odd squarefreen �= 1, themap�′ �→ (�′
n ) is a primitive quadratic character of con-

ductor n, so that by Heath-Brown’s large sieve for quadratic characters (Lemma 19a)
this expression is bounded by

� (DT )ε
(

Nd + D
f

)D
f
.

Putting everything together, we complete the proof of Proposition 4(a).
The proof of part (b) is almost identical except that the spectral large sieve is

replaced with the standard bound [44, Theorem 9.1] for Dirichlet polynomials. Here
we use the approximate functional equation

L(χ�, 1/2 + i t)2 = 1

2π i

∫

(2)

( ∑
n

τ(n)χ�(n)

n1/2+i t+s
|�|s G̃(s, t)

+ε(t)
∑

n

τ(n)χ�(n)

n1/2−i t+s
|�|s G̃(s,−t)

)
ds

where |ε(t)| = 1 and

G̃(s, t) = es2�(1/2 + a + s + i t/2)2

�(1/2 + a + i t/2)2π ss

1

( 14 + t2)2

∏
ε1,ε2∈{±1}

(
ε1s −

(1
2

+ ε2i t
))

.
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1362 V. Blomer, A. Corbett

We included the polynomial in order to counteract the pole at s = 1/2−i t of L(χ�, s+
1/2 + i t)2 for � = 1, so that no residual term arises in the approximate functional
equation. The function G̃ has similar analytic properties as G above, and the divisor
function τ satisfies the same Hecke relations as λu . The proof is now almost literally
the same, except that the factor (T 2 +N )/N in (8.2) is (T +N )/N . Thus the proof
of Proposition 4 is concluded.

9 Interlude: special functions and oscillatory integrals

In this rather technical section we compile various sums and integrals over Bessel
functions and other oscillatory integrals that we need as a preparation for the proof
of Theorem 2. To start with, the following lemma is a half-integral weight version of
[42, Lemma 5.8], but with a somewhat different proof.

Lemma 20 Let x > 0 A ≥ 0, K > 1. Let w be a smooth function with support in
[1, 2] satisfying w( j)(x) �ε, j K jε for j ∈ N0. Then there exist smooth functions
w0, w+, w− such that for every j ∈ N0 we have

w0(x) �A K −A,

d j

dx j
w±(x) � j,A

(
1 + K 2

x

)−A 1

x j
(9.1)

and

∑
keven

ikw

(
k

K

)
Jk−3/2(x) =

∑
±

e±i xw±(x) + w0(x). (9.2)

The implied constants in (9.1) depend on the B-th Sobolev norm of w for a suitable
B = B(A, j). The functions w± are explicitly given in (9.3) and (9.5).

Proof We denote the left hand side of (9.2) by W (x). For k ∈ N, by [33, 8.411.13]
we have

Jk−3/2(x) =
1/2∫

−1/2

e(kθ)e(−3θ/2)e−i x sin(2πθ)dθ − (−1)k

π

∞∫

0

e−(k−3/2)θ−x sinh θ dθ.

We put

W1(x) = −
∑
keven

i kw

(
k

K

)
1

π

∞∫

0

e−(k−3/2)θ−x sinh θ dθ,
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W ±
1 (x) = 1

2
e∓i x

∑
k∈Z

(±i)kw

(
k

K

) 1/2∫

−1/2

e(kθ)e(−3θ/2)e−i x sin(2πθ)dθ.

Applying Poisson summation modulo 4, we have

∑
k even

i kw

(
k

K

)
e−kθ = 1

4

∑
κ (mod 4)

κ≡0,2 (mod 4)

iκ
∑
h∈Z

e

(
hκ

4

) ∞∫

−∞
w

( y

K

)
e−yθ e

(
yh

4

)
dy.

The h = 0 term vanishes (as do all even h), and by partial integration the other terms
are bounded by On(K |h|−n(K −(1−ε)n + θn)e−K θ ) for any n ∈ N, so that

W1(x) �n K

∞∫

0

(K −(1−ε)n + θn)e−K θ e−x sinh θ dθ �n K −(1−ε)n .

Again by Poisson summation we have

W +
1 (x) = 1

2
e−i x

1/2∫

−1/2

e(−3θ/2)e−i x sin(2πθ)
∑
h∈Z

∞∫

−∞
e
( y

4

)
w

( y

K

)
e(yθ)e(−hy)dy dθ

= e(3/8)

2
e−i x

3/4∫

−1/4

e(−3θ/2)eix cos(2πθ)
∑
h∈Z

∞∫

−∞
w

( y

K

)
e(yθ)e(−hy)dy dθ.

Since −1/4 < θ ≤ 3/4, we see by partial integration in the y-integral that the
contribution of h �= 0 is OA(K −A). Let v be a smooth function with compact support
in [−2, 2], identically equal to 1 on [−1, 1]. Then for h = 0 we can smoothly truncate
the θ -integral by inserting the function v(θ K 9/10), the error being again OA(K −A)

by partial integration. We obtain W +
1 (x) = W +

2 (x)+ W2(x), where W2(x) �A K −A

and after changing variables

W +
2 (x) = e(3/8)

2
e−i x

∞∫

−∞
v(θ K −1/10)e

(−3θ

2K

)
eix cos(2πθ/K )

∞∫

−∞
w(y)e(yθ)dy dθ.

(9.3)
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1364 V. Blomer, A. Corbett

Then for j ∈ N0 we have

d j

dx j
W +

2 (x)

= e(3/8)

2

∞∫

−∞
w(y)

∞∫

−∞
v(θ K −1/10)eiφ(θ;x,y)(i(cos(2πθ/K ) − 1)) j dθ dy

(9.4)

with φ(θ; x, y) = −3πθ/K + 2πθ y + x(cos(2πθ/K ) − 1) satisfying

d

dθ
φ(θ; x, y) = −3π

K
+ 2π y + 2π

x

K
sin

(
2π

θ

K

)
and

d j

dθ j
φ(θ; x, y) � x

K j
, j ≥ 2.

In the following we frequently use the Taylor expansions sin(t) = t + O(t3) and
cos(t) = 1 − t2/2 + O(t4).

We first extract smoothly the range |θ | ≤ 1
100 K 2/x . Here we observe that the

derivative d
dθ

φ(θ; x, y) cannot be too small (it is important that w is supported on
[1, 2], not on [0, 1]), and we apply [11, Lemma 8.1] with

β − α � K 2

x
, X =

( K

x

)2 j
, U =min(K 1/10, K 2/x), R =1, Y = x, Q = K .

In this way we obtain a contribution of

�n (β − α)X [(Q R/
√

Y )−n + (RU )−n]
� 1

x j

( K 2

x

)1+ j(( K√
x

)−n +
( K 2

x

)−n + K −n/10
)

to (9.4) for every n ≥ 0. This is easily seen to be

� j,A
1

x j

(
1 + K 2

x

)−A

for every A > 0. For the portion |θ | � K 2/x we integrate by parts in the y integral
and apply trivial estimates to obtain a bound

� j,A

∫

|θ |�K 2/x

(1 + θ)−A
( θ

K

)2 j
dθ

which is easily seen to be

� j,A min
(( K 2

x

)−A 1

x j
,

1

K 2 j

)
� 1

x j

(
1 + K 2

x

)−A
.
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The same analysis works for W −
1 (x) = W −

2 (x) + W̃2(x) where

W −
2 (x) = e(−3/8)

2
e+i x

∞∫

−∞
v(θ K −1/10)e

(−3θ

2K

)
e−i x cos(2πθ/K )

∞∫

−∞
w(y)e(yθ)dy dθ.

(9.5)

We put w± = W ±
2 and w0 = W1 + W2 + W̃2, and the lemma follows on noting that

1
2 (i

k + (−i)k) = i kδ2|k . ��
Remarks: (1) It is clear from the proof that if w depends on other parameters in a

real- or complex-analytic way with control on derivatives, then w± = W ±
2 , defined in

(9.3), depends on these parameters in the same way. We will use this observation in
Sects. 10.2 and 14.

(2) The bound (9.1) remains true for A ≥ −1/2. In the case, the claim follows
for x ≥ K 2 from the asymptotic formula [33, 8.451.1 & 7 & 8]. We state this for
completeness, but we do not need it here.

We need a similar formula for the transforms occurring in (3.6) and (7.1).

Lemma 21 Let A, T ≥ 2 and let h be a smooth function with support in [T , 2T ]
satisfying h( j)(t) � T − j for j ∈ N0.

(a) We have

h∗(x) = T 2

√
x

(
1 + T 2

x

)−A ∑
±

e(±x)H±
A (x) + K ±

A (x)

where K ±
A (x) �A (T + x)−A and x j∂

j
x H±

A (x) �A, j 1. An analogous asymptotic
formula holds for h†(x).

(b) We have

h∗∗(x) = T
( x

T
+ T

x

)−A
HA(x) + K̃ A(x)

where K̃ A(x) �A (T + x)−A and x j∂
j
x HA(x) �A, j 1.

Proof (a) For the first part we recall the uniform asymptotic formula [28, 7.13.2(17)].

π i

cosh(π t)
J2i t (x) =

∑
±

e±i x∓iω(x,t)

x1/2
f ±
M (x, t) + OM ((|t | + x)−M )

where ω(x, t) = |t | · arcsinh(|t |/x) − √
t2 + x2 + x and

xi |t | j ∂ i

∂xi

∂ j

∂t j
f ±
M (x, t) �i, j,M 1 (9.6)
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1366 V. Blomer, A. Corbett

for every M ≥ 0. The error term in [28] is O(x M ), but for small x the error term
O(|t |−M ) follows from the power series expansion [33, 8.440]. Partial integration in
the formof [11, Lemma8.1]withU = T ,Y = Q = T +x , R = arcsinh(T /x) � T /x
shows that

x j ∂ j

∂x j

∫

R

e∓iω(x,t) f ±
M (x, t)h(t)t

dt

4π2 � j,A,M T 2
(
1 + T 2

x

)−A

and the claim follows.
(b) For the proof of the second part we distinguish 3 ranges. For x > 10T the claim

follows easily from the rapid decay of the Bessel K -function and its derivatives. For
x < T /10 we use the uniform asymptotic expansion [28, 7.13.2(19)] (along with the
power series expansion [33, 8.485, 8.445] for very small x)

cosh(π t)K2i t (x) =
∑
±

e±iω̃(x,t) f̃ ±
M (x, t) + O(|t |−M ),

ω̃(x, t) = |t | · arccosh |t |
x

−
√

t2 − x2

where f̃ ±
M satisfies the analogous bounds in (9.6). Again integration by parts ( [11,

Lemma 8.1] with U = Y = Q = T , R = arccosh(T /x) ≥ 1) confirms the claim in
this range. Finally, for x � T we use the integral representation [33, 8.432.4]

cosh(π t)K2i t (x) = π

2

∞∫

−∞
cos(x sinh πu)e(tu)du.

This integral is not absolutely convergent, but partial integration shows that the tail is
very small, and we can in fact truncate the integral at |u| ≤ ε log T at the cost of an
admissible error O(T −A). Thus we are left with bounding

d j

dx j

∞∫

−∞

ε log T∫

−ε log T

cos(x sinh πu)e(tu)h(t)t du dt

�
∫

T ≤|t |≤2T

ε log T∫

−ε log T

| sinh(πu)| j (1 + |u|T )−Bt du dt � T .

if B is chosen sufficiently large with respect to j . ��

For large arguments, the Bessel function Jir (y) behaves like an exponential. More
precisely, by [33, 8.451.1 & 7 & 8] we have an asymptotic expansion which we will
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need later:

∑
±

(∓)
Jir (2πx) cos(π/4 ± π ir/2)

sin(π ir)

=
∑
±

e(±x)

2π
√

x

n−1∑
k=0

i k(±1)k

(4πx)k

�(ir + k + 1/2)

k!�(ir − k + 1/2)
+ O

(( |r |2
x

)−n) (9.7)

for r ∈ R, x ≥ 1 and fixed n ∈ N. This is useful as soon as x ≥ r2.
The following lemma is essentially an application of Stirling’s formula.

Lemma 22 Let k ≥ 1, s = σ + i t ∈ C with k + σ ≥ 1/2, M ∈ N. Then

�(k + s)

�(k)
= ks G M,σ (k, t) + Oσ,M ((k + |t |)−M )

where

k
i
2+ j di

dt i

d j

dk j
G M,σ (k, t) �M,σ,i, j

(
1 + t2

k

)−M
(9.8)

for i, j ∈ N0. Moreover,

�(k + σ + i t)

�(k)
= ks exp

(
− t2

2k

)(
1 + Oσ

( |t |
k

+ t4

k3

))
. (9.9)

Proof This is a standard application of Stirling’s formula. First of all, since

�(k + s)

�(k)
k−s = �(k + σ)

�(k)
k−σ �(k + σ + i t)

�(k + σ)
(k + σ)−i t (1 + σ/k)i t

with

d j1

dk j2

d j1

dt j2
(1 + σ/k)i t �σ, j1, j2

1

k j1+ j2

(
1 + |t |

k

) j1
, (1 + σ/k)i t = 1 + Oσ (|t |/k),

(9.10)

it suffices for both statements to treat the two cases s = σ ∈ R fixed and s = i t ∈ iR.
The first case is very simple, so we display the details for the second case. We have

�(k + i t)

�(k)
k−i t = exp

(
α(k, t) + iβ(k, t)

)(
G̃ M (k, t) + OM ((k + |t |)−M )

)

where G̃ M satisfies

(k + |t |) j1+ j2 d j1

dk j1

d j2

dt j2
G̃ M (k, t) �M, j1, j2 1, G̃ M (k, t) = 1 + O((k + |t |)−1)
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1368 V. Blomer, A. Corbett

(9.11)

and

α(k, t) = −t arctan
t

k
+ k − 1/2

2
log

(
1 + t2

k2

)
,

β(k, t) = t
(
log

√
1 + t2

k2
− 1

)
+

(
k − 1

2

)
arctan

t

k
.

It is not hard to see that

α(k, t) ≤ −cmin
( t2

k
, |t |

)

for some absolute constant c (in fact, c = (π − log 4)/4 = 0.438 . . . is the optimal
constant). In particular, �(k + i t)/�(k) is exponentially decreasing as soon as |t | ≥
k1/2. Moreover, by a Taylor argument we have

α(k, t) = − t2

2k
+ O

( t2

k2
+ t4

k3

)
, β(k, t) � |t |

k
+ |t |3

k2
.

This proves (9.9). To prove (9.8), we need to bound the derivatives of α and β which
is most quickly done by using Cauchy’s integral formula. Note that both α and β have
a branch cut at the two rays ±t/k ∈ [i, i∞). We assume that k is sufficiently large
(otherwise there is noting to prove) and we choose a circle C1 about k of radius k/100
and a circle C2 about t of radius

√
k/10. Then w/z is away from the branch cuts for

z ∈ C1, w ∈ C2, and we have

α(z, w) � |w|2
|z| + |w| � |t |2 + k

k
, β(z, w) � |w|

|z| + |w|3
|z|2 � |t |

k
+ |t |3

k2
+ 1

k1/2
.

for z ∈ C1, w ∈ C2. From Cauchy’s integral formula we conclude

di

dt i

d j

dk j
α(k, t) �i, j

(
1 + t2

k

)
k− i

2− j ,

di

dt i

d j

dk j
β(k, t) �i, j

(
1 + t2

k

)2
k− i

2− j (9.12)

for i, j ∈ N0. Combining (9.10), (9.11), (9.12) completes the proof of (9.8). ��
We apply this to the function G(k, tu, s) defined in (6.5).

Corollary 23 Let A ≥ 0, σ ≥ −1/4 and let t ∈ R, tu ∈ R ∪ [−i/2, i/2], k ∈ 2N.
Then

G(k, tu, σ + 1/2 + i t) �A,σ k−1/4+2σ
(
1 + |t |2 + |tu|2

k

)−A

. (9.13)
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Moreover, for v ∈ C we have

G(k, tu, v + 1/2 + i t)G(k, tu, v + 1/2 − i t) = GM (k, tu, t, v) + O�v,�w,M (k−M )

with

k j1+ j2
2 + j3

2
d j1

dk j1

d j2

dt j2

d j3

dτ j3
GM (k, τ, t, v, w)

�j,�v,�w,M k−1/2+2�v+2�w(1 + |
v|) j1

(9.14)

for j ∈ N
3
0. Finally, for t, τ � k2/3 we have

G(k, τ, 1/2 + i t)G(k, τ, 1/2 − i t)

= 16

πk1/2
exp

(
− 2(t + τ/2)2 + 2(t − τ/2)2

k

)(
1 + O(k−1/3)

)
. (9.15)

Recalling the definition (6.7) of Vt (x; k, tu) we conclude from (9.13) and appro-
priate contour shifts the uniform bounds

k j1+ j2
2 + j3

2 x j4 d j1

dk j1

d j2

dt j2

d j3

dτ j3

d j4

dx j4
Vt (x; k, τ )

�A,j k−1/2
(
1 + x

k4

)−A(
1 + |t |2 + |τ |2

k

)−A
(9.16)

for A > 0, j ∈ N
4
0.

In a similar, but simpler fashionwe also apply this to the weight function Wt defined
in (4.15) and state the bound

(1 + |t |) j1x j2 d j1

dt j1

d j2

dx j2
Wt (x) �A, j1, j2

(
1 + x

1 + |t |
)−A

(9.17)

for A ≥ 0, j1, j2 ∈ N0.

10 Aweak version of Theorem 2

In this section we present a relatively soft argument that provides the upper bound
Nav(K ) � K ε. This will useful later in order to estimate certain error terms. By (1.3)
and (6.8) we have

Nav(K ) � 1

K 2

∑
k∈2N

W
( k

K

) ∑
h∈B+

k−1/2(4)

∞∫

−∞

∫

� ev

�(k − 3/2)

(4π)k‖h‖2
∑
f1, f2

1

f1 f2

∑
D1,D2<0

ch(|D1|)ch(|D2|)P(D1;u)P(D2;u)

|D1D2|k/2

( |D2| f 22
|D1| f 21

)i t
Vt (|D1D2|( f1 f2)

2; k, tu)du dt .
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By (9.16) we have t, tu � K 1/2+ε (up to a negligible error). We insert a smooth
partition of unity into the tu-integral and attach a factor w(|tu|/Tspec) where w has
support in [1, 2] unless Tspec = 1, in which case w has support in [0, 2]. Let

Nav(K ; Tspec) := 1

K 2

∑
k∈2N

W
( k

K

) ∑
h∈B+

k−1/2(4)

∞∫

−∞

∫

� ev

�(k − 3/2)

(4π)k‖h‖2 w
( |tu|
Tspec

) ∑
f1, f2

1

f1 f2

∑
D1,D2<0

ch(|D1|)ch(|D2|)P(D1;u)P(D2;u)

|D1D2|k/2

( |D2| f 22
|D1| f 21

)i t
Vt (|D1D2|( f1 f2)

2; k, tu)du dt .

for ν = 0, 1, 2, . . . and Tspec = 2ν � K 1/2+ε. This section is then devoted to the
proof of the bound

Nav(K ; Tspec) �ε 1 + T 2
spec

K 1−ε
(10.1)

for ε > 0. The constant function will need special treatment, and to this end we prove
the following simple lemma.

Lemma 24 For x ≥ 1 we have

∑
D≤x

H(D)2 � x2.

Proof Let h(D) denote the usual class number. Since

H(D) ≤
∑
n2|D

h(D/n2)

we have

∑
|D|≤x

H(D)2 ≤
∑
n1,n2

∑
[n21,n22]||D|<x

h

(
D

n2
1

)
h

(
D

n2
2

)
≤

∑
n1,n2,m

∑
|D|≤ x

n21n22m2

h(n2
2D)h(n2

1D).

Since h(�n2) = h(�)n
∏

p|n(1 − χ�(p)/p) ≤ h(δ)nτ(n) for a fundamental dis-
criminant �, we get from bounds for moments of the ordinary class number [3] that

∑
|D|≤x

H(D)2 ≤
∑

n1,n2,m, f

∑
|�|≤x/(n1n2m f )2

h(�)2n1n2 f 2τ(n1)τ (n2)τ ( f )2

� x2
∑

n1,n2,m, f

n1n2 f 2τ(n1)τ (n2)τ ( f )2

(n1n2m f )4
� x2.

��
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Having this out of the way, we proceed to estimateNav(K ; Tspec). We first sum over
h using Lemma 6. This yields a diagonal term and an off-diagonal term that we treat
separately in the following two subsections. Throughout, the letter D, with or without
subscripts, shall always denote a negative discriminant unless stated otherwise. The
letter A shall denote an arbitrarily large fixed constant, not necessarily the same on
every occurrence.

10.1 The diagonal term

The contribution toNav(K ; Tspec) of the diagonal term from Lemma 6 is bounded by

� 1

K

∞∫

−∞

∫

� ev

w
( |tu|
Tspec

) ∑
f1, f2

1

f1 f2

∑
D

|P(D;u)|2
|D|3/2 sup

k�K
|Vt ((|D| f1 f2)

2; k, tu)|du dt .

This can be bounded without too much effort by Corollary 5 for the cuspidal part,
Proposition 4b) for the Eisenstein part and Lemma 24 for the constant function.

Indeed, for the constant function u = √
3/π we have P(D;√

3/π) � H(D).
Recalling (9.16) and Lemma 24, this gives a total contribution of

� 1

K

∞∫

−∞

∑
f1, f2

1

f1 f2

∑
D

H(D)2

|D|3/2
(
1 + |D| f1 f2

K 2

)−10(
1 + |t |2

K

)−10
dt

�
∑
f1, f2

1

( f1 f2)3/2
� 1

if Tspec = 1 and otherwise the contribution vanishes.
Similarly, by (4.12), (3.3), (4.7) and (4.13), the Eisenstein spectrum contributes

� max
1≤R≤K 2+ε

1

RK 1−ε

∫

|τ |�Tspec

|ζ(1/2 + iτ)|2
∑

R≤|�|≤2R

|L(χ�, 1/2 + iτ)|2dτ.

We recall our convention that � denotes a negative fundamental discriminant, D =
� f 2 an arbitrary negative discriminant (where f here has nothing to do with f1, f2
above). In the above bound we have already executed the sum over f . By Proposi-
tion 4(b) and a standard bound for the fourth moment of the Riemann zeta-function
this is O(K −1/2+ε).

By (4.10), (4.5), (4.6) and (4.13), the contribution of the cuspidal spectrum is at
most

� max
1≤R≤K 2+ε

1

RK 1−ε

∑
tu�Tspec

L(u, 1/2)
∑

R≤|�|≤2R

L(u × χ�, 1/2) � T 2
specK ε−1.

by Corollary 5. All of these bounds are consistent with (10.1).
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10.2 The off-diagonal term: generalities

We now consider the off-diagonal term in Lemma 6 from the sum over h. Here we
need to bound

1

K 2

∑
k∈2N

W

(
k

K

)
i k

∞∫

−∞

∫

� ev

w
( |tu|
Tspec

) ∑
f1, f2

∑
D1,D2

P(D1;u)P(D2;u)

f1 f2|D1D2|3/4
( |D2| f 22

|D1| f 21

)i t

Vt (|D1D2|( f1 f2)
2, k, tu)

∑
4|c

K +
3/2(|D1|, |D2|, c)

c
Jk−3/2

(4π√|D1D2|
c

)
du dt .

By (9.16) and the rapid decay of the Bessel function near 0 for large k, up to a
negligible error all sums are effectively bounded by a power of K . We first sum over
k using Lemma 20. Up to a negligible error, we obtain

1

K 2

∞∫

−∞

∫

� ev

w
( |tu|
Tspec

) ∑
f1, f2

∑
D1,D2

P(D1;u)P(D2;u)

f1 f2|D1D2|3/4
( |D2| f 22

|D1| f 21

)i t

∑
4|c

K +
3/2(|D1|, |D2|, c)

c
e
(
± 2

√|D1D2|
c

)
Ṽ

(
|D1D2|( f1 f2)

2,

√|D1D2|
c

, t, tu
)

du dt

where

y j1 K
1
2 ( j2+ j3)x j4 d j1

dy j1

d j2

dt j2

d j3

dτ j3

d j4

dx j4
Ṽ (x, y, t, τ )

�A,j K −1/2
(
1 + x

K 4

)−A(
1 + |t |2 + |τ |2

K

)−A(
1 + K 2

y

)−A
(10.2)

for any A ≥ 0, j ∈ N
4
0, cf. (9.16) and the remark after Lemma 20. In order to apply

Voronoi summation, we open the Kloosterman sum and are left with bounding

1

K 2

∑
4|c

max
d (mod c)
(d,c)=1

∣∣∣
∫

� ev

w
( |tu|
Tspec

) ∑
f1, f2

∑
D1,D2

P(D1;u)P(D2;u)

f1 f2|D1D2|3/4

e
(

± 2
√|D1D2|

c

)
e
( |D1|d + |D2|d̄

c

)
V ∗(|D1| f 21 , |D2| f 22 ,

√|D1D2|
c

, t, tu
)

du
∣∣∣

(10.3)

where

V ∗(x1, x2, y, τ ) =
∞∫

−∞

( x2
x1

)i t
Ṽ (x1x2, y, t, τ )dt . (10.4)
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Integration by parts shows that

y j1 K
1
2 j2x j3

1 x j4
2

d j1

dy j1

d j2

dτ j2

d j3

dx j3
1

d j4

dx j4
2

V ∗(x1, x2, y, τ )

�A,j

(
1 + x1x2

K 4

)−A(
1 + |τ |2

K

)−A(
1 + K 2

y

)−A(
1 + K 1/2| log x2/x1|

)−A

(10.5)

for any A ≥ 0, j ∈ N
4
0. The first and third factor on the right hand side of (10.5)

imply |D1D2| = K 4+o(1) and c, f1, f2 = K o(1) up to a negligible error. On the
other hand, the last factor implies D1 f 21 = D2 f 22 (1 + O(1/K 1/2)), so that in effect
D1, D2 = K 2+o(1).

In the following we treat the cuspidal part, the Eisenstein part and the constant
function separately. In principle we could treat them on equal footing and we will do
this in Sect. 14, but for now we keep the prerequisites as simple as possible.

10.3 The Eisenstein contribution

We start with the contribution of the Eisenstein spectrum to (10.3). As this is much
smaller in size than the cuspidal spectrum, very simple bounds suffice. By (4.11),
(4.13) and (10.5) we obtain a contribution of

K ε

K 4

2Tspec∫

−2Tspec

∑
D1 f 21 =D2 f 22 (1+O(K ε−1/2))

|D1|,|D2|=K 2+o(1)

f1, f2�K ε

|ζ(1/2 + i t)|2|L(D1, 1/2 + i t)L(D2, 1/2 + i t)|dt .

We use the basic inequality |L(D1, 1/2 + i t)L(D2, 1/2 + i t)| ≤ 1
2 (|L(D1, 1/2 +

i t)|2 + |L(D2, 1/2 + i t)|2). For fixed f1, f2, D1 there are O(K 3/2+ε) values of D2
satisfying the summation condition. Thus we obtain the bound

K ε

K 5/2

2Tspec∫

−2Tspec

∑
|D|=K 2+o(1)

|ζ(1/2 + i t)|2|L(D, 1/2 + i t)|2dt .

By (4.1) andProposition 4(b) alongwith a bound for the fourthmoment of theRiemann
zeta function we obtain the desired bound

K ε

K 5/2

2Tspec∫

−2Tspec

∑
|�|≤K 2+ε

|ζ(1/2 + i t)|2|L(�, 1/2 + i t)|2dt � Tspec
K 1/2−ε

.
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10.4 The cuspidal contribution

Next we consider the cuspidal contribution to (10.3). The key step is an application
of the metaplectic Voronoi formula (Lemma 10). With this in mind, we consider the
following portion

P(D2; u)

|D2|3/4
∑
D1

P(D1; u)

|D1|3/4 e
( |D1|d

c

)
e
(

± 2
√|D1D2|

c

)

V ∗(|D1| f 21 , |D2| f 22 ,

√|D1D2|
c

, tu
)

(10.6)

of (10.3), i.e. we freeze c, f1, f2 and u for the moment. For notational simplicity we
consider only the plus case, the minus case may be treated similarly. We insert (4.8)
with t = tu/2 and re-write (10.6) as

3

π
b(D2)

∣∣∣�
(1
4

+ i tu
2

)∣∣∣2L(u, 1/2)
∑
D1

b(D1)e
(

− D1d

c

)
e
(2√|D1D2|

c

)

V ∗(|D1| f 21 , |D2| f 22 ,

√|D1D2|
c

, tu
)
.

To the D1-sum we apply the Voronoi formula (Lemma 10) with weight function

φ(x) = φc, f1, f2(x; t, tu, D2)

= 1

|x |1/2 e
(2√|x D2|

c

)
V ∗(|x | f 21 , |D2| f 22 ,

√|x D2|
c

, tu
)

(10.7)

for x < 0 and φ(x) = 0 for x > 0. We recall that c, f1, f2 � K ε are essentially fixed
from the decay conditions of V ∗, but we need to be uniform in |D2| = K 2+o(1). We
define

�(±y) = �c, f1, f2(±y; t, tu, D2) =
∞∫

0

J ±,−(xy)φ(−x)dx

as in (5.2) with r = tu/2 and obtain that (10.6) is equal to

3

π
b(D2)

∣∣∣�
(1
4

+ i tu
2

)∣∣∣2L(u, 1/2)
2π

c

( −c

−d

)
ε−de

(
1

8

)

∑
D

b(D)
√|D|e

(
d̄ D

c

)
�

(
(2π)2D

c2

)
,

(10.8)
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where only in the above sum do we allow D to be either positive or negative. If D > 0,
then the integral transform �((2π)2D/c2) contains a factor

Kitu (4π
√|x D|/c)

�(3/4 + i tu/2)�(3/4 − i tu/2)
, (10.9)

and we recall that |x | = K 2+o(1), c � K ε up to a negligible error. Thus the argument
of the Bessel function is � K 2−ε, while the index is � K 1/2+ε. By the rapid decay
of the Bessel K -function this contribution is easily seen to be negligible (we use (4.9)
and bound b(D) trivially), and we may restrict from now on to D < 0. In this case

�

(
(2π)2D

c2

)
=

∞∫

0

∑
±

(∓)
cos(π/4 ± π i tu/2)

sin(π i tu)
J±i tu

(4π√|Dx |
c

)
e
(2√|x D2|

c

)

V ∗(x f 21 , |D2| f 22 ,

√|x D2|
c

, tu
) dx

x1/2
.

Using (9.7), up to a negligible error we can write

�

(
(2π)2D

c2

)
= c1/2

|D|1/4
∑
±

∞∫

0

e
(2√x(

√|D2| ± √|D|)
c

)

f ±(2√|Dx |
c

, tu
)

V ∗(x f 21 , |D2| f 22 ,

√|x D2|
c

, tu
) dx

x3/4

with

x j ∂ j

∂x j
f ±(x, r) � j 1 (10.10)

for any j ∈ N0. We substitute this back into (10.8) which equals (10.6). We substitute
this back into (10.3). In this way we see that the cuspidal contribution to (10.3) is at
most

1

K 2

∑
4|c

1

c1/2
∑

u even

w
( |tu|
Tspec

) ∑
f1, f2

1

f1 f2

∑
D,D2

|b(D2)|
∣∣∣�

(1
4

+ i tu
2

)∣∣∣2L(u, 1/2)|b(D)||D|1/4|�c, f1, f2(D, D2, tu)|
(10.11)
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with

�c, f1, f2(D, D2, tu) =
∞∫

0

e
(2√x(

√|D2| ± √|D|)
c

)
f ±(2√|Dx |

c
, tu

)

V ∗(x f 21 , |D2| f 22 ,

√|x D2|
c

, tu
) dx

x3/4

= 2

∞∫

0

e
(2x(

√|D2| ± √|D|)
c

)
f ±(2√|Dx2|

c
, tu

)

V ∗(x2 f 21 , |D2| f 22 ,

√|x2D2|
c

, tu
) dx

x1/2
.

By (10.5) and (10.10), each integration by parts with respect to x introduces an addi-
tional factor

cK 1/2

x(
√|D2| ± √|D|) , (10.12)

and we conclude that

�c, f1, f2(D, D2, tu) �A

(
1 + |tu|2

K

)−A
∞∫

0

(
1 + x(

√|D2| ± √|D|)
cK 1/2

)−A

(
1 + K 1/2 log

f 22 |D2|
f 21 x2

)−A(
1 + |D2|(x f1 f2)2

K 4

)−A

(
1 + K 2c

x |D2|1/2
)−A dx

x1/2

(10.13)

for every A ≥ 0. Here only the negative part in the ± sign is relevant, since otherwise
the expression is trivially negligible. The limiting factor for the size of the x-integral
is the first factor in the second line of (10.13), so that we obtain

�c, f1, f2(D, D2, tu)

�A
f 1/22 |D2|1/4
f 1/21 K 1/2

(
1 + |tu|2

K

)−A(
1 + f2|D2|1/2(√|D2| − √|D|)

f1cK 1/2

)−A

(
1 + |D2| f 22

K 2

)−A(
1 + K 2 f1c

|D2| f2

)−A

for every A ≥ 0. It is not hard to see that this can be simplified as

�c, f1, f2(D, D2, tu)

�A (1 + f1 f2c)−A
(
1 + |tu|2

K

)−A(
1 + |D2|

K 2

)−A(
1 + |D2| − |D|

K 1/2

)−A
.
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With this bound we return to (10.11), apply the simple bound |b(D)b(D2)| ≤
|b(D)|2 + |b(D2)|2 together with (4.9), getting an upper bound of the shape

1

K 2

∑
4|c

1

c1/2
∑

u even

w
( |tu|
Tspec

) ∑
f1, f2

∑
D,D2

|D|1/4
f1 f2|D2|

L(u, 1/2)L(u, D2, 1/2)

L(sym2u, 1)
|�c, f1, f2(D, D2, tu)|

plus a similar expression that with L(u, D, 1/2)/|D| in place of L(u, D2, 1/2)/|D2|
which can be treated in the same way. We sum over D, f1, f2, c and end up with (after
changing the value of A)

1

K 3

∑
u even

w
( |tu|
Tspec

)(
1 + |tu|2

K

)−A ∑
D2

(
1 + |D2|

K 2

)−A L(u, 1/2)L(u, D2, 1/2)

L(sym2u, 1)
.

Wewrite D2 = � f 2 with a fundamental discriminant� and use (4.5), (4.6). Summing
over f , we obtain

1

K 3

∑
u even

w
( |tu|
Tspec

)(
1 + |tu|2

K

)−A ∑
�

K 4/3

|�|2/3
(
1 + |�|

K 2

)−A L(u, 1/2)L(u,�, 1/2)

L(sym2u, 1)
.

We estimate the denominator L(sym2u, 1) by (4.13) and apply Corollary 5 to finally
obtain the upper bound T 2

specK ε−1 in agreement with (10.1).

10.5 The constant function

This is very similar to the preceding subsection, so we can be brief. In short, we win
a factor Tspec � K 1+ε from the fact that the spectrum is reduced to one element, and
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we lose a factor |D|1/2 � K 1+ε since each class number is a factor |D|1/4 bigger
than the generic period P(D; u). The key point is that we end up with a pure bound
without a K ε-power. This K ε-power is unavoidable when we apply Corollary 5, but
for a sum over class numbers H(D) alone we can apply Lemma 24 below which
avoids a K ε-power. The analogue of (10.6) is

3

π

H(D2)

|D2|3/4
∑
D1

H(D1)

|D1|3/4
e
( |D1|d

c

)
e
(

± 2
√|D1D2|

c

)
V ∗(

|D1| f 21 , |D2| f 22 ,

√|D1D2|
c

, tu
)
.

We apply the Voronoi formula (Lemma 12) to the D1-sum as before. Due to the
oscillatory behaviour of φ in (10.7) the main terms are easily seen to be negligible,
and as in the previous argument also one of the osciallatory terms is negligible due to
the exponential decay ofJ − in (5.5). The behaviour ofJ + similar, but much simpler,
as no asymptotic formula of a Bessel function is necessary. The analogue of (10.11)
then becomes

1

K 2

∑
4|c

1

c1/2
∑
f1, f2

∑
D,D2

H(D2)H(D)|D|1/4
|DD2|3/4 f1 f2

|�c, f1, f2(D, D2, tu)|.

In the same way as above this leads to

1

K 3

∑
D

(
1 + D

K 2

)−A H(D)2

|D|1/2 � 1. (10.14)

The last step is justified by Lemma 24. The bound (10.14) is in agreement with, and
completes the proof of, (10.1).

We conclude this section with a brief discussion. The bound (10.1) along with
Tspec � K 1/2+ε (from the decay of Vt ) implies immediately the upper bound
Nav(K ) � K ε. The ε-power is unavoidable at this point because of the use of Heath-
Brown’s large sieve in the proof of Proposition 4. Except for the spectral large sieve
implicit in proof of Proposition 4, we have not touched the spectral u-sum, so any fur-
ther improvement must involve a treatment of this sum. This is precisely the purpose of
the relative trace formula for Heegner periods given in Theorem 3 resp. Theorem 18.
The weaker result (10.1) is nevertheless useful: it allows us to discard small eigenval-
ues tu � K 1/2−ε, most importantly the constant function, and it allows us to estimate
efficiently some error terms later. The following sections are devoted to the proof of
Theorem 2.
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11 Proof of Theorem 2: the preliminary argument

By (1.3) and (6.8) we have

Nav(K ) = 12

ωK 2

∑
k∈2N

W

(
k

K

) ∑
h∈B+

k−1/2(4)

π2

90
· 9√π · 2

∑
(n,m)=1

λ(n)μ(n)μ2(m)

n3/2m3

∞∫

−∞

∫

� ev

�(k − 3/2)

(4π)k−3/2‖h‖2

∑
f1, f2,D1,D2

c(|D1|)c(|D2|)P(D1;u)P(D2;u)

f1 f2|D1D2|k/2

( |D2| f 22
|D1| f 21

)i t

Vt (|D1D2|( f1 f2)
2; k, tu)du dt .

Throughout we agree on the convention that D (with or without indices) denotes a
negative discriminant and � denotes a negative fundamental discriminant. We make
two immediate manipulations. Fix some 0 < η < 1/100 such that 106/η ∈ 2Z. By
the concluding remark of the preceding section we can insert the function

ω(tu) = 1 − e−(tu/K 1/2−η)10
6/η

(11.1)

(not to be confused with the constant ω in the previous display) into the u-integral,
and we can truncate the n, m-sum at

n, m � K η.

Both transformations induce an admissible error, the former due to that ω(tu)−1 �A

K −A for every A > 0 and tu � K
1
2− η

2 . Note that ω is even, holomorphic, within
[0, 1] for tu ∈ R ∪ {i/2,−i/2} and satisfies

ω(tu) � K −106, |tu| ≤ K
1
2−2η,

|tu| j d j

dt j
u

ω(tu) � j 1
(11.2)

for j ∈ N0. In particular, up to a negligible error we may ignore the constant function
u = √

3/π with tu = i/2. As before we denote by
∫ ∗
�ev

a spectral sum/integral over
the non-residual spectrum, i.e. everything except the constant function.

Note that λ(n) depends on h, as it is a Hecke eigenvalue of fh . Before we can
sum over h using Lemma 6, we must first combine λ(n) with c(|D2|). To this end we
recall (2.4) and recast Nav(K ), up to a small error coming from the truncation of the
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n, m-sum and the u-integral, as

12

ωK 2

∑
k∈2N

W

(
k

K

) ∑
h∈B+

k−1/2(4)

π2

90
· 9√π · 2

∑
(n,m)=1
n,m≤K η

μ(n)μ2(m)

n3/2m3

∞∫

−∞

∗∫

� ev

ω(tu)
�(k − 3/2)

(4π)k−3/2‖h‖2
∑

f1, f2,D1,D2

∑
d1|d2|n

(d1d2)2|n2D2

(
d1
d2

)1/2

χD2

(d2
d1

)

(
n

d1d2

)3/2−k c(|D1|)c(|D2|n2/(d1d2)2)P(D1;u)P(D2;u)

f1 f2|D1D2|k/2

( |D2| f 22
|D1| f 21

)i t

Vt (|D1D2|( f1 f2)
2; k, tu)du dt .

(11.3)

We can now sum over h using Lemma 6, and we start with an analysis of the diagonal
term which is given by

N diag(K ) = 12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3

∑
(n,m)=1
n,m≤K η

μ(n)μ2(m)

n3/2m3

∞∫

−∞

∗∫

� ev

ω(tu)
∑

f1, f2,D

∑
d1|d2|n

(d1d2)2|n2D

(
d1
d2

)1/2

χD

(d2
d1

) P(Dn2/(d1d2)2;u)P(D;u)

f1 f2(|D|n/(d1d2))3/2

(d1d2 f2
n f1

)2i t
Vt

(( |D|n f1 f2
d1d2

)2;
k, tu

)
du dt .

While the upper bound K ε for the diagonal term is fairly easy to obtain, cf. Sect. 10.1,
the asymptotic analysis of N diag(K ) is extremely involved and occupies this and the
following two sections. We will eventually show that N diag(K ) = 4 log K + O(1).
The discussion of the off-diagonal term is postponed to Sect. 14.

We write d2 = d1δ, n = d1δν, so that d2
1 | ν2D. Since n is squarefree, this implies

d2
1 | D.Wewrite d1 = d and Dd2 in place of D.With this notationwe recastN diag(K )

as
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12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3

∑
(dδν,m)=1
dδν,m≤K η

μ(dδν)μ2(m)

(dδν)3/2m3

∞∫

−∞

∗∫

� ev

ω(tu)
∑

f1, f2,D

χD(δ)

δ1/2

P(Dν2;u)P(Dd2;u)

f1 f2(d|D|ν)3/2

( d f2
ν f1

)2i t

Vt ((|D|νd f1 f2)
2; k, tu)du dt .

From the Katok-Sarnak formula in combination with (3.10) in the cuspidal case and
from (4.11) in combination with (4.2) in the Eisenstein case we conclude11

P(� f 2,u) = P(�,u)αu( f ), αu( f ) = f 1/2
∑
d| f

μ(d)χ�(d)λu( f /d)d−1/2

for a fundamental discriminant�where αu( f ) depends also on�, which we suppress
from the notation. Using this notation along with (4.10) in the cuspidal case and (4.12)
in the Eisenstein case we obtain

N diag(K ) = 12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3
· 1
4

∑
(dδν,m)=1
dδν,m≤K η

μ(dδν)μ2(m)

(dδν)3/2m3

∞∫

−∞

∗∫

� ev

ω(tu)

∑
f1, f2

∑
D=� f 2

(δ, f )=1

χ�(δ)αu( f ν)αu( f d)

δ1/2 f1 f2(d f 2ν)3/2|�|
L(u, 1/2)L(u,�, 1/2)

L(u)

( d f2
ν f1

)2i t

Vt ((|D|νd f1 f2)
2; k, tu)du dt

where L(u) = L(sym2u, 1) if u is cuspidal and L(u) = 1
2 |ζ(1 + 2i t)|2 if u =

E(., 1/2 + i t) is Eisenstein (with the obvious interpretation in the case t = 0). With
later transformations in mind, we also restrict the f -sum to f ≤ K η. By trivial
estimates along with Corollary 5 and (9.16), this induces an error of O(K ε−η). By the
usual Hecke relations we have

αu( f ν)αu( f d)

= f (dν)1/2
∑

d1| f d
d2| f ν

∑
d3|( f d

d1
,

f ν
d2

)

μ(d1)χ�(d1)μ(d2)χ�(d2)√
d1d2

λu( f 2dν/(d1d2d2
3 )).

11 This remains true in the excluded case u = const if we define λu = ρ1.
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We summarize the previous discussion as

N diag(K )

= 12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3
· 1
4

∑
(dδν,m)=1
dδν,m≤K η

μ(dδν)μ2(m)

(dδν)3/2m3

∞∫

−∞

∑
f1, f2,�

∑
f ≤K η

(δ, f )=1

χ�(δ)

δ1/2 f1 f2d f 2ν|�|
( d f2
ν f1

)2i t

∑
d1| f d
d2| f ν

∑
d3|( f d

d1
,

f ν
d2

)

μ(d1)χ�(d1)μ(d2)χ�(d2)√
d1d2

I
(
�, t, k,

f 2dν

d1d2d2
3

)
dt + O(K ε−η)

(11.4)

where

I(�, t, k, r) =
∗∫

� ev

L(u, 1/2)L(u,�, 1/2)

L(u)
λu(r)h(tu)du

with

h(τ ) = ω(τ)Vt ((|�| f 2νd f1 f2)
2; k, τ ). (11.5)

The expression I depends also on f 2νd f1 f2, but we suppress this from the notation.
We insert the approximate functional equations (4.14) and (4.16) getting

I(�, t, k, r) = 4

∗∫

� ev

∑
n,m

λu(n)λu(m)χ�(m)λu(r)

(nm)1/2
W +

tu (n)W −
tu

( m

|�|
) 1

L(u)
h(tu)du

−
∞∫

−∞

∑
±

ζ(1 ± 2iτ)�( 12 ± iτ)π∓iτ e(1/2±iτ)2

( 12 ± iτ)�( 14 + iτ
2 )�( 14 − iτ

2 )

|L(χ�, 1/2 + iτ)|2
|ζ(1 + 2iτ)|2 ρ1/2+iτ (r)h(τ )

dτ

2π
.

Since the τ -integral is rapidly converging, it is easy to see that the polar termcontributes
at most O(K ε−1) to (11.4), so from now on we focus on the first term of the preceding
display. By the Hecke relations we can recast it as

4
∑
d|r

∗∫

� ev

∑
n,m

λu(nr/d)λu(m)χ�(m)

(dnm)1/2
W +

tu (dn)W −
tu

( m

|�|
) 1

L(u)
h(tu)du. (11.6)
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This is now in shape to apply the Kuznetsov formula for the even spectrum, Lemma 7.
We treat the three terms on the right hand side of (3.5) separately and start with the
diagonal term to which the next section is devoted. The two off-diagonal terms are
treated in Sect. 13. (In the simpler analysis of Sect. 10.1 the Kuznetsov formula is
hidden in the spectral large sieve in the proof of Proposition 4. The precise asymptotic
analysis requires us to deal with the two off-diagonal terms in Lemma 7 explicitly.)

12 The diagonal diagonal term

The diagonal contribution to (11.6) equals

Idiag(�, t, k, r) = 4
∑
d|r

∑
n

χ�(nr/d)

nr1/2

∞∫

−∞
W +

τ (dn)W −
τ

(nr/d

|�|
)
τ tanh(πτ)h(τ )

dτ

4π2 .

Opening up the Mellin transform in the definition (4.15), this equals

1√
r

∞∫

−∞
h(τ )

∫

(2)

∫

(2)

∏
±

(�( 12 (
1
2 + s1 ± iτ))�( 12 (

3
2 + s2 ± iτ))

�( 12 (
1
2 ± iτ))�( 12 (

3
2 ± iτ))

)
|�|s2

L(χ�, 1 + s1 + s2)
∑

r1r2=r

χ�(r2)

rs1
1 rs2

2

es22+s21

π s1+s2s1s2

ds1 ds2
(2π i)2

τ tanh(πτ)
dτ

π2 .

We shift the s1, s2-contours to �s1 = �s2 = −1/4 getting

Idiag(�, t, k, r) = 1√
r

L(χ�, 1)
∑

r1r2=r

χ�(r2)

∞∫

−∞
h(τ )τ tanh(πτ)

dτ

π2

+O

( ∞∫

−∞
|h(τ )||τ |3/4dτ

∞∫

−∞
eξ2

( |L(χ�, 1/2+iξ)|
|�|1/4 +|L(χ�, 3/4+iξ)|

)
dξ

)
.

(12.1)

We first deal with the error term and substitute it back into (11.4). Roughly speaking
the factor |τ |3/4 saves a factor K 1/8 from the trivial bound, while on average over
� the L-values on the lines 1/2 and 3/4 are still bounded. More precisely, recalling
(9.16) the error term gives a total contribution of at most

1

K 3/2

∞∫

−∞

∞∫

−∞

∞∫

−∞

∑
�

( |L(χ�, 1/2 + iξ)|
|�|5/4 + |L(χ�, 3/4 + iξ)|

|�|
)

(
1 + |t |2 + |τ |2

K

)−10
eξ2dξ |τ |3/4dτ dt .
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1384 V. Blomer, A. Corbett

By a standard mean value bound for the �-sum (e.g. [34, Theorem 2]), the previous
display can be bounded by � K −1/8+ε. We substitute the main term in (12.1) into
(11.4) getting

N diag,diag(K ) := 12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3
· 1
4

∑
(dδν,m)=1dδν,m≤K η

μ(dδν)μ2(m)

(dδν)3/2m3

∑
f1, f2,�

∑
f ≤K η

(δ, f )=1

L(χ�, 1)

∞∫

−∞

∑
d1| f d
d2| f ν

∑
d3|( f d

d1
,

f ν
d2

)

∑
r1r2= f 2dν

d1d2d23

χ�(δ)μ(d1)χ�(d1)μ(d2)χ�(d2)d3χ�(r2)

δ1/2 f1 f2(d f 2ν)3/2|�|( f1ν/( f2d))±2i t

∞∫

−∞
h(τ )τ tanh(πτ)

dτ

π2 dt

where we recall that h(τ ) is given by (11.5) and depends in particular on t , k and �

(as well as on f , f1, f2, d, ν). A trivial estimate at this point using (9.16) shows

N diag,diag(K ) � 1

K 2

∑
k∈2N

W

(
k

K

) ∑
f1, f2,�

L(χ�, 1)

|�| f1 f2

∞∫

−∞

∞∫

−∞

1

k1/2

(
1 + |�|( f1 f2)2

k4

)−A(
1 + |t |2 + |τ |2

k

)−A|τ |dτ dt

� log K ,

(12.2)

(by standard mean value results for L(χ�, 1)), but eventually we want an asymptotic
formula, not an upper bound.

Our next goal is to show that the t-integral forces f1ν = f2d, up to a negligible
error. To make this precise, we first observe that by the same computation as in (12.2)
the portion |t | ≤ K 2/5 contributes at most O(K −1/10+ε) to N diag,diag(K ). We can
therefore insert a smooth weight function that vanishes on |t | ≤ 1

2 K 2/5 and is one on
|t | ≥ K 2/5. Integrating by parts sufficiently often using (9.16), we can then restrict to

f1ν = f2d(1 + O(K ε−2/5))

up to a negligible error. It is then easy to see that the terms f1d �= f2ν contribute
O(K ε−2/5) to N diag,diag(K ). Having excluded these, we re-insert the portion |t | ≤
K 2/5 to the t-integral, again at the cost of an error O(K ε−1/10). Finally we complete
the d, δ, ν, m, f -sum at the cost of an error O(K ε−η). Since (ν, d) = 1, the equation
f1d = f2ν implies f2 = dg, f1 = νg for some g ∈ N. Substituting all this, we recast
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N diag,diag(K ) as

12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3
· 1
4

∑
(dδν,m)=1

μ(dδν)μ2(m)

(dδν)3/2m3

∑
g, f ,�

(δ, f )=1

L(χ�, 1)

∞∫

−∞

∑
d1| f d
d2| f ν

∑
d3|( f d

d1
,

f ν
d2

)

∑
r1r2= f 2dν

d1d2d23

χ�(δ)μ(d1)χ�(d1)μ(d2)χ�(d2)d3χ�(r2)

δ1/2g2dν(d f 2ν)3/2|�|

∞∫

−∞
h(τ )τ tanh(πτ)

dτ

π2 dt

up to an error of O(K ε−η), where in the definition (11.5) of h we replace f2 = dg,
f1 = νg. We substitute this modified version of (11.5) and open the Mellin transform
(6.7), so that the previous display becomes

12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3
· 1
4

∫

(3)

ev2

v
L (2v)

∞∫

−∞

∞∫

−∞
G(k, τ, v + 1/2 + i t)G(k, τ, v + 1/2 − i t)ω(τ)τ tanh(πτ)

dτ

π2 dt
dv

2π i

(12.3)

where

L (v) =
∑

(dδν,m)=1

∑
g, f ,�

( f ,δ)=1

∑
d1| f d
d2| f ν

∑
d3|( f d

d1
,

f ν
d2

)

∑
r1r2= f 2dν

d1d2d23

μ(dδν)μ2(m)μ(d1)μ(d2)χ�(δd1d2r2)d3
(dν)4+2v(δg)2+2v f 3+2vm3|�|1+v

L(χ�, 1).

Recall our general assumption that � runs over negative fundamental discriminants.
The main term will come from the residue at v = 0 and we need to analytically
continue L to �v < 0 and compute the residue at v = 0. The critical portion is the
�-sum which we analyze in the following lemma.

Lemma 25 Let α ∈ N and uniquely write α = α2
1α2 with μ2(α2) = 1. Then

∑
−X≤�<0

χ�(α)L(χ�, 1) = ζ(2)X

2α2

∏
p|α

(
1 + 1

p
− 1

p3

)−1 ∏
p

(
1 − 1

p2
− 1

p3
+ 1

p4

)

+O
(
X13/18α1/4(Xα)ε

)
.
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In particular, the Dirichlet series

K (v;α) =
∑
�<0

χ�(α)L(χ�, 1)

|�|1+v

has analytic continuation to �v > −5/18 except for a simple pole at v = 0 with
residue

ζ(2)

2α2

∏
p|α

(
1 + 1

p
− 1

p3

)−1 ∏
p

(
1 − 1

p2
− 1

p3
+ 1

p4

)

and is bounded by Oε(|v|α1/4+ε) in the region �v ≥ −5/18 + ε, |v| ≥ ε.

Remark: The computation of the leading constant in Lemma 25 seems to be a new
result even in the case α = 1 and features an interesting Euler product. See [46] for
similar Euler products for averages at the point 1/2. The case α = 1 can be read off
from [31].

Proof Let w be a fixed smooth function that is equal to 1 on [0, 1] and vanishes on
[2,∞). Let Y ≥ 1. We have

∑
n

χ�(n)

n
w

( n

Y

)
=

∫

(2)

L(χ�, 1 + s)ŵ(s)Y s ds

2π i
= L(χ�, 1) + O(Y −1/2|�|1/6+ε)

where ŵ in the present case denotes the Mellin transform and the left hand side comes
from a contour shift to �s = −1/2 and the Conrey-Iwaniec [20] subconvexity bound
for real characters. We obtain

∑
−X≤�<0

χ�(α)L(χ�, 1) =
∑

n

1

n
w

( n

Y

) ∑
−X≤�<0

χ�(αn) + O(X7/6+εY −1/2).

(12.4)

We decompose the main term as S� + S�=� depending on whether αn is a square or
not. We first consider the portion S� where n is restricted to n = α2k2 with k ∈ N.
This gives

S� =
∑

k

1

α2k2
w

(
α2k2

Y

) ∑
−X≤�<0
(�,αk)=1

1 =
∑

k

1

α2k2
∑

−X≤�<0
(�,αk)=1

1 + O
( X

Y

)
.

(12.5)

We decompose the main term as Sodd
� + Seven, 4

� + Seven, 8
� depending on whether � is

odd, exactly divisible by 4 or exactly divisible by 8. We have

Sodd
� = 1

2α2

∑
k

1

k2
∑
m≤X

(m,αk)=1

μ2(m)(χ0(m) − χ−4(m))
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where χ0 is the trivial character modulo 4 and χ−4 the non-trivial character modulo
4. For χ ∈ {χ0, χ−4} we consider the Dirichlet series

1

2α2

∑
k

1

k2
∑

(m,αk)=1

μ2(m)χ(m)

ms
= ζ(2)

2α2

∏
p�α

(
1 + χ(p)

ps
− χ(p)

ps+2

)

= ζ(2)

2α2

∏
p|α

(
1 + χ(p)

ps
− χ(p)

ps+2

)−1
L(χ, s)

∏
p

(
1 − χ(p)2

p2s
− χ(p)

ps+2 + χ(p)2

p2s+2

)
.

A standard application of Perron’s formula (e.g. [71, Corollary II.2.4]) shows now
that

Sodd
� = ζ(2)X

4α2

∏
p|α
p�2

(
1 + 1

p
− 1

p3

)−1 ∏
p�2

(
1 − 1

p2
− 1

p3
+ 1

p4

)

+O
( X1/2

α2
(α2X)ε

)
. (12.6)

We have Seven, 4
� �= 0 and Seven, 8

� �= 0 only if α is odd, which we assume from now
on. Then

Seven, 4
� = 1

α2

∑
(k,2)=1

1

k2
∑

m≤X/4
(m,αk)=1

m≡1(mod 4)

μ2(m)

= 1

2α2

∑
(k,2)=1

1

k2
∑

m≤X/4
(m,αk)=1

μ2(m)(χ0(m) + χ−4(m))

and by the same computation we obtain

Seven, 4
� = ζ(2)X

16α2

(
1 − 1

4

) ∏
p|α

(
1 + 1

p
− 1

p3

)−1 ∏
p�2

(
1 − 1

p2
− 1

p3
+ 1

p4

)

+O
( X1/2

α2
(α2X)ε

)
.

Finally,

Seven, 8
� = 1

α2

∑
(k,2)=1

1

k2
∑

m≤X/8
(m,αk)=1

m≡1(mod 2)

μ2(m) = 1

α2

∑
(k,2)=1

1

k2
∑

m≤X/8
(m,αk)=1

μ2(m)χ0(m)
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where now χ0 is the unique character modulo 2, and we get the same main term for
Seven, 8
� . Putting everything together, we obtain for α2 odd that

S� = ζ(2)X

α2

∏
p|α

(
1 + 1

p
− 1

p3

)−1 ∏
p

(
1 − 1

p2
− 1

p3
+ 1

p4

)
· 16
11

(1
4

+ 1

16
· 3
4

· 2
)

+ O
( X

Y
+ X1/2

α2
(α2X)ε

)

= ζ(2)X

2α2

∏
p|α

(
1 + 1

p
− 1

p3

)−1 ∏
p

(
1 − 1

p2
− 1

p3
+ 1

p4

)

+ O
( X

Y
+ X1/2

α2
(α2X)ε

)

and for α2 even that

S� = ζ(2)X

α2

∏
p|α

(
1 + 1

p
− 1

p3

)−1 ∏
p

(
1 − 1

p2
− 1

p3
+ 1

p4

)
· 16
11

· 1
4

(
1 + 1

2
− 1

8

)

+ O
( X

Y
+ X1/2

α2
(α2X)ε

)

= ζ(2)X

2α2

∏
p|α

(
1 + 1

p
− 1

p3

)−1 ∏
p

(
1 − 1

p2
− 1

p3
+ 1

p4

)

+ O
( X

Y
+ X1/2

α2
(α2X)ε

)
.

Note how beautifully the constants fit together.
We return to (12.4) and study S�=� where the n-sum is restricted to αn �= �.

The function D �→ χD(αn) = (D/αn) is a 4n-periodic, non-trivial, completely
multiplicative function, defined on non-zero integers D ≡ 0, 1 (mod 4). If n is odd,
this function is naturally defined on all D and in fact n-periodic. If n is even, it can be
extended (using the supplementary laws of quadratic reciprocity) to a not necessarily
primitive, but non-trivial Dirichlet character modulo 4n. Thus it suffices to bound

∑
m≤X ′

μ2(m)ψ(m)

for a character ψ of conductor � αY and X ′ ≤ X . Writing μ2(m) = ∑
d2|m μ(d)

and using the Pólya-Vinogradov inequality, we bound the previous display by

�
∑
d≤X

min
( X

d2 , (αY )1/2+ε
)

� (X1/2(αY )1/4)1+ε. (12.7)
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Collecting error terms in (12.4), (12.5), (12.6), (12.7), the total error becomes

�
( X7/6

Y 1/2 + X

Y
+ X1/2

α2
+ X1/2(αY )1/4

)
(X yα)ε.

We choose Y = X8/9α−1/3 + 1 to recover a total error of (X13/18α1/6 + X1/9α1/3 +
X1/2α1/4)(Xα)1+ε. This completes the proof of the asymptotic formula. The claim
on the Dirichlet series K (v;α) follows by partial summation. ��

With the notation of the previous lemma we can write

L (v) =
∑

(dδν,m)=1

∑
g, f

( f ,δ)=1

∑
d1| f d
d2| f ν

∑
d3|( f d

d1
,

f ν
d2

)

∑
r1r2= f 2dν

d1d2d23

μ(dδν)μ2(m)μ(d1)μ(d2)d3
(dν)4+2v(δg)2+2v f 3+4vm3 K (v, δd1d2r2),

and we conclude that L has analytic continuation to �v > −13/18 except for a
simple pole at v = 0 and polynomial (in fact linear) bounds on vertical lines. If rad(n)

denotes the squarefree kernel of n, then

res
v=0

L (v) = ζ(2)2

2

∏
p

(
1 − 1

p2
− 1

p3
+ 1

p4

)

∑
(dδν,m)=1

∑
( f ,δ)=1

∑
d1| f d
d2| f ν

∑
d3|( f d

d1
,

f ν
d2

)

∑
r1r2= f 2dν

d1d2d23

μ(dδν)μ2(m)μ(d1)μ(d2)d3
(dν)4δ2 f 3m3rad(δd1d2r2)

∏
p|δd1d2r2

(
1 + 1

p
− 1

p3

)−1

(12.8)

where we have implicitly computed the g-sum in the definition ofL (v) as ζ(2). Now
a massive computation with Euler products, best performed with a computer algebra
system, shows gigantic cancellation, and we obtain the beautiful formula

res
v=0

L (v) = ζ(2)2

2ζ(4)
.

With this we return to (12.3) and shift the v-contour to �v = −1/10. By (9.13) and
trivial bounds the remaining integral expression is bounded by

� 1

K 2

∑
K≤k≤2K

K − 1
2− 4

10

∞∫

−∞

∞∫

−∞

(
1 + |t |2 + |τ |2

K

)
|τ |dτ dt � K −4/10.
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It remains to deal with the double pole at v = 0 whose residue is given by

R = 12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3
· 1
4

∞∫

−∞

∞∫

−∞
res
v=0

(ev2

v
L (2v)G(k, τ, v + 1/2 + i t)

G(k, τ, v + 1/2 − i t)
)
ω(τ)τ tanh(πτ)

dτ

π2 dt .

We can remove the factor ω(τ) tanh(πτ) at the cost of an error O(K −η/2), cf. the
definition (11.1). Using the definition (6.5), at v = 0 we have the following Taylor
expansion

G(k, τ, v + 1/2 + i t)G(k, τ, v + 1/2 − i t)

= G(k, τ, 1/2 + i t)G(k, τ, 1/2 − i t){
1 + v

( ∑
±,±

�′

�

(
k − 1/2

2
± i t ± iτ

2

)
− 4 logπ

)
+ O(v2)

}
.

We have �′
�

(z) = log z + O(|z|−1) (for �z ≥ 1, say) and so

∑
±

�′

�

(k − 1/2

2
− i t ± iτ

2

)
− 4 logπ = 4 log k + O(1)

for t, τ � k2/3, say (the t and τ integrals are negligible outside this region). In this
range we can insert (9.15) to conclude that

R = 12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3
· 1
4

· 1
2
·

4 log k

∞∫

−∞

∞∫

−∞

ζ(2)2

2ζ(4)

16

πk1/2
e−(4t2+τ 2)/k |τ |dτ

π2 dt + O(1).

We evaluate the two integrals, sum over k (by Poisson, for instance) and recall the
definition of ω just before (1.3) getting

R = 12

ωK 2

∑
k∈2N

W

(
k

K

)
π2

90
· 9√π · 2 · 2

3
· 1
4

· 1
2

· 4 log k
ζ(2)2

2ζ(4)

16

πk1/2
k ·

√
πk

2

1

π2 + O(1)

= 12

2
· π2

90
· 9√π · 2 · 2

3
· 1
4

· 1
2

· 4 log K · ζ(2)2

2ζ(4)

16

π
·
√

π

2

1

π2 + O(1) = 4 log K + O(1).
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We have now detected the main term and we conclude this section by stating that

N diag,diag(K ) = R + O(1) = 4 log K + O(1).

13 The diagonal off-diagonal term

13.1 Preparing the stage

We return to (11.6) and consider the off-diagonal terms on the right hand side of (3.5).
We treat the first off-diagonal term in detail in the following three subsections. In
Sect. 13.4 we show the minor modifications to treat the second off-diagonal term. The
first off-diagonal term is given by

Ioff-diag,1(�, t, k, r) := 8i
∑
d|r

∑
n,m

χ�(m)

(dnm)1/2

∑
c

S(m,nr/d, c)

c

∞∫

−∞

J2iτ (4π
√

(mnr/d)/c)

sinh(πτ)
W +

τ (dn)W −
τ

( m

|�|
)

h(τ )τ tanh(πτ)
dτ

4π

where h was defined in (11.5) and depends in particular on t , k and �. This needs to
be inserted into (11.4) with r = f 2dν/(d1d2d2

3 ) ≤ K 4η. In (11.4) we apply a smooth
partition of unity to the �-sum and consider a typical portion

J (1)(X , t, k, r) :=
∑
�

w
( |�|

X

)
Ioff-diag,1(�, t, k, r)

for a smooth function w with compact support in [1, 2]. Our aim in this section is to
prove the bound

J (1)(X , t, k, r) � X K 1/2−η (13.1)

uniformly in k � K , t ≤ K 1/2+ε,

X ≤ K 2+ε, r ≤ K 4η (13.2)

and f , f1, f2, d, ν ∈ N which are implicit in the definition (11.5). Taking (13.1) for
granted, we estimate (11.4) trivially to obtain a contribution of O(K ε−η), which is
admissible. So it remains to show (13.1), and to this end we start with some initial
discussion.

The c-sum in Ioff-diag,1(�, t, k, r) is absolutely convergent, as can be seen by using
the Weil bound for the Kloosterman sum and shifting the t-contour to �iτ = 1/3,
say, without crossing any poles. By the power series expansion for the Bessel function
[33, 8.440] we have

J2iτ (x) �
τ x−2
τ eπ |τ |(1 + |τ |)−1/2, x ≤ 1
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1392 V. Blomer, A. Corbett

and we can therefore truncate the c-sum at c ≤ K 106 , say, at the cost of a very small
error. Having done this, we can sacrifice holomorphicity of the integrand in the τ -
integral, and we insert a smooth partition of unity into the τ -integral restricting to
τ � T , say, with

K 1/2−2η ≤ T ≤ K 1/2+ε, (13.3)

otherwise h(τ ) is negligible by (11.5), (9.16) and (11.2). We insert smooth partitions
of unity into the n,m, c-sums and thereby restrict to n � N , m � M , c � C , say,
where

N ≤ T 1+ε, M ≤ XT 1+ε (13.4)

by (9.17) and initially C ≤ K 106 . Next we want to evaluate asymptotically the τ -
integral. To this end we use Lemma 21 with the weight function h = hn,m,� given
by

W +
τ (dn)W −

τ

( m

|�|
)

h(τ )w
( |τ |

T

)

= W +
τ (dn)W −

τ

( m

|�|
)
ω(τ)Vt ((|�| f 2 f1 f2dν)2; k, τ )w

( |τ |
T

)

where w is the weight function occurring in the smooth partition of unity of the τ -
integral. By (9.17), (11.2) and (9.16), the function h is “flat” in all variables, i.e.

d j1

dn j1

d j2

dm j2

d j3

d� j3

d j

dt j
hn,m,�(t) �j K −1/2T − j N− j1 M− j2 X− j3

for k � K , |�| � X , n � N , m � M and j ∈ N
4
0, uniformly in all other variables.

Lemma 21a implies that we can restrict, up to a negligible error, to

C ≤
√

N Mr2
T 2 K ε, (13.5)

where r2 = r/d, and up to a negligible error we are left with bounding

J (1)
r (X , N , M, C, T ) := K εT 2

(N M)3/4(K C)1/2

∑
r1r2=r

1

(rr1)1/4

∑
�,n,m,c

χ�(m)S(m,nr2, c)e
(

± 2
√
nmr2
c

)
W

( |�|
X

,
n

N
,
m

M
,

c

C

) (13.6)

for a smooth function W with compact support in [1, 2]4 and bounded Sobolev norms
with variables X , N , M, C, T satisfying (13.2), (13.4), (13.5), (13.3), respectively.

The basic strategy is now to apply Poisson summation first in the n-sum and then
in the m-sum in Sect. 13.2. This shortens the variables in generic ranges, so that a
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A symplectic restriction problem 1393

trivial bound turns out to be of size X K 1/2+2η+ε. This is very close to our target
(13.1). In Sect. 13.3 we will extract a character sum from this expression where the
Pólya-Vinogradov inequality produces the final saving, at least in generic ranges of
the variables. In order to also treat non-generic ranges where some of the variables
are relatively short (and hence Poisson summation is less effective), at each step
we also apply trivial bounds along with Heath-Brown’s large sieve. In particular, by
Lemma 19b) we can bound (13.6) by

J (1)
r (X , N , M, C, T ) � K εT 2

(N M)3/4(K C)1/2
X N MC3/2

( 1

X1/2 + 1

M1/2

)

= K εT 2

K 1/2 C N 1/4
(

M1/4X1/2 + X

M1/4

)
.

(13.7)

13.2 Poisson summation

Now we open the Kloosterman sum in (13.6) and apply Poisson summation in n in
residue classes modulo c. In this way we re-writeJ (1)

r (X , N , M, C, T ) as

K εT 2

(N M)3/4(K C)1/2

∑
r1r2=r

1

(rr1)1/4
∑

�,m,c

χ�(m)
∑ ∗

γ (mod c)

e
(mγ

c

) ∑
ν (mod c)

e
( γ̄ νr2

c

)

1

c

∑
n∈Z

e
(nν

c

) ∞∫

0

e
(

± 2
√

xmr2
c

)
W

( |�|
X

,
x

N
,
m

M
,

c

C

)
e
(

− xn

c

)
dx .

(13.8)

We consider the character sum

1

c

∑ ∗

γ (mod c)

e
(mγ

c

) ∑
ν (mod c)

e
( γ̄ νr2

c

)
e
(nν

c

)
=

∑ ∗

γ (mod c)
γ̄ r2≡−n (mod c)

e
(mγ

c

)
. (13.9)

This is non-zero only if (n, c) = (r2, c). We write (r2, c) = δ, r2 = δr ′
2, c = δc′,

n = δn′ with (n′r ′
2, c′) = 1 and recast (13.9) as

∑ ∗

γ (mod c)
γ≡−r ′

2n′ (mod c′)

e
(mγ

c

)
.

We decompose δ = δ1δ2 with δ2 maximal so that (δ2, c′) = 1. Note that r ′
2n̄′ is

coprime to c′, so the condition (c, γ ) = 1 is equivalent to (δ2, γ ) = 1. We factor
c = c′δ1 · δ2 with (c′δ1, δ2) = 1 and apply the Chinese Remainder Theorem to see
that the previous display vanishes unless δ1 | m, say m = δ1m′, in which case it equals

δ1Rδ2(m
′)e

(
− m′r ′

2n′δ2
c′

)
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1394 V. Blomer, A. Corbett

where R denotes the Ramanujan sum.
Next we consider the x-integral in (13.8). The phase has a unique stationary point

at x = r2m/n2 if sgn(n) = ± and no stationary point if sgn(n) = ∓. If N ≤ r2m/n2 ≤
2N and sgn(n) = ±, we can apply the stationary phase lemma [11, Proposition 8.2]
with X = 1, V = V1 = Q = N , Y = √

N Mr2/C ≥ T 2K −ε ≥ K 1/2−ε to see that
the integral is given by

(cr2m

|n|3
)1/2

e
(

± r2m

c|n|
)

W1

( |�|
X

,
r2m

n2N
,
m

M
,

c

C

)

for a smooth function W1 with compact support in [1, 2]4 and bounded Sobolev norms,
up to a negligible error from truncating the series in [11, (8.9)]. Otherwise we apply
integration by parts in the form of [11, Lemma 8.1] with X = 1, U = Q = N ,
Y = R = √

N Mr2/C to conclude that the integral is negligible.
Noting that with our previous notation

e
(

± r2m

c|n|
)

= e
( d ′

2m
′

c′n′δ2

)

for sgn(n) = ±, we can now apply the additive reciprocity formula e(1/ab) =
e(ā/b)e(b̄/a) for (a, b) = 1 to conclude that J (1)

r (X , N , M, C, T ) equals, up to
a negligible error term,

K εT 2

(N M)3/4(K C)1/2

∑
r1δ1δ2d ′

2=r

1

(rr1)1/4
∑

�,m′,c′

∑
±n′∈N

(c′,n′r ′
2δ2)=1

δ1|(c′)∞

χ�(m′δ1)δ1Rδ2(m
′)e

(m′r ′
2c′

n′δ2

)

( c′d ′
2m

′

δ2|n′|3
)1/2

W1

( |�|
X

,
d ′
2m

′

δ2(n′)2N
,
m′δ1
M

,
c′δ1δ2

C

)
.

(13.10)

Here we recall the notation conventions from Sect. 1.5 regarding expressions δ | c∞
etc. For easier readability we remove all the dashes at the variables, and we define

W2(x, y, z, w) = w1/2y−3/2z1/2W1(x, z/y2, z, w).

We also open the Ramanujan sum Rδ2(m) = ∑
δ3|(δ2,m) δ3μ(δ2/δ3), write δ2 = δ3δ4

and replace m with mδ3. Finally we drop the ±-sign in the summation condition on n
(both cases are identical). With this notation we can re-write (13.10) as

K εT 2

M K 1/2

∑
r1δ1δ3δ4r2=r

δ
3/4
1 δ3μ(δ4)

(rr1r2δ4)1/4

∑
�,m,c,n

(c,nr2δ3δ4)=1
δ1|c∞

χ�(mδ1δ3)e
(mr2c

nδ4

)
W2

( |�|
X

,
nδ3

√
Nδ1δ4√

Mr2
,
mδ1δ3

M
,

cδ1δ3δ4
C

)
.
(13.11)
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Before we continue to transform this expression, we estimate trivially with the large
sieve (Lemma 19b)

J (1)
r (X , N , M, C, T )

� K εT 2

M K 1/2

∑
r1δ1δ3δ4r2=r

δ
3/4
1 δ3

(rr1r2δ4)1/4
X

√
Mr2

δ3
√

Nδ1δ4

M

δ1δ3

C

δ1δ3δ4

(( δ1

M

)1/2+X−1/2)

� K εT 2C

(K N )1/2
(X + (X M)1/2).

(13.12)

Our next goal is to apply Poisson summation in m restricted to residue classes δ4n|�|.
For m ∈ Z, this leads to the character sum

∑
μ (mod δ4n|�|)

χ�(μ)e
(μr2c

nδ4

)
e
( μm

δ4n|�|
)

=
∑

μ (mod δ4n|�|)
χ�(μ)e

(μ(r2c|�| + m)

δ4n|�|
)
.

We decompose both n and δ4 according to their common divisor with �. We write
n = n1n2 and δ4 = δ5δ6 where n1δ5 | �∞, (n2δ6,�) = 1. We obtain by the Chinese
Remainder Theorem that the above character sum equals

∑
μ (mod δ6n2)

e
(μδ5n1|�|(r2c|�| + m)

n2δ6

) ∑
μ (mod δ5n1|�|)

χ�(μ)e
(μδ6n2(r2c|�| + m)

δ5n1|�|
)
.

The first sumvanishes unless n2δ6 | r2|�|+mc inwhich case it equals n2δ6. Since� is
a negative fundamental discriminant, the second sumvanishes unlessn1δ5 | r2|�|+mc
in which case it equals

i
√|�|n1δ5χ�

(
n2δ6

r2c̄|�| + m

n1δ5

)
.

Having this evaluation available, the Poisson summation formula transforms (13.11)
into

K εT 2

M K 1/2

∑
r1δ1δ3δ5δ6r2=r

δ
3/4
1 δ3μ(δ5δ6)

(rr1r2δ5δ6)1/4

∑
�,c,n1,n2

∑
m∈Z

(c,n1n2r2δ3δ5δ6)=1
δ1|c∞,n1δ5|�∞,(n2δ6,�)=1

n1n2δ5δ6|r2|�|+mc

χ�(δ1δ3)

χ�

(
n2δ6

r2c̄|�| + m

n1δ5

)

|�|1/2

∞∫

0

W2

( |�|
X

,
n1n2δ3

√
Nδ1δ5δ6√

Mr2
,

xδ1δ3

M
,

cδ1δ3δ5δ6
C

)
e
(

− mx

n1n2δ5δ6|�|
)

dx,

(13.13)
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up to a factor i . The above integral is just the Fourier transform of W2 with respect to
the third variable which we write as

M

δ1δ3
W3

( |�|
X

,
n1n2δ3

√
Nδ1δ5δ6√

Mr2
,

m M

n1n2δ5δ6|�|δ1δ3 ,
cδ1δ3δ5δ6

C

)
.

Defining W4(x, y, z, w) = W3(x, y, z/(xy), w) we recast the previous display as

M

δ1δ3
W4

( |�|
X

,
n1n2δ3

√
Nδ1δ5δ6√

Mr2
,

m
√

N M

(r2δ1δ5δ6)1/2X
,

cδ1δ3δ5δ6
C

)
.

The function W4 is compactly supported in the first, second and fourth variable and
rapidly decaying in the third. We first estimate the m = 0 contribution to be

� K εT 2

M K 1/2

∑
r1δ1δ3δ5δ6r2=r

δ
3/4
1 δ3

(rr1r2δ5δ6)1/4
M√

Xδ1δ3
X

C

δ1δ3δ5δ6

� K ε X1/2CT 2

K 1/2 � K ε (X N M)1/2

K 1/2 � X K ε

by (13.5), (13.4), (13.2), (13.3) and a divisor estimate for n1n2. This is clearly admis-
sible for (13.1), so from now on we assume m �= 0. By the same argument, we obtain
for the m �= 0 contribution the bound

K εT 2

M K 1/2

∑
r1δ1δ3δ5δ6r2=r

δ
3/4
1 δ3

(rr1r2δ5δ6)1/4
M√

Xδ1δ3
X

C

δ1δ3δ5δ6

(r2δ1δ5δ6)1/2X√
N M

� K ε X3/2CT 2

(M N K )1/2
.

(13.14)

By (13.5) and (13.2), this is only a factor K 3η+ε away from our target (13.1), so a
very small additional saving suffices to win. For easier readability we consider only
the case m > 0, the other case being entirely analogous.

13.3 The endgame

Up until now we have not touched the long �-sum, which we will now use to obtain
some additional saving. Before we do this, we must exclude the case that C is very
small. To this end we combine (13.14) and (13.12) to obtain

J (1)
r (X , N , M, C, T ) � K ε T 2C

(N K )1/2
min

( X3/2

M1/2 , X + (X M)1/2
)

� K ε T 2C

(N K )1/2
X .
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Similarly we can combine (13.14) and (13.7) to obtain

J (1)
r (X , N , M, C, T ) � K ε T 2C

K 1/2 min
( X3/2

(M N )1/2
, (M N )1/4X1/2 +

( N

M

)1/4
X

)

≤ K ε T 2C X

K 1/2

( 1

(M N )1/8
+

( N

M

)1/4)

� K ε T 2C X

K 1/2

( r1/8

C1/4T 1/2 + r1/4N 1/2

C1/2T

)

using (13.5). Combining the previous two bounds we finally obtain

J (1)
r (X , N , M, C, T ) � K ε T 2C X

K 1/2 · r1/8

C1/4T 1/2 � X K
1
4+ 1

2 η+εC
3
4

by (13.3) and (13.2) which meets our target (13.1) unless

C ≥ K 1/3−3η

which we assume from now on. We recall that c is automatically coprime to
n1n2r2δ3δ5δ6. For fixed k ∈ N let S (k) = {k1x2 : k1 | k, x ∈ N} be the set of
square classes of all divisors of k. From (13.13) we remove all c ∈ S (2r1δ1m). Since
C is large, the O(K ε) square classes are only a thin subset of all c and by the same
computation as in (13.14), they contribute no more than

� K ε X3/2C1/2T 2

(M N K )1/2
� r1/2X K 1/2+2η+εC−1/2 � X K 1/3+6η (13.15)

toJ (1)
r (X , N , M, C, T ) which for η < 1/40 is admissible.

With this we return to (13.13) and explain the idea how to obtain additional sav-
ings. Ignoring (for the purpose of these heuristic remarks) the secondary variables
δ1, δ3, δ5, δ6, r2, n1, we have to sum

∑
n2||�|+mc

χ�(n2m)

We |�| + mc = n2s for s ∈ N and rewrite the sum to be taken over m, s, c, n2 where
now |�| is determined by the other variables. Assuming also for simplicity that n2, m
are odd, we obtain a sum over

(−sn2 + mc

n2m

)
=

(−sn2 + mc

n2

)(−sn2 + mc

m

)
=

(mc

n2

)(−sn2

m

)

=
( m

n2

)(n2

m

)
·
( c

n2

)(−s

m

)

where −n2s + mc is essentially restricted to squarefree numbers. By quadratic reci-
procity, the first two factors are essentially constant. Since c is not a square, the map
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n2 �→ ( c
n2

) is a non-trivial character, and since typically the length of n2 is much
longer than the length of c, the n2-sum has some saving from the Pólya-Vinogradov
inequality (here we also need to deal with the squarefree condition). We now make
this precise. For clarity, we repeat (13.13) with the small amendments we have made
so far:

K εT 2

(X K )1/2

∑
r1δ1δ3δ5δ6r2=r

μ(δ5δ6)

(rr1r2δ1δ5δ6)1/4

∑
�,n1,n2,m

∑
c/∈S (2r1δ1m)

(c,n1n2r2δ3δ5δ6)=1
δ1|c∞,n1δ5|�∞,(n2δ6,�)=1

n1n2δ5δ6|r2|�|+mc

χ�

(
δ1δ3n2δ6

r2c̄|�| + m

n1δ5

)

W5

( |�|
X

,
n1n2δ3

√
Nδ1δ5δ6√

Mr2
,

m
√

N M

(r2δ1δ5δ6)1/2X
,

cδ1δ3δ5δ6
C

)

(13.16)

where W5(x, y, z, w) = x−1/2W4(x, y, z, w). We define s through the equation

n1n2δ5δ6s = r2|�| + mc. (13.17)

Note that, up to a negligible error,

mc � K ε C Xr1/22√
N Mδ1δ5δ6δ3

� K ε r2X

T 2 (13.18)

by (13.5), so that by (13.3) we conclude that mc is substantially smaller than |r2�|.
In particular, n1n2δ5δ6s � r2X , so that

s � Xδ3
√

Nδ1r2√
Mδ5δ6

. (13.19)

We first argue that we can truncate the n1-sum in (13.13) at n1 ≤ K 4η. Indeed, since
(n1, c) = 1, but n1 | �∞, the squarefree kernel rad(n1) must divide m. Summing
trivially over n1, n2, s, c, m in (13.13) as in (13.14), the portion n1 ≥ Y contributes
at most

K ε T 2

(X K )1/2

∑
r1δ1δ3δ5δ6r2=r

1

(rr1r2δ1δ5δ6)1/4

×
∑

n1≥Y

√
Mr2

δ3
√

Nδ1δ5δ6n1

Xδ3
√

Nδ1r2√
Mδ5δ6

C

δ1δ3δ5δ6

X(r2δ1δ5δ6)1/2√
N Mrad(n1)

� K ε X3/2CT 2

(M N K )1/2Y 1−ε

(13.20)
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by applyingRankin’s trick andusing that
∑

n rad(n)−1n−σ is absolutely convergent for
σ > 0. If Y ≥ K 4η, this is � X K 1/2−2η+ε by (13.5) and (13.2), hence admissible for
(13.1). Having truncated the n1-sum, we decompose� = �1�2 into two fundamental
discriminants of suitable signs where (�2, 2n1δ5) = 1 and �1 | 8n1δ5, in particular
|�1| ≤ 8K 8η and (�1, cn2δ6) = 1. With this notation and recalling (13.17) we can
write

χ�

(
δ1δ3n2δ6

r2c̄|�| + m

n1δ5

)
= χ�1(δ1δ3cs)χ�2(δ1δ3δ5δ6n1n2m).

Next we make n2m coprime to 2r2�1 by factoring n2 = n′
2n′′

2 and m = m′m′′ with
(n′

2m′, 2r2�1) = 1, n′′
2m′′ | (2r2�1)

∞ | (2r2n1δ5)
∞ so that the previous display

equals

χ�1(δ1δ3cs)χ�2(δ1δ3δ5δ6n1n′′
2m′′)χ(n1n2δ5δ6s−mc)(r2|�1|)(n′

2m′)

= χ�1(δ1δ3cs)χ�2(δ1δ3δ5δ6n1n′′
2m′′)

(−r2|�1|mc

n′
2

)(r2|�1|n1n2δ5δ6s

m′
)

= χ�1(δ1δ3cs)χ�2(δ1δ3δ5δ6n1n′′
2m′′)

(r2|�1|n1n′′
2δ5δ6s

m′
)(−r2|�1|m′′

n′
2

)(m′

n′
2

)( n′
2

m′
)( c

n′
2

)
.

(13.21)

By a computation similar to (13.20), this time using that

∑
a|b∞
a≤X

1 � (bX)ε

for X ≥ 1, b ∈ N (which follows in the same way by Rankin’s trick), we can assume
n′′
2, m′′ ≤ K 4η, the remaining portion to (13.13) being � X K 1/2−2η+ε. We are left

with short (i.e. � K 4η) variables

r1, δ1, δ3, δ5, δ6, r2, n1, n′′
2, m′′,�1 (13.22)

and potentially long variables

�2, c, n′
2, m′, s

subject to c /∈ S (2r1δ1m′m′′) as well as

(c, n1n′
2n′′

2r2δ3δ5δ6) = 1, δ1 | c∞, n1δ5 | (�1�2)
∞,

(n′
2n′′

2δ6,�1�2) = 1, �1 | 8n1δ5,

(�2, 2n1δ5) = 1, (n′
2m′, 2r2�1) = 1, n′′

2m′′ | (2r2�1)
∞,

n1n′
2n′′

2δ5δ6s = r2�1�2 + mc.
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1400 V. Blomer, A. Corbett

We can eliminate �2 from the last equation, so that a congruence

n1n′
2n′′

2δ5δ6s = mc (mod r2�1)

remains. Then the conditions (�2, 2n1δ5) = (n′
2n′′

2δ6,�2) = 1 are re-phrased as

(n1n′
2n′′

2δ5δ6s − mc, 2r2n1δ5n′
2n′′

2δ6) = r2

which is equivalent to

(n1n′
2n′′

2δ5δ6, mc) = r ′
2, (2r2, n1n′

2n′′
2δ5δ6s − mc) = r ′′

2 , r ′
2r ′′

2 = r2.

The condition n1δ5 | (�1�2)
∞ reads

rad(n1δ5) | n1n′
2n′′

2δ5δ6s − mc

r2
.

All of these conditions on n′
2 can be detected by congruences modulo “short” variables

in (13.22) (and some powers of 2) as well as (n′
2, m) = 1. Finallywe need to remember

that �1�2 is a fundamental discriminant. To this end we split into residue classes
�1�2 ≡ 1, 5, 8, 9, 12, 13 (mod 16) and insert a factorμ2((n1n′

2n′′
2δ5δ6s−mc)/(αr2))

with α ∈ {1, 4}. We use the convolution formula

μ2
(n1n′

2n′′
2δ5δ6s − mc

αr2

)
=

∑
y2| n1n′

2n′′
2δ5δ6s−mc
αr2

μ(y),

and insert all of this back into (13.16). We claim that we can restrict y ≤ K Aη for
some constant A. Indeed, summing over all short variables, as well as c, m′, we get a
congruence for n′

2s modulo y2, so that the portion y > Y contributes at most

K O(η)
∑
y≥Y

T 2

(X K )1/2
C

X√
N M

X

y2
� X K 1/2+O(η)

Y

which is acceptable if Y = K Aη for A sufficiently large. Note that (13.18) implies that
n1n′

2n′′
2δ5δ6s − mc never vanishes, so there is no “1+” in the congruence count. In

addition, for fixed y we also remove all c ∈ S (y2) at the cost of an error X K 1/3+O(η)

as in (13.15).
We are finally ready to return to (13.21) and split the sumover n′

2 into residue classes
modulo ν modulo H := 32r1δ1δ3δ5δ6r2n1n′′

2m′′�1y2 = K O(η). By assumption, c is
not in a square class of any divisor of H . Thus we consider

∑
n′
2≡ν (mod H)

(n′
2,m

′)=1

( c

n′
2

)
W

(n′
2

R

)
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for ν odd, c � C and R � √
M/N K O(η). We can detect the congruence condition by

characters, none ofwhich conspireswith n′
2 �→ ( c

n′
2
) to become the trivial character. By

the Pólya-Vinogradov inequality, we can bound the previous display by C1/2K O(η),
and by trivial estimates over c, m′, s and the present estimate for the sum over n′

2 we
obtain the final bound

K O(η) T 2

(X K )1/2
C

X√
N M

X
√

N√
M

C1/2 � K O(η) N 3/4X3/2

K 1/2T M1/4

� K O(η) X3/2

K 1/2T 1/4 � X K 3/8+O(η)

by (13.5), (13.4), (13.2) and (13.3). For sufficiently small η this is in agreement with
(13.1) and completes the analysis of the first off-diagonal term in (11.6).

13.4 The second off-diagonal term

The analysis of the second off-diagonal term in (3.5) is structurally very similar
(although the numerology is a little different), so we can be brief. Here we need
to consider

Ioff-diag,2(�, t, k, r) := 16

π

∑
d|r

∑
n,m

χ�(m)

(dnm)1/2

∑
c

S(m,nr/d, c)

c
∫ ∞

−∞
K2iτ (4π

√
(mnr/d)/c) sinh(πτ)W +

τ (dn)W −
τ

( m

|�|
)

h(τ )τ
dτ

4π

with h as in (11.5). This needs to be inserted into (11.4) with r = f 2dν/(d1d2d2
3 ) ≤

K 4η. Under the same size restrictions (13.2) as before we want to show that

J (2)(X , t, k, r) :=
∑
�

w
( |�|

X

)
Ioff-diag,2(�, t, k, r) � X K 1/2−η.

As before we first use holomorphicity to ensure absolute convergence of the c-sum and
obtain a very coarse truncation. Then we apply smooth partitions of unity restricting
to τ � T satisfying (13.3), n � N , m � M satisfying (13.4) and c � C . This time
we use Lemma 21b to conclude that

C ≤ K ε

√
N M

T
, (13.23)

and by an analogue of (13.6) we need to bound the quantity

J (2)
r (X , N , M, C, T )

:= K εT

(N M K )1/2C

∑
r1r2=r

1

(rr1)1/4
∑

�,n,m,c

χ�(m)S(m,nr2, c)W
( |�|

X
,
n

N
,
m

M
,

c

C

)
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1402 V. Blomer, A. Corbett

where W satisfies the same properties as in (13.6). The trivial bound using the large
sieve (Lemma 19) is now

J (2)
r (X , N , M, C, T ) � K εT

(N M K )1/2C
X N MC3/2

( 1

X1/2 + 1

M1/2

)

= K εT

K 1/2 (X NC)1/2(X1/2 + M1/2).

(13.24)

Next we apply Poisson summation in n in residue classes modulo c which is sim-
pler than before because there is no exponential e(±2

√
nmr2/c). This transforms

J (2)
r (X , N , M, C, T ) into

K εT

(N M K )1/2C

∑
r1r2=r

1

(rr1)1/4
∑

�,m,c

χ�(m)N

∑
n∈Z

∑ ∗

γ (mod c)
r2γ̄≡−n (mod c)

e
(mγ

c

)
W1

( |�|
X

,
nN

C
,
m

M
,

c

C

)

for a weight function W1 that is compactly supported in the first, third and fourth
variable and rapidly decaying in the second. This term contains the same character
sum as in (13.9). By the same manipulation we obtain

J (2)
r (X , N , M, C, T ) = K εT N 1/2

(M K )1/2C

∑
r1δ1δ3δ4r2=r

(δ1δ3)
3/4μ(δ4)

(rr1r2δ4)1/4

∑
�,m,c

∑
n∈Z

(c,nr2δ3δ4)=1
δ1|c∞

χ�(mδ1δ3)e
(

− mr2nδ2

c

)

W1

( |�|
X

,
nδ1δ2N

C
,
mδ1

M
,

cδ1δ2
C

)
.

(13.25)

This is arithmetically analogous to (13.11) except that the roles of δ2n and c are
reversed in the exponential. This makes good sense since in generic ranges we have
c � K 1/2, n � K in (13.11), but c � K , n � K 1/2 in (13.25). The large sieve now
gives the bound

J (2)
r (X , N , M, C, T ) � K εT N 1/2

(M K )1/2C
X

C

N
MC

( 1√
X

+ 1√
M

)

= K εT X1/2C

(N K )1/2
(
√

X + √
M). (13.26)

123



A symplectic restriction problem 1403

Nextwe apply Poisson summation inm in residue classesmodulo |�|c. In the character
sum

∑
μ (mod c|�|)

χ�(μ)e
(μ(m − r2nδ2|�|)

c|�|
)

we decompose c = c1c2 where c1 | �∞, (c2,�) = 1. The character sum vanishes
unless c1c2 | mnδ2 − r2|�| in which case it equals

i
√|�|c1χ�

(
c2

m − r2nδ2|�|
c1

)
.

Estimating trivially at this point yields

J (2)
r (X , N , M, C, T ) � K ε T (M N )1/2C2X2

C(X K )1/2M N
= X3/2CT

(K N M)1/2

� X K 1/2+2η+ε (13.27)

by (13.23) and (13.2), matching the bound in (13.14). With the roles of c and n
reversed, we now want to make sure that n � C(Nδ1δ2)

−1 is large enough. By the
trivial bound (13.27) we can assume that n ≥ C(Nδ1δ2)

−1K −4η. Now combining
(13.27) and (13.24) we obtain

J (2)
r (X , N , M, C, T ) � K ε (C X)1/2T

K 1/2 min
( XC1/2

(N M)1/2
, (N X)1/2 + (N M)1/2

)

≤ K ε T XC1/2

K 1/2 (N 1/2 + C1/4).

Combining (13.27) and (13.26) we obtain

J (2)
r (X , N , M, C, T ) � K ε CT X1/2

(M N K )1/2
min(

√
M X + M, X) � K ε CT X

(N K )1/2
.

Combining the previous two bounds, we obtain

J (2)
r (X , N , M, C, T ) � K ε T XC3/4

K 1/2 = K ε T X N 3/4

K 1/2

( C

N

)3/4 � X K 1/4+ε
( C

N

)3/4

by (13.4) and (13.3). This is acceptable unless

C/N ≥ K 1/3−2η and C ≥ K 2/3−2η

which we assume from now on, so that in particular n � C(Nδ1δ2)K −4η �
N 1/3−10η. By the same argument as in the previous subsection we can now extract
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1404 V. Blomer, A. Corbett

certain square classes in the n-sum and then save from the Pólya-Vinogradov inequal-
ity. In effect, we replace the factor C from a trivial bound of the c2-sum by a factor
K O(η)

√
N/C of the square root of the conductor of c2 �→ ( n

c2
). This leads to the final

bound

J (2)
r (X , N , M, C, T ) � K O(η) X3/2T

√
N/C

(K N M)1/2
≤ K O(η) X3/2T

K 1/2C1/2 � X K 1/6+O(η)

by (13.2), (13.3) and our assumption C ≥ K 2/3−2η. This is in agreement with (13.1)
and completes the analysis of the the second diagonal off-diagonal term, hence the
analysis of the complete diagonal term.

14 The off-diagonal term

14.1 Initial steps

We return to (11.3) and analyze the off-diagonal term in Lemma 6 applied to the h-
sum. Here we are only interested in upper bounds, so dropping all numerical constants
it suffices to estimate

1

K 2

∑
k∈2N

W

(
k

K

) ∑
(n,m)=1
n,m≤K η

μ(n)μ2(m)

n3/2m3

∞∫

−∞

∗∫

� ev

ω(tu)
∑

f1, f2,D1,D2

∑
d1|d2|n

(d1d2)2|n2D2

(
d1
d2

)1/2

χD2

(d2
d1

) P(D1;u)P(D2;u)

f1 f2|D1D2|3/4
( |D2| f 22

|D1| f 21

)i t
i k

∑
c

K +
κ (|D1|, |D2|n2/(d1d2)2, c)

c
Jk−3/2

(4π√|D1D2|n
cd1d2

)

Vt (|D1D2|( f1 f2)
2; k, tu)du dt,

and our target bound is K −η. We recall that Vt (x, k, τ ) was defined in (6.7) and
besides the decay properties it is important to note that Vt (x, k, τ ) is holomorphic in,
say, |
τ | ≤ 1. Since we want to apply the trace formula (Theorem 18) to the spectral
sum later, we must not destroy holomorphicity in the third variable.

As in Sect. 11 we write d2 = d1δ, n = d1δν. Then d2
1 | ν2D2 and d2

1 | D2 since n is
squarefree. Again we write d1 = d and D2d2 in place of D2 and bound the preceding

123



A symplectic restriction problem 1405

display as

1

K 2

∑
dδν,m≤K η

μ2(dδνm)

d3δ2ν3/2m3

∣∣∣ ∑
k∈2N

W

(
k

K

) ∞∫

−∞

∗∫

� ev

ω(tu)

∑
f1, f2,D1,D2

χD2(δ)P(D1;u)P(D2d2;u)

f1 f2|D1D2|3/4
( |D2|(d f2)2

|D1| f 21

)i t
i k

∑
c

K +
3/2(|D1|, |D2|ν2, c)

c

Jk−3/2

(4π√|D1D2|ν
c

)
Vt (|D1D2|(d f1 f2)

2; k, tu)du dt
∣∣∣.

We sum over k using Lemma 20 and open the Kloosterman sum. As in Sect. 10.2, up
to a negligible error we obtain the upper bound

∑
dδν,m≤K η

∑
4|c

∑
f1, f2

μ2(dδνm)

d3δ2ν3/2m3c f1 f2
max

γ (mod c)
(γ,c)=1

|Ioff(K )|

where Ioff(K ) = Ioff
d,δ,ν,m,c, f1, f2,γ

(K ) is given by

Ioff(K ) = 1

K 2

∞∫

−∞

∗∫

� ev

ω(tu)
∑

D1,D2

χD2(δ)P(D1;u)P(D2d2;u)

|D1D2|3/4
( |D2|(d f2)2

|D1| f 21

)i t

e
( |D1|γ + |D2|ν2γ̄

c

)
e
(

± 2
√|D1D2|ν

c

)

Ṽ
(
|D1D2|(d f1 f2)

2,

√|D1D2|ν
c

, t, tu
)

du dt;

here Ṽ satisfies (10.2) and is holomorphic in |
tu| ≤ 1. The bounds contained in (10.2)
imply in particular c, f1, f2 ≤ K η up to a negligible error. For notation simplicity we
consider only the plus-case, the minus case being entirely similar.

As in Sect. 11 we start with a Voronoi step, but in the present situation (since we
have already excluded the constant function that requires a very careful treatment) we
can afford to lose small powers of K on the way. We introduce the notation

A � B :⇐⇒ A � K cη B

for some constant c, not necessarily the same on every occasion. We always assume
that η is sufficiently small.

To begin with, we integrate over t which by the properties of (10.2) induces the
condition |D1| f 21 − |D2|(d f2)2 � K 1/2 up to a negligible error. This now implies
K 2 � D1, D2 � K 2, up to a negligible error. In Ṽ we can separate the variables
D1, D2 from tu by Mellin inversion (keeping holomorphicity in tu). Since Ṽ is of size
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K −1/2 and we also get a factor K 1/2 from the t-integration, we are left with bounding

Ĩoff(K ) = 1

K 2

∗∫

� ev

�(tu)
∑

D1,D2

χD2(δ)P(D1;u)P(D2d2;u)

|D1D2|3/4 V1

( |D1|
K 2

)
V2

( |D2|
K 2

)

V3

(
K 1/2 log

|D2|(d f2)2

|D1| f 21

)
e
( |D1|γ + |D2|ν2γ̄

c

)
e
(2√|D1D2|ν

c

)
du

where V1, V2 have support in [K −O(η), K O(η)] with Sobolev norms bounded by � 1,
V3 is rapidly decaying, and �(τ) is holomorphic in |
τ | ≤ 1, satisfies the conditions
(11.2) and is non-negligible only in the range K 1/2 � |τ | � K 1/2.

14.2 Metaplectic Voronoi summation

We now consider the D1-sum

∑
D1

P(D1;u)P(D2d2;u)

|D1D2|3/4 V1

( |D1|
K 2

)

V3

(
K 1/2 log

|D2|(d f2)2

|D1| f 21

)
e
( |D1|γ

c

)
e
(2√|D1D2|ν

c

)
(14.1)

and insert (4.8) with t = tu/2 if u is cuspidal and (4.11) if u = E(., 1/2 + i tu) is
Eisenstein. For clarity we recall that

P(D1;u)P(D2d2;u)

|D1D2|3/4 = d1/2

|D1|1/2|D2|3/4

×
{

b(D1)
√|D1|A(D2d2,u), u cuspidal,

L(D1, 1/2 + i tu)|D1|i tu/2A(D2,u), u = E(., 1/2 + i tu),

where

A(D,u) =

⎧⎪⎪⎨
⎪⎪⎩

3

π
L(u, 1/2)�

(1
4

+ i tu
2

)
�

(1
4

− i tu
2

)
b(D)

√|D|, u cuspidal,

ζ(1/2 + i tu)ζ(1/2 − i tu)L(D, 1/2 − i tu)|D|−i tu/2

2|ζ(1 + 2i tu)|2 , u = E(., 1/2 + i tu).

Even though the normalization in the cuspidal and the Eisenstein case is quite different,
the Voronoi formulae in Lemma 10 (with r = tu/2) and 11 (with t = tu/2) can deal
in the same fashion with the sums

∑
D1<0

{
b(D1)

√|D1|
L(D1, 1/2 + i tu)|D1|i tu/2

}
e
( |D1|γ

c

)
φ(D1) (14.2)
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with

φ(x) = 1

|x |1/2 V1

( |x |
K 2

)
V3

(
K 1/2 log

|D2|(d f2)2

|x | f 21

)
e
(2√|x D2|ν

c

)

for x < 0 and φ(x) = 0 for x > 0. It is easy to see that with this choice of φ and
for t � K 1/2+ε the two polar terms in Lemma 11 are negligible, due to the strong
oscillatory behaviour of the exponential e(±2

√|x D2|ν/c) for K 2 � x, D2 � K 2,
c � 1. By the same argument as in Sect. 10.4, see in particular (10.9), the terms with
D > 0 on the right hand side of the Voronoi summation formula are negligible. Hence,
up to a negligible error, (14.2) becomes

(−c

γ

)
εγ e(1/8)

2π

c

∑
D1<0

{
b(D1)

√|D1|
L(D1, 1/2 + i tu)|D1|i tu/2

}
e
(

− |D1|γ̄
c

) ∞∫

0

V1

( |x |
K 2

)

∑
±

(∓)
cos(π/4 ± π i tu/2)

sin(π i tu)
J±i tu

(4π√|D1x |
c

)

V3

(
K 1/2 log

|D2|(d f2)2

|x | f 21

)
e
(2√|x D2|ν

c

) dx

x1/2
.

Using (9.7) we approximate the Bessel J -function for tu � K 1/2+ε by an exponential
and replace up to a negligible error the preceding display by

(−c

γ

)
εγ e(1/8)

2π

c

∑
D1<0

{
b(D1)

√|D1|
L(D1, 1/2 + i tu)|D1|i tu/2

}

e
(

− |D1|γ̄
c

) ∑
±

∞∫

0

c1/2

|D1|1/4 V1

( |x |
K 2

)

f ±(2√|D1x |
c

, tu
)

V3

(
K 1/2 log

|D2|(d f2)2

|x | f 21

)
e
(2√|x D2|ν ± 2

√|D1x |
c

) dx

x3/4

with

f ±(x, τ ) = 1

2π

n−1∑
k=0

i k(±1)k

(4πx)k

�(iτ + k + 1/2)

k!�(iτ − k + 1/2)

for n sufficiently large, but fixed. In particular f ± satisfies (10.10), and we see from
the asymptotic expansion (9.7) that f ± is holomorphic in the second variable in, say,
|
τ | < 1. For notational simplicity we consider only the leading term k = 0, the lower
order terms being completely analogous (but easier).
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We restore the periods P(D;u), so that the leading term of (14.1) has the shape

∑
±

(−c

γ

)
εγ e(1/8)

2π

c1/2
∑

D1<0

P(D1;u)P(D2d2;u)

|D2|3/4|D1|1/2 e
(

− |D1|γ̄
c

) 1

2π

∞∫

0

V1

( |x |
K 2

)

V3

(
K 1/2 log

|D2|(d f2)2

|x | f 21

)
e
(2√|x D2|ν ± 2

√|D1x |
c

) dx

x3/4

with lower order terms of similar form. Recall that K 2 � D2 � K 2. Integrating
by parts, we see as in (10.12)–(10.13) that only the minus-term in the exponential is
relevant (the plus-term is negligible) and the x-integral restricts to

√|D2|ν−√|D1| �
K −1/2. We therefore introduce a new variable h ∈ Z by

|D1| = |D2|ν2 + h

with h � K 1/2. Changing variables in the x-integral, we obtain

(−c

γ

)
εγ e(1/8)

1

c1/2
∑

h�K 1/2

P(−|D2|ν2 − h,u)P(D2d2;u)

|D2|1/2(|D2|ν2 + h)1/2
e
(

− (|D2|ν2 + h)γ̄

c

)

∞∫

0

V1

( |x D2|
K 2

)
V3

(
K 1/2 log

(d f2)2

|x | f 21

)
e
(2√x D2(

√|D2|ν − √
(|D2|ν2 + h))

c

) dx

x3/4

where h is restricted to numbers such that −(|D2|ν2 + h) is a negative discriminant.
The weight function V3 forces x � 1 and more precisely

x − (d f2/ f1)
2 � K −1/2. (14.3)

By a Taylor expansion we can write

e
(2√x |D2|(√|D2|ν − √

(|D2|ν2 + h))

c

)
= e

(
−

√
xh

cν

)
F(D2)

where

F(D) = Fx,h,ν,c(D) = 1 + iπ
√

xh2

2|D|ν3c
− iπ

√
xh3

4|D|2ν5c
+ · · ·

Again we only keep the leading term (the lower order terms being similar, but easier).
We substitute all of this back into Ĩoff(K ) and pull the x-integration outside which is
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subject to (14.3), in particular x � 1. In this way we see that it suffices to bound

Ioff
1 (K )

:= 1

K 5/2

∗∫

� ev

�(tu)
∑
D2

∑
h�K 1/2

P(−|D2|ν2 − h,u)P(D2d2;u)

|D2|1/2(|D2|ν2 + h)1/2
χD2(δ)

Vx

( |D2|
K 2

)
e
(

− hγ̄

c
−

√
xh

cν

)
du

(14.4)

where Vx (z) = V2(z)V1(xz), uniformly in

x, ν, c, δ, d � 1, (γ, c) = 1.

A trivial bound using Cauchy-Schwarz and Proposition 4 gives Ioff
1 (K ) � 1, as in

Section 10. In order to make progress and get additional savings, we must now treat
the u-integral non-trivially. This is where the trace formula has its appearance.

14.3 Application of the trace formula

We now apply Theorem 18 to the spectral expression

∗∫

� ev

�(tu)
P(−|D2|ν2 − h,u)P(D2d2;u)

|D2|1/4(|D2|ν2 + h)1/4
du

=
∫

� ev

�(tu)
P(−|D2|ν2 − h,u)P(D2d2;u)

|D2|1/4(|D2|ν2 + h)1/4
du − 3

π

H(D2d2)H(−|D2|ν2 − h)

|D2|1/4(|D2|ν2 + h)1/4
�(i/2).

We discuss the four terms on the right hand side of the trace formula.
(1) The class number term gets immediately cancelled.
(2) The t-integral in the polar term is rapidly decaying and by a Burgess-type

subconvexity bound L(D, 1/2 + i t) � |D|3/16+ε(|1 + |t |)10, say, its contribution to
(14.4) is at most12

� 1

K 5/2

∑
D2�K 2

∑
h�K 1/2

1

|D2|1/16(|D2|ν2 + h)1/16
� K −1/4.

(3) For the diagonal term we observe that
∑

m m−1
∫ |�(t)Wt (rnvm)t |dt � K

uniformly in n, r , v by (9.17). If the fundamental discriminants underlying D2d2 and
−|D2|ν2 − h coincide, we have at most � K 1/4 choices for h (in most cases much

12 Of course, instead of subconvexity, we could also used mean value bounds on average over D2 to get
an even stronger saving.
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1410 V. Blomer, A. Corbett

fewer), so the diagonal term contributes at most

� 1

K 5/2
K

∑
D2�K 2

K 1/4

|D2|1/2 � K −1/4

to (14.4).
(4) It remains to deal with the fourth term, and to this end we write D2 = �2 f2

with a fundamental discriminant �2. Then the Kloosterman term can be bounded by

Ioff,off
1 (K ) = 1

K 5/2

∑
h�K 1/2

∣∣∣ ∑
D2=�2 f 22

χD2(δ)

|D2|1/4(|D2|ν2 + h)1/4
Vx

( |D2|
K 2

)

∑
d1rτvw= f2

∑
n,c,m

e
(

− hγ̄

c

)

μ(d1)μ(v)χ�2(d1vmτ)√
d1rnτvm

K +
3/2(|�2|(vwn)2, |D2|ν2 + h, c)

c

×
∞∫

−∞

F(4πvwn
√|�2|(|D2|ν2 + h)/c, t, 1/2)

cosh(π t)
�(t)Wt (rnvm)t

dt

π

∣∣∣.

(Here we exchanged the roles of D1 and D2 in Theorem 18.) The general strategy
is now as follows: We evaluate the t-integral by Lemma 21. The application of the
trace formula was a gambit in the sense that the trivial bound is now only � K 1/2.
It is not immediately clear how to make further progress. By using suitable Taylor
expansions we observe the lucky coincidence that we obtain rational phases in the
exponentials. We are then ready to apply Poisson summation in the long �2-sum
which will eventually give enough savings. We now make these ideas precise.

We recall that � satisfies the conditions stated in (11.2) and is negligible for |t | �
K 1/2+ε. The n, m-sum is absolutely convergent by (9.17), and we can truncate it at
rnvm � K 1/2 at the cost of a negligible error. We split the n, m-sum into dyadic
ranges N ≤ n ≤ 2N , M ≤ m ≤ 2M where

N M � (rv)−1K 1/2. (14.5)

By the remark after Theorem 18 and the properties of�, the integrand of the t-integral
is holomorphic in, say, |
t | < 2/3, so by contour shifts, Weil’s bound (1.9) and the
power series expansion of the Bessel J -function we see that the c-sum is absolutely
convergent and can be truncated at c � K 106 , say, at the cost of a negligible error.
Having truncated the c-sum in this very coarse way, we can sacrifice holomorphicity
and include a smooth partition of unity into the t-integral, where a typical portion is
weighted by w(|t |/T ) with a smooth compactly function w localizing |t | � T with
K 1/2−2η � T � K 1/2+ε. We apply Lemma 21a) to evaluate asymptotically the t-
integral which in particular restricts the size of c. Splitting also the c-sum into dyadic
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ranges c � C , we can assume, up to a negligible error,

C � vwn
√|�2|(|D2|ν2 + h)

T 2 � K N

d1rτ
. (14.6)

Having recorded these conditions, we can write the t-integral (as usual, up to a negli-
gible error) as

∑
±

T 2c1/2√
vwn|�2|1/4(|D2|ν2 + h)1/4

e
(

± 2vwn
√|�2|(|D2|ν2 + h)

c

)

H±(2vwn
√|�2|(|D2|ν2 + h)

c

)

for a flat function H , i.e. x j d j

dx j H±(x) � j 1 for j ∈ N0. Substituting back, it remains
to bound

1

K 3/2

∑
h�K 1/2

∑
d1,r ,τ,v,w

∑
n�N
m�M

∑
c�C

∣∣∣ ∑
�2

χD2(δ)

|D2|1/2(|D2|ν2 + h)1/2
Vx

( |D2|
K 2

)χ�2(d1vmτ)

nvm

K +
3/2(|�2|(vwn)2, |D2|ν2 + h, c)

c1/2
e
(

± 2vwn
√|�2|(|D2|ν2 + h)

c

)

H±(2vwn
√|�2|(|D2|ν2 + h)

c

)∣∣∣.

(14.7)

where for given r , v, d1, τ the parameters N , M, C are subject to (14.5) and (14.6)
and D2 = �2(d1rτvw)2. Estimating trivially at this point using the Weil bound (1.9),
we obtain the bound

� 1

K 3/2 K 1/2C � K 1/2. (14.8)

We see that applying the trace formula was a gambit in the sense that the trivial bound
is now roughly a factor K 1/2 off our target. On the other hand, all automorphic infor-
mation is now gone, and we may hope to get enough saving from the long character
sums. In particular, we can assume that C ≥ K 1−aη for some sufficiently large con-
stant a, otherwise the trivial bound (14.8) suffices. For such C , we can use a Taylor
expansion

e
(

± 2vwn
√|�2|(|D2|ν2 + h)

c

)
= e

(
± 2vwn|�2d1rτvwν

c
± vwnh

d1rτvwνc

)
�(�2)

with

�(�) − 1 � nh2

c|D2| � K −3/2
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1412 V. Blomer, A. Corbett

in the current range of variables. The error term contributes� K −1 to (14.7). Similarly,
we also have

H±(2vwn
√|�2|(|D2|ν2 + h)/c)

|D2|1/2(|D2|ν2 + h)1/2
= H±(2vwn|�2|d1rτvwν/c)

|D2|ν + O
( h

|D2|2
)

and again the error term contributes � K −1 to (14.7). Defining Ṽx (z) = z−1Vx (z),
we are left with bounding

1

K 7/2

∑
h�K 1/2

∑
(d1rτvw,δ)=1

∑
n�N
m�M

∑
c�C

∣∣∣∑
�2

Ṽx

( |�2|(d1rτvw)2

K 2

)χ�2(δd1vmτ)

nvmc1/2

K +
3/2(|�2|(vwn)2, |�2|(d1rτvwν)2 + h, c)e

(
± 2(vw)2n|�2|d1rτν

c

)

H±(2(vw)2n|�2|d1rτν

c

)∣∣∣.

Note the very fortunate fact that the algebraic phase e(±2vwn
√|�2|(|D2|ν2 + h)/c)

in (14.7) has become a rational phase. As usual, the�2-sum runs over negative funda-
mental discriminants, and we split the sum into residue classes�2 ≡ 1, 5, 8, 9, 12, 13
(mod 16) and insert a factor μ2(�2/α) with α ∈ {1, 4} to detect squarefreeness. For
notational simplicity let us treat the case of odd �, the case of even � being similar.
Using the well-known convolution formula for μ2, this leaves us with bounding

1

K 7/2

∑
h�K 1/2

∑
(d1rτvw,δ)=1

∑
(d2,δd1vmτ)=1

∑
n�N
m�M

∑
c�C

1

vnmc1/2

∣∣∣ ∑
�2

ψ(�2)Ṽx

( |�2|(d2d1rτvw)2

K 2

)( �2

δd1vmτ

)

K +
3/2(|�2|(d2vwn)2, |�2|(d2d1rτvwν)2 + h, c)

e
(

± 2(vw)2nd2
2 |�2|d1rτν

c

)
H±(2(vwd2)2n|�2|d1rτν

c

)∣∣∣.

(14.9)

for a character ψ modulo 4. Recall that the Kloosterman sum is nonzero only if 4 | c.
Estimating trivially at this point (using (1.9)), we can assume that

d2d1rτvw � C/K � K 1/2

by (14.6) and (14.5), the remaining portion being O(K −η) if the K O(η) factor in the
previous � sign is sufficiently large. We now open the Kloosterman sum and apply
Poisson summation in �2 in residue classes modulo cδd1vmτ . If D denotes the dual
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variable, this yields the character sum

∑
�2 (mod cδd1vmτ)

ψ(�2)
( �2

δd1vmτ

)
e
(

± 2(vw)2nd2
2 |�2|d1rτν

c

)

∑
γ (mod c)
(γ,c)=1

ε2κγ

(
c

γ

)
e

( |�2|(d2vwn)2γ + (|�2|(d2d1rτvwν)2 + h)γ̄

c

)
e
( �2D

cδd1vmτ

)
.

(14.10)

We write c = c1c2 where (c1, 2δd1vmτ) = 1 and c2 | (2δd1vmτ)∞. Then both sums
split off a sum modulo c1 given by

∑
�2 (mod c1)

e
(

± 2(vw)2nd2
2 |�2|d1rτνc̄2
c1

)

∑
γ (mod c1)
(γ,c1)=1

(
γ

c1

)
e

(
(|�2|(d2vwn)2γ + (|�2|(d2d1rτvwν)2 + h)γ̄ )c̄2

c1

)
e
(�2Dc2δd1vmτ

c1

)
,

cf. [40, Lemma 2] for the treatment of the theta-multiplier. Summing over �2 bounds
this double sum modulo c1 by

≤ c1#{γ ∈ (Z/c1Z1)
∗ | (d2vwn)2γ + (d2d1rτvwν)2γ̄

± 2(vw)2nd2
2d1rτν + Dδd1vmτ = 0}

�ε c1+ε
1 (c1, (d2vwn, d2d1rτvwν)2).

We estimate the remaining part of the character sum (14.10) trivially by c22δd1vmτ .
By the properties of the (essentially non-oscillating) weight functions Ṽx and H±, the
dual variable D can be truncated at

D � cδd1vmτ

K 2/(d2d1rτvw)2
,

and so the �2-sum in (14.9) can be bounded by

�
( K 2/(d2d1rτvw)2

cδd1vmτ
+ 1

)
c1+ε(c1, (d2vwn, d2d1rτvwν)2)c2δd1vmτ

=
( K 2cε

(d2d1rτvw)2
+ c1+εδd1vmτ

)(
c, (d2w)2(n, rν)2(2δd1vmτ)∞

)

using the notation explained in Sect. 1.5. The first term in the first parenthesis accounts
for the zero frequency in the Poisson summation formula. We substitute this back into
(14.9) getting the (generous) upper bound
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1414 V. Blomer, A. Corbett

� 1

K 3

∑
d2d1rτvw�K 1/2

∑
n�N
m�M

∑
c�C

(c, (2d2d1rτvwnm)∞)

vnmc1/2

( K 2cε

(d2d1rτvw)2
+ c1+εd1vmτ

)
.

(14.11)

Here we dropped the variable δ � 1. The rest is book-keeping. By Rankin’s trick we
have

∑
c�C

(c, x∞) � C
∑
d�C
d|x∞

1 � C
∑
d|x∞

(C

d

)ε � C(Cx)ε

for every ε > 0 and x ∈ N. Using (14.6) and (14.5), the bound (14.11) becomes

� 1

K 3

∑
d2d1rτvw�K 1/2

C1/2

v

( K 2

(d2d1rτvw)2
+ C Md1vτ

)

� 1

K 3

∑
d2d1rτvw�K 1/2

(K N )1/2

(d1rτ)1/2v

( K 2

(d2d1rτvw)2
+ K N Mv

r

)

� 1

K 3

∑
d2d1rτvw�K 1/2

K 3/4

(d1r2vτ)1/2

( K 2

v(d2d1rτvw)2
+ K 3/2

r2v

)
� K −1/4.

This is the desired power saving and completes the proof of Theorem 2.
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Appendix A: A period formula on average

In order to verify the constant 1/4 in the period formula (4.10), we take a large
parameter T , a very small ε > 0 and consider the two averages

A1(T ) =
∑

u

L(u, 1/2)L(u × χ�, 1/2)

L(sym2u, 1)
hT ,ε(tu)

and

A2(T ) =
∑

u

|P(�, u)|2√|�| hT ,ε(tu)

for a (fixed) negative fundamental discriminant�with class number 1 (for simplicity)
and

hT ,ε(t) = t2 + 1/4

T 2 exp
(

−
( t − T

T 1−ε

)2 −
( t + T

T 1−ε

)2)
.

The computation is relatively standard, sowe can be brief. Using the same approximate
functional equation as in (4.14) we have

L(u, 1/2) = 2
∑

n

λu(n)

n1/2 W +
tu (n), L(u × χ�, 1/2) = 2

∑
m

λu(m)χ�(m)

m1/2 W −
tu

( m

|�|
)

for even u with Wt as in (4.15). For odd u, each summand in A1(T ) vanishes. This
gives

A1(T ) = 4
∑
nm

χ�(m)√
nm

∑
u even

λu(n)λu(m)

L(sym2u, 1)
Vtu (n)Wtu (m)hT ,ε(tu).

To make this spectrally complete, we artificially add the corresponding Eisenstein
contribution

4
∑
nm

χ�(m)√
nm

∞∫

−∞

ρi t (n)ρ−i t (m)

|ζ(1 + 2i t)|2 W +
t (n)W −

t

( m

|�|
)

hT ,ε(t)
dt

2π
.

Using (4.16), this can bewritten in terms ofmoments of the Riemann zeta function and
Dirichlet L-functions. By standard mean value bounds the contribution is O(T 1+ε)

(recall that � is fixed). We apply the Kuznetsov formula for the even spectrum given
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1416 V. Blomer, A. Corbett

in Lemma 7. In this way we get a main term

4
∑
nm

χ�(n)

n

∞∫

−∞
W +

t (n)W −
t (n)hT ,ε(t)t tanh(π t)

dt

4π2

=
∞∫

−∞
hT ,ε(t)

∫

(2)

∫

(2)

∏
±

�(1/2 + s1 ± i tu)

�(1/2 ± i tu)π s1s1

�(3/2 + s2 ± i tu)

�(3/2 ± i tu)π s2s2

|�|s2 L(χ�, 1 + s1 + s2)e
s22+s21

ds1 ds2
(2π i)2

t tanh(π t)
dt

π2 .

We shift the s1, s2-contour to real part −1/4, obtaining

L(χ�, 1)

∞∫

−∞
hT ,ε(t)t tanh(π t)

dt

π2 + O(T 7/4+ε) (A.1)

with main term� T 2−ε. It remains to deal with the off-diagonal terms in (3.5) and we
briefly sketch why both of them are negligible. By (9.17) we can restrict n, m � T 1+ε

at the cost of a negligible error. The first off-diagonal term contributes a term of the
shape

∑
nm

χ�(m)√
nm

∑
c

S(n, m, c)

c

∞∫

−∞
J2i t

(
4π

√
nm

c

)
W +

t (n)W −
t (m)hT ,ε(tu)t

dt

cosh(π t)
.

By Lemma 21, the t-integral is negligible unless c ≤ √
nmT −2+ε which does not

happen for n, m � T 1+ε. The second off-diagonal term contributes a term of the
shape

∑
nm

χ�(m)√
nm

∑
c

S(n, m, c)

c

∞∫

−∞
K2i t

(
4π

√
nm

c

)
Vt (n)Wt (m)hT ,ε(tu) sinh(π t)t dt .

Again by Lemma 21, up to a small error the t-integral is negligible unless c ≤√
nmT −1+ε in which case it is essentially non-oscillating in n, m, so we can restrict

to n, m = T 1+o(1), c � T ε. Poisson summation in the m-variable now shows that the
entire expression is negligible, since χ� is a non-trivial character.

We continue with the analysis of A2(T ). Since we assume class number 1, we have

A2(T ) = 1√
�ε2�

∑
u

|u(z�)|2hT ,ε(tu)

where z� is the uniqueHeegner point (modulo�) and ε� ∈ {1, 2, 3} is half the number
of roots of unity inQ(

√
�).We artificially add the constant function and the Eisenstein
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series at a cost of O(T ) and apply the pre-trace formula for the entire spectrum–for
odd u we have u(z�) = 0 automatically. This gives

A2(T ) = 1√
�ε2�

∑
γ∈�

k(γ z�, z�) + O(T )

where

k(z, w) = 1

4π

∞∫

−∞
F(1/2 + i t, 1/2 − i t, 1,−v)hT ,ε(t) tanh(π t)t dt,

v = v(z, w) = |z − w|2
4
z
w

.

The stabilizer of z� contributes

1√
�ε�

· 1

4π

∞∫

−∞
hT ,ε(t) tanh(π t)t dt . (A.2)

It is easy to see that u(γ z, z) ≤ δ implies ‖γ ‖ � √
δ + 1, cf. e.g. [45, (A.7) with

n = 1]. From [43, (1.64)] we see that k(z, w) is negligible as soon as u � T ε−2,
so that the contribution of all matrices not in the stabilizer is negligible. Combining
(A.1), (A.2) and the class number formula in the case h� = 1, we obtain

A2(T ) ∼ 1

4
A1(T ), T → ∞

in accordance with (4.10).

Appendix B: A Dirichlet series with Hurwitz class numbers

The aim of this section is an analysis of the L-function

L+(s, a/c) =
∑
D<0

H(D)e(a|D|/c)

|D|1/4+s

for 4 | c, (a, c) = 1. As before, H(D) denotes the Hurwitz class number, and the
series converges absolutely in �s > 5/4. The results may be known to specialists, but
do not seem to be in the literature and may be of independent interest. We recall the
notation (1.8).

Lemma 26 Let c > 0, 4 | c, (a, c) = 1. The Dirichlet series L+(s, a/c) has mero-
morphic continuation to all C. It has two simple poles at s = 5/4, s = 3/4 (and no
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other poles) with residues

res
s=5/4

L+(s, a/c) = −
√
2π

3c3/2

(−c

a

)
ε̄ae(3/8),

res
s=3/4

L+(s, a/c) = 1√
8c1/2

(−c

a

)
ε̄ae(3/8).

Proof We recall the definition of H(z) in (5.4) and compute

I(s, a/c) :=
∞∫

0

(
H(a/c + iy) − (c1y3/4 + c2y1/4)

)
ys−1/2 dy

y
(B.1)

with c1 = −(4π)3/4/12, c2 = 1/(
√
8π1/4) in two ways. Let

L−(s, a/c) = 1

4
√

π

∞∑
n=1

e(−an2/c)

n2s−1/2 .

This L-function is obviously holomorphic in�s > 3/4. It has a simple pole at s = 3/4
with residue

res
s=3/4

L−(s, a/c) = 1

4
√

π

1

2c

∑
n (mod c)

e
(

− an2

c

)

= 1

4
√

π
(1 + i)ε̄−a

(
c

−a

)
1

2
√

c
, (B.2)

and it has a functional equation

L−(s, a/c) =
( c

2π

)1−2s
(−c

−a

)
ε−ae(1/8)

�(3/4 − s)

�(s − 1/4)
L−(1 − s,−ā/c). (B.3)

This follows from the corresponding properties of Hurwitz zeta function and standard
computations with Gauß sums (or the transformation behaviour of one-dimensional
theta series). In particular we obtain the analytic continuation of L−(s, a/c) to all of
C with only a simple pole at s = 3/4. Moreover, L−(s, a/c) = 0 for s = 1/4 − n,
n = 1, 2, 3 . . ..

Returning to (B.1), we have

I(s, a/c) = L+(s, a/c)G3/4(s) + L−(s, a/c)G−3/4(s) (B.4)

where

Gc(s) =
∞∫

0

Wc,1/4(4π y)ys−1/2 dy

y
.
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Since W3/4,1/4(x) = e−x/2x3/4, we can explicitly compute

G3/4(s) = 2s+1/4(4π)1/2−s�(s + 1/4). (B.5)

For the analysis of G−3/4, we combine [33, 7.621.3, 9.131.1, 9.111] to obtain

G−3/4(s) = (4π)1/2−s �(s − 1/4)�(s + 1/4)

�(s + 5/4)
F(s + 1/4, s − 1/4, s + 5/4; 1/2)

= (4π)1/2−s�(s − 1/4)

1∫

0

t s−3/4(1 − t/2)1/4−sdt .

In particular, by repeated partial integration in the t-integral we see that G−3/4(s) is
meromorphic with simple poles at most at s = (2n + 1)/4, for integers n ≤ 0. From
[33, 9.121.24] we get

G−3/4(3/4) = 2(
√
2 − 1)π1/4. (B.6)

On the other hand, we may complete the pair (a, c) to a matrix ( a b
c d ) ∈ �0(4).

Then

H(z) = H
(

dz − b

−cz + a

) (−c

a

)
ε̄a

( −cz + a

| − cz + a|
)−3/2

,

in particular

H
(a

c
+ iy

)
= H

(
−d

c
+ i

c2y

)(−c

a

)
ε̄ae(3/8).

Splitting the integral in (B.1) into
∫ 1/c
0 and

∫ ∞
1/c and applying the functional equation

in the former, we obtain

I(s, a/c)

= c1−2s
(−c

a

)
ε̄ae(3/8)

∞∫

1/c

(
H

(
−d

c
+ iy

)
− (c1y3/4 + c2y1/4)

)
y−s+1/2 dy

y

− c1c−s−1/4

s + 1/4
− c2c−s+1/4

s − 1/4

+ c1−2s
(−c

a

)
ε̄ae(3/8)

(c1cs−5/4

s − 5/4
+ c2cs−3/4

s − 3/4

)

+
∞∫

1/c

(
H(a/c + iy) − (c1y3/4 + c2y1/4)

)
ys−1/2 dy

y
.

(B.7)
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This establishes the analytic continuation of I(s, a/c) to all of C except for poles at
s = 5/4, 3/4, 1/4,−1/4. From the preceding analysis we conclude the meromorphic
continuation of L+(s, a/c) as a function of finite order with possible poles at most
at 5/4, 3/4, 1/4. Since L−(s, a/c)G−3/4(s) is holomorphic at s = 5/4, we obtain
the formula for the residue at s = 5/4 from (B.4), (B.5) and (B.7). Using in addition
(B.2), (B.6), we obtain

res
s=3/4

L+(s, a/c) = π1/4

√
2c1/2

((−c

a

)
ε̄ae(3/8)

1√
8π1/4

−(
√
2 − 1)π1/4 1

4
√

π
(1 + i)ε̄−a

(
c

−a

))

which confirms the residue formula at s = 3/4, since ε̄−a( c
−a ) = (−i)(−c

a )ε̄a . Simi-
larly, using also (B.3) and the simple formula F(1/2, 0, 3/2; 1/2) = 1, we get

res
s=1/4

L+(s, a/c) = 1

2π3/4

(
− 1√

8π1/4
− √

8π1/4L−(1/4, a/c)
)

= 1

2π3/4

(
− 1√

8π1/4
+ √

8π1/4
( c

2π

)1/2
(−c

−a

)
ε−ae(1/8)

√
π

1

4
√

π
(1 + i)ε̄d

( c

d

) 1

2
√

c

)

with d ≡ −ā (mod c), which vanishes. ��

Remark: One can show that away from the two poles, the function L+(s, a/c)
satisfies the growth condition L+(s, a/c) ��s ((1 + |s|)c)max(0,5/4−�s,1−2�s)+ε.

Appendix C: A volume computation

In this appendix we justify (1.4) for a Saito–Kurokawa lift F ∈ S(2)
k associated with

a Hecke eigenform f ∈ S2k−2. Following [8, Sect. 2], we write its Fourier expansion
at Z = iY as

F(iY ) =
∑

T ∈P(Z)

α(T )(det 2T )
k
2− 3

4 e−2π tr(T Y ),

normalized such that α(T )2 = L( f × χ− det 2T , 1/2) if − det 2T is a fundamental
discriminant. In this case, ‖F‖ = (2π)−k�(k)k−1/4+o(1) by [8, (2.8)]. We conclude
that

F(Y ) := (det Y )k/2F(iY )

‖F‖2 = k1/4+o(1)
∑

T ∈P(Z)

α(T )

det(2T )3/4

(4π)k(det T Y )
k
2 e−2π tr(T Y )

�(k)
.
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The function

X �→ (4π)k(det X)k/2e−2π trX

�(k)

is invariant under conjugation, and for a diagonal matrix X = diag(x1, x2) it is negli-
gible unless x1, x2 = k/4π + O(

√
k log k), cf. [8, Sect. 4]. For large k, we conclude

that F(Y ) is negligible unless there exists T ∈ P(Z) such that the two eigenval-
ues of T Y are k/4π + O(

√
k log k). In particular, the essential support of F can be

restricted to matrices Y whose maximal eigenvalue λmax(Y ) satisfies λmax(Y ) � k.
Since |F | is invariant under Y �→ Y −1, its minimal eigenvalue λmin(Y ) must satisfy
λmin(Y ) � 1/k. The implied constants will not be relevant. As in (6.1), we write

Y = Y (r , x, y) = √
r

(
y−1 −xy−1

−xy−1 y−1(x2 + y2)

)

with x + iy ∈ �\H. Let Y be the set of such matrices Y with 1/k � λmin(Y ) ≤
λmax(Y ) � k.Without loss of generalitywemay assume thatY isMinkowski-reduced,
equivalently x + iy is in the standard fundamental domain |x | ≤ 1/2, x2 + y2 ≥ 1.
The two eigenvalues of Y are given by

√
r
1 + x2 + y2 ± √

(1 + x)2 + 2(x2 − 1)y2 + y4

2y
= √

r y±1(1 + O(1/y2)).

Thus we have

vol(Y) =
1/2∫

−1/2

∫ ∞
√
1−x2

∫

R

Y (r ,x,y)∈Y

dr

r

dy dx

y2
=

1/2∫

−1/2

∞∫
√
1−x2

(
4 log

k

y + O(y3)
+ O(1)

)dy dx

y2

= vol(SL2(Z)\H) · 4 log k + O(1),

as desired.
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