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Abstract

We study the limiting distribution of the rational points under a horizontal translation
along a sequence of expanding closed horocycles on the modular surface. Using spec-
tral methods we confirm equidistribution of these sample points for any translate when
the sequence of horocycles expands within a certain polynomial range. We show that
the equidistribution fails for generic translates and a slightly faster expanding rate. We
also prove both equidistribution and non-equidistribution results by obtaining explicit
limiting measures while allowing the sequence of horocycles to expand arbitrarily
fast. Similar results are also obtained for translates of primitive rational points.
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1 Introduction

Let {S,}nen be a sequence of “nice” subsets that become equidistributed in their
ambient space. Given a sequence of discrete subsets {R,},eny With R, C S,, an
interesting question is to study to what extent does the distribution behavior of { R, },en
mimic that of {S,},cn. One naturally expects that when the size of R, is relatively
large, it is more likely that { R, },en inherits some distribution property from {S, },en;
on the other hand if R, lies on S, sparsely, then it is more likely that points in { R, },eN
become decorrelated and distribute like random points on the ambient space.

In the setting of unipotent dynamics, the most typical example of a sequence {S, },en
is a sequence of expanding closed horocycles on a non-compact finite-area hyperbolic
surface M. More precisely, we can realize M as a quotient ['\IH where I" is a co-
finite Fuchsian subgroup and H = {z = x + iy € C : y > 0} is the Poincaré upper
half-plane, equipped with the hyperbolic metric ds = |dz|/y, where dz = dx + idy
is the complex line element. Up to conjugating by an appropriate isometry, we may
assume that M = I"\H has a width one cusp at infinity, that is, that the isotropy group
I'so < T is generated by the translation sending z € H to z 4 1. A closed horocycle
of height y > 0 is a closed set of the form

Hy :={T(x+iy):x e R/Z} C M,
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Translates of rational points along expanding closed horocycles... 657

and its period, i.e., its hyperbolic length, is y’1 . As'H, gets longer, thatis,as y — ot,it
becomes equidistributed on M with respect to the hyperbolic area du(z) = y~2dxdy.
The first effective version of this result is due to Sarnak [28] who, using spectral
arguments, proved that for every ¥ € C2°(I'\H) and any y > 0,

S Y (2)dpu(z)

0 (S(W)y*), 1.1
D + 0 (S(w)y*) (1.1)

1
/ Y(x +iy)dx =
0

where S is some Sobolev norm, and 0 < o < 1 is a constant depending on the first
non-trivial residual hyperbolic Laplacian eigenvalue of I'. In the case of the modular
surface SLy(Z)\H, o = %, while Zagier [32] observed that the Riemann hypothesis
is equivalent to the equidistribution rate O, (y*/47¢).

In this setting, this problem was first investigated by Hejhal in [12] with a heuristic
and numerical study of the value distribution of the sample points

F(%f+iy):05j§n—1 (12)

for some Hecke triangle groups I' = G, under the assumption that ny is small. Set

n—1

Sy,n,\ll(x) = Z“IJ (xni + iy) ,

j=0

where W is some mean-zero step function on a fixed fundamental domain for I'\H
(automorphically extended to H). The numerics show that the value distribution of
n-l/2s, y,w(x) with respect to x € [0, 1) approaches a Gaussian curve for the non-
arithmetic Hecke triangle groups G5 and G7, while this phenomenon breaks down for
G3 = PSLy(Z). Hejhal gave an explanation of this difference based on the existence
of Hecke operators on 3. The convergence to a Gaussian distribution for general
non-arithmetic Fuchsian groups was later confirmed by Strombergsson [30, Corollary
6.5], under the assumption that the sequence {y, },en decays sufficiently rapidly.

Other such problems have since been investigated. Marklof and Strombergsson [27]
proved the equidistribution of generic Kronecker sequences

{LGB+iy)eM:1=<j=nfCcM (1.3)
along a sequence of closed horocycles expanded at a certain rate y, on 71.M, the unit

tangent bundle of M. The equidistribution of Hecke points proved by Clozel-Ullmo
[4] (see also [3,10]) implies the equidistribution of the primitive rational points

[P(f+i)it1=j<n—1, gedGom =1}

at prime steps on the modular surface, see [10, Remark on p. 171]. More recently,
the equidistribution of the above sequence along the full sequence of positive integers
was proved by Einsiedler—Luethi—Shah [8] in a slightly more general setting, namely
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on the product of the unit tangent bundle of the modular surface and a torus. Various
sparse equidistribution results have also been obtained for expanding horospheres in
the space of lattices SL,, (R)/ SL,,(Z) forn > 3[7,9,22,23,26] and in Hilbert modular
surfaces [24].

For each of these equidistribution results, assumptions on the expanding rate of the
sequence {S, },eN are crucial; the discrete subsets {R,, },en lying on {S,},en can not
be too sparse.

This paper emerged from an attempt to prove a result which turned out to be false.
We consider the sparse equidistribution problem for the subset of rational points
(with denominator n) under a horizontal translation x € R/Z on a horocycle H,
on the modular surface; we denote this subset by R, (x, y,) (cf. (1.4)). We thought
that since the closed horocycles H, equidistribute as y — 0T, if we fix a sequence
{vn}nen approaching zero, then the normalized counting measures on R, (x, y,) (and
its primitive counterpart) should equidistribute for Lebesgue almostevery x asn — oo.
See the recent paper of Bersudsky [1, Theorem 1.5] for an analogue situation where
such a result is true. Note the order of quantifiers; we first fix the sequence {y, },en
and only then choose the horizontal translation x. It is not hard to see that if one flips
the quantifiers, for any fixed horizontal translation x, there are sequences {y,}neN
(approaching zero rapidly) such that equidistribution fails. We were very surprised to
learn though, that in stark contrast to our initial expectation, equidistribution fails. The
main novel result of this paper (Theorem 1.5) says that there are sequences {y,},eN
approaching zero arbitrarily fast such that for almost every horizontal translation x
the normalized counting measures R, (x, y,) and its primitive counterpart do not
equidistribute. In fact, we show the collection of limit measures contains the uniform
measure i aq, the zero measure and certain singular measures. Although these should
be considered as the main contribution of this paper, we also complement our analysis
with answering natural questions concerning sequences {y, },eN approaching zero in
a polynomial rate.

The next subsections describe more precisely the setting and results obtained.

1.1 Context of the present paper

LetI" = SL2(Z) and let M = I'\H be the modular surface. In this paper, generalizing
the setting of [8], we study the equidistribution problem for the sets of rational and
primitive rational points under an arbitrary horizontal translation x € R/Z along a
given sequence of expanding closed horocycles on M. The set of rational points is
the obvious choice of a sparse set with identical spacings, while primitive rational
points constitute the simplest pseudorandom sequence (via the linear congruential
generator). Forany n € N, x € R/Z and y > 0 we denote by

Rn(x,y):z{r(x+§+iy)em:05jgn—1} (14)
and respectively
R (x, y) = {r (x+£+iy) eHy:je(Z/nZ)X}, (1.5)

@ Springer



Translates of rational points along expanding closed horocycles... 659

the set of rational and respectively primitive rational points with denominator n on the
closed horocycle ‘H, translated to the right by x. As usual, (Z/nZ)> denotes here the
multiplicative group of integers modulo 7.

Let {y,}nen be a sequence of positive numbers such that y, — 0 as n — oco. We
investigate the limiting distribution of the sequences of sample points {R,, (X, yn)},en
and {R})" (x, y)}, . under various assumptions on the expanding rate of the sequence
of horocycles {H,, }en, or equivalently, the decay rate of {y;},en.

This problem is naturally easier when the sequence {y,},en decays slowly since
then at each step we have relatively more sample points on the underlying horocycle.
For instance, if ny, — oo as n — 00, the hyperbolic distance between two adjacent
points in R, (x, y,) decays to zero as n — 00. Since the points in R, (x, y,) distribute
evenly on H,,, the distribution behavior of R, (x, y,) then mimics that of #y, . In par-
ticular, for any x € R/Z the sequence {R,,(x, yu)},cn becomes equidistributed on M
with respect to the hyperbolic area p as n — oo, following from the equidistribution
of the sequence {Hy, },eN.

Regarding {Rgr (x, yn) }n S its distribution behavior is well understood when x =
0. Indeed, it was shown by Luethi [24] that if y, = ¢/n® for some ¢ > 0 and
some « € (0, 1), then RY (0, vn) becomes equidistributed on M with respect to u as
n — 00. Moreover, under the simple symmetry relation that for ged(j, n) = 1 and
y>0

F(f+iv)=r(-L+4). (1.6)

n<y

one can extend this equidistribution result to the range o € (1, 2); this improves the
previous work of Demirci Akarsu [5, Theorem 2] which confirms equdistribution of
(RE(0, ¢/n%)}pen for a € (%, 2). Here j € (Z/nZ)* denotes the multiplicative
inverse of j € (Z/nZ)*. The equidistribution for the case @ = 1 was later proved by
Einsiedler—Luethi—Shah [8]; Jana [ 16, Theorem 1] recently gave an alternative spectral
proof to this equidistribution result. We also mention that both [5, Theorem 2] and
[16, Theorem 1] are valid in the same setting as [8], namely, on the product of the unit
tangent bundle of the modular surface and a torus. When o« = 2 the equidistribution
fails as the aforementioned symmetry implies that R} (0, c/n?) = R (0, 1/c) is
always trapped in the closed horocycle H .. For the same reason, when « > 2 (or
more generally for any sequence satisfying n2y, — 0), one has with R}, (0, ¢/n%) =
R0, n*2/c) C Hpa—2. a full escape to the cusp of M as n — oo. It is worth
noting that while the symmetry (1.6) still holds for rational translates (cf. Lemma 3.6),
it breaks down for irrational translates.

1.2 Statements of the results

We will state here the main results of this paper, and postpone the discussion of their
proofs to the next subsection. Let g = w(M)~ 11 be the normalized hyperbolic
areaon M. Foranyn € N,x e R/Zandy > Oleté, , , and SETX, denote the normal-
ized probability counting measure supported on R, (x, y) and R} (x, y) respectively.
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That is, for any ¥ € C2°(M),

n—1

1 .
an,x,y(\p) = ’_l Z‘IJ (x + ﬁ + iy) ,
j=0

and

1 i .
Shxy (W) = 200 E v (x + 1+ ly) ,
je@/nz)*

where ¢ is Euler’s totient function. Here and throughout, for any measure v on M,
we set V(W) := [ W (2)dv(z).

Using spectral expansion and collecting estimates on the Fourier coefficients of
Hecke—-Maass forms and Eisenstein series, we obtain the following effective result,
which yields equidistribution when the sequence is within a certain polynomial range.

Theorem 1.1 Let M be the modular surface. For any W € C°(M), for any n € N,
x € R/Z and y > 0 we have

80,5 (W) = M (W)] e S22(W) (12 4 nty=W/2040))
and
857 (W) — it ()] e S22(W) (/2 4 1ey= (/2049 )

where 6 = 7/64 is the current best known bound towards the Ramanujan conjecture
(which implies 6 = 0) and Sy is a "2, order-2” Sobolev norm on CX (M), see
Sect. 2.1.

If {y,}nen is a sequence of positive numbers satisfying lim, .« v, = 0 and y, >

1/n* for some fixed o € (0, Hize) = (0, g—g), then Theorem 1.1 implies that for any

translate x € R/Z, both {R,,(x, yn)},cn and {RE‘ (x, yn) }n <y become equidistributed
on M with respect to ¢ as n — oo. In particular, it gives an alternative — spectral
— proof to the aforementioned results of Luethi [24] and Einsiedler—Luethi—Shah [8].
The upper bound ﬁ is the natural barrier for our spectral methods. Nevertheless,
when x is a rational translate, a generalization of the symmetry (1.6) allows to go

beyond this barrier, and to prove unconditionally the remaining range o € [H_%, 2),
as holds in the case of {R} (0, y,)}nen.

Theorem 1.2 Let x = p/q be a primitive rational number, i.e. gcd(p, q) = 1. Let
{ynlnen be a sequence of positive numbers satisfying v, < 1/n% for some fixed

o € [H_%, 2). Then both {(Sn,x,yn} and {85;(% }neNgr weakly converge to g

as n goes to infinity, where

neNy

N, :={n e N:ged(n? q) | n} and N :={neN:ged(n, q) = 1}.
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Remark 1.7 If ¢ is squarefree, then the condition gcd(nz, q) | n is void. Thus for
such g, Theorem 1.2 (together with Theorem 1.1) confirms the equidistribution of the
sample points R, (p/q, y,) (with y, =< 1/n%) along the full set of positive integers
forany 0 < o < 2.

As a byproduct of our analysis, we also have the following non-equidistribution
result for rational translates, giving infinitely many explicit limiting measures. Let us
first fix some notation. For each m € N, let

P, := {n = mt € N : £is a prime number and ¢ { m}. (1.8)

For each Y > 0, we denote by py the uniform probability measure supported on the
closed horocycle Hy. For each m € N and Y > 0, we define the probability measure
Vm.y on M by

1 ¥
Uy = adz“’(f)“” (1.9)
m

Theorem 1.3 Keep the notation as above. Let x = p/q be a primitive rational number
and let {y, }nen be a sequence of positive numbers.

(1) If yo = c¢/n? for some constant ¢ > 0, then for any m € Ny and for any ¥ €
C2(M)

. pr .
M Sy, (W) =1 (W) and - lim 8, .y, (V) = Y ged(m,g) (0).
ged(n,g)=1 cq

nep, ’ cq2

(2) Iflim,— oo n?y, = O, then both sequences {Ry(x, yn)nen and {RY (x, yn)}nen
fully escape to the cusp of M.

Our next result shows that, similar to the rational translate case, equidistribution
fails for generic translates as soon as {y, },en decays logarithmically faster than 1/n?.

Theorem 1.4 Let d (-, -) be the distance function on M induced from the hyperbolic
distance function on H. Fix T'zo € M. Let {y, }neN be a sequence of positive numbers
satisfying y, = 1/(n*>1ogf n) for some fixed 0 < B < 2. Then for almost every
x eR/Z

Tim infl“zeR,,(x,yn) dap (Tzo, T'z2)
n—00 loglogn

> min{B, 2 — B). (1.10)

This implies that for almost every x € R/Z, there exists an unbounded subsequence
of N such that along this subsequence

inf drv (Tzo, T'2) > (a — €) loglogn,
S M (Tz0,T2) = ( ) loglog
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662 C.Burrinetal.

where o = min{g, 2 — B}. That is, for almost every x € R/Z, all the sample points
Rn(x, y,) (and hence also R (x, yn)) are moving towards the cusp of M along this
subsequence, and eventually escape to the cusp as n in this subsequence goes to infinity.

Our proof of Theorem 1.4 relies on connections to Diophantine approximation
theory. This viewpoint comes with inherent limitations; in the specific setting y, =<
1/(n?1og? n), Khintchine’s approximation theorem guarantees full escape to the cusp
almost surely, but this argument does not extend to any sequence {y, },en that decays
polynomially faster than 1/n?, see Sect. 1.3 for a more detailed discussion. It is thus
interesting to study the cases when {y, },en is beyond the ranges in Theorems 1.1 and
1.4.

Indeed, the rest of our results deal with sequences {y,, },en that can decay arbitrarily
fast, and give both positive and negative results. This is the main novelty of this paper;
the handling of cases in which the sample points can be arbitrarily sparse on the
closed horocycles they lie on. We now state the main novel aspect of this paper:

Theorem 1.5 For any sequence of positive numbers {c,}neN, there exists a sequence
{vnlnen satisfying 0 < y, < ¢ for each n € N and such that for almost every
x € R/Z the set of limiting measures of {3 x,y, }neN and {Bﬁfx,yn tnen both contain
the uniform measure | 4, the zero measure, and singular probability measures.

Theorem 1.5 is a sum of three more precise theorems, which each handles a specific
limiting measure, and which we discuss in the next subsection.

1.3 Discussion of the results

Our proofs of Theorems 1.1 and 1.2 rely on spectral estimates collected in the recent
paper of Kelmer and Kontorovich [18], with a necessary refinement of [18, (3.6)]
in the form of Proposition 3.3, which comes at the cost of a higher degree Sobolev
norm. This strategy is standard and is also found in [4,16,27,31], to name just a few
recent papers on related problems. The analysis in [18] was carried out in a more
general setting, namely for the congruence covers I'g(p)\H with p a prime number.
Theorem 1.1 can be extended to that more general setting, see Remark 3.11. With these
spectral estimates in hand, we further prove an effective non-equidistribution result
for rational translates from which part (1) of Theorem 1.3 follows, see Theorem 3.10.
Part (2) of Theorem 1.3 is an easy application of the symmetry (1.6).

Remark 1.11 As was pointed out to us by Asaf Katz, we could also have used the
estimates from [31, Proposition 3.1] in place of [18, Proposition 3.4], which in our
specific setting, give the same equidistribution range (with a higher degree Sobolev
norm). We also mention that the estimates in [31, Proposition 3.1] are valid in the
setting of I'o(g)\ SL2(R) with ¢ € N, and thus imply an effective equidistribution
result analogous to Theorem 1.1 in this generality.

As mentioned earlier, a generalization of the symmetry (1.6) is available for rational
translates but breaks down for irrational translates. To handle irrational translates, we
approximate them by rational ones to apply the symmetry relation, see Lemma 4.2.
This is where Diophantine approximation kicks in. Similar ideas were also used in [27,
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Section 7] to construct counterexamples in their setting. In fact, we prove Theorem 1.4
by proving a more general result that captures the cusp excursion rates of the sample
points R, (x, y,) in terms of the Diophantine properties of the translate x, see Theo-
rem 4.3. Theorem 1.4 will then follow from Theorem 4.3 by imposing a Diophantine
condition which ensures cusp excursion, while also holds for almost every translate
thanks to Khintchine’s approximation theorem. This Diophantine condition accounts
for the tight restrictions on {y,},en in Theorem 1.4. On the other hand, assuming an
even stronger Diophantine condition (which holds for a null set of translates), we can
handle sequences decaying polynomially faster than 1 /12 with a much faster excursion
rate towards the cusp, see Theorem 4.4. We also prove a non-equidistribution result
(which, this time, holds for every x) when y, = ¢/n? and the constant ¢ is restricted to
some range, see Theorem 4.5. The trade-off of this upgrade from Theorem 1.4 to the
everywhere non-equidistribution result is that we can no longer prove the full escape
to the cusp along subsequences as in Theorem 1.4.

As mentioned before, Theorem 1.5 follows from three more precise theorems which
each handles a specific limiting measure. Our first result confirms equidistribution
almost surely along a fixed subsequence of N for any sequence {y, },en decaying at
least polynomially.

Theorem 1.6 Fix o > 0. Then there exists a fixed unbounded subsequence N' C N
such that for any sequence of positive numbers {y, }nen satisfying v, < n~% and for
almost every x € R/Z, both §, y y, and Shos. y, weakly converge to upg asn € N
goes to infinity.

Remark 1.12 It will be clear from our proof that one can take N/ C N to be any
subsequence satisfying ), _\-n~¢ < oo for some positive ¢ < min{5, 1 — 26}, e.g.
we may take N = {[n* |}, cn for any « > 1/min{%, 1 —26}.

Theorem 1.6 follows from a second moment estimate for the discrepancies |5, x,y —
| and |85,rx,y — | along the closed horocycle H, (Theorem 5.2) together with a
standard Borel-Cantelli type argument. This was also the strategy used in [27] when
studying the Kronecker sequences in (1.3). Along these lines, they deduce from spectral
estimates the equidistribution for almost every 8 € R along a fixed subsequence
{n*}en When y, =< n~% with k € N depending on « > 0. Then, using a continuity
argument, this result is upgraded to the equidistribution along the full sequence of
positive integers, see [27, Section 4]. This continuity argument fails in our situation.
Instead of applying directly spectral estimates to the second moment formulas, we
express the latter in terms of certain Hecke operators (Proposition 5.1), and rely on
available (spectral) bounds for their operator norm, see [10]. Contrarily to spectral
estimates, the recourse to Hecke operators allows us to have a uniform subsequence
N which is valid for all {y,},en decaying at least polynomially.

Next, we show that there exists a sequence {y,},eN decaying arbitrarily rapidly
such that for almost every x, R, (x, y,) (and thus also Rgr (x, y)) escapes to the cusp
with a certain rate along subsequences.

Theorem 1.7 Fix I'zg € M. For any sequence of positive numbers {cp},cn, there
exists a sequence {yn}neN satisfying 0 < y, < ¢, for each n € N and such that for
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664 C.Burrin et al.

almost every x € R/Z

fim infl"zeRn(x,yn) dpm (I'zo, I'z) > 1

(1.13)
n—00 loglogn

Finally, we show that escape to the cusp is not the only obstacle to equidistribution.

Theorem 1.8 Let m € N and Y > 0 satisfy m?Y > 1. Let P,, C N and Y.y be as
defined in (1.8) and (1.9) respectively. For any sequence of positive numbers {c, }nep,,,
there exists a sequence {y,}ncp,, satisfying 0 <y, < ¢, forall n € Py, such that for
almost every x € R/Z, the set of limiting measures of {3y x,y, }neP,, CONIAINSs vy, y.

Remark 1.14 We note that Iy is the set of prime numbers and v y = py. Since

T

O ey (W) = 258, ¢ () + O(p ™! W o)

whenever p is a prime number, when m = 1 the conclusion of Theorem 1.8 also holds
for the sequence {8}, }ncp,. We also note that it will be clear from our proof that
Theorems 1.7 and 1.8 can be combined. In fact, our argument shows that there always
exists a sequence {y, },en decaying faster than any prescribed sequence such that for
almost every x € R/Z the set of limiting measures of {6,1, X\ }n <y contains the trivial
measure and v,, y for any finitely many pairs (m, ¥) € N x R.q with m>Y > 1, see
Remark 7.26. Moreover, in view of Theorem 1.6 if y, < n™ for some o > 0, then
it also contains the hyperbolic area p A4 almost surely.

For the rest of this introduction we describe the strategy of our proof to Theorem 1.7
(Theorem 1.8 follows from similar ideas). To detect cusp excursions, we study for each
n € N the occurrence of the events

F(x—l—%—i—iyn)eC forall0 < j <n—1, (1.15)

where C C M is some fixed cusp neighborhood of M. More precisely, we determine
when the limsup set /o, = lim,_, I, is of full measure, where for each n € N,

I, ={x eR/Z:R,(x, y,) CC}

consists of translates x € R/Z for which the events in (1.15) occur. This requires to
study the left regular u1/,-action on C C M and thus calls for the underlying lattice
to be normalized by uy,,. Therefore, we construct an explicit tower of coverings
{I',\H},en in which each I'y, is a congruence subgroup normalized by u1,,. We note
that the existence of such I', < T is the starting point of our proof and it relies on
the assumption that I' = SL,(Z); this construction would fail for I" replaced by a
non-arithmetic lattice.

The key ingredient of the proof will be a sufficient condition which states that if
a point I';;(x + iy,) € I',\H visits a certain cusp neighborhood C,, on I';,\H, then
the events in (1.15) will be realized for x € R/Z, that is, x € I, see Lemma 7.6.
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Using this sufficient condition, we can then relate the measure of 7, to the proportion
of certain closed horocycles on I',,\H visiting the cusp neighborhood C,, C T',\H,
which in turn, using the equidistribution of expanding closed horocycles on I',,\H,
can be estimated for y, sufficiently small. Since the sets I, also need to satisfy certain
quasi-independence conditions for /, to have full measure (Lemma 2.5), we need to
apply the equidistribution of certain subsegments of the expanding closed horocycles
on I', \H. More precisely, at the n-th step these subsegments will be taken to be the sets
I, for all m < n. These subsegment are finite disjoint unions of subintervals whose
number and size depend sensitively on the height parameters {y, };n <n, see Remark 6.3.
If there would exist an effective equidistribution result which would be insensitive to
the geometry of these subsegments, that is, for which the error term depends only on
the measure of these subsegments, then we would have an effective control on the
sequence {y,}nenN in Theorem 1.7 (and similarly also in Theorem 1.8). However, it is
not clear to us whether one should expect such an effective equidistribution result.

Finally, we note that it was communicated to us by Strombergsson that using a
number theoretic interpretation of the aforementioned sufficient condition and some
elementary estimates, one can alternatively prove Theorem 1.7 without going into
these congruence covers, see Remark 7.17.

Structure of the paper

In Sect. 2, we collect some preliminary results that will be needed in the rest of the
paper. In Sect. 3, we prove a key spectral estimate (Proposition 3.3) and proceed to
prove Theorems 1.1 and 1.2. In Sect. 4, we prove Theorems 4.3 and 4.5 by examining
the connections between Diophantine approximations and cusp excursions on the
modular surface. In Sect. 5, we prove Theorem 1.6 by proving a second moment bound
using Hecke operators. In Sect. 6, we study the left regular action of a normalizing
element on the set of cusp neighborhoods of a congruence cover of the modular surface.
Building on the results, we prove Theorems 1.7 and 1.8 in Sect. 7.

Notation

For two positive quantities A and B, we will use the notation A << B or A = O(B)
to mean that there is a constant ¢ > 0 such that A < ¢B, and we will use subscripts
to indicate the dependence of the constant on parameters. We will write A < B for
A < B <« A.For any z € H we denote by e(z) := ¢>™%. For any n € N, we denote
by [] d)n the product over all positive divisors of n, and by [[ p» the product over

prime
all prime divisors of n. For any x > O andn € N, o,(n) := de d* is the power-x

divisor function which satisfies the estimate o (n) < n**¢ for any small € > 0.
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2 Preliminaries

Let G = SLy(R). We consider the Iwasawa decomposition G = NAK with
N ={u, : x e R}, A:{ay:y>0}, K=1{kg:0<6 <21},

12 o .
¥ _ s6 sing
where u, = ((1)’1‘) ay = ( 0 y_,/2> and kg = (f‘;i*ne 2})‘;9) respectively. Under the

coordinates ¢ = uyaykg on G, the Haar measure is given (up to scalars) by
dg = yfzdxdydé.

The group G acts on the upper half plane H = {z = x +iy € C : y > 0} via
the Mobius transformation: gz = ff]:ﬁ for any g = (g Z) € G and z € H. This
action preserves the hyperbolic area dju(z) = y~>dxdy and induces an identification
between G/K and H.

Let I < G be a lattice, that is, I" is a discrete subgroup of G such that the corre-
sponding hyperbolic surface I"'\H has finite area (with respect to u). We denote by
wr = w(I\H)~! 1 the normalized hyperbolic area on I'\H such that ur (I'\H) = 1.
We note that when I' = SL,(Z) then ur = paq with a4 the normalized hyperbolic
area on the modular surface M given as in the introduction. We note that in this case
it is well known (M) = /3, and hence

3 dxd
dup(@) = = =3 @1
Ty

Using the above identification between H and G /K we can identify the hyperbolic
surface I"\H with the locally symmetric space I'\G /K. We can thus view subsets of
I"\H as right K -invariant subsets of I'\ G. Similarly, we can view functions on I"'\H
as right K-invariant functions on I'\G. We note that using the above description of
the Haar measure, the probability Haar measure on I'\G (when restricted to the sub-
family of right K -invariant subsets) coincides with the normalized hyperbolic area ur
on ["\H.

2.1 Sobolev norms
In this subsection we record some useful properties about Sobolev norms. Let g =

slr (R) be the Lie algebra of G. Fix abasis Z = {X, X3, X3} for g, and given a smooth
test function ¥ € C°°(I'\G) we define the “L”, order-d” Sobolev norm S; 4(W) as

SpaW) = > 2V Ler6)-
ord(2)<d

where 2 runs over all monomials in & of order at most d, and the L?-norm is with
respect to the normalized Haar measure on I'\G.
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For any W € C*°(I"'\G) (which we think of a smooth left I"-invariant function on
G) and for any & € G we denote by L, W(g) := W(h~'g) the left regular i-action on
W. It is easy to check that L, W € C®(hI"h~'\G), and since taking Lie derivatives
commutes with the left regular action, we have

SP vy = SEU (1w 2.2)

Next we note that using the product rule for Lie derivatives (see e.g. [21, p. 90]), the
triangle inequality and the Cauchy—Schwarz inequality, for any monomial 2 of order
k< d we have for any smooth functions ¥, ¥, € C*°(I'\G)

129192l Lo 6y Kk S5, (WDS;, 4 (W) Sy, 4(W1)S, 4(¥2).
In particular this implies that
Sy (V1)) L4 8, 4(W1)Sy, 4(¥2). (2.3)

Finally, we note that if I’ < T is a finite-index subgroup of I, then there is a natural
embedding C®°(I'\G) < C*®°(I""\G) since each ¥ € C*°(I'\G) can be viewed as
a smooth left I''-invariant function on G. Since the Sobolev norms are defined with
respect to the normalized Haar measure on the corresponding homogeneous space,
we have for ' < T of finite index and ¥ € C*°(I'\G)

Shyw) =Sh (). (2.4)

2.2 Spectral decomposition

Let I' < G be a non-uniform lattice, that is, I' is a lattice and I'\H is not compact.
Let A = — yz(% + %) be the hyperbolic Laplace operator. It is a second order
differential operator acting on C*°(I"'\H) and extends uniquely to a self-adjoint and
positive semi-definite operator on L>(I'\H). Since I' is non-uniform, the spectrum of
A is composed of a continuous part (spanned by Eisenstein series) and a discrete part
(spanned by Maass forms) which further decomposes as the cuspidal spectrum and
the residual spectrum. The residual spectrum always contains the constant functions
(coming from the trivial pole of the Eisenstein series). If I' is a congruence subgroup,
that is, I contains a principal congruence subgroup

I'(n) :={y € SLo(Z) : y = I, (mod n)}
for some n € N, then the residual spectrum consists only of the constant functions,
see e.g. [15, Theorem 11.3].

Let {¢} be an orthonormal basis of the space of cusp forms that are eigenfunctions
of the Laplace operator A. Explicitly, for each ¢y there exists A > 0 such that

Adk = Mk = sk(1 — sk = (}; +r;3) Pk
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Selberg’s eigenvalue conjecture states that for congruence subgroups, Ay > 1/4, or
equivalently, there isno r € (0, 1/2). Selberg’s conjecture is known to be true for the
modular surface M, and more generally, the best known bound towards this conjecture
is currently A; > ‘1—‘ — 02, witho =7 /64, which follows from the bound of Kim and
Sarnak towards the Ramanujan conjecture, see [19, p. 176].

Let now I' = SL,(Z). In the notation introduced at the beginning of this section,
the Eisenstein series for the modular group I" at the cusp oo is defined for SRe(s) > 1
by

E@s)= Y  Jm@y)’ 2.5)

ye(TNEN)\T

with a meromorphic continuation to s € C. Moreover, for any s € C, E(-, s) is an
eigenfunction of the Laplace operator with eigenvalue s(1 — s).

Let W € L%*(M) and we have the following spectral decomposition (see [15,
Theorems 4.7 and 7.3])

V() =pmW) + D> (W, ) (2)

rkZO
1 o0
+— | (W ECL+in)E@ L +indr, (2.6)
4 J_o

where the convergence holds in the LZ-norm topology, and is pointwise if ¥ &
C2°(M). As a direct consequence we have for ¥ € L2(M),

1 [ 2
W13 = [ + Y |<w,¢k>|2+5/ (@ B S +im[ ar. @)
—00

rkZO

2.3 Hecke operators
The spectral theory of M has extra structure due to the existence of Hecke opera-

tors. The main goal of this subsection is to prove an operator norm bound for Hecke
operators and the main reference is [15, Section 8.5]. For any n € N define the set

L, = {n_l/Zg . g € Ma(Z), det(g) = n} cG, 2.8)

where M»>(Z) is the space of two by two integral matrices. The n-th Hecke operator
T, is defined by that for any W € L2(M)

1
L@ = D Vo).

yel\L,
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The Hecke operator 7, is a self-adjoint operator on L2 (M) and since T}, commutes
with the Laplace operator A (since A is defined via right multiplication and 7, is
defined via left multiplication) the orthonormal basis of the space of cusp forms {¢y}
can be chosen consisting of joint eigenfunctions of all 7;,, that is,

T = Ay (n)Pr.

On the other hand, for any r € R the Eisenstein series E(z, 1/2+ir) is an eigenfunction

ir
of 7,, with eigenvalue XA, (n) := Zdln (d%) , see [15, Equation (8.33)]. It is clear that
[A-(n)| < og(n) with op(n) the divisor function. For the eigenvalue of cusp forms it
is conjectured (Ramanujan-Petersson) that for any above ¢, and for any n € N

A ()| < 00(n).

The aforementioned bound of Sarnak and Kim [19] implies that

hge ()| < a0 (m)n7/4,

Using these bounds on eigenvalues and the above spectral decomposition (2.6) and
(2.7) we have the following bound on the operator norm of the Hecke operator, see
also [10, pp. 172-173].

Proposition 2.1 For any W € L>(M) and for any n € N we have
(o, To(Wo)) 2y Ke n” W3,

where Vo := WV — ur (V) and 6 = 7/64 as before.

2.3.1 Hecke operators attached to a group element

LetI' = SLy(Z) and let M = I'\H be the modular surface as above. There is another
type of Hecke operators on L*(M) defined via a group element in SL»(Q). Namely,
for each i € SL,(Q) the Hecke operator attached to h, denoted by Th, is defined by
that for any ¥ € L?(M)

)1 p—— > W(ga), (2.9)
#(I\ThT) e IhT

where I'hI" = {y1hy, : y1, y» € '} is the double coset attached to . We note that ﬁ,
is well-defined since W is left I'-invariant.

For our purpose, we will need another expression for 7~"h. For any h € SL,(Q) we
denote by I'" := I'MA~'T"h. We note that the map from I' to ['\I'AI" sending y € I to
I'hy induces an identification between I'\I" and I'\I"AT". This identification induces
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the following alternative expression for Th:

~ 1
T(W)(®) = > Whyg). (2.10)

[r yel'M\T

It is clear from the definition that 7}, is defined only up to representatives for the
double coset I'hT, that is, Th = 7~"h/ whenever ThT' = T'h'T". For a fixed h € SL(Q),
we calln € Nthe degree of hif nisthe smallest positive integer such thatnh € M»(Z).
Using elementary column and row operations one can see that for 2 € SL,(Q) with
degree n

'l = I'diag(1/n, n)I"' = {n_lg 18 € Ma(Z), det(g) = n?, gcd(g) = 1} c G,
(2.11)
where ged(g) is the greatest common divisor of the entries of g. Thus we can param-
eterize the Hecke operators by their degrees, that is, we will denote by T, =T,
for any h € SL,(Q) with degree n. We also note that by direct computatlon when

h = diag(1/n, n) we have I'" = Ty(n?), implying that for any & € SL,(Q) with
degree n (see e.g. [6, Section 1.2])

vy == #(C\LAT) = [[: 7] = [[: To(nd)] = n? [ (1 + p_l). 2.12)

pln
prime

Now using the description (2.11) we have the double coset decomposition
d='o
£n2=I_|F< 0 d)l_'.
d|n

This decomposition together with the definitions (2.8), (2.9) and (2.12) implies the
relation

nT,,, = Zvde

d|n

Thus by the Mobius inversion formula we have
~ n d
Vn d
dln

Using this relation and Proposition 2.1 we can prove the following operator norm
bounds for 7,, which we will later use, see also [3, Theorem 1.1] for such bounds in a
much greater generality.
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Proposition 2.2 Keep the notation as in Proposition 2.1. For any ¥ € L*>(M) and for
any n € N we have

(Wo, T (W0)) 12ty Ke n F20T€) w13

Proof. By Proposition 2.1 and using the relation (2.13), the trivial estimates | (d)| < 1
and v, > n? and the triangle inequality we have

(Wo, T, (Wo)) <02 ) (n/d)(Wo, T2 (W0)) e ™2 ) (n/d) 242 w13
din din

— n—1+20+2€ _1+20+€”\I—[”%. 0

O_112042c (MW Ke n

2.4 Equidistribution of subsegments of expanding closed horocycles

We record a special case of Sarnak’s result [28, Theorem 1] on effective equidistribu-
tion of expanding closed horocycles, namely:

Proposition 2.3 Let I' < SLy(Z) be a congruence subgroup and assume that I has
a cusp at oo with width one. Then for any ¥ € C°(I'\H) N L>(T\H) satisfying
|AW|2 < oo and for any 0 < y < 1 we have

1
. 3/4 4
V W(x + iy)dx — pr (V)| < [ aw)4y12, (2.14)
0

where the implied constant is absolute, independent of ', W and y, and the L% -norm
is with respect to the normalized hyperbolic area [ir.

Remark 2.15 We omit the proof here and refer the reader to [18, (3.5)]. We note that
while [18] only deals with the case when I' = T'g(p) with p a prime number, the proof
there works for general congruence subgroups, given that they have trivial residual
spectrum; see [15, Theorem 11.3].

We will also need the following (non-effective) equidistribution result replacing the
whole closed horocycle by a fixed subsegment:

Proposition 2.4 Let I' < SLo(Z) be as in Proposition 2.3. Let I C (0, 1) be an open
interval, then for any ¥ € C.(I'\H) we have

1
lim — | V(x +iy)dx = ur(\¥). (2.16)
y—0*t 1] Jg

The proof of Proposition 2.4 uses Margulis’ thickening trick [25] and mixing prop-
erty of the geodesic flow on the unit tangent bundle of I"\H; this approach is also
effective, see e.g. [17, Proposition 2.3]. A proof of (2.16) using spectral methods was
also sketched in [12, Theorem 1’]. We also note that both equidistribution results in
Propositions 2.3 and 2.4 can be lifted to the unit tangent bundle of '\ H (with necessary
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modifications to the error term in (2.14)); since we will be only working in the hyper-
bolic surface level, we state these two results in the current format for convenience of
our discussion. We further refer the reader to [13,30] for some much stronger effective
equidistribution results regarding long enough (varying) subsegments on expanding
closed horocycles.

Remark 2.17 Proposition 2.4 can be equivalently stated as following: For any fixed
open interval I C (0, 1), the measures 17 , weakly converge to ur as y — 0, where
forany y € (0,1) and ¥ € C.(I'\H), py, (V) = ﬁf] W(x + iy)dx. Thus by
the Portmanteau theorem, (2.16) extends to ¥ = xp with B C I'\H a Borel subset
with boundary of measure zero. More generally, let p : [0, 1) — R be a Riemann
integrable function. Since p can be weakly approximated from both above and below
by step functions, we have

1 1
tim [ pexate o+ iv)d = (8) [ pedx
y—=>0tJo 0
with B C I'\H a Borel set with boundary of measure zero.

2.5 A quantitative Borel-Cantelli lemma

Finally we record here a quantitative Borel-Cantelli lemma which ensures for the
limsup set of certain sequence of events to have full measure given certain quasi-
independence conditions.

Lemma 2.5 [29, Chapter I, Lemma 10] Let (X, B, v) be a probability space with B
a o-algebra of subsets of X and v : X — [0, 1] a probability measure on X with
respect to B. Let {A; }ien be a sequence of measurable subsets in B. For anyn, m € N
we denote by R, ,,, := v(A, N Ay) — v(Ay)V(A). Suppose that

ko ka
3C > Osuch that forallky > ky = 1, > Ryw <C Y v(Ay).  (2.18)
n,m=kj n=kj

then ), V(A,) = oo implies that v (mn%o An) =1

Remark 2.19 Keep the notation as in Lemma 2.5. It was shown in [20, Proposition
5.4] that if

VV(A)v(An)

3C’ > 0andn > 1 such that foranyn # m, Ry, < C’ | T
n—m

)

then the sequence {A;};cn satisfies the condition (2.18).

We will use the following slightly modified version of quantitative Borel-Cantelli
lemma which has the flexibility to consider sequence of measurable sets {A;,},es
indexed by a general unbounded subset S C N.
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Corollary 2.6 Let (X, B, v) be as in Lemma 2.5. Let S C N be an unbounded subset
and let {A,}nes be a sequence of measurable subsets in B. Suppose that

3C" > 0andn > 1such that¥n, m € Swithm < n, Rym < c’

V(An)V(Am)’ (2.20)
n"

then ), s v(A,) = oo implies that v <m nes An> =1

n—oo
Proof For any i € Nleta; € S be the i-th integer in S and let B; := A,. For any
i,jeNIetR; j = v(Bi N Bj) —v(Bj)v(B)) so that R ; = Ra;.a;- Then by for any
i < j we have

Aa)V(Aq, D(B; (B,
C/v( ,);( D V(B )2(31) - C,,/véB );rf,)’
aj aj —

!
R ;= Rajq; <

i~ =

where for the first inequality we used the assumption (2.20) and for the second
inequality we used the estimates a; > j > j — i and \/v(B;)v(B;) < 1. Thus
in view of Remark 2.19 and Lemma 2.5 we have ZieN v(B;) = oo implies that
v (Ei_wo B,-) = 1 which is equivalent to the conclusion of this corollary in view of
the relation B; = A;. O

3 Equidistribution range
Let M = SLy(Z)\H. Since we fix I' = SLy(Z) throughout this section, we abbreviate
the Sobolev norm S; 4 by Sp.q. In this section, we prove Theorems 1.1 and 1.2. The

main ingredient of our proof is an explicit bound of Fourier coefficients which follows
from a slight modification of the estimates obtained in [18].

3.1 Bounds on Fourier coefficients
Let W € C2°(M). Since W is left I"-invariant, it is invariant under the transformation
determined by u; : z — z+ 1, and it thus has a Fourier expansion for W in the variable

x = Re(2):

W(x +iy) =Y ay(m, y)e(mx), 3.1

mez

where

1
ay(m,y) = / W(x +iy)e(—mx)dx.
0

Similarly we denote by ag, (m, y) and a(s; m, y) the mth Fourier coefficients of the
Hecke-Maass form ¢ and the Eisenstein series E (-, s) respectively. Estimates on these
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Fourier coefficients yield, via the spectral expansion (2.6), estimates on the Fourier
coefficients of W. Namely,

1 [ . ;
aw(m,y) = Y (V. r)ag (m. y) + o / (W, EC, L +in)a(s +irim, y)dr,
r=>0 T J—o0
We record the following bounds for ag, (m, y) and a(s; m, y):
Lemma 3.1 [18, Lemmata 3.7 and 3.13] For any m # 0 and for any € > 0 we have
lag, (m, | Ke Im|”y' 2= (g + D7V min1, 22y (3.2)
and
la (5 +irsm, y) | ey 2760 4 [r) TP min{1, 722y (3.3
where 0 = 7/64 is the best known bound towards the Ramanujan conjecture as before.

Remark 3.4 Contrarily to [18] that uses the trivial bound min{1, g7 /22mimly } <1,
we keep this term.

Proposition 3.2 [18, Proposition 3.4] For any W € C2°(M), we have that
3/4 1/4
aw(©.9) = )+ 0 (1w 1awiyy!?). (3.5)
Moreover, for any m # 0, and any € > 0 and any oy > 5/3, we have
aw(m, y) Lage,p Sao(W)y' >~ Iml’, (3.6)
where Sy, is a Sobolev norm of degree ay.
Remark 3.7 The Sobolev norm Sy, is explicit from the proof of [18, Proposition 3.4]:
Writing g = 5/3 + € with € > 0, then Sy, (W) = S5.0(W)?/37/2S, 5 (W) !/3+¢/2
for any W € C2°(M). In particular, using the estimate S 0(V) < Sz 2(W) we have
Sop (W) < S22(W).
The following refinement of this last estimate allows to estimate the Fourier coef-
ficients when |m| > y_l is large. This refinement is crucial for our later results, and

the price we pay is a Sobolev norm of higher degree.

Proposition 3.3 Let W € C°(M). Whenever |m|y > 1 and for any € > 0, we have
jaw (m, )| Ke Sa2(W)|m|~H3H0+€y =36,
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Proof For the contribution from the cusp forms we apply the bound (3.2) to the Fourier
coefficients and the bound

e My 0 <y < 2\m|y

1 r > 2|mly, (3.8)

min{l’eﬂr/Z—Zﬂ\mU} < {

and the relation (AW, ¢r) = (¥, Agy) = (1/4 + r,f)(\ll, dk) to get that

D oW gag m, )| K Y KWL g Imly P 4 1) ey

ry=>0 0<ry<2|m|y

+ D AW g mly e T (3.9)

re>2|m|y

Now using Cauchy—Schwarz followed by summation by parts (together with Weyl’s
law stating that #{ry : ry < M} K M? (see e.g. [15, Corollary 11.2]) we can bound

1/2

1
Do gl e+ DT < | Y

(rr & 1)2/3—2¢
0=<rp<2|mly 0<r=<2|mly e+ 1)

Le W]l (jm]y)?/3Fe.

Similarly, for the second sum we can bound

3 HAaw g

re>2lmly
172

—14/342 —
<Hawla | >0 PR < 1AW (mly) e

rk>2lmly
To summarize, the left-hand side of (3.9) is bounded by
Le Wllalm|PPH0He 0TI ) AW [lo]m|~#/3+0%€y =30 (3.10)
For the contribution from the continuous spectrum using the estimates (3.3), (3.8), the

relation (AW, E(-, 3 +ir)) = (3 + r?)(V, E(,, § + ir)) and Cauchy-Schwarz we
can similarly bound | /% (¥, E(-, % + ir))a(% +ir;m, y)dr| by

< e—”""‘yy”H/ (W, E (5 +in)| (rl+ D7 ar
[r|<2lmly
- yl/z_E/ (AW, E (-, 5 +ir))| Ir|7"*ar
Ir|>2imly

e 327 (1wl (ml) VEH e AW (imly) ),
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which is subsumed by the right-hand side of (3.10) (since |m|y > 1). Finally, we
conclude the proof by applying the bounds max{||W |2, [AW¥|2} < S22(¥) and
e My « (Jm|y)~? (again since |m|y > 1) to the right hand side of (3.10). O

The following corollary of Proposition 3.3 is the key estimate that we will use to
prove Theorem 1.1.

Corollary 3.4 Let g be a positive integer. For any W € C°(M), y > 0, and any € > 0,
we have

> law(gm. y)| e Spa(W)g~ 'y~ 1/2HFO,
m#0

Proof If gy < 1 we can separate the above sum into two parts to get
Dlawlgml= Y lawlgm, i+ Y law(gm,y)l.
m#0 1<|m|<(gy)~! m|>(gy)~!

Applying (3.6) (and the estimate Sy, (V) < S22(W) by Remark 3.7) to the first sum
and Proposition 3.3 to the second, we have

> law(gm, )|

m##0

LeSaW) [ Y7 gmlPy' P p YT (gm0
1<iml=(1y)! iml>(gy)~!

= S2(W) (qeyl/zfe(qy)f(lw) +q74/3+9+6y75/6(qy)1/37976)
— SQ, z(w)q—ly—(l/2+9+€)’
where for the second estimate we used that4/3 — 60 — e > 1. If gy > 1 then we have

|gm|y > 1 for all m # 0. We can apply Proposition 3.3 to ay (gm, y) for all integers
m # 0 to get

> law(gm, y)| Ke Spp(W) Y |gm|TH3HOHey=I/0
m#0 Im|£0

L 2o (W)g~IHITYTI0 « 8 5 (W)g~y /AR,
where for the last estimate we used that 0 < 1/3 — €. i

Remark 3.11 The estimates in [18] hold more generally for any I conjugate to some

I'o(p). In this generality, there might be (finitely many) exceptional cusp forms with

rr € i(0, 8]. For such forms, it was shown in [18, Lemma 3.7] that for any m # 0
|ag, (m, )| Ke.p 1V l2lm |y 27 (Im|y) =1 eem2rimly,
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Using the estimates (|m|y)~ " I+€e=27Imy < (|m|y)~? when |m|y < 1 and
(Im|y)~Il+ee=27Imly « (1m|y)~2 when |m|y > 1 one can easily recover Corol-
lary 3.4 for ¢, and hence for a general ¥ € C2°(T'o(p)\H). Then one can easily
deduce analogous estimates as in Theorem 1.1 for W, see the arguments in the next
subsection.

3.2 Proof of Theorem 1.1

In this subsection we prove Theorem 1.1. In view of (3.5) it suffices to prove the
following proposition.

Proposition 3.5 Let M be the modular surface. For any ¥ € C2°(M), for any x €
R/Z and y > 0, we have

br.xy (W) = aw (0, ) + Oc (Sp.a(Wyn~"y=(1/240%0)) (3.12)
and
Loy (W) = ay (0, 3) + Oc (S22~ 1+ey=12H0H9)  313)

Proof Let J C R/Z = [0,1) be a finite subset and for any m € Z denote
by W;(m) = ﬁ Y ey e(mt). We note that ﬁ D oies Wt +iy) equals 8, (W)
when J = {x + j/n : 0 < j < n — 1} and equals SEfx,y(\IJ) when J =
{x+j/n:0<j<n-—1,gcd(j,n) =1}. Applying the Fourier expansion (3.1) to
WU we get that

T Z\IJ( +iy) = ZZaw(m Ye(mt) =" ay(m, y)u| > elmt)

teJ mez mez teJ

= ay(0,y) + Y aw(m, y)W;(m).
m#0

Now for (3.12) we take J = {x + j/n : 0 < j < n — 1} and note that for such J,
|[W;(m)| equals 1 if n | m and equals O otherwise. Hence

Z ay(m, y)W;(m)| < Z lag(m, y)| <e n—ly—(1/2+9+e)’
m#Q m=£0

nim

where for the last estimate we applied Corollary 3.4.
For (3.13) we take J = {x + j/n:0<j <n—1,gecd(j,n) = 1} and note the
identity

S () < LOme)

jemzy* ¢(m)
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for the Ramanujan’s sum, where n,, := n/ged(n, m) and n : N — {0, £1} is the
Mobius function; see e.g. [14, Theorem 272]. Then

1 i [ (nm)| 1
Wil = |— 3 ()] = PR
p(n je@mz)* ) @ (nm) o (nm)

Hence we have

o)

Zm(m,y)WJ(m)sz'““’(’”’”'zzw(ld) S Jayn, )l
din

m#Q m#Q m#Q
ged(m,n)=n/d
sZ () > law(m, y)l
¢ m=£0
(n/d)|m

<. dilnz ﬁ (g)_l Yy (/248+0

—(1/2+0+¢) < polte —(1/2+0+€)’

<e n"loep(n)y y

where for the second inequality we used the fact that gcd(m, n) = n/d implies that
(n/d) | m, for the third inequality we applied Corollary 3.4 and for the second last
inequality we applied the estimate ¢(d) > d'~¢/%. O

3.3 Full range equidistribution for rational translates

In this subsection we prove Theorem 1.2. We fix x = p/q a primitive rational number
and let

N, = {n eN: ged(n?, q) |n}

be as in Theorem 1.2. As mentioned in the introduction, the key ingredient is a sym-
metry lemma for rational translates which generalizes the symmetry (1.6). Before
stating the lemma, let us briefly explain why we need to restrict to the subsequence
N,. Let n e N and let y > 0. We need to study the distribution of the points

Mx + 4 iy = F(” + £ o +iy) for0 < j < n—1 Let p’ be the reduced

form of g + % and in view of the symmetry (1.6) we have

r(x+£+iy)=r(;’—;+iy)=r< R )
' ]

where pj is the multiplicative inverse of p; modulo g ;. To further analyze the distribu-
tion of these points, we thus need to solve the congruence equation xp; = 1 (mod g;)
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in x. Write k = ged(n, ¢) and ¢’ = q/k and n’ = n/k. Then

implying that

o kq'n’ . kn'q’ o n
qj = ged(pn’+jq’ kqg'n") — ged(pn’+jq’ kn") T q ged(pn’+jq’,n)

can be written canonically as a product of two integers. Here for the second equal-
ity we used that ged(pn’ + jq',q") = ged(pn’, ¢') = 1. In view of the Chinese
remainder theorem, the above congruence equation modulo ¢; is relatively easy to
solve when the two factors ¢’ and n/ ged(pn’ + jq’, n) are coprime (see the proof
of Lemma 3.6 for more details). This condition can be guaranteed for any j if
ged(g’, n) = ged(g/ ged(q, n), n) = 1 which is equivalent to the condition n € N,.
Finally, we also note that by writing n and ¢ in prime decomposition forms, it is
not hard to check that n € N, is equivalent to ¢ = kl with [ = gcd(n, q) | n and
gcd(k, n) = 1. We now state the symmetry lemma.

Lemma3.6 Let 77 be a primitive rational number and let n € N such thatl | n and
gcd(k,n) = 1. Then for any 0 < j < n — 1 and for any y > 0 we have

_— _ maik)d) s,
F(%—kﬁ—ﬂy) -T (_dln]zna _ (( ln/d> ) +i-d , (3.14)

! kZn2y

whered = dj := ged(m7 + jk,n) and a = aq, b = bg € 7 are some fixed integers
such that a’y 4+ bk = 1. Here, for any integer x, X denotes the multiplicative inverse
of x modulo k, x* denotes the multiplicative inverse of x modulo n/d. If we further
assume gcd(j,n) =1 =1, thend; = gcd(mn + jk,n) = 1 and

P(peden)=r (- W) G

n kZn2y
Proof Since [ | n, by direct computation we have 77 + % = W Note that since
ged(k, mn) = 1 we have ged(m7 + jk, k) = ged(m7, k) = 1. This implies that
ged(my + jk, kn) = ged(my + jk,n) = d. Hence let g be the reduced form of
u~t ,i;, then we have (p, q) = ((m7 + jk)/d, kn/d). Now since ged(p, q) = 1, there
exist some integers v, w € Z such that y = (%, ;) € T'. By direct computation we
have

y(B+i+iy)=y(L+iy)=-2+t

implying that

i . i .42
F(%+£+zy):F(—%+ﬁ>=f‘<—#+l#zy), (3.16)
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where for the second equality we used the relation ¢ = kn/d. Moreover, since y € I’
we have wp + vg = 1, implying that (again using the relation (p,q) = ((mT +
jk)/d, kn/d))

w ((m% + jk)/d) =1 (mod k%).
We claim that

w = dlmia + ((m% + jk) /d)* kb (mod k2). (3.17)

In view of the Chinese Remainder Theorem, since gcd(k,n/d) = 1, it suffices to
check

(aimn%a + ((m% + jk) /d)* kb) ((m% + jk)/d) = 1 (mod k)
and

(dimn%a + ((m% + jk) /d)" kb) ((m% + jk)/d) =1 (mod %).
For the first equation we have

(dimn%a + ((m% + jk) /d)" kb) ((m% + jk)/d) = dlmnamnld = a
=1—bk =1 (modk),

&.I:

where for the first equality we used the fact that gcd(dl, k) = 1 (since d | n,[ | n and
gcd(k, n) = 1). The second equation follows similarly. Now plugging relation (3.17)
into (3.16) we get (3.14).

For the second half we note that d; = gcd(mn + jk,n) = ged(jk,n) = 1. The
first equality is true since [ = 1, and the second equality is true since by assumption
gcd(k, n) = ged(j, n) = 1. Thus in view of (3.14), to prove (3.15) it suffices to note
that (mn + jk)* = (jk)* (mod n), or equivalently, mn + jk = jk (mod n). i

Remark 3.18 When k = 1 we can take (a,b) = (0, 1), then (3.15) recovers the
symmetry (1.6). We also note that for the point I' (x 4 j/n + iy) with x irrational, the
above symmetry clearly breaks.

Proposition 3.7 Let p/q be a primitive rational number and let n € N,. Then for any
y > 0 we have

( ) URn/d (xd’ ety ) (3.19)

d|n

where x4 € R/7Z is some number depending on d (and also on p,q,n) and k :=
q/ ged(n, q). If we further assume ged(n, q) = 1, then

RE" <§’ y) — RY (_@ ;) , (3.20)

q*n%y
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where X denotes the multiplicative inverse of x modulo q and a € 7 is as in Lemma 3.6.

Proof Relation (3.20) follows immediately from (3.15) by taking (m, k) = (p, ¢) and
noting that

{(=[(g)*b] € (Z/nL)* : j € (Z/nL)"} = (Z/nL)*,
which follows from the fact that gcd(bg, n) = 1 (since gcd(bg, n) = gcd(1—an, n) =
1). Here (gj)* denotes the multiplicative inverse of ¢j modulo n and b € Z is as in
Lemma 3.6.
For (3.19), we set m = p,l = gcd(n, q) (so that k = ¢g/I). As mentioned above,

the condition gcd(nz, q) | n implies that gcd(k, n) = 1. Thus the pair (%, n) satisfies
the assumptions in Lemma 3.6 and we can apply (3.14) for the points

F(§+§+iy)=F(%+§+iy),0§j§n—1.
Now for any d | n define

Dg:={0<j<n—1:dj=ged(m} + jk,n)=d}
so that

Rn(g,y)=dng[r(§+£+iy)eM:jeDd}. 3.21)

Moreover, we note that since ged(k, n) = 1, we have
{lm% + jKkl e Z/nZ:0 < j <n—1} =7Z/nZ
and hence
{lm% + jkl € Z/nZ: j € Dg} ={[j] € Z/nZ : ged(j,n) =d}. (3.22)
On the other hand, by (3.14) we have
{r(§+§+iy)eM:jeDd}

(o Y a ) i en).

L eny

where for any integer x, X denotes the multiplicative inverse of x modulo k, x* denotes
the multiplicative inverse of x modulo n/d, and a4, by € Z are some fixed integers
suchthatad§+bdk = 1.Now foreachd | nweletx; € [0, 1), x4 = —‘””’% (mod 1)
so that it remains to show

{=1(0n} + jk)/d)" ba) € (Z/(n/d)Z)* : j € Dy} = (Z)(n/d)Z)*.
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We can thus conclude the proof by noting that the above relation follows immediately
from (3.22) together with the fact ged(by, 7) = 1 (since ged(by, 5) = ged(bak, 5) =
ged(1 — ad ) =1). O

Using these two relations and the estimate (3.13) one gets the following effective
estimates.

Proposition 3.8 Let x = p/q be a primitive rational number and let n € N,. Then
forany W € CX(M) and y > 0 we have

O,y (W) = Z‘/’ i)a ( Ty ) + Ocgq (32 2(W)n?Hiey 1/”9“)
dln

where k := g/ gcd(n, q). If we further assume that gcd(n, q) = 1, then
5Erx W) = ay (0 L y) + 0cy (Sz 2(\Il)n29+3€ 1/2+9+e)

Proof For any positive divisor d | n, let yg = d?/(k*n*y) with k := g/ gcd(n, ¢) as
above and let x; € R/Z be as in (3.19). Then by (3.19) for x = p/q we have

1
nx,y (W) = - Z 1) (f—i) SE;d,Xd’yd ()
d|n
1 —
=-2.¢(3) (a\v 0, ya) + Oc (82’2(\1/) (%) I+e (1/2+9+e)>)
d|n

1 p—
;Z‘P(ﬁ)aw 0, y2) + Oc | S22(¥)n~ lz n)¢ S0/2404e) |
d|n T

where for the second estimate we applied (3.13) and for the third estimate we used

the trivial estimate ¢(n/d) < n/d. Now plugging y; = d*/(k*n?y) into the above
equation we get

1 ) ~
s @) == 30 () aw (0. i ) + Ocg (S22(0n ™l oramelm)y 475°)

dln
1 2
= Z‘/’ (%) ay (0, ,{2‘37}) + Oc g (52,2(‘I’)n29+45y1/2+9+5> 7
dln

where the dependence on k in the first estimate is absorbed into the dependence on g
(since k := g/ ged(n, q) < q). The second estimate follows from similar (but easier)
analysis with the relation (3.20) in place of (3.19). O

We are now in the position to prove Theorem 1.2. We will prove the following
proposition from which Theorem 1.2 follows, see also Remark 3.23.
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Theorem 3.9 Let x = p/q be a primitive rational number and let n € Ny. Let
yn = c¢/n® for some 1 < o < 2andc > 0. Then for any ¥ € C2°(M) we have

|8n,x,yn (\II) _ /"LM(\IJ)| <<E,q,c,\ll nOl/Z—l-‘rE +n29+4€—a(1/2+0+6).

If we further assume gcd(n, q) = 1, then we have
1827 (0) — ppt ()] Kergre S22(W) (na/Zfl _’_n29+3efa(1/2+0+6))'

Remark 3.23 The dependence on W in the first estimate can also be made explicit. In
fact, we can remove this dependence by adding a factor of S» 2(V) + ||V« to the
right hand side of this estimate. We also note that since we may take 6 = 7/64, the
right hand side of these two estimates decays to zero as n — oo forany 1 < o < 2.

Proof of Theorem 3.9. In view of Proposition 3.8 and the assumption y, = c¢/n%, it
suffices to show that

_Z‘P 7) aw( ) MM(‘I‘)JrOecw( “/27”6)

d|n

with k := ¢/ gcd(n, ), and that (under the extra assumption ged(n, g) = 1)

aw (0. ) = 1 (¥) + O, (S22W)n>1).

The second estimate follows immediately from (3.5) and the trivial estimate |g| > 1.
For the first estimate we separate the sum into two parts to get

1 2 ! o
MIGEICY R ] IS ol HOTACF )

d|n d|n
d< —a/2 d>nl —a/2

Applying (3.5) (and the trivial estimate |k| > 1) for the first sum and applying the
estimate

= [Wlleo

v (0. 22| = /in(mk” Y
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for the second sum we get % Ddin ® (%) aw (0, %) equals

1 _

S| X o) (rm @+ 0w ()70 2)) +0u | X 0 (3)

n dln din
d<n'—/2 d>nl—e/2

1 2
= 1MW) + ~Ocw n> 3 1+ 8
dln d|n
d<nl—a/2 d>nl—a/2

= upm(¥) + Ocw (n“/z’]ao(n)) = upm (W) + Occw (na/2*1+e> ,

finishing the proof, where for the first estimate we used the identity that y dn P(n/d) =
n and the estimate that ¢ (n/d) < n/d, and for the second estimate we used the
estimates Y . g4 1 < 0p(n) and

d<n'—®/2
n /2 /2
Z E:den Zlgn oo(n).
din dln din
danfa/Z dSna/Z dSno{/Z

3.4 Quantitative non-equidistribution for rational translates

As a direct consequence of the analysis in the previous subsection we also have the
following quantitative non-equidistribution result for rational translates when {y, },en
is beyond the above range, generalizing the situation for {Rﬁr(O, Vi) lnen. As before,
forany ¥ > 0 we denote by .y the probability uniform distribution measure supported
onHy.

Theorem 3.10 Let x = p/q be a primitive rational number and let y, = c/n* for
some constant ¢ > 0. Let W € C°(V). Then for any n € N, we have

1
Br.cn (W) = = 3¢ (5) 12 (9) + Oc e (S22(¥)n~14)
dln ck?

with k, = q/ gcd(n?, q). If we further assume that ged(n, q) = 1, then

Sy, (W) = L

(W) + Oc g (S22(W)n 7).
cq

Proof These two effective estimates follow immediately from Proposition 3.8 by plug-
ging in y, = ¢/n? and noting that ay (0, Y) = fol W(x +iY)dx = uy(W). ]

We can now give the
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Proof of Theorem 1.3. For part (1), in view of Theorem 3.10 only the second equation
needs a proof. Since we are taking n € IP,,, going to infinity, it is sufficient to consider
n = mt € P, with the prime number ¢ > ¢ (so that ¢ { ¢). For such n, we have
gcd(n?, q) = ged(m?£?, q) = ged(m?, q). Since by assumption ged(m?, ¢) | m and
m | n, we can apply the first effective estimate in Theorem 3.10 for suchn = mé€ € Py,.
Moreover, for any such n we have

"7 ged(n?,q)  ged(m?,q) ~ ged(m, q)

is a fixed number only depending on m and q. Here for the last equality we used the
assumption that gcd(m?, ¢) | m. Now let n = ml € P,, with £ > ¢ sufficiently
large such that uy (W) = O whenever ¥ > 2 / (cky)? (this can be guaranteed since
ky is a fixed number and W is compactly supported). In particular, for any d | n,
a2 jek2) (W) = Owhenever £ | d.This, together with the first estimate in Theorem 3.10
implies that for all such sufficiently large n = m¢ € Py,

l —
Snxyn (W) = — > ¢ (%) 1 2 (W) + Ocg.cvm (6 1+26>
ml 4
d|m ck;
-1

= v L(\I]) + Oe,q,c,\ll,m (371+2€) s
14 m’ckﬁ

where for the second estimate we used that gcd(m, £) = 1 and ¢ is a prime number.
We can now finish the proof by taking n = m{¢ — oo along the subsequence P,
(equivalently, taking £ — o0) and plugging in the relation k,, = g/ gcd(m, q).

For part (2), since Ry (x, Yn) C Ry (x, yn), we only need to prove the full escape
to the cusp for the sequence {R, (x, y,)}nen. Identify (up to a null set) M with the
standard fundamental domain Fr := {z e H: Re(z) < % |z| > 1}. Foranyn € N

and0 < j < n—1letZ—fbethereducedformofx—}—ﬁ = g—i—% = %nqj so that by
(1.6) '

Ipiy =02 4 i
F(x+n+ly,,)—F< ‘lj+q12-yn)'

Thus using the trivial inequality |g;| < |g|n forall0 < j < n — I and the assumption
lim nzy,, = 0, we have
n— o0

R(x, yn) C {Z e Fr :Im(z) > ﬁ} ey cusp of M.

O
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4 Negative results: in connection with Diophantine approximations

Let I' = SLy(Z) and M = I'\H be the modular surface. Let u 4 be the normalized
hyperbolic area on M as before. In this section we prove a general result which captures
the cusp excursion rate for the sample points R, (x, y,) in terms of the Diophantine
property of the translate x € R/Z = [0, 1), see Theorem 4.3. Theorem 1.4 will then
be an easy consequence of this result.

4.1 Notation and a preliminary result on cusp excursions

In this subsection we prove a preliminary lemma relating cusp excursions on the
modular surface to Diophantine approximations. Let us first fix some notation. For
any Y > 0, we denote by Cy C M the image of the region

{ze H:Jm(z) > Y}

under the natural projection from H to M = I'\H. As Y goes to infinity, the sets Cy
diverge to the cusp of M, and we call Cy a cusp neighborhood of M. Similarly, for
any Y’ > Y > 0, we denote by Cy y’ the projection onto M of the open set

[zeH:Y <Im@) <Y'}.
For any primitive rational number m/n, and for any r > 0 we denote by
Hyyn,r = {Z =x+iyeH: (x — m/n)2 + (- r? = r2]
the horocycle tangent to 0H at m /n with Euclidean radius . We denote by
Hy = {Z =x+4iyeH:(x—m/n)?+(y—-r)< rz}

the open horodisc enclosed by H,, /. We have the following geometric description of
Lemma3.6:Lety = (’,’f x ) be an element in I'. Then y sends the horizontal horocycle
{z € H: Jm(z) = Y} to the horocycle Hy,/, » with r = 1/(2Yn2), while the open
region {z € H : Jm(z) > Y} is mapped to the horodisc H, Jnr On the other hand, for
any primitive rational number m /n, there is y € I' of the form y = (’,’l' I) Thus for
any Y > O and forany z € H, 'z € Cy if and only if z € H, nr for some primitive
rational number m /n with r = 1/(2Yn?).

Finally, we record a distance formula that we will later use. Let da(-, -) be the
distance function on M induced from the hyperbolic distance function dyg on H, i.e.,

dpm((Tz1, Tzp) = inf du(yzi, 22).
yel’
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Lemma4.1 Let I'zg € M be a fixed base point. Then there exists a constant ¢ > 0
(which may depend on T"zg) such that for any Y > 1 and for any I'z € Cy

dypm(Tzp,T'z) > logY —c. “.1)

The estimate (4.1) holds for a general non-compact finite-volume hyperbolic
manifold using reduction theory after Garland and Raghunathan [11, Theorem 0.6]
combined with a distance estimate by Borel [2, Theorem C]. We give here a self-
contained elementary proof for the special case of the modular surface.

Proof of Lemma 4.1. In view of the triangle inequality, we may assume I'zg = I'i.
Note that dpg(i, z) > logY for any z € H with Jm(z) € (0,1/Y) U (Y, 00). Thus it
suffices to show that if I'z € Cy, then Jm(yz) € (0,1/Y) U (Y, 00) forany y € I'.
By the definition of Cy, we may assume z = x + iy € H with y > Y. Now let
y = (ZZ) eI'.Ifa =0, then Jm(yz) = Jm(z) > Y. If a # 0, then

Jn(yz) = Jm(z) y - 1
ve = laz+ b2~ (ax +b)2+a2y? ~ y

<

~I =

O

The following simple lemma is the key observation relating cusp excursions with
Diophantine approximation.

Lemma4.2 Let x € [0, 1) be a real number. Suppose there exist a primitive rational
number m/n and n > 0, and a real number Y > 0 satisfying

‘ m 1
x——| < .
n 2Yn?

Then for any 0 < j <n — 1 we have

r (x + + 2Yn2) € Cy,2v;, where Yj = ged(n,m + Y. 4.2)
In particular, we have
{r(x+ +2Yn2>:05j§n—l}CCy. 423)

Proof The in particular part follows immediately from the inclusion Cy;2v; C Cy,
which in turn follows from the trivial bound ¥; > Y. Hence it suffices to prove the
first half of the lemma. For simplicity of notation, we set r = 1/(2Yn?). Then by
assumption |x — 2| < r.Fix0 < j <n—1, and let p be the reduced form of 2L '"'” (so

thatq W) Thenx+ +lr € Ho/qr
r’ < 2r.Take y € I' sending H p/q , to the region {z eH:Im(k) > 1/Q2rq?) = Yj}.

andx—i—n—i—zr € Hpjq.r forsomer <

@ Springer



688 C.Burrinetal.

Then we have Jm <y(x + % —|—ir)> > Y; and Jm (y(x + ﬁ +ir/)> = Y;. Since

r < r’ < 2r we can bound the hyperbolic distance
du (y(x + ﬁ +ir), y(x + ﬁ + ir')) = log (’%) < log2,
implying that
y<x~|—’i;~|—ir> e{zeH:Y; <Tm(z) <2Y;},

which implies (4.2). O
4.2 Full escape to the cusp along subsequences for almost every translate
In this subsection we prove Theorem 4.3. Before stating this theorem, we first recall a
definition from Diophantine approximation. Let y : N — (0, 1/2) be anon-increasing

function. We say that x € R is primitive V¥ -approximable if there exist infinitely many
n € N such that the inequality

4.4)

X —— <
n n

‘ m| _ y(n)

is satisfied by some m € Z coprime to n. Since we assume ¥ (N) C (0, 1/2), the
existence of such an m implies its uniqueness. We prove the following:

Theorem4.3 Let v : N — (0,1/2) be a non-increasing function such that
lim,,_, oo nY(n) = 0. Let {y, }neN be a sequence of positive numbers satisfying

1
IRES Emin {w(n)fzyn, nfzyn*l] 7% . 4.5)

If x €10, 1) is primitive yr-approximable, then R, (x, y,) C C,, infinitely often.

Remark 4.6 Since RY (x, y) C Ry(x,y) foranyn € N, x € R and y > 0, Theo-
rem 4.3 also holds for translates of the primitive rational points.

Proof of Theorem 4.3 Let x € [0, 1) be primitive y-approximable. Then for ¥, =
1/ 2nyr(n)), we have by (4.3) that

[r(x+i+ityemozj=n-1}cey, @.7)

for infinitely many n’s.
For every n € N, setd,, := Y, /r, = max {{(n)/(ny,), ny,/¥ (n)}. Then

du(t + iy (n)/n, t +iy,) = log(dn) (4.8)

for any ¢ € R. As in the proof of Lemma 4.2, by (4.7) and (4.8) we have R, (x, y,) C
Cy,/a, for any n in (4.7). O
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We now give a short

Proof of Theorem 1.4 Let « = min{B,2 — B}. Foreachn > 2,let Y (n) = 1/(nlogn)
and let {y, },en be a sequence of positive numbers satisfying y, < 1/ (n? log/3 n). Then
ry asin (4.5) is given by r, = % min{y () "2y, nfzyn’l} = log® n. By Theorem 4.3,
for any x € [0, 1) primitive y-approximable, we have that R, (x, y,) C C,, infinitely
often. Hence by (4.1), for each such x € R/Z, we have

inf dp(Tzo, 'z) > log(r,) + O(1) = aloglogn + O(1)
I'zeR, (x,yn)

infinitely often, implying the inequality (1.10). Finally, since ), . ¥ (n) = oo and ¥
is decreasing, the set of primitive y-approximable numbers in [0, 1) is of full measure
by Khintchine’s approximation theorem. O

For every irrational x € R, the Diophantine exponent k, > 0 is the supremum
of ¥/ > 0 for which x is primitive n*'/—approximable. Dirichlet’s approximation
theorem implies that k,, > 1 for any irrational x and by Khintchine’s theorem, x, = 1
for almost every x € R. When k, > 1, we have the following result that yields much
faster cusp excursion rates for our sample points while handling sequences {y, },eN
decaying polynomially faster than 1/n>.

Theorem 4.4 Let I'zg € M be a fixed base point. Let x € [0, 1) with Diophantine
exponent ky > 1 and let {y,}neN be a sequence of positive numbers satisfying y, =<
n=P for some fixed 2 < B < 2xy. Then

T ianZERn (xsyn) dM (FZO’ FZ)
lim
n—0o0 logn

> min{2«, — B, B — 2}.

Proof Take k € (1, k) and set @ = min{2« — B, B —2}. Let ¢y (n) = 1/n*. Then x is
primitive {r-approximable since k¥ < k. By Theorem 4.3, we have R, (x, y,) C C,
infinitely often with r, = % min{y (n) "2 y,, n~2 Vi 1} = n®. This implies that

— infrzer, v,y dMm (U'20, T'2)
lim
n— 00 logn

> a = min{2« — B, B — 2}

Taking x — «, finishes the proof. i

4.3 A non-equidistribution result for all translates

In this subsection we prove the following result which, together with part (1) of
Theorem 1.3 implies non-equidistribution for all translates:

Theorem 4.5 Let 1/3/5 < ¢ < 3/2 and let y, = c¢/n%. Then there exists a closed
measurable subset &, C M, depending only on c, with u(E:) < 1, and such that
for each irrational x € [0, 1), R, (x, y,) C &, infinitely often.
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The set & in Theorem 4.5 is explicit: For any ¢ > 0, &, C M is defined to be the
image of the closed set

{zeH:Im(z) € [1/Q2c), 1/c]U[2/c,4/clU[9/(2c), 00)}

under the natural projection from H to M. It is clear from the definition that £, C M
is closed. Theorem 4.5 is a direct consequence of the following two lemmas.

Lemma 4.6 For any ¢ > 0 let y, = c¢/n® and let Y.(n) = c/n. Then if x € [0, 1) is
primitive Y.-approximable, we have R, (x, y,) C &, infinitely often.

Proof Let x € [0, 1) be primitive 1/.-approximable, that is, there exist infinitely many
n € N satisfying |x — m/n| < ¢/n* = y, with some uniquely determined m € Z
satisfying gcd(m,n) = 1. For each such n, and forany 0 < j < n — 1, letk =
gcd(n, m 4 j)?. Then by (4.2), I'(x + j/n +iy,) € Ci2/(2¢),k2 jc+ Moreover, since
(k%/(2¢), k*/c) C [1/Qc), 1/cl U [2/c,4/clU[9/(2¢c), oo) for any k € N, we have
Ci2jeyk2e C Ec for any k € N, implying that R, (x, y,) C & for these infinitely
many n € N. O

Lemma4.7 Forany0 < ¢ < 3/2, we have up(E;) < 1—% (m — %) < 1L

Proof LetU{ C M be the projection of the open set
{z € H: max {2¢,4/c} < Tm(z) < 9/Q2c)}.

Since 0 < ¢ < 3/2 we have max{2c, 4/c} < 9/(2c) implying that ¢/ is nonempty.
We will show that & is disjoint from U. Let I1 = [1/(2c), 1/cl, b, = [2/c,4/c]
and Iz = [9/(2¢), ), and for 1 < j < 3, define 5{ to be the projection onto
Mof {z € H : Jm(z) € I;} such that & = U§:1 EL] It thus suffices to show

that 5({ NU = ¥ for each 1 < j < 3. For this, we identify (up to a null set) M

with the standard fundamental domain Fr := {z e H: Re(z) < %, lz] > 1}. Since

0 < ¢ < 3/2, we have max {2¢,4/c} > 2/c > 2/(3/2) > 1. Thus we have

U ={z € Fr :max{2c,4/c} < Tm(z) <9/(20)}, 5cj = {Z € Fr:Jm(z) € Ij}
for j =2,3. Moreqver, since the interval (max {2c, 4/c}, 9/2c¢) intersects I and I3
trivially, we have & NU = ¢ for Jj = 2, 3. It thus remains to show that Sg NnNU = 4.

For this we note that z € Fr satisfies the property that

Jm(z) = max Jm(yz).
yel

Hence to show SJ NU = 1, it suffices to show that max, er IJm(yz) < max {2c, 4/c}
forany z = s + it € H with Jm(z) =t € I} = [1/(2¢), 1/c]. For this, using the
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same discussion as in the proof of Lemma 4.1 we have for any z = s + it € H with

te1/(2c),1/c]

malg( Jm(yz) < max {t, til} <max{l/c,2c} < max{2c,4/c}.
ye

Finally, using the above description of I/ and (2.1) we have by direct computation

3 1 2
pmth) = = <max{2c, 4/c) 3)

implying that (&) <1 — 2

e

(m - 29—C> < 1 (again since 0 < ¢ < 3/2).
0

Proof of Theorem 4.5 Let y.(n) = c/n. Since ¢ > 1/+/5, any irrational number
is primitive .-approximable by the Hurwitz’s approximation theorem; see, e.g.,
[14, Theorem 193]. Hence by Lemma 4.6, for each irrational x € [0, 1), we have
Ru(x, yp) C & infinitely often. Moreover, since ¢ < 3/2 by Lemma 4.7 we have
um (&) < 1, finishing the proof. O

Remark 4.9 The condition on the sequence {y, },cn in Theorem 4.5 is quite restrictive
and the proof of Theorem 4.5 is much more involved than that of Theorem 4.3. We
note that this is because we need to take care of the badly approximable numbers,
that is, the set of irrational numbers that are not primitive y.-approximable for some
c > 0.Ifx € [0, 1) is not badly approximable, then a similar argument as in the proof
of Theorem 4.3 using only the crude estimate (4.3) would already be sufficient to
prove non-equidistribution of the sample points R, (x, y,) for any sequence {y,},eN
satisfying y, = 1/n’.

5 Second moments of the discrepancy

LetI" = SL,(Z) and let M = I'"\H be the modular surface as before. In this section we
prove Theorem 1.6. Our proof relies on a second moment computation of the discrep-
ancies |8, x,y — uam| and |85fx, y — M| along the closed horocycle H . Throughout

this section, we abbreviate the second moments fol ](Sn,x,y(\IJ) — UM (\IJ)|2dx and

fol |80,y (¥) — MM(\II)IZ dx by Dy (W) and D}, (W) respectively. Since we
assume I' = SL,(Z) we will also use the notation pr for pag.

5.1 Relation to Hecke operators

In this subsection we prove two preliminary estimates relating these second moments
to the Hecke operators defined in Sect. 2.3.
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Proposition 5.1 Foranyn € N, y > 0 and ¥ € C(M), we have

n—1

1 ~
Duy(¥) =~ ;(wo, Ty (Vo)) + 0 (SW)y'72) (5.1)
and
1 n—1 N
DY (W) < —— o, T (W)l + 0 (S(w)y!/?). 5.2
o >s¢(n);0!( 0. Tuyu (W) + 0 (S(01y'2) (5:2)

where Vo = ¥V — ur(¥), Tuj/,, is the Hecke operator associated to u j;, € SL2(Q)
defined as in (2.9), the Sobolev norm S(W) is defined by

S(W) = Sy, (¥)? + STL(P)S] (W), (5.3)
and the implied constants are absolute.

Proof Without loss of generality we may assume that W is real-valued. Expanding the
square in the left hand side of (5.1), doing a change of variables, and using the left
u1-invariance of W, we have that D, ,(¥) equals

1 n—1 1 ) )
= > W(x + L +iy)W(x + 2 +iy)dx

J1:J2=0 0

1 n—1 .1 ) .
~2ur @)y Y [ W f i+ @7
n =0 0
1 n—1 .1 ) 1
= Z/ Ux +iy)¥(x + ﬁ +iy)dx — ZMF(W)/ W(x +iy)dx + MF(\I/)Z.
; 0 0
j=0

Applying (2.14) to the term fol W (x + iy)dx and using the trivial estimate

I A4 ur (9)] < ST, WS (W) < S(W), (5.4)

we get

1 n—1 .1 )
Doy () = 23~ [ WG i)W+ £+ i)y = ur (9 + 0SW),
—Jo
Jj=0
5.5)

For each 0 < j < n — 1, let [V := I'im = TN u;/lnFuj/n and define
Fij(W) == WL 1V € C°°(H). Since VW is left I'-invariant, and L,V is left

jln J/n
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u;/lnl“u j/n-invariant, we have F;(¥) € C % (I'/\H). Moreover,

Fi(W)(x +iy) = W(x + i)W + L +iy).
ForeachO < j <n—1,itiseasy tocheck thatu; € [/ and [’/ contains the principal

congruence subgroup I'(1n?), hence I'/ satisfies the assumptions in Proposition 2.3.
Then by (2.14),

1
/ Fi(W)(x +1y)dx
0

3/4

= /F/\ Fi(W)(@)dpri(2) + 0 (IlF W) IAF; W)Yy 1/2)

Next we note that by (2.3),

IF; () 3 IAF; )15/ < 855 (Fi(w)
rJ
I (wLu;/ln q/) <8P W) sk, (Lu;/ln \y) .

Using the fact that W is left [-invariant and '/ is a finite-index subgroup of I', by
(2.4), SFZ(\IJ) S}, (W). Similarly, we have

. Ty, -
S (Lu;/lnw) — sy (L QW) =ShW),

jin

where for the second equality we used (2.2). Hence we have
3/4 1/4 r 2
IF; ([ IAF; ()], <8, (Fj(‘l’)) S84, (W) =S(W) <00, (5.6)

Thus applying (2.14) to F; € C°(I'/\H) and using (5.6) we get

1
/ U(x +iy)W <x+ +ty)dx_<\ll L, \I')
0 Yim TL2(TiNH)

0 (S(\Il)yl/z) 5.7)

Plugging (5.7) into (5.5) and using the identities ur (V) = pup; (V) = pur, (L, 71 )

(the second equality follows from the left G-invariance of the hyperbolic area /LF i)
we get that

nl

172
Dy y () = Z(wo, Y0y OGO,

Let Fr C H be a fundamental domain for I'\H. The disjoint union I_lyeri\r yJFr
forms a fundamental domain for I'/\H. Thus we can conclude the proof of (5.1) by
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noting that

/ Wo(2)Wo(ujmz)dpri(z) = Z / Wo(2)Wo(ujmz)dur;(z)
Llyerj\ryfr

yerir Jr7T

1
:/Fr%(Z) [T :TV] Z Wo(uj/myz) | dur(z)

yelJ\I'

- / Yo(2) T, (Vo) @dpr (2),
Fr

where for the second equation we did a change of variable z +— yz, used the left I'-
invariance of ¥ and the relation [T : '/ lpri = pur, and for the last equality we used
the expression (2.10). Similarly, applying the estimates (2.14) and (5.4) and making
change of variables we see that D,[l’fy(\IJ) equals

n—1

1 .
s el [ W+ WG i — (9 4+ 0 (S ).
Jj=0

where
c(j) =#{W1]. L2D) € (Z/nZ)* x (Z/nZ)* : [j2] — 1] = [j1} .

Now similar as before we can apply the estimate (5.7), the identities ur (W) =
s (9) = s (Lo W) and 3257 ¢() = 9(n)” 1o get

n—1

r 1 .
DI = s > e (%o, L1 W + OSW)y?)
=0

.
i L inm

n—1

1 ~
= W Z C(J) (lIJO’ Tuj/n (w0)>L2(F\H) + O(S(W)yl/2)
j=0

Finally we can finish the proof by noting that foreach 0 < j <n — 1, ¢(j) < ¢(n)
(since for each [j1] € (Z/nZ)*, there is at most one [jz] € (Z/nZ)* such that
L2l =Ll =D 0

5.2 Second moment estimates

Combining Proposition 5.1 and the operator norm bound in Proposition 2.2 we have
the following second moment estimates:

Theorem 5.2 Foranyn € N, y > 0 and ¥ € C°(M) we have

max | Dy, y (W), Dy (9)} e n T2 w3 + Sw)y' /2, (5.8)
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where 6 = 7/64 is the best bound towards the Ramanujan conjecture as before and
the Sobolev norm S(V) is as defined in (5.3).

Remark 5.9 1t is also possible to approach the second moment computation using the
spectral bounds on the Fourier coefficients of W from Sect. 3.1 rather than Hecke
operators. The spectral approach however yields a weaker estimate when y > 0 is
small. For comparison, following the spectral approach, one obtains

1
[ 0 = @Pax < (1715720 4512) Sp000)

Proof of Theorem 5.2 First we prove (5.8). For each 0 < j < n — 1, it is clear that
uj/y is of degree nj := n/ged(n, j), and thus Tu,-/n = Tnj. Applying (5.1), (5.2),
the estimate ¢(n) > n~!7¢/2 and the operator norm bound in Proposition 2.2 to the
terms <\IJO, Tnj \DO), we get

—1420+¢/4

n—1
max { D,y (), DYty (W)} e n ™2 "

j=0

Woll3 + S()y'/2.

Foranyd |n,#{0 < j <n—1:n; =d} = ¢(d), thus

n
j 6/ ¢( ) ! / < § d E/ — 029+€/4(”) <<E n E/ ’

j=1 dln d|n

where for the first inequality we used the trivial bound ¢(d) < d. Finally, we observe
that || Woll2 < [|W][2. m

We now give a quick

Proof of Theorem 1.6 Let @ > 0 be the fixed number as in this theorem. Let 8 :=
min{5, 1 —26}. Fix 0 < ¢ < B and let N C N be an unbounded subsequence such
that )\ n~¢ < oo. We want to show that for any {y, },cN satisfying y, < n~* there
exists a full measure subset / C R/Z such that for any x € I, 8,y y, (V) = uap (V)
and SEfx,yn (V) = pap(W) forany W € C°(M) asn € N goes to infinity. Since the
function space C2°(M) has a dense countable subset, it suffices to prove the above
assertion for a fixed W. Now we fix ¥ € C°(M) and take € > O sufficiently small
such that 8 — 2¢ > c. For any n € N define I, = I! U I? C R/Z such that

1=y € R/Z (810, () — ()] = 072}
and

n

2= {x ER/Z : |85y, (W) — ppg (V)| > n—f/2} .
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Thus by the second moment estimate (5.8), the assumption that y, < n~¢ and Cheby-
shev’s inequality we get

|I,| < |1} + |I7] < 2n€ max { D, ,(¥), Dhy (W)} <ew n P12 <™,

implying tlﬂzn en [n| < 0o. Hence taking I C R/Z to be the complement of this
limsup set lim ,car I, C R/Z and by the Borel-Cantelli lemma we have [ is of full

n—>oo
measure. Moreover, for any x € I, x € I{ foralln € N sufficiently large, that is,

max { |8n,x,yn (W) — upm (W)
€/2

Sy, (W) = At (V)]
V n € N sufficiently large.

’

<n

In particular for such x, 8, x y, (V) — uam (V) and SETx,yn W) - upm(W)asn e N
goes to infinity. O

Remark 5.10 The second moment D, ,(¥) is closely related to the sample points
(1.2) considered in [12]: Using the extra invariance 8, xy1/n,y (W) = 8y x,y (V) and
applying a change of variable, one can easily check that

1 1n—l ) 2
Dn,y(\ll)=f ;Z\D(%Hy)—w(w) dx.
0 X
j=0

Thus let NV C N be the fixed sequence as in the above proof, by Theorem 5.2 and
the same Borel-Cantelli type argument we have that for almost every x € R/Z the
sequence of sample points {F(x:/ +iy, : 0 < j < n — 1} equidistributes on M
with respect to uaq as n € N goes to infinity, as long as {y,},en decays at least

polynomially.

6 Left regular action of normalizing elements

In this section, I denotes a congruence subgroup, and we set by I'y = SL»(Z). We
moreover assume that there exists some /2 € SL(Q) normalizing I, that is, h1Th =
I". It induces the left regular A-action on I'\H given by I'z € '\H + 'z € I'\H.
Since i normalizes T, this map is well defined: Suppose I'z = I'Z/, that is there exists
some y € I' such that z’ = yz. Then ['hz’ = Thyz = Thyh~'hz = Thz. The goal
of this section is to describe this action on cylindrical cuspidal neighborhoods of "\ H.

6.1 Cusp neighborhoods of congruence surfaces
Since I' is a congruence subgroup, the set of cusps of I' can be parameterized by

the coset I'\ (Q U {o0}) (see e.g. [21, p. 222]), where the action of I" on Q U {oc}
is defined via the Mobius transformation. We denote by Qr a complete list of coset
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representatives for I'\ (Q U {oo}). For each cusp representative ¢ € Qr, its stabilizer
subgroup is given by

I'.:= tch;] NI,

where 7. € I'y is such that T.oo = ¢. (More precisely, I'. is an index two subgroup
of the stabilizer subgroup of ¢ if —I € I'.) The existence of such 7. is guaranteed by
the transitivity of the action of I'{ on Q U {oco}. On the other hand, t. is only unique
up to right multiplication by any element of =N. We note that I'. is independent of
the choice of 7., and since ¢ € Qr is a cusp, I'¢ is nontrivial. Moreover, 7. Tetcisa
subgroup of NNI'y = (u1). Hence 7.~ IT 7. is a cyclic group generated by a unipotent
matrix u,, for some positive integer w., which is called the width of the cusp c.

We can now define cusp neighborhoods on the hyperbolic surface I'\IH around a
cusp ¢ € Qr. For any Y > 0, C;’c C TI'\H denote the projection of the horodisc
{tcz € H: Jm(z) > Y} onto I'\H. Similarly, for any Y’ > Y > 0, let C;:;/ denote
the projection of the cylindrical region {t.z € H: Y < Jm(z) < Y’} onto I'\H. We
record the following two lemmas for the later purpose of computing the measure of
certain unions of cusp neighborhoods.

Lemma 6.1 IfY' > Y > |, the set C;’;, is in one-to-one correspondence with the set
(te.z e H:Re(z) e R/wcZ, Im(z) € (Y, Y)). 6.1)

In particular, if —I, € U thenforany Y’ > Y > 1

I.c ch 1 1
)= — (= —-=). 2
KT (CY!Y) AT TI\Y Y ©2

Proof The one-to-one correspondence is given by the projection of the above rectan-
gular set onto I'\H. Indeed, since I'c C T, this map projects the rectangular set in
(6.1) onto C;’;,. To show that it is also injective, suppose I'tcz = 'tz for some

z, Z’ from this rectangular set. Then there exists some y € I" such that 7~ yrz=17.
If y € £I'¢ then tc_lyrc € +(u,,), and this implies that z = z’. Otherwise, let
rc_l YT, = (Z Z) e I'1. Since y ¢ £I'¢, ¢ # 0. We easily see this cannot happen since
it would imply

Jm(z) Jm(z) - l <1

Jm(Z) = = <-<
@) lcz+d)>?  (ex+d)?+c2y* "y

contradicting that Jm(z’) > Y > 1. For the area computation, we use the definition
(2.1) of ur, together with ur, = [I"y : T']ur (since —I, € I'). O

Lemma 6.2 Given two distinct cusps ¢, ¢2 € Qr, andany Y1, Y2 > 1, C}l:l’c' ﬂC)I,‘z’cz =
A.

Proof Since Y1, Y> > 1, the sets {t¢,z € H : IJm(z) > Y1} and {r,z € H : Im(z) >
Y>} are subsets of the interior of the Ford circles based at ¢; and ¢> respectively. Two
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Ford circles are either disjoint or identical. Suppose I'z € C;l’c' N C;z’cz. Then there
exists an isometry y € I' that maps the Ford circle at ¢; to the Ford circle at c;.
Consequently, we must have y¢; = ¢, which is a contradiction. O

Remark 6.3 We will later consider sets I, y . 1= {x €(0,1): I'(x +1iy) € C;’c} for
some y > 0,Y > 1 and ¢ € Qr. This set is the intersection of the line segment
{x+iy e H:0 < x < 1} with the preimage of C;’c in H (under the natural projection
from H to I'\H). By definition the preimage of C;’c is the disjoint (since ¥ > 1)

union of the infinitely many horodiscs {tyz € H: Jm(z) > Y} = Hp/q,l/(2q2Y) for

all cusps ¢ = p/q € Tc. Moreover, note that a necessary condition for such a
horodisc intersecting the line segment {x + iy € H : 0 < x < 1} is that p/q €
FeN (=5, 1+ 3) and 1/(g%Y) > y,ie.q> < 1/(yY). Thus there are only finitely
many such horodiscs intersecting {x + iy € H : 0 < x < 1}. Moreover, each
such intersection is an open interval and the set /, y  C (0, 1) is thus the disjoint
union of these finitely many open intervals. Similarly, for any Y’ > ¥ > 1 the set

{x €0, 1):T(x+iy) e c};,} = Iyy.e\Ty.y'.c is also a disjoint union of finitely
many open intervals.

6.2 Left regular action of normalizing elements

Let h € SLy(Q) be a group element normalizing I". The action of & on Q U {oo}
(by Mobius transformation) induces a well-defined action on I'\ (Q U {o0}), the set
of cusps of T'.

Lemma 6.3 For each ¢ € Qr, we have

hTch™! =T (6.4)
and
-1 _ [(Vonc/wc *
T, hte = < 0 «/W) € SL(Q). (6.5)

Proof Since h normalizes I we have h[.h—1 = h‘L’cN‘L'C_lh_l NT'. Thus to prove (6.4)
it suffices to show h‘L’cN‘EC_lh_l = tthrl;l. We show that ‘L’};lhl’c is an upper tri-

angular matrix. Indeed, r,;lhtcoo = t,;l (hc) = oo. This proves (6.4). We moreover
conclude that

_ A %
T, hte = (o /\_1> (6.6)

for some A # 0, and it remains to show that 22 = wpe /.. For this we conjugate the
subgroup 1’,;1 [Cheth.c by the matrix r,;lhtc. We obtain with (6.4) that

-1 -1 —1 —1 —1
T hT T <Thc icrhc) Ty hte =10 Tete = (ch>~
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On the other hand, using (6.6) and rh_cl TheThe = (Uay, ), we have

e (e Poetne) e = (7 DI (3,50 = {(3ons)).

Comparing both equations we conclude that A> = wy, /.. Finally replacing 7 with

—1j. if necessary, we can ensure A is positive. O

Proposition 6.4 Let Y' > Y > Oand ¢ € Qr. If Tz € C,'5, ., then Thz €
I hc I . e I',hc

thcY,wth" Similarly, if T'z € chy, thenThz € thcy.

Proof The second statement follows from the first one by taking ¥/ — oo. Since

'z e Ci;, w.y» DYy definition there exists 7’ = x’ + iy’ € H with 0 < x" < @, and
¢t »We

wY <y < oY and 'z = 'tz Consider ht. 7' = 17" with 77 = ‘L',;lhtcz’.
By (6.5), we have Im(z”) = (wpc/w)Im(Z) € (wp Y, wp Y'), implying that Thz =

/ I he
Iht.7 € Ccoth,coth" ]

7 Negative results: horocycles expanding arbitrarily fast

In this section using the results from the previous section, we prove Theorems 1.7
and 1.8 which provide new limiting measures for the sequences {Sy.x.y, }, .y and

{55;% }neN’ allowing {y, },eN to decay arbitrarily fast. For any n € N we consider
the congruence subgroup I';, < SL,(Z) given by

T, :={<Z Z)eSLz(Z):n2|c, a=d==l (modn)}. (7.1)

It is clear that I'y = SL,(Z) and that I';, contains the congruence subgroup
2 I 2
'(n?) =3y eSla2):y = 01 (mod n<) ¢ .

7.1 Basic properties of the congruence subgroups I,

First we show that I', is normalized by u;/, for any j € Z. As mentioned in the
introduction this simple fact is the starting point of our proofs to Theorems 1.7 and
1.8.

Lemma7.1 Foranyn € N and for any j € Z, the unipotent matrix u j;, normalizes
.

Proof By direct computation, for any y = (¢%) € I'; and for any j € Z we have

. . )
_ a— A pylazdi _ Jc
WSV Ujjn = " N
c d+
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Hence if y € 'y, that is, n? | cand a = d = %1 (mod n), all the entries are integers
with the bottom left entry divisible by n2, and

jc Jjc
a——=a=d=d+ — ==+1 (modn).
n

This implies that uj_/ln Cutejm C Ty O
Next we prove the following index formula for I',.
Lemma 7.2 For any integer n > 3, we have

3

[y :T,] = "7 I1 (1 - p_z). (7.2)
pln
prime

Proof Let J, < (Z/n*Z)™ be the subgroup
2 X
Ty = {[a] e (z/n Z) -a=+1 (mod n)} . (1.3)

It is easy to check that #(J,) = 2n. Consider the map & : [, — J, sending y =
(g Z) el,tola] e (Z/nzZ) *, Using the definition of T',;, one can check that 4 is
a group homomorphism with the kernel ker(h) = T 1(n2). ForeachO <k <n—1,
set yki =+ (izzkn”z 1_1kn) € T',.. Then h surjects the set {ykjE el :0<k=<n-1}
onto J,. Finally we use the index formula for ' (n?) (see e.g. [6, Section 1.2]) to get

(I'1 : Tl

T [D Dy (nd)] #1, 2
pln

prime

[C1:Ti@»)] [ :Tim?)] = " 1_[ (1 - P_2>'

Next, we study the properties of I', relative to its cusps. As in Sect. 6 we denote
by Qr, the set of cusps of I',,. The following lemma computes the width of each cusp
of I'y,.

Lemma?7.3 Letn € Nand let c =m/l € Qr, with gcd(m,l) =1 (if c = oo, m/l is
understood as 1/0). Then we have

n2

@e = ged(n, )2

Proof Let 1. € I'y be as before such that t.00 = ¢. Thus the left column of 7. is ('l” )
By direct computation we have

_ 1 —mlt m%t
1 _ .
TN, _{< 21 lt>€G't€R}'
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; -1 : l—mlt m?
Thus by (7.1) anelementin (T';) = Nt ' N[, isof the formy = ( 71’31’ lilmtll>

Iy satisfying that n? | >t and 1 — mit = 1 4+ mlt = +1 (mod n). Looking at the top
right and bottom left entries of y, we have that m?t, 1%t € 7. Since ged(m,l) =1, we

have ¢ € Z. Then the condition n? | [

t is equivalent to 7 | t, and the condition

_n- __
ged(n,l

| t. Moreover, since the

. . n 7[2
n | mlt is equivalent to that sed(nmD) | ccd(i?

| . We conclude that

_n
ged(n,ml)

condition sgr-0 | 7 is implied by the condition wed(n 17

n? | I?t implies 1 — mit = 1 + mit = 1 (mod n). Thus

1 —mlt m2t L2002
(Dz)c—{( 2 1+mlt)€rl'n | 7ty .

Conjugating (I',,)¢ back via 7. and using the equivalence of the two conditions n> | [%¢
2
n
and W | t we get

~ 1t n’
1 — = S
7. (Tp)ete = {”’ = (0 1) el gcd(n, )? | t}’

implying that w, = n*/ gcd(n, [)%. O
Next we compute the number of cusps of T,,.
Proposition 7.4 For any integer n > 3 we have

40 —"2]_[(1 —2)
rn_2 p .

pln
prime

Remark 7.4 1t is easy to check that 'y = I'g(4). Thus [I"| : 2] = 6 and I'; has three
cusps which can be represented by oo, 1/2 and 1 respectively.

To prove Proposition 7.4 we first prove a preliminary formula for #Qr, .

Lemma 7.5 For any integer n > 3 we have

2 2
#Qr, = Z p(n /d)w(d;fcd(n /d, d).

d|n?
Proof Since —1I, € I', and I'; (n?) < T, we have Qr, = I'n\Qr, (»2)- On the other

hand, by the analysis in [6, p. 102], the set Qr (,2) is in bijection with the union of
cosets |_|d|n2 (+£1>)\ Zy, where for each d | n?,

Zyg = {([m], (1) : [m] € (ZJdZ)* , (1] € Z/n*Z, ged(n®, 1) = d}
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with ([m], [1])" is the transpose of the row vector ([m], [/]) and the bijection is induced
by the map sending m/l € Q U {oco} with gcd(m, ) = 1 to ([m], [[]))! € Zy4 with
d = ged(n?, 1). Note that #Z4 = ¢(n?/d)¢(d).

For each d | n2, using the definition of I',, it is easy to check that the linear action
of T'), on Z? (by matrix multiplication) induces a well-defined action of I, on Z;
and that the corresponding action of the subgroup I'y (n?) is trivial. From the proof of
Lemma 7.2, we have ',/ T'1 (n?) & J,,, where

an{j:[1+kn]e(Z/nzZ)X :O§k§n—1}, (1.5)

which is of size 2n. Hence the action of I';, on Z,; induces the action of J,, on Z; given
by

[a] - ([m], [1D)" = ([am], [@l])’,
with ([m], [I1)! € Z, and a the multiplicative inverse of @ modulo n?. We note that

lam] € (Z/dZ)* is well-defined since d | n?.
We conclude that Qr, = I',\S2r (2 is in bijection with the union of cosets

L r\Za = || 7n\Za,

d|n? d\n?

implying that

#Qr, = Y #J,\Za.

d|n?

Hence we want to compute the size of the coset J,\Z, for each d | n2. For this
we claim that for any for any ([m], [[])! € Zg4, the orbit J, - ([m], [[])! is of size
2n/ ged(n?/d, d), implying that

#Z4 _ 9(n?/d)¢(d) ged(n?/d, d)
2n/ ged(n?/d, d) 2n '

#Jn\Zd =

We note that Lemma 7.5 then follows immediately from this claim. To prove this
claim, it suffices to compute the size of the stabilizer

(Jn) (@m0 = {[a] € Jy:lal- (Im1, UD)" = (Im], [1]) € Zd}-
Since by definition [a] - ([m], 1)’ = ([am], [a@l])’, [a] € (Ju)(m).;y) if and only if
am = m (mod d) and @l = [ (mod n?). Since d = ged(n?, 1) and [m] € (Z/dZ)*,

these two conditions are equivalent to a = 1 (mod d) anda = 1 (mod n? /d), which
are equivalent toa = 1 (mod lem(n? /d, d)). Hence using the description (7.5) of J,
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and the facts that n | lem(n?/d, d) and lem(n?/d, d) gcd(nz/d, d) = n? we have
) = [[1+lem(n?/d, d)j1 € Jy 0 < j < ged(n?/d, d) 1}

is of size ged(n?/d, d). This implies that

_ #J, _ 2n
#()@muy  ged(n?/d, d)’

#(Jn - (Im, 1))

proving the claim, and hence also this lemma. O

We can now give the proof of Proposition 7.4 by simplifying the formula in
Lemma 7.5.

Proof of Proposition 7.4 Write n = l—[f‘:1 p;" in the prime decomposition form and
apply Lemma 7.5 to get

k k P
# (an) = % Z 10 (1_[ p: i) ) <l_[ piZai—ﬁi> l_[plr'nm{ﬁ,-la,-—ﬁ,-},
i=1

BeZF:0<p; <2a; i=1 i=1

where the summation is over all vectors 8 = (B1,...,Br) € /s s_atisfying 0 <
Bi < 2a; forall 1 <i < k,and we used that ged(n?/d, d) = []*_, p™"F-2 =) for

i=1Fi
d= ]_[f‘: 1 pf ", Using the fact that ¢ is multiplicative and interchanging the summation
and product signs we get

1
#(@n) =5

=

i 20 —B; in{f; 20, —Bi
> e (p Yo (pi) pnite i

i=1 \0<B; <20

[
gl-
-

2q; - in{B;,20; — B 20 -
> = Rt pi -
I \1=8i<20;—1

[
gl-
-

20 — — in{B;,2a; —p;
piia—pihla—ph Y prnahla
1 1<B;i<2a;—1

where for the second equality we used thatfor 1 < 8; < 2a;—1,¢ ( PP i) 20i=Pi

i 9"(1’1'
. — i 2 i —bi . _
pi(1 = )2, and for B =0 or B = 2ai, 0 (/") o (PP 77) = p2i(1 = p)
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and min{B;, 2o; — B;} = e note that the term B " equals
dmin{g;, 2 } = 0. Wi hat th |<py <20y 1 P PRAPY equal
i 2 i i i
)SINGEEED SIS SRS Dt
1<Bi<a; a;<fi<2a;—1 1<Bi<ai 1<Bi<ai
=2 ) p-p =
1<Bi<e; pi
Hence we have
2a; -1 2Pi(P?i - 1) o
#(Qr,) = le A= (= (===t +2
2 i - i
=—1‘[p“<1 P e+ pih H(l—p,
finishing the proof. O

7.2 Proof of Theorem 1.7

For simplicity of notation, we abbreviate the cusp neighborhoods CF” and C;"Y,
by C; ¢ and CY’Y, respectively and the set of cusps Qr, by €2,,. We first prove the
following key lemma which says that if I,z visits a cusp neighborhood on I',\H,
then all companion points I'j#/,z,0 < j < n — 1 make excursions to some cusp
neighborhood on M = I'1\H, the modular surface. We recall that Cy is the projection

onto M of the region {z € H : Jm(z) > Y}.

Lemma7.6 LetY > 0andn € N.IfT,z € C; onrsomece @, then Tujmz € Cy
forall0 < j<n-—1.

Proof Fix 0 < j < n—1. By Lemma 7.1, u;/, normalizes I',. Assuming that
ryz e C Y and applying Proposition 6.4 to h = u/,, we get I'yu j/nz € Cf)hhc; By
deﬁnltlon there exists 7’ € H with Jm(z’) > wp Y > Y suchthatT, 1.7 = Chujmz.

Since 1j,¢ € I'y, this implies I'yuj/,z = I'1z" € Cy. O
We can now give the

Proof of Theorem 1.7 Foranyn € NletY, = max{logn, 1}, and let ¥, be the indicator
function of the union

UJ CiS 2oy, € Tu\HL

ceR,
. n,c :
Since for any cusp ¢ € Q,, oY, > Y, > 1, by Lemma 6.1, each chYn,chYn is

a Borel set with boundary of measure zero; and by Lemma 6.2 the above union is
disjoint. Thus W, is the indicator function of a Borel set with boundary of measure
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zero. Moreover, applying the volume formula (6.2), the index formula in Lemma 7.2
and the cusp number formula in Proposition 7.4 (see also Remark 7.4 for the case
when n = 2) we have for any n € N,

ur, () = 3, (€5 200y,

ceRy

3w, 1 3 #Q, 1
[l : Tyl 2w Y, 2 Y, [T : Tyl nY,

cey

Foranyn e Nand 0 < y < 1 we define
I,(y)={xeR/Z:V,(x +iy)=1}.

By definition, x € I,(y) if and only if I';,(x +iy) € CZLCY,, 207, C CZ)’,CY,, for some
¢ € Q. Thus Lemma 7.6 implies that

In(y) C {x e R/Z: Ru(x,y) CCy,}.

This, together with our choice that ¥, = max{logn, 1} and the distance formula (4.1),
implies that for any n > 3 and for any x € I,(y)

inf dym(T1zo, Tz) = log(Y,) + O(1) =loglogn + O(1).
FIZERn(va)

It thus suffices to show that there exists a sequence {y, }, < satisfying that 0 < y, < ¢,
for all n € N and that the limsup set limy,— o0 I (yn) is of full Lebesgue measure in
R/Z.

For this, we will construct a sequence {y,},en decaying sufficiently fast and
then apply the quantitative Borel-Cantelli lemma Corollary 2.6 to the sequence
{L, ) }nen C R/Z. To ensure the quasi-independence condition (2.20) in Corol-
lary 2.6, we need, for every pair 1 < m < n € N, the two quantities |1, (yn,) N 1, (yn)|
and |1, (ym)| |1, (yn)]| to be sufficiently close to each other. The key observations for
this are the following two relations that

1
()| = /O W (x4 iy)dx (1.7)

and

1
[ i) O T )| =/0 W (x + i) W (x + iyn)dx =/ e i
Im(ym

(7.8)

Assuming the limit equation (2.16) holds for the pairs ((0, 1), ¥,,) and (£, (¥), ¥n)
(we will verify this later), then by relation (7.8) the quantity |1,,, (y;) N I, (y,)] is close
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to the quantity |1, (yn) |1, (¥,) which in turn is close to |1, (ym )11, (yn)| by relation
(7.7), provided that y, > 0 is sufficiently small.

We now implement the above ideas rigorously. We first claim that there exists a
sequence {y, },en satisfying, foralln e N, 0 < y, < ¢, and

1 . ur, (Wn)
[k v - | < 22, (7.9)
11 Jr 2n
for any subset I C R/Z taken from the finite set
(0. DN JUnGm) 11 =m < n}. (7.10)

For this, first note that by Remark 2.17 for any / C R/Z = [0, 1) a disjoint union of
finitely many open intervals, we have

1
lim — | W, (x +iy)dx = pr, (V). (7.11)
y=0* I J;

We now construct such a sequence successively. For the base case n = 1 since (7.11)

holds for the pair ((0, 1), ¥1) on M = I'{\H, there exists 0 < y; < ¢ sufficiently
small such that

1
< SHry ().

1
‘/ Wi (x +iy)dx — pur, (Y1)
0

For a general integer n > 2, suppose that we already have chosen 0 < y,, < ¢
satisfying (7.9) for all the positive integers m < n. By Remark 6.3 the set I,,,(y;,) C
R/Z is a disjoint union of finitely many open intervals for any m < n. Thus (7.11) is
satisfied for all the pairs

((07 l)a \Ill’l) ) (Im(ym)a \Ijn)a 1 S m<n

on I', \H. Since there are only finitely many such pairs, we can take 0 < y, < ¢, suf-
ficiently small such that (7.9) is satisfied for all I € {(0, D} | {Ln(ym) : 1 <m < n},
which is the set in (7.10). This finishes the proof of the claim.

Now let {y;, }»en be as in the claim. For any n € N apply (7.9) to the pair ((0, 1), ¥,)
we get

pr, (Wn)
[ ()| — i, (¥)] < =257 (7.12)
2n
By the triangle inequality, this implies
mr, (Wn) < 2|1, (ya)l- (7.13)
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More generally, for each 1 < m < n apply (7.9) to the pair (1, (yn), ¥,) we get

[ L0 (Ym) | MT, (W)

||Im()’m) N L )l = i (ym) | 1, (\I'n)’ = 2

(7.14)

Using the inequalities (7.12), (7.13), (7.14) together with the triangle inequality we
get

[m m lIJn
o) 0 I )] = o) 1l = 228 L ()

_ 21w ()]
< = .

(7.15)

Hence the sequence {1, (y,)},en C R/Z satisfies the quasi-independence condition
(2.20) (with the subset S = N and the exponent n = 2). Moreover, using the inequality
(7.12), the volume computation (7.6) and the estimate that ¥, =< logn we have that

1

Z [1n(yn)| = Z %urn(wn) = Z Togn = 00

neN neN neN

Thus by Corollary 2.6, limy,— o0 I, (yn) C R/Z is of full Lebesgue measure, finishing
the proof. O

Remark 7.16 1t is not clear to us whether the rate log log n is the fastest excursion rate
for generic translates. We note that in principle it can be proved (or disproved) if one
can compute the volume of the set

& ={Tpz e I\H: T1ujjmz € Cy forall0 < j <n —1}.

For instance, if one can show ur, (£y) =< 1/(nY) foralln € Nand forall Y > 1, then
Theorem 1.7 together with a standard application of the Borel-Cantelli lemma would
imply that the inequality in (1.13) is indeed an equality for almost every x € R/Z. We
also note that our analysis (Lemmas 6.2, 7.6) shows that for any n € N and for any
Yy >1

| |ens cepc | ] ey

ceRQy cey

implying that 1/(nY) < ur, (£}f) < 1/Y. On the other hand using some elementary
arguments (which relies on the width computation Lemma 7.3) one can show that
any (u1/,)-orbit contains at least one cusp of width one. This fact together with the
fact that 1 < w, < n? implies that £} = LlceQ,, C;’c when Y > n? . However, both
estimates are not sufficient for the purpose of obtaining an upper bound.

Remark 7.17 Here we give a very brief sketch of the argument communicated to us by
Strombergsson: For each n € N and y > 0, it is not difficult to see that I',,(x 4+ iy) €
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ClS, forsome ¢ = £ € Q, with ged(p, ) = 1 if and only if

2
p
x=£

q

y o a yeed(n, ¢)*
(/UcYnC]2 n2Yn‘]2

(7.18)

Here Y,, = max{logn, 1} is as in the above proof. Define

X —

£’<i},
AN

Iy = {x € R/Z: Iprimitive L s.t.n | q,q <
q

1
ZVyYn’

One can easily check that elements in I,(y) satisfy the inequality (7.18). Hence by
Lemma 7.6 we have

L,(y) C {x e R/Z: Ry(x,y) CCy,). (7.19)

Moreover, using some standard techniques from analytic number theory one can show
that for any subinterval / C R/Z (or more generally, any finite disjoint union of
subintervals),

lim 7]~ f(y)ﬂ]‘ )
y—>0t ! Y,

withc, = 2290 ], (1—p~2)~! > €4 This limit equation s the analog of (7.11).

2
n
Another input is the divergence of the series Y, .y 7 >> Y,y 77 ]((:'g)n

from the estimate ¢ (n) > n/loglogn. With these two inputs one can then mimic the
arguments in the above proof to construct a sequence {y, },,c decaying sufficiently fast
and then apply Corollary 2.6 to get a full measure limsup set lim,_, o I, (y,) C R/Z.
Finally, we note that the relation (7.19) can be checked directly using the definition
of the set fn (v). Hence this argument can be carried over without going into the
congruence covers ', \H.

, which follows

7.3 Proof of Theorem 1.8

We prove Theorem 1.8 in this subsection. The strategy is similar to that of Theorem 1.7
with the sequence of cuspidal sets approaching the cusps replaced by a sequence of
compact cylinders approaching certain closed horocycles. Let n € N be an integer and
letI',z € I'y\Hbeapointclosetoacusp ¢ € €2,,. Forany 0 < j < n—1,the analysisin
Sect. 6 gives exact information about the height of the companion point I'u j/,z with
respect to the cusp u j/, ¢. While this is sufficient for Theorem 1.7 (cusp excursions), to
realize the limiting measure v, y in Theorem 1.8 one needs more refined information
about the spacing of these companion points along the closed horocycles they lie on.
For this, we further analyze the left regular u/,-action on points near certain type
cusps which we now define.

We say ¢ € 2, is of simple type if ¢ can be represented by a primitive rational
number m /q satisfying that gcd(n?, ¢) | n, and we denote by Q;im C 2, the set of

@ Springer



Translates of rational points along expanding closed horocycles... 709

simple type cusps. (This notion of simple type cusps is closely related to the condition
n € Ny in Theorem 1.2. In fact, let p/q be a primitive rational number then the
condition n € N, is equivalent to that the cusp ¢ € £, represented by p/q is of
simple type.) If m’/q’ is another representative for ¢, that is, m’/q’ is primitive and
m'/q' = y(m/q) for some y € I, then using the definition of 'y, it is easy to check
that ged(n?, ¢) = ged(n?, ¢’). Hence the simple type cusps are well-defined.

As mentioned in Sect. 3.3 the condition ged(n?, ¢) | g implies the further decom-
position g = kIl with [ = ged(n, g) | n and k = ¢q/I satisfying ged(k,n) = 1. We
can thus reparameterize a simple type ¢ by m/(kl) with gcd(m, kl) = ged(k,n) =1
and / | n. The main new ingredient of our proof to Theorem 1.8 is the following
decomposition of the sample points which generalizes (3.19).

Proposition 7.7 Fixn € N, z = x + iy € Hand ¢ € Q™. Then

Ru(x,y) =Ry )y (xt g d°Y [w0),
d|n

where 7' = x' +iy" € His such that Tyz = T'ytc2’, and x}; . € R/Z depends only on
X', cand d.

We first prove a simple lemma computing the width of elements in the orbits (u 1/, )¢
when ¢ € Q5™ is of simple type.

Lemma 7.8 Fixn € Nand ¢ € Q3™ a simple type cusp. Then forany0 < j <n — 1
we have

. 2
Wy = ged (m% + jk,n)",
where m/(kl) is a representative for ¢ with gcd(m, kl) = ged(k,n) = 1 andl | n.

Proof Forany0 < j <n—1,

m j_mp+jk p;
; (= — _— e =, —
i kl+n kn qj

with ged(pj,q;) = 1. Let d; := ged(m7 + jk, kn) such that g; = kn/d;. Since

ged(mn, k) = 1, wehave ged(m 7+ jk, k) = ged(m7, k) = 1.Henced; = ged(m7+
jk,n) | n. Now by Lemma 7.3 and the assumption that gcd(k, n) = 1 we have

n2

2 . 2
ecd(n, knjdy? — 4 = gedlmy + gk m?”.

Wuyjpe =

We can now combine ideas from Sects. 3.3 and 6 to give the

Proof of Proposition 7.7 Assume ¢ = m/(kl) with gcd(m, kl) = ged(k,n) = 1 and
[ | n. Up to changing the representatives for ¢, we may assume mkl # 0. Let t, =
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(11%) €Ty, and foreach 1 < j <n — 1 let Tujpe = (f;j f,),’]) € I'1, where pj, q; are

as in the proof of Lemma 7.8, a, b, v;, w; are some integers such that z, Tuj e € Iy,
that is,

mb —kia =1 and (m%—i—jk)wj—knvj:dj (7.20)

withd; = ged(m7 + jk, n) as in the proof of Lemma 7.8. By direct computation and
using Lemmas 6.3 and 7.8 (and the relation v, = dg = n?/I?) we have

_ (djl/n wja +b(% - vj)) .

—1
Tujpuctj/nTe = 0 n/(d;1)

Using the relations in (7.20) the top right entry becomes

jw 1+ kl jw
wja+b(&—vj)=wja+ + a<&—vj>
n m n

_a(wjmn + jwikl —klvin) + jw; —vjn

mn
_adjl+ 1 djl—wjmn _bdj wj
T mn mn ki T onk kL

(Here we used the assumption that mk/ # 0.) Hence we have forany 0 < j <n — 1
Cattjjnz = DattjnTe(x + 1Y) = TuTuy ety cttjnTelx’ +)) (7.21)

a2 alb gw, 422
_ J ’ J JWj i /
= anuj/,lc ( 22X + 2K T ke +1 2y )

Here for the first equality we used the assumption that I,z = ', 7.z’ and the fact that
u j/» normalizes I',. Now as in the proof of Proposition 3.7 for any d | n, we define

Dy:={0<j<n-1:d;=d}

so that
Ru(x.y) = J{T1ujmz € M: j € D4}, (7.22)
d|n
and
{len} + jly/dl € (Z)(n/d)L)* : j € Da} = (Z/(n/d)L)*. (7.23)

Use the second relation in (7.20) to get for j € Dy,
w; ((m% + jk)/d) = 1 (mod k5).
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Solving the above congruence equation as in the proof of Lemma 3.6 we get
——n n . * n
wj = dlmn’%e + ((m% + jk) /d)" kf (mod k%),

where for any integer 7, 7 denotes the multiplicative inverse modulo k, * denotes the
multiplicative inverse modulo n/d, and e = ey, f = fz € Z are two fixed integers
such that e% + fk = 1. Plugging this relation into (7.21) and using the relation
we = n?* /1> we get for any d | n and for any j € Dy,

m2ejk)d) f 2y
Chujmz = anuj/,,c (xé,d - <( l—n/d> ) +lw_i) s

272 2 e .
where xé’d = dn—ﬁx’ + % — % (mod Z) € R/Z. Since 7, € T'1 we have

We

nyik)d) s ,
{Flu.,'/nz eM:je Dd}:{l“l (xé,d_W"'iﬂ) eM:je Dd}.

Thus in view of (7.22) and the above relation it suffices to show
{=[(n% + jky/d)" f1€ (Z/(n/d)L)* : j € D} = (Z/(n/d)Z)*.

But this follows from (7.23) and the fact that ged(f, %) = 1 (since ged(f, 5) =
ged(fk, 7) = ged(1 —e%, %) = 1), and we have thus finished the proof. 0

We will also need the following lemma estimating the number of cusps in Qflim
satisfying certain restrictions on the width.

Lemma 7.9 Let m € N be a fixed integer and let n = m{ > 3 for some prime number
£ not dividing m. Then we have

2

-‘#{ceQ;im:a)c zm2} > w

Proof Recall from the proof of Lemma 7.5 that 2, is in bijection with the disjoint
union |_| djn? Jn\Za. On the other hand, by definition of the simple type cusps, Qsim
corresponds to the subset Ly, J,\ Zq. Moreover, letc =m/l € inm with ged(m, [) =
1 be a simple type cusp corresponding to an element in J,,\ Z, for some d | n, that is,
d = ged(n?,1). Since d | n, this implies that d = ged(n?, 1) = ged(n, [). Hence by
Lemma 7.3, w. = n?/d?. Therefore for each d | n

(n*/d)p(d) ged(n®/d.d) _ ¢(n)¢(d)

#c e QM . =n?/d?) = |\ Z4| = > o
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O where for the last equality we used the identities gcd(n2 /d,d) =d (since d | n)
and

2
o(B)=" TT a-pH="xn[Ja-phH="2"

pl(n?/d) pln
prime prime

where for the second equality we used the fact that n2/d and n share the same set of
prime divisors. Hence for n = m{ we have

2
_ @(n) Z o(d) > W(n)zfﬂ(ﬁ) _ pm)(L—1) '

#{ceQZim:a)czmQ] > >

d|n
nz/dzzm2

Lemma7.10 Letm € Nand Y > O satisfy that m*Y > 1. Let
P, = {n = mt € N: Lis a prime number and € { m}

be as in (1.8). Then there exist sequences of positive numbers {Yn}nep, and {Y,},ep,,
satisfying that

() Y, >Y >Y,>m2foranyn € Py, and limcp, Y, = lim,cp, ¥, =Y;

n—>oo n—o0
@) Loer, 1 (= ) =00
Proof For each n = mt € Py, take ¥, := (1 — 2t,)")~'Y and ¥, := (1 +
Qt,)"H~ 1Y with

t, = max{(mzY — 1)_1, loglog ¢}.

We note that the first condition is guaranteed by the facts that #,, > (m?Y — 1)~ and

that lim ,¢p,, t, = oo. For the second condition, we note that by the definitions of ¥,
n—>oo
1

and Y,, Yin —y = YLG Moreover, using the fact that there are only finitely many
prime numbers dividing m we get

/11 1 1

_ - = = O 1 = 5

Zn(Yn Y,;) ’"’Y%P;zlogloge Zuogloge+ m(1) = o0
1

nel, LelPy

tm

where the divergence of the rightmost series follows from the estimate £; < j log j
which is an easy consequence of the prime number theorem. Here £; € Py denotes
the j-th prime number. O

We now give the
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Proof of Theorem 1.8 Fix throughout the proof m € N and ¥ > 0 with m?Y > 1 and
let P, be as above. Let {Y,, },ep,, and {Y, },cp,, be two sequences satisfy the conditions
in Lemma 7.10. For any n € P, let ¥,, € LT, \H) such that W, is the indicator
function of the union

n,c
U_ C(Dcanch,: C Fn\H
ceqgm

e Zmz

Since ¥, > m~2 for any n € Py, oY, > 1 for any ¢ € Q8™ with w. > m?. Hence
similar as in the proof of Theorem 1.7, by Lemmas 6.1 and 6.2 the above union is
disjoint and W,, is the indicator function of a Borel set with boundary of measure zero.
By the disjointness and the volume formula (6.2) we have for any n € P,

3#{c€§2§3m:wczm2} 1 1
Y. Y.)°

pr, (Wn) = — Ty T,

Note that for n = mf € P, by Lemma 7.2, [T'] : T',,] <, £3. Hence by Lemma 7.9
and the above relation we get for any n = mf € Py,

W)y o (=) (- (7.24)
Mur, n m,YZ Y, Y/ Amn Y, Y,; . .

n

Similar as in the proof of Theorem 1.7 for any n € P, and 0 < y < 1 we define
I,(y)={x eR/Z:V,(x +iy) =1}.

We first show that there exists a sequence {yn}nep, satisfying that 0 < y, < ¢, for
all n € P, and that the limsup set lim,cp, I,,(y,) C R/Z is of full measure. As in

the proof of Theorem 1.7, we can usenli:eor?lark 2.17, together with Remark 6.3 and
Lemma 6.1, to construct a sequence {y, },cp,, successively satisfying for any n € IP,,,
0 < yu < ¢, and that

M1, (\yn)

7 (7.25)

1
‘m/\pn(x +iyy)dx _MFH(\Ijn) =<
1

for all subsets I C R/Z taken from the finite set {(0, D}J{L; () : 1 € Py, [ < n}.
Again as before one can show that condition (7.25) implies that the sequence
{1, (Yn)}nep, C R/Z satisfies the quasi-independence condition (2.20) (with the sub-
set S = P, and exponent n = 2). Moreover, using the estimate (7.24) and our
assumptions on {Y, },ep, and {Y,},ep, ) we have

Do Owl = Y ur, (B wy ) % (Yi - %) =00

n
neP, neP, neP, n
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Hence by Corollary 2.6, lim,ep,, I,(y,) C R/Z is of full Lebesgue measure.

n—oo
Now take x € hmne]p I, (y,), then there exists an unbounded subsequence Ny C

m

P, such that x € In(yn) for all n € N. It thus suffices to show that for any ¥ €
CM),

lim § ) = v
né/\fx n,x,yn( ) Vm,Y( )

n—oo

with v, y defined as in (1.9). For any n € N, C Pm? since x € I,,(y,) by definition
we have I')y(x + iy,) € CZ) CY Y] for some ¢ € '™ of simple type, that is, there

exist some ¢ € Q8™ and 7}, = x/ + iw.y,, € H satisfying that T’ (x +iy,) = ;7.2
with ¥, < y, < Y. Then by Proposition 7.7, we have

R, y) = | RY)a (¥ e a0 d737)
dln
for some x) ., € R/Z. This implies that for any n € N
8n,x,y,, (lIl) Z‘P % n/dx dzy;l (\II)

dln

Since y;,, Y € (Y,, Y,), max{y,/Y,Y/y,} < Y,/Y,. Thus by the intermediate value
theorem we can estimate for n € Ny

1 r ,
Sn,x,y,, (W) = ; Z ¢ (%) (85/d x; dz}’(\y) +0 (8(1;31,1(\1/) lOg (Yn/Y")>>
d|n

1
= -2 0 (D ey (W) + 0w (log (V/0)),
dln

|~

where for the second estimate we used the identity de ¢(n/d) = n. Thus for
n = ml € N sufficiently large such that W vanishes on the cusp neighborhood
Cp2y we have

Sy (W) = an (%) e ey () + 0w (10g (Y, /Y2))
d\m
¢ —1 _
=7 - o (%) (M,ﬂy(‘l’) + Owm,y.e (4 1+€)) + Oy (log (Y, /Yx))

-1 -
= Uy (W) + Owny,e (£ +log (Y)/1,))

where for the second equality we used the facts that £ is a prime number and
ged(m, ) = 1 and applied the effective estimate (3.13) to each of the term
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pr
m@/d,x,’lyc’d,sz
and noting that lim, e, log (Y;/Y,) = 0 (since lim,ep,, ¥,,/Y, = 1 which follows
n—00 n—00
from the assumption lim,ep,, ¥, = lim,ep,, Y, = Y). O
n—od n—o0

(¥). We now conclude by taking n — oo along the subsequence Ny

Remark 7.26 1t is clear that we can take a sequence {y,},en decaying sufficiently
fast such that the conditions (7.9) and (7.25) (for any finitely many pairs (m, Y)
with m?Y > 1) are all satisfied and hence (noting that the intersection of finitely
many full measure sets is still of full measure) for such a sequence the conclusions
of Theorems 1.7 and 1.8 (for any finitely many pairs (m, Y) with m*Y > 1) hold
simultaneously.
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