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Abstract
We study the limiting distribution of the rational points under a horizontal translation
along a sequence of expanding closed horocycles on the modular surface. Using spec-
tral methods we confirm equidistribution of these sample points for any translate when
the sequence of horocycles expands within a certain polynomial range. We show that
the equidistribution fails for generic translates and a slightly faster expanding rate. We
also prove both equidistribution and non-equidistribution results by obtaining explicit
limiting measures while allowing the sequence of horocycles to expand arbitrarily
fast. Similar results are also obtained for translates of primitive rational points.
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1 Introduction

Let {Sn}n∈N be a sequence of “nice” subsets that become equidistributed in their
ambient space. Given a sequence of discrete subsets {Rn}n∈N with Rn ⊂ Sn , an
interesting question is to study towhat extent does the distribution behavior of {Rn}n∈N

mimic that of {Sn}n∈N. One naturally expects that when the size of Rn is relatively
large, it is more likely that {Rn}n∈N inherits some distribution property from {Sn}n∈N;
on the other hand if Rn lies on Sn sparsely, then it is more likely that points in {Rn}n∈N

become decorrelated and distribute like random points on the ambient space.
In the setting of unipotent dynamics, themost typical example of a sequence {Sn}n∈N

is a sequence of expanding closed horocycles on a non-compact finite-area hyperbolic
surface M. More precisely, we can realize M as a quotient �\H where � is a co-
finite Fuchsian subgroup and H = {z = x + iy ∈ C : y > 0} is the Poincaré upper
half-plane, equipped with the hyperbolic metric ds = |dz|/y, where dz = dx + idy
is the complex line element. Up to conjugating by an appropriate isometry, we may
assume thatM = �\H has a width one cusp at infinity, that is, that the isotropy group
�∞ < � is generated by the translation sending z ∈ H to z + 1. A closed horocycle
of height y > 0 is a closed set of the form

Hy := {�(x + iy) : x ∈ R/Z} ⊂ M,
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Translates of rational points along expanding closed horocycles… 657

and its period, i.e., its hyperbolic length, is y−1.AsHy gets longer, that is, as y → 0+, it
becomes equidistributed onMwith respect to the hyperbolic area dμ(z) = y−2dxdy.
The first effective version of this result is due to Sarnak [28] who, using spectral
arguments, proved that for every � ∈ C∞

c (�\H) and any y > 0,

∫ 1

0
�(x + iy)dx =

∫
M �(z)dμ(z)

μ(M)
+ O

(S(�)yα
)
, (1.1)

where S is some Sobolev norm, and 0 < α < 1 is a constant depending on the first
non-trivial residual hyperbolic Laplacian eigenvalue of �. In the case of the modular
surface SL2(Z)\H, α = 1

2 , while Zagier [32] observed that the Riemann hypothesis
is equivalent to the equidistribution rate Oε

(
y3/4−ε

)
.

In this setting, this problem was first investigated by Hejhal in [12] with a heuristic
and numerical study of the value distribution of the sample points

�
(

x+ j
n + iy

)
: 0 ≤ j ≤ n − 1 (1.2)

for some Hecke triangle groups � = Gq under the assumption that ny is small. Set

Sy,n,�(x) :=
n−1∑
j=0

�
(

x+ j
n + iy

)
,

where � is some mean-zero step function on a fixed fundamental domain for �\H

(automorphically extended to H). The numerics show that the value distribution of
n−1/2Sn,y,�(x) with respect to x ∈ [0, 1) approaches a Gaussian curve for the non-
arithmetic Hecke triangle groups G5 and G7, while this phenomenon breaks down for
G3 = PSL2(Z). Hejhal gave an explanation of this difference based on the existence
of Hecke operators on G3. The convergence to a Gaussian distribution for general
non-arithmetic Fuchsian groups was later confirmed by Strömbergsson [30, Corollary
6.5], under the assumption that the sequence {yn}n∈N decays sufficiently rapidly.

Other such problems have since been investigated.Marklof and Strömbergsson [27]
proved the equidistribution of generic Kronecker sequences

{�( jβ + iyn) ∈ M : 1 ≤ j ≤ n} ⊂ M (1.3)

along a sequence of closed horocycles expanded at a certain rate yn on T1M, the unit
tangent bundle of M. The equidistribution of Hecke points proved by Clozel–Ullmo
[4] (see also [3,10]) implies the equidistribution of the primitive rational points

{
�
(

j
n + i

n

)
: 1 ≤ j ≤ n − 1, gcd( j, n) = 1

}

at prime steps on the modular surface, see [10, Remark on p. 171]. More recently,
the equidistribution of the above sequence along the full sequence of positive integers
was proved by Einsiedler–Luethi–Shah [8] in a slightly more general setting, namely
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on the product of the unit tangent bundle of the modular surface and a torus. Various
sparse equidistribution results have also been obtained for expanding horospheres in
the space of lattices SLn(R)/SLn(Z) for n ≥ 3 [7,9,22,23,26] and in Hilbert modular
surfaces [24].

For each of these equidistribution results, assumptions on the expanding rate of the
sequence {Sn}n∈N are crucial; the discrete subsets {Rn}n∈N lying on {Sn}n∈N can not
be too sparse.

This paper emerged from an attempt to prove a result which turned out to be false.
We consider the sparse equidistribution problem for the subset of rational points
(with denominator n) under a horizontal translation x ∈ R/Z on a horocycle Hy

on the modular surface; we denote this subset by Rn(x, yn) (cf. (1.4)). We thought
that since the closed horocycles Hy equidistribute as y → 0+, if we fix a sequence
{yn}n∈N approaching zero, then the normalized counting measures onRn(x, yn) (and
its primitive counterpart) should equidistribute forLebesgue almost every x asn → ∞.
See the recent paper of Bersudsky [1, Theorem 1.5] for an analogue situation where
such a result is true. Note the order of quantifiers; we first fix the sequence {yn}n∈N

and only then choose the horizontal translation x . It is not hard to see that if one flips
the quantifiers, for any fixed horizontal translation x , there are sequences {yn}n∈N

(approaching zero rapidly) such that equidistribution fails. We were very surprised to
learn though, that in stark contrast to our initial expectation, equidistribution fails. The
main novel result of this paper (Theorem 1.5) says that there are sequences {yn}n∈N

approaching zero arbitrarily fast such that for almost every horizontal translation x
the normalized counting measures Rn(x, yn) and its primitive counterpart do not
equidistribute. In fact, we show the collection of limit measures contains the uniform
measure μM, the zero measure and certain singular measures. Although these should
be considered as the main contribution of this paper, we also complement our analysis
with answering natural questions concerning sequences {yn}n∈N approaching zero in
a polynomial rate.

The next subsections describe more precisely the setting and results obtained.

1.1 Context of the present paper

Let� = SL2(Z) and letM = �\H be the modular surface. In this paper, generalizing
the setting of [8], we study the equidistribution problem for the sets of rational and
primitive rational points under an arbitrary horizontal translation x ∈ R/Z along a
given sequence of expanding closed horocycles on M. The set of rational points is
the obvious choice of a sparse set with identical spacings, while primitive rational
points constitute the simplest pseudorandom sequence (via the linear congruential
generator). For any n ∈ N, x ∈ R/Z and y > 0 we denote by

Rn(x, y) :=
{
�
(

x + j
n + iy

)
∈ Hy : 0 ≤ j ≤ n − 1

}
(1.4)

and respectively

Rpr
n (x, y) :=

{
�
(

x + j
n + iy

)
∈ Hy : j ∈ (Z/nZ)×

}
, (1.5)
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Translates of rational points along expanding closed horocycles… 659

the set of rational and respectively primitive rational points with denominator n on the
closed horocycleHy translated to the right by x . As usual, (Z/nZ)× denotes here the
multiplicative group of integers modulo n.

Let {yn}n∈N be a sequence of positive numbers such that yn → 0 as n → ∞. We
investigate the limiting distribution of the sequences of sample points {Rn(x, yn)}n∈N

and
{Rpr

n (x, yn)
}

n∈N
under various assumptions on the expanding rate of the sequence

of horocycles {Hyn }n∈N, or equivalently, the decay rate of {yn}n∈N.
This problem is naturally easier when the sequence {yn}n∈N decays slowly since

then at each step we have relatively more sample points on the underlying horocycle.
For instance, if nyn → ∞ as n → ∞, the hyperbolic distance between two adjacent
points inRn(x, yn) decays to zero as n → ∞. Since the points inRn(x, yn) distribute
evenly onHyn , the distribution behavior ofRn(x, yn) then mimics that ofHyn . In par-
ticular, for any x ∈ R/Z the sequence {Rn(x, yn)}n∈N becomes equidistributed onM
with respect to the hyperbolic area μ as n → ∞, following from the equidistribution
of the sequence {Hyn }n∈N.

Regarding
{Rpr

n (x, yn)
}

n∈N
, its distribution behavior is well understood when x =

0. Indeed, it was shown by Luethi [24] that if yn = c/nα for some c > 0 and
some α ∈ (0, 1), thenRpr

n (0, yn) becomes equidistributed onM with respect to μ as
n → ∞. Moreover, under the simple symmetry relation that for gcd( j, n) = 1 and
y > 0

�
(

j
n + iy

)
= �

(
− j

n + i
n2y

)
, (1.6)

one can extend this equidistribution result to the range α ∈ (1, 2); this improves the
previous work of Demirci Akarsu [5, Theorem 2] which confirms equdistribution of
{Rpr

n (0, c/nα)}n∈N for α ∈ ( 32 , 2). Here j ∈ (Z/nZ)× denotes the multiplicative
inverse of j ∈ (Z/nZ)×. The equidistribution for the case α = 1 was later proved by
Einsiedler–Luethi–Shah [8]; Jana [16, Theorem 1] recently gave an alternative spectral
proof to this equidistribution result. We also mention that both [5, Theorem 2] and
[16, Theorem 1] are valid in the same setting as [8], namely, on the product of the unit
tangent bundle of the modular surface and a torus. When α = 2 the equidistribution
fails as the aforementioned symmetry implies that Rpr

n (0, c/n2) = Rpr
n (0, 1/c) is

always trapped in the closed horocycle H1/c. For the same reason, when α > 2 (or
more generally for any sequence satisfying n2yn → 0), one has withRpr

n (0, c/nα) =
Rpr

n (0, nα−2/c) ⊂ Hnα−2/c a full escape to the cusp of M as n → ∞. It is worth
noting that while the symmetry (1.6) still holds for rational translates (cf. Lemma 3.6),
it breaks down for irrational translates.

1.2 Statements of the results

We will state here the main results of this paper, and postpone the discussion of their
proofs to the next subsection. Let μM := μ(M)−1μ be the normalized hyperbolic
area onM. For any n ∈ N, x ∈ R/Z and y > 0 let δn,x,y and δ

pr
n,x,y denote the normal-

ized probability counting measure supported onRn(x, y) andRpr
n (x, y) respectively.
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That is, for any � ∈ C∞
c (M),

δn,x,y(�) = 1

n

n−1∑
j=0

�
(

x + j
n + iy

)
,

and

δ
pr
n,x,y(�) = 1

ϕ(n)

∑
j∈(Z/nZ)×

�
(

x + j
n + iy

)
,

where ϕ is Euler’s totient function. Here and throughout, for any measure ν on M,
we set ν(�) := ∫M �(z)dν(z).

Using spectral expansion and collecting estimates on the Fourier coefficients of
Hecke–Maass forms and Eisenstein series, we obtain the following effective result,
which yields equidistribution when the sequence is within a certain polynomial range.

Theorem 1.1 Let M be the modular surface. For any � ∈ C∞
c (M), for any n ∈ N,

x ∈ R/Z and y > 0 we have

∣∣δn,x,y(�) − μM(�)
∣∣�ε S2,2(�)

(
y1/2 + n−1y−(1/2+θ+ε)

)
,

and

∣∣δprn,x,y(�) − μM(�)
∣∣�ε S2,2(�)

(
y1/2 + n−1+ε y−(1/2+θ+ε)

)
,

where θ = 7/64 is the current best known bound towards the Ramanujan conjecture
(which implies θ = 0) and S2,2 is a ”L2, order-2” Sobolev norm on C∞

c (M), see
Sect. 2.1.

If {yn}n∈N is a sequence of positive numbers satisfying limn→∞ yn = 0 and yn 	
1/nα for some fixed α ∈

(
0, 2

1+2θ

)
= (0, 64

39 ), then Theorem 1.1 implies that for any

translate x ∈ R/Z, both {Rn(x, yn)}n∈N and
{Rpr

n (x, yn)
}

n∈N
become equidistributed

on M with respect to μM as n → ∞. In particular, it gives an alternative – spectral
– proof to the aforementioned results of Luethi [24] and Einsiedler–Luethi–Shah [8].
The upper bound 2

1+2θ is the natural barrier for our spectral methods. Nevertheless,
when x is a rational translate, a generalization of the symmetry (1.6) allows to go
beyond this barrier, and to prove unconditionally the remaining range α ∈ [ 2

1+2θ , 2),
as holds in the case of {Rpr

n (0, yn)}n∈N.

Theorem 1.2 Let x = p/q be a primitive rational number, i.e. gcd(p, q) = 1. Let
{yn}n∈N be a sequence of positive numbers satisfying yn 
 1/nα for some fixed
α ∈ [ 2

1+2θ , 2). Then both
{
δn,x,yn

}
n∈Nq

and
{
δ
pr
n,x,yn

}
n∈N

pr
q

weakly converge to μM
as n goes to infinity, where

Nq := {n ∈ N : gcd(n2, q) | n} and N
pr
q := {n ∈ N : gcd(n, q) = 1}.
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Remark 1.7 If q is squarefree, then the condition gcd(n2, q) | n is void. Thus for
such q, Theorem 1.2 (together with Theorem 1.1) confirms the equidistribution of the
sample points Rn(p/q, yn) (with yn 
 1/nα) along the full set of positive integers
for any 0 < α < 2.

As a byproduct of our analysis, we also have the following non-equidistribution
result for rational translates, giving infinitely many explicit limiting measures. Let us
first fix some notation. For each m ∈ N, let

Pm := {n = m� ∈ N : � is a prime number and � � m}. (1.8)

For each Y > 0, we denote by μY the uniform probability measure supported on the
closed horocycle HY . For each m ∈ N and Y > 0, we define the probability measure
νm,Y on M by

νm,Y := 1

m

∑
d|m

ϕ(m
d )μd2Y . (1.9)

Theorem 1.3 Keep the notation as above. Let x = p/q be a primitive rational number
and let {yn}n∈N be a sequence of positive numbers.

(1) If yn = c/n2 for some constant c > 0, then for any m ∈ Nq and for any � ∈
C∞

c (M)

lim
n→∞

gcd(n,q)=1

δ
pr
n,x,yn (�) = μ 1

cq2
(�) and lim

n→∞
n∈Pm

δn,x,yn (�) = ν
m,

gcd(m,q)2

cq2

(�).

(2) If limn→∞ n2yn = 0, then both sequences {Rn(x, yn)}n∈N and {Rpr
n (x, yn)}n∈N

fully escape to the cusp of M.

Our next result shows that, similar to the rational translate case, equidistribution
fails for generic translates as soon as {yn}n∈N decays logarithmically faster than 1/n2.

Theorem 1.4 Let dM(·, ·) be the distance function on M induced from the hyperbolic
distance function on H. Fix �z0 ∈ M. Let {yn}n∈N be a sequence of positive numbers
satisfying yn 
 1/(n2 logβ n) for some fixed 0 < β < 2. Then for almost every
x ∈ R/Z

lim
n→∞

inf�z∈Rn(x,yn) dM (�z0, �z)

log log n
≥ min{β, 2 − β}. (1.10)

This implies that for almost every x ∈ R/Z, there exists an unbounded subsequence
of N such that along this subsequence

inf
�z∈Rn(x,yn)

dM (�z0, �z) ≥ (α − ε) log log n,
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where α = min{β, 2 − β}. That is, for almost every x ∈ R/Z, all the sample points
Rn(x, yn) (and hence alsoRpr

n (x, yn)) are moving towards the cusp of M along this
subsequence, and eventually escape to the cusp as n in this subsequence goes to infinity.

Our proof of Theorem 1.4 relies on connections to Diophantine approximation
theory. This viewpoint comes with inherent limitations; in the specific setting yn 

1/(n2 logβ n), Khintchine’s approximation theorem guarantees full escape to the cusp
almost surely, but this argument does not extend to any sequence {yn}n∈N that decays
polynomially faster than 1/n2, see Sect. 1.3 for a more detailed discussion. It is thus
interesting to study the cases when {yn}n∈N is beyond the ranges in Theorems 1.1 and
1.4.

Indeed, the rest of our results deal with sequences {yn}n∈N that can decay arbitrarily
fast, and give both positive and negative results. This is the main novelty of this paper;
the handling of cases in which the sample points can be arbitrarily sparse on the
closed horocycles they lie on. We now state the main novel aspect of this paper:

Theorem 1.5 For any sequence of positive numbers {cn}n∈N, there exists a sequence
{yn}n∈N satisfying 0 < yn < cn for each n ∈ N and such that for almost every
x ∈ R/Z the set of limiting measures of {δn,x,yn }n∈N and {δprn,x,yn }n∈N both contain
the uniform measure μM, the zero measure, and singular probability measures.

Theorem 1.5 is a sum of three more precise theorems, which each handles a specific
limiting measure, and which we discuss in the next subsection.

1.3 Discussion of the results

Our proofs of Theorems 1.1 and 1.2 rely on spectral estimates collected in the recent
paper of Kelmer and Kontorovich [18], with a necessary refinement of [18, (3.6)]
in the form of Proposition 3.3, which comes at the cost of a higher degree Sobolev
norm. This strategy is standard and is also found in [4,16,27,31], to name just a few
recent papers on related problems. The analysis in [18] was carried out in a more
general setting, namely for the congruence covers �0(p)\H with p a prime number.
Theorem 1.1 can be extended to that more general setting, see Remark 3.11.With these
spectral estimates in hand, we further prove an effective non-equidistribution result
for rational translates from which part (1) of Theorem 1.3 follows, see Theorem 3.10.
Part (2) of Theorem 1.3 is an easy application of the symmetry (1.6).

Remark 1.11 As was pointed out to us by Asaf Katz, we could also have used the
estimates from [31, Proposition 3.1] in place of [18, Proposition 3.4], which in our
specific setting, give the same equidistribution range (with a higher degree Sobolev
norm). We also mention that the estimates in [31, Proposition 3.1] are valid in the
setting of �0(q)\SL2(R) with q ∈ N, and thus imply an effective equidistribution
result analogous to Theorem 1.1 in this generality.

Asmentioned earlier, a generalization of the symmetry (1.6) is available for rational
translates but breaks down for irrational translates. To handle irrational translates, we
approximate them by rational ones to apply the symmetry relation, see Lemma 4.2.
This is where Diophantine approximation kicks in. Similar ideas were also used in [27,
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Section 7] to construct counterexamples in their setting. In fact, we prove Theorem 1.4
by proving a more general result that captures the cusp excursion rates of the sample
points Rn(x, yn) in terms of the Diophantine properties of the translate x , see Theo-
rem 4.3. Theorem 1.4 will then follow from Theorem 4.3 by imposing a Diophantine
condition which ensures cusp excursion, while also holds for almost every translate
thanks to Khintchine’s approximation theorem. This Diophantine condition accounts
for the tight restrictions on {yn}n∈N in Theorem 1.4. On the other hand, assuming an
even stronger Diophantine condition (which holds for a null set of translates), we can
handle sequences decaying polynomially faster than 1/n2 with amuch faster excursion
rate towards the cusp, see Theorem 4.4. We also prove a non-equidistribution result
(which, this time, holds for every x) when yn = c/n2 and the constant c is restricted to
some range, see Theorem 4.5. The trade-off of this upgrade from Theorem 1.4 to the
everywhere non-equidistribution result is that we can no longer prove the full escape
to the cusp along subsequences as in Theorem 1.4.

Asmentioned before, Theorem1.5 follows from threemore precise theoremswhich
each handles a specific limiting measure. Our first result confirms equidistribution
almost surely along a fixed subsequence of N for any sequence {yn}n∈N decaying at
least polynomially.

Theorem 1.6 Fix α > 0. Then there exists a fixed unbounded subsequence N ⊂ N

such that for any sequence of positive numbers {yn}n∈N satisfying yn � n−α and for
almost every x ∈ R/Z, both δn,x,yn and δ

pr
n,x,yn weakly converge to μM as n ∈ N

goes to infinity.

Remark 1.12 It will be clear from our proof that one can take N ⊂ N to be any
subsequence satisfying

∑
n∈N n−c < ∞ for some positive c < min{α

2 , 1 − 2θ}, e.g.
we may take N = {�nκ�}n∈N for any κ > 1/min{α

2 , 1 − 2θ}.
Theorem 1.6 follows from a secondmoment estimate for the discrepancies |δn,x,y −

μM| and |δprn,x,y −μM| along the closed horocycleHy (Theorem 5.2) together with a
standard Borel–Cantelli type argument. This was also the strategy used in [27] when
studying theKronecker sequences in (1.3).Along these lines, theydeduce fromspectral
estimates the equidistribution for almost every β ∈ R along a fixed subsequence
{nk}n∈N when yn 
 n−α with k ∈ N depending on α > 0. Then, using a continuity
argument, this result is upgraded to the equidistribution along the full sequence of
positive integers, see [27, Section 4]. This continuity argument fails in our situation.
Instead of applying directly spectral estimates to the second moment formulas, we
express the latter in terms of certain Hecke operators (Proposition 5.1), and rely on
available (spectral) bounds for their operator norm, see [10]. Contrarily to spectral
estimates, the recourse to Hecke operators allows us to have a uniform subsequence
N which is valid for all {yn}n∈N decaying at least polynomially.

Next, we show that there exists a sequence {yn}n∈N decaying arbitrarily rapidly
such that for almost every x ,Rn(x, yn) (and thus alsoRpr

n (x, y)) escapes to the cusp
with a certain rate along subsequences.

Theorem 1.7 Fix �z0 ∈ M. For any sequence of positive numbers {cn}n∈N, there
exists a sequence {yn}n∈N satisfying 0 < yn < cn for each n ∈ N and such that for
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almost every x ∈ R/Z

lim
n→∞

inf�z∈Rn(x,yn) dM (�z0, �z)

log log n
≥ 1. (1.13)

Finally, we show that escape to the cusp is not the only obstacle to equidistribution.

Theorem 1.8 Let m ∈ N and Y > 0 satisfy m2Y > 1. Let Pm ⊂ N and νm,Y be as
defined in (1.8) and (1.9) respectively. For any sequence of positive numbers {cn}n∈Pm ,
there exists a sequence {yn}n∈Pm satisfying 0 < yn < cn for all n ∈ Pm such that for
almost every x ∈ R/Z, the set of limiting measures of {δn,x,yn }n∈Pm contains νm,Y .

Remark 1.14 We note that P1 is the set of prime numbers and ν1,Y = μY . Since

δ
pr
p,x,y(�) = p

p−1δp,x,y(�) + O(p−1‖�‖∞)

whenever p is a prime number, when m = 1 the conclusion of Theorem 1.8 also holds
for the sequence {δprn,x,yn }n∈P1 . We also note that it will be clear from our proof that
Theorems 1.7 and 1.8 can be combined. In fact, our argument shows that there always
exists a sequence {yn}n∈N decaying faster than any prescribed sequence such that for
almost every x ∈ R/Z the set of limiting measures of

{
δn,x,yn

}
n∈N

contains the trivial
measure and νm,Y for any finitely many pairs (m, Y ) ∈ N × R>0 with m2Y > 1, see
Remark 7.26. Moreover, in view of Theorem 1.6 if yn � n−α for some α > 0, then
it also contains the hyperbolic area μM almost surely.

For the rest of this introduction we describe the strategy of our proof to Theorem 1.7
(Theorem 1.8 follows from similar ideas). To detect cusp excursions, we study for each
n ∈ N the occurrence of the events

�
(

x + j
n + iyn

)
∈ C for all 0 ≤ j ≤ n − 1, (1.15)

where C ⊂ M is some fixed cusp neighborhood ofM. More precisely, we determine
when the limsup set I∞ = limn→∞ In is of full measure, where for each n ∈ N,

In := {x ∈ R/Z : Rn(x, yn) ⊂ C}

consists of translates x ∈ R/Z for which the events in (1.15) occur. This requires to
study the left regular u1/n-action on C ⊂ M and thus calls for the underlying lattice
to be normalized by u1/n . Therefore, we construct an explicit tower of coverings
{�n\H}n∈N in which each �n is a congruence subgroup normalized by u1/n . We note
that the existence of such �n < � is the starting point of our proof and it relies on
the assumption that � = SL2(Z); this construction would fail for � replaced by a
non-arithmetic lattice.

The key ingredient of the proof will be a sufficient condition which states that if
a point �n(x + iyn) ∈ �n\H visits a certain cusp neighborhood Cn on �n\H, then
the events in (1.15) will be realized for x ∈ R/Z, that is, x ∈ In , see Lemma 7.6.
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Using this sufficient condition, we can then relate the measure of In to the proportion
of certain closed horocycles on �n\H visiting the cusp neighborhood Cn ⊂ �n\H,
which in turn, using the equidistribution of expanding closed horocycles on �n\H,
can be estimated for yn sufficiently small. Since the sets In also need to satisfy certain
quasi-independence conditions for I∞ to have full measure (Lemma 2.5), we need to
apply the equidistribution of certain subsegments of the expanding closed horocycles
on�n\H. More precisely, at the n-th step these subsegments will be taken to be the sets
Im for all m < n. These subsegment are finite disjoint unions of subintervals whose
number and size depend sensitively on the height parameters {ym}m<n , seeRemark 6.3.
If there would exist an effective equidistribution result which would be insensitive to
the geometry of these subsegments, that is, for which the error term depends only on
the measure of these subsegments, then we would have an effective control on the
sequence {yn}n∈N in Theorem 1.7 (and similarly also in Theorem 1.8). However, it is
not clear to us whether one should expect such an effective equidistribution result.

Finally, we note that it was communicated to us by Strömbergsson that using a
number theoretic interpretation of the aforementioned sufficient condition and some
elementary estimates, one can alternatively prove Theorem 1.7 without going into
these congruence covers, see Remark 7.17.

Structure of the paper

In Sect. 2, we collect some preliminary results that will be needed in the rest of the
paper. In Sect. 3, we prove a key spectral estimate (Proposition 3.3) and proceed to
prove Theorems 1.1 and 1.2. In Sect. 4, we prove Theorems 4.3 and 4.5 by examining
the connections between Diophantine approximations and cusp excursions on the
modular surface. In Sect. 5, we prove Theorem 1.6 by proving a secondmoment bound
using Hecke operators. In Sect. 6, we study the left regular action of a normalizing
element on the set of cusp neighborhoods of a congruence cover of themodular surface.
Building on the results, we prove Theorems 1.7 and 1.8 in Sect. 7.

Notation

For two positive quantities A and B, we will use the notation A � B or A = O(B)

to mean that there is a constant c > 0 such that A ≤ cB, and we will use subscripts
to indicate the dependence of the constant on parameters. We will write A 
 B for
A � B � A. For any z ∈ H we denote by e(z) := e2π i z . For any n ∈ N, we denote
by
∏

d|n the product over all positive divisors of n, and by
∏

p|n
prime

the product over

all prime divisors of n. For any x ≥ 0 and n ∈ N, σx (n) := ∑
d|n dx is the power-x

divisor function which satisfies the estimate σx (n) �ε nx+ε for any small ε > 0.
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2 Preliminaries

Let G = SL2(R). We consider the Iwasawa decomposition G = N AK with

N = {ux : x ∈ R} , A = {ay : y > 0
}
, K = {kθ : 0 ≤ θ < 2π} ,

where ux = (
1 x
0 1

)
, ay =

(
y1/2 0
0 y−1/2

)
and kθ = (

cos θ sin θ− sin θ cos θ

)
respectively. Under the

coordinates g = ux aykθ on G, the Haar measure is given (up to scalars) by

dg = y−2dxdydθ.

The group G acts on the upper half plane H = {z = x + iy ∈ C : y > 0} via
the Möbius transformation: gz = az+b

cz+d for any g = (
a b
c d

) ∈ G and z ∈ H. This
action preserves the hyperbolic area dμ(z) = y−2dxdy and induces an identification
between G/K and H.

Let � < G be a lattice, that is, � is a discrete subgroup of G such that the corre-
sponding hyperbolic surface �\H has finite area (with respect to μ). We denote by
μ� := μ(�\H)−1μ the normalized hyperbolic area on �\H such that μ�(�\H) = 1.
We note that when � = SL2(Z) then μ� = μM with μM the normalized hyperbolic
area on the modular surfaceM given as in the introduction. We note that in this case
it is well known μ(M) = π/3, and hence

dμM(z) = 3

π

dxdy

y2
. (2.1)

Using the above identification between H and G/K we can identify the hyperbolic
surface �\H with the locally symmetric space �\G/K . We can thus view subsets of
�\H as right K -invariant subsets of �\G. Similarly, we can view functions on �\H

as right K -invariant functions on �\G. We note that using the above description of
the Haar measure, the probability Haar measure on �\G (when restricted to the sub-
family of right K -invariant subsets) coincides with the normalized hyperbolic areaμ�

on �\H.

2.1 Sobolev norms

In this subsection we record some useful properties about Sobolev norms. Let g =
sl2(R) be the Lie algebra ofG. Fix a basisB = {X1, X2, X3} for g, and given a smooth
test function � ∈ C∞(�\G) we define the “L p, order-d” Sobolev norm S�

p,d(�) as

S�
p,d(�) :=

∑
ord(D)≤d

‖D�‖L p(�\G),

where D runs over all monomials in B of order at most d, and the L p-norm is with
respect to the normalized Haar measure on �\G.
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For any � ∈ C∞(�\G) (which we think of a smooth left �-invariant function on
G) and for any h ∈ G we denote by Lh�(g) := �(h−1g) the left regular h-action on
�. It is easy to check that Lh� ∈ C∞(h�h−1\G), and since taking Lie derivatives
commutes with the left regular action, we have

S�
p,d(�) = Sh�h−1

p,d (Lh�). (2.2)

Next we note that using the product rule for Lie derivatives (see e.g. [21, p. 90]), the
triangle inequality and the Cauchy–Schwarz inequality, for any monomialD of order
k≤ d we have for any smooth functions �1, �2 ∈ C∞(�\G)

‖D�1�2‖L p(�\G) �k S�
2p,k(�1)S�

2p,k(�2)≤ S�
2p,d(�1)S�

2p,d(�2).

In particular this implies that

S�
p,d(�1�2) �d S�

2p,d(�1)S�
2p,d(�2). (2.3)

Finally, we note that if �′ < � is a finite-index subgroup of �, then there is a natural
embedding C∞(�\G) ↪→ C∞(�′\G) since each � ∈ C∞(�\G) can be viewed as
a smooth left �′-invariant function on G. Since the Sobolev norms are defined with
respect to the normalized Haar measure on the corresponding homogeneous space,
we have for �′ < � of finite index and � ∈ C∞(�\G)

S�′
p,d(�) = S�

p,d(�). (2.4)

2.2 Spectral decomposition

Let � < G be a non-uniform lattice, that is, � is a lattice and �\H is not compact.
Let � = −y2( ∂

∂x2
+ ∂

∂ y2
) be the hyperbolic Laplace operator. It is a second order

differential operator acting on C∞(�\H) and extends uniquely to a self-adjoint and
positive semi-definite operator on L2(�\H). Since � is non-uniform, the spectrum of
� is composed of a continuous part (spanned by Eisenstein series) and a discrete part
(spanned by Maass forms) which further decomposes as the cuspidal spectrum and
the residual spectrum. The residual spectrum always contains the constant functions
(coming from the trivial pole of the Eisenstein series). If � is a congruence subgroup,
that is, � contains a principal congruence subgroup

�(n) := {γ ∈ SL2(Z) : γ ≡ I2 (mod n)}

for some n ∈ N, then the residual spectrum consists only of the constant functions,
see e.g. [15, Theorem 11.3].

Let {φk} be an orthonormal basis of the space of cusp forms that are eigenfunctions
of the Laplace operator �. Explicitly, for each φk there exists λk ≥ 0 such that

�φk = λkφk = sk(1 − sk)φk =
(
1
4 + r2k

)
φk .
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Selberg’s eigenvalue conjecture states that for congruence subgroups, λk ≥ 1/4, or
equivalently, there is no rk ∈ i(0, 1/2). Selberg’s conjecture is known to be true for the
modular surfaceM, andmore generally, the best known bound towards this conjecture
is currently λk ≥ 1

4 − θ2, with θ = 7/64, which follows from the bound of Kim and
Sarnak towards the Ramanujan conjecture, see [19, p. 176].

Let now � = SL2(Z). In the notation introduced at the beginning of this section,
the Eisenstein series for the modular group � at the cusp ∞ is defined forRe(s) > 1
by

E(z, s) =
∑

γ∈(�∩±N )\�
Im(γ z)s (2.5)

with a meromorphic continuation to s ∈ C. Moreover, for any s ∈ C, E(·, s) is an
eigenfunction of the Laplace operator with eigenvalue s(1 − s).

Let � ∈ L2(M) and we have the following spectral decomposition (see [15,
Theorems 4.7 and 7.3])

�(z) = μM(�) +
∑
rk≥0

〈�,φk〉φk(z)

+ 1

4π

∫ ∞

−∞
〈�, E(·, 1

2 + ir)〉E(z, 1
2 + ir)dr , (2.6)

where the convergence holds in the L2-norm topology, and is pointwise if � ∈
C∞

c (M). As a direct consequence we have for � ∈ L2(M),

‖�‖22 = ∣∣μM(�)
∣∣2 +

∑
rk≥0

|〈�,φk〉|2 + 1

4π

∫ ∞
−∞

∣∣∣〈�, E(·, 1
2 + ir)〉

∣∣∣2 dr . (2.7)

2.3 Hecke operators

The spectral theory of M has extra structure due to the existence of Hecke opera-
tors. The main goal of this subsection is to prove an operator norm bound for Hecke
operators and the main reference is [15, Section 8.5]. For any n ∈ N define the set

Ln :=
{

n−1/2g : g ∈ M2(Z), det(g) = n
}

⊂ G, (2.8)

where M2(Z) is the space of two by two integral matrices. The n-th Hecke operator
Tn is defined by that for any � ∈ L2(M)

Tn(�)(z) = 1

n1/2

∑
γ∈�\Ln

�(γ z).
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The Hecke operator Tn is a self-adjoint operator on L2(M) and since Tn commutes
with the Laplace operator � (since � is defined via right multiplication and Tn is
defined via left multiplication) the orthonormal basis of the space of cusp forms {φk}
can be chosen consisting of joint eigenfunctions of all Tn , that is,

Tnφk = λφk (n)φk .

On the other hand, for any r ∈ R theEisenstein series E(z, 1/2+ir) is an eigenfunction

of Tn with eigenvalue λr (n) :=∑d|n
(

n
d2

)ir
, see [15, Equation (8.33)]. It is clear that

|λr (n)| ≤ σ0(n) with σ0(n) the divisor function. For the eigenvalue of cusp forms it
is conjectured (Ramanujan-Petersson) that for any above φk and for any n ∈ N

∣∣λφk (n)
∣∣ ≤ σ0(n).

The aforementioned bound of Sarnak and Kim [19] implies that

∣∣λφk (n)
∣∣ ≤ σ0(n)n7/64.

Using these bounds on eigenvalues and the above spectral decomposition (2.6) and
(2.7) we have the following bound on the operator norm of the Hecke operator, see
also [10, pp. 172-173].

Proposition 2.1 For any � ∈ L2(M) and for any n ∈ N we have

〈�0, Tn(�0)〉L2(M) �ε nθ+ε‖�‖22,

where �0 := � − μM(�) and θ = 7/64 as before.

2.3.1 Hecke operators attached to a group element

Let � = SL2(Z) and letM = �\H be the modular surface as above. There is another
type of Hecke operators on L2(M) defined via a group element in SL2(Q). Namely,
for each h ∈ SL2(Q) the Hecke operator attached to h, denoted by T̃h , is defined by
that for any � ∈ L2(M)

T̃h(�)(z) = 1

#(�\�h�)

∑
g∈�\�h�

�(gz), (2.9)

where �h� = {γ1hγ2 : γ1, γ2 ∈ �} is the double coset attached to h. We note that T̃h

is well-defined since � is left �-invariant.
For our purpose, we will need another expression for T̃h . For any h ∈ SL2(Q) we

denote by�h := �∩h−1�h.We note that themap from� to�\�h� sending γ ∈ � to
�hγ induces an identification between �h\� and �\�h�. This identification induces
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the following alternative expression for T̃h :

T̃h(�)(g) = 1

[� : �h]
∑

γ∈�h\�
�(hγ g). (2.10)

It is clear from the definition that T̃h is defined only up to representatives for the
double coset �h�, that is, T̃h = T̃h′ whenever �h� = �h′�. For a fixed h ∈ SL2(Q),
we call n ∈ N the degree of h if n is the smallest positive integer such that nh ∈ M2(Z).
Using elementary column and row operations one can see that for h ∈ SL2(Q) with
degree n

�h� = � diag(1/n, n)� =
{

n−1g : g ∈ M2(Z), det(g) = n2, gcd(g) = 1
}

⊂ G,

(2.11)

where gcd(g) is the greatest common divisor of the entries of g. Thus we can param-
eterize the Hecke operators by their degrees, that is, we will denote by T̃n := T̃h

for any h ∈ SL2(Q) with degree n. We also note that by direct computation when
h = diag(1/n, n) we have �h = �0(n2), implying that for any h ∈ SL2(Q) with
degree n (see e.g. [6, Section 1.2])

νn := #(�\�h�) = [� : �h] = [� : �0(n
2)] = n2

∏
p|n

prime

(
1 + p−1

)
. (2.12)

Now using the description (2.11) we have the double coset decomposition

Ln2 =
⊔
d|n

�

(
d−1 0
0 d

)
�.

This decomposition together with the definitions (2.8), (2.9) and (2.12) implies the
relation

nTn2 =
∑
d|n

νd T̃d .

Thus by the Möbius inversion formula we have

T̃n = n

νn

∑
d|n

μ(d)

d
Tn2/d2 . (2.13)

Using this relation and Proposition 2.1 we can prove the following operator norm
bounds for T̃n which we will later use, see also [3, Theorem 1.1] for such bounds in a
much greater generality.
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Proposition 2.2 Keep the notation as in Proposition 2.1. For any � ∈ L2(M) and for
any n ∈ N we have

〈�0, T̃n(�0)〉L2(M) �ε n−1+2θ+ε‖�‖22.

Proof. ByProposition 2.1 and using the relation (2.13), the trivial estimates |μ(d)| ≤ 1
and νn ≥ n2 and the triangle inequality we have

〈�0, T̃n(�0)〉 ≤ n−2
∑
d|n

(n/d)〈�0, Tn2/d2(�0)〉 �ε n−2
∑
d|n

(n/d)1+2θ+2ε‖�‖22

= n−1+2θ+2εσ−1+2θ+2ε(n)‖�‖22 �ε n−1+2θ+ε‖�‖22.

2.4 Equidistribution of subsegments of expanding closed horocycles

We record a special case of Sarnak’s result [28, Theorem 1] on effective equidistribu-
tion of expanding closed horocycles, namely:

Proposition 2.3 Let � < SL2(Z) be a congruence subgroup and assume that � has
a cusp at ∞ with width one. Then for any � ∈ C∞(�\H) ∩ L2(�\H) satisfying
‖��‖2 < ∞ and for any 0 < y < 1 we have

∣∣∣∣
∫ 1

0
�(x + iy)dx − μ�(�)

∣∣∣∣� ‖�‖3/42 ‖��‖1/42 y1/2, (2.14)

where the implied constant is absolute, independent of �, � and y, and the L2-norm
is with respect to the normalized hyperbolic area μ� .

Remark 2.15 We omit the proof here and refer the reader to [18, (3.5)]. We note that
while [18] only deals with the case when � = �0(p)with p a prime number, the proof
there works for general congruence subgroups, given that they have trivial residual
spectrum; see [15, Theorem 11.3].

Wewill also need the following (non-effective) equidistribution result replacing the
whole closed horocycle by a fixed subsegment:

Proposition 2.4 Let � < SL2(Z) be as in Proposition 2.3. Let I ⊂ (0, 1) be an open
interval, then for any � ∈ Cc(�\H) we have

lim
y→0+

1

|I |
∫

I
�(x + iy)dx = μ�(�). (2.16)

The proof of Proposition 2.4 uses Margulis’ thickening trick [25] and mixing prop-
erty of the geodesic flow on the unit tangent bundle of �\H; this approach is also
effective, see e.g. [17, Proposition 2.3]. A proof of (2.16) using spectral methods was
also sketched in [12, Theorem 1′]. We also note that both equidistribution results in
Propositions 2.3 and 2.4 can be lifted to the unit tangent bundle of�\H (with necessary
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modifications to the error term in (2.14)); since we will be only working in the hyper-
bolic surface level, we state these two results in the current format for convenience of
our discussion. We further refer the reader to [13,30] for some much stronger effective
equidistribution results regarding long enough (varying) subsegments on expanding
closed horocycles.

Remark 2.17 Proposition 2.4 can be equivalently stated as following: For any fixed
open interval I ⊂ (0, 1), the measuresμI ,y weakly converge toμ� as y → 0+, where
for any y ∈ (0, 1) and � ∈ Cc(�\H), μI ,y(�) := 1

|I |
∫

I �(x + iy)dx . Thus by
the Portmanteau theorem, (2.16) extends to � = χB with B ⊂ �\H a Borel subset
with boundary of measure zero. More generally, let ρ : [0, 1) → R be a Riemann
integrable function. Since ρ can be weakly approximated from both above and below
by step functions, we have

lim
y→0+

∫ 1

0
ρ(x)χB(x + iy)dx = μ�(B)

∫ 1

0
ρ(x)dx

with B ⊂ �\H a Borel set with boundary of measure zero.

2.5 A quantitative Borel–Cantelli lemma

Finally we record here a quantitative Borel–Cantelli lemma which ensures for the
limsup set of certain sequence of events to have full measure given certain quasi-
independence conditions.

Lemma 2.5 [29, Chapter I, Lemma 10] Let (X ,B, ν) be a probability space with B
a σ -algebra of subsets of X and ν : X → [0, 1] a probability measure on X with
respect to B. Let {Ai }i∈N be a sequence of measurable subsets in B. For any n, m ∈ N

we denote by Rn,m := ν(An ∩ Am) − ν(An)ν(Am). Suppose that

∃ C > 0 such that for all k2 > k1 ≥ 1,
k2∑

n,m=k1

Rn,m ≤ C
k2∑

n=k1

ν(An), (2.18)

then
∑

n∈N
ν(An) = ∞ implies that ν

(
limn→∞ An

) = 1.

Remark 2.19 Keep the notation as in Lemma 2.5. It was shown in [20, Proposition
5.4] that if

∃C ′ > 0 and η > 1 such that for any n �= m, Rn,m ≤ C ′
√

ν(An)ν(Am)

|n − m|η ,

then the sequence {Ai }i∈N satisfies the condition (2.18).

We will use the following slightly modified version of quantitative Borel–Cantelli
lemma which has the flexibility to consider sequence of measurable sets {An}n∈S

indexed by a general unbounded subset S ⊂ N.
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Corollary 2.6 Let (X ,B, ν) be as in Lemma 2.5. Let S ⊂ N be an unbounded subset
and let {An}n∈S be a sequence of measurable subsets in B. Suppose that

∃C ′ > 0 and η > 1 such that ∀n, m ∈ S with m < n, Rn,m ≤ C ′ ν(An)ν(Am)

nη
, (2.20)

then
∑

n∈S
ν(An) = ∞ implies that ν

(
lim n∈S

n→∞
An

)
= 1.

Proof For any i ∈ N let ai ∈ S be the i-th integer in S and let Bi := Aai . For any
i, j ∈ N let R′

i, j := ν(Bi ∩ B j ) − ν(Bi )ν(B j ) so that R′
i, j = Rai ,a j . Then by for any

i < j we have

R′
i, j = Rai ,a j ≤ C ′ ν(Aai )ν(Aa j )

aη
j

= C ′ ν(Bi )ν(B j )

aη
j

< C ′
√

ν(Bi )ν(B j )

|i − j |η ,

where for the first inequality we used the assumption (2.20) and for the second
inequality we used the estimates a j ≥ j > j − i and

√
ν(Bi )ν(B j ) ≤ 1. Thus

in view of Remark 2.19 and Lemma 2.5 we have
∑

i∈N
ν(Bi ) = ∞ implies that

ν
(
limi→∞ Bi

) = 1 which is equivalent to the conclusion of this corollary in view of
the relation Bi = Aai .

3 Equidistribution range

LetM = SL2(Z)\H. Sincewe fix� = SL2(Z) throughout this section, we abbreviate
the Sobolev norm S�

p,d by Sp,d . In this section, we prove Theorems 1.1 and 1.2. The
main ingredient of our proof is an explicit bound of Fourier coefficients which follows
from a slight modification of the estimates obtained in [18].

3.1 Bounds on Fourier coefficients

Let � ∈ C∞
c (M). Since � is left �-invariant, it is invariant under the transformation

determined by u1 : z �→ z+1, and it thus has a Fourier expansion for� in the variable
x = Re(z):

�(x + iy) =
∑
m∈Z

a�(m, y)e(mx), (3.1)

where

a�(m, y) =
∫ 1

0
�(x + iy)e(−mx)dx .

Similarly we denote by aφk (m, y) and a(s; m, y) the mth Fourier coefficients of the
Hecke-Maass formφk and the Eisenstein series E(·, s) respectively. Estimates on these
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674 C. Burrin et al.

Fourier coefficients yield, via the spectral expansion (2.6), estimates on the Fourier
coefficients of �. Namely,

a�(m, y) =
∑
rk≥0

〈�,φk〉aφk (m, y) + 1

4π

∫ ∞

−∞
〈�, E(·, 1

2 + ir)〉a( 12 + ir; m, y)dr .

We record the following bounds for aφk (m, y) and a(s; m, y):

Lemma 3.1 [18, Lemmata 3.7 and 3.13] For any m �= 0 and for any ε > 0 we have

|aφk (m, y)| �ε |m|θ y1/2−ε(rk + 1)−1/3+ε min{1, eπrk/2−2π |m|y}, (3.2)

and

|a ( 12 + ir; m, y
) | �ε y1/2−ε(1 + |r |)−1/3+ε min{1, eπ |r |/2−2π |m|y}, (3.3)

where θ = 7/64 is the best known bound towards the Ramanujan conjecture as before.

Remark 3.4 Contrarily to [18] that uses the trivial bound min{1, eπr/2−2π |m|y} ≤ 1,
we keep this term.

Proposition 3.2 [18, Proposition 3.4] For any � ∈ C∞
c (M), we have that

a�(0, y) = μM(�) + O
(
‖�‖3/42 ‖��‖1/42 y1/2

)
. (3.5)

Moreover, for any m �= 0, and any ε > 0 and any α0 > 5/3, we have

a�(m, y) �α0,ε,p Sα0(�)y1/2−ε |m|θ , (3.6)

where Sα0 is a Sobolev norm of degree α0.

Remark 3.7 The Sobolev norm Sα0 is explicit from the proof of [18, Proposition 3.4]:
Writing α0 = 5/3 + ε with ε > 0, then Sα0(�) = S2,0(�)2/3−ε/2S2,2(�)1/3+ε/2

for any � ∈ C∞
c (M). In particular, using the estimate S2,0(�) ≤ S2,2(�) we have

Sα0(�) ≤ S2,2(�).

The following refinement of this last estimate allows to estimate the Fourier coef-
ficients when |m| > y−1 is large. This refinement is crucial for our later results, and
the price we pay is a Sobolev norm of higher degree.

Proposition 3.3 Let � ∈ C∞
c (M). Whenever |m|y > 1 and for any ε > 0, we have

|a�(m, y)| �ε S2,2(�)|m|−4/3+θ+ε y−5/6.
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Proof For the contribution from the cusp formswe apply the bound (3.2) to the Fourier
coefficients and the bound

min{1, eπr/2−2π |m|y} ≤
{

e−π |m|y 0 ≤ r ≤ 2|m|y
1 r > 2|m|y,

(3.8)

and the relation 〈��,φk〉 = 〈�,�φk〉 = (1/4 + r2k )〈�,φk〉 to get that
∣∣∣∣∣∣
∑
rk≥0

〈�,φk〉aφk (m, y)

∣∣∣∣∣∣�ε

∑
0≤rk≤2|m|y

|〈�,φk〉| |m|θ y1/2−ε(rk + 1)−1/3+εe−π |m|y

+
∑

rk>2|m|y
|〈��,φk〉| |m|θ y1/2−εr−7/3+ε

k . (3.9)

Now using Cauchy–Schwarz followed by summation by parts (together with Weyl’s
law stating that #{rk : rk ≤ M} � M2 (see e.g. [15, Corollary 11.2]) we can bound

∑
0≤rk≤2|m|y

|〈�,φk〉| (rk + 1)−1/3+ε ≤ ‖�‖2
⎛
⎝ ∑

0≤rk≤2|m|y

1

(rk + 1)2/3−2ε

⎞
⎠

1/2

�ε ‖�‖2 (|m|y)2/3+ε .

Similarly, for the second sum we can bound

∑
rk>2|m|y

|〈��,φk〉| r−7/3+ε
k

≤ ‖��‖2
⎛
⎝ ∑

rk>2|m|y
r−14/3+2ε

k

⎞
⎠

1/2

�ε ‖��‖2 (|m|y)−4/3+ε .

To summarize, the left-hand side of (3.9) is bounded by

�ε ‖�‖2|m|2/3+θ+ε y7/6e−π |m|y + ‖��‖2|m|−4/3+θ+ε y−5/6. (3.10)

For the contribution from the continuous spectrum using the estimates (3.3), (3.8), the
relation 〈��, E(·, 1

2 + ir)〉 = ( 14 + r2)〈�, E(·, 1
2 + ir)〉 and Cauchy–Schwarz we

can similarly bound
∣∣∫∞

−∞〈�, E(·, 1
2 + ir)〉a( 12 + ir; m, y)dr

∣∣ by

�ε e−π |m|y y1/2−ε

∫
|r |≤2|m|y

∣∣〈�, E
(·, 1

2 + ir
)〉∣∣ (|r | + 1)−1/3+εdr

+ y1/2−ε

∫
|r |>2|m|y

∣∣〈��, E
(·, 1

2 + ir
)〉∣∣ |r |−7/3+εdr

�ε y1/2−ε
(
‖�‖2 (|m|y)1/6+ε e−π |m|y + ‖��‖2 (|m|y)−11/6+ε

)
,
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which is subsumed by the right-hand side of (3.10) (since |m|y > 1). Finally, we
conclude the proof by applying the bounds max{‖�‖2, ‖��‖2} ≤ S2,2(�) and
e−π |m|y � (|m|y)−2 (again since |m|y > 1) to the right hand side of (3.10).

The following corollary of Proposition 3.3 is the key estimate that we will use to
prove Theorem 1.1.

Corollary 3.4 Let q be a positive integer. For any � ∈ C∞
c (M), y > 0, and any ε > 0,

we have

∑
m �=0

|a�(qm, y)| �ε S2,2(�)q−1y−(1/2+θ+ε).

Proof If qy ≤ 1 we can separate the above sum into two parts to get

∑
m �=0

|a�(qm, y)| =
∑

1≤|m|≤(qy)−1

|a�(qm, y)| +
∑

|m|>(qy)−1

|a�(qm, y)| .

Applying (3.6) (and the estimate Sα0(�) ≤ S2,2(�) by Remark 3.7) to the first sum
and Proposition 3.3 to the second, we have

∑
m �=0

|a�(qm, y)|

�ε S2,2(�)

⎛
⎝ ∑

1≤|m|≤(ny)−1

|qm|θ y1/2−ε +
∑

|m|>(qy)−1

|qm|−4/3+θ+ε y−5/6

⎞
⎠


 S2,2(�)
(

qθ y1/2−ε(qy)−(1+θ) + q−4/3+θ+ε y−5/6(qy)1/3−θ−ε
)

= S2,2(�)q−1y−(1/2+θ+ε),

where for the second estimate we used that 4/3− θ − ε > 1. If qy > 1 then we have
|qm|y > 1 for all m �= 0. We can apply Proposition 3.3 to a�(qm, y) for all integers
m �= 0 to get

∑
m �=0

|a�(qm, y)| �ε S2,2(�)
∑

|m|�=0

|qm|−4/3+θ+ε y−5/6

� S2,2(�)q−4/3+θ+ε y−5/6 � S2,2(�)q−1y−(1/2+θ+ε),

where for the last estimate we used that θ < 1/3 − ε.

Remark 3.11 The estimates in [18] hold more generally for any � conjugate to some
�0(p). In this generality, there might be (finitely many) exceptional cusp forms with
rk ∈ i(0, θ ]. For such forms, it was shown in [18, Lemma 3.7] that for any m �= 0

∣∣aφk (m, y)
∣∣�ε,p ‖�‖2|m|θ y1/2−ε(|m|y)−|rk |+εe−2π |m|y .
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Using the estimates (|m|y)−|rk |+εe−2π |m|y < (|m|y)−θ when |m|y ≤ 1 and
(|m|y)−|rk |+εe−2π |m|y � (|m|y)−2 when |m|y > 1 one can easily recover Corol-
lary 3.4 for φk , and hence for a general � ∈ C∞

c (�0(p)\H). Then one can easily
deduce analogous estimates as in Theorem 1.1 for �, see the arguments in the next
subsection.

3.2 Proof of Theorem 1.1

In this subsection we prove Theorem 1.1. In view of (3.5) it suffices to prove the
following proposition.

Proposition 3.5 Let M be the modular surface. For any � ∈ C∞
c (M), for any x ∈

R/Z and y > 0, we have

δn,x,y(�) = a�(0, y) + Oε

(
S2,2(�)n−1y−(1/2+θ+ε)

)
(3.12)

and

δ
pr
n,x,y(�) = a�(0, y) + Oε

(
S2,2(�)n−1+ε y−(1/2+θ+ε)

)
. (3.13)

Proof Let J ⊂ R/Z ∼= [0, 1) be a finite subset and for any m ∈ Z denote
by WJ (m) := 1

|J |
∑

t∈J e(mt). We note that 1
|J |
∑

t∈J �(t + iy) equals δn,x,y(�)

when J = {x + j/n : 0 ≤ j ≤ n − 1} and equals δ
pr
n,x,y(�) when J =

{x + j/n : 0 ≤ j ≤ n − 1, gcd( j, n) = 1}. Applying the Fourier expansion (3.1) to
� we get that

1

|J |
∑
t∈J

�(t + iy) = 1

|J |
∑
t∈J

∑
m∈Z

a�(m, y)e(mt) =
∑
m∈Z

a�(m, y)
1

|J |
∑
t∈J

e(mt)

= a�(0, y) +
∑
m �=0

a�(m, y)WJ (m).

Now for (3.12) we take J = {x + j/n : 0 ≤ j ≤ n − 1} and note that for such J ,
|WJ (m)| equals 1 if n | m and equals 0 otherwise. Hence

∣∣∣∣∣∣
∑
m �=0

a�(m, y)WJ (m)

∣∣∣∣∣∣ ≤
∑
m �=0
n|m

|a�(m, y)| �ε n−1y−(1/2+θ+ε),

where for the last estimate we applied Corollary 3.4.
For (3.13) we take J = {x + j/n : 0 ≤ j ≤ n − 1, gcd( j, n) = 1} and note the

identity

∑
j∈(Z/nZ)×

e
(

mj
n

)
= μ(nm)ϕ(n)

ϕ(nm)
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for the Ramanujan’s sum, where nm := n/ gcd(n, m) and μ : N → {0,±1} is the
Möbius function; see e.g. [14, Theorem 272]. Then

|WJ (m)| =
∣∣∣∣∣∣

1

ϕ(n)

∑
j∈(Z/nZ)×

e
(

mj
n

)∣∣∣∣∣∣ = |μ(nm)|
ϕ (nm)

≤ 1

ϕ(nm)
.

Hence we have

∣∣∣∣∣∣
∑
m �=0

a�(m, y)WJ (m)

∣∣∣∣∣∣ ≤
∑
m �=0

|a�(m, y)|
ϕ(nm)

=
∑
d|n

1

ϕ(d)

∑
m �=0

gcd(m,n)=n/d

|a�(m, y)|

≤
∑
d|n

1

ϕ(d)

∑
m �=0

(n/d)|m

|a�(m, y)|

�ε

∑
d|n

1

ϕ(d)

(n

d

)−1
y−(1/2+θ+ε)

�ε n−1σε/2(n)y−(1/2+θ+ε) �ε n−1+ε y−(1/2+θ+ε),

where for the second inequality we used the fact that gcd(m, n) = n/d implies that
(n/d) | m, for the third inequality we applied Corollary 3.4 and for the second last
inequality we applied the estimate ϕ(d) 	ε d1−ε/2.

3.3 Full range equidistribution for rational translates

In this subsection we prove Theorem 1.2. We fix x = p/q a primitive rational number
and let

Nq =
{

n ∈ N : gcd(n2, q) | n
}

be as in Theorem 1.2. As mentioned in the introduction, the key ingredient is a sym-
metry lemma for rational translates which generalizes the symmetry (1.6). Before
stating the lemma, let us briefly explain why we need to restrict to the subsequence
Nq . Let n ∈ N and let y > 0. We need to study the distribution of the points
�(x + j

n + iy) = �(
p
q + j

n + iy) for 0 ≤ j ≤ n − 1. Let
p j
q j

be the reduced

form of p
q + j

n and in view of the symmetry (1.6) we have

�
(

x + j
n + iy

)
= �

(
p j
q j

+ iy
)

= �

(
− p j

q j
+ i

q2
j y

)
,

where p j is themultiplicative inverse of p j modulo q j . To further analyze the distribu-
tion of these points, we thus need to solve the congruence equation xp j ≡ 1 (mod q j )
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in x . Write k = gcd(n, q) and q ′ = q/k and n′ = n/k. Then

p
q + j

n = p
kq ′ + j

kn′ = pn′+ jq ′
kq ′n′ ,

implying that

q j = kq ′n′
gcd(pn′+ jq ′,kq ′n′) = kn′q ′

gcd(pn′+ jq ′,kn′) = q ′ n
gcd(pn′+ jq ′,n)

can be written canonically as a product of two integers. Here for the second equal-
ity we used that gcd(pn′ + jq ′, q ′) = gcd(pn′, q ′) = 1. In view of the Chinese
remainder theorem, the above congruence equation modulo q j is relatively easy to
solve when the two factors q ′ and n/ gcd(pn′ + jq ′, n) are coprime (see the proof
of Lemma 3.6 for more details). This condition can be guaranteed for any j if
gcd(q ′, n) = gcd(q/ gcd(q, n), n) = 1 which is equivalent to the condition n ∈ Nq .
Finally, we also note that by writing n and q in prime decomposition forms, it is
not hard to check that n ∈ Nq is equivalent to q = kl with l = gcd(n, q) | n and
gcd(k, n) = 1. We now state the symmetry lemma.

Lemma 3.6 Let m
kl be a primitive rational number and let n ∈ N such that l | n and

gcd(k, n) = 1. Then for any 0 ≤ j ≤ n − 1 and for any y > 0 we have

�
(

m
kl + j

n + iy
)

= �

(
− dlmna

k −
((

m n
l + jk

)
/d
)∗

b

n/d + i d2

k2n2 y

)
, (3.14)

where d = d j := gcd(m n
l + jk, n) and a = ad , b = bd ∈ Z are some fixed integers

such that a n
d + bk = 1. Here, for any integer x, x denotes the multiplicative inverse

of x modulo k, x∗ denotes the multiplicative inverse of x modulo n/d. If we further
assume gcd( j, n) = l = 1, then d j = gcd(mn + jk, n) = 1 and

�
(

m
k + j

n + iy
)

= �
(
−mna

k − ( jk)∗b
n + i

k2n2y

)
. (3.15)

Proof Since l | n, by direct computation we have m
kl + j

n = mn/l+ jk
kn . Note that since

gcd(k, mn) = 1 we have gcd(m n
l + jk, k) = gcd(m n

l , k) = 1. This implies that
gcd(m n

l + jk, kn) = gcd(m n
l + jk, n) = d. Hence let p

q be the reduced form of
m
kl + j

n , then we have (p, q) = ((m n
l + jk)/d, kn/d). Now since gcd(p, q) = 1, there

exist some integers v,w ∈ Z such that γ = (
w v−q p

) ∈ �. By direct computation we
have

γ
(

m
kl + j

n + iy
)

= γ
(

p
q + iy

)
= −w

q + i
q2y

.

implying that

�
(

m
kl + j

n + iy
)

= �
(
−w

q + i
q2y

)
= �

(
− w

kn/d + i d2

k2n2y

)
, (3.16)
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where for the second equality we used the relation q = kn/d. Moreover, since γ ∈ �

we have wp + vq = 1, implying that (again using the relation (p, q) = ((m n
l +

jk)/d, kn/d))

w
(
(m n

l + jk)/d
) ≡ 1 (mod k n

d ).

We claim that

w ≡ dlmn n
d a + ((m n

l + jk
)
/d
)∗

kb (mod k n
d ). (3.17)

In view of the Chinese Remainder Theorem, since gcd(k, n/d) = 1, it suffices to
check

(
dlmn n

d a + ((m n
l + jk

)
/d
)∗

kb
) (

(m n
l + jk)/d

) ≡ 1 (mod k)

and

(
dlmn n

d a + ((m n
l + jk

)
/d
)∗

kb
) (

(m n
l + jk)/d

) ≡ 1 (mod n
d ).

For the first equation we have

(
dlmn n

d a + ((m n
l + jk

)
/d
)∗

kb
) (

(m n
l + jk)/d

) ≡ dlmn n
d amnld ≡ a n

d

= 1 − bk ≡ 1 (mod k),

where for the first equality we used the fact that gcd(dl, k) = 1 (since d | n, l | n and
gcd(k, n) = 1). The second equation follows similarly. Now plugging relation (3.17)
into (3.16) we get (3.14).

For the second half we note that d j = gcd(mn + jk, n) = gcd( jk, n) = 1. The
first equality is true since l = 1, and the second equality is true since by assumption
gcd(k, n) = gcd( j, n) = 1. Thus in view of (3.14), to prove (3.15) it suffices to note
that (mn + jk)∗ ≡ ( jk)∗ (mod n), or equivalently, mn + jk ≡ jk (mod n).

Remark 3.18 When k = 1 we can take (a, b) = (0, 1), then (3.15) recovers the
symmetry (1.6). We also note that for the point �(x + j/n + iy) with x irrational, the
above symmetry clearly breaks.

Proposition 3.7 Let p/q be a primitive rational number and let n ∈ Nq . Then for any
y > 0 we have

Rn

(
p
q , y

)
=
⋃
d|n

Rpr
n/d

(
xd , d2

k2n2y

)
, (3.19)

where xd ∈ R/Z is some number depending on d (and also on p, q, n) and k :=
q/ gcd(n, q). If we further assume gcd(n, q) = 1, then

Rpr
n

(
p
q , y

)
= Rpr

n

(
− pna

q , 1
q2n2y

)
, (3.20)
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where x denotes the multiplicative inverse of x modulo q and a ∈ Z is as in Lemma 3.6.

Proof Relation (3.20) follows immediately from (3.15) by taking (m, k) = (p, q) and
noting that

{(−[(q j)∗b] ∈ (Z/nZ)× : j ∈ (Z/nZ)×} = (Z/nZ)×,

which follows from the fact that gcd(bq, n) = 1 (since gcd(bq, n) = gcd(1−an, n) =
1). Here (q j)∗ denotes the multiplicative inverse of q j modulo n and b ∈ Z is as in
Lemma 3.6.

For (3.19), we set m = p, l = gcd(n, q) (so that k = q/l). As mentioned above,
the condition gcd(n2, q) | n implies that gcd(k, n) = 1. Thus the pair ( m

kl , n) satisfies
the assumptions in Lemma 3.6 and we can apply (3.14) for the points

�
(

p
q + j

n + iy
)

= �
(

m
kl + j

n + iy
)

, 0 ≤ j ≤ n − 1.

Now for any d | n define

Dd := {0 ≤ j ≤ n − 1 : d j = gcd(m n
l + jk, n) = d

}

so that

Rn

(
p
q , y

)
=
⋃
d|n

{
�
(

p
q + j

n + iy
)

∈ M : j ∈ Dd

}
. (3.21)

Moreover, we note that since gcd(k, n) = 1, we have

{[m n
l + jk] ∈ Z/nZ : 0 ≤ j ≤ n − 1

} = Z/nZ

and hence

{[m n
l + jk] ∈ Z/nZ : j ∈ Dd

} = {[ j] ∈ Z/nZ : gcd( j, n) = d} . (3.22)

On the other hand, by (3.14) we have

{
�
(

p
q + j

n + iy
)

∈ M : j ∈ Dd

}

=
{

�

(
− dlmnad

k −
((

m n
l + jk

)
/d
)∗

bd

n/d + i d2

k2n2y

)
∈ M : j ∈ Dd

}
,

where for any integer x , x denotes the multiplicative inverse of x modulo k, x∗ denotes
the multiplicative inverse of x modulo n/d, and ad , bd ∈ Z are some fixed integers
such that ad

n
d +bdk = 1.Now for each d | n we let xd ∈ [0, 1), xd ≡ − dlmnad

k (mod 1)
so that it remains to show

{−[((m n
l + jk)/d

)∗
bd ] ∈ (Z/(n/d)Z)× : j ∈ Dd

} = (Z/(n/d)Z)×.
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We can thus conclude the proof by noting that the above relation follows immediately
from (3.22) together with the fact gcd(bd , n

d ) = 1 (since gcd(bd , n
d ) = gcd(bdk, n

d ) =
gcd(1 − ad

n
d , n

d ) = 1).

Using these two relations and the estimate (3.13) one gets the following effective
estimates.

Proposition 3.8 Let x = p/q be a primitive rational number and let n ∈ Nq . Then
for any � ∈ C∞

c (M) and y > 0 we have

δn,x,y(�) = 1

n

∑
d|n

ϕ
( n

d

)
a�

(
0, d2

k2n2 y

)
+ Oε,q

(
S2,2(�)n2θ+4ε y1/2+θ+ε

)
,

where k := q/ gcd(n, q). If we further assume that gcd(n, q) = 1, then

δ
pr
n,x,y(�) = a�

(
0, 1

q2n2y

)
+ Oε,q

(
S2,2(�)n2θ+3ε y1/2+θ+ε

)
.

Proof For any positive divisor d | n, let yd = d2/(k2n2y) with k := q/ gcd(n, q) as
above and let xd ∈ R/Z be as in (3.19). Then by (3.19) for x = p/q we have

δn,x,y(�) = 1

n

∑
d|n

ϕ
( n

d

)
δ
pr
n/d,xd ,yd

(�)

= 1

n

∑
d|n

ϕ
( n

d

) (
a� (0, yd) + Oε

(
S2,2(�)

( n
d

)−1+ε
y−(1/2+θ+ε)

d

))

= 1

n

∑
d|n

ϕ
( n

d

)
a� (0, yd) + Oε

⎛
⎝S2,2(�)n−1

∑
d|n

( n
d

)ε
y−(1/2+θ+ε)

d

⎞
⎠ ,

where for the second estimate we applied (3.13) and for the third estimate we used
the trivial estimate ϕ(n/d) < n/d. Now plugging yd = d2/(k2n2y) into the above
equation we get

δn,x,y(�) = 1

n

∑
d|n

ϕ
( n

d

)
a�

(
0, d2

k2n2y

)
+ Oε,q

(
S2,2(�)n−1σ1+2θ+3ε(n)y1/2+θ+ε

)

= 1

n

∑
d|n

ϕ
( n

d

)
a�

(
0, d2

k2n2y

)
+ Oε,q

(
S2,2(�)n2θ+4ε y1/2+θ+ε

)
,

where the dependence on k in the first estimate is absorbed into the dependence on q
(since k := q/ gcd(n, q) ≤ q). The second estimate follows from similar (but easier)
analysis with the relation (3.20) in place of (3.19).

We are now in the position to prove Theorem 1.2. We will prove the following
proposition from which Theorem 1.2 follows, see also Remark 3.23.
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Theorem 3.9 Let x = p/q be a primitive rational number and let n ∈ Nq . Let
yn = c/nα for some 1 < α < 2 and c > 0. Then for any � ∈ C∞

c (M) we have

∣∣δn,x,yn (�) − μM(�)
∣∣�ε,q,c,� nα/2−1+ε + n2θ+4ε−α(1/2+θ+ε).

If we further assume gcd(n, q) = 1, then we have

∣∣δprn,x,yn (�) − μM(�)
∣∣�ε,q,c S2,2(�)

(
nα/2−1 + n2θ+3ε−α(1/2+θ+ε)

)
.

Remark 3.23 The dependence on � in the first estimate can also be made explicit. In
fact, we can remove this dependence by adding a factor of S2,2(�) + ‖�‖∞ to the
right hand side of this estimate. We also note that since we may take θ = 7/64, the
right hand side of these two estimates decays to zero as n → ∞ for any 1 < α < 2.

Proof of Theorem 3.9. In view of Proposition 3.8 and the assumption yn = c/nα , it
suffices to show that

1

n

∑
d|n

ϕ
( n

d

)
a�

(
0, d2

k2n2 yn

)
= μM(�) + Oε,c,�

(
nα/2−1+ε

)

with k := q/ gcd(n, q), and that (under the extra assumption gcd(n, q) = 1)

a�

(
0, 1

q2n2yn

)
= μM(�) + Oc

(
S2,2(�)nα/2−1

)
.

The second estimate follows immediately from (3.5) and the trivial estimate |q| ≥ 1.
For the first estimate we separate the sum into two parts to get

1

n

∑
d|n

ϕ
( n

d

)
a�

(
0, d2

k2n2 yn

)
= 1

n

⎛
⎜⎜⎝

∑
d|n

d<n1−α/2

+
∑
d|n

d≥n1−α/2

⎞
⎟⎟⎠ϕ

( n
d

)
a�

(
0, d2

k2n2yn

)
.

Applying (3.5) (and the trivial estimate |k| ≥ 1) for the first sum and applying the
estimate

∣∣∣a�

(
0, d2

k2n2yn

)∣∣∣ =
∣∣∣∣
∫ 1

0
�
(

t + i d2

k2n2yn

)
dt

∣∣∣∣ ≤ ‖�‖∞
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for the second sum we get 1
n

∑
d|n ϕ

( n
d

)
a�

(
0, d2

k2n2yn

)
equals

1

n

⎛
⎜⎜⎝

∑
d|n

d<n1−α/2

ϕ
( n

d

) (
μM(�) + Oc,�

(( n
d

)−1
nα/2

))
+ O�

⎛
⎜⎜⎝

∑
d|n

d≥n1−α/2

ϕ
( n

d

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠

= μM(�) + 1

n
Oc,�

⎛
⎜⎜⎝nα/2

∑
d|n

d<n1−α/2

1 +
∑
d|n

d≥n1−α/2

n
d

⎞
⎟⎟⎠

= μM(�) + Oc,�

(
nα/2−1σ0(n)

)
= μM(�) + Oε,c,�

(
nα/2−1+ε

)
,

finishing the proof,where for thefirst estimateweused the identity that
∑

d|n ϕ(n/d) =
n and the estimate that ϕ (n/d) < n/d, and for the second estimate we used the
estimates

∑
d|n

d<n1−α/2
1 ≤ σ0(n) and

∑
d|n

d≥n1−α/2

n

d
=
∑
d|n

d≤nα/2

d ≤ nα/2
∑
d|n

d≤nα/2

1 ≤ nα/2σ0(n).

3.4 Quantitative non-equidistribution for rational translates

As a direct consequence of the analysis in the previous subsection we also have the
following quantitative non-equidistribution result for rational translates when {yn}n∈N

is beyond the above range, generalizing the situation for {Rpr
n (0, yn)}n∈N. As before,

for anyY > 0we denote byμY the probability uniformdistributionmeasure supported
onHY .

Theorem 3.10 Let x = p/q be a primitive rational number and let yn = c/n2 for
some constant c > 0. Let � ∈ C∞

c (�). Then for any n ∈ Nq we have

δn,x,yn (�) = 1

n

∑
d|n

ϕ
( n

d

)
μ d2

ck2n

(�) + Oε,q,c

(
S2,2(�)n−1+2ε

)

with kn = q/ gcd(n2, q). If we further assume that gcd(n, q) = 1, then

δ
pr
n,x,yn (�) = μ 1

cq2
(�) + Oε,q,c

(
S2,2(�)n−1+ε

)
.

Proof These two effective estimates follow immediately fromProposition 3.8 by plug-
ging in yn = c/n2 and noting that a�(0, Y ) = ∫ 10 �(x + iY )dx = μY (�).

We can now give the
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Proof of Theorem 1.3. For part (1), in view of Theorem 3.10 only the second equation
needs a proof. Since we are taking n ∈ Pm going to infinity, it is sufficient to consider
n = m� ∈ Pm with the prime number � > q (so that � � q). For such n, we have
gcd(n2, q) = gcd(m2�2, q) = gcd(m2, q). Since by assumption gcd(m2, q) | m and
m | n, we can apply the first effective estimate in Theorem 3.10 for such n = m� ∈ Pm .
Moreover, for any such n we have

kn = q

gcd(n2, q)
= q

gcd(m2, q)
= q

gcd(m, q)

is a fixed number only depending on m and q. Here for the last equality we used the
assumption that gcd(m2, q) | m. Now let n = m� ∈ Pm with � 	 q sufficiently
large such that μY (�) = 0 whenever Y > �2/(ckn)2 (this can be guaranteed since
kn is a fixed number and � is compactly supported). In particular, for any d | n,
μd2/(ck2n)(�) = 0whenever � | d. This, togetherwith thefirst estimate inTheorem3.10
implies that for all such sufficiently large n = m� ∈ Pm

δn,x,yn (�) = 1

m�

∑
d|m

ϕ
(m�

d

)
μ d2

ck2n

(�) + Oε,q,c,�,m

(
�−1+2ε

)

= � − 1

�
ν

m,
1

ck2n

(�) + Oε,q,c,�,m

(
�−1+2ε

)
,

where for the second estimate we used that gcd(m, �) = 1 and � is a prime number.
We can now finish the proof by taking n = m� → ∞ along the subsequence Pm

(equivalently, taking � → ∞) and plugging in the relation kn = q/ gcd(m, q).
For part (2), since Rpr

n (x, yn) ⊂ Rn(x, yn), we only need to prove the full escape
to the cusp for the sequence {Rn(x, yn)}n∈N. Identify (up to a null set) M with the
standard fundamental domain F� := {

z ∈ H : Re(z) < 1
2 , |z| > 1

}
. For any n ∈ N

and 0 ≤ j ≤ n − 1 let
p j
q j

be the reduced form of x + j
n = p

q + j
n = pn+q j

qn so that by
(1.6)

�
(

x + j
n + iyn

)
= �

(
− p j

q j
+ i

q2
j yn

)
.

Thus using the trivial inequality |q j | ≤ |q|n for all 0 ≤ j ≤ n − 1 and the assumption
lim

n→∞ n2yn = 0, we have

R(x, yn) ⊂
{

z ∈ F� : Im(z) ≥ 1
q2n2yn

}
n→∞−−−→ cusp ofM.
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4 Negative results: in connection with Diophantine approximations

Let � = SL2(Z) and M = �\H be the modular surface. Let μM be the normalized
hyperbolic area onM as before. In this sectionweprove a general resultwhich captures
the cusp excursion rate for the sample points Rn(x, yn) in terms of the Diophantine
property of the translate x ∈ R/Z ∼= [0, 1), see Theorem 4.3. Theorem 1.4 will then
be an easy consequence of this result.

4.1 Notation and a preliminary result on cusp excursions

In this subsection we prove a preliminary lemma relating cusp excursions on the
modular surface to Diophantine approximations. Let us first fix some notation. For
any Y > 0, we denote by CY ⊂ M the image of the region

{z ∈ H : Im(z) > Y }

under the natural projection from H to M = �\H. As Y goes to infinity, the sets CY

diverge to the cusp of M, and we call CY a cusp neighborhood of M. Similarly, for
any Y ′ > Y > 0, we denote by CY ,Y ′ the projection onto M of the open set

{
z ∈ H : Y < Im(z) < Y ′} .

For any primitive rational number m/n, and for any r > 0 we denote by

Hm/n,r :=
{

z = x + iy ∈ H : (x − m/n)2 + (y − r)2 = r2
}

the horocycle tangent to ∂H at m/n with Euclidean radius r . We denote by

H◦
m/n,r :=

{
z = x + iy ∈ H : (x − m/n)2 + (y − r)2 < r2

}

the open horodisc enclosed by Hm/n,r . We have the following geometric description of
Lemma 3.6: Let γ = ( m ∗

n ∗
)
be an element in�. Then γ sends the horizontal horocycle

{z ∈ H : Im(z) = Y } to the horocycle Hm/n,r with r = 1/(2Y n2), while the open
region {z ∈ H : Im(z) > Y } is mapped to the horodisc H◦

m/n,r . On the other hand, for

any primitive rational number m/n, there is γ ∈ � of the form γ = (
m ∗
n ∗
)
. Thus for

any Y > 0 and for any z ∈ H, �z ∈ CY if and only if z ∈ H◦
m/n,r for some primitive

rational number m/n with r = 1/(2Y n2).
Finally, we record a distance formula that we will later use. Let dM(·, ·) be the

distance function onM induced from the hyperbolic distance function dH on H, i.e.,

dM(�z1, �z2) = inf
γ∈�

dH(γ z1, z2).
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Lemma 4.1 Let �z0 ∈ M be a fixed base point. Then there exists a constant c > 0
(which may depend on �z0) such that for any Y > 1 and for any �z ∈ CY

dM(�z0, �z) ≥ log Y − c. (4.1)

The estimate (4.1) holds for a general non-compact finite-volume hyperbolic
manifold using reduction theory after Garland and Raghunathan [11, Theorem 0.6]
combined with a distance estimate by Borel [2, Theorem C]. We give here a self-
contained elementary proof for the special case of the modular surface.

Proof of Lemma 4.1. In view of the triangle inequality, we may assume �z0 = �i .
Note that dH(i, z) ≥ log Y for any z ∈ H with Im(z) ∈ (0, 1/Y ) ∪ (Y ,∞). Thus it
suffices to show that if �z ∈ CY , then Im(γ z) ∈ (0, 1/Y ) ∪ (Y ,∞) for any γ ∈ �.
By the definition of CY , we may assume z = x + iy ∈ H with y > Y . Now let
γ = ( ∗ ∗

a b

) ∈ �. If a = 0, then Im(γ z) = Im(z) > Y . If a �= 0, then

Im(γ z) = Im(z)

|az + b|2 = y

(ax + b)2 + a2y2
≤ 1

y
<

1

Y
.

The following simple lemma is the key observation relating cusp excursions with
Diophantine approximation.

Lemma 4.2 Let x ∈ [0, 1) be a real number. Suppose there exist a primitive rational
number m/n and n > 0, and a real number Y > 0 satisfying

∣∣∣x − m

n

∣∣∣ < 1

2Y n2 .

Then for any 0 ≤ j ≤ n − 1 we have

�
(

x + j
n + i

2Y n2

)
∈ CY j ,2Y j , where Y j = gcd(n, m + j)2Y . (4.2)

In particular, we have

{
�
(

x + j
n + i

2Y n2

)
: 0 ≤ j ≤ n − 1

}
⊂ CY . (4.3)

Proof The in particular part follows immediately from the inclusion CY j ,2Y j ⊂ CY ,

which in turn follows from the trivial bound Y j ≥ Y . Hence it suffices to prove the
first half of the lemma. For simplicity of notation, we set r = 1/(2Y n2). Then by
assumption |x − m

n | < r . Fix 0 ≤ j ≤ n −1, and let p
q be the reduced form of m+ j

n (so

that q = n
gcd(n,m+ j) ). Then x + j

n +ir ∈ H◦
p/q,r and x + j

n +ir ′ ∈ Hp/q,r for some r <

r ′ < 2r . Take γ ∈ � sending H◦
p/q,r to the region

{
z ∈ H : Im(z) > 1/(2rq2) = Y j

}
.
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Then we have Im
(
γ (x + j

n + ir)
)

> Y j and Im
(
γ (x + j

n + ir ′)
)

= Y j . Since

r < r ′ < 2r we can bound the hyperbolic distance

dH

(
γ (x + j

n + ir), γ (x + j
n + ir ′)

)
= log

(
r ′
r

)
< log 2,

implying that

γ
(

x + j
n + ir

)
∈ {z ∈ H : Y j < Im(z) < 2Y j

}
,

which implies (4.2).

4.2 Full escape to the cusp along subsequences for almost every translate

In this subsection we prove Theorem 4.3. Before stating this theorem, we first recall a
definition fromDiophantine approximation. Letψ : N → (0, 1/2)be a non-increasing
function. We say that x ∈ R is primitive ψ-approximable if there exist infinitely many
n ∈ N such that the inequality

∣∣∣x − m

n

∣∣∣ < ψ(n)

n
(4.4)

is satisfied by some m ∈ Z coprime to n. Since we assume ψ(N) ⊂ (0, 1/2), the
existence of such an m implies its uniqueness. We prove the following:

Theorem 4.3 Let ψ : N → (0, 1/2) be a non-increasing function such that
limn→∞ nψ(n) = 0. Let {yn}n∈N be a sequence of positive numbers satisfying

rn := 1

2
min

{
ψ(n)−2yn, n−2y−1

n

}
n→∞−−−→ ∞. (4.5)

If x ∈ [0, 1) is primitive ψ-approximable, then Rn(x, yn) ⊂ Crn infinitely often.

Remark 4.6 Since Rpr
n (x, y) ⊂ Rn(x, y) for any n ∈ N, x ∈ R and y > 0, Theo-

rem 4.3 also holds for translates of the primitive rational points.

Proof of Theorem 4.3 Let x ∈ [0, 1) be primitive ψ-approximable. Then for Yn =
1/ (2nψ(n)), we have by (4.3) that

{
�
(

x + j
n + i ψ(n)

n

)
∈ M : 0 ≤ j ≤ n − 1

}
⊂ CYn (4.7)

for infinitely many n’s.
For every n ∈ N, set dn := Yn/rn = max {ψ(n)/(nyn), nyn/ψ(n)}. Then

dH(t + iψ(n)/n, t + iyn) = log(dn) (4.8)

for any t ∈ R. As in the proof of Lemma 4.2, by (4.7) and (4.8) we haveRn(x, yn) ⊂
CYn/dn for any n in (4.7).
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We now give a short

Proof of Theorem 1.4 Let α = min{β, 2− β}. For each n ≥ 2, let ψ(n) = 1/(n log n)

and let {yn}n∈N be a sequence of positive numbers satisfying yn 
 1/(n2 logβ n). Then
rn as in (4.5) is given by rn = 1

2 min{ψ(n)−2yn, n−2y−1
n } 
 logα n. By Theorem 4.3,

for any x ∈ [0, 1) primitive ψ-approximable, we have thatRn(x, yn) ⊂ Crn infinitely
often. Hence by (4.1), for each such x ∈ R/Z, we have

inf
�z∈Rn(x,yn)

dM(�z0, �z) ≥ log(rn) + O(1) = α log log n + O(1)

infinitely often, implying the inequality (1.10). Finally, since
∑

n∈N
ψ(n) = ∞ andψ

is decreasing, the set of primitiveψ-approximable numbers in [0, 1) is of full measure
by Khintchine’s approximation theorem.

For every irrational x ∈ R, the Diophantine exponent κx > 0 is the supremum
of κ ′ > 0 for which x is primitive n−κ ′

-approximable. Dirichlet’s approximation
theorem implies that κx ≥ 1 for any irrational x and by Khintchine’s theorem, κx = 1
for almost every x ∈ R. When κx > 1, we have the following result that yields much
faster cusp excursion rates for our sample points while handling sequences {yn}n∈N

decaying polynomially faster than 1/n2.

Theorem 4.4 Let �z0 ∈ M be a fixed base point. Let x ∈ [0, 1) with Diophantine
exponent κx > 1 and let {yn}n∈N be a sequence of positive numbers satisfying yn 

n−β for some fixed 2 < β < 2κx . Then

lim
n→∞

inf�z∈Rn(x,yn) dM (�z0, �z)

log n
≥ min{2κx − β, β − 2}.

Proof Take κ ∈ (1, κx ) and set α = min{2κ −β, β − 2}. Let ψ(n) = 1/nκ . Then x is
primitive ψ-approximable since κ < κx . By Theorem 4.3, we have Rn(x, yn) ⊂ Crn

infinitely often with rn = 1
2 min{ψ(n)−2yn, n−2y−1

n } 
 nα . This implies that

lim
n→∞

inf�z∈Rn(x,yn) dM (�z0, �z)

log n
≥ α = min{2κ − β, β − 2}.

Taking κ → κx finishes the proof.

4.3 A non-equidistribution result for all translates

In this subsection we prove the following result which, together with part (1) of
Theorem 1.3 implies non-equidistribution for all translates:

Theorem 4.5 Let 1/
√
5 ≤ c < 3/2 and let yn = c/n2. Then there exists a closed

measurable subset Ec ⊂ M, depending only on c, with μM(Ec) < 1, and such that
for each irrational x ∈ [0, 1), Rn(x, yn) ⊂ Ec infinitely often.
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The set Ec in Theorem 4.5 is explicit: For any c > 0, Ec ⊂ M is defined to be the
image of the closed set

{z ∈ H : Im(z) ∈ [1/(2c), 1/c] ∪ [2/c, 4/c] ∪ [9/(2c),∞)}

under the natural projection from H toM. It is clear from the definition that Ec ⊂ M
is closed. Theorem 4.5 is a direct consequence of the following two lemmas.

Lemma 4.6 For any c > 0 let yn = c/n2 and let ψc(n) = c/n. Then if x ∈ [0, 1) is
primitive ψc-approximable, we have Rn(x, yn) ⊂ Ec infinitely often.

Proof Let x ∈ [0, 1) be primitive ψc-approximable, that is, there exist infinitely many
n ∈ N satisfying |x − m/n| < c/n2 = yn with some uniquely determined m ∈ Z

satisfying gcd(m, n) = 1. For each such n, and for any 0 ≤ j ≤ n − 1, let k =
gcd(n, m + j)2. Then by (4.2), �(x + j/n + iyn) ∈ Ck2/(2c),k2/c. Moreover, since
(k2/(2c), k2/c) ⊂ [1/(2c), 1/c] ∪ [2/c, 4/c] ∪ [9/(2c),∞) for any k ∈ N, we have
Ck2/(2c),k2/c ⊂ Ec for any k ∈ N, implying that Rn(x, yn) ⊂ Ec for these infinitely
many n ∈ N.

Lemma 4.7 For any 0 < c < 3/2, we have μM(Ec) ≤ 1− 3
π

(
1

max{2c,4/c} − 2c
9

)
< 1.

Proof Let U ⊂ M be the projection of the open set

{z ∈ H : max {2c, 4/c} < Im(z) < 9/(2c)} .

Since 0 < c < 3/2 we have max{2c, 4/c} < 9/(2c) implying that U is nonempty.
We will show that Ec is disjoint from U . Let I1 = [1/(2c), 1/c], I2 = [2/c, 4/c]
and I3 = [9/(2c),∞), and for 1 ≤ j ≤ 3, define E j

c to be the projection onto
M of {z ∈ H : Im(z) ∈ I j } such that Ec = ⋃3

j=1 E j
c . It thus suffices to show

that E j
c ∩ U = ∅ for each 1 ≤ j ≤ 3. For this, we identify (up to a null set) M

with the standard fundamental domain F� := {
z ∈ H : Re(z) < 1

2 , |z| > 1
}
. Since

0 < c < 3/2, we have max {2c, 4/c} > 2/c > 2/(3/2) > 1. Thus we have

U = {z ∈ F� : max {2c, 4/c} < Im(z) < 9/(2c)} , E j
c = {z ∈ F� : Im(z) ∈ I j

}

for j = 2, 3. Moreover, since the interval (max {2c, 4/c} , 9/2c) intersects I2 and I3
trivially, we have E j

c ∩ U = ∅ for j = 2, 3. It thus remains to show that E1
c ∩ U = ∅.

For this we note that z ∈ F� satisfies the property that

Im(z) = max
γ∈�

Im(γ z).

Hence to show E1
c ∩U = ∅, it suffices to show that maxγ∈� Im(γ z) ≤ max {2c, 4/c}

for any z = s + i t ∈ H with Im(z) = t ∈ I1 = [1/(2c), 1/c]. For this, using the
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same discussion as in the proof of Lemma 4.1 we have for any z = s + i t ∈ H with
t ∈ [1/(2c), 1/c]

max
γ∈�

Im(γ z) ≤ max
{

t, t−1
}

≤ max {1/c, 2c} ≤ max {2c, 4/c} .

Finally, using the above description of U and (2.1) we have by direct computation

μM(U) = 3

π

(
1

max{2c, 4/c} − 2c

9

)

implying that μM(Ec) ≤ 1 − 3
π

(
1

max{2c,4/c} − 2c
9

)
< 1 (again since 0 < c < 3/2).

Proof of Theorem 4.5 Let ψc(n) = c/n. Since c ≥ 1/
√
5, any irrational number

is primitive ψc-approximable by the Hurwitz’s approximation theorem; see, e.g.,
[14, Theorem 193]. Hence by Lemma 4.6, for each irrational x ∈ [0, 1), we have
Rn(x, yn) ⊂ Ec infinitely often. Moreover, since c < 3/2 by Lemma 4.7 we have
μM(Ec) < 1, finishing the proof.

Remark 4.9 The condition on the sequence {yn}n∈N in Theorem 4.5 is quite restrictive
and the proof of Theorem 4.5 is much more involved than that of Theorem 4.3. We
note that this is because we need to take care of the badly approximable numbers,
that is, the set of irrational numbers that are not primitive ψc-approximable for some
c > 0. If x ∈ [0, 1) is not badly approximable, then a similar argument as in the proof
of Theorem 4.3 using only the crude estimate (4.3) would already be sufficient to
prove non-equidistribution of the sample points Rn(x, yn) for any sequence {yn}n∈N

satisfying yn 
 1/n2.

5 Secondmoments of the discrepancy

Let� = SL2(Z) and letM = �\H be themodular surface as before. In this sectionwe
prove Theorem 1.6. Our proof relies on a second moment computation of the discrep-
ancies |δn,x,y − μM| and |δprn,x,y − μM| along the closed horocycleHy . Throughout

this section, we abbreviate the second moments
∫ 1
0

∣∣δn,x,y(�) − μM(�)
∣∣2 dx and∫ 1

0

∣∣δprn,x,y(�) − μM(�)
∣∣2 dx by Dn,y(�) and Dpr

n,y(�) respectively. Since we
assume � = SL2(Z) we will also use the notation μ� for μM.

5.1 Relation to Hecke operators

In this subsection we prove two preliminary estimates relating these second moments
to the Hecke operators defined in Sect. 2.3.
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Proposition 5.1 For any n ∈ N, y > 0 and � ∈ C∞
c (M), we have

Dn,y(�) = 1

n

n−1∑
j=0

〈
�0, T̃u j/n (�0)

〉+ O
(
S(�)y1/2

)
, (5.1)

and

Dpr
n,y(�) ≤ 1

ϕ(n)

n−1∑
j=0

∣∣〈�0, T̃u j/n (�0)
〉∣∣+ O

(
S(�)y1/2

)
. (5.2)

where �0 = � − μ�(�), T̃u j/n is the Hecke operator associated to u j/n ∈ SL2(Q)

defined as in (2.9), the Sobolev norm S(�) is defined by

S(�) := S�
4,2(�)2 + S�

2,2(�)S�
1,0(�), (5.3)

and the implied constants are absolute.

Proof Without loss of generality we may assume that � is real-valued. Expanding the
square in the left hand side of (5.1), doing a change of variables, and using the left
u1-invariance of �, we have that Dn,y(�) equals

1

n2

n−1∑
j1, j2=0

∫ 1

0
�(x + j1

n + iy)�(x + j2
n + iy)dx

− 2μ�(�)
1

n

n−1∑
j=0

∫ 1

0
�(x + j

n + iy)dx + μ�(�)2

= 1

n

n−1∑
j=0

∫ 1

0
�(x + iy)�(x + j

n + iy)dx − 2μ�(�)

∫ 1

0
�(x + iy)dx + μ�(�)2.

Applying (2.14) to the term
∫ 1
0 �(x + iy)dx and using the trivial estimate

‖�‖3/42 ‖��‖1/4 |μ�(�)| ≤ S�
2,2(�)S�

1,0(�) ≤ S(�), (5.4)

we get

Dn,y(�) = 1

n

n−1∑
j=0

∫ 1

0
�(x + iy)�(x + j

n + iy)dx − μ�(�)2 + O(S(�)y1/2).

(5.5)

For each 0 ≤ j ≤ n − 1, let � j := �u j/n = � ∩ u−1
j/n�u j/n and define

Fj (�) := �Lu−1
j/n

� ∈ C∞(H). Since � is left �-invariant, and Lu−1
j/n

� is left

123



Translates of rational points along expanding closed horocycles… 693

u−1
j/n�u j/n-invariant, we have Fj (�) ∈ C∞(� j\H). Moreover,

Fj (�)(x + iy) = �(x + iy)�(x + j
n + iy).

For each 0 ≤ j ≤ n −1, it is easy to check that u1 ∈ � j and � j contains the principal
congruence subgroup �(n2), hence � j satisfies the assumptions in Proposition 2.3.
Then by (2.14),

∫ 1

0
Fj (�)(x + iy)dx

=
∫

� j \H

Fj (�)(z)dμ� j (z) + O
(
‖Fj (�)‖3/42 ‖�Fj (�)‖1/42 y1/2

)
.

Next we note that by (2.3),

‖Fj (�)‖3/42 ‖�Fj (�)‖1/42 ≤ S� j

2,2

(
Fj (�)

)
= S� j

2,2

(
�Lu−1

j/n
�
)

≤ S� j

4,2 (�)S� j

4,2

(
Lu−1

j/n
�
)

.

Using the fact that � is left �-invariant and � j is a finite-index subgroup of �, by
(2.4), S� j

4,2(�) = S�
4,2(�). Similarly, we have

S� j

4,2

(
Lu−1

j/n
�
)

= Su−1
j/n�u j/n

4,2

(
Lu−1

j/n
�
)

= S�
4,2 (�) ,

where for the second equality we used (2.2). Hence we have

‖Fj (�)‖3/42 ‖�Fj (�)‖1/42 ≤ S� j

2,2

(
Fj (�)

) ≤ S�
4,2(�)2 ≤ S(�) < ∞. (5.6)

Thus applying (2.14) to Fj ∈ C∞(� j\H) and using (5.6) we get

∫ 1

0
�(x + iy)�

(
x + j

n + iy
)

dx =
〈
�, Lu−1

j/n
�
〉

L2(� j \H)
+ O

(
S(�)y1/2

)
. (5.7)

Plugging (5.7) into (5.5) and using the identities μ�(�) = μ� j (�) = μ� j (Lu−1
j/n

�)

(the second equality follows from the left G-invariance of the hyperbolic area μ� j )
we get that

Dn,y(�) = 1

n

n−1∑
j=0

〈
�0, Lu−1

j/n
�0

〉
L2(� j \H)

+ O(S(�)y1/2).

Let F� ⊂ H be a fundamental domain for �\H. The disjoint union
⊔

γ∈� j \� γF�

forms a fundamental domain for � j\H. Thus we can conclude the proof of (5.1) by
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noting that

∫
⊔

γ∈� j \� γF�

�0(z)�0(u j/nz)dμ� j (z) =
∑

γ∈� j \�

∫
γF�

�0(z)�0(u j/nz)dμ� j (z)

=
∫
F�

�0(z)

⎛
⎝ 1

[� : � j ]
∑

γ∈� j \�
�0(u j/nγ z)

⎞
⎠ dμ�(z)

=
∫
F�

�0(z)T̃u j/n (�0)(z)dμ�(z),

where for the second equation we did a change of variable z �→ γ z, used the left �-
invariance of � and the relation [� : � j ]μ� j = μ� , and for the last equality we used
the expression (2.10). Similarly, applying the estimates (2.14) and (5.4) and making
change of variables we see that Dpr

n,y(�) equals

1

ϕ(n)2

n−1∑
j=0

c( j)
∫ 1

0
�(x + iy)�(x + j

n + iy)dx − μ�(�)2 + O
(
S(�)y1/2

)
,

where

c( j) := #
{
([ j1], [ j2]) ∈ (Z/nZ)× × (Z/nZ)× : [ j2] − [ j1] = [ j]} .

Now similar as before we can apply the estimate (5.7), the identities μ�(�) =
μ� j (�) = μ� j (Lu−1

j/n
�) and

∑n−1
j=0 c( j) = ϕ(n)2 to get

Dpr
n,y(�) = 1

ϕ(n)2

n−1∑
j=0

c( j)
〈
�0, Lu−1

j/n
�0

〉
L2(� j \H)

+ O(S(�)y1/2)

= 1

ϕ(n)2

n−1∑
j=0

c( j)
〈
�0, T̃u j/n (�0)

〉
L2(�\H)

+ O(S(�)y1/2).

Finally we can finish the proof by noting that for each 0 ≤ j ≤ n − 1, c( j) ≤ ϕ(n)

(since for each [ j1] ∈ (Z/nZ)×, there is at most one [ j2] ∈ (Z/nZ)× such that
[ j2] − [ j1] = [ j]).

5.2 Secondmoment estimates

Combining Proposition 5.1 and the operator norm bound in Proposition 2.2 we have
the following second moment estimates:

Theorem 5.2 For any n ∈ N, y > 0 and � ∈ C∞
c (M) we have

max
{

Dn,y(�), Dpr
n,y(�)

}�ε n−1+2θ+ε‖�‖22 + S(�)y1/2, (5.8)
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where θ = 7/64 is the best bound towards the Ramanujan conjecture as before and
the Sobolev norm S(�) is as defined in (5.3).

Remark 5.9 It is also possible to approach the second moment computation using the
spectral bounds on the Fourier coefficients of � from Sect. 3.1 rather than Hecke
operators. The spectral approach however yields a weaker estimate when y > 0 is
small. For comparison, following the spectral approach, one obtains

∫ 1

0
|δn,x,y(�) − μ�(�)|2dx �ε

(
n−1y−2(θ+ε) + y1/2

)
S2,2(�).

Proof of Theorem 5.2 First we prove (5.8). For each 0 ≤ j ≤ n − 1, it is clear that
u j/n is of degree n j := n/ gcd(n, j), and thus T̃u j/n = T̃n j . Applying (5.1), (5.2),
the estimate ϕ(n) 	ε n−1+ε/2 and the operator norm bound in Proposition 2.2 to the
terms

〈
�0, T̃n j �0

〉
, we get

max
{

Dn,y(�), Dpr
n,y(�)

}�ε n−1+ε/2
n−1∑
j=0

n−1+2θ+ε/4
j ‖�0‖22 + S(�)y1/2.

For any d | n, #{0 ≤ j ≤ n − 1 : n j = d} = ϕ(d), thus

n∑
j=1

n−1+2θ+ε/4
j =

∑
d|n

ϕ(d)d−1+2θ+ε/4 <
∑
d|n

d2θ+ε/4 = σ2θ+ε/4(n) �ε n2θ+ε/2,

where for the first inequality we used the trivial bound ϕ(d) < d. Finally, we observe
that ‖�0‖2 ≤ ‖�‖2.

We now give a quick

Proof of Theorem 1.6 Let α > 0 be the fixed number as in this theorem. Let β :=
min{α

2 , 1 − 2θ}. Fix 0 < c < β and let N ⊂ N be an unbounded subsequence such
that

∑
n∈N n−c < ∞.Wewant to show that for any {yn}n∈N satisfying yn � n−α there

exists a full measure subset I ⊂ R/Z such that for any x ∈ I , δn,x,yn (�) → μM(�)

and δ
pr
n,x,yn (�) → μM(�) for any � ∈ C∞

c (M) as n ∈ N goes to infinity. Since the
function space C∞

c (M) has a dense countable subset, it suffices to prove the above
assertion for a fixed �. Now we fix � ∈ C∞

c (M) and take ε > 0 sufficiently small
such that β − 2ε > c. For any n ∈ N define In = I 1n ∪ I 2n ⊂ R/Z such that

I 1n :=
{

x ∈ R/Z : ∣∣δn,x,yn (�) − μM(�)
∣∣ > n−ε/2

}
,

and

I 2n :=
{

x ∈ R/Z : ∣∣δprn,x,yn (�) − μM(�)
∣∣ > n−ε/2

}
.
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Thus by the secondmoment estimate (5.8), the assumption that yn � n−α and Cheby-
shev’s inequality we get

|In| ≤
∣∣∣I 1n
∣∣∣+
∣∣∣I 2n
∣∣∣ ≤ 2nε max

{
Dn,y(�), Dpr

n,y(�)
}�ε,� n−β+2ε < n−c,

implying that
∑

n∈N |In| < ∞. Hence taking I ⊂ R/Z to be the complement of this
limsup set lim n∈N

n→∞
In ⊂ R/Z and by the Borel–Cantelli lemma we have I is of full

measure. Moreover, for any x ∈ I , x ∈ I c
n for all n ∈ N sufficiently large, that is,

max
{∣∣δn,x,yn (�) − μM(�)

∣∣ , ∣∣δprn,x,yn (�) − μM(�)
∣∣}

≤ n−ε/2, ∀ n ∈ N sufficiently large.

In particular for such x , δn,x,yn (�) → μM(�) and δ
pr
n,x,yn (�) → μM(�) as n ∈ N

goes to infinity.

Remark 5.10 The second moment Dn,y(�) is closely related to the sample points
(1.2) considered in [12]: Using the extra invariance δn,x+1/n,y(�) = δn,x,y(�) and
applying a change of variable, one can easily check that

Dn,y(�) =
∫ 1

0

∣∣∣∣∣∣
1

n

n−1∑
j=0

�
(

x+ j
n + iy

)
− μ�(�)

∣∣∣∣∣∣
2

dx .

Thus let N ⊂ N be the fixed sequence as in the above proof, by Theorem 5.2 and
the same Borel–Cantelli type argument we have that for almost every x ∈ R/Z the
sequence of sample points {�(

x+ j
n + iyn : 0 ≤ j ≤ n − 1} equidistributes on M

with respect to μM as n ∈ N goes to infinity, as long as {yn}n∈N decays at least
polynomially.

6 Left regular action of normalizing elements

In this section, � denotes a congruence subgroup, and we set by �1 = SL2(Z). We
moreover assume that there exists some h ∈ SL2(Q) normalizing �, that is, h−1�h =
�. It induces the left regular h-action on �\H given by �z ∈ �\H �→ �hz ∈ �\H.
Since h normalizes �, this map is well defined: Suppose �z = �z′, that is there exists
some γ ∈ � such that z′ = γ z. Then �hz′ = �hγ z = �hγ h−1hz = �hz. The goal
of this section is to describe this action on cylindrical cuspidal neighborhoods of �\H.

6.1 Cusp neighborhoods of congruence surfaces

Since � is a congruence subgroup, the set of cusps of � can be parameterized by
the coset �\ (Q ∪ {∞}) (see e.g. [21, p. 222]), where the action of � on Q ∪ {∞}
is defined via the Möbius transformation. We denote by �� a complete list of coset
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representatives for �\ (Q ∪ {∞}). For each cusp representative c ∈ �� , its stabilizer
subgroup is given by

�c := τcNτ−1
c ∩ �,

where τc ∈ �1 is such that τc∞ = c. (More precisely, �c is an index two subgroup
of the stabilizer subgroup of c if −I2 ∈ �.) The existence of such τc is guaranteed by
the transitivity of the action of �1 on Q ∪ {∞}. On the other hand, τc is only unique
up to right multiplication by any element of ±N . We note that �c is independent of
the choice of τc, and since c ∈ �� is a cusp, �c is nontrivial. Moreover, τ−1

c �cτc is a
subgroup of N ∩�1 = 〈u1〉. Hence τ−1

c �cτc is a cyclic group generated by a unipotent
matrix uωc for some positive integer ωc, which is called the width of the cusp c.

We can now define cusp neighborhoods on the hyperbolic surface �\H around a
cusp c ∈ �� . For any Y > 0, C�,c

Y ⊂ �\H denote the projection of the horodisc

{τcz ∈ H : Im(z) > Y } onto �\H. Similarly, for any Y ′ > Y > 0, let C�,c
Y ,Y ′ denote

the projection of the cylindrical region {τcz ∈ H : Y < Im(z) < Y ′} onto �\H. We
record the following two lemmas for the later purpose of computing the measure of
certain unions of cusp neighborhoods.

Lemma 6.1 If Y ′ > Y > 1, the set C�,c
Y ,Y ′ is in one-to-one correspondence with the set

{τcz ∈ H : Re(z) ∈ R/ωcZ, Im(z) ∈ (Y , Y ′)}. (6.1)

In particular, if −I2 ∈ � then for any Y ′ > Y > 1

μ�

(
C�,c

Y ,Y ′
)

= 3ωc

π [�1 : �]
(
1

Y
− 1

Y ′

)
. (6.2)

Proof The one-to-one correspondence is given by the projection of the above rectan-
gular set onto �\H. Indeed, since �c ⊂ �, this map projects the rectangular set in
(6.1) onto C�,c

Y ,Y ′ . To show that it is also injective, suppose �τcz = �τcz′ for some

z, z′ from this rectangular set. Then there exists some γ ∈ � such that τ−1
c γ τcz = z′.

If γ ∈ ±�c then τ−1
c γ τc ∈ ±〈uωc〉, and this implies that z = z′. Otherwise, let

τ−1
c γ τc = ( a b

c d

) ∈ �1. Since γ /∈ ±�c, c �= 0. We easily see this cannot happen since
it would imply

Im(z′) = Im(z)

|cz + d|2 = Im(z)

(cx + d)2 + c2y2
≤ 1

y
≤ 1,

contradicting that Im(z′) > Y > 1. For the area computation, we use the definition
(2.1) of μ�1 together with μ�1 = [�1 : �]μ� (since −I2 ∈ �).

Lemma 6.2 Given two distinct cusps c1, c2 ∈ �� , and any Y1, Y2 ≥ 1, C�,c1
Y1

∩C�,c2
Y2

=
∅.

Proof Since Y1, Y2 ≥ 1, the sets {τc1 z ∈ H : Im(z) > Y1} and {τc2 z ∈ H : Im(z) >

Y2} are subsets of the interior of the Ford circles based at c1 and c2 respectively. Two
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Ford circles are either disjoint or identical. Suppose �z ∈ C�,c1
Y1

∩ C�,c2
Y2

. Then there
exists an isometry γ ∈ � that maps the Ford circle at c1 to the Ford circle at c2.
Consequently, we must have γ c1 = c2, which is a contradiction.

Remark 6.3 We will later consider sets Iy,Y ,c :=
{

x ∈ (0, 1) : �(x + iy) ∈ C�,c
Y

}
for

some y > 0, Y > 1 and c ∈ �� . This set is the intersection of the line segment
{x + iy ∈ H : 0 < x < 1}with the preimage of C�,c

Y inH (under the natural projection

from H to �\H). By definition the preimage of C�,c
Y is the disjoint (since Y > 1)

union of the infinitely many horodiscs {τc′ z ∈ H : Im(z) > Y } = H◦
p/q,1/(2q2Y )

for

all cusps c′ = p/q ∈ �c. Moreover, note that a necessary condition for such a
horodisc intersecting the line segment {x + iy ∈ H : 0 < x < 1} is that p/q ∈
�c∩ (− 1

2Y , 1+ 1
2Y ) and 1/(q2Y ) > y, i.e. q2 < 1/(yY ). Thus there are only finitely

many such horodiscs intersecting {x + iy ∈ H : 0 < x < 1}. Moreover, each
such intersection is an open interval and the set Iy,Y ,c ⊂ (0, 1) is thus the disjoint
union of these finitely many open intervals. Similarly, for any Y ′ > Y > 1 the set{

x ∈ (0, 1) : �(x + iy) ∈ C�,c
Y ,Y ′
}

= Iy,Y ,c\I y,Y ′,c is also a disjoint union of finitely

many open intervals.

6.2 Left regular action of normalizing elements

Let h ∈ SL2(Q) be a group element normalizing �. The action of h on Q ∪ {∞}
(by Möbius transformation) induces a well-defined action on �\ (Q ∪ {∞}), the set
of cusps of �.

Lemma 6.3 For each c ∈ �� , we have

h�ch−1 = �hc (6.4)

and

τ−1
hc hτc =

(√
ωhc/ωc ∗
0

√
ωc/ωhc

)
∈ SL2(Q). (6.5)

Proof Since h normalizes� we have h�ch−1 = hτcNτ−1
c h−1∩�. Thus to prove (6.4)

it suffices to show hτcNτ−1
c h−1 = τhcNτ−1

hc . We show that τ−1
hc hτc is an upper tri-

angular matrix. Indeed, τ−1
hc hτc∞ = τ−1

hc (hc) = ∞. This proves (6.4). We moreover
conclude that

τ−1
hc hτc =

(
λ ∗
0 λ−1

)
(6.6)

for some λ �= 0, and it remains to show that λ2 = ωhc/ωc. For this we conjugate the
subgroup τ−1

hc �hcτh·c by the matrix τ−1
hc hτc. We obtain with (6.4) that

τ−1
c h−1τhc

(
τ−1

hc �hcτhc

)
τ−1

hc hτc = τ−1
c �cτc = 〈uωc

〉
.
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On the other hand, using (6.6) and τ−1
hc �hcτhc = 〈uωhc

〉
, we have

τ−1
c h−1τhc

(
τ−1

hc �hcτhc

)
τ−1

hc hτc = ( λ−1 ∗
0 λ

) 〈( 1 ωhc
0 1

)〉 (
λ ∗
0 λ−1

) =
〈(

1 ωhc/λ
2

0 1

)〉
.

Comparing both equations we conclude that λ2 = ωhc/ωc. Finally replacing τhc with
−τhc if necessary, we can ensure λ is positive.

Proposition 6.4 Let Y ′ > Y > 0 and c ∈ �� . If �z ∈ C�,c
ωcY ,ωcY ′ , then �hz ∈

C�,hc
ωhcY ,ωhcY ′ . Similarly, if �z ∈ C�,c

ωcY , then �hz ∈ C�,hc
ωhcY .

Proof The second statement follows from the first one by taking Y ′ → ∞. Since
�z ∈ C�,c

ωcY ,ωcY ′ , by definition there exists z′ = x ′ + iy′ ∈ H with 0 ≤ x ′ < ωc and

ωcY < y′ < ωcY ′ and �z = �τcz′. Consider hτcz′ = τhcz′′ with z′′ = τ−1
hc hτcz′.

By (6.5), we have Im(z′′) = (ωhc/ωc)Im(z′) ∈ (ωhcY , ωhcY ′), implying that �hz =
�hτcz′ ∈ C�,hc

ωhcY ,ωhcY ′ .

7 Negative results: horocycles expanding arbitrarily fast

In this section using the results from the previous section, we prove Theorems 1.7
and 1.8 which provide new limiting measures for the sequences

{
δn,x,yn

}
n∈N

and{
δ
pr
n,x,yn

}
n∈N

, allowing {yn}n∈N to decay arbitrarily fast. For any n ∈ N we consider
the congruence subgroup �n < SL2(Z) given by

�n :=
{(

a b
c d

)
∈ SL2(Z) : n2 | c, a ≡ d ≡ ±1 (mod n)

}
. (7.1)

It is clear that �1 = SL2(Z) and that �n contains the congruence subgroup

�1(n
2) :=

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod n2)

}
.

7.1 Basic properties of the congruence subgroups 0n

First we show that �n is normalized by u j/n for any j ∈ Z. As mentioned in the
introduction this simple fact is the starting point of our proofs to Theorems 1.7 and
1.8.

Lemma 7.1 For any n ∈ N and for any j ∈ Z, the unipotent matrix u j/n normalizes
�n.

Proof By direct computation, for any γ = ( a b
c d

) ∈ �1 and for any j ∈ Z we have

u−1
j/nγ u j/n =

(
a − jc

n b + (a−d) j
n − j2c

n2

c d + jc
n

)
.
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700 C. Burrin et al.

Hence if γ ∈ �n , that is, n2 | c and a ≡ d ≡ ±1 (mod n), all the entries are integers
with the bottom left entry divisible by n2, and

a − jc

n
≡ a ≡ d ≡ d + jc

n
≡ ±1 (mod n).

This implies that u−1
j/n�nu j/n ⊂ �n .

Next we prove the following index formula for �n .

Lemma 7.2 For any integer n ≥ 3, we have

[�1 : �n] = n3

2

∏
p|n

prime

(
1 − p−2

)
. (7.2)

Proof Let Jn <
(
Z/n2

Z
)×

be the subgroup

Jn :=
{
[a] ∈

(
Z/n2

Z

)× : a ≡ ±1 (mod n)

}
. (7.3)

It is easy to check that #(Jn) = 2n. Consider the map h : �n → Jn sending γ =(
a b
c d

) ∈ �n to [a] ∈ (Z/n2
Z
)×

. Using the definition of �n , one can check that h is
a group homomorphism with the kernel ker(h) = �1(n2). For each 0 ≤ k ≤ n − 1,

set γ ±
k = ±

(
1+kn 1
−k2n2 1−kn

)
∈ �n . Then h surjects the set

{
γ ±

k ∈ �n : 0 ≤ k ≤ n − 1
}

onto Jn . Finally we use the index formula for �1(n2) (see e.g. [6, Section 1.2]) to get

[�1 : �n] = [�1 : �1(n2)]
[�n : �1(n2)] = [�1 : �1(n2)]

#Jn
= n3

2

∏
p|n

prime

(
1 − p−2

)
.

Next, we study the properties of �n relative to its cusps. As in Sect. 6 we denote
by ��n the set of cusps of �n . The following lemma computes the width of each cusp
of �n .

Lemma 7.3 Let n ∈ N and let c = m/l ∈ ��n with gcd(m, l) = 1 (if c = ∞, m/l is
understood as 1/0). Then we have

ωc = n2

gcd(n, l)2
.

Proof Let τc ∈ �1 be as before such that τc∞ = c. Thus the left column of τc is
( m

l

)
.

By direct computation we have

τcNτ−1
c =

{(
1 − mlt m2t
−l2t 1 + mlt

)
∈ G : t ∈ R

}
.
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Thus by (7.1) an element in (�n)c = τcNτ−1
c ∩�n is of the form γ =

(
1−mlt m2t
−l2t 1+mlt

)
∈

�1 satisfying that n2 | l2t and 1 − mlt ≡ 1 + mlt ≡ ±1 (mod n). Looking at the top
right and bottom left entries of γ , we have that m2t, l2t ∈ Z. Since gcd(m, l) = 1, we
have t ∈ Z. Then the condition n2 | l2t is equivalent to n2

gcd(n,l)2
| t , and the condition

n | mlt is equivalent to that n
gcd(n,ml) | t . Moreover, since n

gcd(n,ml) | n2

gcd(n,l)2
, the

condition n
gcd(n,ml) | t is implied by the condition n2

gcd(n,l)2
| t . We conclude that

n2 | l2t implies 1 − mlt ≡ 1 + mlt ≡ ±1 (mod n). Thus

(�n)c =
{(

1 − mlt m2t
−l2t 1 + mlt

)
∈ �1 : n2 | l2t

}
.

Conjugating (�n)c back via τc and using the equivalence of the two conditions n2 | l2t

and n2

gcd(n,l)2
| t we get

τ−1
c (�n)cτc =

{
ut =

(
1 t
0 1

)
∈ �1 : n2

gcd(n, l)2
| t

}
,

implying that ωc = n2/ gcd(n, l)2.

Next we compute the number of cusps of �n .

Proposition 7.4 For any integer n ≥ 3 we have

#��n = n2

2

∏
p|n

prime

(
1 − p−2

)
.

Remark 7.4 It is easy to check that �2 = �0(4). Thus [�1 : �2] = 6 and �2 has three
cusps which can be represented by ∞, 1/2 and 1 respectively.

To prove Proposition 7.4 we first prove a preliminary formula for #��n .

Lemma 7.5 For any integer n ≥ 3 we have

#��n =
∑
d|n2

ϕ(n2/d)ϕ(d) gcd(n2/d, d)

2n
.

Proof Since −I2 ∈ �n and �1(n2) < �n , we have ��n = �n\��1(n2). On the other
hand, by the analysis in [6, p. 102], the set ��1(n2) is in bijection with the union of
cosets

⊔
d|n2〈±I2〉\Zd , where for each d | n2,

Zd :=
{
([m], [l])t : [m] ∈ (Z/dZ)× , [l] ∈ Z/n2

Z, gcd(n2, l) = d
}
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with ([m], [l])t is the transpose of the row vector ([m], [l]) and the bijection is induced
by the map sending m/l ∈ Q ∪ {∞} with gcd(m, l) = 1 to ([m], [l]))t ∈ Zd with
d = gcd(n2, l). Note that #Zd = ϕ(n2/d)ϕ(d).

For each d | n2, using the definition of �n , it is easy to check that the linear action
of �n on Z

2 (by matrix multiplication) induces a well-defined action of �n on Zd

and that the corresponding action of the subgroup �1(n2) is trivial. From the proof of
Lemma 7.2, we have �n/�1(n2) ∼= Jn , where

Jn =
{
±[1 + kn] ∈ (Z/n2

Z)× : 0 ≤ k ≤ n − 1
}

, (7.5)

which is of size 2n. Hence the action of �n on Zd induces the action of Jn on Zd given
by

[a] · ([m], [l])t = ([am], [al])t ,

with ([m], [l])t ∈ Zd and a the multiplicative inverse of a modulo n2. We note that
[am] ∈ (Z/dZ)× is well-defined since d | n2.

We conclude that ��n = �n\��1(n2) is in bijection with the union of cosets

⊔
d|n2

�n\Zd =
⊔
d|n2

Jn\Zd ,

implying that

#��n =
∑
d|n2

#Jn\Zd .

Hence we want to compute the size of the coset Jn\Zd for each d | n2. For this
we claim that for any for any ([m], [l])t ∈ Zd , the orbit Jn · ([m], [l])t is of size
2n/ gcd(n2/d, d), implying that

#Jn\Zd = #Zd

2n/ gcd(n2/d, d)
= ϕ(n2/d)ϕ(d) gcd(n2/d, d)

2n
.

We note that Lemma 7.5 then follows immediately from this claim. To prove this
claim, it suffices to compute the size of the stabilizer

(Jn)([m],[l]) := {[a] ∈ Jn : [a] · ([m], [l])t = ([m], [l])t ∈ Zd
}
.

Since by definition [a] · ([m], [l])t = ([am], [al])t , [a] ∈ (Jn)([m],[l]) if and only if
am ≡ m (mod d) and al ≡ l (mod n2). Since d = gcd(n2, l) and [m] ∈ (Z/dZ)×,
these two conditions are equivalent to a ≡ 1 (mod d) and a ≡ 1 (mod n2/d), which
are equivalent to a ≡ 1 (mod lcm(n2/d, d)). Hence using the description (7.5) of Jn
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and the facts that n | lcm(n2/d, d) and lcm(n2/d, d) gcd(n2/d, d) = n2 we have

(Jn)([m],[l]) =
{
[1 + lcm(n2/d, d) j] ∈ Jn : 0 ≤ j ≤ gcd(n2/d, d) − 1

}

is of size gcd(n2/d, d). This implies that

#
(
Jn · ([m], [l])t) = #Jn

#(Jn)([m],[l])
= 2n

gcd(n2/d, d)
,

proving the claim, and hence also this lemma.

We can now give the proof of Proposition 7.4 by simplifying the formula in
Lemma 7.5.

Proof of Proposition 7.4 Write n = ∏k
i=1 pαi

i in the prime decomposition form and
apply Lemma 7.5 to get

#
(
��n

) = 1

2n

∑
β∈Zk :0≤βi ≤2αi

ϕ

(
k∏

i=1

pβi
i

)
ϕ

(
k∏

i=1

p2αi −βi
i

)
k∏

i=1

pmin{βi ,2αi −βi }
i ,

where the summation is over all vectors β = (β1, . . . , βk) ∈ Z
k satisfying 0 ≤

βi ≤ 2αi for all 1 ≤ i ≤ k, and we used that gcd(n2/d, d) =∏k
i=1 pmin{βi ,2αi −βi }

i for

d =∏k
i=1 pβi

i . Using the fact that ϕ is multiplicative and interchanging the summation
and product signs we get

#
(
��n

) = 1

2n

k∏
i=1

⎛
⎝ ∑

0≤βi ≤2αi

ϕ
(

pβi
i

)
ϕ
(

p2αi −βi
i

)
pmin{βi ,2αi −βi }

i

⎞
⎠

= 1

2n

k∏
i=1

⎛
⎝ ∑

1≤βi ≤2αi −1

p2αi
i (1 − p−1

i )2 pmin{βi ,2αi −βi }
i + 2p2αi

i (1 − p−1
i )

⎞
⎠

= 1

2n

k∏
i=1

p2αi
i (1 − p−1

i )

⎛
⎝(1 − p−1

i )
∑

1≤βi ≤2αi −1

pmin{βi ,2αi −βi }
i + 2

⎞
⎠ ,

where for the secondequalityweused that for 1 ≤ βi ≤ 2αi−1,ϕ
(

pβi
i

)
ϕ
(

p2αi −βi
i

)
=

p2αi (1 − p−1
i )2, and for βi = 0 or βi = 2αi , ϕ

(
pβi

i

)
ϕ
(

p2αi −βi
i

)
= p2αi (1 − p−1

i )
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and min{βi , 2αi −βi } = 0. We note that the term
∑

1≤βi ≤2αi −1 pmin{βi ,2αi −βi }
i equals

∑
1≤βi ≤αi

pβi
i +

∑
αi <βi ≤2αi −1

p2αi −βi
i =

∑
1≤βi ≤αi

pβi
i +

∑
1≤βi <αi

pβi
i

= 2
∑

1≤βi ≤αi

pβi
i − pαi

i = 2pi (pαi
i − 1)

pi − 1
− pαi

i .

Hence we have

#
(
��n

) = 1

2n

k∏
i=1

p2αi
i (1 − p−1

i )

(
(1 − p−1

i )

(
2pi (pαi

i − 1)

pi − 1
− pαi

i

)
+ 2

)

= 1

2n

k∏
i=1

p2αi
i (1 − p−1

i )pαi
i (1 + p−1

i ) = n2

2

k∏
i=1

(1 − p−2
i ),

finishing the proof.

7.2 Proof of Theorem 1.7

For simplicity of notation, we abbreviate the cusp neighborhoods C�n ,c
Y and C�n ,c

Y ,Y ′
by Cn,c

Y and Cn,c
Y ,Y ′ respectively and the set of cusps ��n by �n . We first prove the

following key lemma which says that if �nz visits a cusp neighborhood on �n\H,
then all companion points �1u j/nz, 0 ≤ j ≤ n − 1 make excursions to some cusp
neighborhood onM = �1\H, the modular surface. We recall that CY is the projection
onto M of the region {z ∈ H : Im(z) > Y }.
Lemma 7.6 Let Y > 0 and n ∈ N. If �nz ∈ Cn,c

ωcY for some c ∈ �n then �1u j/nz ∈ CY

for all 0 ≤ j ≤ n − 1.

Proof Fix 0 ≤ j ≤ n − 1. By Lemma 7.1, u j/n normalizes �n . Assuming that
�nz ∈ Cn,c

ωcY and applying Proposition 6.4 to h = u j/n , we get �nu j/nz ∈ Cn,hc
ωhcY . By

definition, there exists z′ ∈ Hwith Im(z′) > ωhcY ≥ Y such that�nτhcz′ = �nu j/nz.
Since τhc ∈ �1, this implies �1u j/nz = �1z′ ∈ CY .

We can now give the

Proof of Theorem 1.7 For any n ∈ N letYn = max{log n, 1}, and let�n be the indicator
function of the union

⋃
c∈�n

Cn,c
ωcYn ,2ωcYn

⊂ �n\H.

Since for any cusp c ∈ �n , ωcYn ≥ Yn ≥ 1, by Lemma 6.1, each Cn,c
ωcYn ,2ωcYn

is
a Borel set with boundary of measure zero; and by Lemma 6.2 the above union is
disjoint. Thus �n is the indicator function of a Borel set with boundary of measure
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zero. Moreover, applying the volume formula (6.2), the index formula in Lemma 7.2
and the cusp number formula in Proposition 7.4 (see also Remark 7.4 for the case
when n = 2) we have for any n ∈ N,

μ�n (�n) =
∑
c∈�n

μ�n

(
Cn,c

ωcYn ,2ωcYn

)

=
∑
c∈�n

3ωc

π [�1 : �n] × 1

2ωcYn
= 3

2πYn

#�n

[�1 : �n] 
 1

nYn
. (7.6)

For any n ∈ N and 0 < y < 1 we define

In(y) := {x ∈ R/Z : �n(x + iy) = 1} .

By definition, x ∈ In(y) if and only if �n(x + iy) ∈ Cn,c
ωcYn ,2ωcYn

⊂ Cn,c
ωcYn

for some
c ∈ �n . Thus Lemma 7.6 implies that

In(y) ⊂ {x ∈ R/Z : Rn(x, y) ⊂ CYn }.

This, together with our choice that Yn = max{log n, 1} and the distance formula (4.1),
implies that for any n ≥ 3 and for any x ∈ In(y)

inf
�1z∈Rn(x,y)

dM(�1z0, �1z) ≥ log(Yn) + O(1) = log log n + O(1).

It thus suffices to show that there exists a sequence {yn}n∈N satisfying that 0 < yn < cn

for all n ∈ N and that the limsup set limn→∞ In(yn) is of full Lebesgue measure in
R/Z.

For this, we will construct a sequence {yn}n∈N decaying sufficiently fast and
then apply the quantitative Borel–Cantelli lemma Corollary 2.6 to the sequence
{In(yn)}n∈N ⊂ R/Z. To ensure the quasi-independence condition (2.20) in Corol-
lary 2.6, we need, for every pair 1 ≤ m < n ∈ N, the two quantities |Im(ym) ∩ In(yn)|
and |Im(ym)| |In(yn)| to be sufficiently close to each other. The key observations for
this are the following two relations that

|In(yn)| =
∫ 1

0
�n(x + iyn)dx (7.7)

and

|Im(ym) ∩ In(yn)| =
∫ 1

0
�m(x + iym)�n(x + iyn)dx =

∫
Im (ym)

�n(x + iyn)dx .

(7.8)

Assuming the limit equation (2.16) holds for the pairs ((0, 1),�n) and (Im(ym),�n)

(we will verify this later), then by relation (7.8) the quantity |Im(ym) ∩ In(yn)| is close
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to the quantity |Im(ym)|μ�n (�n)which in turn is close to |Im(ym)||In(yn)| by relation
(7.7), provided that yn > 0 is sufficiently small.

We now implement the above ideas rigorously. We first claim that there exists a
sequence {yn}n∈N satisfying, for all n ∈ N, 0 < yn < cn and

∣∣∣∣ 1|I |
∫

I
�n(x + iyn)dx − μ�n (�n)

∣∣∣∣ ≤ μ�n (�n)

2n2 , (7.9)

for any subset I ⊂ R/Z taken from the finite set

{(0, 1)}
⋃

{Im(ym) : 1 ≤ m < n} . (7.10)

For this, first note that by Remark 2.17 for any I ⊂ R/Z ∼= [0, 1) a disjoint union of
finitely many open intervals, we have

lim
y→0+

1

|I |
∫

I
�n(x + iy)dx = μ�n (�n). (7.11)

We now construct such a sequence successively. For the base case n = 1 since (7.11)
holds for the pair ((0, 1),�1) on M = �1\H, there exists 0 < y1 < c1 sufficiently
small such that

∣∣∣∣
∫ 1

0
�1(x + iy1)dx − μ�1(�1)

∣∣∣∣ < 1

2
μ�1(�1).

For a general integer n ≥ 2, suppose that we already have chosen 0 < ym < cm

satisfying (7.9) for all the positive integers m < n. By Remark 6.3 the set Im(ym) ⊂
R/Z is a disjoint union of finitely many open intervals for any m < n. Thus (7.11) is
satisfied for all the pairs

((0, 1),�n) , (Im(ym),�n), 1 ≤ m < n

on �n\H. Since there are only finitely many such pairs, we can take 0 < yn < cn suf-
ficiently small such that (7.9) is satisfied for all I ∈ {(0, 1)}⋃ {Im(ym) : 1 ≤ m < n},
which is the set in (7.10). This finishes the proof of the claim.

Now let {yn}n∈N be as in the claim. For any n ∈ N apply (7.9) to the pair ((0, 1),�n)

we get

∣∣|In(yn)| − μ�n (�n)
∣∣ ≤ μ�n (�n)

2n2 . (7.12)

By the triangle inequality, this implies

μ�n (�n) ≤ 2|In(yn)|. (7.13)
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More generally, for each 1 ≤ m < n apply (7.9) to the pair (Im(ym),�n) we get

∣∣|Im(ym) ∩ In(yn)| − |Im(ym)| μ�n (�n)
∣∣ ≤ |Im(ym)|μ�n (�n)

2n2 . (7.14)

Using the inequalities (7.12), (7.13), (7.14) together with the triangle inequality we
get

||Im(ym) ∩ In(yn)| − |Im(ym)| |In(yn)|| ≤ |Im(ym)| μ�n (�n)

n2

≤ 2 |Im(ym)| |In(yn)|
n2 . (7.15)

Hence the sequence {In(yn)}n∈N ⊂ R/Z satisfies the quasi-independence condition
(2.20) (with the subset S = N and the exponent η = 2). Moreover, using the inequality
(7.12), the volume computation (7.6) and the estimate that Yn 
 log n we have that

∑
n∈N

|In(yn)| ≥
∑
n∈N

1

2
μ�n (�n) 


∑
n∈N

1

n log n
= ∞.

Thus by Corollary 2.6, limn→∞ In(yn) ⊂ R/Z is of full Lebesgue measure, finishing
the proof.

Remark 7.16 It is not clear to us whether the rate log log n is the fastest excursion rate
for generic translates. We note that in principle it can be proved (or disproved) if one
can compute the volume of the set

En
Y := {�nz ∈ �n\H : �1u j/nz ∈ CY for all 0 ≤ j ≤ n − 1

}
.

For instance, if one can show μ�n (En
Y ) 
 1/(nY ) for all n ∈ N and for all Y ≥ 1, then

Theorem 1.7 together with a standard application of the Borel–Cantelli lemma would
imply that the inequality in (1.13) is indeed an equality for almost every x ∈ R/Z. We
also note that our analysis (Lemmas 6.2, 7.6) shows that for any n ∈ N and for any
Y ≥ 1

⊔
c∈�n

Cn,c
ωcY ⊂ En

Y ⊂
⊔
c∈�n

Cn,c
Y ,

implying that 1/(nY ) � μ�n

(En
Y

)� 1/Y . On the other hand using some elementary
arguments (which relies on the width computation Lemma 7.3) one can show that
any 〈u1/n〉-orbit contains at least one cusp of width one. This fact together with the
fact that 1 ≤ ωc ≤ n2 implies that En

Y = ⊔
c∈�n

Cn,c
Y when Y ≥ n2 . However, both

estimates are not sufficient for the purpose of obtaining an upper bound.

Remark 7.17 Here we give a very brief sketch of the argument communicated to us by
Strömbergsson: For each n ∈ N and y > 0, it is not difficult to see that �n(x + iy) ∈
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Cn,c
ωcYn

for some c = p
q ∈ �n with gcd(p, q) = 1 if and only if

∣∣∣∣x − p

q

∣∣∣∣
2

<
y

ωcYnq2 − y2 = y gcd(n, q)2

n2Ynq2 − y2. (7.18)

Here Yn = max{log n, 1} is as in the above proof. Define

Ĩn(y) :=
{

x ∈ R/Z : ∃ primitive
p

q
s.t. n | q, q <

1

2
√

yYn
,

∣∣∣∣x − p

q

∣∣∣∣ <
√

y

2
√

Ynq

}
.

One can easily check that elements in Ĩn(y) satisfy the inequality (7.18). Hence by
Lemma 7.6 we have

Ĩn(y) ⊂ {x ∈ R/Z : Rn(x, y) ⊂ CYn }. (7.19)

Moreover, using some standard techniques from analytic number theory one can show
that for any subinterval I ⊂ R/Z (or more generally, any finite disjoint union of
subintervals),

lim
y→0+ |I |−1

∣∣∣ Ĩn(y) ∩ I
∣∣∣ = cn

Yn

with cn = 3
π2

ϕ(n)

n2
∏

p�n(1−p−2)−1 	 ϕ(n)

n2
. This limit equation is the analog of (7.11).

Another input is the divergence of the series
∑

n∈N

cn
Yn

	∑
n∈N

ϕ(n)

n2 log n
, which follows

from the estimate ϕ(n) 	 n/ log log n. With these two inputs one can then mimic the
arguments in the above proof to construct a sequence {yn}n∈N decaying sufficiently fast
and then apply Corollary 2.6 to get a full measure limsup set limn→∞ Ĩn(yn) ⊂ R/Z.
Finally, we note that the relation (7.19) can be checked directly using the definition
of the set Ĩn(y). Hence this argument can be carried over without going into the
congruence covers �n\H.

7.3 Proof of Theorem 1.8

Weprove Theorem 1.8 in this subsection. The strategy is similar to that of Theorem 1.7
with the sequence of cuspidal sets approaching the cusps replaced by a sequence of
compact cylinders approaching certain closed horocycles. Let n ∈ N be an integer and
let�nz ∈ �n\H be a point close to a cusp c ∈ �n . For any 0 ≤ j ≤ n−1, the analysis in
Sect. 6 gives exact information about the height of the companion point �nu j/nz with
respect to the cusp u j/nc. While this is sufficient for Theorem 1.7 (cusp excursions), to
realize the limiting measure νm,Y in Theorem 1.8 one needs more refined information
about the spacing of these companion points along the closed horocycles they lie on.
For this, we further analyze the left regular u1/n-action on points near certain type
cusps which we now define.

We say c ∈ �n is of simple type if c can be represented by a primitive rational
number m/q satisfying that gcd(n2, q) | n, and we denote by �sim

n ⊂ �n the set of
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simple type cusps. (This notion of simple type cusps is closely related to the condition
n ∈ Nq in Theorem 1.2. In fact, let p/q be a primitive rational number then the
condition n ∈ Nq is equivalent to that the cusp c ∈ �n represented by p/q is of
simple type.) If m′/q ′ is another representative for c, that is, m′/q ′ is primitive and
m′/q ′ = γ (m/q) for some γ ∈ �n , then using the definition of �n , it is easy to check
that gcd(n2, q) = gcd(n2, q ′). Hence the simple type cusps are well-defined.

As mentioned in Sect. 3.3 the condition gcd(n2, q) | q implies the further decom-
position q = kl with l = gcd(n, q) | n and k = q/l satisfying gcd(k, n) = 1. We
can thus reparameterize a simple type c by m/(kl) with gcd(m, kl) = gcd(k, n) = 1
and l | n. The main new ingredient of our proof to Theorem 1.8 is the following
decomposition of the sample points which generalizes (3.19).

Proposition 7.7 Fix n ∈ N, z = x + iy ∈ H and c ∈ �sim
n . Then

Rn(x, y) =
⋃
d|n

Rpr
n/d(x ′

c,d , d2y′/ωc),

where z′ = x ′ + iy′ ∈ H is such that �nz = �nτcz′, and x ′
d,c ∈ R/Z depends only on

x ′, c and d.

Wefirst prove a simple lemma computing the width of elements in the orbits 〈u1/n〉c
when c ∈ �sim

n is of simple type.

Lemma 7.8 Fix n ∈ N and c ∈ �sim
n a simple type cusp. Then for any 0 ≤ j ≤ n − 1

we have

ωu j/nc = gcd
(
m n

l + jk, n
)2

,

where m/(kl) is a representative for c with gcd(m, kl) = gcd(k, n) = 1 and l | n.

Proof For any 0 ≤ j ≤ n − 1,

u j/nc = m

kl
+ j

n
= m n

l + jk

kn
=: p j

q j

with gcd(p j , q j ) = 1. Let d j := gcd(m n
l + jk, kn) such that q j = kn/d j . Since

gcd(mn, k) = 1,wehave gcd(m n
l + jk, k) = gcd(m n

l , k) = 1.Henced j = gcd(m n
l +

jk, n) | n. Now by Lemma 7.3 and the assumption that gcd(k, n) = 1 we have

ωu j/nc = n2

gcd(n, kn/d j )2
= d2

j = gcd(m n
l + jk, n)2.

We can now combine ideas from Sects. 3.3 and 6 to give the

Proof of Proposition 7.7 Assume c = m/(kl) with gcd(m, kl) = gcd(k, n) = 1 and
l | n. Up to changing the representatives for c, we may assume mkl �= 0. Let τc =
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( m a
kl b

) ∈ �1, and for each 1 ≤ j ≤ n − 1 let τu j/nc = ( p j v j
q j w j

) ∈ �1, where p j , q j are
as in the proof of Lemma 7.8, a, b, v j , w j are some integers such that τc, τu j/nc ∈ �1,
that is,

mb − kla = 1 and
(
m n

l + jk
)
w j − knv j = d j (7.20)

with d j = gcd(m n
l + jk, n) as in the proof of Lemma 7.8. By direct computation and

using Lemmas 6.3 and 7.8 (and the relation ωc = d2
0 = n2/l2) we have

τ−1
u j/nc

u j/nτc =
(

d j l/n w j a + b
(

jw j
n − v j

)
0 n/(d j l)

)
.

Using the relations in (7.20) the top right entry becomes

w j a + b

(
jw j

n
− v j

)
= w j a + 1 + kla

m

(
jw j

n
− v j

)

= a(w j mn + jw j kl − klv j n) + jw j − v j n

mn

= ad j l

mn
+ 1

mn

(
d j l − w j mn

kl

)
= bd j

nk
− w j

kl
.

(Here we used the assumption that mkl �= 0.) Hence we have for any 0 ≤ j ≤ n − 1

�nu j/nz = �nu j/nτc(x ′ + iy′) = �nτu j/ncτ
−1
u j/nc

u j/nτc(x ′ + iy′) (7.21)

= �nτu j/nc

(
d2

j l2

n2
x ′ + d2

j lb

n2k
− d j w j

kn + i
d2

j l2

n2
y′
)

.

Here for the first equality we used the assumption that �nz = �nτcz′ and the fact that
u j/n normalizes �n . Now as in the proof of Proposition 3.7 for any d | n, we define

Dd := {0 ≤ j ≤ n − 1 : d j = d}

so that

Rn(x, y) =
⋃
d|n

{
�1u j/nz ∈ M : j ∈ Dd

}
, (7.22)

and

{[(m n
l + jk)/d] ∈ (Z/(n/d)Z)× : j ∈ Dd

} = (Z/(n/d)Z)×. (7.23)

Use the second relation in (7.20) to get for j ∈ Dd ,

w j
(
(m n

l + jk)/d
) ≡ 1 (mod k n

d ).
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Solving the above congruence equation as in the proof of Lemma 3.6 we get

w j ≡ dlmn n
d e + ((m n

l + jk
)
/d
)∗

k f (mod k n
d ),

where for any integer t , t denotes the multiplicative inverse modulo k, t∗ denotes the
multiplicative inverse modulo n/d, and e = ed , f = fd ∈ Z are two fixed integers
such that e n

d + f k = 1. Plugging this relation into (7.21) and using the relation
ωc = n2/l2 we get for any d | n and for any j ∈ Dd ,

�nu j/nz = �nτu j/nc

(
x ′
c,d −

((
m n

l + jk
)
/d
)∗

f

n/d + i d2y′
ωc

)
,

where x ′
c,d := d2l2

n2
x ′ + d2lb

n2k
− dlmne

k (mod Z) ∈ R/Z. Since τu j/nc ∈ �1 we have

{
�1u j/nz ∈ M : j ∈ Dd

}=
{

�1

(
x ′
c,d−

((
m n

l + jk
)
/d
)∗

f

n/d + i d2y′
ωc

)
∈ M : j ∈ Dd

}
.

Thus in view of (7.22) and the above relation it suffices to show

{−[((m n
l + jk)/d

)∗
f ] ∈ (Z/(n/d)Z)× : j ∈ Dd

} = (Z/(n/d)Z)×.

But this follows from (7.23) and the fact that gcd( f , n
d ) = 1 (since gcd( f , n

d ) =
gcd( f k, n

d ) = gcd(1 − e n
d , n

d ) = 1), and we have thus finished the proof.

We will also need the following lemma estimating the number of cusps in �sim
n

satisfying certain restrictions on the width.

Lemma 7.9 Let m ∈ N be a fixed integer and let n = m� ≥ 3 for some prime number
� not dividing m. Then we have

#
{
c ∈ �sim

n : ωc ≥ m2
}

≥ ϕ(m)(� − 1)2

2
.

Proof Recall from the proof of Lemma 7.5 that �n is in bijection with the disjoint
union

⊔
d|n2 Jn\Zd . On the other hand, by definition of the simple type cusps, �sim

n

corresponds to the subset �d|n Jn\Zd . Moreover, let c = m/l ∈ �sim
n with gcd(m, l) =

1 be a simple type cusp corresponding to an element in Jn\Zd for some d | n, that is,
d = gcd(n2, l). Since d | n, this implies that d = gcd(n2, l) = gcd(n, l). Hence by
Lemma 7.3, ωc = n2/d2. Therefore for each d | n

#{c ∈ �sim
n : ωc = n2/d2} = |Jn\Zd | = ϕ(n2/d)ϕ(d) gcd(n2/d, d)

2n
= ϕ(n)ϕ(d)

2
,
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where for the last equality we used the identities gcd(n2/d, d) = d (since d | n)
and

ϕ
(

n2
d

)
= n2

d

∏
p|(n2/d)

prime

(1 − p−1) = n

d
× n

∏
p|n

prime

(1 − p−1) = nϕ(n)

d
,

where for the second equality we used the fact that n2/d and n share the same set of
prime divisors. Hence for n = m� we have

#
{
c ∈ �sim

n : ωc ≥ m2
}

= ϕ(n)

2

∑
d|n

n2/d2≥m2

ϕ(d) ≥ ϕ(n)ϕ(�)

2
= ϕ(m)(� − 1)2

2
.

Lemma 7.10 Let m ∈ N and Y > 0 satisfy that m2Y > 1. Let

Pm = {n = m� ∈ N : � is a prime number and � � m}

be as in (1.8). Then there exist sequences of positive numbers {Yn}n∈Pm and {Y ′
n}n∈Pm

satisfying that

(1) Y ′
n > Y > Yn > m−2 for any n ∈ Pm and limn∈Pm

n→∞
Yn = limn∈Pm

n→∞
Y ′

n = Y ;

(2)
∑

n∈Pm
1
n

(
1

Yn
− 1

Y ′
n

)
= ∞.

Proof For each n = m� ∈ Pm , take Y ′
n := (1 − (2tn)−1)−1Y and Yn := (1 +

(2tn)−1)−1Y with

tn = max{(m2Y − 1)−1, log log �}.

We note that the first condition is guaranteed by the facts that tn ≥ (m2Y − 1)−1 and
that limn∈Pm

n→∞
tn = ∞. For the second condition, we note that by the definitions of Yn

and Y ′
n ,

1
Yn

− 1
Y ′

n
= 1

Y tn
. Moreover, using the fact that there are only finitely many

prime numbers dividing m we get

∑
n∈Pm

1

n

(
1

Yn
− 1

Y ′
n

)

m,Y

∑
�∈P1
��m

1

� log log �
=
∑
�∈P1

1

� log log �
+ Om(1) = ∞,

where the divergence of the rightmost series follows from the estimate � j 
 j log j
which is an easy consequence of the prime number theorem. Here � j ∈ P1 denotes
the j-th prime number.

We now give the
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Proof of Theorem 1.8 Fix throughout the proof m ∈ N and Y > 0 with m2Y > 1 and
let Pm be as above. Let {Yn}n∈Pm and {Y ′

n}n∈Pm be two sequences satisfy the conditions
in Lemma 7.10. For any n ∈ Pm , let �n ∈ L2(�n\H) such that �n is the indicator
function of the union

⋃
c∈�sim

n
ωc≥m2

Cn,c
ωcYn ,ωcY ′

n
⊂ �n\H.

Since Yn > m−2 for any n ∈ Pm , ωcYn > 1 for any c ∈ �sim
n with ωc ≥ m2. Hence

similar as in the proof of Theorem 1.7, by Lemmas 6.1 and 6.2 the above union is
disjoint and�n is the indicator function of a Borel set with boundary of measure zero.
By the disjointness and the volume formula (6.2) we have for any n ∈ Pm

μ�n (�n) = 3

π

#
{
c ∈ �sim

n : ωc ≥ m2
}

[�1 : �n]
(

1

Yn
− 1

Y ′
n

)
.

Note that for n = m� ∈ Pm , by Lemma 7.2, [�1 : �n] 
m �3. Hence by Lemma 7.9
and the above relation we get for any n = m� ∈ Pm

μ�n (�n) 	m,Y
1

�

(
1

Yn
− 1

Y ′
n

)

m

1

n

(
1

Yn
− 1

Y ′
n

)
. (7.24)

Similar as in the proof of Theorem 1.7 for any n ∈ Pm and 0 < y < 1 we define

In(y) := {x ∈ R/Z : �n(x + iy) = 1} .

We first show that there exists a sequence {yn}n∈Pm satisfying that 0 < yn < cn for
all n ∈ Pm and that the limsup set limn∈Pm

n→∞
In(yn) ⊂ R/Z is of full measure. As in

the proof of Theorem 1.7, we can use Remark 2.17, together with Remark 6.3 and
Lemma 6.1, to construct a sequence {yn}n∈Pm successively satisfying for any n ∈ Pm ,
0 < yn < cn and that

∣∣∣∣ 1|I |
∫

I
�n(x + iyn)dx − μ�n (�n)

∣∣∣∣ ≤ μ�n (�n)

2n2 (7.25)

for all subsets I ⊂ R/Z taken from the finite set {(0, 1)}⋃ {Il(yl) : l ∈ Pm, l < n}.
Again as before one can show that condition (7.25) implies that the sequence
{In(yn)}n∈Pm ⊂ R/Z satisfies the quasi-independence condition (2.20) (with the sub-
set S = Pm and exponent η = 2). Moreover, using the estimate (7.24) and our
assumptions on {Yn}n∈Pm and {Y ′

n}n∈Pm ) we have

∑
n∈Pm

|In(yn)| 

∑

n∈Pm

μ�n (�n) 	m,Y

∑
n∈Pm

1

n

(
1

Yn
− 1

Y ′
n

)
= ∞.
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Hence by Corollary 2.6, limn∈Pm
n→∞

In(yn) ⊂ R/Z is of full Lebesgue measure.

Now take x ∈ limn∈Pm
n→∞

In(yn), then there exists an unbounded subsequenceNx ⊂
Pm such that x ∈ In(yn) for all n ∈ Nx . It thus suffices to show that for any � ∈
C∞

c (M),

lim
n∈Nx
n→∞

δn,x,yn (�) = νm,Y (�)

with νm,Y defined as in (1.9). For any n ∈ Nx ⊂ Pm , since x ∈ In(yn) by definition
we have �n(x + iyn) ∈ Cn,c

ωcYn ,ωcY ′
n
for some c ∈ �sim

n of simple type, that is, there

exist some c ∈ �sim
n and z′

n = x ′
n + iωcy′

n ∈ H satisfying that �n(x + iyn) = �nτcz′
n

with Yn < y′
n < Y ′

n . Then by Proposition 7.7, we have

Rn(x, yn) =
⋃
d|n

Rpr
n/d(x ′

n,c,d , d2y′
n)

for some x ′
n,c,d ∈ R/Z. This implies that for any n ∈ Nx

δn,x,yn (�) = 1

n

∑
d|n

ϕ
( n

d

)
δ
pr
n/d,x ′

n,c,d ,d2 y′
n
(�).

Since y′
n, Y ∈ (Yn, Y ′

n), max{y′
n/Y , Y/y′

n} ≤ Y ′
n/Yn . Thus by the intermediate value

theorem we can estimate for n ∈ Nx

δn,x,yn (�) = 1

n

∑
d|n

ϕ
( n

d

) (
δ
pr
n/d,x ′

n,c,d ,d2Y
(�) + O

(
S�1∞,1(�) log

(
Y ′

n/Yn
)))

= 1

n

∑
d|n

ϕ
( n

d

)
δ
pr
n/d,x ′

n,c,d ,d2Y
(�) + O�

(
log
(
Y ′

n/Yn
))

,

where for the second estimate we used the identity
∑

d|n ϕ(n/d) = n. Thus for
n = m� ∈ Nx sufficiently large such that � vanishes on the cusp neighborhood
C�2Y we have

δn,x,yn (�) = 1

m�

∑
d|m

ϕ
(m�

d

)
δ
pr
m�/d,x ′

n,c,d ,d2Y
(�) + O�

(
log
(
Y ′

n/Yn
))

= � − 1

m�

∑
d|m

ϕ
(m

d

) (
μd2Y (�) + O�,m,Y ,ε

(
�−1+ε

))
+ O�

(
log
(
Y ′

n/Yn
))

= � − 1

�
νm,Y (�) + O�,m,Y ,ε

(
�−1+ε + log

(
Y ′

n/Yn
))

,

where for the second equality we used the facts that � is a prime number and
gcd(m, �) = 1 and applied the effective estimate (3.13) to each of the term

123



Translates of rational points along expanding closed horocycles… 715

δ
pr
m�/d,x ′

n,c,d ,d2Y
(�). We now conclude by taking n → ∞ along the subsequence Nx

and noting that limn∈Nx
n→∞

log
(
Y ′

n/Yn
) = 0 (since limn∈Pm

n→∞
Y ′

n/Yn = 1 which follows

from the assumption limn∈Pm
n→∞

Yn = limn∈Pm
n→∞

Y ′
n = Y ).

Remark 7.26 It is clear that we can take a sequence {yn}n∈N decaying sufficiently
fast such that the conditions (7.9) and (7.25) (for any finitely many pairs (m, Y )

with m2Y > 1) are all satisfied and hence (noting that the intersection of finitely
many full measure sets is still of full measure) for such a sequence the conclusions
of Theorems 1.7 and 1.8 (for any finitely many pairs (m, Y ) with m2Y > 1) hold
simultaneously.
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