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Abstract
We show the existence of additive kinematic formulas for general flag area measures,
which generalizes a recent result by Wannerer. Building on previous work by the
second named author, we introduce an algebraic framework to compute these formulas
explicitly. This is carried out in detail in the case of the incomplete flag manifold
consisting of all (p + 1)-planes containing a unit vector.
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1 Introduction

1.1 Global and local kinematic formulas

Let V be a Euclidean vector space of dimension n and unit sphere Sn−1. Let K(V )

denote the space of compact convex subsets in V . A valuation is a finitely additive
map on K(V ), that is, a map μ : K(V ) → A, where A is any abelian semigroup, and
such that

μ(K ∪ L) + μ(K ∩ L) = μ(K ) + μ(L),

whenever K , L, K ∪ L ∈ K(V ). If A is a topological semigroup, then continuity of
μ is understood with respect to the Hausdorff topology on K(V ).

The intrinsic volumes μ0, . . . , μn are examples of real valued valuations. They are
continuous, translation invariant, and invariant under rotations. Hadwiger has shown
that the space ValSO(n) of continuous, translation and rotation invariant valuations is
spanned by the intrinsic volumes. If G is a subgroup of SO(n), then ValG (the space
of continuous, translation invariant and G-invariant valuations) is finite-dimensional
if and only if G acts transitively on the unit sphere.

The classification of connected compact Lie groups G acting transitively on some
sphere is a topological problem which was solved byMontgomery-Samelson [33] and
Borel [17]. There are six infinite lists

SO(n),U(n/2),SU(n/2),Sp(n/4),Sp(n/4) · U(1),Sp(n/4) · Sp(1),

and three exceptional groups

G2,Spin(7),Spin(9).

For the sake of brevity, we will call a group from this list a transitive group. The
computation of the dimension as well as an explicit geometric description of a basis
of ValG in each of these cases is a challenging problem and many results have been
obtained recently by various authors [2,5–7,10,14–16].

Many important constructions in convex geometry can be interpreted as valuations
taking values in some abelian semigroup A other than R. Besides curvature and area
measures (see below), wemention two other cases. If A = (K(V ),+), where+ stands
for the Minkowski sum, then A-valued valuations are called Minkowski valuations
[23,32,38,39]. If A = Sym∗V , then A-valued valuations are called tensor valuations
[13,18,25–27,29,31].

Federer’s curvature measures C0, . . . ,Cn are valuations with values in the space of
signed measures on V . We refer to Schneider [36] for a classification result of these
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Additive kinematic formulas. . . 1617

curvature measures. Fu [21] and Bernig-Fu-Solanes [11] studied smooth curvature
measures in a broader context. For a transitive group G, there are local kinematic
formulas for translation and G-invariant smooth curvature measures. The case G =
SO(n) was considered by Federer, whereas the hermitian case G = U(n/2) was
described completely in [10–12].

The classical surface area measures S0, . . . , Sn−1 are valuations with values in the
space of signed measures on the unit sphere. Additive kinematic formulas for surface
area measures have been shown in [35]. Smooth area measures which are equivariant
with respect to a transitive groupG were introduced byWannerer [41,42], who proved
the existence of local additive kinematic formulas and established such formulas in
the hermitian case. Since these results are very influential for the present work, let us
state them explicitly.

Theorem 1.1 Let G be a transitive group. Then the space AreaG of smooth, G-
invariant area measures is finite-dimensional. If �1, . . . , �N is a basis of AreaG,
then there are local additive kinematic formulas

∫
G

�i (K + gL, κ ∩ gλ)dg =
∑
k,l

cik,l�k(K , κ)�l(L, λ),

where K , L ∈ K(V ) and where κ and λ are Borel subsets of Sn−1.

The linear map

A : AreaG → AreaG ⊗AreaG, �i �→
∑

cik,l�k ⊗ �l

is a cocommutative, coassociative coproduct. The transposed map A∗ : AreaG,∗
⊗AreaG,∗ → AreaG,∗ thus provides AreaG,∗ with the structure of a commutative
associative algebra.

In the case G = SO(n), this algebra is isomorphic to R[t]/〈tn〉. The case G =
U(n/2) is more involved. Using results from hermitian integral geometry [10] and
from the theory of tensor valuations [13], Wannerer could write down this algebra in
an explicit way.

Theorem 1.2 The algebra AreaU(n/2),∗ is isomorphic to

R[s, t, v]/In,

where In is the ideal generated by

fn/2+1(s, t), fn/2+2(s, t), pn/2(s, t) − qn/2−1(s, t)v, v2

with

log(1 + t x + sx2) =
∞∑
k=0

fk(s, t)x
k
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1618 J. Abardia-Evéquoz, A. Bernig

1

1 + t x + sx2
=

∞∑
k=0

pk(s, t)x
k

− 1

(1 + t x + sx2)2
=

∞∑
k=0

qk(s, t)x
k .

Although it is possible to write down the local additive kinematic formulas for
G = U(n/2) using this theorem, the result is not as explicit as one would like. In [8],
the second named author has shown that the algebra structure on AreaG,∗ is induced
from the algebra structure of a larger (infinite-dimensional) space Area∗,sm of smooth
dual area measures and that the product in this algebra can be computed in some easy,
algorithmic way. This has led to very explicit local additive kinematic formulas.

1.2 Results of the present paper

Let V be an oriented n-dimensional Euclidean vector space with unit sphere Sn−1.
We denote by volV the volume form. Let G be a subgroup of O(n) acting transitively
on the sphere Sn−1 and let G := G � V .

Let H be a closed subgroup of G ∩ O(n − 1), where O(n − 1) ⊂ O(n) is the
stabilizer of the first basis vector. Then M := G/H is a G-homogeneous manifold.

A smooth flag area measure is a translation invariant valuation with values in the
space of signedmeasures onM = G/H which is given by a certain smooth differential
form on V × M . We denote by AreaG/H the space of smooth flag area measures and
by AreaGG/H the subspace of smooth flag area measures which are equivariant with
respect to the action, i.e.,

�(gK , gκ) = �(K , κ), K ∈ K(V ), κ ∈ B(M), g ∈ G.

We refer to Sect. 2 for the complete definition.
Our first two main theorems generalize [41, Corollary 3.1] and [8, Theorem 2],

where the special case M = Sn−1 was considered.

Theorem 1 (Existence of local additive kinematic formulas) The space AreaGG/H is
finite-dimensional if and only if G acts transitively on the unit sphere. In this case, if
{�1, . . . , �N } is a basis ofAreaGG/H , then there exist local additive kinematic formulas

∫
G

�i (K + gL, κ ∩ gλ)dg =
N∑

k,l=1

cik,l�k(K , κ)�l(L, λ),

where κ, λ are Borel subsets of M.

Examples:

(i) Let G be a subgroup of O(n) which acts transitively on Sn−1. Let H = G ∩
O(n − 1) be the stabilizer of the action. Then M = Sn−1 and the flag area
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Additive kinematic formulas. . . 1619

measures in this case are called area measures. The kinematic formulas in the
case G = O(n) are classical [35]. For more general G, Wannerer has shown
the existence of kinematic formulas [41, Theorem 2.1] and our proof follows his
arguments. Explicit formulas in the hermitian case G = U(n) are contained in
[8,40,41].

(ii) Let G = SO(n), H = S(O(p) × O(q)), p + q = n − 1. Then M = Flag1,p+1

is the incomplete flag manifold consisting of pairs (v, E) with v ∈ Sn−1, E ∈
Gr p+1(V ). Some elements in the space FlagArea(p),SO(n) := AreaGG/H were
constructed using a Steiner type formula in [28], see also [24]. A complete
description of this space was given in [1].

(iii) If G ⊂ SO(n) and H = {1}, we also call the elements in AreaGG/{1} rotation
measures. They will be studied in Sect. 4.

The local additive kinematic formulas can be encoded by the map

A : AreaGG/H → AreaGG/H ⊗AreaGG/H , �i �→
∑
k,l

cik,l�k ⊗ �l ,

which is a cocommutative, coassociative coproduct. Alternatively, the dual space
(AreaG,∗

G/H , A∗) is a commutative, associative algebra.
We give an explicit construction and classification of rotation measures. Consider

a smooth compact convex body and x ∈ ∂K . Let ν(x) be the outer normal vector at x .
Given g ∈ SO(n) with ge1 = ν(x), the vectors ge2, . . . , gen span Tx∂K . The shape
operator is the self-adjoint linear map Sx := dνx : Tx∂K → Tx∂K .

Theorem 2 The space of rotation measures of degree k is of dimension

dimAreaSO(n),∗
k,SO(n)/{1} = 1

n

(
n

k

)(
n

k + 1

)
.

For each 0 ≤ k ≤ n−1 and for each k-tuples I , J of distinct numbers from {2, . . . , n}
with |I | = |J | = k there exists a unique rotation measure SI ,J ∈ AreaSO(n)

SO(n)/{1},k such
that for every compact convex body with smooth boundary

SI ,J (K , f ) =
∫

∂K

∫
g∈SO(n)
ge1=ν(x)

f (g) det(πJ⊥ ◦ Sx |V⊥
I

: V⊥
I → V⊥

J )dg dHn−1(x).(1)

Here VI = span{gei , i ∈ I }, VJ := span{ge j , j ∈ J } are oriented k-dimensional
subspaces of Tx∂K, πJ⊥ : Tx∂K → V⊥

J is the orthogonal projection, and dHn−1 is
the (n − 1)-dimensional Hausdorff measure.

There are linear relations among these rotation measures: SI ,J is antisymmetric
in I and antisymmetric in J . Moreover, given I ′ = (i ′1, . . . , i ′k−1) ⊂ {2, . . . , n}, J ′ =
( j ′1, . . . , j ′k+1) ⊂ {2, . . . , n} we have

k+1∑
l=1

(−1)l S{i ′1,...,i ′k−1, j
′
l },{ j ′1,..., j ′l−1, j

′
l+1,..., j

′
k+1} = 0. (2)
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1620 J. Abardia-Evéquoz, A. Bernig

The space AreaSO(n)
SO(n)/{1},k of rotation measures is isomorphic to the quotient of the

vector space spanned by the SI ,J by the relations (2).

The next theorem describes algebraically the kinematic formulas for AreaGG/H for
any closed subgroup H ⊂ SO(n − 1).

Let us write Si, j := S{i},{ j} in the case k = 1. Then (2) translates to Si, j = S j,i .

Hence the element
S∗
i, j+S∗

j,i
2 belongs to AreaSO(n)∗

SO(n)/{1},1.
Recall that the volume of the special orthogonal group is given by

vol(SO(n)) = 2n−1π
n(n+1)

4∏n
i=1 �

( i
2

) .

Theorem 3 The map xi, j �→ − vol(SO(n)) · S∗
i, j+S∗

j,i
2 induces a graded algebra mor-

phism

R[X ]/I ∼= AreaSO(n),∗
SO(n)/{1},

where X := (xi, j )2≤i, j≤n and where I ⊂ R[X ] is the ideal generated by

xi, j xk,l + xi,k x j,l + xi,l x j,k, xi, j − x j,i .

If H ⊂ SO(n − 1) is a closed subgroup, then

AreaSO(n),∗
SO(n)/H

∼= (R[X ]/I )H ,

with respect to the action h∗X = ht Xh.

In the important case of the incomplete flag manifold consisting of pairs (v, E)

with dim E = p + 1, v ∈ E , we write down the algebra structure more explicitly.

Proposition 1.3 Let p+q = n−1, G = SO(n), H = S(O(p)×O(q)), M = G/H =
Flag1,p+1. If p �= n−1

2 , then there is a graded isomorphism

FlagArea(p),SO(n),∗ ∼= R[x, y]/〈x p+1, yq+1〉,

where deg x = deg y = 1. If p = q = n−1
2 , then there is a graded isomorphism

FlagArea(p),SO(n),∗ ∼= R[x, y, u]/
〈
x p+1, y p+1, ux, uy, u2 − (−1)p

p + 1

22p
x p y p

〉
,

where deg u = n−1
2 .

A basis of the space FlagArea(p),SO(n) consists of flag area measures S(p),i
k , where

0 ≤ k ≤ n − 1, 0 ≤ i ≤ mk (together with an additional flag area measure S̃

(
n−1
2

)
n−1
2

if
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p = q = n−1
2 ), see [1]. The algebra structure given in the previous corollary translates

into explicit kinematic formulas for these flag area measures.
Let ωn denote the volume of the (n − 1)-dimensional unit sphere and let

cn,k,p,i :=
(
n − 1

k

)−1(mk

i

)−1(|k − q| + mk

i

)−1(n − 1

i

)
,

as in [1]. For given p, q, k, we write mk := min{p, q, k, n− k − 1}, m′
k := min{p, k}

and define

Ck,i
j,b,c := (−1)b+c+m′

j+m′
k− j

cn,k,p,i

cn, j,p,bcn,k− j,p,c

m′
k−i∑

t=m′
k−mk

(−1)t
(
m′

k − t

i

)
·

·
min{m j ,t−m′

k− j+c}∑
s=max{m′

j−b,t−mk− j }

(
b

m′
j − s

)(
c

m′
k− j − t + s

)
·

·
(

q

j − s

)−1(p
s

)−1(q − k + t − s + j

j − s

)(
p − t + s

s

)
.

We do not know whether this expression can be simplified any further.

Theorem 4 (Local additive kinematic formulas for flag areameasures) Let 0 ≤ p, k ≤
n − 1, and 0 ≤ i ≤ mk. Then,

(i) If (k, p) �= (n − 1, n−1
2

)
,
( n−1

2 , n−1
2

)
, then

ASO(n)
1,p+1

(
S(p),i
k

)
= 1

ωn

k∑
j=0

m j∑
b=0

mk− j∑
c=0

Ck,i
j,b,cS

(p),b
j ⊗ S(p),c

k− j ,

(ii) If (k, p) = (n − 1, n−1
2

)
, then

ASO(n)

1, n+1
2

(
S

(
n−1
2

)
,0

n−1

)
= 1

ωn

n−1∑
j=0

m j∑
b,c=0

Cn−1,0
j,b,c S

(
n−1
2

)
,b

j ⊗ S

(
n−1
2

)
,c

k− j

+ (−1)
n−1
2 (n + 1)

2nωn
S̃

(
n−1
2

)
n−1
2

⊗ S̃

(
n−1
2

)
n−1
2

,

(iii) If (k, p) = ( n−1
2 , n−1

2

)
, then

ASO(n)

1, n+1
2

(
S̃

(
n−1
2

)
n−1
2

)
= 1

ωn

(
S̃

(
n−1
2

)
n−1
2

⊗ S

(
n−1
2

)
,0

0 + S

(
n−1
2

)
,0

0 ⊗ S̃

(
n−1
2

)
n−1
2

)
.
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1622 J. Abardia-Evéquoz, A. Bernig

2 Existence of kinematic formulas for smooth flag areameasures

In this section we will introduce smooth area measures. Our definition will be justified
by the existence of kinematic formulas for smooth area measures that will be shown
in this section.

2.1 Fiber integration

We first collect some definitions and results from the theory of fiber bundles that will
be used in the following.

Definition 2.1 Let (E, π, B, F) be a fiber bundle, with B and E oriented manifolds
and F compact with dim F = r . The fiber integration or push-forward of a form
η ∈ �d+r (E) is the form π∗η ∈ �d(B) such that

∫
B

ω ∧ π∗η =
∫
E

π∗ω ∧ η,

for every differential form ω ∈ �∗(B) with compact support.

We then have the projection formula

π∗(π∗ω ∧ η) = ω ∧ π∗η. (3)

We note that for the above definition of fiber integration, we follow the sign con-
vention in [3], as in [1,41]. For another sign convention see, e.g., [4].

Lemma 2.2 [41, Equation (7)] Let (E, π, B, F) be a fiber bundle, with B orientable
and E oriented with the local product orientation. If N ⊂ B is a compact and oriented
submanifold with dim N = n and π−1(N ) ⊂ E has the local product orientation,
then, for every ω ∈ �n+r (E) with fiber-compact support,

∫
N

π∗ω =
∫

π−1(N )

ω.

Lemma 2.3 [20, 4.3.2, 4.3.8] Let f : M → N be a smooth and surjective map with
M, N compact and oriented smooth manifolds with dim M = m and dim N = n.
Then f −1(y) is an orientable smooth submanifold for almost every y ∈ N. Let the
orientation of M be given by a smooth m-vector field ξ , and let the orientation of N
be given by the smooth form dy ∈ �n(N ). If the orientation of f −1(y) is given by the
smooth (m − n)-vector field ξ� f ∗dy and if μ denotes the measure given by [[Y ]]�dy,
then

∫
N

ϕ(y)

(∫
f −1(y)

ω

)
dμ(y) =

∫
M

f ∗(ϕ ∧ dy) ∧ ω,

for every continuous function ϕ : N → R and every ω ∈ �m−n(M).
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Lemma 2.4 [21] Let (E, π, M, F) and (E ′, π ′, M ′, F) be oriented fiber bundles with
the same fiber F. Assume that f : E ′ → E is a bundle map covering a smooth map
f : M ′ → M and that there exists an open cover {U } of M with local trivializations
ϕ : π−1(U ) → U × F and ϕ′ : π−1( f −1(U )) → f −1(U ) × F compatible with the
orientations of the bundle such that ϕ ◦ f = ( f × idF ) ◦ ϕ′, then

f ∗ ◦ π∗ = π ′∗ ◦ f
∗
.

2.2 Smooth flag areameasures

Let us introduce our main object of study. Let e1 be the first standard vector in R
n and

let O(n − 1) be its stabilizer. Let M := G/H be a homogeneous space, where G is
a closed subgroup of O(n) and where H is a closed subgroup of G ∩ O(n − 1). Let
� : V × M → SV , (x, gH) �→ (x, ge1), which is a fiber bundle. We let r denote the
dimension of the fiber and m := n − 1 + r .

Definition 2.5 A translation invariant valuation � with values in the space of signed
measures on M is called a smooth flag area measure if there is a translation invariant
differential form ω ∈ �m(V × M) such that for every f ∈ C∞(M) we have

∫
M

f d�(K , ·) =
∫
nc(K )

�∗( f ω),

where nc(K ) denotes the normal cycle of K . The space of smooth flag areameasures is
denoted byAreaG/H , andAreaGG/H denotes the subspace of smooth flag areameasures

equivariant under the action of G given by (g�)(K , f ) = �(g−1K , g∗ f ).

Definition 2.6 Let H1 ⊂ H2 ⊂ G be subgroups. Let �̂ : V × G/H1 → V × G/H2
denote the projection map. The globalization map

glob : AreaG/H1 → AreaG/H2

is defined by

∫
G/H2

f d glob�(K , ·) =
∫
G/H1

�̂∗ f d�(K , ·), f ∈ C∞(G/H2).

Lemma 2.7 Let �̂ ∈ AreaGG/H1
be represented by ω̂. Then glob �̂ is represented by

�̂∗ω̂.

Proof Let � : V × G/H2 → SV be the projection map. For f ∈ C∞(G/H2) and
K ∈ K(V ), we obtain, by using (3),

123
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∫
G/H2

f d glob �̂(K , ·) =
∫
G/H1

�̂∗ f d�̂(K , ·)

=
∫
nc(K )

(� ◦ �̂)∗(�̂∗ f · ω̂)

=
∫
nc(K )

�∗( f · �̂∗ω̂).

Hence glob �̂ is represented by the form �̂∗ω̂. ��
The space�l(V ×M)tr of translation invariant forms admits a filtration as follows.

For (x, gH) ∈ V × M, 0 ≤ j ≤ l, we define

F
l, j
x,gH := {φ ∈ ∧l T ∗

(x,gH)(V × M) :
∀v1, . . . , v j ∈ T(x,gH)�

−1(�(x, gH)), φ(v1, . . . , v j ,−) = 0},
Fl, j := {ω ∈ �l(V × M)tr : ∀(x, gH) ∈ V × M, ω|(x,gH) ∈ F

l, j
x,gH },

F•, j :=
⊕
l

Fl, j .

Then

�l(V × M)tr = Fl,r+1 ⊃ Fl,r ⊃ . . . ⊃ Fl,0 = {0}.
Proposition 2.8 A form τ ∈ �m(V ×M)tr induces the trivial flag area measure if and
only if

τ ∈ 〈�∗α,�∗dα,Fm,r 〉.
Proof In the special caseG = O(n), H = O(p)×O(q), thiswas shown in [1, Theorem
2.3]. The proof can be easily adapted to the general case. ��

2.3 Kinematic formulas

If G is transitive, then the space of smooth flag area measures is a quotient of the
finite-dimensional space �m(V × M)G and hence finite-dimensional itself. If G is
not transitive, then ValG is not finite-dimensional. Since we have a surjective map
glob : AreaGG/H → ValG , dim AreaGG/H = ∞ as well in this case.

By using the definition of smooth flag area measures, we can restate the remaining
part of Theorem 1 as follows.

Theorem 2.9 Let G be transitive. Let ω ∈ �m(V × M)G and let {ω1, . . . , ωN } be a
basis of �m(V × M)G. Then there exist constants ck,l such that

∫
G

∫
nc(K+gL)

�∗(ϕ · (g−1)∗ψ · ω)dg =
∑
k,l

ck,l

∫
nc(K )

�∗(ϕωk)

∫
nc(L)

�∗(ψωl),
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Additive kinematic formulas. . . 1625

where ϕ,ψ ∈ C∞(M).

Proof (Proof of Theorem 2.9) We follow the ideas of Fu [21] and Wannerer [41].
We first assume that the convex bodies K and L have smooth boundaries and strictly
positive Gauss curvature.

We define

E := {(g, (xi , pi )i=1,2,3) ∈ G × (V × M)3 : x1 + gx2 = x3, p1 = gp2 = p3},

and the maps

p : E → (V × M) × (V × M)

(g, x1, p1, x2, p2, x3, p3) �→ ((x1, p1), (x2, p2)),

q : E → G × V × M

(g, x1, p1, x2, p2, x3, p3) �→ (g, x3, p3).

We define E ′ together with maps p′ : E ′ → SV × SV , q ′ : E ′ → G × SV in an
analogous way, using Sn−1 instead of M . We then have a map

�′ : E → E ′,
(g, (xi , pi )) �→ (g,�(xi , pi )).

Let q1 : E → G, q ′
1 : E ′ → G be the projections on the first factors. Let �1,�2 :

(V × M) × (V × M) → M be the projection maps onto the M-factors. Let li :
G × V × M → M be defined by l1(g, x, p) := p, l2(g, x, p) := g−1 p. Then,
�i ◦ p = li ◦ q, i = 1, 2 and we have the diagram

M

(V × M) × (V × M)

�×�

�i

E
p q

�′

G × V × M

id×�

li

SV × SV E ′

q ′
1

p′ q ′
G × SV

G

Given h̄ ∈ G, we let h be the part in G, that is, h(x) = h(x) − h(0). The group
G × G acts on V × M × V × M, E , and G × V × M as follows:

(h̄, k̄) · (g, x1, p1, x2, p2, x3, p3) := (hgk−1, h̄x1, hp1, k̄x2, kp2, h̄x3, hp3),

(h̄, k̄) · (x1, p1, x2, p2) := (h̄x1, hp1, k̄x2, kp2),

(h̄, k̄) · (g, x3, p3) := (hgk−1, h̄x3, hp3).
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1626 J. Abardia-Evéquoz, A. Bernig

The actions on SV × SV , E ′, and G × SV are defined analogously. Then the maps in
the above diagram are Ḡ × Ḡ-equivariant.

Using Lemma 2.4 we obtain that p∗q∗(dg ∧ ω) is a Ḡ × Ḡ-invariant form, i.e., an
element of �∗(V × M)Ḡ × �∗(V × M)Ḡ . The component of bidegree (m,m) can be
written as

∑
k,l ck,lωk ∧ ωl .

The normal cycle K + gL is given by

nc(K + gL) = q ′∗
[
(q ′

1)
−1(g) ∩ (p′)∗(nc(K ) × nc(L))

]
.

Applying the pull-back �∗, Lemma 2.4 yields

�∗ nc(K + gL) = �∗(q ′)∗
[
(q ′

1)
−1(g) ∩ (p′)∗(nc(K ) × nc(L))

]

= q∗(�′)∗
[
(q ′

1)
−1(g) ∩ (p′)∗(nc(K ) × nc(L))

]

= q∗
[
q−1
1 (g) ∩ (�′)∗(p′)∗(nc(K ) × nc(L))

]

= q∗
[
q−1
1 (g) ∩ p∗(�∗ nc(K ) × �∗ nc(L))

]
.

We set F := p−1(�−1 nc(K ) × �−1 nc(L)) ⊂ E .
Using the previous computation and Lemmas 2.2 and 2.3 (applied to (q1)|F : F →

G) we deduce that

∫
G

∫
nc(K+gL)

�∗(ϕ · (g−1)∗ψ · τ)dg =
∫
G

∫
�−1 nc(K+gL)

ϕ · (g−1)∗ψ · τdg

=
∫
G

∫
q−1
1 (g)∩F

q∗(ϕ · (g−1)∗ψ)τdg

=
∫
F
q∗(ϕ · (g−1)∗ψ ∧ τ) ∧ dg

=
∫

�−1(nc(K ))×�−1(nc(L))

p∗
[
q∗(ϕ · (g−1)∗ψ · τ) ∧ dg

]

=
∫

�−1(nc(K ))×�−1(nc(L))

p∗
[
q∗l∗1ϕ · q∗l∗2ψ · q∗τ ∧ dg

]

=
∫

�−1(nc(K ))×�−1(nc(L))

p∗
[
p∗�∗

1ϕ · p∗�∗
2ψ · q∗τ ∧ dg

]

=
∫

�−1(nc(K ))×�−1(nc(L))

�∗
1ϕ · �∗

2ψ · p∗(q∗τ ∧ dg)

=
∫

�−1(nc(K ))×�−1(nc(L))

�∗
1ϕ · �∗

2ψ ·
⎛
⎝∑

k,l

ck,lτk ∧ τl

⎞
⎠

=
∑
k,l

ck,l

∫
�−1(nc(K ))

ϕτk

∫
�−1(nc(L))

ψτl
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=
∑
k,l

ck,l

∫
nc(K )

�∗(ϕτk)

∫
nc(L)

�∗(ψτl).

The general case of not necessarily smooth convex bodies follows by approximation
as in [41]. ��

3 Dual flag areameasures

In this section we introduce the notion of smooth dual flag area measure, which
generalizes the notion of smooth dual area measure from [8]. Similarly to the case of
dual area measures, we define a convolution product on the space of smooth dual area
measures.

The space �m(V × M)tr of translation invariant forms is endowed with the usual
Fréchet topology of uniform convergence on compact subsets of all partial derivatives
and there is a surjection �m(V × M)tr → AreaG/H . We endow the latter space with
the quotient topology and denote by Area∗

G/H the dual space to AreaG/H .
Analogously to the case of area measures, we define a convolution product on a

subspace of �n(V × M)tr .
First, we introduce an operator on the space of differential forms on V × M which

will play the analogous role, and is defined analogously, to ∗1 from [9] and [8]. We
denote this operator again by ∗1.
Definition 3.1 The linear operator

∗1 : �∗(V × M)tr → �∗(V × M)tr

is given by

∗1(π∗
1 τ1 ∧ π∗

2 τ2) = (−1)(
n−k
2 )π∗

1 (∗τ1) ∧ π∗
2 τ2,

where τ1 ∈ ∧k V , τ2 ∈ �∗(M) and ∗ : ∧k V → ∧n−k V denotes the Hodge
star operator (normalized in the usual way such that τ ∧ ∗τ = ‖τ‖2 volV ). Here
π1 : V × M → V and π2 : V × M → M denote the natural projections.

Lemma 3.2 The space

J n,tr = J n,tr (V × M)

:= {τ ∈ �n(V × M)tr : τ ∈ Fn,1,�∗α ∧ τ = 0,�∗dα ∧ τ = 0}

is closed under the operation

τ ∗ τ ′ := ∗−1
1 (∗1τ ∧ ∗1τ ′). (4)
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1628 J. Abardia-Evéquoz, A. Bernig

Proof Since ∗1 does not affect the fiber of �, we have τ ∈ F•, j if and only if ∗1τ ∈
F•, j . Moreover, if ρi ∈ F•, ji , i = 1, 2, then ρ1 ∧ ρ2 ∈ F•, j1+ j2−1. Hence, if τ, τ ′ ∈
Fn,1, we have τ ∗ τ ′ ∈ Fn,1.

The other two conditions can be proved as for the case of dual area measures (see
[8]). ��
Definition 3.3 Let τ ∈ �2n−1+r (V × M)tr . Then (π1)∗τ ∈ �n(V )tr is a multiple of
the Lebesgue measure. We denote this multiple by

∫
τ .

Lemma 3.4 Let K ⊂ �n−1+r (V × M)tr be the kernel from Prop. 2.8. The pairing

J n,tr × �n−1+r (V × M)tr/K → R, (τ, [ω]) �→
∫

τ ∧ ω (5)

is well-defined and non-degenerate.

Proof We start with a simple fact from linear algebra. Let A, B be finite-dimensional
vector spaces and� : A×B → R a non-degenerate pairing. Let K ⊂ B be a subspace
and set

AK := {a ∈ A : �(a, k) = 0 ∀k ∈ K }.

Then the induced pairing

AK × B/K → R, (a, b + K ) �→ �(a, b)

is well-defined and non-generate. Indeed, let L := {b ∈ B : �(a, b) = 0 ∀a ∈ AK }.
Obviously K ⊂ L . Since � is non-degenerate, we have dim L = dim B − dim AK =
dim A − (dim A − dim K ) = dim K , hence K = L .

Let A be the vector bundle over M whose fiber over a point gH is given by
AgH := ⊕

k ∧kT ∗
gH M ⊗ ∧n−kV ∗. The smooth sections of A are the translation

invariant n-forms on V × M . Let B be the vector bundle over M whose fiber over a
point gH is given by BgH :=⊕l ∧l T ∗

gH M ⊗∧n−1+r−l V ∗. The smooth sections of
B are the translation invariant (n − 1 + r)-forms on V × M .

The natural pairing AgH × BgH → ∧n−1+r T ∗
gH M ⊗ ∧nV ∗ ∼= R between these

spaces is obviously non-degenerate. Let KgH ⊂ BgH be the subspace generated by
�∗α,�∗dα and Fn−1+r ,r

x,gH and AK ,gH ⊂ AgH the annihilator of KgH .
Varying gH , we obtain a finite rank vector bundleAK → M whose smooth sections

can be identified with J n,tr . From the linear algebra fact above it follows that the
pairing (5) is non-degenerate in the fiber over each gH ∈ M , which implies that it is
non-degenerate.

��
Definition 3.5 A dual flag area measure L ∈ Area∗

G/H is called smooth if there exists
τ ∈ J n,tr such that

〈L,�〉 =
∫

τ ∧ ω, (6)
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whenever ω ∈ �n−1+r (V ×M)tr represents� ∈ AreaG/H . The space of smooth dual
flag area measures is denoted by Area∗,sm

G/H .

Lemma 3.6 Let H1 ⊂ H2 ⊂ G be subgroups and �̂ : V × G/H1 → V × G/H2 the
projection map. Let L ∈ AreaG∗

G/H2
be represented by the form τ ∈ J n,tr (V ×G/H2).

Then glob∗ L ∈ AreaG∗
G/H1

is represented by �̂∗τ ∈ J n,tr (V × G/H1). In particular,
glob∗ is injective.

Proof By Lemma 2.7 and Definition 2.1, we have

〈glob∗ L, �̂〉 = 〈L, glob �̂〉 =
∫

τ ∧ �̂∗ω̂ =
∫

�̂∗τ ∧ ω̂.

��
The group G acts on Area∗,sm

G/H in the natural way. The subspace of G-invariant

elements is denoted byAreaG∗
G/H . The notation is justified by the following proposition.

Proposition 3.7 Let G be transitive. Then

AreaG∗
G/H

∼=
(
AreaGG/H

)∗
,

in particular dimAreaG∗
G/H is finite-dimensional.

Proof By Lemma 3.4, the pairing

〈•, •〉 : Area∗,sm
G/H ×AreaG/H → R (7)

is non-degenerate. By averaging with respect to the Haar measure on G, we obtain
that the restriction

〈•, •〉 : AreaG∗
G/H ×AreaGG/H → R

is non-degenerate. Since the second factor is finite-dimensional, the statement follows.
��

Definition 3.8 Let L1, L2 ∈ Area∗,sm
G/H be represented by forms τ1, τ2 ∈ J n,tr . Then

we define L1 ∗ L2 ∈ Area∗,sm
G/H as the smooth dual area measure represented by

τ1 ∗ τ2 = ∗−1
1 (∗1τ1 ∧ ∗1τ2) ∈ J n,tr .

Theorem 3.9 Let G ⊂ O(n) be a closed subgroup acting transitively on the unit sphere
and H ⊂ G ∩O(n− 1) be a closed subgroup. Then the following diagram commutes

Area∗,sm
G/H ⊗Area∗,sm

G/H

qG⊗qG

∗ Area∗,sm
G/H

qG

AreaG∗
G/H ⊗AreaG∗

G/H
A∗

AreaG∗
G/H
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1630 J. Abardia-Evéquoz, A. Bernig

Here qG is the map transposed to the inclusion AreaGG/H ↪→ AreaG/H .

We need some preparation before proving the theorem.

Proposition 3.10 Let G be as in the theorem and let (�, ρ) be a finite-dimensional
G-module. The group G acts on Val⊗� by (gμ)(K ) := ρ(g)μ(g−1K ). Then the
space (Val⊗�)G is finite-dimensional and contained in (Valsm ⊗�)G.

Proof Let μ ∈ (Val⊗�)G . By Alesker’s irreducibility theorem [2] we may approx-
imate μ by a sequence μi ∈ Valsm ⊗�. Averaging with respect to Haar measure on
G we find an approximating sequence μ̃i ∈ (Valsm ⊗�)G . But the latter space is
finite-dimensional, since it is a quotient of the space of translation- and G-invariant,
� valued smooth differential forms, which is obviously finite-dimensional. It follows
that μ belongs to (Valsm ⊗�)G . ��
Proposition 3.11 (Kinematic formulas for tensor valuations) Let (�i , ρi ) be finite-
dimensional G-modules. If μ1, . . . , μk is a basis of (Val⊗�1)

G and φ1, . . . , φl is a
basis of (Val⊗�2)

G, then for every τ ∈ (Val⊗�1 ⊗�2)
G there are constants cτ

i j such
that

∫
G
(id ⊗ ρ2(g

−1))τ (K + gL)dg =
∑
i, j

cτ
i, jμi (K ) ⊗ φ j (L).

We thus obtain a cocommutative coassociative coproduct

a�1,�2 : (Val⊗�1 ⊗ �2)
G → (Val⊗�1)

G ⊗ (Val⊗�2)
G .

Proof This follows from the usual Hadwiger argument, compare [13, Sect. 3.2] for a
similar situation. ��
Definition 3.12 Let (�1, ρ1), (�2, ρ2) be finite-dimensional G-modules. We define
the convolution c : (Val⊗�1)

G ⊗ (Val⊗�2)
G → (Val⊗�1 ⊗ �2)

G componentwise,
i.e., (μ1 ⊗ f1) ∗ (μ2 ⊗ f2) := (μ1 ∗ μ2) ⊗ f1 ⊗ f2.

Proposition 3.13 Let (�, ρ) be a finite-dimensional G-module. The bilinear map

c : (Valk ⊗�)G ⊗ (Valn−k ⊗�∗)G → (Val0 ⊗� ⊗ �∗)G ∼= ValG0 ∼= R

gives rise to an isomorphism p̂d : (Valk ⊗�)G → (Val∗n−k ⊗�)G, which is called
Poincaré duality.

Proof The proof is a straightforward generalization of [41, Lemma 4.5]. ��
We remark that there is another version of Poincaré duality which uses the Alesker

product instead of the convolution. Following [41] we put a hat to distinguish between
the two dualities.
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Proposition 3.14 Let (�1, ρ1), (�2, ρ2) be finite-dimensional G-modules. Then the
following diagram commutes

(Val⊗�1 ⊗ �2)
G a�1,�2

p̂d

(Val⊗�1)
G ⊗ (Val⊗�2)

G

p̂d⊗p̂d

(Val∗ ⊗�1 ⊗ �2)
G

c∗
G

(Val∗ ⊗�1)
G ⊗ (Val∗ ⊗�2)

G

Proof The proof is analogous to [41, Theorem 4.6]. ��
Definition 3.15 Let � ⊂ C∞(G) be a finite-dimensional G-submodule. The map
M� : AreaGG/{1} → (Val⊗�∗)G such that

〈M��(K ), f 〉 = �(K , f ), � ∈ AreaGG/{1}, f ∈ �,

is called moment map.

In the particular case � = Syml V , the moment map was already used in [41] and
[8].

Lemma 3.16 (i)

⋂
�

ker M� = {0},

where the intersection is over all finite-dimensional subrepresentations of C∞(G).
(ii) The linear span of the images of (M�)∗ : (Val∗ ⊗�)G → AreaG∗

G/{1}, where �

ranges over all finite-dimensional subrepresentations ofC∞(G), equalsAreaG∗
G/{1}.

Proof (i) Suppose that M�� = 0 for all �. This means that �(K , f ) = 0 for all
f ∈ � and all �. Since

⊕
� � is a dense subspace of C∞(G) by the theorem of

Peter-Weyl [19], this implies that �(K , f ) = 0 for every f ∈ C∞(G), hence
� = 0.

(ii) LetH ⊂ AreaG∗
G/{1} be the linear span of the images of (M�)∗. IfH �= AreaG∗

G/{1},
then we find some 0 �= � ∈ AreaGG/{1} with 〈L,�〉 = 0 for all L ∈ H. But this

implies that 〈μ, M��〉 = 0 for all μ ∈ (Val∗ ⊗�)G . By Poincaré duality, this
means that M�� = 0 for all �, hence� = 0 by (i). This is a contradiction. Hence
H = AreaG∗

G/{1}. ��
Let D : �n−1(SV ) → �n(SV ) denote the Rumin operator [34].

Lemma 3.17 Let � ⊂ C∞(G) be a finite-dimensional G-submodule. If μ ∈
(Valn−k ⊗�)G is represented by η = ∑

i ηi ⊗ fi , ηi ∈ �n−1(SV )tr, fi ∈ �, then
(p̂d ◦ M�)∗μ ∈ AreaG∗

G/{1} is represented by

(−1)k�∗Dη := (−1)k
∑
i

fi�
∗Dηi ∈ �n(M).
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Proof Let� ∈ AreaGG/{1} be given by a form ω ∈ �m(V ×M) of bidegree (k,m−k).
Using [41, Proposition 4.2] we find

〈(p̂d ◦ M�)∗μ,�〉 = 〈p̂d ◦ M��,μ〉
= (−1)k

∑
i

∫
Dηi ∧ �∗( fiω)

= (−1)k
∫ ∑

i

fi�
∗Dηi ∧ ω.

��
Lemma 3.18 The additive kinematic formulas are compatible in the following sense.
Let �1, �2 ⊂ C∞(G) be finite-dimensional submodules and let �1 · �2 be the (finite-
dimensional) module generated by all f1 · f2, f1 ∈ �1, f2 ∈ �2. Let q : �1 ⊗ �2 →
�1 · �2, f1 ⊗ f2 �→ f1 · f2 be the natural projection, Then the following diagram
commutes

AreaGG/{1}
A

M�1 ·�2

AreaGG/{1} ⊗AreaGG/{1}

M�1⊗M�2(Val⊗(�1 · �2)
∗)G

id⊗q∗

(Val⊗�∗
1 ⊗ �∗

2)
G a�∗

1 ,�∗
2

(Val⊗�∗
1)

G ⊗ (Val⊗�∗
2)

G

Proof Let fi ∈ �i , i = 1, 2. We compute

〈 [
a�∗

1 ,�∗
2 ◦ (id ⊗ q∗) ◦ M�1·�2�

]
(K , L), f1 ⊗ f2

〉

=
∫
G

〈
(id ⊗ ρ∗

2 (g
−1))

(
q∗M�1·�2�(K + gL)

)
, f1 ⊗ f2

〉
dg

=
∫
G
〈M�1·�2�(K + gL), f1 · (g−1)∗ f2〉dg

=
∫
G

�(K + gL, f1 · (g−1)∗ f2)dg

= A(�)(K , L, f1, f2)

= 〈(M�1 ⊗ M�2) ◦ A(�)(K , L), f1 ⊗ f2〉.

��
Proof of Theorem 3.9 We look first at rotation measures.

Let �1, �2 ⊂ C∞(G) be two finite-dimensional G-submodules. Dualizing the
above diagram yields the commutative diagram
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AreaG∗
G/{1} AreaG∗

G/{1} ⊗AreaG∗
G/{1}

A∗

(Val⊗�1 ⊗ �2)
G

(p̂d◦(id⊗q∗)◦M�1 ·�2 )∗

(Val⊗�1)
G ⊗ (Val⊗�2)

GcG

(p̂d◦M�1 )∗⊗(p̂d◦M�2 )∗

Let μa ∈ (Valn−ka ⊗�a)
G, a = 1, 2 be represented by ηa =∑i η

a
i ⊗ f ai of bidegree

(n − ka, ka − 1). Then μ1 ∗ μ2 is represented by some η ∈ �n−1(SV ) ⊗ �1 ⊗ �2
such that Dη =∑i, j ∗−1

1 (∗1Dη1i ∧∗1Dη2j )⊗ f 1i ⊗ f 2j , which has bidegree (n−k1 −
k2, k1 + k2 − 1). It follows that

(−1)k1+k2�∗(Dη) = ∗−1
1 (∗1(−1)k1�∗Dη1 ∧ ∗1(−1)k2�∗Dη2).

Thismeans that if L1 ∈ AreaG∗
G/{1} is in the image of (p̂d◦M�1)∗ and L2 is in the image

of (p̂d ◦ M�2)∗, then the formula to compute L1 ∗ L2 is correct. Thus, by Lemma 3.16
the formula holds for all L1, L2 ∈ AreaG∗

G/{1}.
In the general case, we have a commutative diagram

AreaGG/{1}
A

glob

AreaGG/{1} ⊗AreaGG/{1}

glob⊗ glob

AreaGG/H
A AreaGG/H ⊗AreaGG/H

which gives us, by dualizing, a commutative diagram

AreaG∗
G/{1} AreaG∗

G/{1} ⊗AreaG∗
G/{1}

∗

AreaG∗
G/H

glob∗

AreaG∗
G/H ⊗AreaG∗

G/H
∗

glob∗ ⊗ glob∗

Since glob∗ is injective, the statement follows from Lemma 3.6 and the fact that �̂∗
commutes with ∗1. ��

4 Rotationmeasures

In this section we consider rotation measures, i.e., the case G := SO(n), H := {1}
and prove Theorems 2 and 3 .

4.1 Classification of rotationmeasures

Proof of Theorem 2 In the first part of the proof, we follow [1, Sect. 3].
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The Lie algebras of G,G will be denoted by ḡ, g. The dimension of the fiber of
� : V × G → SV is given by r := (n−1

2

)
. As above we set m := n − 1 + r . By

definition, a smooth flag area measure� ∈ AreaSO(n)
SO(n)/{1} of degree k is represented by

a translation invariant differential form η ∈ �k,m−k(V × G). Since � is G-invariant,
we may assume by averaging over G that η is G-invariant, i.e., η ∈ �m(Ḡ)Ḡ .

Let σi , i = 1, . . . , n, ωi j , 1 ≤ i, j ≤ n denote the components of the Maurer-
Cartan form of Ḡ. Then σi , 1 ≤ i ≤ n, ωi, j , 1 ≤ i < j ≤ n span ḡ∗. We let
Xi , 1 ≤ i ≤ n, Xi j , 1 ≤ i < j ≤ n denote the dual basis of g. We let V0 be the span
of X1; Vσ the span of Xi , 2 ≤ i ≤ n; Vω be the span of the X1 j , 2 ≤ j ≤ n; and U
the span of the Xi j , 2 ≤ i < j ≤ n. Schematically, the Lie algebra looks as follows:

ḡ =
⎛
⎝ 0
V0 0
Vσ Vω U

⎞
⎠ .

Since�∗α = σ1, the quotient of the space of Ḡ-invariant forms of bidegree (k,m−
k) by multiplies of �∗α is the space

�k,m−k(V ∗
σ ⊕ V ∗

ω ⊕U∗) ∼= �kV ∗
σ ⊗ �m−k(V ∗

ω ⊕U∗)

∼= �kV ∗
σ ⊗

m−k⊕
i=0

�m−k−i V ∗
ω ⊗ �iU∗.

If η belongs to the sum of terms with i < dimU∗ = r , then η ∈ Fm,r and hence
induces the trivial flag area measure. We thus obtain that

�k,m−k(Ḡ)Ḡ/〈�∗α,Fm,r 〉 ∼= �kV ∗
σ ⊗ �n−1−kV ∗

ω .

Next, by Proposition 2.8, we have to factor out multiples of �∗dα. By [30, Propo-
sition 1.2.30], the multiplication map by dα induces an injection

�k−1V ∗
σ ⊗ �n−2−kV ∗

ω ↪→ �kV ∗
σ ⊗ �n−1−kV ∗

ω

is injective. Hence

AreaSO(n)
SO(n)/{1},k ∼= �k,m−k(Ḡ)Ḡ/〈�∗α,�∗dα,Fm,r 〉

∼= (�kV ∗
σ ⊗ �n−1−kV ∗

ω)/(�k−1V ∗
σ ⊗ �n−2−kV ∗

ω).

In particular,

dim AreaSO(n)
SO(n)/{1},k =

(
n − 1

k

)2

−
(
n − 1

k − 1

)(
n − 1

k + 1

)
= 1

n

(
n

k

)(
n

k + 1

)
.

We now construct the rotationmeasures SI ,J . Uniqueness follows from the fact that
smooth convex bodies are dense in the space of all compact convex bodies. Let us prove
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existence. Let I = (i1, . . . , ik), J = ( j1, . . . , jk) and set I c = {2, . . . , n}\I , ordered
in such a way that sgn(2, . . . , n) = sgn(i1, . . . , ik, i c1, . . . , i

c
n−k−1) and similar for J c.

Define SI ,J by the differential form

ωI ,J := σi1 ∧ · · · ∧ σik ∧ ω j c1 ,1 ∧ · · · ∧ ω j cn−k−1,1
∧ ρ ∈ �k,m−k(V × SO(n)),

where ρ is the volume form of the fiber of the map SO(n) → Sn−1, g �→ ge1.
Let K be a smooth compact convex body with outer unit normal ν : ∂K → Sn−1.

Fix x ∈ ∂K and g ∈ SO(n) with ge1 = ν(x). Then ge2, . . . , gen form a positive
orthonormal basis of Tx∂K . The vectors wl := (gel , Sx (gel)) ∈ Tx∂K × Tx∂K , l =
2, . . . , n span T(x,ν(x)) nc(K ). Let ŵl ∈ T(x,g)(V × SO(n)) be any lift of wl , where g
is in the fibre over ν(x).

We have for 2 ≤ i, j ≤ n

σi (ŵl) = δil , ω j,1(ŵl) = 〈ge j , S(gel)〉.
With �k denoting the permutation group of k elements, we thus have

ωI ,J (ŵ2, . . . , ŵn,−) = ωI ,J (ŵi1 , . . . , ŵik , ŵi c1
, . . . , ŵi cn−k−1

,−)

=
∑

π∈�n−k−1

sgn(π)〈ge jc1 , S(geicπ1 )〉 · . . . · 〈ge jcn−k−1
, S(geicπn−k−1

)〉 · ρ

= det(πJ⊥ ◦ Sx |V⊥
I

: V⊥
I → V⊥

J ) · ρ,

from which (1) follows.
By the definition of rotation measures (see Definition 3.5) and by Proposition 2.8,

every rotationmeasure is a linear combination of the SI ,J . The relations (2) and the last
part of the statement are an immediate consequence of Proposition 2.8, since multiples
of �∗dα induce the trivial rotation measure. �� ��

4.2 Dual rotationmeasures

Let us now studymore carefully the space of dual rotationmeasures. ByDefinition 3.5,
an element of AreaSO(n)∗

SO(n)/{1},k is represented by a form τ ∈ �n−k,k(Ḡ)Ḡ such that

τ ∈ Fn,1,�∗α ∧ τ = 0,�∗dα ∧ τ = 0.
As above, we have

�n−k,k(Ḡ)Ḡ ∼= �n−k,k(V ∗
0 ⊕ V ∗

σ ⊕ V ∗
ω ⊕U∗)

∼=
⊕
ε=0,1

�εV ∗
0 ⊗ �n−k−εV ∗

σ ⊗
k⊕

i=0

�k−i V ∗
ω ⊗ �iU∗.

The condition �∗α ∧ τ = 0 is satisfied for the part with ε = 1 in this sum, and the
condition τ ∈ Fn,1 is equivalent to i = 0. We are thus left with the space

�n−k−1V ∗
σ ⊗ �kV ∗

ω .
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Multiplication by the symplectic form dα gives a surjection

L : �n−k−1V ∗
σ ⊗ �kV ∗

ω → �n−kV ∗
σ ⊗ �k+1V ∗

ω ,

and AreaSO(n)∗
SO(n)/{1},k is isomorphic to the kernel of this map.

Let us rewrite this in more invariant terms. Let VC
σ := Vσ ⊗ C stand for the

complexification. The group SL(n−1, C) acts on the set of bases of VC
σ , VC

ω from the
right in the natural way. If Y = (Y2, . . . ,Yn) is a basis of VC

σ and g ∈ SL(n − 1, C),
then (Yg)i :=∑n

j=2 Y j g ji . The corresponding right operation on V ∗,C
σ , V ∗,C

ω is given
by

g∗σi =
n∑
j=2

(g−1)i jσ j , (8)

g∗ω1i =
n∑
j=2

ω1 j a ji . (9)

As SL(n − 1, C)-representations, we have VC
σ

∼= (VC
ω )∗. The symplectic form is

the canonic element of �2(VC
ω ⊕ (VC

ω )∗). The above map L can then be rewritten as
an SL(n − 1, C)-equivariant surjection

L : �n−k−1VC
ω ⊗ �k(VC

ω )∗ → �n−kVC
ω ⊗ �k+1(VC

ω )∗.

We may SL(n − 1, C)-equivariantly identify

�n−k−1VC
ω ⊗ �k(VC

ω )∗ ∼= �k(VC
ω )∗ ⊗ �k(VC

ω )∗,
�n−kVC

ω ⊗ �k+1(VC
ω )∗ ∼= �k−1(VC

ω )∗ ⊗ �k+1(VC
ω )∗,

and with this identification, the map L : �k(VC
ω )∗ ⊗ �k(VC

ω )∗ → �k−1(VC
ω )∗ ⊗

�k+1(VC
ω )∗ is given by

τ1 ∧ · · · ∧ τk ⊗ ρ1 ∧ · · · ∧ ρk

�→
k∑

i=1

(−1)iτ1 ∧ · · · ∧ τ̂i ∧ · · · ∧ τk ⊗ ρ1 ∧ · · · ∧ ρk ∧ τi ,

where τi , ρ j ∈ (VC
ω )∗.

Let Lk be the kernel of this map. It is well-known that Lk is an irreducible repre-
sentation of SL(n − 1, C) [22, Exercise 15.30].

Let SL(n − 1, C) act on X = (xi j )2≤i, j≤n (from the right) by (g, X) �→ gt Xg.
Consider the algebra morphism defined by

� : C[X ] →
n−1⊕
k=0

�k(VC
ω )∗ ⊗ �k(VC

ω )∗, xi j �→ 1

2
(ω1i ⊗ ω1 j + ω1 j ⊗ ω1i ).
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The product on the right hand side is given by the wedge products of the two factors.
This is a commutative product thatwill be denoted by ·.We clearly haveLk ·Ll ⊂ Lk+l .

� is equivariant by (9), and �(xi j ) ∈ L1. Hence, �(C[X ]k) ⊂ Lk , where C[X ]k
is the part of degree k. Since Lk is irreducible and the image is not trivial (consider
�(x23 . . . x2k,2k+1) if k < n/2 and �(x223 . . .) otherwise), we get a surjective map

� : C[X ]k → Lk ∼= AreaSO(n),∗
SO(n)/{1},k . Using Definition 3.8 we get a surjective algebra

morphism � : C[X ] → AreaSO(n)∗
SO(n)/{1} ⊗C.

It is easy to check that I ⊂ ker�, hence we have a surjective map (denoted by the
same letter)

� : C[X ]/I → AreaSO(n)∗
SO(n)/{1} ⊗C.

To finish the proof, we will compare the dimensions of both sides. We first need
some relations in C[X ]/I .
Lemma 4.1 Modulo I , we have the following equations.

(i) A monomial vanishes if some index is repeated three times, i.e., xaaxab = 0,
xab1xab2xab3 = 0 for all a, b, b1, b2, b3 ∈ {2, . . . , n}.

(ii) det(xi j )2≤i, j≤n = n!
2n−1 x22 · . . . · xn,n.

(iii) The elementary symmetric polynomials Ei satisfy

Ei (x2,2, . . . , xn,n)E j (x2,2, . . . , xn,n) =
(
i + j

i

)
Ei+ j (x2,2, . . . , xn,n).

Proof (i) Easy exercise.
(ii) We prove this by induction over n, the case n = 2 being trivial.

Suppose that n > 2 and develop the determinant with respect to the last column:

det(xi j )2≤i, j≤n =
n−1∑
l=2

(−1)l+nxl,n det(xi j )2≤i≤n,i �=l
2≤ j≤n−1

+ xn,n det(xi j )2≤i, j≤n−1.

Now develop the determinant in the first summandwith respect to the last row.We
obtain some sum of terms containing the factor xl,nxnj , which equals − 1

2 xn,nxl j .
We may thus replace the factor xl,n by − 1

2 xn,n , and the last row of (xi j )2≤i≤n,i �=l
2≤ j≤n−1

by xl2, . . . , xl,n−1, which is just the rowwhich was deleted. Rearranging the rows
(which gives us another sign (−1)n−l+1) we find that

det(xi j )2≤i, j≤n =
n−1∑
l=2

(−1)l+n(−1

2
)(−1)n−l+1xn,n det(xi j )2≤i, j≤n−1

+ xn,n det(xi j )2≤i, j≤n−1

= n

2
xn,n det(xi j )2≤i, j≤n−1.
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(iii) By definition,

Ei (x2,2, . . . , xn,n) =
∑
|I |=i

xa1,a1 · . . . · xai ,ai ,

where I = (a1, . . . , ai ) runs over all ordered subsets of size i in {2, . . . , n}.
Since x2aa = 0 for each a, we find that

Ei (x2,2, . . . , xn,n)E j (x2,2, . . . , xn,n) =
∑

|I |=i,|J |= j

xa1,a1 · . . . · xai ,ai xb1,b1 · . . . · xb j ,b j

=
(
i + j

i

) ∑
|K |=i+ j

xc1,c1 · . . . · xci+ j ,ci+ j

=
(
i + j

i

)
Ei+ j (x2,2, . . . , xn,n).

��
Lemma 4.2 The dimension of the degree k-part of the algebra

C[X ]/I

is at most 1
n

(n
k

)( n
k+1

)
.

Proof Let us fix 0 ≤ l ≤ k and count the number of monomials with 2l indices
appearing once and (k − l) indices appearing twice.

There are
(n−1
k−l

)
possibilities to choose the (k−l) double indices among 1, . . . , n−1.

Replacing xi j1xi j2 by − 1
2 xii x j1 j2 , we may assume that such a double index i appears

in a factor xii .
From the remaining (n − k + l − 1) other indices we choose 2l, which gives us(n−k+l−1
2l

)
possibilities. These 2l indices i1, . . . , i2l will be put into pairs so that we

form the product xi1i2 · · · xi2l−1i2l .
However, we can use the relations to rule out some combinations. Arrange the 2l

numbers i1, . . . , i2l in a circle. If a monomial contains a factor xi1i2xi3i4 such that
the lines between [i1, i2] and [i3, i4] intersect, we may use the relation and replace
this factor by xi1i2xi3i4 = −xi1i3xi4i2 − xi1i4xi2i3 . Note that [i1, i3] and [i4, i2] do not
intersect and similarly [i1, i4] and [i2, i3] do not intersect. Continuing this waywemay
assume that none of the lines [i1, i2], . . . , [i2l−1i2l ] do intersect. Basic combinatorics
tells us that the number of such non-intersecting pairings is the Catalan number (2l)!

(l+1)!l! .
Summarizing, we get that the dimension of the degree k-part of the algebra is

bounded from above by

k∑
l=0

(
n − 1

k − l

)(
n − k + l − 1

2l

)
(2l)!

l!(l + 1)! .

It remains to see that this equals the expression given in the lemma. This can be
seen by the following combinatorial argument.
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Take a set of n numbered cards with both sides empty. Choose k among these cards
and color the front side green. Independently of that, color the back side of (k + 1)
among the n cards red. The number of different colorings obtained in this way is(n
k

)( n
k+1

)
.

Start again with a set of n numbered cards with both sides empty and fix a number
0 ≤ l ≤ k. Choose one of the cards and declare it to be 1-colored (the color will be
fixed later). Among the remaining (n − 1) cards, choose (k − l) and color the front
side green and the back side red. Among the remaining (n − k + l − 1) cards, choose
2l and declare them to be 1-colored. Among the (2l + 1) 1-colored cards, we color l
in green and (l + 1) in red. In this way, we obtain all colorings with precisely (k − l)
two-colored cards, such that k are green and (k + 1) are red. However, each of these
colorings is counted (2l + 1) times, since any of the (2l + 1) 1-colored cards can
be chosen as the first card to begin with. The total number of colorings is therefore
n
∑k

l=0

(n−1
k−l

)(n−k+l−1
2l

)(2l+1
l

) 1
2l+1 . ��

End of the proof of Theorem 3 Since � : C[X ]/I → AreaSO(n)∗
SO(n)/{1} ⊗C is surjective

and the dimension on the left hand side is not larger than the dimension on the right
hand side, the map must be a bijection and the upper bound for the dimension from
Lemma 4.2 is attained. Obviously, the algebra isomorphism � induces an algebra
isomorphism (denoted by the same letter)

� : R[X ]/I → AreaSO(n)∗
SO(n)/{1} .

Let us compute the image of xi, j . Note that xi, j corresponds to the dual rotation
measure given by the form τ := ∗−1

1
1
2 (σi ∧ ω j,1 + σ j ∧ ωi,1). We compute

∗−1
1 (σi ∧ ω j,1) = ∗−1σi ∧ ω j,1 = (−1)nσ1 ∧ σi c1

∧ · · · ∧ σi cn−2
∧ ω j,1,

and hence

∗−1
1 (σi ∧ ω j,1) ∧ ω{i},{ j} = (−1)nσ1 ∧ σi c1

∧ · · · ∧ σi cn−2
∧ ω j,1 ∧ σi ∧ ω j c1 ,1 ∧ · · · ∧ ω j cn−2,1

∧ ρ

= −σ1 ∧ · · · ∧ σn ∧ ω2,1 ∧ · · · ∧ ωn,1 ∧ ρ.

It follows that

〈�(xi,i ), Si,i 〉 = − vol(SO(n)),

〈�(xi, j ), Si, j 〉 = 〈�(xi, j ), S j,i 〉 = −1

2
vol(SO(n)), i �= j .

In both cases, it follows that �(xi j ) = − vol(SO(n)) · S∗
i, j+S∗

j,i
2 . ��

Remark 4.3 In the following, we will identify an element of R[X ]/I with its image
under � in AreaSO(n)∗

SO(n)/{1}.
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Corollary 4.4 Let H ⊂ SO(n − 1) be a closed subgroup. Then the image of the
transposed globalization map glob∗ : AreaSO(n)∗

SO(n)/H → AreaSO(n),∗
SO(n)/{1} ∼= R[X ]/I is the

subalgebra of R[X ]/I consisting of all invariants under H with respect to the right
action h∗X = ht Xh.

Proof The statement follows directly by recalling that the inclusion glob∗ preserves
the algebra structure of both spaces and is H -equivariant. ��
Examples We consider the case of area measures, i.e., H = SO(n − 1). By Corol-
lary 4.4,AreaSO(n),∗ := AreaSO(n),∗

SO(n)/SO(n−1) is the subalgebra ofR[X ]/I of all elements

which are invariant under the action h∗X = ht Xh, h ∈ SO(n − 1). Since ht = h−1,
these invariants contain the elementary symmetric functions of X . By Lemma 4.1(ii),
they can bewritten as rescalings of the elementary symmetric functions of the diagonal
elements xii , 2 ≤ i ≤ n.

The linear map � : R[t] → (R[X ]/I )H , t i �→ i !Ei (x2,2, . . . , xn,n) induces by
Lemma 4.1 an injective algebra morphism

�̃ : R[t]/〈tn〉 → (R[X ]/I )H = AreaSO(n),∗ .

Since the dimensions on both sides agree, this map is an algebra isomorphism. Hence,

AreaSO(n),∗ ∼= R[t]/〈tn〉,

which is of course well-known.
The additive kinematic formulas are given by

A(Si ) = 1

ωn

∑
k+l=i

(
i

k

)
Sk ⊗ Sl , (10)

see [13], or Schneider [37, Theorem 4.4.6]. It follows that

S∗
k · S∗

l = 1

ωn

(
k + l

k

)
S∗
k+l .

Clearly t is mapped to some multiple cS∗
1 . We will see later that c = ωn . Then tk is

mapped to ωnk!S∗
k , as can be shown by induction over k.

5 Algebraic structure of FlagArea(p),SO(n),∗

The aim in this section is to prove Proposition 1.3. Recall first that σi , ωi j are the
coordinates of the Maurer–Cartan form of SO(n). The volume form of the unit sphere
is ω21 ∧ · · · ∧ ωn1. We have the structure equations

dσi = −
n∑
j=1

ωi j ∧ σ j , dωi j = −
n∑

k=1

ωik ∧ ωk j .
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Unwinding the definitions in Sect. 4, we have

xi j = 1

2
(σi ∧ ω j1 + σ j ∧ ωi1);

in particular xii = σi ∧ ωi1.

Proof of Proposition 1.3 Recall that Flag1,p+1
∼= SO(n)/H with H = S(O(p) ×

O(q)). By Corollary 4.4, glob∗ maps FlagArea(p),SO(n),∗ bijectively to the algebra
of H -invariant elements in R[X ]/I , where the action is given by h∗X := ht Xh =
h−1Xh.

Assume first that p �= q. We claim that the linear map

� : R[x, y] → (R[X ]/I )H ,

which sends xi y j to i !Ei (x2,2, . . . , xp+1,p+1) j !E j (xp+2,p+2, . . . , xn,n) is an algebra
morphism.

It is clear that the image of each monomial is H -invariant. The compatibility with
the product follows from Lemma 4.1.

Obviously, x p+1, yq+1 ∈ ker�, hence there is an induced algebra morphism

�̃ : R[x, y]/〈x p+1, yq+1〉 → (R[X ]/I )H . (11)

We claim that this map is injective. To do so, introduce a bigrading on (R[X ]/I )H
by declaring that

deg xab =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 0) 2 ≤ a, b ≤ p + 1

( 12 ,
1
2 ) 2 ≤ a ≤ p + 1, p + 2 ≤ b ≤ n

( 12 ,
1
2 ) 2 ≤ b ≤ p + 1, p + 2 ≤ a ≤ n

(0, 1) p + 2 ≤ a, b ≤ n.

It is easily checked that the ideal I is bigraded, so we indeed have a bigrading on the
quotient. The image of xi y j , 0 ≤ i ≤ p, 0 ≤ j ≤ q is of bidegree (i, j). To prove
injectivity of �̃, it is therefore enough to prove that �̃(xi y j ) �= 0 for 0 ≤ i ≤ p, 0 ≤
j ≤ q. But �̃(xi y j ) corresponds to the form

i !Ei (σ2 ∧ ω2, . . . , σp+1 ∧ ωp+1) j !E j (σp+2 ∧ ωp+2, . . . , σn ∧ ωn), (12)

which is obviously non zero.
To conclude the proof that �̃ is an algebra isomorphism, it is enough to compare

dimensions. The dimension of the k-homogeneous part of the left hand side is the
number of monomials xi y j with i + j = k, 0 ≤ i ≤ p, 0 ≤ j ≤ q, which is easily
computed asmin{p, q, k, n−k−1}+1. The k-homogeneous part on the right hand side

is isomorphic to FlagArea(p),SO(n),∗
k , which is isomorphic to

(
FlagArea(p),SO(n)

k

)∗
by

Proposition 3.7. By [1, Theorem 4] its dimension is min{p, q, k, n − k − 1}.
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Let us now consider the case p = q. The above proof goes through word by word,
except that dim FlagArea(p),SO(n)

k = min{p, q, k, n − k − 1} + 2 if k = p = q. We
define

� : R[x, y, u] → (R[X ]/I )H ,

similarly as above, with

�(u) := det(xi j )2≤i≤p+1
p+2≤ j≤n

.

By Lemma 4.1, we have �(xu) = �(yu) = 0. More precisely, each monomial in
the development of the determinant contains each index at least once, while each term
in x (resp. y) contains each index twice.

We next compute �(u2) by using xai xaj = − 1
2 xaaxi j , which is a consequence of

Lemma 4.1.

�(u2) =
⎛
⎝∑

σ∈�p

sgn(σ )x2,σ (p+2) . . . xp+1,σ (n)

⎞
⎠
⎛
⎝∑

π∈�p

sgn(π)x2,π(p+2) . . . xp+1,π(n)

⎞
⎠

=
(−1

2

)p

x2,2 · . . . · xp+1,p+1

∑
σ,π∈�p

sgn(σ )sgn(π)xσ(p+2)π(p+2) . . . xσ(n)π(n)

=
(−1

2

)p

x2,2 · . . . · xp+1,p+1 p!
∑

π∈�p

sgn(π)xp+2,π(p+2) . . . xn,π(n)

=
(

−1

2

)p

p!Ep(x2,2, . . . , xp+1,p+1) det(xi, j )p+2≤i, j≤n

=
(

−1

2

)p

p!Ep(x2,2, . . . , xp+1,p+1)
(p + 1)!

2p
Ep(xp+2,p+2, . . . , xn,n)

= (−1)p
(p + 1)

22p
�(x p y p).

It follows that there is an induced algebra morphism

�̃ : R[x, y, u]/〈x p+1, y p+1, xu, yu, u2 − (−1)p
(p + 1)

22p
x p y p〉 → (R[X ]/I )H .

We argue as above to prove that �̃ is injective. However, if p is even, there are two
elements whose images under �̃ are of bidegree (

p
2 ,

p
2 ), namely x

p
2 y

p
2 and u. We

show that the images of these elements are linearly independent.
Let {Xi }2≤i≤p+1 be the dual basis to {σi }2≤i≤p+1 and let {Xi,1}p+2≤i≤n be the dual

basis to {ωi,1}p+2≤i≤n . By (12), the form corresponding to �̃(x
p
2 y

p
2 ) is non-zero but

vanishes evaluated at (X2, . . . , X p+1, X p+2,1, . . . , Xn,1). For the associated form to
�̃(u), we have

det

(
1

2
(σi ∧ ω j,1 + σ j ∧ ωi,1)

)
2≤i≤p+1
p+2≤ j≤n

(X2, . . . , X p+1, X p+2,1, . . . , Xn,1)
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= 1

2p
∑

π∈�p

sgn(π)σ2 ∧ ωπ(p+2),1 ∧ · · · ∧ σp+1 ∧ ωπ(n),1(X2, . . . , X p+1, X p+2,1, . . . , Xn,1)

= (−1)
p(p−1)

2
p!
2p

�= 0.

Finally, comparing dimensions again, we see that �̃ is an algebra isomorphism. ��

6 Bases for FlagArea(p),SO(n) and FlagArea(p),SO(n),∗

In the following, 0 ≤ p ≤ n − 1, q := n − p − 1,mk := min{p, q, k, n − k − 1}.

6.1 Bases for FlagArea(p),SO(n)

We first recall the bases of FlagArea(p),SO(n) introduced in [1].
For max{0, k − q} ≤ a ≤ min{k, p}, η̂k,a ∈ �n−1(V × Flag1,p+1) is defined as

the coefficient of αaβk−a in the expansion of

η̂α,β :=
p+1∧
i=2

(ασi + ωi,1) ∧
n∧

j=p+2

(βσ j + ω j,1). (13)

In the case 2p = 2k = n − 1 we set

η̂ex := σp+2 ∧ · · · ∧ σn ∧ ωp+2,1 ∧ · · · ∧ ωn,1 ∈ �n−1(V × Flag1,p+1). (14)

We denote

ω̂k,a := ωn

vol(Flag1,p+1)
η̂k,a ∧ ρ ∈ �m(V × Flag1,p+1),

max{0, k − q} ≤ a ≤ min{k, p}, (15)

and, if n is odd and 2p = n − 1,

ω̂ex := ωn

vol(Flag1,p+1)
η̂ex ∧ ρ ∈ �m(V × Flag1,p+1). (16)

Hereρ denotes the volume formof thefiber of themap� : V×Flag1,p+1 → V×Sn−1.
We remark that the factor in the definition of ω̂k,a does not appear explicitly in [1],
but implicitly by the fact that the volume form on the fiber should be normalized to
volume 1 (see [1, Corollary 4.6]).

The smooth flag area measure associated to the form ω̂k,a (resp. ω̂ex ) is denoted
by �k,a ∈ FlagArea(p),SO(n) (resp. �ex ) and is defined for 0 ≤ p, k ≤ n − 1,
max{0, k − q} ≤ a ≤ min{p, k}.

Another basis for FlagArea(p),SO(n) was given in [1]. This basis contains the ele-
ments S(p)

k in FlagArea(p),SO(n) previously introduced in [24]. The smooth flag area
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1644 J. Abardia-Evéquoz, A. Bernig

measures of this basis are denoted by S(p),i
k and defined, for 0 ≤ p, k ≤ n − 1,

0 ≤ i ≤ mk , as

S(p),i
k = cn,k,p,i

min{p,k}−i∑
a=min{p,k}−mk

(
min{p, k} − a

i

)
�k,a, (17)

where

cn,k,p,i =
(
n − 1

k

)−1(mk

i

)−1(|k − q| + mk

i

)−1(n − 1

i

)
.

For the exceptional case 2p = 2k = n − 1, the following notation is used:

S̃
( n−1

2 )

n−1
2

= �ex .

For the indicated ranges, both sets {S(p),i
k } and {�k,a} constitute a basis of

FlagArea(p),O(n) and the sets {S(p),i
k , S̃

( n−1
2 )

n−1
2

} and {�k,a,�ex } a basis of

FlagArea(p),SO(n). A straightforward computation shows that the inverse relation is
given as follows.

Lemma 6.1

� j,a =
min{p,q, j,n− j−1}∑
s=min{p, j}−a

(−1)a+min{p, j}+sc−1
n, j,p,s

(
s

min{p, j} − a

)
S(p),s
j .

Lemma 6.2 Let glob : FlagArea(p),SO(n) → AreaSO(n) be the globalizationmap. Then

glob S(p),i
k = Sk,

glob�k,a =
(

q

k − a

)(
p

a

)
Sk .

Proof The first equation was shown in [1, Theorem 3]. The second equation can be
deduced from the first one and Lemma 6.1. ��

6.2 Bases for FlagArea(p),SO(n),∗

Corollary 6.3 The dual bases are related by

�∗
k,a =

min{k,n−k−1,p,q}∑
i=0

cn,k,p,i

(
min{k, p} − a

i

)
S(p),i,∗
k ,
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S(p),i,∗
k = c−1

n,k,p,i

min{p,k}∑
a=min{p,k}−i

(−1)a+min{p,k}+i
(

i

min{p, k} − a

)
�∗

k,a .

Let us introduce another basis of FlagArea(p),SO(n),∗. For max{0, k − q} ≤ a ≤
min{k, p}, we define τ̃k,a ∈ J n,tr by

τ̃k,a := ∗−1
1 Ea(x22, . . . , xp+1,p+1)Ek−a(xp+2,p+2, . . . , xn,n). (18)

Let �̃∗
k,a be the element in FlagArea(p),SO(n),∗ given by τ̃k,a . If (k, p) �=

( n−1
2 , n−1

2 ), the elements of {�̃∗
k,a}max{0,k−q}≤a≤min{p,k} constitute a basis of

FlagArea(p),SO(n),∗
k by [1, Theorem 4].

In the exceptional case 2p = 2k = n − 1, we define

τ̃ex := ∗−1
1 det(xi j )2≤i≤p+1

p+2≤ j≤n
∈ J n,tr .

The smooth dual flag area measure associated to the form τ̃ex will be denoted by
�̃∗

ex . For 2p = 2k = n− 1, the elements of {�̃∗
k,a}0≤a≤k together with �̃∗

ex constitute

a basis of FlagArea(p),SO(n),∗
k . This follows again from [1, Theorem 4] and the fact

that τ̂ex ∧ τ̃ex �= 0 but τ̂k,a ∧ τ̃ex = 0.
The following lemma expresses the elements of the dual basis of {�k,a} ∪ {�ex }

and {S(p),i
k } in the algebra given in Proposition 1.3.

Lemma 6.4 (i) For 0 ≤ k ≤ n − 1 and max{0, k − q} ≤ a ≤ min{p, k}

�∗
k,a = 1

ωn

(
q

k − a

)−1(p
a

)−1 1

a!(k − a)! x
a yk−a .

(ii) For 0 ≤ k ≤ n − 1 and 0 ≤ i ≤ min{p, q, k, n − k − 1},

S(p),i,∗
k = (−1)i+min{p,k}

ωncn,k,p,i
·

·
min{p,k}∑

a=min{p,k}−i

(−1)a
1

a!(k − a)!
(

i

min{p, k} − a

)(
q

k − a

)−1(p
a

)−1

xa yk−a .

(iii) If 2p = 2k = n − 1, then

�∗
ex = (−1)p

ωn p! u.

Proof (i) Let

τ̃α,β := ∗−1
1

p∑
i=0

α p−i Ei (σ2 ∧ ω2,1, . . . , σp+1 ∧ ωp+1,1)
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1646 J. Abardia-Evéquoz, A. Bernig

q∑
j=0

βq− j E j (σp+2 ∧ ωp+2,1, . . . , σn ∧ ωn,1)

= σ1 ∧
p+1∧
i=2

(ασi + ωi,1) ∧
n∧

j=p+2

(βσ j + ω j,1), (19)

where the second equation follows from [9, Eq. (47)]. Then the coefficient of
α p−aβq−k+a in τ̃α,β is τ̃k,a .
Let k, a be fixed. We first compute 〈�̃∗

l,b,�k,a〉 for fixed indices l, b by using the

expansions in (13) and (19). For α, β, α̃, β̃ ∈ R, one can easily check that

τ̂α,β ∧ τ̃α̃,β̃ = (α + α̃)p(β + β̃)n−p−1σ1 ∧ σ2 ∧ · · · ∧ σn ∧ ω2,1 ∧ · · · ∧ ωn,1.

Since τ̂k,a ∧ τ̃l,b is the coefficient of αaβk−a α̃ p−bβ̃n−l−1−p+b in this expression,
we find that τ̂k,a ∧ τ̃l,b = 0 if b �= a or l �= k. In the case b = a and l = k, we
have, by Definition 3.5,

〈�̃∗
k,a,�k,a〉 = ωn

vol(Flag1,p+1)

∫
τ̃k,a ∧ τ̂k,a ∧ ρ

= ωn

vol(Flag1,p+1)

(
p

a

)(
n − p − 1

k − a

)∫
σ1 ∧ · · · ∧ σn ∧ ω2,1 ∧ · · · ∧ ωn,1 ∧ ρ

= ωn

(
p

a

)(
n − p − 1

k − a

)
.

Hence,

�∗
k,a = 1

ωn

(
q

k − a

)−1(p
a

)−1

�̃∗
k,a . (20)

The statement now follows from the fact that �̃∗
k,a = xa

a!
yk−a

(k−a)! , which is a conse-
quence of Lemma 4.1(iii).

(ii) This follows from Corollary 6.3 and (i).
(iii) We first show that

�∗
ex = (−1)p

ωn p! �̃∗
ex ,

which follows from

〈�̃∗
ex ,�ex 〉 = ωn

vol(Flag1,p+1)

∫
τ̃ex ∧ σp+2 ∧ · · · ∧ σn ∧ ωp+2,1 ∧ · · · ∧ ωn,1

= ωn

vol(Flag1,p+1)
(−1)(

p
2) p!

∫
∗−1
1 (σp+2 ∧ · · · ∧ σn ∧ ω2,1 ∧ · · · ∧ ωp+1,1)

∧ σp+2 ∧ · · · ∧ σn ∧ ωp+2,1 ∧ · · · ∧ ωn,1 ∧ ρ
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= ωn

vol(Flag1,p+1)
p!
∫

σ1 ∧ · · · ∧ σp+1 ∧ ω2,1 ∧ · · · ∧ ωp+1,1

∧ σp+2 ∧ · · · ∧ σn ∧ ωp+2,1 ∧ · · · ∧ ωn,1 ∧ ρ

= ωn

vol(Flag1,p+1)
(−1)p p!

∫
σ1 ∧ · · · ∧ σn ∧ ω2,1 ∧ · · · ∧ ωn,1 ∧ ρ

= (−1)p p!ωn .

The proof is finished by noting that �̃∗
ex = u.

��
The globalization map glob : FlagArea(p),SO(n) → AreaSO(n) induces an alge-

bra morphism glob∗ : AreaSO(n),∗ → FlagArea(p),SO(n),∗. In terms of the algebraic
descriptions it is given as t �→ x+y. This follows fromLemma 3.6 since t ismapped to
E1(x22, . . . , xnn) = E1(x22, . . . , xp+1,p+1)+E1(xp+2,p+2, . . . , xnn). ByLemma6.4
and (17) we thus have

〈t, S1〉 = 〈t, glob S(p),0
1 〉 = 〈glob∗(t), S(p),0

1 〉
=
〈
x + y, S(p),0

1

〉
=
〈
ωn(p�

∗
1,1 + q�∗

1,0),
1

n − 1
(�1,0 + �1,1)

〉
= ωn,

which implies that t = ωn S∗
1 . Hence the constant c from the end of Sect. 4 equals ωn .

7 Explicit additive kinematic formulas

The aim in this section is to obtain explicit additive kinematic formulas for
FlagArea(p),SO(n). We denote by

AG
1,p+1 : FlagArea(p),G → FlagArea(p),G ⊗FlagArea(p),G

the additive kinematic operator for flag area measures in FlagArea(p),G with G either
O(n) or SO(n).

Theorem 7.1 (i) For 0 ≤ k ≤ n−1 andmax{0, k−q} ≤ a ≤ min{p, k}, the additive
kinematic formulas for O(n) are given by

AO(n)
1,p+1(�k,a) = 1

ωn

k∑
j=0

min{a, j}∑
b=max{0, j−k+a}

ck,aj,b� j,b ⊗ �k− j,a−b,

where

ck,aj,b =
(

q

j − b

)−1(p
b

)−1(q − k + j + a − b

j − b

)(
p − a + b

b

)
.
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1648 J. Abardia-Evéquoz, A. Bernig

(ii) The additive kinematic formulas for SO(n) are given as follows. If (k, p) �= (n −
1, n−1

2 ), then

ASO(n)
1,p+1(�k,a) = AO(n)

1,p+1(�k,a).

If k = 2p = n − 1, then

ASO(n)
1,p+1(�n−1, n−1

2
) = AO(n)

1,p+1(�n−1, n−1
2

) + (−1)p(p + 1)

22pωn
�ex ⊗ �ex ,

and

ASO(n)
1,p+1(�ex ) = 1

ωn

(
�ex ⊗ �0,0 + �0,0 ⊗ �ex

)
.

Proof (i) Using the algebraic structure of FlagArea(p),O(n),∗ and Theorem 3.9 we
compute the coefficient ck,aj,b,l,c of � j,b ⊗ �l,c in AO(n)

1,p+1(�k,a) as

ck,aj,b,l,c =
〈
AO(n)
1,p+1(�k,a),�

∗
j,b ⊗ �∗

l,c

〉

=
〈
�k,a, A

O(n),∗
1,p+1 (�∗

j,b ⊗ �∗
l,c)
〉

= 〈�k,a,�
∗
j,b · �∗

l,c〉.

We have

�∗
j,b · �∗

l,c = 1

ω2
n

(
q

j − b

)−1(p
b

)−1( q

l − c

)−1(p
c

)−1

· 1

b!( j − b)!c!(l − c)! x
b y j−bxc yl−c

= 1

ωn

(
q

j − b

)−1(p
b

)−1( q

l − c

)−1(p
c

)−1

·
(
b + c

b

)(
j + l − b − c

j − b

)(
q

j + l − b − c

)(
p

b + c

)
�∗

j+l,b+c.

It follows that ck,aj,b,l,c equals zero unless k = j + l and a = b + c and the result
follows.
Let us double check the constants in this formula. Clearly the additive kine-
matic formulas commute with the globalization map glob : FlagArea(p),O(n) →
AreaO(n). By Lemma 6.2, glob⊗ glob applied to the right hand side gives

1

ωn

k∑
j=0

min{a, j}∑
b=max{0, j−k+a}

ck,aj,b glob� j,b ⊗ glob�k− j,a−b
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= 1

ωn

k∑
j=0

min{a, j}∑
b=max{0, j−k+a}

ck,aj,b

(
q

j − b

)(
p

b

)
S j ⊗

(
q

k − j − a + b

)(
p

a − b

)
Sk− j

= 1

ωn

k∑
j=0

min{a, j}∑
b=max{0, j−k+a}

(
q − k + j + a − b

j − b

)(
p − a + b

b

)(
q

k − j − a + b

)(
p

a − b

)
S j ⊗ Sk− j

= 1

ωn

(
q

k − a

)(
p

a

) k∑
j=0

min{a, j}∑
b=max{0, j−k+a}

(
a

b

)(
k − a

j − b

)
S j ⊗ Sk− j

= 1

ωn

(
q

k − a

)(
p

a

) k∑
j=0

(
k

j

)
S j ⊗ Sk− j .

The globalization of the left hand side in the kinematic formula is
( q
k−a

)(p
a

)
A(Sk),

which equals the globalization of the right hand side by (10).
(ii) For the proof of additive kinematic formulas for SO(n), we first observe that the

above argument remains the same unless we are in the exceptional case 2p = k =
n−1. In this case, it remains to compute the coefficient 〈ASO(n)

1,p+1(�n−1, n−1
2

),�∗
ex ⊗

�∗
ex 〉. For that, we compute

(�∗
ex )

2 = 1

ω2
n p!2

u2

= (−1)p(p + 1)

ω2
n22p p!2

x p y p

= (−1)p(p + 1)

22pωn
�∗

n−1, n−1
2

from which the result follows.
Finally, the additive kinematic formula for �ex has to be a linear combination of
�ex ⊗ �k,0, �k,0 ⊗ �ex and the formula follows directly.

��

Corollary 7.2 Let 0 ≤ p ≤ n − k − 1 and consider the flag area measures S(p)
k

introduced in [24]. Then,

ASO(n)
1,p+1(S

(p)
k ) = 1

ωn−p

k∑
j=0

(
k

j

)
S(p)
j ⊗ S(p)

k− j .

Proof This follows from the case a = 0 in Theorem 7.1, since

S(p)
k = ωn−p

ωn
S(p),min{k,p}
k = ωn−p

ωn

(
q

k

)−1

�k,0

by [1, Theorem 3] and by (17). ��
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Proof of Theorem 4 By the previous results, it suffices to compute AO(n)
1,p+1. Indeed, for

2p = n − 1, by definition S̃
( n−1

2 )

n−1
2

= �ex and �n−1, n−1
2

= S(p),0
n−1 , hence ASO(n)

1,p+1 can

be directly deduced from AO(n)
1,p+1 and Theorem 7.1.

By proceeding as in Theorem 7.1, we have that the coefficient of S(p),b
j ⊗ S(p),c

l in

AO(n)
1,p+1(S

(p),i
k ) is given by

〈S(p),i
k , S(p),b,∗

j · S(p),c,∗
l 〉.

Let

S(p),i,∗
k =

mk∑
a=m′

k−i

Kk,i,ax
a yk−a

with Kk,i,a the constant given in Lemma 6.4(ii) and let

xa yk−a = K̃k,a�
∗
k,a

with K̃k,a the constant obtained from Lemma 6.4(i).
Using the defined constants and (17), we have

〈S(p),i
k , S(p),b,∗

j · S(p),c,∗
l 〉 =

〈
S(p),i
k ,

m j∑
s=m′

j−b

ml∑
r=m′

l−c

K j,b,s Kl,c,r K̃ j+l,s+r�
∗
j+l,r+s

〉

=
m′
k−i∑

t=m′
k−mk

m j∑
s=m′

j−b

ml∑
r=m′

l−c

cn,k,p,i

(
m′

k − t

i

)
K j,b,s Kl,c,r K̃ j+l,s+r 〈�k,t ,�

∗
j+l,r+s〉.

Hence, the coefficient of S(p),b
j ⊗ S(p),c

l in AO(n)
1,p+1(S

(p),i
k ) is zero unless k = j + l and

t = s + r and the result follows by substituting the constants and taking into account
the possible range for t, s and r . ��
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