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Abstract

We study infinite approximate subgroups of soluble Lie groups. We show that approx-
imate subgroups are close, in a sense to be defined, to genuine connected subgroups.
Building upon this result we prove a structure theorem for approximate lattices in
soluble Lie groups. This extends to soluble Lie groups a theorem about quasi-crystals
due to Yves Meyer.
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1 Introduction

Approximate subgroups were defined by Terence Tao [21] in order to give a non-
commutative generalisation of results from additive combinatorics. On the one hand,
finite approximate subgroups have been extensively studied. We can mention, among
others, Gregory Freiman [7], Harald Helfgott [9], Ehud Hrushovski [10], Laszl6 Pyber
and Endre Szabd [16], Imre Ruzsa [18] and Emmanuel Breuillard, Ben Green and
Terence Tao [4]. This lead to the structure theorem [4] that asserts that finite approx-
imate subgroups are commensurable to coset nilprogressions, which are a certain
non-commutative generalisation of arithmetic progressions. On the other hand, it
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seems hopeless to aim at classifying all infinite approximate subgroups. Some results
in this direction for particular classes of infinite approximate subgroups can be found
in [5,10,14]. Inspired by Yves Meyer’s results on quasi-crystals [15], Michael Bjork-
lund and Tobias Hartnick have defined a class of infinite approximate subgroups called
approximate lattices in [2]. These approximate subgroups generalise lattices (discrete
subgroups of Lie groups with finite co-volume) and share many properties with them.
For instance, lattices and approximate lattices in nilpotent Lie groups have a very sim-
ilar theory, see [12]. Whether similar results hold for other types of locally compact
groups is the open question that motivates this article. Here, we address the case of
soluble Lie groups (Theorem 3 below). Along the way, we show a structure theorem
for all approximate subgroups in soluble algebraic groups (Theorem 1).

A subset A of a group G is an approximate subgroup if it contains the identity, if it is
symmetrici.e. A = A1 and if there exists a finite subset F C G such that A2 C FA.
Here, A2 := {AMA2|r1, A2 € A}, FA := {fAlf € F,A € A} and more generally
A" = {h1 - AulAd, ..o, Ay € A} Moreover, set A% = |J,»o A" the subgroup
generated by A. We will say that two subsets A, & C G are commensurable if there
is a finite set F' such that A C F& and & C FA.If G is endowed with the structure
of a topological group, we say that subsets A, & C G are compactly commensurable
if there is a compact subset K C G with A C K& and & C K A. Commensurability
and compact commensurability are equivalence relations.

Our main result is concerned with classifying certain soluble approximate sub-
groups up to compact commensurability:

Theorem 1 Let A C GL,(R) be an approximate subgroup generating a soluble sub-
group. Then A is compactly commensurable to a Zariski-closed soluble subgroup H
of GL,, (R) normal in the Zariski-closure of A*°.

Theorem 1 is a non-commutative generalisation of a theorem due to Jean-Pierre
Schreiber [19, Proposition 2], which was recently given a new proof and an extension
to discrete approximate subgroups of the Heisenberg group by Alexander Fish in
[6, Theorem 2.2]. Theorem 1 also generalises a result of Fried and Goldman about
the existence of syndetic hulls for virtually solvable subgroups of GL,(R) (see [8,
Theorem 1.6] and Proposition 2 below). Another interesting corollary to this result
is that approximate lattices (see [2, Definition 4.9]) in soluble algebraic groups are
uniform (see Theorem 5).

An approximate subgroup A C G in a locally compact group is a uniform approxi-
mate latticeif A is discrete and A is compactly commensurable to G. The approximate
group condition arises naturally from the combination of discreteness and compact
commensurability to the ambient group: if a subset A C G is symmetric, compactly
commensurable to G and A is discrete, then A is a uniform approximate lattice. See
[2] for this and more on the general theory of approximate lattices.

Examples of uniform approximate lattices are given by cut-and-project schemes. A
cut-and-project scheme (G, H, I') consists of two locally compact groups G and H,
and a uniform lattice I" in G x H suchthat I'N({eg} x H) = {egxn} and I" projects
densely to H. Given a cut-and-project scheme (G, H, I") and a symmetric relatively
compact neighbourhood Wy of ey in H, one gets a uniform approximate lattice when
considering the projection A of (G x Wy) N I" to G. Any approximate subgroup of G
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which is commensurable to such a A is called a Meyer subset of G. This construction
was first introduced by Yves Meyer in the abelian case [15] and extended by Michael
Bjorklund and Tobias Hartnick [2].

In a similar fashion, for A C G an approximate subgroup, we say that a group
homomorphism f : A®® — H with H a locally compact group is a good model
(of A)if: (i) f(A) is relatively compact, and (i7) there is V a neighbourhood of the
identity in H such that f~1(V) C A. In this situation, we say that A has a good
model.

If A := pg (G x WyNT)is auniform approximate lattice constructed from a
cut-and-project scheme (G, H, I"), then f = py o (pG)|_Fl is a good model of A,
where pg and py are the natural projections on G and H respectively. Conversely, if
A C G is a uniform approximate lattice and has a good model f, the map

A® — G x f(A®)
y = (v f (1)

embeds A% in G x f(A™®) as a uniform lattice. Thus, (G, f(A%), A%) is a cut-
and-project scheme. Therefore, both constructions are equivalent and we will use the
latter as it is handier in our case. For further results on good models in groups see [13].

In [15] Yves Meyer proved a structure theorem for what later came to be known
as mathematical quasi-crystals. Quasi-crystals correspond to uniform approximate
lattices in locally compact abelian groups. Rephrased with our terminology, Meyer’s
theorem becomes :

Theorem 2 [15, Theorem 3.2] Let A be a uniform approximate lattice in a locally
compact abelian group G. Then A is a Meyer subset.

Motivated by this theorem the authors of [2] asked whether similar results would
hold for other classes of locally compact groups [2, Problem 1.]. We answer this
question in the soluble Lie case. This generalises, using completely different methods,
aprevious article by the author that dealt with uniform approximate lattices in nilpotent
Lie groups [12].

Theorem 3 Let A C G be a uniform approximate lattice in a connected soluble Lie
group. Then A is a Meyer subset.

Let us now give a brief overview of the proof strategy for Theorems 1 and 3.
Theorem 1 will be proved by induction on the derived length. We use induction to

reduce the proof to the case where {Alkgkrlkz_ ! A1, Ay € A} is relatively compact.

Then we are able to show that A is close to the centre of G (R). The crux of the proof
relies on the following fact that is specific to algebraic group homomorphisms: if ¢ is
an algebraic group homomorphism and S is a set that has relatively compact image by
¢, then S is contained in ker(¢) K for some compact subset K. This is because ¢ has
(Hausdorff) closed image and is a homeomorphism onto its image (as a consequence
of e.g. [25, Propositions 3.16]). Applied to inner automorphisms, this yields a result
reminiscent of a classical theorem of Schur, according to which a group with a finite
set of commutators has a finite-index centre.
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In order to prove Theorem 3, we first show that, although A is a priori only a
soluble group, A is commensurable to a uniform approximate lattice A’ that generates
a polycyclic group. Using Auslander’s embedding theorem on polycyclic groups we
embed (A’)Oo as a lattice in some soluble algebraic group. Then A’ is a Meyer subset
according to Theorem 1.

2 Technical results about commensurability

In this section, we recall two technical results that will turn out to be particularly
helpful. These are well-known results in the theory of finite approximate subgroups
(see for instance [22]), but their proofs do not use the finiteness assumption.

Lemma 1 [22, Proposition 2.6.5] Let A, & C G be approximate subgroups. Then
A2N B2 is an approximate subgroup. Moreover, (A* N Ek)kzz is a family of pairwise
commensurable approximate subgroups.

We will often use Lemma 1 with & a subgroup. In this situation (Ak NE)s2isa
family of pairwise commensurable approximate subgroups. When considering com-
mensurable approximate subgroups we can obtain further information. In particular,
we can see that when A and & are genuine subgroups, commensurability as defined
here is equivalent to commensurability of subgroups.

Lemma2 Let A C G be an approximate subgroup and X C G be a subset such

that A C FX for some finite set F. Then A> N X~ X is an approximate subgroup
commensurable to A.

Proof Let F be a finite set such that A C F X and assume that it is minimal for this
property with respect to inclusion. For all f € F we can choose xy € AN fX. Then

foranyx € AN fX we havex}lx e A2NX X so
acJxr (420 x'x) c A
Now (A2 Nnx-'x ) is a symmetric subset containing e and
P 2 vl 4
Anx~'xc(anx'x) cat

But A* and A? N X! X are commensurable according to the first part of the proof.
So (A%N X_IX)2 is commensurable to AN X! X. O

3 Approximate subgroups in soluble linear groups

In this section we prove Theorem 1. Let us first recall Schreiber’s theorem about
approximate subgroups in vector spaces.
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Theorem 4 [19, Proposition 2] Let V be a real vector space and A C V an approxi-

mate subgroup. There exists a vector subspace W C 'V compactly commensurable to
A.

We will extend Theorem 4 to soluble real algebraic groups. In the proof of the
following proposition we rely on the theory of algebraic groups. See [25, §2 and 3] for
a survey of the specific tools we will use and [20] for a general introduction to linear
algebraic groups. Note that Proposition 1 below is in fact the main result of this paper.
We will call upon Proposition 1 rather than Theorem 1 in the rest of the paper.

Proposition1 Let A C G(R) be an approximate subgroup in the group of R-points
of a Zariski-connected soluble real algebraic group such that A is Zariski-dense.
Then there is a closed connected normal subgroup H <G (R) such that A is compactly
commensurable to H.

The subgroup H is the connected component of the identity of the group of R-points
of some normal algebraic subgroup H of G. Moreover, there exists a unique minimal
such H i.e. contained in every other normal algebraic subgroup 1. whose group of
R-points is compactly commensurable to A.

Proof We start with the uniqueness part. It will be an easy consequence of the fol-
lowing: take two normal algebraic subgroups H;, H, C G such that the projection
of A is relatively compact in G(R)/H; (R) for i = 1, 2. Then the projection of A
through the diagonal group homomorphism A : G(R) — (G/H;)(R) x (G/Hy)(R)
is relatively compact. But A is algebraic so there is a compact subset K C G(R)
such that A is contained in K (H;(R) N H,(R)) (as a consequence of [25, 3.16]). In
particular, if A is compactly commensurable to H;(R) and Hj(R), then A is com-
pactly commensurable to H; (R) NHj (R). Now, by the descending chain condition for
Zariski-closed subsets of G(R) there is a Zariski-closed normal subgroup compactly
commensurable to A that does not contain any Zariski-closed normal proper subgroup
compactly commensurable to A. So by the discussion it must be contained in every
other Zariski-closed normal subgroup compactly commensurable to A.

Let us now move on to proving existence. As A is Zariski-dense, we know
that A*° N[G(R), G(R)] is Zariski-dense in [G(R), G(R)]. Moreover, [G(R), G(R)]
is a connected simply connected nilpotent Lie group so A® N [G(R), G(R)] is co-
compact by [17, Theorem 2.1]. As a consequence, there is k € N greater than 2 such
that A’ := AKN[G(R), G(R)] with A’ Zariski-dense in [G(R), G(R)]. By Lemma 1
we know that A’ is an approximate subgroup. According now to the induction hypothe-
sis there is a closed connected subgroup H; <[G(R), G(R)] compactly commensurable
to A’. In addition, for all » € A, we have A (A')A~! € A*F2 N [GR), G[R)]. But,
according to Lemma 1 approximate subgroups AKt2N[G(R), G(R)] and A’ are com-
mensurable. Therefore, H; and A H; 1~ ! are compactly commensurable. We thus have
Hy = AH 17! (see Lemma 3 below).

Now H; is connected, so its normaliser N (Hj) is equal to the stabiliser of its Lie
algebra. But then N (H) is Zariski-closed and contains A which is Zariski dense. So
N(H;) = G(R) and H, is normal. Since H; is connected in a unipotent subgroup, Hj
is the group of R-points of an algebraic subgroup H; normal in G (e.g. [25, Lemma
3.20]). Therefore, the natural map G(R)/H;(R) — (G/H;)(R) is an embedding and
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its image contains the connected component of the identity in (G/H;)(R). Moreover,
the Zariski-closure of the image of A°° contains the image of G(R)

Set p : G(R) — (G/H;)(R) the canonical projection, A := p(Az) and G the
Zariski-closure of A.

Claim The approximate subgroup A is compactly commensurable to a Zariski-closed
subgroup of the centre Z(G) of G.

Let us first show how Proposition 1 follows from this claim. There is a Zariski-
closed subgroup V C Z(G) such that A is compactly commensurable to V. So we
can find a compact subset K1 C G(R) such that

AC p(K))V and V C p(K))A.

According to the first inclusion we have A C K p_1 (V). On the other hand, there is
K> € G(R) compact such that H; C K A, where H| is the subgroup defined above.
Finally,

p (V) C K1AH, = K| H{A C K Ky A2,

So the subgroup p~'(V) is compactly commensurable to A. But p~!(V) is equal
to the R-points of an algebraic subgroup H C G since both V and H; are Zariski-
closed subgroups. The subgroup V being central implies furthermore that H is normal.
Finally, we know that HI(R) has finitely many connected components [23], so denoting
by H the connected component of the identity in H(R) we indeed find a subgroup
satisfying the conclusions of Proposition 1.

Now let us move to the proof of the claim. We will use the fact that the set of
commutators of elements of A is relatively ‘compact to show that A is contained in a
‘neighbourhood’ of the centre. The group A% N N[G, G]is co- compact in [G, G]. So
there is [ € N such that

spang (log(A' N [G, G))) = Lie([G, G,
where log is the logarithm map from [G, G] to its Lie algebra. In addition,
U (4'n16.61)27" c 421G, G).
reA

But by definition of H; we know that AN [G Glis relatively compact. And thanks to
Lemma 1 and since A = p(A)2 the subset A” N [G, G] is an approximate subgroup
commensurable to A N [G, G] for all r € N. The right-hand side of the above inclu-
sion is therefore a relatively compact subset. Hence, the family of linear operators
(Ad()‘)mie([é,é]))?»EA is uniformly bounded. Since

p 1 (G/H)(R) — GL(Lie([G, G))
g = Ad(8)gie6.61)
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is an algebraic group homomorphism, there is a compact set K C G such that
AcC ker(p)K.

In the following we will denote ker(,o) by Z. Note that since [G G] is connected, Z
is in fact the centraliser of [G G ].
Now for any g € G define the map

0,:Z— G
h— (g, hl,

where [g, h] denotes ghg_lh_l. For hy, hy € Z we have

0o (h1)0 (ha) = gh1g~ hy ' ghag ™ 3!

= ghig 'ghag ™ hy ' hy! ash, € Z
= g(hih2)g " (hhy)™!
= 0, (h1h2).

So 0, is an algebraic group homomorphism.

Forall 1 € A let £ () denote an element of Z such that §(A) := Af(A)~! € K3.
Now, for y € A and A € A we have

0, (fON =y fRy~ fG)™!
— y8() " Ay ! (m)—lx)*l
= (rs™y ) yar T GG .
In particular
0, (f(A) Cc yK3'y ' (A* NG, GDKs.

So 0, (f (A)) is a relatively compact set.

Set now
Or : Z — ()
8> (0y,(8), ..., 6y,(2)
where 7 is any finite family {y/, ..., y,} of elements of A. We readily see that

ker(y) = ﬂ Zz(v) N Z.

1<i<n

We know that Z is an algebraic subgroup and 6y is an algebraic group morphism.
Moreover, since 0y (f(A)) is relatively compact as a subset of G" and 6y (Z) is
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closed, it is relatively compact as a subset of 6y (Z). Thus, there is a compact set K4
such that f(A) C Kaker(0y). Setting Ky := K3K4, we get AcC Ky ker(0y).

Since A® is Zariski-dense, the centraliser of elements are Zariski-closed and
Zariski-closed subsets satisfy the descending chain condition, we can find ¥ C A®
finite such that the centraliser of 7" is equal to the centre Z(G) of G. Hence,

A C Ky ker(0y) = Kr Z(G).

But Z(G) is a Zariski-closed subgroup, so it has a finite number of connected compo-
nents [23]. Besides, the connected component of the identity is isomorphic to R x T
for some k, I € N. There is therefore a central subgroup W C Ganda compact subset
K5 C G such that A C KsW and W ~ RK

Finally, choose a function g : A — W such thatforall A € A, g(u~") = g(»)~!
andb()) = g(k)k leKs. Therelsaﬁmte subset F C G suchthatforall Ay, Ay € A
there is A € A satisfying ALY A leF. Relying on the centrality of W we compute

gMg) g = b b() T g () !
=M b0 g0 b
=7 g e ()
=2 25 b0 T () TTE ().

And we find
gMg)Tg() 7! € FKS2Ks.

We have thus proved that the subset g(A) is such that g(A) + g(A) is compactly

commensurable to g(A) We then have that g(A) is compactly commensurable to an

approximate subgroup (see Lemma 4 below). By Schreiber’s theorem (Theorem 4)

there is therefore a closed connected subgroup V; compactly commensurable to g(A)

- hence to A. But V; C Z(G) is compactly commensurable to its Zariski-closure V>

(see [24, Cororollary 4.1]). So V3 is compactly commensurable to A. ]
We prove now the two technical lemmas used in the proof of Proposition 1.

Lemma3 Let Hi, H> be two connected subgroups of a simply connected nilpotent
group N. Then Hy and H, are compactly commensurable if and only if they are equal.

Proof Let K C N be acompact subset such that H, C H; K. We proceed by induction
on the length of the upper central series. If N >~ R” for some n € N, the result is
obvious. Otherwise let Z be the centre of N, by induction hypothesis the projections
of Hy and H, to N/Z are equal. So given g € H», there is z € Z such that gz € H.
Moreover for all n € N there are h, € H| and k, € K such that g" = h,k,. Hence,

Vn eN, 7"k, = z"h;lg” = h;l(gz)" € H.
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So,

Vn € N, log(z) + —— log(ky) € log(H)),
n

where log is the logarithm map from N to its Lie alebra. But log(H1) is closed (since
it is a vector subspace of the Lie algebra) so we find z € Hy and g € H;. O

Lemma4 Let A be a locally compact abelian group and A C V a symmetric subset
such that A + A is compactly commensurable to A. Then A is compactly commensu-
rable to an approximate subgroup.

Proof Let U C V be a symmetric compact neighbourhood of 0, then A + U is a
symmetric set compactly commensurable to A. Moreover, let K C V be a compact
subset such that A4+ A C A+ K and F C V be afinite subset suchthat K +U +U C
U + F.Then we have,

A+U)+A+U)CcA+K+U+UC(A+U)+F.

O

Proof of Theorem 1 Let G be the Zariski-closure of A®°. Then G is the group of R-
points of a soluble algebraic group. Let G denote the group of R-points of its Zariski-
connected component of the identity. The subgroup A% N G is Zariski-dense in G
so we can find a finite subset X C A% N G such that XG = G. There is therefore
an integer n > 1 such that X C A" N G a classical argument—found e.g. in [11]—
about generation in finite index subgroups now shows that G N A®is generated by
A¥*1' N G. By Lemma 1, the set A2*t1 N G is an approximate subgroup. Applying
Proposition 1 to A2"*1 N G we get a minimal Zariski-closed normal subgroup H of G
that is compactly commensurable to A2"+1' N G. But A?"*! N G is commensurable to
A% N G according to Lemma 1 and A2 N G is commensurable to A by Lemma 2. The
subgroup H is thus compactly commensurable to A. Now for any A € A notice that

A (A2”+1 N G) A7l =1 (A2 A=ING is commensurable to A% NG according

to Lemma 1. So AH A~ is a normal Zariski-closed subgroup of G and is compactly
commensurable to A (/12’”rl N G) A~'—hence to A%"*! N G. By minimality of H

we find H c AHA~!. The inclusion being true for all elements in A, we have that H
is normalised by A°° and by its Zariski-closure. O
4 Consequences of Theorem 1

In [8] Fried and Goldman proved that every soluble subgroup I" of GL,, (R) admits a
syndetic hull. More precisely:

Proposition 2 [8, Theorem 1.6] Let G be a soluble real algebraic group and I’ C G(R)
a subgroup. Then there is H < G such that H is a closed connected subgroup (in
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the Euclidean topology), I' N H has finite index in I" and I' and H are compactly
commensurable.

We show how this theorem is in fact a consequence of Theorem 1.

Proof Without loss of generality we can assume that I is Zariski-dense. Let G° be
the Zariski-connected component of the identity of G. The subgroup I" N G°(R)
has finite index in I" and is Zariski-dense in G°(R). Then applying Proposition 1
to I' N GO(R) we get a closed connected normal subgroup H C GO(R) such that
I'" is compactly commensurable to H. So the image of I' N G*(R) in GO(R)/H
via p : GO(R) — GY(R)/H is contained in a compact subgroup K. Let Ko be
the connected component of the identity of K in the Euclidean topology, then set
I'=Inp ' (Kp). The subgroup I” has finite index in I" N G(R), hence in I, and
is co-compact in the closed connected subgroup p~!(Kj). O

We also get a generalisation of the well-known fact that closed soluble subgroups of
GL, (R) are compactly generated. Note that in Proposition 3 below we do not assume
the approximate subgroup A considered to be closed. Specialised to (not necessarily
closed) soluble subgroups of GL, (IR) our conclusion is that any soluble subgroup is
generated by a subset that is relatively compact in GL,, (R).

Proposition 3 Let G be the R-points of a soluble real algebraic group and A C G an
approximate subgroup. Then there is a compact subset K such that A> N\ K generates
A%,

Proof Let H be the Zariski-closure of A®. Proceeding as in the proof of Theorem 1
we find an integer k > 2 such that A’ := AK N H? generates a Zariski-dense subgroup
of the Zariski-connected component of the identity H® of H. Note moreover that A’
is an approximate subgroup commensurable to A (Lemma 2). Applying Proposition 1
to A" we find a connected subgroup H < G such that G and A’ are compactly com-
mensurable. Since A and A’ are commensurable, there is a compact symmetric subset
K C Gsuchthat A C KH and H C K A.Choose also V a compact neighbourhood of
the identity in H. As H is connected for the Euclidean topology, V generates H. Now,
forany A € A choose i € H suchthat Ah~! € K. Since V generates H, we can find a
sequence (h;)o<i<r of elements of H such that hg = e, h, = h and h,-+1hi_1 eV.In
addition, we can find a sequence (A;)o<; <, of elements of A such thatAg =e, A, = A
and forall0 <i <r,Ah; ' € K~' = K. Thus, ;412" € KV~'K~!. Finally, A%
is generated by A2N KV -1k~ o

Corollary 1 If A is discrete, then A is finitely generated.

Finally, we give a partial generalisation of a theorem from [2, Theorem 4.25], where
it was proved that weak approximate lattices in nilpotent locally compact groups are
uniform. Our result is concerned with the more restrictive class of approximate lattices
in soluble real algebraic groups. Approximate lattices are defined by measure-theoretic
conditions on an associated dynamical system called the invariant hull. We refer the
reader to [2, Section 4] for precise definitions.
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Theorem 5 Let A C G be a strong approximate lattice in the group of R-points of a
connected soluble real algebraic group. Then A is relatively dense.

Proof Indeed, according to [2, Remark 4.14.(1) & Theorem 4.18] any approximate
lattice is bi-syndetic in an amenable group i.e. there is K1 C G compact such that
G = K1 AK. Moreover, A is Zariski-dense according to [3]. Now let H and K> be
given by Proposition 1 so that

A CKyHand H C Ky A.

Since H is normal we have that G = K| K;HK| = K|K;K{H. Then G =
Ki1K>2K 1Ky A. |

5 Uniform approximate lattices in abelian groups
We will investigate morphisms commensurating approximate subgroups in R”. This
will turn out to be useful in the proof of Theorem 3. Our goal is to understand mor-

phisms that commensurate a uniform approximate lattice. Let us start with a result
concerning lattices.

Proposition4 Let A C GL,,(R) be an approximate subgroup and suppose there are
It C I3 lattices in R" such that M(I'Y) C I3 for all . € A. Then there is an
approximate subgroup E C A* commensurable to A such that & C Aut(I").

Proof We can assume that Iy = Z". Let m be the order of I>/I] and py, ..., p, the
prime factors of m. Then any matrix in A has entries lying in %Z.
Set

¢ :GL,(R) — Ri
M +— |det(M)|

then ¢ is a group homomorphism and ¢ (A) C %Z is adiscrete approximate subgroup
bounded away from 0 so ¢ (A) is finite. As a consequence,

A=¢"'({1}) N A?

is an approximate subgroup commensurable to A by Lemma 2.
Consider the diagonal embedding

1 r
t:SL, (Z I:Zj|> — ESLn(Qpi)-
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- r
Now ((A) is relatively compact and [] SL, (Zp;) is open. Therefore, there are
i=1

A,y As € A such that

WA UL(XS) (]_[ SLn(Zpl.)) .

i=1 i=1

So

APn ! <]_[ SLn(Zpi))

i=1

is an approximate subgroup commensurable to A by Lemma 2. Since 1! ( [T;_, SL,
(Zp,)) = SLy(Z), we can set & := A2 N SL,(Z). O

Now, we can deduce

Proposition5 Let A C GL,(R) be an approximate subgroup and suppose there are
A1 C Aj approximate lattices in R" such that M(A1) C Ap forall . € A. Then there
are & C A* commensurable to A and an injective group homomorphism 5 —
SL,,, (Z) for some m > n.

This result is not needed in the sequel, however it gives a good insight into the
remaining part of the proof of Theorem 3. Indeed, a similar argument will be used to
prove Proposition 7.

Proof According to Corollary 1 any approximate subgroup commensurable to A
generates a subgroup with finite rank. Take A¢p commensurable to A generating a
group of minimal rank. By Lemma 2 the approximate subgroup A% N A% is commen-
surable to A. But rank((A(z) N A%)OO) < rank(Ago), so there is equality of ranks. We
will therefore assume that Ay C A%. We also know that for all A € A the approxi-
mate group A(Agp) is commensurable to A(A1) which in turn is commensurable to A».
So Ag and A(Ap) are commensurable. Hence, Ag is commensurable to A% N A(A(z))
(Lemma 2) . Also, minimality of rank (Ag°) yields

rank ((A§ N (A))™) = rank (AS°) = rank (1(Ag°)).

So A(z) N A(A%) generates a finite index subgroup of Ag°.

Therefore, A is an isomorphism of the Q-span spang (Ag°) of Ag”. Choosing a basis
of spanQ(Ago) adapted to the subgroup A§° we thus have a group homomorphism
¢ : A® — GL;,(Q) where m = rank(Ag°). Since spang(Ag°) = R" this group
homomorphism is injective. Now, forall A € A wehave A(AG°) C A5°Nspang(Ag°).
But

rank (AJ°) < rank (AS° Nspang (A§°)) < dimg (spang (A§°)) = rank (AF°).
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So Ag” has finite index in A3° Nspang(Ag”). So Proposition 4 applied to A%, A3°N
spanQ(Ago) and A gives an approximate subgroup = commensurable to A that con-
sists of automorphisms of Ag°. Rewording the last statement using ¢ we find

$(Z) C SLy(Z).

]

Remark 1 From the proof of Proposition 5, we have that for any discrete approx-
imate lattice A C R” the subgroup {g € GL,(R)|g(A) is commensurable to A} is
isomorphic to a subgroup of GL,, (Q) where m is the minimal rank of an approximate
subgroup commensurable to =

6 Meyer’s Theorem for soluble Lie groups

We will now turn to the proof of Theorem 3. Our first step towards this goal is to prove
a version under an additional assumption.

Proposition6 Let A C G be a uniform approximate lattice in a connected soluble
Lie group. If A% is polycyclic then A is a Meyer subset.

Proof According to a theorem of Auslander (see [1] or the proof of [17, Theorem
4.28]), A®° admits an embedding as a Zariski-dense lattice in R the group of R-points
of a soluble algebraic group. In the following we will consider A®° as a subgroup of
R. Moreover, we can assume without loss of generality that R is Zariski-connected.
Indeed, there is a finite index subgroup I of A®° such that the Zariski closure of I" is
Zariski-connected. Furthermore, proceeding as in the proof of Theorem 1 we can find
n € Nsuch that A" N I" is an approximate subgroup commensurable to A (Lemma 2)
and generates 1.

Now according to Proposition 1 there is a closed connected normal subgroup N < R
such that A is compactly commensurable to N. Let p : R — R/N denote the
natural projection. We know that p(A) is relatively compact, so we can choose a
symmetric compact neighbourhood Wy of p(A). Now p~!(Wp) is an approximate
subgroup compactly commensurable to N. But A € A N p~!(Wp) so both subsets
are compactly commensurable to the subgroup N. So A and A® N p~1(Wp) are
compactly commensurable i.e. there is a compact subset K C R such that

A® N p~ Y (W) C K A.
Since A and A% N p_l (Wy) are moreover contained in A% we have
A% N p~ (W) € (K N A®)A.
But A% is adiscrete subgroup of R so K N A is finite - meaning that A is commensu-

rable to A% N p~!(Wp). Finally, Piaenp=1 (Wyy 1s @ good model of A% Np~ L (Wp).
Hence, A is a Meyer subset. O
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Proposition7 Let A C G be a uniform approximate lattice in a connected soluble
Lie group. Then there is a uniform approximate lattice A’ commensurable to A such
that (A")* is polycyclic.

Proof Let us first show that we can assume G to be simply connected. Indeed, if G is
not simply connected we proceed as follows. Let p : G — G be auniversal cover, then
p~'(A) is a uniform approximate lattice in G. Suppose p~' (A) is commensurable to
an approximate subgroup A’ such that A’ generates a polycyclic group. Then p(A’)
is commensurable to A and p(A’) generates a polycyclic group as well.

From now on G is supposed simply connected. Let N denote the nilpotent radical
of G,k € Nand & c AN N be an approximate subgroup. First of all, let us show that
Z*° is finitely generated. Since G is simply connected, G does not contain any non-
trivial compact subgroup. So N does not contain any non-trivial compact subgroup,
and thus N is simply connected. Now N is a connected simply connected nilpotent Lie
group so it is the group of R-points of a unipotent algebraic group (see [17, Theorem
4.1]) and & is a discrete approximate subgroup. Hence, & is finitely generated by
Corollary 1.

The rest of the proof will rely on the following lemma that links finitely generated
subgroups of connected simply connected nilpotent Lie groups to finite dimensional
Q-Lie algebras.

Lemma5 [17, Chapter IV] Let I' C N be a finitely generated group in a connected
simply connected nilpotent Lie group. Then I' is torsion-free nilpotent, Qlog(I") is a
finite dimensional Q Lie algebra and dimg(Qlog(I")) = rank(I").

Here the rank of I” is the dimension of its Malcev completion, i.e. the unique connected
simply connected nilpotent Lie group that admits a lattice isomorphic to I", and log
denotes the logarithm map from N to its Lie algebra. Lemma 5 is a consequence of
[17, Theorems 2.18, 2.12, 2.10 and 2.11].

The group Z°° is finitely generated, torsion-free and nilpotent so it has finite rank.
Among all approximate subgroups & commensurable to A>NN -note that AZNN is an
approximate subgroup by Lemma 1 - such that there is k € N satisfying & ¢ AKN N,
choose one with minimal rank. Let = denote this approximate subgroup and let k be
such that & ¢ AKN'N.

Take A € A. Note that by Lemma 1 and since

AkﬂNCA<AkﬂN)A_1 c A2AN

the subsets Ak N N , A (Ak NN ) A~ land AKT2 N N are pairwise commensurable
approximate subgroups. Therefore, & and A& A~ are contained in and commensu-
rable to A¥*2 N N. So &2 N A=Z2%1~! is an approximate subgroup commensurable
to & according to Lemma 2. But (82N 1&2171)% C E so these two subgroups
have the same rank. As a consequence, (5% N AZ zk_l)oo has finite index in both =
and A Z>°1~!. So the subgroups Z° and A.Z>°1~! are commensurable. There is thus
n € N such that forall y € £°°, we have y" € £°N AE®)LL. Therefore,

nlog(2%) C log(r&®A1 1.
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Hence,

Qlog(£%°) = Qlog(A&>®x7").

We have thus proved that exp(Q log(Z °)) is stable under conjugation by elements
of A%, Moreover, exp(Qlog(Z°°)) is a group by the Baker—-Campbell-Hausdorff
formula (see [17, Chapter IV]) and any finitely generated subgroup in it has rank less
than or equal to dimg (Q log(&°°)) = rank(Z*°) according to Lemma 5. Let I” denote
the subgroup generated by A¥2Nexp(Q log(E°°)). Since (A2 N N)* is nilpotent
and finitely generated according to a combination of Lemma 1 and Corollary 1, the
subgroup I is finitely generated as well. In addition, I" contains Z°. So rank(I") =
rank (&%) and Z°° has finite index in I".

We know by [17, Theorem 2.12] that there exist free abelian subgroups I't, I5 C
Qlog(&°) of rank dimg(Q log(&°°)) such that

I Clog(E%°) C log(I") C I.

This imp]ies in particular that for all A € A we have Ad(A)(I1)) C I3 since
*E%°)~1 ¢ I'. According now to Proposition 4, there is an approximate subgroup
X C Ad(A)* commensurable to Ad(A) such that d)(F]) = I for all ¢ € X. Define
A = AdTN(X)2 n A% By Lemma 2 we find that A is an approximate subgroup
commensurable to A. And by construction Ad(A)(/) = [ forall A € A. Therefore,
the subgroup H of £ generated by exp(I) has finite index in £ and H N A™ is
normalised by A.

Consider p : A® — A®/(H N A™) the canonical projection. We claim that
p(AH N Z(A®/(H N A)) is commensurable to p(A). First, note that 5 is com-
mensurable to £2 N H by Lemma 2, A% N N is commensurable to Z by Lemma 1
and A C AZ2. Note also that N contains all commutators of elements of G. So the
set of commutators of elements of p(/i) is contained in p(A% N N). But p(A% N N)
is commensurable to p(£2 N H) = {e}, and, hence, is finite. But p(/ioo) is finitely
generated since A is uniform approximate lattice in a connected Lie group ( see the
proof of Proposition 3 or [2, Theorem 1.13]), and p(/i) generates p(A®). We can
therefore find a finite generating family 7" := {y1, ..., yu} C p(/i). Define now

Or : p(A®) — p(A®)"
y = (v, vl v vDs

where [y;, y] := yiyyi_ly_l. Note now that for all y, y” in p(A) if 61 (y) = 61 (y')
then

YZ(A®/(H N A®) =y Z(A®/(H N A%)).
Indeed, fori € {1, ..., n} we have
/—1

vivy, v Y =lyl =l Y 1=vv'yly
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which implies
(Viy_ly,-_l) vy YT ) =y Y 1 =e

So y_l ¥’ belongs to the centraliser of 7" i.e. belongs to the centre Z(Aw/(H N /IOO))
of A®/(H N A%) because T is a generating family.

But 6y (p(A)) is finite so there are Yis--n Vi € A®/(H N A%) such that p(A) C
Uviz (A% J(HN A)). We thus have that A is covered by finitely many left-cosets of
p~NZ(A®/(HNA®))). According to Lemma 2 now, A" := A2Np~ Y (Z(A®/(HN
A™))) is an approximate subgroup commensurable to A and A.

Finally, A’ is a uniform approximate lattice in G as it is commensurable to A. So
it generates a finitely generated subgroup (as above see the proof of Proposition 3 or
[2, Theorem 1.13]). Moreover, H N A® Cc A®isa finitely generated torsion-free
nilpotent normal subgroup such that A’ /(H N A®) is abelian and finitely generated.
Hence, A’ is polycyclic. a

Proof of Theorem 3 Let A C G be auniform approximate lattice in a connected soluble
Lie group. According to Proposition 7 A is commensurable to a uniform approximate
lattice A" with A’ polycyclic. By Proposition 6 the uniform approximate lattice A’ is
therefore a Meyer set. So A is a Meyer set.
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