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Abstract
While the dynamics of transcendental entire functions in periodic Fatou components
and in multiply connected wandering domains are well understood, the dynamics in
simply connected wandering domains have so far eluded classification. We give a
detailed classification of the dynamics in such wandering domains in terms of the
hyperbolic distances between iterates and also in terms of the behaviour of orbits in
relation to the boundaries of the wandering domains. In establishing these classifica-
tions, we obtain new results of wider interest concerning non-autonomous forward
dynamical systems of holomorphic self maps of the unit disk. We also develop a new
general technique for constructing examples of bounded, simply connected wandering
domains with prescribed internal dynamics, and a criterion to ensure that the resulting
boundaries are Jordan curves. Using this technique, based on approximation theory,
we show that all of the nine possible types of simply connected wandering domain
resulting from our classifications are indeed realizable.
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1 Introduction

We consider dynamical systems defined by the iteration of holomorphic maps f :
C → C on the complex plane, and particularly transcendental ones, that is, those with
an essential singularity at infinity. The complex plane, seen as the phase space of the
system, splits into two completely invariant subsets: the Fatou set, or those points in a
neighbourhood of which the iterates { f n} form a normal family, and its complement,
the Julia set. The Fatou set is open and consists typically of infinitely many connected
components called Fatou components. Fatou components map from one to another
and this leads to dynamics on the set of these components.

In this setting, periodic Fatou components were completely classified a century ago
by Fatou, in terms of the possible limit functions of the family of iterates; see, for
example, [10]. Indeed, if U is a periodic Fatou component of period p ≥ 1, then U
can only be one of the following: a domain on which the iterates { f pn|U }n converge
to an attracting or parabolic fixed point of f p (known as an attracting or parabolic
component, respectively); or a domain on which the iterates { f pn|U }n converge to
infinity locally uniformly (known as a Baker domain); or a topological disk on which
f p is conjugate to a rigid irrational rotation (known as a Siegel disk).
If a Fatou component U is neither periodic, nor preperiodic (that is, eventually

periodic), then f i (U )∩ f j (U ) = ∅ for all i, j ≥ 0, i �= j andU is called awandering
domain. On a wandering domain all limit functions must be constant [28]. Those for
which the only limit function is the point at infinity are called escaping, while the
rest are either oscillating (if infinity is a limit function and some other finite value
also) or dynamically bounded (if all limit functions are points in the plane). A major
open problem in transcendental dynamics is whether dynamically bounded wandering
domains exist at all. We believe that any progress towards solving this problem will
require a deeper knowledge of the dynamics inside (and around) wandering domains,
our main motivation for the work in this paper.

An essential role in the theory of holomorphic dynamics is played by the singular
values, that is, those points for which not all inverse branches are locally well defined.
In transcendental dynamics, these can be critical values (images under f of zeros
of f ′), asymptotic values or accumulations thereof.

For a wide class of functions known as finite type maps (those maps with a finite
number of singular values), every Fatou component is periodic or preperiodic. Indeed,
the absence of wandering domains for polynomials (actually for rational maps) [39]
and for transcendental entire functions of finite type [22,31] was a major breakthrough
in the theory of complex dynamics, and meant that the possible types of dynami-
cal behaviours of all such maps within the Fatou set was fully classified. The result
about the absence of wandering domains for the class of transcendental maps of finite
type was particularly striking because in the 1970s Baker [1] had constructed a tran-
scendental entire function which had a nested sequence of multiply connected Fatou
components, each mapping to the next and whose orbits escaped to infinity, showing
that wandering domains can indeed exist. While the wandering domains in Baker’s
example were multiply connected, since then a wide variety of examples of simply
connected wandering domains have been given; see, for example, [2, p. 564, p. 567],
[18, p. 222], [22, Examples 1 and 2], [26, Sect. 4.3], [32, p. 106] and [39, p. 414].
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Classifying simply connected wandering domains 1129

But it is only more recently that wandering domains have emerged as a major focus
of attention, as the least understood of all the different types of Fatou components.

Indeed, several important advances have been made in recent years. For example,
(oscillating)wandering domains have been constructed for functions in the Eremenko–
Lyubich class B (those maps with a bounded sets of singular values) [14,27,34], a
landmark result because escaping wandering domains have been shown not to exist
for maps in this class [22]. We also mention the recent construction by Bishop [15]
of an entire function with Julia set of Hausdorff dimension 1, solving a long standing
problem in transcendental dynamics. This function has multiply connected wandering
domains and also exhibits other remarkable properties; for example, all the boundary
components of its wandering domains are Jordan curves.

Moreover, a detailed description of the dynamics of entire functionswithinmultiply
connected wandering domains was obtained in [13]. Perhaps surprisingly it turns out
that in these wandering domains all orbits behave in essentially the same manner,
eventually landing in and remaining in a sequence of very large nested round annuli.
This detailed description has proved crucial in establishing results about classes of
commuting transcendental entire functions [9].

Surprisingly, however, very little is known about the full range of possible
behaviours of the orbits inside simply connected wandering domains, relative to the
components themselves. This behaviour is connected to the relation between the
postsingular set P( f ) (that is, the union of the forward orbits of the singular val-
ues) and the wandering domains, another major open problem in the subject. Indeed,
recent results in [3,35] establish that if U is a wandering domain and Un is the Fatou
component containing f n(U ) for n ∈ N, then for every z ∈ U , there exists a sequence
pn ∈ P( f ) such that dist(pn,Un)/ dist( f n(z), ∂Un) → 0 as n → ∞. Hence the
understanding of the possible dynamics of orbits insidewandering domainsmay throw
some light on the possible relations between the postsingular set and the wandering
domains, both issues being potentially relevant in any future attempt to eliminate
dynamically bounded wandering domains.

One of the challenges is that several different types of behaviour are known to
exist. Let us elaborate a bit further on this observation. Consider any holomorphic
self-map of C \ {0}, or an entire map F : C → C for which z = 0 is either an omitted
value or has itself as its only preimage; for example, Fλ(z) = λzd exp(z) with d ∈ N,
λ ∈ C \ {0}. Such a map F can be lifted by the exponential map to a transcendental
entire function f : C → C satisfying exp( f (z)) = F(exp(z)). Observe that f is not
uniquely defined, since any map of the form fk(z) = f (z) + 2kπ i for k ∈ Z will
have the same property. Now notice that if F had, say, an attracting componentU (not
containing z = 0), then any logarithm ofU , say ˜U , would be a wandering domain for
fk (for an appropriate choice of k). Nevertheless, the orbits of points in ˜U would still
“remember” that they were lifted from an attracting component, in the sense that the
iterates of any given point would be successively closer to the orbit of p̃:= log p ∈ ˜U ,
where p is the fixed point of F in U . Likewise, if U had been, for example, a Siegel
disk, the iterates of points in the successive images of ˜U would “rotate” around a centre
point (actually orbit), again the iterates of p̃. See Fig. 1, and also Fig. 4 in Sect. 3.3
for a lift of a parabolic component.
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1130 A. M. Benini et al.

Fig. 1 Left: Dynamical plane of F(w) = λw2e−w with λ = e2−ρ/(2 − ρ) and ρ = eπ i(1−
√
5). There is

a (bounded) super-attracting component centred at w = 0 (white) and a Siegel disk centred at w0 = 2 − λ

(gray). Right: Dynamical plane of f (z) = 2z − ez + log λ satisfying exp( f (z)) = F(exp(z)). The super-
attracting component lifts to a Baker domain (white), while the Siegel disk lifts to infinitely many orbits of
wandering domains onwhich f is univalent (gray). See [11,24,26] for details. The range is [−9, 9]×[−9, 9]
(color figure online)

With this lifting procedure, one can construct examples of simply connected escap-
ing wandering domains exhibiting the three different types of internal dynamics that
correspond to the possible dynamics inside a periodic component: attracting, parabolic
or rotation-like. Thus we already have a contrast with multiply connected wandering
domains, where only one type of dynamical behaviour is possible, as noted above.
These observations suggest a very natural question: How special are the three exam-
ples above in the general world of wandering domains; in other words, is there a
classification of wandering domains in the spirit of Fatou’s classification of periodic
Fatou components or is any orbit behaviour realizable? Let us note that, due to the
lack of periodicity, the dynamics of f on a sequence of wandering domains can be
thought of as a non-autonomous system (at every iterate we apply a “different” map),
and such systems are a priori difficult to study because they may exhibit a wide range
of behaviours. This might be an indication that such a classification may not exist.
On the other hand, the successful description of the dynamics in multiply connected
wandering domains obtained in [13] is encouraging.

The dynamics of points which belong to wandering domains can be seen from two
perspectives. While points have to move together with the wandering domain which
contains them (in the way that passengers on a cruise ship must follow the ship’s
trajectory), on the one hand they may or may not cluster together as they move along
(as happens when lifting an attracting component but not when lifting a Siegel disk),
and on the other hand orbits may stay away from the boundaries of their domains (as
happens when lifting an attracting basin but not when lifting a parabolic basin).

Our results will address both of those points of view.More precisely we give a com-
plete and precise description of the possible dynamics of orbits inside the wandering
components in terms of both the contraction properties with respect to the hyperbolic
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Classifying simply connected wandering domains 1131

metric, and the distance of orbits to the boundary of the wandering components (The-
orems A, B and C). This provides a wandering version of the Fatou Classification
Theorem of periodic components, a cornerstone of holomorphic dynamics. Moreover,
we show that all of the possible cases exist by proving a new general and potentially
very useful tool (Theorem D) to establish the existence of wandering components for
a given map. Finally, we prove that under certain conditions the wandering domains
have Jordan curve boundaries. Our proof includes a novel result (Theorem 7.5) on the
Euclidean lengths of vertical geodesics of annuli, using a new technique involving the
classical Féjer–Riesz Inequality, which is of independent interest.

Statement of results
Themost natural intrinsic quantity that we have to hand—intrinsic in that it does not

depend on the embedding of the wandering domains in the plane—are the hyperbolic
distances between pairs of corresponding points of two orbits, and so our approach
will be to evaluate how hyperbolic distances between such pairs of points evolve under
iteration.

Let us recall that a domain U ⊂ C is hyperbolic if its boundary (in C) contains at
least two points. For a hyperbolic domainU , let ρU (z) denote the hyperbolic density at
z ∈ U and for z, z′ ∈ U let distU (z, z′) denote the hyperbolic distance in U between
z and z′. Also recall that if U , V are hyperbolic domains, and f : U → V is a
holomorphic map, then the Schwarz–Pick Lemma ensures that f is a contraction for
the hyperbolic distance. Hence, if U ⊂ C is a wandering domain of a transcendental
entire function f and we define Un , as above, to be the Fatou component containing
f n(U ), for n ∈ N, we have that, given any two points z, z′ ∈ U , the sequence of
hyperbolic distances

distUn ( f
n(z), f n(z′))

is decreasing and therefore converges to a value that we denote by

c(z, z′) = cU (z, z′):= lim
n→∞ distUn ( f

n(z), f n(z′)) ≥ 0.

Our first classification result shows that whether or not c(z, z′) is zero does not actually
depend on the chosen pair (z, z′), provided that the two points have distinct orbits.
We also give a criterion to discriminate between these cases based on the concept of
hyperbolic distortion [8, Sect. 5,11].

Definition 1.1 (Hyperbolic distortion) If f : U → V is a holomorphic map between
two hyperbolic domains U and V , then the hyperbolic distortion of f at z is

‖Df (z)‖VU := lim
z′→z

distV ( f (z′), f (z))

distU (z′, z)
,

and it equals the modulus of the hyperbolic derivative of f at z, given by
ρV ( f (z)) f ′(z)/ρU (z).
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1132 A. M. Benini et al.

Theorem A (First classification theorem) Let U be a simply connected wandering
domain of a transcendental entire function f and let Un be the Fatou component
containing f n(U ), for n ≥ 0. Define the countable set of pairs

E = {(z, z′) ∈ U ×U : f k(z) = f k(z′) for some k ∈ N}.

Then, exactly one of the following holds.

(1) distUn ( f
n(z), f n(z′)) −→

n→∞ c(z, z′) = 0 for all z, z′ ∈ U, and we say that U is

(hyperbolically) contracting;
(2) distUn ( f

n(z), f n(z′)) −→
n→∞ c(z, z′) > 0 and distUn ( f

n(z), f n(z′)) �= c(z, z′)
for all (z, z′) ∈ (U × U ) \ E, n ∈ N, and we say that U is (hyperbolically)
semi-contracting; or

(3) there exists N > 0 such that for all n ≥ N, distUn ( f
n(z), f n(z′)) = c(z, z′) > 0

for all (z, z′) ∈ (U × U ) \ E, and we say that U is (hyperbolically) eventually
isometric.

Moreover for z ∈ U and n ∈ N let λn(z) be the hyperbolic distortion
‖Df ( f n−1(z))‖Un

Un−1
. Then

• U is contracting if and only if
∑∞

n=1(1 − λn(z)) = ∞;
• U is eventually isometric if and only if λn(z) = 1, for n sufficiently large.

Note that, by the Schwarz–Pick Lemma, U is eventually isometric if and only if
f : Un → Un+1 is univalent for largen and so awanderingdomainobtainedby lifting a
Siegel disk is always eventually isometric. In contrast, we show that lifting an attracting
or parabolic component results in a contracting wandering domain. To distinguish
between these two cases, we refine the classification of contractingwandering domains
according to the rate of contraction.

Definition 1.2 (Rate of contraction) LetU be a simply connectedwandering domain of
a transcendental entire function f andUn be the Fatou component containing f n(U ),
for n ≥ 0. We say that U is strongly contracting if there exists c ∈ (0, 1) such that

distUn ( f
n(z), f n(z′)) = O(cn), for z, z′ ∈ U .

We say that U is super-contracting if it satisfies the stronger condition that

lim
n→∞(distUn ( f

n(z), f n(z′)))1/n = 0, for z, z′ ∈ U .

It is easy to see that the lift of an attracting component is strongly contracting, and
we prove in Sect. 3 that the lift of a parabolic component is contracting but not strongly
contracting.We do this by a careful analysis of the behaviour of the hyperbolic distance
between pairs of points in two orbits in any parabolic component; see Theorem 3.4.

A special case of super-contracting wandering domains is given by wandering
domains which contain an orbit consisting of critical points. An example of such a
domain which does not arise from a lifting procedure is given in Theorem F.
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Classifying simply connected wandering domains 1133

Next,we give sufficient criteria for awandering domain to be strongly contracting or
super-contracting in terms of the long term average values of the hyperbolic distortion
along the orbit of a point z0 ∈ U . We also show that this quantity is independent of
the point z0.

Theorem B Let U be a simply connected wandering domain of a transcendental entire
function f and let Un be the Fatou component containing f n(U ), for n ≥ 0. Fix a
point z0 ∈ U and, for z ∈ U and n ∈ N, let λn(z) = ‖Df ( f n−1(z))‖Un

Un−1
. Then the

following hold:

(a) If lim supn→∞ 1
n

∑n
k=1 λk(z0) < 1, then U is strongly contracting.

(b) If limn→∞ 1
n

∑n
k=1 λk(z0) = 0, then U is super-contracting.

(c) If z ∈ U, then lim supn→∞ 1
n

∑n
k=1 λk(z) = lim supn→∞ 1

n

∑n
k=1 λk(z0).

Once the behaviour of orbits in relation to each other within simply connected wan-
dering domains is well understood, we turn to the question of how these orbits interact
with the boundaries of the wandering domains. The concept of orbits ‘approaching
the boundary’ is in itself delicate to define since it depends on the shape of the sets
Un , which may become highly distorted (think for example of the ratio of the diam-
eter of the domains to their conformal radius, which may tend to infinity). There are
alternative candidates for the definition of convergence to the boundary (see Sect. 4),
but in this paper we use the following definition based on Euclidean distance, denoted
by dist(., .).

Definition 1.3 (Boundary convergence) Let U be a simply connected wandering
domain of a transcendental entire function f and let Un be the Fatou component
containing f n(U ), for n ≥ 0. We say that the orbit of z ∈ U converges to the bound-
ary (of Un) if and only if dist( f n(z), ∂Un) → 0 as n → ∞.

We show that, with this definition, the following trichotomy holds.

Theorem C (Second classification theorem) Let U be a simply connected wandering
domain of a transcendental entire function f and let Un be the Fatou component
containing f n(U ), for n ≥ 0. Then exactly one of the following holds:

(a) lim infn→∞ dist( f n(z), ∂Un) > 0 for all z ∈ U, that is, all orbits stay away from
the boundary;

(b) there exists a subsequence nk → ∞ for which dist( f nk (z), ∂Unk ) → 0 for all
z ∈ U, while for a different subsequence mk → ∞ we have that

lim inf
k→∞ dist( f mk (z), ∂Umk ) > 0, for z ∈ U ;

(c) dist( f n(z), ∂Un) → 0 for all z ∈ U, that is, all orbits converge to the boundary.

We remark that we actually prove a stronger version of Theorem C (see Theorem
4.2), which takes into account different definitions of converging to the boundary.
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1134 A. M. Benini et al.

Construction of examples
Theorems A and C combine to give nine different dynamical types of simply

connected wandering domains. A natural question to ask is whether all of these can
be realized. As far as we know, the existing examples of simply connected wandering
domains in the literature belong to one of the following three cases: contracting and
converging to the boundary (e.g. lifts of parabolic components); contracting and stay-
ing away from the boundary (e.g. lifts of attracting components); isometric and staying
away from the boundary (e.g. lifts of Siegel disks). We will use approximation theory
(see Sect. 5) to construct examples of each of the nine possibilities. In fact, we present
a new general technique to construct bounded simply connected wandering domains
(see Theorem 5.3) which allows us to keep good control on the internal dynamics, as
well as on the degree of the resulting maps from one Fatou component to the next.
As a key step we prove the following general result to show the existence of bounded
simply connected wandering domains. Its statement uses the following terminology.

Definition 1.4 We say that a curve σ surrounds a set B if and only if B is contained
in a bounded complementary component of σ . Also, for a Jordan curve η we denote
by int η the bounded component of C \ η and by ext η the unbounded component of
C \ η.

We can now state our result; see Fig. 5 in Sect. 5 for an illustration of the setup in
Theorem D.

Theorem D (Existence criteria for wandering domains) Let f be a transcendental
entire function and suppose that there exist Jordan curves γn and 	n, n ≥ 0, a
bounded domain D, a subsequence nk → ∞ and compact sets Lk (associated with
	nk ) such that

(a) 	n surrounds γn, for n ≥ 0;
(b) for every k, n,m ≥ 0, m �= n the sets Lk, D, 	m are in ext 	n;
(c) γn+1 surrounds f (γn), for n ≥ 0;
(d) f (	n) surrounds 	n+1, for n ≥ 0;
(e) f (D ∪ ⋃

k≥0 Lk) ⊂ D;
(f) max{dist(z, Lk) : z ∈ 	nk } = o(dist(γnk , 	nk )) as k → ∞.

Then there exists an orbit of simply connected wandering domains Un such that
int γn ⊂ Un ⊂ int 	n, for n ≥ 0.

Moreover, if there exists zn ∈ int γn such that both f (γn) and f (	n) wind dn times
around f (zn), then f : Un → Un+1 has degree dn, for n ≥ 0.

We use Theorem D to construct examples of each of the nine possible types, and
also to construct simply connected wandering domains that contain any prescribed
(finite) number of orbits consisting of critical points. A wandering domain U will
be called k-super-attracting if there exist critical points z1, . . . , zk ∈ U , such that
f n(z1), . . . , f n(zk) are critical points of f , for all n ∈ N.

Theorem E (All types are realizable) (a) For each of the nine possible types of sim-
ply connected wandering domains arising from Theorems A and C, there exists a
transcendental entire function with a bounded, simply connected escaping wandering
domain of that type.
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(b) For each k ∈ N, there exists a transcendental entire function f having a
bounded, simply connected escapingwanderingdomainU which is k-super-attracting.

Note that our examples in part (b) of Theorem E are super-contracting wandering
domains that are not lifts of super-attracting components.

The bounded, simply connected wandering domains, (Un) say, constructed in The-
orem E all have a shape that tends to the shape of a Euclidean disk as n → ∞, but in
fact the construction can easily be modified to give wandering domains with different
limiting shapes.

Finally, we show that our methods can be adapted to construct simply connected
wandering domains bounded by Jordan curves. Theorem E is proved by obtaining
entire functions that approximate sequences of translates of Blaschke products associ-
ated with sequences of Jordan curves with the properties given in Theorem D, and we
show that, if these Blaschke products are in a certain sense uniformly expanding and
have uniformly bounded degree, then the resulting wandering domains have Jordan
curve boundaries.

Further questions and developments
Our results suggest numerous further questions. For example, in view of the results

in [3,35], mentioned earlier, it is natural to ask if there is a relationship between the
different types of wandering domains in our classifications and the behaviour of the
postsingular set of f near or in these wandering domains. Another question is the
relationship between the classification of the internal behaviour in simply connected
wandering domains and the behaviour of boundary orbits; we investigate this question
in forthcoming work.

Since this paper was written there have been several developments. First, in [23] the
methods of this paper were used to construct examples of oscillating simply connected
wandering domains of the six types that are possible under the classifications given in
Theorems A and C of this paper. More recently, Boc Thaler [16] showed that many
bounded simply connected domains, including all Jordan domains, can be realised
as a wandering domain (either escaping or oscillating) of some transcendental entire
function.

Structure of the paper
The first part of the paper (Sects. 2, 3 and 4) is devoted to studying the possible

behaviours of orbits in simply connected wandering domains, proving Theorems A, B
and C. We begin in Sect. 2 by setting up related non-autonomous dynamical systems
of self maps of the unit disk.We prove several results in this general setting which may
be of wider interest. In Sect. 3 we use our results from Sect. 2 to prove Theorems A
and B. We prove Theorem C in Sect. 4.

The second part of the paper (Sects. 5, 6 and 7) is devoted to the construction of
examples. In Sect. 5 we give the proof of Theorem D and develop a new general tech-
nique for constructing bounded wandering domains. In Sect. 6 we use this technique
to construct examples of every possible behaviour classified in the first part of the
paper, proving Theorem E. Finally, in Sect. 7 we show that, under certain conditions,
our new construction technique gives simply connected wandering domains that are
Jordan domains.
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1136 A. M. Benini et al.

2 Non-autonomous dynamical systems of self maps of the unit disk

In this section we prove several results in the general setting of non-autonomous for-
ward dynamical systems of holomorphic self maps of the unit disk fixing the origin.
These results may be of wider interest with applications outside holomorphic dynam-
ics. In the next section, we apply them to the case of transcendental entire functions
with simply connected wandering domains in order to prove Theorem A and Theo-
rem B.

Our proofs are based on hyperbolic distances in the unit disk and we make frequent
use of the fact that

distD(w, 0) =
∫ |w|

0

2 dt

1 − t2
= log

(

1 + |w|
1 − |w|

)

, for w ∈ D. (2.1)

In our first result, we characterize when the limits of such systems of holomorphic
self maps of the unit disk are identically equal to zero, in terms of the values of the
derivatives of the maps at 0. In particular, unless |g′

n(0)| → 1 as n → ∞, the limit of
the maps Gn is always zero.

Theorem 2.1 (Criterion for converging to zero) For each n ∈ N, let gn : D → D be
holomorphic with gn(0) = 0 and |g′

n(0)| = λn, and let Gn = gn ◦ · · · ◦ g1.

(a) If
∑∞

n=1(1 − λn) = ∞, then Gn(w) → 0 as n → ∞, for all w ∈ D.
(b) If

∑∞
n=1(1 − λn) < ∞, then Gn(w) � 0 as n → ∞, for all w ∈ D for which

Gn(w) �= 0 for all n ∈ N.

Proof We begin with ideas used by Beardon and Carne [5]. First, it follows from
the hyperbolic triangle inequality and hyperbolic contraction that, if ψ : D → D is
holomorphic, then for all w ∈ D we have

distD(0, ψ(w)) ≤ distD(0, ψ(0)) + distD(ψ(0), ψ(w))

≤ distD(0, ψ(0)) + distD(0, w), (2.2)

and, similarly,

distD(0, ψ(0)) ≤ distD(0, ψ(w)) + distD(0, w), for all w ∈ D. (2.3)

We also use the fact that

∞
∑

n=1

(1 − λn) = ∞ ⇐⇒ λm+n · · · λm+1 → 0 as n → ∞, for all m ∈ N. (2.4)

In the case when λn �= 0, for all n, and the right-hand side is λn · · · λ1 → 0 as n → ∞,
this statement is a standard property of infinite products proved by taking logarithms.
Here it is possible that some or all of the terms λn are zero, so the right-hand side of
(2.4) takes account of these possibilities.

Now take w0 ∈ D and, for simplicity, denote Gn(w0) by wn , for n ∈ N.
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To prove part (a), we assume that λm+n · · · λm+1 → 0 as n → ∞, for all m ∈ N,
and deduce that wn → 0 as n → ∞. Suppose that wn � 0 as n → ∞. Since
wn = gn(wn−1), we deduce by Schwarz’s Lemma that |wn| ≤ |wn−1|, and hence that
|wn| decreases to some d > 0 as n → ∞.

First choose m ∈ N so large that |wm | is sufficiently close to d to ensure that

distD(0, wn+m/wm) > distD(0, wm), for n ∈ N. (2.5)

Next we fix n ∈ N and define the holomorphic map

ψ(w) = (gm+n ◦ · · · ◦ gm+1(w))/w, for w ∈ D \ {0},

with

ψ(0) = (gm+n ◦ · · · ◦ gm+1)
′(0) = λm+n · · · λm+1.

Applying (2.2) to the function ψ at the point w = wm gives

distD(0, wn+m/wm) = distD(0, ψ(wm))

≤ distD(0, ψ(0)) + distD(0, wm)

= distD(0, λm+n · · · λm+1) + distD(0, wm).

Since we have assumed that λm+n · · · λm+1 → 0 as n → ∞, we obtain a contradiction
to (2.5), showing that wn → 0 as n → ∞.

To prove part (b), we assume that, for some m0 ∈ N, λm0+n · · · λm0+1 → λ > 0
as n → ∞, and deduce that whenever wn �= 0, for all n ∈ N, we have wn � 0 as
n → ∞. Suppose that wn → 0 as n → ∞.

First choose m so large that m ≥ m0 and

distD(0, wm) < distD(0, λ), (2.6)

and note that, for such m,

λm+n · · · λm+1 ≥ λm+n · · · λm0+1 = λm0+(m−m0)+n · · · λm0+1 ≥ λ, for n ∈ N.

(2.7)

Next we fix n ∈ N and apply (2.3) with ψ defined as earlier and w = wm to give

distD(0, λm+n · · · λm+1) ≤ distD(0, wm+n/wm) + distD(0, wm).

Letting n → ∞, we obtain a contradiction to (2.6) in view of (2.7) and hence to the
supposition that wn → 0 as n → ∞. This completes the proof. ��

The following corollary to Theorem 2.1 shows that if the hyperbolic distance
between two distinct orbits converges to zero, then the same occurs for every pair
of orbits.
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Corollary 2.2 For n ∈ N, let gn : D → D be holomorphic and let Gn = gn ◦
· · · ◦ g1. If there exist w0, w

′
0 ∈ D such that Gn(w

′
0) �= Gn(w0) for all n ∈ N and

distD(Gn(w
′
0),Gn(w0)) → 0 as n → ∞, then

distD(Gn(w),Gn(w0)) → 0 as n → ∞, for all w ∈ D.

Proof For each n ∈ N, let wn = gn(wn−1) and, for n ≥ 0, let Mn : D → D

be a Möbius map satisfying Mn(wn) = 0. Then, for each n ∈ N, the map hn =
Mn ◦ gn ◦ M−1

n−1 is a holomorphic self map of the unit disk and hn(0) = 0. For n ∈ N,
let Hn :=hn ◦ · · · ◦ h1 and notice that Hn(0) = 0. Since Möbius maps are isometries
and Hn = Mn ◦ Gn ◦ M−1

0 , for n ∈ N, we have

distD(0, Hn(M0(w
′
0))) = distD(Hn(0), Hn(M0(w

′
0)))

= distD(Mn ◦ Gn ◦ M−1
0 (0), Mn ◦ Gn ◦ M−1

0 ◦ M0(w
′
0))

= distD(Mn ◦ Gn(w0), Mn ◦ Gn(w
′
0))

= distD(Gn(w0),Gn(w
′
0)) → 0 as n → ∞,

and hence Hn(M0(w
′
0)) → 0 as n → ∞. Since Hn(M0(w

′
0)) = Mn(Gn(w

′
0)) �= 0,

for each n ∈ N, we deduce that when Theorem 2.1 is applied to Hn :=hn ◦ · · · ◦ h1
the conclusion of part (b) of that theorem does not hold. Therefore, Hn(w

′) → 0 as
n → ∞ for all w′ ∈ D. The result now follows since

distD(Gn(w),Gn(w0)) = distD(Hn(M0(w)), Hn(0))

= distD(Hn(M0(w)), 0), for w ∈ D. ��

Theorem 2.1 and Corollary 2.2 will be used in the proof of Theorem A (see
Sect. 3.1).

We now prove several results giving estimates for the rate at which limits tend to
zero in the case when the limit in Theorem 2.1 is identically equal to zero. The results
proven in the remainder of this section will be used in Sect. 3.2 to prove Theorem B,
that is, the subclassification of contracting wandering domains.

We use the following result which includes a generalization of Schwarz’s Lemma.

Lemma 2.3 (Variation of Schwarz’s Lemma) Let ψ : D → D be holomorphic. Then

|ψ(0)| − |w|
1 − |ψ(0)||w| ≤ |ψ(w)| ≤ |ψ(0)| + |w|

1 + |ψ(0)||w| , for w ∈ D.

Proof The right-hand inequality arises from (2.2) and is given in [5, p.217]. We prove
the left-hand inequality using similar methods. First note that it follows from (2.3)
that

distD(0, ψ(w)) ≥ distD(0, ψ(0)) − distD(0, w),
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Classifying simply connected wandering domains 1139

that is,

log
1 + |ψ(w)|
1 − |ψ(w)| ≥ log

1 + |ψ(0)|
1 − |ψ(0)| − log

1 + |w|
1 − |w| .

By the monotonicity of the logarithm, this is equivalent to the following inequality:

1 + |ψ(w)|
1 − |ψ(w)| ≥

(

1 + |ψ(0)|
1 − |ψ(0)|

) (

1 − |w|
1 + |w|

)

,

which gives

|ψ(w)| ≥
(

1+|ψ(0)|
1−|ψ(0)|

) (

1−|w|
1+|w|

)

− 1
(

1+|ψ(0)|
1−|ψ(0)|

) (

1−|w|
1+|w|

)

+ 1
= |ψ(0)| − |w|

1 − |ψ(0)||w| ,

as claimed. ��
We make frequent use of the following corollary of Lemma 2.3.

Corollary 2.4 Let g : D → D be holomorphic with g(0) = 0 and |g′(0)| = λ. Then,
for all w ∈ D,

|w|
(

λ − |w|
1 − λ|w|

)

≤ |g(w)| ≤ |w|
(

λ + |w|
1 + λ|w|

)

Proof The result follows by applying Lemma 2.3 to the holomorphic mapψ : D → D

defined by

ψ(w) = g(w)/w, for w ∈ D \ {0},

with ψ(0) = g′(0). ��
We first use Corollary 2.4 to prove the following result giving rather precise upper

and lower estimates of the rate at which the sequences |Gn(w)| in Theorem 2.1
decrease, expressed in terms of the derivatives |g′

n(0)|. This result can be used to give
a more direct proof of Theorem 2.1; see the remark after the proof of Theorem 2.5.

Theorem 2.5 For each n ∈ N, let gn : D → D be holomorphic with gn(0) = 0 and
|g′

n(0)| = λn = 1 − μn, and let Gn = gn ◦ · · · ◦ g1. If w ∈ D and wn = Gn(w),
n ∈ N, then

(a)

|wn| ≤ |w|
n

∏

k=1

(1 − cwμk), where cw = (1 − |w|)/2; (2.8)
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(b) if |w| ≤ λk , for 1 ≤ k ≤ n, then

|wn| ≥ |w|
n

∏

k=1

(1 − dwμk), where dw = 1 + |w|
1 − |w| . (2.9)

Proof Set w0 = w. We begin the proof of part (a) by noting that it follows from
Corollary 2.4 that, for k ≥ 0 and w ∈ D,

|wk+1| = |gk+1(wk)| ≤ |wk | λk+1 + |wk |
1 + λk+1|wk |

= |wk |
(

1 − μk+1(1 − |wk |)
1 + λk+1|wk |

)

≤ |wk |
(

1 − μk+1(1 − |wk |)
2

)

≤ |wk |(1 − cwμk+1),

where the second inequality follows because λk+1|Gk(w)| < 1 and the last inequality
follows because |wk | = |Gk(w)| ≤ |w| by Schwarz’s Lemma. The result of (2.8) now
follows and this completes the proof of part (a).

We now prove part (b). Using Corollary 2.4 again,

|wk+1| = |gk+1(wk)| ≥ |wk |
(

λk+1 − |wk |
1 − λk+1|wk |

)

. (2.10)

Now we use the elementary calculus estimate that

λ − r

1 − λr
≥ 1 −

(

1 + r

1 − r

)

(1 − λ), for 0 < r < λ ≤ 1,

to deduce from (2.10) that, for k ≥ 0, if |w| ≤ λk+1, then

|wk+1| ≥ |wk |
(

1 −
(

1 + |wk |
1 − |wk |

)

μk+1

)

≥ |wk |
(

1 −
(

1 + |w|
1 − |w|

)

μk+1

)

,

using the fact that |wk | = |Gk(w)| ≤ |w| again. The result of (2.9) now follows and
this completes the proof of part (b). ��
Remark Theorem 2.5 can be used to give a proof of Theorem 2.1. To do so, it is
first necessary to use Hurwitz’ Theorem in order to show that either Gn(w) → 0 as
n → ∞ for all w ∈ D or Gn(w) → 0 as n → ∞ only for those points w ∈ D for
which Gn(w) = 0 eventually.

We now prove another result giving upper estimates for the rate at which the
sequences |Gn(w)| decrease, this time expressed in terms of the average of the deriva-
tives |g′

n(0)|. The proof of this result is also based on Corollary 2.4.
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Theorem 2.6 For each n ∈ N, let gn : D → D be holomorphic with gn(0) = 0 and
|g′

n(0)| = λn = 1 − μn, and let Gn = gn ◦ · · · ◦ g1. Then, for all n ∈ N, if w0 ∈ D

and wn = Gn(w0), for n ∈ N,

|wn| ≤
(

1

n

n
∑

k=1

λk + 1

n

n−1
∑

k=0

|wk |
)n

. (2.11)

Hence

(a) if

lim sup
n→∞

1

n

n
∑

k=1

λk = a < 1,

then, for any c ∈ (a, 1), we have

|Gn(w)| = O(cn) as n → ∞, for w ∈ D;

(b) if

lim
n→∞

1

n

n
∑

k=1

λk = 0,

then

|Gn(w)|1/n → 0 as n → ∞, for w ∈ D.

Proof By using Corollary 2.4, and then applying the fact that the geometric mean of
n positive numbers is at most equal to their arithmetic mean, we see that, for w0 ∈ D

and n ∈ N,

|wn| ≤ |w0|
(

λn + |wn−1|
1 + λn|wn−1|

)

· · ·
(

λ1 + |w0|
1 + λ1|w0|

)

≤ |w0|((λn + |wn−1|) · · · (λ1 + |w0|))
≤ |w0|

(

1

n
((λn + |wn−1|) + · · · + (λ1 + |w0|))

)n

= |w0|
(

1

n

n
∑

k=1

λk + 1

n

n−1
∑

k=0

|wk |
)n

.

This proves (2.11).
Next, if lim supn→∞ 1

n

∑n
k=1 λk = a < 1, then

∑∞
k=1(1 − λk) = ∞ and so it

follows from Theorem 2.1 that wn → 0 as n → ∞ and hence that 1
n

∑n−1
k=0 |wk | → 0

as n → ∞. So, in this case, it follows from (2.11) that

|Gn(w0)|1/n = |wn|1/n ≤ a + o(1) as n → ∞.

The results of parts (a) and (b) now follow. ��
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Theorems 2.5 (a) and 2.6 give uniform upper estimates on the rate that |Gn(w)|
tends to 0, in the situation where

∑∞
n=1(1 − λn) = ∞. It is natural to ask whether

we can demonstrate such a uniform rate if we know the rate at which |Gn(w)| tends
to 0 on some subset of D. It is clear that we cannot deduce any uniform rate at which
Gn(w) → 0 from information about the behaviour of Gn at a single point w0 ∈ D,
since we may have Gn(w0) = 0, for example. However, if we have an upper bound
for |Gn(w)| on some circle {w : |w| = r0}, where 0 < r0 < 1, then we can obtain an
upper bound for |Gn(w)| for all w ∈ D by applying the following simple proposition.

Proposition 2.7 (Hadamard convexity) Let f : D → D be holomorphic and satisfy

| f (w)| ≤ a, for |w| ≤ r0,

where 0 < a ≤ r0 < 1. Then,

| f (w)| ≤ a
log r
log r0 for |w| ≤ r ,

for all r such that r0 ≤ r < 1.

Proof For 0 ≤ r < 1, let

M(r) = M(r , f ):= sup
|z|=r

| f (z)|

denote the maximum modulus function and put

ϕ(t) = logM(et ), for − ∞ < t < 0.

Then ϕ is convex by Hadamard’s Three Circles Theorem [40, page 172], negative and
increasing, and by hypothesis ϕ(log r0) ≤ log a and ϕ(t) ≤ 0 for t < 0. Hence

ϕ(t) ≤
(

log a

log r0

)

t, for log r0 ≤ t < 0;

that is,

logM(r) ≤
(

log a

log r0

)

log r , for r0 ≤ r < 1,

and hence

M(r) ≤ a
log r
log r0 , for r0 ≤ r < 1,

as required. ��
Remark In Proposition 2.7, the circle {w : |w| = r0} can be replaced by any subset of
D of positive logarithmic capacity, using a more delicate argument involving Green
potentials in D. We omit the details.
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3 Contraction trichotomy: Proof of TheoremsA andB

This section is devoted to a classification of simply connected wandering domains
based on hyperbolic distances between orbits of points. More precisely we prove
Theorems A and B andwe also show that lifts of parabolic components are contracting
yet not strongly contracting; (see Theorem 3.4).

The proofs are based on the results fromSect. 2 concerning selfmaps of the unit disk.
We first show how the hyperbolic distances between orbits of points in the wandering
domain compare with the distances between related orbits of points in the unit disk.
We also compare the hyperbolic distortion along an orbit of a point in the wandering
domain with the derivatives of the related maps of the unit disk.

Let f be a transcendental entire functionwith a simply connectedwanderingdomain
U and let Un be the Fatou component containing f n(U0), for n ≥ 0. Note that each
of the domains Un is simply connected; indeed, if some Un is multiply connected,
then by [2, Theorem 3.1], all the Fatou components are bounded, so f is a proper
map between Fatou components and the claim follows from the Riemann–Hurwitz
formula. Although Un = f n(U0) if U0 is bounded, this is not necessarily true in the
case that U0 is unbounded when Un \ f n(U ) may contain one point; see for example
[33].

We prove Theorems A and B by considering a sequence (gn) of holomorphic
self maps of the unit disk associated to f and Un in the following way. Fix a point
z0 ∈ U0 and, for each n ≥ 0, choose ϕn : Un → D to be a Riemann map such that
ϕn( f n(z0)) = 0. Then, for n ∈ N, consider the holomorphic maps gn : D → D

defined as

gn = ϕn ◦ f ◦ ϕ−1
n−1,

and the composite maps Gn : D → D defined as

Gn = gn ◦ · · · ◦ g1 = ϕn ◦ f n ◦ ϕ−1
0 .

Because of the choice of normalization for the Riemann maps we have that gn(0) =
Gn(0) = 0. This setup is illustrated in Fig. 2. Each of the maps gn and Gn is an inner
function, but we do not use this fact in this paper.

Before stating the next theorem, we recall that if f : U → V is a holomorphic map
between two hyperbolic domains U and V , then the hyperbolic distortion of f at z is
defined to be

‖Df (z)‖VU := lim
z′→z

distV ( f (z′), f (z))

distU (z′, z)
.

Lemma 3.1 LetU be a simply connected wandering domain of a transcendental entire
function f and letUn be theFatou component containing f n(U ), for n ≥ 0. Let z0 ∈ U
and let gn,Gn be as defined above.
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D

0

ϕ1 ϕn−1

g2

Gn

D

0. . .

z1
zn−1

f
. . .

f

U0 Un−1

D

0

D

0
g1 gn−1 gn

znz0

ϕ0 ϕn

ff

U1 Un

Fig. 2 Self maps of the unit disk arising from an orbit of wandering domains

(a) If z ∈ U and ϕ0(z) = w, then

distUn ( f
n(z), f n(z0)) = log

(

1 + |Gn(w)|
1 − |Gn(w)|

)

, for n ∈ N.

(b) For each n ∈ N,

λn(z0):=‖Df ( f n−1(z0))‖Un
Un−1

= |g′
n(0)|.

Proof (a) Let n ∈ N. Since Gn = ϕn ◦ f n ◦ ϕ−1
0 and ϕn is conformal, if z ∈ U and

ϕ0(z) = w, then

distUn ( f
n(z), f n(z0)) = distD(Gn(w),Gn(0)) = distD(Gn(w), 0)

= log

(

1 + |Gn(w)|
1 − |Gn(w)|

)

,

where the last equality follows from (2.1).
(b) Let n ∈ N. Since gn = ϕn ◦ f ◦ ϕ−1

n−1 and ϕn is conformal we have

‖Dgn(0)‖DD = ‖Df ( f n−1(z0))‖Un
Un−1

= λn(z0).

123



Classifying simply connected wandering domains 1145

Since gn(0) = 0, it follows from (2.1) that

‖Dgn(0)‖DD = lim
w→0

distD(gn(w), gn(0))

distD(w, 0)
= lim

w→0

distD(gn(w), 0)

distD(w, 0)

= lim
w→0

log
(

1+|gn(w)|
1−|gn(w)|

)

log
(

1+|w|
1−|w|

)

= lim
w→0

2|gn(w)|
2|w| = |g′

n(0)|,

by using the Taylor expansion for the logarithm. ��

3.1 Proof of Theorem A

We now use the results of Sect. 2 together with Lemma 3.1 to prove Theorem A,
that is, the classification of simply connected wandering domains according to the
behaviour of the hyperbolic distances between orbits of points.

LetU be a simply connected wandering domain of a transcendental entire function
f and let Un be the Fatou component containing f n(U ), for n ≥ 0. Also, let

E = {(z, z′) ∈ U ×U : f k(z) = f k(z′) for some k ∈ N}.

Let z0 ∈ U0 and let ϕn, gn,Gn be as defined at the beginning of this section.
First we suppose that there exists z′0 ∈ U0 with

(z′0, z0) /∈ E and distUn ( f
n(z′0), f n(z0)) −→

n→∞ 0. (3.1)

Let w′
0 = ϕ0(z′0). By (3.1) and Lemma 3.1 (a), we have that Gn(w

′
0) −→

n→∞ 0

and Gn(w
′
0) �= 0 for all n ∈ N. Hence by Theorem 2.1 (b) we have that

∑∞
n=1(1 −

λn) = ∞, where λn = |g′
n(0)|, and therefore that Gn(w) −→

n→∞ 0, for all w ∈ D,

by Theorem 2.1 (a). By Lemma 3.1 (a) again, distUn ( f
n(z), f n(z0)) −→

n→∞ 0, for all

z ∈ U0. We conclude that distUn ( f
n(z), f n(z′)) −→

n→∞ 0, for all z, z′ ∈ U0, by the

triangle inequality, which is case (1).
We have shown that (3.1) implies that

∑∞
n=1(1 − λn) = ∞ and that this implies

that U0 is contracting. Thus U0 is contracting if and only if
∑∞

n=1(1 − λn) = ∞,
where

λn = |g′
n(0)| = ‖Df ( f n−1(z0))‖Un

Un−1
= λn(z0), for n ∈ N,

by Lemma 3.1 (b).
Now suppose that there exist z, z′ ∈ U0 and N ∈ N with

distUn ( f
n(z), f n(z′)) = c(z, z′) > 0, for all n ≥ N . (3.2)
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Then, by the Schwarz–Pick Lemma, f : Un → Un+1 is an isometry, for all n ≥ N ,
and so for every pair z, z′ ∈ U0 we have that

distUn ( f
n(z), f n(z′)) = distUN ( f N (z), f N (z′)), for n ≥ N .

Thus, if (z, z′) ∈ (U ×U ) \ E we have that distUn ( f
n(z), f n(z′)) = c(z, z′) > 0 for

all n ≥ N and thatU0 is eventually isometric, which is case (3). In this case, λn(z) = 1
for all z ∈ U0 and for n ≥ N , by the Schwarz–Pick Lemma, as required.

Finally, we show that case (2) is the only other possibility. It follows from the above
proof that, if there exists z′0 ∈ U0 for which neither (3.1) nor (3.2) holds, then the
only possibility is that neither of these conditions hold for any z ∈ U0; that is, U0 is
semi-contracting, which is case (2). This completes the proof of Theorem A.

3.2 Subclassification of contracting wandering domains: Proof of Theorem B

In this subsection we prove Theorem B, which gives sufficient conditions for a simply
connectedwandering domain to be strongly contracting or super-contracting.Weprove
parts (a) and (b) by using the results of Sect. 2 together with Lemma 3.1.

LetU be a simply connected wandering domain of a transcendental entire function
f and let Un denote the Fatou component containing f n(U ), for n ≥ 0. Let z0 ∈ U0
and let gn,Gn be as defined in the beginning of this section.

Also, for n ∈ N, we let λn = λn(z0) = ‖Df ( f n−1(z0))‖Un
Un−1

and note from
Lemma 3.1 (b) that λn = |g′

n(0)|.
To prove part (a), observe that if lim supn→∞ 1

n

∑n
k=1 λk = a < 1, then it follows

from Theorem 2.6 (a) that

|Gn(w)| = O(cn) as n → ∞, for w ∈ D, c ∈ (a, 1).

So, by Lemma 3.1 (a), if we take z ∈ U0 and put w = ϕ0(z), then

distUn ( f
n(z), f n(z0)) = O(cn) as n → ∞, for c ∈ (a, 1).

This proves part (a) of Theorem B.
To prove part (b), we note that, if limn→∞ 1

n

∑n
k=1 λk = 0, then, from Theo-

rem 2.6 (b),

(

distUn ( f
n(z), f n(z0))

)1/n → 0 as n → ∞,

and hence U0 is super-contracting.
To prove part (c) we need to show that, for n ∈ N, z ∈ U0,

lim sup
n→∞

1

n

n
∑

k=1

λk(z) = lim sup
n→∞

1

n

n
∑

k=1

λk, for z ∈ U0. (3.3)
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(Recall that λk = λk(z0).) We begin by supposing that lim supn→∞ 1
n

∑n
k=1 λk =

a < 1 and fix c ∈ (a, 1) and z ∈ U0. From part (a) above, there exists C > 0 such
that

distUk ( f
k(z), f k(z0)) ≤ Cck, for k ∈ N. (3.4)

We now use the following result of Beardon and Minda to obtain a bound on the
difference between λk(z) and λk .

Lemma 3.2 [8, Theorem 11.2] Let U , V be hyperbolic domains and let f : U → V
be holomorphic. Then

distD(‖Df (z)‖VU , ‖Df (w)‖VU ) ≤ 2 distU (z, w), for all z, w ∈ U .

It follows from Lemma 3.2 together with (3.4) that, under our supposition,

distD(λk(z), λk) ≤ 2Cck, for k ∈ N.

Since

distD(λk(z), λk) =
∣

∣

∣

∣

∣

∫ λk (z)

λk

2 dt

1 − t2

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

∫ λk (z)

λk

2 dt

∣

∣

∣

∣

∣

= 2|λk(z) − λk |,

it follows that

|λk(z) − λk | ≤ Cck, for k ∈ N.

So, if lim supn→∞ 1
n

∑n
k=1 λk = a < 1, then

lim sup
n→∞

1

n

n
∑

k=1

λk(z) ≤ lim sup
n→∞

1

n

n
∑

k=1

λk + lim sup
n→∞

C

n

n
∑

k=1

ck

= lim sup
n→∞

1

n

n
∑

k=1

λk = a.

Since the roles of z0 and z are interchangeable, we have shown that (3.3) holds when-
ever lim supn→∞ 1

n

∑n
k=1 λk < 1. The only remaining case is that

lim sup
n→∞

1

n

n
∑

k=1

λk(z) = 1 = lim sup
n→∞

1

n

n
∑

k=1

λk .

This completes the proof of Theorem B.
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3.3 Rate of contraction in parabolic components

It is clear that if a wandering domain U is the lift of an attracting component V , then
U is strongly contracting and, if V is super-attracting, then U is super-contracting.
We end this section by showing that if a wandering domain U occurs as a lift of a
parabolic component, thenU is contracting but not strongly contracting. We need the
following lemma; see [38, p. 157], for example.

Lemma 3.3 If G is a simply connected domain, not the whole complex plane, then for
z, w ∈ G,

distG(z, w) ≥ 1

2
log

(

1 + |z − w|
min{dist(z, ∂G), dist(w, ∂G)}

)

.

We have the following general result about the contraction rate in a parabolic com-
ponent. The estimates in this result are fairly easy to obtain for hyperbolic distances
within a parabolic petal, by using Fatou coordinates, butmore delicate arguments seem
to be needed within a parabolic component. These estimates may be known, but we
are not aware of a reference.

Theorem 3.4 Let V bean invariant parabolic component of ameromorphic function f .
Then, for all z0, z′0 ∈ V , either f m(z0) = f m(z′0) for some m ∈ N or there exist
positive constants k and K depending on z0, z′0 and p, the number of petals, such that

k

n
≤ distV ( f n(z0), f n(z′0)) ≤ K

n
, for n ∈ N. (3.5)

Proof Without loss of generality we assume that 0 is the parabolic fixed point in ∂V
and let p be the number of petals of f at 0. The following proof uses detailed estimates
from the discussion of Abel’s functional equation in [7, pages 110–122] and we start
by summarising this discussion, mainly using the notation from [7].

First, the function f is conformally conjugate near 0 to an analytic function of the
form

F(z) = z − z p+1 + O(z2p+1) as z → 0.

Substitutingw = z−p, z = w−1/p, wherew−1/p denotes the principal root, we obtain

g(w) = 1/
(

F(w−1/p)
)p = w + p + A/w + O(1/w1+1/p) as w → ∞,

for some constant A, from which it follows that there exists a parabola-shaped domain
of the form� = {u+iv : v2 > 4K (K −u)}, K > 0, that is forward invariant under g.
For w ∈ �, we have

gn(w) = np + A

p
log n + un(w), for n ∈ N, (3.6)
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P

F (z) = z − zp+1 + O(z2p+1) g(w) = w + p + A/w + O(1/w1+1/p)

w = z−p

z = w−1/p

0

w0

w′
0

Π

z′
0

z0

Fig. 3 Conjugate orbits: on the left two orbits in P under F and on the right the corresponding orbits in �

under g (in this figure, p = 3)

where the functions un are holomorphic in� and converge locally uniformly on� to a
univalent function u, which satisfies u(g(w)) = u(w)+ p, a form of Abel’s functional
equation.

Now let P denote the petal-shaped domain that corresponds to� under themapping
w �→ w−1/p and which is symmetric with respect to the positive real axis, subtending
an angle of 2π/p at 0. Then P is invariant under F . Let w0, w

′
0 ∈ � be distinct points

and let z0 = w
−1/p
0 , z′0 = (w′

0)
−1/p be the corresponding points in P; see Fig. 3.

It follows from the above properties of the functions un and the univalence of u
that

gn(w′
0) − gn(w0) = un(w

′
0) − un(w0) → u(w′

0) − u(w0) �= 0 as n → ∞. (3.7)

On substituting z = w−1/p wefind that zn = Fn(z0) and z′n = Fn(z′0) both approach 0
tangentially to the positive real axis through P . Moreover, by (3.6),

|zn| = |gn(w0)|−1/p = 1
∣

∣

∣np + A
p log n + un(w0)

∣

∣

∣

1/p ∼ 1

(np)1/p
as n → ∞,

(3.8)

and

|z′n| = |gn(w′
0)|−1/p = 1

∣

∣

∣np + A
p log n + un(w′

0)

∣

∣

∣

1/p ∼ 1

(np)1/p
as n → ∞.

(3.9)
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Also, by (3.6),

gn(w)−1/p = 1

(np)1/p

(

1 − 1

p

(

A log n

np2
− un(w)

np

)

+ O

(

(

log n

n

)2
))

as n → ∞,

so, by (3.7), (3.8) and (3.9),

|zn − z′n| = |gn(w0)
−1/p − gn(w′

0)
−1/p| ∼ |u(w0) − u(w′

0)|
p(np)1+1/p as n → ∞.

(3.10)

Since F is conformally conjugate to f near 0, we deduce that the estimates (3.8),
(3.9) and (3.10) continue to hold if we redefine zn = f n(z0) and z′n = f n(z′0), for
n ∈ N, where z0 and z′0 are redefined to be the corresponding points in the invariant
parabolic component V for f . Without loss of generality, we may suppose that orbits
under f in V also approach 0 tangentially to the positive real axis. Note that V is one
of p distinct invariant parabolic components for f at 0, each containing an invariant
petal-shaped domain subtending an angle of 2π/p at 0.

Therefore, by Lemma 3.3 and the fact that dist(z, ∂V ) ≤ |z|, for z ∈ V , together
with (3.8), (3.9) and (3.10), we have

distV (zn, z
′
n) ≥ 1

2
log

(

1 + |zn − z′n|
min{dist(zn, ∂V ), dist(z′n, ∂V )}

)

≥ 1

2
log

(

1 + |zn − z′n|
min{|zn|, |z′n|}

)

≥ k
1/n1+1/p

1/n1/p
= k

n
, for n ∈ N,

for some positive constant k depending on z0, z′0 and p.
Finally, for n ∈ N, let γn denote the line segment joining zn to z′n . Then, in view of

the fact that zn and z′n approach 0 tangentially to the positive real axis, the line segment
γn , for n sufficiently large, lies in the invariant petal-shaped domain in V . Also, for n
sufficiently large, we have

min{dist(zn, ∂V ), dist(z′n, ∂V )} ≥ 1

2
sin(π/p)|zn|.
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Therefore, by the standard hyperbolic density estimate in a simply connected domain
(see, for example, [17, page 13]), (3.8), (3.9), and the triangle inequality, we have

distV (zn, z
′
n) ≤

∫

γn

ρV (z) |dz|

≤
∫

γn

2

dist(z, ∂V )
|dz|

≤ 2|zn − z′n|
min{dist(zn, ∂V ), dist(z′n, ∂V )} − 1

2 |zn − z′n|

≤ K
1/n1+1/p

1/n1/p
= K

n
,

for some positive constant K depending on z0, z′0 and p, and n sufficiently large.
Finally, we note that, for all pairs of points z0, z′0 ∈ V with disjoint orbits, we have

f n(z0), f n(z′0) ∈ V for n sufficiently large. This completes the proof. ��
Remark Using a more careful analysis of the size of the hyperbolic density in V near
the points zn and z′n we can show that the estimate (3.5) in Theorem 3.4 can be replaced
by

distV ( f n(z0), f n(z′0)) ∼ c

n
as n → ∞,

for some positive constant c depending on z0, z′0 and p. The proof uses results about the
behaviour of any Riemannmap from a sector of angle 2π/p onto V whichmaps 0 to 0,
justified by using standard results about angular derivatives of conformal mappings at
boundary points.

By conformality andDefinition 1.2,wehave the following corollary ofTheorem3.4.

Corollary 3.5 Let U be a simply connected wandering domain that is the lift of an
invariant parabolic component V and let Un be the Fatou component containing
f n(U ), for n ≥ 0. Then, for all z0, z′0 ∈ U, either f m(z0) = f m(z′0) for some m ∈ N

or there exist positive constants k and K depending on z0 and z′0 such that

k

n
≤ distUn ( f

n(z0), f n(z′0)) ≤ K

n
, for n ∈ N.

In particular, U is contracting but not strongly contracting.

Here are two examples of simply connected wandering domains, obtained by lifting
parabolic components, which are contracting but not strongly contracting.

Example 1 Consider the entire functions

f (z) = z + e−z + 2π i, g(z) = z + e−z and F(w) = we−w.
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1152 A. M. Benini et al.

Then both f and g are obtained by lifting F under the exponential function w = e−z .
Since F has an invariant parabolic component associated with the fixed point at 0, the
function g has congruent unbounded invariant Baker domains Un , n ∈ Z, such that
Un ⊂ {z : (2n − 1)π < Im(z) < (2n + 1)π}; see [19,25]. Since J ( f ) = J (g), by
[12], the components Un form a sequence of simply connected wandering domains
which, by Corollary 3.5, are contracting but not strongly contracting.

Example 2 As another example, consider

f (z) = 2z + 1 − ez and F(w) = ew2e−w,

which belongs to the same family (that is, Fλ,d(w) = λ wde−w, λ ∈ C, d ∈ N) as the
example in Fig. 1, both closely related to an example of Bergweiler [11]. In this case,
f is a lift of F under w = ez , and F has an invariant parabolic component associated
with the fixed point at 1 which lifts to congruent, bounded, simply connected Fatou
components, Vn , n ∈ Z, say, of f such that 0 ∈ ∂V0 and

Vn = V0 + 2nπ i, for n ∈ Z, and f (Vn) = V2n, for n ∈ Z.

From this it follows that V2n , n ≥ 1, is a sequence of bounded, escaping, simply
connectedwandering domainswhich, byCorollary 3.5, are contracting but not strongly
contracting (see Fig. 4).

Fig. 4 Left: Dynamical plane of F in Example 2. The super-attracting basin ofw = 0 is shown in light blue,
while in gray we see the parabolic basin of w = 1. Right: Dynamical plane of f . In blue the Baker domain
(lift of the superattracting basin). In black the parabolic invariant basin at z = 0. In gray the wandering
domains. The range is [−9, 9] × [−9, 9] (color figure online)
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Classifying simply connected wandering domains 1153

4 Convergence to the boundary: Proof of Theorem C

In this section we give the proof of Theorem C, the classification of simply connected
wandering domains in terms of whether orbits of points converge to the boundary.
Recall that the Euclidean distance of a point z from the boundary of a hyperbolic
domainU is closely related to the hyperbolic density ρU (z) of the point in the domain.
Indeed, ifU is a simply connected wandering domain of a transcendental entire func-
tion f , Un is the Fatou component containing f n(U ), for n ≥ 0, and z ∈ U0, then by
standard estimates [17, page 13]

dist( f n(z), ∂Un) → 0 ⇐⇒ ρUn ( f
n(z)) → ∞.

We prove Theorem C by considering the hyperbolic densities ρUn ( f
n(z)). In fact,

we show that a trichotomy as in Theorem C occurs if we consider the quantities
anρUn ( f

n(z)), for any sequence an and not just for an = 1. As we mentioned in the
introduction, the issue of convergence to the boundary is somehow delicate in that
it is tightly related to the shape of the wandering domains, and there may be situa-
tions where it is more appropriate to use an alternative definition involving different
sequences an . For example, if the domains Un are shrinking then it may make sense
to say that zn converges to the boundary if anρUn ( f

n(z)) → ∞ as n → ∞ where

an = sup
D

{diam D : D is a disk contained in Un}.

In order to prove Theorem C we need the following lemma, which can be thought
of as a Harnack inequality for hyperbolic density in a simply connected domain; see
[6, Lemma 6.2] for a similar type of result (with a different proof) for hyperbolic
density in the unit disk.

Lemma 4.1 (Estimate of hyperbolic quantities) Let U ⊂ C be a simply connected
domain. Then, for all z, z′ ∈ U,

exp(−2 distU (z, z′)) ≤ ρU (z′)
ρU (z)

≤ exp(2 distU (z, z′)).

Proof Let z, z′ ∈ U and let ϕ : D → U be a Riemann map with ϕ(0) = z and
ϕ(r) = z′, for some r ∈ [0, 1). By conformal invariance of the hyperbolic metric,
together with (2.1),

distU (z, z′) = distD(0, r) = log
1 + r

1 − r
,

and, by the definition of the hyperbolic density on U ,

ρU (z) = ρD(0)/|ϕ′(0)| = 2/|ϕ′(0)|
ρU (z′) = ρD(r)/|ϕ′(r)| = 2

1 − r2

/

|ϕ′(r)|.
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1154 A. M. Benini et al.

Also, by a standard distortion theorem for conformal maps [36, p. 9],

1 − r

(1 + r)3
≤ |ϕ′(r)|

|ϕ′(0)| ≤ 1 + r

(1 − r)3
.

Putting everything together we obtain the lower bound,

ρU (z′)
ρU (z)

= 1

1 − r2
|ϕ′(0)|
|ϕ′(r)| ≥ (1 − r)2

(1 + r)2
= exp(−2 distU (z, z′)),

and the upper bound follows by symmetry. ��
Remark It is easy to check that the inequalities in Lemma 4.1 are sharp in the case
when U is C \ (−∞, 0] and the points z, z′ lie on the positive real axis.

We now prove the main result of this section.

Theorem 4.2 Let U be a simply connected wandering domain of a transcendental
entire function f , let Un be the Fatou component containing f n(U ), for n ≥ 0, and
let (an) be a real positive sequence.

(a) If there is a subsequence nk → ∞ and a point z ∈ U0 such that
ankρUnk

( f nk (z)) → ∞, then the same is true for all other points in U0.
(b) If there is a subsequence mk → ∞ and a point z ∈ U0 such that amkρUmk

( f mk (z))
is bounded, then the same is true for all other points in U0.

Proof (a) Suppose that ankρUnk
( f nk (z)) → ∞ as k → ∞ and let z′ ∈ U0 with

z′ �= z. By the contraction property of the hyperbolic metric, we have that

distUn ( f
n(z), f n(z′)) ≤ distU0(z, z

′) =: C, for n ∈ N.

By Lemma 4.1, ρUn ( f
n(z′)) ≥ e−2CρUn ( f

n(z)), for n ∈ N. Hence

ankρUnk
( f nk (z′)) ≥ e−2CankρUnk

( f nk (z)) → ∞ as k → ∞

(b) Now suppose that amkρUmk
( f mk (z)) ≤ M , for k ∈ N, and let z′ ∈ U0 with z′ �= z.

Again, by the contraction property of the hyperbolic metric, we have that

distUmk
( f mk (z), f mk (z′)) ≤ distU0(z, z

′) =: C .

Now, applying Lemma 4.1 and interchanging z and z′, we obtain that

ρUmk
( f mk (z′)) ≤ e2CρUmk

( f mk (z)),

which implies that

amkρUmk
( f mk (z′)) ≤ e2CamkρUmk

( f mk (z)) ≤ Me2C ,

so amkρUmk
( f mk (z′)) is bounded, for k ∈ N. ��
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Classifying simply connected wandering domains 1155

The result of Theorem C follows from Theorem 4.2, by taking an = 1, for n ≥ 0.

5 Constructing wandering domains

We begin this section with the proof of Theorem D, which we then use together
with an extension of Runge’s Approximation Theorem to prove Theorem 5.3. This
result enables us to construct bounded simply connected wandering domains in which
various different dynamical behaviours can be specified and is the main tool that we
use to construct examples in Sect. 6.

5.1 Proof of Theorem D

Let f be a transcendental entire function and let γn , 	n , nk , Lk , and D be as in
Theorem D; see Fig. 5. It follows from properties (a) and (b) of Theorem D that for
each n,m ∈ N with n �= m the curve γn is in ext γm and so, by property (c) and
Montel’s theorem, there exist Fatou components Un such that

int γn ⊂ Un, for n ≥ 0. (5.1)

Notice that, a priori, the components Un need not be different from each other. One
of our goals is to show that they are indeed different, by proving thatUn ⊂ int 	n , for
n ≥ 0.

By property (e), the domain D must contain an attracting fixed point and so it is
contained in an attracting Fatou component, say V . It then follows by property (e) that
for all k ≥ 0 the set Lk is contained in a union of Fatou components, Vk say, that maps
into V . As above, notice that the Vk’s may all be the same component. Since for every
n we have that D ⊂ ext 	n while γn ⊂ int 	n , we deduce that U0 is not in the grand

f f f f

C0

C1
Cnk

Cnk+1

Γ0

L0
Lk

Γ1 Γnk

Γnk+1

γ0 γ1
γnk

γnk+1

D

Fig. 5 Sketch of the setup of the proof of Theorem D
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orbit of V and hence that
⋃

n≥0Un ∩ ⋃

k≥0 Vk = ∅. Therefore

dist(z′, ∂Unk ) < δk :=max{dist(z, Lk) : z ∈ 	nk }, for all z′ ∈ 	nk ∩Unk . (5.2)

Note that Un is simply connected for n ≥ 0. Indeed, if Un is multiply connected for
some n ≥ 0, then it is awandering domain and by [13, Theorem1.2] there exists N > 0
such that f k(int γn) contains an annulus A(rk, Rk) for all k ≥ N with Rk/rk → ∞
as k → ∞. It follows by property (c) that A(rk, Rk) is contained in int γn+k and this
contradicts property (b). So Un must be simply connected for n ≥ 0.

We now show that Un ⊂ int 	n , for n ≥ 0, using proof by contradiction. If there
exists m ≥ 0 for which Um is not a subset of int 	m , then it follows from (5.1) and
property (a) that Um ∩ 	m �= ∅ and so we can take zm ∈ int γm and z′m ∈ Um ∩ 	m ,
and join them by a compact curve Cm ⊂ (Um ∩ int 	m).

Then, by properties (c) and (d), we can choose simple curves Cn , n ≥ m, such
that Cn ⊂ f n−m(Cm) ⊂ (Un ∩ int 	n) and also Cn joins zn := f n−m(zm)∈ int γn to a
point z′n ∈ 	n ∩ f n−m(Cm) ⊂ Un , while Cn lies in int 	n . Such a curve Cn must also
intersect γn . Then, on the one hand, since Cn ⊂ f n−m(Cm) and f n−m : Um → Un is
a hyperbolic contraction, we have that

lengthUn
Cn ≤ lengthUn

f n−m(Cm) ≤ lengthUm
Cm < ∞, (5.3)

for all n ≥ m. On the other hand, by Lemma 3.3 and (5.2), for nk ≥ m, we have

lengthUnk
Cnk ≥ distUnk

(znk , z
′
nk )

≥ 1

2
log

(

1 + |znk − z′nk |
min{dist(znk , ∂Unk ), dist(z

′
nk , ∂Unk )}

)

≥ 1

2
log

(

1 + |znk − z′nk |
dist(z′nk , ∂Unk )

)

≥ 1

2
log

(

1 + dist(γnk , 	nk )

δk

)

.

By property (f), this quantity tends to infinity as k → ∞, which contradicts (5.3),
so Um ⊂ int 	m and hence Um is a bounded wandering domain by property (b).

Finally, suppose that, for some n ≥ 0, there exists zn ∈ int γn such that both f (γn)
and f (	n) wind dn times round f (zn). Since f (	n) winds dn times around f (zn),
we deduce that f takes the value f (zn) exactly dn times in int 	n . Similarly, f takes
the value f (zn) exactly dn times in int γn . Hence f takes the value f (zn) exactly dn
times in Un . Since Un is a bounded Fatou component, f : Un → Un+1 is a proper
map; since the above argument holds for a neighbourhood of f (zn), we deduce that
the degree of f on Un is equal to dn .
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5.2 Main construction result

In the proof of our main construction result, Theorem 5.3 below, we use the following
extension of the main lemma in [21], which is a strong version of the well-known
Runge’s Approximation Theorem.

Lemma 5.1 (Approximating on infinitely many compact sets) Let (En) be a sequence
of compact subsets of C with the following properties:

(i) C \ En is connected, for n ≥ 0;
(ii) En ∩ Em = ∅, for n �= m;
(iii) min{|z| : z ∈ En} → ∞ as n → ∞.

Suppose ψ is holomorphic on E = ⋃∞
n=0 En and j ∈ N. For n ≥ 0, let εn > 0 and

let zn,i ∈ En, 1 ≤ i ≤ j . Then there exists an entire function f satisfying, for n ≥ 0,

| f (z) − ψ(z)| < εn, for z ∈ En; (5.4)

f (zn,i ) = ψ(zn,i ), f ′(zn,i ) = ψ ′(zn,i ), for 1 ≤ i ≤ j . (5.5)

Themain lemma in [21] allows for one point zn in every compact set at which f and f ′
can be specified, but its proof can easily be modified to hold for finitely many points
in every En , as stated above.

The following lemma will also be used in the proof of Theorem 5.3.

Lemma 5.2 (Hyperbolic distance on disks) Suppose that 0 < s < r < 1 < R and
set

c(s, R) = 1 − s2

R − s2/R
, Dr = D(0, r) and DR = D(0, R).

If |z|, |w| ≤ s, then

distDR (z, w) = distD(z/R, w/R) ≥ c(s, R) distD(z, w), (5.6)

and

distDr (z, w) = distD(z/r , w/r) ≤ 1

c(s/r , 1/r)
distD(z, w). (5.7)

Also, 0 < c(s, R) < 1 and if the variables s, r and R satisfy in addition

1 − r = o(1 − s) as s → 1 and R − 1 = O(1 − r) as r → 1, (5.8)

then

c(s, R) → 1 as s → 1, (5.9)

and
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c (s/r , 1/r) → 1 as s → 1. (5.10)

Proof Suppose that 0 < s < r < 1 < R and take z, w ∈ D with |z|, |w| ≤ s. Let γ

be the hyperbolic geodesic in D joining z/R to w/R. Then

distD(z/R, w/R) =
∫

γ

2 |dt |
1 − |t |2 .

Now substitute ζ = Rt , t ∈ D, so |dζ | = R|dt |. Also let Rγ :={Rz : z ∈ γ }. Since
R > 1, we have

distD(z/R, w/R) = 1

R

∫

Rγ

2 |dζ |
1 − |ζ |2/R2 = R

∫

Rγ

2 |dζ |
R2 − |ζ |2 .

Now for ζ ∈ Rγ we have |ζ | ≤ s, so

R2 − |ζ |2
1 − |ζ |2 ≤ R2 − s2

1 − s2
, for ζ ∈ Rγ.

Hence

distD(z/R, w/R) = R
∫

Rγ

2 |dζ |
R2 − |ζ |2 ≥ R(1 − s2)

R2 − s2

∫

Rγ

2 |dζ |
1 − |ζ |2 ≥ c(s, R) distD(z, w),

since

distD(z, w) = min

{∫

γ ′
2 |dζ |
1 − |ζ |2 : for all paths γ ′ joining z to w in D

}

.

This proves (5.6).
Next,

distDr (z, w) = distD(z/r , w/r) and
∣

∣

∣

z

r

∣

∣

∣ ,

∣

∣

∣

w

r

∣

∣

∣ ≤ s

r
< 1.

Hence, by (5.6), with s, r and R replaced by s/r , 1 and 1/r , respectively, and z, w
replaced by z/r and w/r , respectively, we obtain

distD(z/r , w/r) ≤ 1

c(s/r , 1/r)
distD1/r (z/r , w/r) = 1

c(s/r , 1/r)
distD(z, w).

This proves (5.7).
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It is clear that 0 < c(s, R) < 1 since 0 < s < 1 < R. Finally, suppose that (5.8)
holds. Then R − 1 = O(1 − r) = o(1 − s) as s → 1 and hence

c(s, R) = R(1 − s)(1 + s)

(R − s)(R + s)
= R(1 − s)

1 − s + o(1 − s)

1 + s

R + s
→ 1 as s → 1,

and

c(s/r , 1/r) = (r − s)(1 + s/r)

(1 − s)(1 + s)
= 1 − s + o(1 − s)

1 − s

1 + s/r

1 + s
→ 1 as s → 1,

which give (5.9) and (5.10). ��
We now give our main construction result, which we use in Sect. 6 to construct

examples. In these examples, we shall prescribe the orbits of at most two points
z1, z2 ∈ D(0, r0), although the result below allows us to prescribe the orbits of any
finite number of points in D(0, r0).

Theorem 5.3 (Main construction) Let bn, n ∈ N, be a sequence of Blaschke products
of corresponding degrees dn ≥ 1 and let Tn, n ≥ 0, be the sequence of translations
z �→ z + 4n and Dn, n ≥ 0, be the sequence of disks Dn = {z : |z − 4n| < 1}.
Suppose also that j ∈ N and zi ∈ D0, 1 ≤ i ≤ j . Then there exists a transcendental
entire function f having an orbit of bounded, simply connected, escaping, wandering
domains Un such that, for n ≥ 0,

(i) �′
n :=D(4n, rn) ⊂ Un ⊂ D(4n, Rn)=:�n, for some sequences (rn) and (Rn) such

that 0 < rn < 1 < Rn and rn, Rn → 1 as n → ∞;
(ii) fn+1:=Tn+1 ◦ bn+1 ◦ T−1

n is holomorphic on �n, and | f (z) − fn+1(z)| → 0
uniformly on �n as n → ∞;

(iii) f n(zi ) = Fn(zi ) and f ′(( f n)(zi )) = f ′
n+1(Fn(zi )), 1 ≤ i ≤ j , where Fn =

fn ◦ · · · ◦ f1;
(iv) f : Un → Un+1 has degree dn+1.

Finally, if z, z′ ∈ D(0, r0), then we have

kn distDn ( f
n(z), f n(z′)) ≤ distUn ( f

n(z), f n(z′)) ≤ Kn distDn ( f
n(z), f n(z′)),

(5.11)

for some sequences (kn) and (Kn) such that 0 < kn < 1 < Kn and kn, Kn → 1 as
n → ∞.

Proof For n ≥ 0, let

bn(z) = eiθn
dn
∏

j=1

z + an, j

1 + an, j z
,

where an, j ∈ D are not necessarily different from each other, and θn ∈ [0, 2π).
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0 4 4(n − 1) 4n

Δ0

L0
L1 Ln−1 LnΔ1

Δ′
n−1

Δn

Δ′
0 Δ′

1

Δn−1

Δ′
n

f1 f2 fn−1 fn

Fn

Fig. 6 Sketch of the setup of Theorem 5.3. In green, the disks Dn centred at 4n. In blue, the boundaries
of the disks of radii rn and Rn in between which lie the boundaries of the wandering domains. In red, the
curves Ln introduced in the proof (color figure online)

We first define the increasing sequence (rn) and the decreasing sequence (Rn)

inductively. These sequences determine the following circles which play a key role in
the proof (see Fig. 6):

γn = {z : |z − 4n| = rn} and 	n = {z : |z − 4n| = Rn}. (5.12)

First, take R0 ∈ (1, 3/2) such that R0 < 1/max j {|a1, j |}}, which ensures that b1 is
holomorphic inside 	0 and in a neighborhood of 	0, and take r0 ∈ (1/2, 1) such that
r0 > maxi |zi | and also such that b1(z) = w has exactly d1 solutions in D(0, r0) for
w ∈ D(0, 1/2). Now assume that rk, Rk have been chosen for k = 0, · · · , n − 1, for
some n ∈ N. We choose rn and Rn so that the following statements all hold:

0 < 1 − rn ≤ min

{

1 − rn−1

2
, dist( fn(γn−1), ∂Dn)

2
}

; (5.13)

fn+1(γn) winds exactly dn+1 times roundD(4n, 1/2); (5.14)

0 < Rn − 1 ≤
min

{

Rn−1 − 1

2
, 1 − rn,

1

2
dist( fn(	n−1), ∂Dn),

1

max j {|an+1, j |} − 1

}

.

(5.15)

These properties prescribe the values rn and Rn , and hence the circles γn and 	n . In
particular, by (5.13) and (5.15), the sequence (rn) increases to 1 and the sequence (Rn)

decreases to 1, and the maps fn+1, n ≥ 0, defined in property (ii), satisfy

γn+1 surrounds fn+1(γn), (5.16)

fn+1(	n) surrounds 	n+1. (5.17)

Our aim is to use Lemma 5.1 to approximate all the maps fn by a single entire function
f such that, for n ≥ 0, γn+1 surrounds f (γn) and f (	n) surrounds 	n+1.
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We first define

δn = Rn − rn, for n ≥ 0, (5.18)

and observe that δn → 0 as n → ∞.
We then define Ln , n ≥ 0, to be the curve

Ln :={z : |z − 4n| = Rn + δ2n/2, | arg(z)| ≤ π − δ2n}, (5.19)

so

max{dist(z, Ln) : z ∈ 	n} ≤ 2δ2n, for n ≥ 0, (5.20)

and define the error quantities

εn = min

{

1

4
dist( fn(γn−1), ∂Dn),

1

4
dist( fn(	n−1), ∂Dn), δn/4

}

> 0, (5.21)

for n ≥ 1. Since 0 < εn ≤ δn/4, we have that εn < δ0/4 < 1/4, n ≥ 1, and εn → 0
as n → ∞.

We now apply Lemma 5.1 to the sets E0 = D(−4, 1) and E2k+1 = Lk , E2k+2 =
�k , for k ≥ 0, with the function ψ defined by

ψ(z) =
⎧

⎨

⎩

−4, if z ∈ D(−4, 1),
−4, if z ∈ Ln, n ≥ 0,
fn+1(z), if z ∈ �n, n ≥ 0.

Lemma 5.1 allows us to choose finitely many points zn,i , 1 ≤ i ≤ j , in each set En

where we do the approximation. The choice of these points in D(−4, 1) ∪ ⋃∞
k=0 Lk

plays no role in our argument. In E2 = �0 we choose z2,i = zi ∈ D0, 1 ≤ i ≤ j , and in
E2k+2 = �k , k ≥ 1, we choose z2k+2,i = Fk(zi ), 1 ≤ i ≤ j , where Fk = fk ◦· · ·◦ f1.

It then follows from Lemma 5.1 that there exists an entire function f such that, for
n ≥ 0,

| f (z) − fn+1(z)| < εn+1, for z ∈ �n; (5.22)

| f (z) + 4| ≤ 1/2, for z ∈ Ln; (5.23)

| f (z) + 4| ≤ 1/2, for z ∈ D(−4, 1); (5.24)

f n(zi ) = Fn(zi ), for 1 ≤ i ≤ j; (5.25)

f ′(( f n)(zi )) = f ′(Fn(zi )) = f ′
n+1(Fn(zi )), for 1 ≤ i ≤ j . (5.26)

It follows from (5.13), (5.15), (5.22) and (5.21) that, for n ≥ 0,

γn+1 surrounds f (γn) (which surrounds the point 4(n + 1)); (5.27)

f (	n) surrounds 	n+1. (5.28)
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We now apply Theorem D to the Jordan curves γn , 	n , n ≥ 0, the compact curves
Ln , n ≥ 0, and the bounded domain D = D(−4, 1) ⊂ E0, noting that these sets
satisfy the required hypotheses. Indeed, the hypotheses (a) and (b) are clearly true, (c)
follows from (5.27), (d) follows from (5.28), (e) holds by (5.23) and (5.24), and (f)
holds by (5.18) and (5.20).

Part (i) of our result now follows from Theorem D, part (ii) is true by construction,
and part (iii) follows from (5.25) and (5.26). We now show that part (iv) holds.

By (5.21) and (5.22), we canwrite f (z) = fn+1(z)+en+1(z) for some holomorphic
map en+1(z) which satisfies |en+1(z)| < 1/4, for z ∈ �n .

By (5.14), we have

| fn+1(z) − 4(n + 1)| ≥ 1/2, for z ∈ γn = ∂�′
n .

It follows from this together with the fact that |en+1(z)| < 1/4, for z ∈ �n and (5.14)
that

| f (z) − 4(n + 1)| ≥ 1/4, for z ∈ γn, (5.29)

and f (γn) winds exactly dn+1 times around 4(n + 1), so f takes the value 4(n + 1)
exactly dn+1 times in�′

n . Similarly, by (5.14), (5.21) and (5.22), f (	n)winds exactly
dn+1 times around 4(n + 1), so f takes the value 4(n + 1) exactly dn+1 times in �n .
Therefore, by the final statement of Theorem D, f : Un → Un+1 has degree dn+1.

It remains to prove the double inequality (5.11), which compares the hyperbolic
distances inUn betweenpoints of twoorbits under f with the correspondinghyperbolic
distances in the disks Dn . To do this, we let sn :=1− 3

4 dist( fn(γn−1), ∂Dn), for n ≥ 1,
and note that, if z, z′ ∈ D(0, r0), then

f n(z), f n(z′) ∈ D(4n, sn) ⊂ �′
n, for n ∈ N,

by (5.16), (5.21) and (5.22).
Now 1− rn = o(1− sn) as n → ∞, by (5.13), and Rn − 1 ≤ 1− rn , by (5.15), so

the properties (5.8) hold for the sequences (sn), (rn) and (Rn). Also,

dist�n ( f
n(z), f n(z′)) ≤ distUn ( f

n(z), f n(z′)) ≤ dist�′
n
( f n(z), f n(z′)),

since �′
n ⊂ Dn ⊂ �n . Therefore, we deduce from Lemma 5.2 that

c(sn, Rn) distDn ( f
n(z), f n(z′)) ≤ distUn ( f

n(z), f n(z′))

≤ 1

c(sn/rn, 1/rn)
distDn ( f

n(z), f n(z′))

and

c(sn, Rn) → 1 as n → ∞, c(sn/rn, 1/rn) → 1 as n → ∞,

which gives (5.11). ��
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D0 D1 Dn−1 Dn

f1 f2 fn−1 fn

Fn

Tn

Bn

Fig. 7 The maps fn , Bn , Tn

6 Examples: Proof of Theorem E

In this section we construct the examples described in Theorem E. In every case we
use Theorem 5.3 and the notation there. Hence (bn) denotes the sequence of Blaschke
products of degree dn ≥ 1; (Tn) the sequence of real translations z �→ z + 4n; and
(Dn) the sequence of disks Dn = {z : |z − 4n| < 1}, n ≥ 0. Moreover, for n ∈ N, we
set Bn = bn ◦ · · · ◦ b1, fn = Tn ◦ bn ◦ T−1

n−1, and Fn = fn ◦ · · · ◦ f1, so Fn = Tn ◦ Bn ;
see Fig. 7.

6.1 Preliminary lemmas

We first prove two lemmas that will be used in the constructions.

Lemma 6.1 Let f be a transcendental entire function with an orbit of bounded, simply
connected, wandering domains Un, n ≥ 0, arising from Theorem 5.3, with Blaschke
products bn and associated functions Bn and Fn such that f n(0) = Fn(0), for n ∈ N.
Then, we have the following cases.

(a) If Bn(0) → 0 as n → ∞, then, for all z ∈ U0,

lim inf
n→∞ dist( f n(z), ∂Un) > 0,

that is, all orbits stay away from the boundary.
(b) If there exists a subsequence nk → ∞ with Bnk (0) → 1 and a different subse-

quence mk → ∞ with Bmk (0) → 0, then dist( f nk (z), ∂Unk ) → 0 for all z ∈ U0,
while

lim inf
k→∞ dist( f mk (z), ∂Umk ) > 0, for all z ∈ U0.

(c) If Bn(0) → 1 as n → ∞, then dist( f n(z), ∂Un) → 0 for all z ∈ U0, that is, all
orbits converge to the boundary.
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Proof It follows from Theorem C that all points in a simply connected wandering
domain have the same limiting behaviour in relation to the boundary and so, in each
case, it is sufficient to find just one point whose orbit behaves as required. We choose
this point to be 0 ∈ U0.

If Bn(0) → 0 as n → ∞ then

f n(0) − 4n = Fn(0) − 4n → 0 as n → ∞

and so, by Theorem 5.3 part (i), we have

lim inf
n→∞ dist( f n(0), ∂Un) = 1 > 0,

which is sufficient to prove part (a).
If Bn(0) → 1 as n → ∞ then

f n(0) − (4n + 1) = Fn(0) − (4n + 1) → 0 as n → ∞

and so, by Theorem 5.3 part (i), we have

dist( f n(0), ∂Un) → 0 as n → ∞,

which is sufficient to prove part (c).
The proof of part (b) follows in a similar way. ��
In some of our constructions we use the following properties about a specific family

of Blaschke products of degree 2.

Lemma 6.2 Let b(z) =
(

z+a
1+az

)2
, where 1/3 ≤ a < 1, and let 0 < r < s < 1. Then

(a) the function b has a fixed point at 1, which is attracting if a > 1/3 and parabolic
if a = 1/3, and bn(r) → 1 as n → ∞ for all a ≥ 1/3;

(b) distD(bn(r), bn(s)) � 0 as n → ∞ if a > 1/3;
(c) distD(bn(r), bn+1(r)) = O(1/n) as n → ∞ if a = 1/3.

Proof The proof of part (a) is straightforward.
For part (b) note first that

distD(bn(r), bn(s)) =
∫ bn(s)

bn(r)

2 dt

1 − t2
≥

∫ bn(s)

bn(r)

dt

1 − t
= log

1 − bn(r)

1 − bn(s)
. (6.1)

Also, since 1 is an attracting fixed point of b when a > 1/3, there exist λ ∈ (0, 1)
and d > c > 0 such that 1 − bn(r) ∼ dλn and 1 − bn(s) ∼ cλn as n → ∞. Hence,
by (6.1),

lim
n→∞ distD((bn(r), bn(s)) ≥ log

d

c
> 0.
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For part (c), we need only note that 1 is a parabolic fixed point of the function b in
this case and that D is an associated Fatou component of b, so the required estimate
follows from Theorem 3.4 by taking V = D, z0 = r and z′0 = b(r). ��

6.2 The nine types of simply connected wandering domains

We now prove part (a) of Theorem E by constructing examples corresponding to each
of the nine cases given in Theorems A and C. The following maps will play key roles
in the constructions:

b(z) =
(

z + a

1 + az

)2

, for 1/3 ≤ a < 1,

μn(z) = z + an
1 + anz

and μ̃n(z) = z − a2n
1 − a2n z

, for n ∈ N, (6.2)

where an ∈ (0, 1) is an arbitrary sequence satisfying an → 1 as n → ∞.
Examples 1, 2 and 3, which follow, correspond to the three cases of Theorem A.

Within each of them we give three functions, corresponding to the three cases of
Theorem C.

Example 1 (Three contractingwanderingdomains) For eachof the cases (a), (b) and (c)
of Theorem C, there exists a transcendental entire function f having an orbit of
bounded, simply connected, escaping contracting wandering domains Un , n ≥ 0,
with the stated behaviour:

(a) for all z ∈ U0,

lim inf
n→∞ dist( f n(z), ∂Un) > 0,

that is, all orbits stay away from the boundary;
(b) there exists a subsequence nk → ∞ for which dist( f nk (z), ∂Unk ) → 0 for all

z ∈ U , while for a different subsequence mk → ∞ we have that

lim inf
k→∞ dist( f mk (z), ∂Umk ) > 0, for z ∈ U0;

(c) dist( f n(z), ∂Un) → 0 for all z ∈ U0, that is, all orbits converge to the boundary.

Proof (a) Let bn(z) = z2, for n ∈ N, and apply Theorem 5.3 with the points z1 = 0
and z2 = 1/2. For n ∈ N, we have

distDn ( f
n(0), f n(1/2)) = distD(Fn(0), Fn(1/2))

= distD(Bn(0), Bn(1/2))

= distD(0, 1/22
n
) → 0 as n → ∞.

It follows from (5.11) that

distUn ( f
n(0), f n(1/2)) → 0 as n → ∞.
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By Theorem A, this is sufficient to show that U0 is contracting. Since Bn(0) = 0, for
n ∈ N, the result now follows from case (a) of Lemma 6.1.

(b) In this case, for n ∈ N, we let

bn(z) =

⎧

⎪

⎨

⎪

⎩

z2 if n = 3k − 2, k ≥ 1,

μk(z), if n = 3k − 1, k ≥ 1,

μ−1
k (z), if n = 3k, k ≥ 1,

where μk is as defined in (6.2). As in case (a), we apply Theorem 5.3 with z1 = 0 and
z2 = 1/2. For k ∈ N, we have

distD3k ( f
3k(0), f 3k(1/2)) = distD(F3k(0), F3k(1/2))

= distD(B3k(0), B3k(1/2))

= distD(0, 1/22
k
) → 0 as k → ∞.

As in case (a), this is sufficient to show that U0 is contracting. Since B3k(0) = 0, for
k ∈ N, and B3k−1(0) = a3k−1 → 1 as k → ∞, the conclusion now follows from
case (b) of Lemma 6.1.

(c) In this case we let bn(z) = b(z) =
(

z+1/3
1+z/3

)2
, for n ∈ N, and we apply

Theorem 5.3 with z1 = 0 and z2 = b(0). For n ∈ N, we have

distDn ( f
n(0), f n(b(0))) = distD(Fn(0), Fn(b(0)))

= distD(Bn(0), Bn(b(0)))

= distD(bn(0), bn+1(0)) → 0 as n → ∞,

by Lemma 6.2(c). As before, this is sufficient to show that U0 is contracting. It also
follows from Lemma 6.2(a) that Bn(0) = bn(0) → 1 as n → ∞ and the result now
follows from case (c) of Lemma 6.1 ��
Remark Cases (a) and (b) of Example 1 are in fact super-contracting (see Definition
1.2).

Example 2 (Three semi-contracting wandering domains) For each of the cases (a), (b)
and (c) of Theorem C, there exists a transcendental entire function f having an orbit
of bounded, simply connected, escaping, semi-contracting, wandering domains Un ,
n ≥ 0, with the stated behaviour.

Proof (a) In this case we let bn(z) = μ̃n((μn(z))2), for n ∈ N, where μn and μ̃n are
as defined in (6.2). We apply Theorem 5.3 with the points z1 = 0 and z2 = 1/2.

A calculation shows that, for n ∈ N, we have bn(0) = 0 and b′
n(0) = 2an

1+a2n
→ 1 as

n → ∞. Hence we can choose (an) so that, in addition,

∞
∑

n=1

(1 − b′
n(0)) < ∞. (6.3)
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It follows from Theorem 2.1(b) that Bn(1/2) � 0 as n → ∞. Thus

distDn ( f
n(0), f n(1/2)) = distD(Fn(0), Fn(1/2))

= distD(Bn(0), Bn(1/2))

= distD(0, Bn(1/2)) � 0 as n → ∞.

It follows from (5.11) that

distUn ( f
n(0), f n(1/2)) � 0 as n → ∞,

and soU0 is not contracting. Also, for n ∈ N, the Blaschke product bn has degree 2 and
so, by Theorem 5.3 part (iv), f : Un−1 → Un has degree 2. ThusU0 is not eventually
isometric and so it follows from Theorem A that U0 is semi-contracting.

Since Bn(0) = 0, for n ∈ N, the result now follows from case (a) of Lemma 6.1.
(b) In this case, for n ∈ N, we let

bn(z) =

⎧

⎪

⎨

⎪

⎩

μk(z), if n = 3k − 2, k ≥ 1,

z2, if n = 3k − 1, k ≥ 1,

μ̃k(z), if n = 3k, k ≥ 1,

where μk and μ̃k are as defined in (6.2). Note the similarity to case (a), where each
Blaschke product bn was defined to be the composite of the three maps above.

As in case (a), we apply Theorem 5.3 with z1 = 0 and z2 = 1/2. Using similar
arguments to those used in part (a), we can choose (an) such that

distU3k ( f
3k(0), f 3k(1/2)) � 0 as k → ∞,

and soU0 is not contracting. Also, for k ∈ N, the Blaschke product b3k−1 has degree 2
and so, by Theorem 5.3 part (iv), f : U3k−2 → U3k−1 has degree 2. Thus U0 is not
eventually isometric and so it follows from Theorem A that U0 is semi-contracting.

Since B3k(0) = 0, for k ∈ N, and B3k−2(0) = a3k−2 → 1 as k → ∞, the
conclusion now follows from case (b) of Lemma 6.1.

(c) In this case we choose a > 1/3 and let bn(z) = b(z) =
(

z+a
1+az

)2
, for n ∈ N.

As in Example 1(c), we apply Theorem 5.3 with z1 = 0 and z2 = b(0). For n ∈ N,
we have

distDn ( f
n(0), f n(b(0))) = distD(Fn(0), Fn(b(0)))

= distD(Bn(0), Bn(b(0)))

= distD(bn(0), bn+1(0)) � 0 as n → ∞,

byLemma6.2(b). Arguing as above, this is sufficient to show thatU0 is not contracting.
Also, for n ∈ N, the Blaschke product bn has degree 2 and so, as above, it follows that
U0 is not eventually isometric. Hence, by Theorem A, it is semi-contracting.
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It also follows from Lemma 6.2(a) that Bn(0) = bn(0) → 1 as n → ∞ and the
result now follows from case (c) of Lemma 6.1. ��
Example 3 (Three eventually isometric wandering domains) For each of the cases (a),
(b) and (c) of TheoremC, there exists a transcendental entire function f having an orbit
of bounded, simply connected, escaping, eventually isometric, wandering domainsUn ,
n ≥ 0, with the stated behaviour.

Proof (a) In this case we let bn(z) = z, for n ∈ N, and apply Theorem 5.3 with z1 = 0.
For n ∈ N, the map bn is univalent and so, by Theorem 5.3 part (iv), f : Un−1 → Un

is also univalent. Thus U0 is eventually isometric.
Since Bn(0) = 0, for n ∈ N, the result now follows from case (a) of Lemma 6.1.
(b) In this case, for n ∈ N, we let

bn(z) =
{

μk(z), if n = 2k − 1, k ≥ 1,

μ−1
k (z), if n = 2k, k ≥ 1,

where μk is as defined in (6.2). We apply Theorem 5.3 with z1 = 0. For n ∈ N, the
map bn is univalent and so, as in case (a), U0 is eventually isometric.

Since B2k(0) = 0, for k ∈ N, and B2k−1(0) = a2k−1 → 1 as k → ∞, the
conclusion now follows from case (b) of Lemma 6.1.

(c) In this case, for n ∈ N, we let bn(z) = z+1/2
1+z/2 . As in cases (a) and (b), we

apply Theorem 5.3 with z1 = 0 and, since the map bn is univalent, for n ∈ N, we
deduce that U0 is eventually isometric. Since bn(x) > x , for x ∈ [0, 1), we deduce
that Bn(0) → 1 as n → ∞. The conclusion now follows from case (c) of Lemma 6.1.

��

6.3 2−super-attracting wandering domains

We prove part (b) of Theorem E by giving an example of a transcendental entire
function with an orbit of wandering domains (Un) containing two orbits consisting of
critical points. The case of finitely many critical orbits is completely analogous.

We choose the sequence of Blaschke products (bn). We let

b1(z) = z2
z + a1
1 + a1z

,

with a1 < 0 chosen so that 1/2 is a critical point, and, for n ∈ N define bn inductively
by setting

bn+1(z) = z2
z + an+1

1 + an+1z
,

with an+1 ∈ (−1, 1) chosen so that bn ◦bn−1 ◦ · · · ◦b1(1/2) is a critical point of bn+1.
In this way we construct a sequence of Blaschke products (bn) of degree 3 such that,
for n ∈ N, we have bn(0) = 0 and the two critical points of bn are 0, Bn−1(1/2).
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Wenow apply Theorem 5.3with z1 = 0 and z2 = 1/2.We deduce that there exists a
transcendental entire function f which has a sequence of bounded, simply connected,
escaping, wandering domains (Un) such that, for n ≥ 0, f n(0) = Fn(0) = 4n,
f n(1/2) = Fn(1/2) and f ′( f n(0)) = f ′( f n(1/2)) = 0. Hence, there are two points
in U0, namely 0 and 1/2, whose orbits under f consist of critical points of f .

Remark It follows from Theorem B that these wandering domains are super-
contracting and so, in particular, distUn ( f

n(0), f n(1/2)) → 0 as n → ∞.

7 Wandering domains whose boundaries are Jordan curves

In this section we prove that, if the Blaschke products in Theorem 5.3 satisfy certain
conditions, then the boundaries of the resulting wandering domains are Jordan curves.
Apart from wandering domains arising from lifting constructions, as far as we are
aware these are the first examples of simply connected wandering domains for which
it is possible to obtain information concerning the boundary. Examples of multiply
connected wandering domains for which it is known that connected components of
the boundary are Jordan curves can be found in [15] and in [4].

In order for the boundaries of the resulting wandering domains to be Jordan curves,
we need the Blaschke products in Theorem 5.3 to be uniformly expanding in the
following precise sense.

Definition 7.1 (Uniformly expanding Blaschke products) Let bn , n ∈ N, be a sequence
of Blaschke products. We say that the Blaschke products in the sequence (bn) are
uniformly expanding if there exists ξ > 1 and an ε-neighborhoodUε of the unit circle
such that, for all n ∈ N,

1. bn is holomorphic in Uε, that is, bn has no poles in Uε;
2. |b′

n| ≥ ξ on Uε.

Note that the second condition implies that the functions bn have no critical points in
Uε.

Our aim for this section is to prove the following theorem.

Theorem 7.2 Let bn, n ∈ N, be a sequence of uniformly expanding Blaschke products
such that maxn{deg bn} < ∞ and let Un, n ≥ 0, be the resulting orbit of wandering
domains given by Theorem 5.3. Then, for n ≥ 0, the boundary of the wandering
domain Un is a Jordan curve.

The proof of Theorem 7.2 follows in outline the proof that the Julia sets of certain
quadratic polynomials are Jordan curves (see [7, Section 9.9], for example) but with
very significant changes and novel arguments due to the fact that we are dealing with
a lack of uniformity arising from the associated non-autonomous system of maps.

The proof has three steps:

1. For each n ∈ N, we let An be the annulus bounded by the circles γn and 	n , which
were defined in (5.12) and played a key role in the proof of Theorem 5.3. We
consider the annulus Ăn lying in An between γn and a component of f −1(An+1)
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and show that the vertical geodesics of Ăn have uniformly bounded Euclidean
length.

2. We then use pullbacks under f −n of these vertical geodesics together with the
uniformly expanding property of the functions bn (and hence of f on the annuli
An) to induce a continuousmapσ from γ0 to a closed curveσ(γ0), and a continuous
map � from 	0 to a closed curve �(	0).

3. Finally, we show that ∂U0, which lies between σ(γ0) and�(	0), is a Jordan curve.

The first step in the proof relies on a general geometric result of independent interest
about the Euclidean lengths of vertical geodesics of annuli, which we prove using
the Fejér–Riesz inequality. We prove this and other preliminary geometric results in
Sect. 7.1, and then give the proof of Theorem 7.2 in Sect. 7.2.

7.1 Preliminary results

We begin with a result about pre-images of annuli bounded by Jordan curves. Related
results appear in [15, Lemma 11.1] and [37, Lemma 5].

In this lemma, we denote the inner boundary component of a topological annulus A
by ∂Ainn and the outer boundary component by ∂Aout. As usual, when we say that f
is holomorphic on A we mean that f is holomorphic on a neighborhood of A.

Lemma 7.3 Let A and B be annuli with Jordan curve boundary components, both
surrounding 0, and let f be holomorphic on A, with f and f ′ non-zero on A. Suppose
that

∂Binn surrounds f (∂Ainn) and f (∂Aout) surrounds ∂Bout. (7.1)

Then A contains a unique component ̂A of f −1(B), which is an annulus that sur-
rounds 0 with Jordan curve boundary components that satisfy

f (∂ ̂Ainn) = ∂Binn and f (∂ ̂Aout) = ∂Bout. (7.2)

Proof Since f (∂A)∩B = ∅we deduce that every connected component H of f −1(B)

which intersects A is in fact contained in A. Since f (∂A) intersects both components
of Bc, we deduce that f (A) ⊃ B and that there exists at least one component ̂A of
f −1(B) that is contained in A. We now claim that ̂A is doubly connected, surrounds
0, and that there are no other preimage components of B in A.

Let H be any preimage component of B which is contained in A. By the Riemann–
Hurwitz formula H is at least doubly connected. Let X be a bounded complementary
component of H . Since f : H → B is proper, f (X) is the bounded complementary
component of B, hence 0 ∈ f (X). If X does not contain 0, then X ⊂ A, on which f
cannot take the value 0 by assumption, giving a contradiction. Hence every preimage
component H of B in A is doubly connected and surrounds 0. Now suppose that
there are two such components. Then one of them is contained in the bounded com-
plementary component of the other, and hence maps to the bounded complementary
component of B, again a contradiction since it is a preimage component of B.
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Since the boundary components of B are Jordan curves, the fact that f : ̂A → B is
proper, together with the fact that f ′ �= 0 on A, implies that the boundaries of ̂A are
also Jordan curves, and also implies (7.2). ��

The main result in this subsection concerns the notion of a vertical foliation of an
annulus which we now define.

Definition 7.4 (Vertical foliations) Let A be an open annulus and consider the straight
annulus Aρ = {z : ρ < |z| < 1} such that ϕ : Aρ → A is a biholomorphism. The
vertical foliation FA of A consists of the image curves under ϕ of the radial segments
connecting the two circles which form the boundary ofAρ . Each of these image curves
is a hyperbolic geodesic which we refer to as a vertical geodesic.

We can now state the main result of this subsection, which concerns the Euclidean
lengths, denoted by �Eucl(·), of geodesics in vertical foliations of annuli. The proof
uses the Fejér–Riesz inequality (stated below); similar reasoning using instead the
Gehring–Hayman theorem (see [30] or [36, Chapter 4]) is possible.

Theorem 7.5 Let A be an annulus for which both boundary components are analytic
Jordan curves with length at most S, and such that the bounded component of C \ A
contains a disk of radius r > 0. Then there exists M = M(S, r) > 0 such that

�Eucl(γ ) ≤ M, for all γ ∈ FA.

We prove Theorem 7.5 using the following technical lemma.

Lemma 7.6 Let A be an annulus for which both boundary components are analytic
Jordan curves with length at most S, and consider the straight annulus Aρ = {z :
ρ < |z| < 1} such that ϕ : Aρ → A is a biholomorphism. For θ ∈ [0, 2π ], let
σθ :=ϕ({reiθ : ρ < r < 1}) and �(θ):=�Eucl(σθ ).

Then the Lebesgue measure of the set of θ such that �(θ) < 2S
ρ

(1 − ρ) is at least

2π − 1
2 .

Proof Consider the integral

I =
∫ 1

ρ

∫ 2π

0
|ϕ′(reiθ )| dθ dr .

The function

I (r):=
∫ 2π

0
|ϕ′(reiθ )| dθ, ρ ≤ r ≤ 1,
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is a convex function of log r since |ϕ′| can be extended to be subharmonic in a neigh-
bourhood of Aρ , so I (r) ≤ max{I (ρ), I (1)}, for ρ ≤ r ≤ 1. Then

ρ I (ρ) =
∫ 2π

0
ρ|ϕ′(ρeiθ )| dθ = �Eucl(∂Ainn) ≤ S,

I (1) =
∫ 2π

0
|ϕ′(eiθ )| dθ = �Eucl(∂Aout) ≤ S.

Hence I (r) ≤ S/ρ, for ρ ≤ r ≤ 1, so

I =
∫ 1

ρ

I (r) dr ≤ S

ρ
(1 − ρ).

Changing the order of integration we obtain

I =
∫ 2π

0

(∫ 1

ρ

|ϕ′(reiθ | dr
)

dθ =
∫ 2π

0
�(θ) dθ ≤ S

ρ
(1 − ρ).

Hence the Lebesgue measure of the set {θ ∈ [0, 2π ] : �(θ) > 2S
ρ

(1 − ρ)} is at most
1/2. ��

In particular, Lemma 7.6 shows that the annulus A has many vertical geodesics
whose Euclidean length is at most 2S(1 − ρ)/ρ.

Next, we state the following classical result (see [29] and [20, Theorem 3.13]) about
the space H p, p > 0, of functions g holomorphic in D such that

sup
0≤r<1

{∫ 2π

0
|g(reiθ )|p dθ

}

< ∞.

Lemma 7.7 (Fejér–Riesz inequality) If g ∈ H p, then

∫ 1

−1
|g(x)|p dx ≤ 1

2

∫ 2π

0
|g(eiθ )|p dθ.

We can now give a proof of Theorem 7.5.

Proof of Theorem 7.5. Since the result remains true under a translation, we can assume
that C \ A contains a disk of radius r centred at 0.

We first claim that there exists L = L(S, r) and a vertical geodesic σ ∈ FA such
that �Eucl(σ ) ≤ L . Since C \ A contains a disk of radius r centred at 0, and the outer
boundary has length at most S, the modulus of A is bounded from above by a constant
depending only on S and r . The claim then follows by Lemma 7.6, since ρ is bounded
from below by a positive constant depending only on S and r .

Now let log A be a lift of A \ σ under the exponential map, using a suitable branch
of the logarithm. Observe that log A is simply connected and that vertical geodesics
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in A lift to geodesic cross cuts in log A. For any vertical geodesic γ ∈ FA consider its
lift log γ in log A. Let ψ : D → log A be a biholomorphism such that ψ({z : −1 <

Re z < 1}) = log γ . This can be done by mapping 0 to a point in log γ , observing that
geodesics are mapped to geodesics, and pre-composing with a rotation if necessary.
By applying the Fejér–Riesz inequality (Lemma 7.7) with p = 1 and g = ψ ′, we
obtain

�Eucl(log γ ) ≤ 1

2
�Eucl(∂ log A). (7.3)

So it remains to show that �Eucl(∂ log A) is bounded by a uniform constant and that
the resulting bound on �Eucl(log γ ) can be translated into a bound for �Eucl(γ ). We do
this by studying the distortion of lengths of curves under the lift via the exponential.
Let t �→ z(t) for t ∈ [0, 1] be a parametrization of a curve C in A and let logC be its
lift in log A. Then t �→ log(z(t)) for t ∈ [0, 1] is a parametrization of the curve logC ,
so

�Eucl(C) =
∫ 1

0
|z′(t)| dt and �Eucl(logC) =

∫ 1

0

∣

∣

∣

∣

z′(t)
z(t)

∣

∣

∣

∣

dt .

Since A is contained in the straight annulus A(r , S/2) (this follows from considering
the extremal case for ∂Aout), we have that r ≤ |z(t)| ≤ S/2, so

2

S
�Eucl(C) ≤ �Eucl(logC) ≤ 1

r
�Eucl(C). (7.4)

It follows that �Eucl(log σ) ≤ 1
r �Eucl(σ ) ≤ L

r and that if α = ∂Ainn and β = ∂Aout
are the inner and outer boundary components, respectively, of A, then we have

�Eucl(logα) + �Eucl(logβ) ≤ 1

r
(�Eucl(α) + �Eucl(β)) ≤ 2S

r
.

So

�Eucl(∂ log A) = 2�Eucl(log σ) + �Eucl(logα) + �Eucl(logβ) ≤ 2L

r
+ 2S

r
.

It now follows from (7.3) and (7.4) that, for any vertical geodesic γ ∈ FA, we have

�Eucl(γ ) ≤ S

2
�Eucl(log γ ) ≤ S(L + S)

2r
.

This concludes the proof of Theorem 7.5. ��

7.2 Proof of Theorem 7.2

Let bn , n ∈ N, be a sequence of uniformly expanding Blaschke products of degree
at most d and let f be the transcendental entire function with an associated orbit of
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wandering domains (Un) arising from Theorem 5.3. We will show that the boundary
of U0 is a Jordan curve.

For each n ≥ 0, we let An be the annulus bounded by the circles γn and 	n

which were defined in (5.12) in the proof of Theorem 5.3. By the uniform expansivity
condition on the functions bn and the fact that max{| f (z) − fn(z)| : z ∈ An} → 0 as
n → ∞ (see (5.22)), we deduce using Cauchy’s estimate that there exists η > 1 such
that, for sufficiently large n ∈ N,

| f ′| ≥ η > 1 on a neighborhood of An; (7.5)

in particular, f has no critical points in a neighborhood of An for such n. Relabeling
the Un if necessary, we can assume that the above conditions hold for any n ≥ 0.
(Note that if ∂Un is a Jordan curve, for some n ≥ 1, then ∂U0 is also a Jordan curve,
since f n is a proper map between the bounded domains U0 and Un which extends
analytically to ∂U0.)

Step 1 For each n ≥ 0, we let ̂An denote the pre-image component of An+1 under f in
An , given by Lemma 7.3, with inner and outer boundary components γ̂n and ̂	n , say,
respectively. Then let Ăn denote the annulus lying between γn and γ̂n (see Fig. 8). Our
first claim is that there exists M = M(η, d) > 0 such that, for n ≥ 0, each geodesic
in the vertical foliation Fn of the annulus Ăn has Euclidean length at most M .

We start by showing that each Jordan curve γ̂n has length which is uniformly
bounded by 3πd/η. Indeed, we can parametrize γ̂n : [t0, t1] ∪ [t1, t2] ∪ · · · ∪
[td−1, td ] → C, where t0 < t1 < · · · < td , with γ̂n(t0) = γ̂n(td), in such a way
that f is univalent on γ̂n(ti , ti+1), 0 ≤ i < d −1. This can be done because the degree
of bn (and hence of f on Ăn , for n sufficiently large) is bounded above by d, and γ̂n
is a Jordan curve. Notice that f (γ̂n[ti , ti+1]) ⊆ γn+1. For n large, we have, by (7.5),

2π ≥ �Eucl(γn+1) ≥ 1

d

(

∫ t1

t0
| f ′(γ̂n(t))||γ̂ ′

n(t)| dt + · · · +
∫ td

td−1

| f ′(γ̂n(t))||γ̂ ′
n(t)| dt

)

≥ η

d

∫ td

t0
|γ̂ ′
n(t)| dt = η

d
�Eucl(γ̂n).

(The second inequality becomes an equality if f : γ̂n[ti , ti+1] → γn+1 is surjective for
every i .) Since, by construction, the bounded component of C \ ̂An contains the circle
γn = {z : |z| = rn} and rn ≥ 1/2 for n ≥ 0, the annulus Ăn satisfies the hypotheses
of Theorem 7.5, giving the claim.

Step 2 For n ∈ N, let ˜	n , γ̃n be those pre-images under f n of 	n, γn , respectively,
that are contained in A0 and are such that ˜	n surrounds ˜	n+1 for every n, while γ̃n is
surrounded by γ̃n+1 for every n. The existence of γ̃n and˜	n , and the fact that they are
Jordan curves, follows by applying inductively Lemma 7.3, since there are no critical
points in An for any n by the uniform expansivity condition.

We now concentrate on the family of Jordan curves γ̃n and construct a continuous
map σ from γ0 to the limit of the γ̃n , defined in an appropriate way.

Fix z0 ∈ γ0. Let σ0(z0) be the (unique) geodesic in F0 which connects z0 to
some point z1 ∈ γ̃1, and let us parametrize it as a curve σ0(z0, t), t ∈ [0, 1], with
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γn Γn

̂Γn

γ̂n ̂An

An
An+1

γn+1 Γn+1

Ăn

f(Γn)

f(γn)

f

Fig. 8 Sketch of the setup in Step 1

σ0(z0, 0) = z0, σ0(z0, 1) = z1. Consider f (z1) ∈ γ1, and the geodesic ω1 ∈ F1
which connects f (z1) to some point z′2 say in f −1(γ2). Notice that the definition of
F1 automatically specifies the connected component of f −1(γ2) to which z′2 belongs.
The preimage of ω1 under f which contains z1 is an arc that can be parametrized as
σ1(z0, t), t ∈ [1, 2], connecting z1 to some point z2 ∈ f −1(z′2) ∩ γ̃2. Proceeding in
this way, for each n we can construct a point zn and a curve σn(z0, t), t ∈ [n, n + 1],
connecting zn to zn+1. This can be repeated for any starting point z ∈ γ0 to construct
a continuous injective curve

σ(z, t) : γ0 × [0,∞) → A0,

such that σ(z, n) ∈ γ̃n and, for each z ∈ γ0 and each j ≤ n, n ∈ N, we have
f j (σ (z, [n, n + 1])) ⊂ A j and f n(σ (z, [n, n + 1])) is a geodesic in Fn .
Recalling from Step 1 that the Euclidean length of elements in Fn is bounded

uniformly in n by a constant M = M(η, d) > 0, and using the expansivity estimate
(7.5) on f , we obtain

�Eucl(σ (z, [n, n + 1])) ≤ 1

ηn
M, for z ∈ γ0, n ∈ N.

It follows that the functions σ(z, t), z ∈ γ0, are uniformly Cauchy and so converge
uniformly as t → ∞, to a continuous function, say σ(z), z ∈ γ0. Hence σ(γ0) is a
closed curve. Note, however, that we have not shown that σ is a Jordan curve, since
the map z �→ σ(z) has not been shown to be injective. Note that γ̃n, n ≥ 0 and σ(z, t),
z ∈ γ0, t ∈ [0,∞), are all in U0, so the closed curve σ(γ0) ⊂ U0.

We can construct analogous maps �(z, t) : 	0 × [0,∞) → A0 and � : 	0 →
�(	0) and obtain a closed curve �(	0) as a uniform limit using the Jordan curves˜	n

in a similar manner, noting that ˜	n, n ≥ 0 and �(z, t), z ∈ 	0, t ∈ [0,∞), are all in
the exterior of U0, so the closed curve �(	0) does not meet U0.
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Step 3 The final step is to show that ∂U0 is indeed a Jordan curve. To show this, the
first statement we need to prove is that

∂U0 ⊂ σ(γ0). (7.6)

Let Cn , cn denote the bounded complementary components of the Jordan curves ˜	n ,
γ̃n , respectively. Then (Cn) and (cn) each form a sequence of nested topological disks
which are respectively decreasing and increasing, because for each n we have that
f (	n) surrounds 	n+1 and f (γn) is surrounded by γn+1. Note that for each n, the
annulus ˜An :=Cn \ cn contains ∂U0. This is because, for n ≥ 0, we have 	n surrounds
Un and γn ⊂ Un .

Suppose now that ∂U0 �⊂ σ(γ0), and let ζ ∈ ∂U0 \ σ(γ0). Then for some r > 0
the disk D(ζ, r) does not meet the closed curve σ(γ0), so there is some open disk
D(ζ ′, r ′) ⊂ D(ζ, r) ∩ U0. Hence D(ζ ′, r ′) ⊂ ˜An , for all n ∈ N, and by construction
f n(D(ζ ′, r ′)) ⊂ An for every n. Now, the maximal radii of the Euclidean disks
contained in the annuli An are bounded, and indeed converge to 0 as n → ∞, by
construction of the An . For large n, this contradicts the fact that, since |( f n)′(ζ ′)| ≥ ηn ,
the image f n(D(ζ ′, r ′)) contains a disk of radius at least Br ′ηn , where B > 0 is
Bloch’s constant. This proves (7.6).

The idea now is to show that a parametrization of ∂U0 as a Jordan curve can be
obtained from the parametrization σ : γ0 → σ(γ0) of the closed curve σ(γ0) by
removing those parts of the parametrization (if any) which correspond to points of
σ(γ0) that lie in U0.

First, it follows from (7.6) that all points of ∂U0 are accessible from within U0.
Moreover, there are no points of ∂U0 that are accessible from within U0 in more than
one homotopically inequivalent way. This follows by the blowing-up property of the
Julia set of f (see for example, [10, Lemma 4 and the following discussion]), because
the Un, n ≥ 0, are simply connected wandering domains whose union omits large
open subsets of C.

To complete the proof, we use a technique from [7, p. 233]. Since ∂U0 is a closed
subset of σ(γ0), the set E = {z ∈ γ0 : σ(ζ ) ∈ ∂U0} is closed, and its complement
is an at most countable union of open arcs. By identifying such complementary open
arcs of E with their endpoints, we can specify an equivalence relation ∼ on γ0 whose
equivalence classes correspond bijectively to points of ∂U0. Moreover, this bijection
from the quotient space γ0/∼ to ∂U0 is clearly continuous, and hence a homeomor-
phism, and the quotient space γ0/∼ is homeomorphic to γ0. Therefore ∂U0 is a Jordan
curve.

This completes the proof of Theorem 7.2.
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