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Abstract
On amanifold X with boundary and bounded geometry we consider a strongly elliptic
second order operator A together with a degenerate boundary operator T of the form
T = ϕ0γ0 + ϕ1γ1. Here γ0 and γ1 denote the evaluation of a function and its exterior
normal derivative, respectively, at the boundary. We assume that ϕ0, ϕ1 ≥ 0, and
ϕ0 + ϕ1 ≥ c, for some c > 0, where either ϕ0, ϕ1 ∈ C∞b (∂X) or ϕ0 = 1 and ϕ1 = ϕ2

for some ϕ ∈ C2+τ (∂X), τ > 0. We also assume that the highest order coefficients
of A belong to Cτ (X) and the lower order coefficients are in L∞(X). We show that
the L p(X)-realization of A with respect to the boundary operator T has a bounded
H∞-calculus. We then obtain the unique solvability of the associated boundary value
problem in adapted spaces. As an application, we show the short time existence of
solutions to the porous medium equation.
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1 Introduction

Maximal regularity has become an indispensable tool in the analysis of evolution
equations as it can be used to establish in an uncomplicated way the existence of short
time solutions to a large class of quasilinear parabolic problems. Maximal regularity
in turn is implied by the existence of a bounded H∞-calculus, a concept introduced
by McIntosh in 1986, [29], of angle < π/2. Many elliptic operators are known to
have a bounded H∞-calculus, see e.g. Amann, Hieber, Simonett [5] for the case of
differential operators. Already in 1971 Seeley [37] had shown that differential bound-
ary value problems have bounded imaginary powers, a property which is very close to
that of having a bounded H∞-calculus and can often be shown by the same methods.
Ellipticity, however, is not necessary in this context as shown in [9]; a hypoellipticity
condition in the spirit of Hörmander’s conditions (4.2)’ and (4.4)’ in [22] is sufficient.
In the present article, we establish the existence of a bounded H∞-calculus for a
degenerate elliptic boundary value problem. We consider a strongly elliptic operator
A, endowed with a boundary operator that, in general, will not satisfy the Lopatinsky-
Shapiro ellipticity condition. The key point of our analysis then is the construction of a
parameter-dependent parametrix to the resolvent with the help of Boutet de Monvel’s
calculus for boundary value problems [8]. As a consequence of the non-ellipticity,
however, this parametrix will only belong to an extended version of Boutet de Mon-
vel’s calculus that we sketch, below. Still, this will enable us to deduce the necessary
estimates for the existence of the bounded H∞-calculus.

Here are the details. Let X be an n-dimensional manifold with boundary ∂X and
boundedgeometry. Let A be a strongly elliptic secondorder partial differential operator
on X which in local coordinates can be written in the form

A =
∑

1≤k,l≤n
akl(x)DkDl +

∑

1≤k≤n
bk(x)Dk + c0(x), (1.1)
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Bounded H∞-calculus for a degenerate... 1599

where akl ∈ Cτ (X) are real-valued,1 the matrix (akl(x))1≤k,l≤n is positive definite
with a uniform positive lower bound, bk, c0 ∈ L∞(X), and Dk = −i∂xk . If these
conditions are met, we call the operator A sufficiently regular. Furthermore, we say
that A is M-elliptic, if all the norms of the coefficients are bounded by M > 0 and the
positive lower bound of the matrix is given by 1/M . Obviously, this is no restriction
as every operator as above is M-elliptic for some M . The operator A is endowed with
a boundary operator T of the form

T = ϕ0γ0 + ϕ1γ1. (1.2)

Here γ0 denotes the trace operator and γ1 the exterior normal derivative at ∂X . More-
over,ϕ0, ϕ1 ∈ C∞b (∂X) are real-valued functions on the boundarywithϕ0, ϕ1 ≥ 0 and
ϕ0 + ϕ1 ≥ c > 0. We obtain the classical Dirichlet problem for ϕ0 = 1, ϕ1 = 0. The
choice ϕ0 = 0, ϕ1 = 1 yields Neumann boundary conditions, and Robin problems
correspond to the case where ϕ1 is nowhere zero.

For given functions f and φ we consider the boundary value problem with spectral
parameter λ

(A − λ)u = f in X , Tu = φ on ∂X ,

in L p(X), 1 < p < ∞. To this end we introduce the L p-realization of the above
boundary value problem, i.e. the unbounded operator AT , acting like A on the domain

D(AT ) := {u ∈ L p(X) : Au ∈ L p(X), Tu = 0 on ∂X}.

This problem has been investigated by many authors, see e.g. Egorov-Kondrat’ev
[16], Kannai [24] or Taira [42,43,45], also for the case where the boundary operator
T involves an additional first order tangential differential operator. This makes the
analysis more subtle and will be treated in a subsequent publication.

We recall the notion of sectoriality:

Definition 1.1 A closed and densely defined operator B : D(B) ⊂ E → E , acting in
a Banach space E that is injective with dense range is called sectorial of type ω < π ,
if for every ω < θ < π there exists a constant Cθ , such that

σ(B) ⊂ �θ and ‖λ(B − λ)−1‖L(X) ≤ Cθ for all λ ∈ C\�θ .

Here �θ = {λ ∈ C\{0} : | arg(λ)| ≤ θ} ∪ {0} is the sector of angle θ around the
positive real axis.

It has been shown by Taira that, for a bounded domain X , the L p-realization AT is
sectorial of type ε for every ε > 0, possibly after replacing A by A + c for a positive
constant c. In particular, it generates an analytic semigroup. For details see e.g. [43,
Theorem 1.2].

1 See also Remark 1.10(b) for the complex case.
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1.1 Bounded H∞ calculus

By H∞(�θ ) we denote the space of bounded holomorphic functions in the interior
of the sector �θ and by H∞∗ (�θ ) the subspace of all functions f such that | f (λ)| ≤
C(|λ|ε+|λ|−ε)−1 for suitable C, ε > 0. It is well-known that this is a dense subspace
with respect to the topology of uniform convergence on compact sets.

For a sectorial operator B of type ω, θ ′ ∈ ]ω, θ [ and f ∈ H∞∗ (�θ ) let

f (B) = i

2π

∫

∂�θ ′
f (λ)(B − λ)−1 dλ ∈ L(E).

The integral exists due to the sectoriality and is independent of the choice of θ ′ by
Cauchy’s integral theorem. Given f ∈ H∞(�θ ), we can approximate f by a sequence
( fn) ⊂ H∞∗ (�θ ) and define

f (B)x := lim fn(B)x for x ∈ D(B) ∩ range(B).

It can be shown thatD(B)∩range(B) is dense in E and that the above equation defines
a closable operator. The closure is again denoted by f (B).

Definition 1.2 We say that a sectorial operator B of type ω admits a bounded H∞
calculus of angle ω, if for any ω < θ < π there exists a constant Cθ > 0, such that

‖ f (B)‖L(E) ≤ Cθ‖ f ‖∞, f ∈ H∞(�θ ). (1.3)

According to the principle of uniform boundedness it is sufficient to verify estimate
(1.3) for all f ∈ H∞∗ (�θ ).

1.2 Main results

Theorem 1.3 Let (X , g) be a manifold with boundary and bounded geometry. Let T
be as in (1.2) and AT be the realization given above of an M-elliptic sufficiently
regular second order differential operator. Then, for every 0 < ϑ < π a constant
ν = ν(M, |t |∗, ϑ) ≥ 0 exists such that AT +ν allows an H∞(�ϑ)-calculus in L p(X).
Moreover, a constant C = C(M, |t |∗, ϑ) > 0 exists such that for all f ∈ H∞(�ϑ)

the following estimate holds:

‖ f (AT )‖B(L p(X)) ≤ C‖ f ‖∞.

Here |t |∗ stands for suitable seminorms of ϕ0 and ϕ1, respectively, in C∞b (∂X).
Theorem 1.3 extends to the case of non-smooth boundary operators. In order to keep
the technical difficulties at a reasonable level, we shall then assume that ϕ0 = 1 and
ϕ1 is the square of a C2+τ -function ϕ with τ > 0:

T = γ0 + ϕ2γ1 (1.4)
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Bounded H∞-calculus for a degenerate... 1601

for some ϕ ∈ C2+τ , τ > 0. Supposing that ϕ0 = 1 is not an essential restriction. The
assumption that ϕ1 is the square of a C2+τ -function is; it is motivated by the fact that
the pseudodifferential techniques require the C2+τ regularity of the square root of ϕ1,
which differs from the regularity of ϕ1 near the zero set. Here is the precise statement.

Theorem 1.4 Let (X , g) and A be as in Theorem 1.3 and T as in (1.4). For every
0 < ϑ < π we then find ν = ν(M, |t |∗, ϑ) ≥ 0 and C = C(M, |t |∗, ϑ) > 0 such
that AT + ν allows an H∞(�ϑ)-calculus in L p(X) and

‖ f (AT )‖B(L p(X)) ≤ C‖ f ‖∞, f ∈ H∞(�ϑ).

As a corollary, we obtain unique solvability for the full boundary value problem.
For this we need some notation. As before, (X , g) is a manifold with boundary and
bounded geometry, 1 < p <∞.

We denote by Bs
p(∂X) := Bs

p,p(∂X) the L p-Besov space of order s ∈ R on ∂X

as defined in [17]. According to [17, Theorem 4.10], Bs−1/p
p (∂X), 1 < p < ∞,

s > 1/p, coincides with the space of all restrictions to ∂X of functions in Hs
p(X).

The theorem, below, can be shown by modifying the proof of [17, Theorem 4.10] in
the spirit of the proof of [47, Theorem 2.9.2].

Theorem 1.5 Let s > 1+1/p. Then, given v0 ∈ Bs−1/p
p (∂X) and v1 ∈ Bs−1−1/p

p (∂X)

there exists u ∈ Hs
p(X) such that γ0u = v0 and γ1u = v1.

Definition 1.6 For s ∈ R and the boundary condition T in (1.2) or s > −τ and T in
(1.4), we define

Bs−1−1/p
p,T (∂X) = {v = ϕ0v0 + ϕ1v1 | v0 ∈ Bs−1/p

p (∂X), v1 ∈ Bs−1−1/p
p (∂X)}.

Clearly, this is a Banach space with the topology of the non-direct sum.

Proposition 1.7 For s > 1 + 1/p the mapping T : Hs
p(X) → Bs−1−1/p

p,T (∂X) is
surjective.

In fact, given v = ϕ0v0 + ϕ1v1 in Bs−1−1/p
p,T (∂X), Theorem 1.5 implies that we find

u0 and u1 in Hs
p(X) such that γ0u0 = v0, γ1u0 = 0, γ0u1 = 0 and γ1u1 = v1. Then

u0 + u1 is a preimage of v under T .

Theorem 1.8 For every 0 < ϑ < π the operator

(
A − λ

T

)
: H2

p(X) −→
L p(X)

⊕
B1−1/p
p,T (∂X)

(1.5)

is a topological isomorphism for λ ∈ �ϑ , |λ| sufficiently large.
This is immediate from Theorem 1.3 and the surjectivity of T : Given f ∈ L p(X)

and v ∈ B1−1/p
p,T (∂X), we first fix w0 ∈ H2

p(X) with Tw0 = v. By Theorem 1.3, the
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1602 T. Krietenstein, E. Schrohe

problem (A − λ)w = f − (A − λ)w0, Tu = 0 has a unique solution w ∈ H2
p(X).

Then u = w + w0 is the (unique) solution to (A − λ)u = f , Tu = v. Hence (1.5) is
a bijection. As it is continuous, it is a topological isomorphism in view of the closed
graph theorem.

Finally, we apply our results to the porous medium equation with boundary condi-
tion T and strictly positive initial value. Details can be found in Sect. 6. We obtain:

Theorem 1.9 Let 1 < p, q < ∞, n/p + 2/q < 1, m > 0, v0 ∈ H2
p(X) with

v0 ≥ c > 0, and φ ∈ C1(J0; B1−1/p
p,T (∂X)) with φ(0) = T v0. Here J0 = [0, t0] with

t0 > 0. Then the porous medium equation

⎧
⎪⎨

⎪⎩

v̇ −�gv
m = 0

T v = φ

v|t=0 = v0

(1.6)

has a unique short time solution of maximal regularity, i.e. there exists an interval
J = [0, t∗] with t∗ > 0 and a unique solution

v ∈ Lq(J ; H2
p(X)) ∩W 1

q (J ; L p(X))

of the porous medium Eq. (1.6).

Remark 1.10 (a) If the boundary ∂X is the disjoint union of two open subsets Y0
and Y1 and their common boundary �, which additionally is a smooth embedded
submanifold of ∂X , and we choose ϕ0 and ϕ1 to be the characteristic functions of Y0
and Y1, we obtain the Zaremba problem, where Dirichlet conditions are imposed on
Y0 and Neumann conditions on Y1.

In this sense, the Zaremba problem might be considered a limit case of the degen-
erate problem studied here. However, the two problems are rather different in spirit.
As our arguments show, the problem here can still be treated by methods from the
theory of boundary value problems via Boutet de Monvel’s calculus. The Zaremba
problem in contrast is basically an edge-degenerate problem, as explained by Seeley
in [38]. The role of the edge is played by the interface �, and additional conditions
have to be imposed there. A corresponding singular pseudodifferential calculus has
been developed by Dines, Harutyunyan and Schulze, see [14].

(b) For convenience we have assumed that the coefficients of A are real. In fact, the
results also hold in the parameter-elliptic complex-valued case with the corre-
sponding change of the sector.

1.3 Relation to previous work

In [1], Abels developed a (different) variant of Boutet de Monvel’s calculus with non-
smooth symbols in order to construct parametrices to elliptic operators with Hölder
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regularity. Also, Krainer [25] constructed a calculus with symbols of type ρ, δ taking
values in operator ideals in Hilbert spaces.

Theorem1.3 and1.4 extend [43, Theorem1.2] in that (i) one can now treatmanifolds
of boundedgeometry insteadof boundeddomains, (ii) the differentiability assumptions
on the coefficients of A are reduced fromC∞ toCτ , τ > 0, for the top order terms and
L∞ for the lower order terms,while T can also be of the form (1.4), and (iii) one obtains
the existence of a bounded H∞-calculus rather than the existence of a holomorphic
semigroup. Theorem 1.8 extends [43, Theorem 1.1] to the case of manifolds with
boundary and bounded geometry and operators with non-smooth coefficients, with
the restriction that λ ∈ �ϑ has to be large and we work on H2

p(X) as a consequence
of the non-smoothness of the coefficients.

In [44] and [41] Taira treats more general Waldenfels integro-differential operators
to which the present methods should also be applicable.

While there is a wealth of literature on the porous medium equation, it seems to
be new to study it on manifolds of bounded geometry and with degenerate boundary
condition.

1.4 Outline of the paper

We first focus on the boundary operator T in (1.2); the non-smooth case in (1.4) will
be treated in Sect. 5.

In order to establish (1.3) for AT+cwe have to show that for every fixed 0 < θ < π

∥∥∥∥
∫

∂�θ

f (λ)(AT + c − λ)−1 dλ
∥∥∥∥
L(L p(X))

≤ Cθ‖ f ‖∞, f ∈ H∞∗ (�θ ). (1.7)

It is clear that a good understanding of (AT + c − λ)−1 on the rays arg λ = ±θ ,
0 < θ < π is essential for this task.

The main tool we use in this paper is Boutet de Monvel’s calculus for boundary
value problems [8]. Details can be found e.g. in the monographs by Rempel and
Schulze [32] and Grubb [19] or in the short introduction [35]. We will also need a
slight generalization for which details will be given below. Recall that an operator of
order m ∈ R and class (or type) d ∈ N0 in Boutet de Monvel’s calculus on R

n+ is a
matrix of operators

(
P+ + G K

T S

)
:
S(Rn+, E0)

⊕
S(Rn−1, F0)

→
S(Rn+, E1)

⊕
S(Rn−1, F1)

.

Here E0 and E1 are vector bundles over Rn , and F0, F1 are vector bundles over
∂Rn+ = R

n−1. Moreover, P is a pseudodifferential operator on R
n satisfying the

transmission condition, and P+ denotes its truncation toRn+: P+ = r+Pe+, where e+
denotes extension by zero from S(Rn+, E0) to, say, L2(R

n, E0), and r+ denotes the
restriction of distributions on Rn to those on Rn+. The operators G and T are singular
Green and trace operators of orderm and class d, respectively; K is a potential operator
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1604 T. Krietenstein, E. Schrohe

of order m. Finally S is a pseudodifferential operator on the boundary R
n−1 of order

m.
Boutet de Monvel’s calculus is closed under compositions provided the vector

bundles fit together. Via coordinate maps the calculus can be transferred to smooth
manifolds with boundary.

Boutet de Monvel’s calculus has a symbolic structure with a notion of ellipticity,
and there exist parametrices to elliptic elements in the calculus.Moreover, the calculus
contains its inverses whenever these exist. An operator of orderm and class d as above
extends to a bounded map

Hs+m
p (X , E0)⊕ Bs+m−1/p

p (∂X , F0)→ Hs
p(X , E1)⊕ Bs−1/p

p (∂X , F1),

provided s > d−1+1/p, where Hs
p denotes the usual Sobolev space and Bs

p = Bs
p,p

the Besov space of order s, see Grubb [18].
It is well-known that the operator

(
(A − λ)+

γ0

)
: H2

p(X)→
L p(X)

⊕
B2−1/p
p (∂X)

is invertible for λ ∈ �θ , θ > 0, |λ| sufficiently large, whenever X is a compact
manifold with boundary or Rn+. In particular, it is invertible for all λ ∈ �θ , if we
replace A by A + c for c > 0 sufficiently large. In order to keep the notation simple,
we will assume from now on that A has been replaced by A + c for such c and write
A instead of A + c.

Apart from the fact that γ0 is formally not of the right order (which is of no impor-
tance here and can be easily arranged), the problem fits into Boutet de Monvel’s
calculus and one obtains the inverse in the form

(
(A − λ)+

γ0

)−1
= (((A − λ)−1)+ + GD

λ K D
λ ).

Here (A − λ)−1 is the resolvent on a closed manifold with boundary into which X
embeds (in case X is compact) or on Rn (if X = R

n+), see [19].
We will denote the corresponding truncation by Qλ,+:

Qλ,+ = ((A − λ)−1)+.

As a consequence,

(
(A − λ)+

T

)
(Qλ,+ + GD

λ K D
λ ) =

(
I 0

T (Qλ,+ + GD
λ ) T K D

λ

)
.

123
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Assuming that Sλ := T K D
λ is invertible with inverse S−1λ , we find that

(
(A − λ)+

T

)−1

= (Qλ,+ + GD
λ − K D

λ S−1λ T (Qλ,+ + GD
λ ) K D

λ S−1λ ). (1.8)

For the realization (A − λ)T we obtain:

(A − λ)−1T

= Qλ,+ + GD
λ − K D

λ S−1λ T (Qλ,+ + GD
λ )

= Qλ,+ + GD
λ + GT

λ

with

GT
λ := −K D

λ S−1λ T (Qλ,+ + GD
λ ). (1.9)

Lemma 1.11 For every choice of θ ∈ ]0, π [, there exists a constant Cθ ≥ 0 such that

∥∥∥∥
∫

∂�θ

f (λ)(Qλ,+ + GD
λ ) dλ

∥∥∥∥
L(L p(X))

≤ Cθ‖ f ‖∞ for all f ∈ H∞∗ (�θ ).

Lemma 1.11 is well-known, the proof relies on the fact that the operators Qλ and
GD

λ are parameter-dependent operators of order −2 in Boutet de Monvel’s calculus,
if one writes −λ = μ2eiθ and considers Qλ and GD

λ as functions of μ, see e.g.
Grubb [19]. For the more general situation of a manifold with boundary and conic
singularities, see [11].

It remains to study the term GT
λ . It will turn out that T K D

λ is a hypoelliptic pseu-
dodifferential operator of order 1 on the boundary. As we will see, it has a parametrix
with local symbols in the Hörmander class S01,1/2 which then agrees with S−1λ up to a

regularizing operator. In order to treat the composition of S−1λ with the operators K D
λ

and Qλ,++GD
λ , we will need an extension of the classical Boutet deMonvel calculus.

2 An extended Boutet deMonvel type calculus

We recall the algebra H of functions on R: It is the direct sum

H = H+ ⊕H−−1 ⊕H′,

where

H+ := {F(e+u) : u ∈ S(R+)}, H−−1 := {F(e−u) : u ∈ S(R−)}
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1606 T. Krietenstein, E. Schrohe

and H′ is the space of all polynomials on R. The sum is direct, since the functions in
H+ and H−−1 decay to first order.

It will be helpful to use also weighted Sobolev spaces onR+: For s = (s1, s2) ∈ R
2

we let H s
p(R+) denote the space of all u ∈ D′(R+) such that 〈x〉s2u belongs to the

ordinary Sobolev space Hs1
p (R+). We then have

S(R+) = proj-lim H s
p(R+) and (2.1)

S ′(R+) = ind-lim(H s
p(R+))′ = ind-lim Ḣ s

1−1/p(R+), (2.2)

where the limits are taken over s ∈ R
2 and Ḣ s

q(R+) denotes all distributions u in

H s
q(R) for which supp u ⊂ R+.

2.1 Operator-valued symbols

Let E, F be Banach spaces with strongly continuous group actions κE
λ , κF

λ , λ > 0, as
introduced by Schulze in [36]. Given q ∈ N,m ∈ R, 0 ≤ δ < 1, we call a function a =
a(y, η) ∈ C∞(Rq×R

q ,L(E, F)) an operator-valued symbol in Sm1,δ(R
q×R

q ; E, F)

if, for all multi-indices α, β, there exist constants Cα,β such that

‖κF
〈η〉−1D

α
η D

β
y a(y, η)κ

E〈η〉‖L(E,F) ≤ Cα,β〈η〉m−|α|+δ|β|.

In the sequel, we will mostly have the case where and E and F are either C or
(weighted) Sobolev spaces over R or R+. On C we will use the trivial group action;
on the Sobolev spaces we will use the action given by κλu(t) =

√
λ f (λt). Note that

this group action is unitary on L2(R) and L2(R+). Using the representations (2.1) and
(2.2), the above definition extends to the case, where E = S(R+), E = S ′(R+) or
F = S(R+), see [35] for details.

2.2 The transmission condition

Definition 2.1 A symbol p ∈ Sm1,δ(R
n × R

n) satisfies the transmission condition at
xn = 0 provided that, for all k ∈ N0

p[k](x ′, ξ ′, ξn) := (∂kxn p)(x
′, 0, ξ ′, 〈ξ ′〉ξn) ∈ Sm+δk

1,δ (Rn−1 × R
n−1)⊗̂H

We write p ∈ Pm
1,δ(R

n−1 × R
n−1).

Remark 2.2 P∞1,δ :=
⋃

m Pm
1,δ is closed under the usual symbol operations, i.e. addi-

tion, pointwise multiplication and inversion, differentiation, Leibniz product and
asymptotic summation. We also have S−∞ =⋂

m Pm
1,δ .

Theorem 2.3 Let p ∈ Pm
1,δ(R

n × R
n). Then

opn(p)+ ∈ Sm1,δ(R
n−1 × R

n−1;S(R+),S(R+)).
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Proof This follows from the fact that κ〈ξ ′〉−1 opn(p)κ〈ξ ′〉 = opn(qx ′,ξ ′), where
qx ′,ξ ′(xn, ξn) = p(x ′, xn/〈ξ ′〉, ξ ′, 〈ξ ′〉ξn) and the corresponding proof for Hörmander
type (1, 0); this is Theorem 2.12 in [35]. The arguments carry over to general (1, δ).

��

2.3 Potential, trace and singular Green symbols

Definition 2.4 Let m ∈ R, d ∈ N0. All functions, below, may be matrix valued.

• A function k ∈ C∞(Rn−1×R
n−1×R) belongs to the space Km

1,δ(R
n−1×R

n−1)
of potential symbols of order m and Hörmander type (1, δ), if

k[0](x ′, ξ ′; ξn) := k(x ′, ξ ′; 〈ξ ′〉ξn) ∈ Sm−11,δ (Rn−1 × R
n−1)⊗̂H+ξn .

• A function t ∈ C∞(Rn−1×R
n−1×R) belongs to the space T m,d

1,δ (Rn−1×R
n−1)

of trace symbols of order m, class d and Hörmander type (1, δ), if

t[0](x ′, ξ ′; ξn) := t(x ′, ξ ′; 〈ξ ′〉ξn) ∈ Sm1,δ(R
n−1 × R

n−1)⊗̂H−d−1.

• A function g ∈ C∞(Rn−1 × R
n−1 × R× R) belongs to the space Gm,d

1,δ (Rn−1 ×
R
n−1) of singular Green symbols of order m, class d and Hörmander type (1, δ),

if

g[0](x ′, ξ ′; ξn, ηn) := g(x ′, ξ ′; 〈ξ ′〉ξn, 〈ξ ′〉ηn)
∈ Sm−11,δ (Rn−1 × R

n−1)⊗̂H+ξn ⊗̂H−d−1,ηn .

The spaces Km
1,0, T m

1,0 and Gm
1,0 are denoted by Grubb in [19] as Sm−11,0 (Rn−1 ×

R
n−1;H+), Sm1,0(Rn−1×R

n−1;H−d−1), and Sm−11,0 (Rn−1×R
n−1;H+⊗̂H−d−1). Rem-

pel and Schulze denote them in [32] by Km−1(Rn−1 × R
n), Tm,d(Rn−1 × R

n) and
Bm−1,d(Rn−1 × R

n+1). They are Fréchet spaces with the topologies induced by the
scaled functions. For fixed (x ′, ξ ′) the symbols above define Wiener-Hopf operators.
Hence we obtain an action in the normal direction:

[ opn k](x ′, ξ ′) : = r+F−1ξn→xn
k(x ′, ξ ′; ξn) : C→ S(R+),

[ opn t](x ′, ξ ′) : = I+ξn t(x
′, ξ ′; ξn)Fyn→ξn e

+ : S(R+)→ C and

[ opn g](x ′, ξ ′) : = r+F−1ξn→xn
I+ηn g(x

′, ξ ′; ξn, ηn)Fyn→ηn e
+ : S(R+)→ S(R+),

where I+ is the plus-integral, see [19, p.166].We can interpret opn k, opn t and opn g as
operator-valued symbols. Depending on the class there are several extensions possible.

Theorem 2.5 (Description byoperator-valued symbols). Let s ∈ R
2with s1 > d−1/2.

The following maps are bounded and linear.
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1608 T. Krietenstein, E. Schrohe

(1) opn : Gm,0
1,δ (Rn−1 × R

n−1)→ Sm1,δ(R
n−1 × R

n−1;S ′(R+),S(R+))
(2) opn : Gm,d

1,δ (Rn−1 × R
n−1)→ Sm1,δ(R

n−1 × R
n−1; H s

2(R+),S(R+))
(3) opn : Km

1,δ(R
n−1 × R

n−1)→ Sm−1/21,δ (Rn−1 × R
n−1;C,S(R+))

(4) opn : T m,0
1,δ (Rn−1 × R

n−1)→ Sm+1/21,δ (Rn−1 × R
n−1;S ′(R+),C)

(5) opn : T m,d
1,δ (Rn−1 × R

n−1)→ Sm+1/21,δ (Rn−1 × R
n−1; H s

2(R+),C)

We omit the proof, which is straightforward. We also need the description via symbol-
kernels. To this end we define

K̃m
1,δ := F−1ξn→xn

Km
1,δ, T̃ m

1,δ := F−1ξn→ynT
m,0
1,δ and G̃m

1,δ := F−1ξn→xn
F−1ηn→ynG

m,0
1,δ .

Theorem 2.6 (Description by symbol-kernels). The following assertions hold:

(i) For every operator-valued symbol k ∈ Sm1,δ(R
n−1×R

n−1;C,S(R+)) there exists
a unique k̃ ∈ K̃m

1,δ(R
n−1 × R

n−1), such that

[k(x ′, ξ ′)c](xn) = k̃(x ′, ξ ′; xn)c, c ∈ C.

(ii) For every operator-valued symbol t ∈ Sm1,δ(R
n−1 × R

n−1;S ′(R+),C) there

exists a unique t̃ ∈ T̃ m,0
1,δ (Rn−1 × R

n−1), such that

t(x ′, ξ ′)u =
∫

R+
t̃(x ′, ξ ′; yn)u(yn) dyn, u ∈ S(R+).

(iii) For every operator-valued symbol g ∈ Sm1,δ(R
n−1×R

n−1;S ′(R+),S(R+)) there
exists a unique g̃ ∈ G̃m

1,δ(R
n−1 × R

n−1), such that

[g(x ′, ξ ′)u](xn) =
∫

R+
g̃(x ′, ξ ′; xn, yn)u(yn) dyn, u ∈ S(R+).

Proof See Theorems 3.7 and 3.9 in [35]. ��
Corollary 2.7 The maps (1), (3), and (4) in Theorem 2.5 are bijections. The maps (2)
and (5) are bijections onto their image, which is the set of all operators of the form

opn g0 +
d−1∑

j=0
opn k jγ

+
j , g0 ∈ Gm,0

1,δ (Rn−1 × R
n−1), k j ∈ Km− j

1,δ (Rn−1 × R
n−1) resp.

opn t0 +
d−1∑

j=0
s jγ

+
j , t0 ∈ T m,0

1,δ (Rn−1 × R
n−1), s j ∈ Sm− j

1,δ (Rn−1 × R
n−1).

Proof We get from symbols to operator-valued symbols, to symbol-kernels, and back
to symbols by Theorem 2.5, Theorem 2.6 and the Fourier transform. For non-zero
class we use the fact I+ξ jFe+φ = (−i) jγ+j φ. ��
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2.4 Boundary symbols and operators

We next define the space of boundary symbols of order m, class d and Hörmander
type (1, δ) by

BMm,d
1,δ :=

(
Pm
1,δ + Gm,d

1,δ Km
1,δ

T m,d
1,δ Sm1,δ

)

It is clear from Theorems 2.5 and 2.3 that the action of b ∈ BMm,d
1,δ in the normal

direction defines a matrix of operator-valued symbols

opn(b) :=
(
opn(p)+ + opn(g) opn(k)

opn(t) s

)

We write B := op[opn b] for the associated operator. We denote the components of B
associated with p, g, k, t and s by P+,G, K , T , and S, respectively. It is well-known
that these operators form an algebra for Hörmander type (1, 0). The proof given in
[35] extends to the case (1, δ) with obvious modifications.

Theorem 2.8 (Composition). Composition yields a bilinear and continuous map

BMm,d
1,δ × BMm′,d ′

1,δ → BMm+m′,max(m′+d,d ′)
1,δ , (b, b′) �→ b#b′,

where # is the Leibniz product of operator-valued symbols, given by the property that
op(opn b) op(opn b

′) = op(opn b#b
′). Moreover

b#b′ ≡ pp′ − p0 p
′
0 + b0 ◦n b′0 mod BMm+m′−(1−δ),max(m+d ′,d)

1,δ .

Here the subscript 0 denotes the restriction to xn = 0 and ◦n denotes the point-wise
composition, [19, Theorem 2.6.1].

The well-knownmapping properties of Boutet deMonvel operators extend to oper-
ators ofHörmander type (1, δ).We refer to [18] for the proof of the following statement
(in the case δ = 0).

Theorem 2.9 Let b ∈ BMm,d
1,δ and s > d + 1/p − 1. Then

B = op(opn b) : Hs
p(R

n+)⊕ Bs−1/p
p (Rn−1)→ Hs−m

p (Rn+)⊕ Bs−m−1/p
p (Rn−1)

is bounded. The map b �→ B is continuous.

Remark 2.10 The above calculus and the continuity properties naturally extend to the
case of operators acting on vector bundles over compact manifolds with boundary.
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1610 T. Krietenstein, E. Schrohe

3 The resolvent

For the proof of Theorem 1.3, a suitable description of the resolvent (AT − λ)−1 is
mandatory. We explain the key idea of how this description is derived in the simple
example, where A = −�, T = γ0, and ν = 1. Here, the benefit is that we can point
out the main ideas. Moreover, the majority of abstract arguments can be replaced by
explicit computations.
In the article [2], ShmuelAgmonproved apriori estimates for solutions of the following
boundary value problem with spectral parameter:

{
(1−�− λ)+u = f on R

n+
γ0u = φ on R

n−1 . (3.1)

Writing λ = μ2eiθ , we observe that, given a solution u of (3.1), the function ũ :=
u ⊗ eμ with eμ(z) = eiμz solves the elliptic boundary problem

{
(1−�+ ei(π+θ)D2

z )+ũ = f̃ on R
n+1+

γ0ũ = φ̃ on R
n .

(3.2)

with f̃ = f ⊗eμ and φ̃ = φ⊗eμ. For (3.2), a priori estimates are well-known, but for
our purpose, they are not sufficient. However, the basic idea can be extended to provide
a relation between the inverses of (3.2) and (3.1). The following three operators are of
interest:

Qθ := r+F−1(〈ξ 〉2 + ei(π+θ)ζ 2)−1Fe+,

Kθ := r+F ′−1e−κθ (ξ
′,ζ )xnF ′

, and

Gθ := −Kθ γ0Qθ .

Here, iκθ (ξ ′, ζ ) is the root of the polynomial ξn �→ aθ (ξ, ζ ) := 〈ξ 〉2 + ei(π+θ)ζ 2,
with positive imaginary part. Furthermore, F and F ′, respectively, denote the Fourier
transform with respect to all variables and the tangential variables, respectively. The
identities AθQθ = 1, AθKθ = 0, γ0Kθ = 1, and γ0(Qθ +Gθ ) = 0 can be verified in
a quick calculation. Therefore:

(
Aθ,+
γ0

)−1
= (

Qθ,+ + Gθ Kθ

)
. (3.3)

The operators belong to Boutet deMonvel’s calculus.We denote the symbols by lower
case letters. The solution operators to Problem (3.2) and (3.1) are related. In order to
reveal this relation, we need the following result.

Lemma 3.1 Let p ∈ Sm1,δ(R
n × R

n+1; E, F). Then pμ := p|ζ=μ ∈ Sm1,δ(R
n ×

R
n; E, F) and the associated operators are related as follows:

P(u ⊗ eμ) = (Pμu)⊗ eμ. (3.4)
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Proof For fixed μ, pμ is a symbol in view of the estimate:

c〈ξ 〉 ≤ 〈ξ, μ〉 ≤ C〈ξ 〉, with C = C(μ).

The following formal computation can be justified using oscillatory integrals.

[P(u ⊗ eμ)](x, z) =
∫

eixξ+i zζ p(x, ξ, ζ )[Fu](ξ)δ(ζ − μ) dζd̄ξ

= eizμ
∫

eixξ p(x, ξ, μ)[Fu](ξ)d̄ξ
= [(Pμu)⊗ eμ](x, z).

The above computation holds for each point, thus Eq. (3.4) holds. ��
Now, we verify that the function u := (Qθ,μ,+ + Gθ,μ) f + Kθ,μφ solves Problem
(3.1) for given f and φ:

[(A − λ)+u] ⊗ eμ = Aθ,+[u ⊗ eμ] = Aθ,+[((Qθ,μ,+ + Gθ,μ) f + Kθ,μφ)⊗ eμ]
= Aθ (Qθ,+ + Gθ )( f ⊗ eμ)+ AθKθ (φ ⊗ eμ)] (3.3)= f ⊗ eμ.

[γ0u] ⊗ eμ = γ0(Qθ + Gθ )( f ⊗ eμ)+ γ0Kθ (φ ⊗ eμ)] (3.3)= φ ⊗ eμ.

Therefore, the inverse of the parameter-dependent problem can be constructed for the
inverse of the associated extended problem. For λ = μ2eiθ :

(
(A − λ)+

γ0

)−1
= (

Qθ,μ,+ + Gθ,μ Kθ,μ

)
.

What we are especially interested in is the left entry on the right hand side. Here, we
observe:

(Qθ,μ,+ + Gθ,μ)L p(R
n+) ⊂ D(Aγ0) := {u ∈ L p(R

n+) : A+u ∈ L p(R
n+), γ0u = 0}.

Therefore, we obtain an explicit formula for the resolvent:

(Aγ0 − λ)−1 = Qθ,μ,+ + Gθ,μ, on the ray λ = eiθμ2.

The example encourages us to initially solve the extended problem:

(A + ei(π+θ)D2
z )+ũ = f̃

T ũ = φ̃.

In general, no explicit formulas for the inverse of the above problem exist. We will
therefore replace the inverse by a parametrix and analyze the resulting error term.
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1612 T. Krietenstein, E. Schrohe

According to Eq. (3.4), the restriction ζ = μ in Lemma 3.1 commutes with com-
position. Therefore, for an elliptic symbol p with parametrix p−# and remainder r we
obtain:

PμP
−#
μ = 1+ Rμ.

To estimate the error term, we need to analyze the dependence on the parameters θ, μ
and thus on λ of the operators above. The dependence on θ for 0 < ϑ ≤ |θ | ≤ π is
not essential. In fact, we obtain uniform estimates on operator norms that only depend
on ϑ . However, the dependence on μ is essential and will be discussed next.

3.1 The dependence on the spectral parameter�

We consider general Boutet de Monvel symbols which have a covariable ζ with no
space dependence, i.e. they are constant with respect to the variable z. By restriction
ζ = μ, we obtain again Boutet de Monvel symbols. The norms of the associated
operators depend on the parameter μ.

Theorem 3.2 Let 0 ≤ δ < 1.

(a) Let p ∈ S−m1,δ (Rn × R
n+1) and m ≥ 0. Then

‖Pμ‖L(L p(Rn)) ≤ C |p|∗〈μ〉−m . (3.5)

(b) Let g ∈ G−m,0
1,δ (Rn−1 × R

n) and m > 0. Then

‖Gμ‖L(L p(R
n+)) ≤ C |g|∗〈μ〉−m . (3.6)

(c) Let k ∈ K−m1,δ (R
n−1 × R

n) and m ≥ 0. Then

‖Kμ‖L(B−1/pp (Rn−1);L p(R
n+))
≤ C |k|∗〈μ〉−m . (3.7)

(d) Let t ∈ T −m,0
1,δ (Rn−1 × R

n) and m ≥ 1. Then

‖Tμ‖L(L p(R
n+);B1−1/p

p (Rn−1)) ≤ C |t |∗〈μ〉−m+1. (3.8)

Here, C denotes a suitable constant and |p|∗, |g|∗, |k|∗, |t |∗ suitable seminorms for
p, g, k and t, respectively.

Before we turn our attention to the proof, let us draw a conclusion from the above
theorem which demonstrates its value.

Corollary 3.3 Let m ≥ m′ ≥ 0. Let b ∈ BMm,d
1,δ (Rn × R

n+1) have a parametrix

b−# ∈ BM−m′,0
1,δ (Rn × R

n+1). Then Bμ is invertible for large μ, and ‖B−1μ −
B−#μ ‖L(L p(R

n+)⊕B−1/pP (Rn−1)) ≤ C |b|∗〈μ〉−N for all N ∈ N0.
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Proof By assumption b#b−# = 1 − r with r ∈ BM−∞
1,δ (Rn × R

n+1). As BμB−#μ =
1− Rμ, Theorem 3.2 implies that ‖Rμ‖ ≤ C〈μ〉−N for all N ∈ N0. For large μ, the
inverse of 1− Rμ is given by a Neumann series. Therefore, Bμ has a right inverse for
large μ:

B−1μ = B−#μ + B−#μ

∑

j∈N
R j
μ.

Clearly the second summand is rapidly decreasing in μ. Similarly we obtain a left
inverse. ��
For the proof of Theorem 3.2 we need the following observation. Since there is no
dependence on the space variable z we can interpret a pseudodifferential operator
P with symbol in S01,δ(R

n × R
n+1) as a pseudodifferential operator on the cylinder

R
n × SL , where SL is the circle with radius L/2π . Then we obtain:

Lemma 3.4 If p ∈ S01,δ(R
n × R

n+1), then for all L > 0 we have

P := op(p) ∈ L(L p(R
n × SL)) and ‖P‖L(L p(Rn×SL )) ≤ C |p|∗.

Here C is a constant independent of L.

Proof We first note that P preserves L-periodicity:

[Pu](x, z + kL) : =
∫

ei(x−y)ξ+i((z+kL)−w)ζ p(x, ξ, ζ )u(y, w) dydwd̄ξd̄ζ

=
∫

ei(x−y)ξ+i(z−(w−kL))ζ p(x, ξ, ζ )u(y, w) dydwd̄ξd̄ζ

=
∫

ei(x−y)ξ+i(z−w̃)ζ p(x, ξ, ζ )u(y, w̃) dydw̃d̄ξd̄ζ

= [Pu](x, z), u ∈ C∞c (Rn × SL).

We identify u ∈ L p(R
n × SL) with an L-periodic function by letting

u =
∑

j∈Z
u j with u j (x, z) := u|Rn×[−L/2,L/2](x, z − L j).

Note that for every j ∈ Z we have u j ∈ L p(R
n × R) and ‖u j‖L p(Rn×R) =

‖u‖L p(Rn×SL ). The integral kernel k = k(x, z, y, w) of the pseudodifferential operator
P is given by

k(x, z, y, w) =
∫∫

ei(x−y)ξ+i(z−w)ζ p(x, ξ, ζ )d̄ξd̄ζ.

Since p is of order zero, we obtain the estimate

|k(x, z, y, w)| ≤ C |p|∗(|x − y|2 + |z − w|2)−l/2
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1614 T. Krietenstein, E. Schrohe

for all even l ∈ N with l > n with a suitable seminorm |p|∗ for p. For | j | ≥ 2,
z ∈ [−L/2, L/2] and w ∈ supp u j we have |z − w| ≥ ( j − 1)L , hence

|k(x, z, y, w)| ≤ C |p|∗(|x − y|2 + (| j | − 1)2L2)−(n+2)/2

≤ C |p|∗((| j | − 1)L)−(n+2)〈|x − y|/(| j | − 1)L〉−(n+2).

Wewriteχ j for the indicator function of [−L/2+ j L, L/2+ j L]. A quick computation
shows that

∫
χ0(z)|k(x, z, y, w)|χ j (w) dwdy ≤ C |p|∗L−1(| j | − 1)−2 and

∫
χ0(z)|k(x, z, y, w)|χ j (w) dzdx ≤ C |p|∗L−1(| j | − 1)−2.

Hence we get L p-estimates by Schur’s test, for Schur’s test we refer to [39, Theorem
0.3.1]. More explicitly:

‖Pu j‖L p(Rn×SL ) = ‖χ0Pχ j u j‖L p(Rn×R)

≤ C |p|∗L−1(| j | − 1)−2‖u j‖L p (Rn×R)
= C |p|∗L−1(| j | − 1)−2‖u‖L p (Rn×SL )

In particular the right hand side is summable, and for L ≥ 1 we obtain

‖Pu‖L p(Rn×SL )
=

∑

j∈{−1,0,1}
‖Pu j‖L p(Rn×SL ) +

∑

| j |≥2
‖Pu j‖L p(Rn×SL )

≤ C
(
3|p|∗‖u‖L p(Rn×SL ) + 2

∑

j∈N
j−2|p|∗‖u‖L p(Rn×SL )

)

≤ C |p|∗‖u‖L p(Rn×SL )

We still need to prove that the bound also holds for L < 1. Choose N ∈ N so large
that NL ≥ 1, and consider an L-periodic function as an NL-periodic function. We
have ‖u‖L p(Rn×SNL ) = N 1/p‖u‖L p(Rn×SL ) and hence, by the above argument,

‖Pu‖L p(Rn×SL ) = N−1/p‖Pu‖L p(Rn×SNL )

≤ C |p|∗N−1/p‖u‖L p(Rn×SNL ) = C |p|∗‖u‖L p(Rn×SL )

for a constant C independent of NL . ��
Proof of Theorem 3.2 Let us first assume that p ∈ S01,δ(R

n × R
n+1). We write eμ for

the 2π/μ-periodic function [x �→ eiμx ]. For u ∈ L p(R
n) we take the L p-norm of

both sides of Eq. (3.4):

‖P(u ⊗ eμ)‖L p(Rn×S2π/μ)
= ‖[Pμu] ⊗ eμ‖L p(Rn×S2π/μ) = ‖Pμu‖L p(Rn)‖eμ‖L p(S2π/μ).
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Since P is of order zero, Lemma 3.4 yields

‖Pμu‖L p(Rn)‖eμ‖L p(S2π/μ)

≤ C |p|∗‖u ⊗ eμ‖L p(Rn×S2π/μ) = C |p|∗‖u‖L p(Rn)‖eμ‖L p(S2π/μ),

and part (a) follows for m = 0. For m < 0 we can use what we did so far to reduce to
the case p(x, ξ, μ) = 〈ξ, μ〉−m . But for this symbol the statement is a consequence
of the L p-mapping property of pseudodifferential operators and the following simple
estimates.

|Dα
ξ 〈ξ, μ〉−m | ≤ Cα〈ξ, μ〉−m−|α| ≤ Cα〈μ〉−m〈ξ 〉−|α|.

Now for part (b). We recall that g̃ ∈ G̃m,0
1,δ (Rn−1 × R

n) satisfies the estimates

‖[Dl
xn x

l ′
n D

l ′′
yn y

l ′′′
n Dα

ξ ′D
β

x ′ g̃μ](x ′, ξ ′, xn, ·)‖L1(R+) ≤ C |g|∗〈ξ ′, μ〉m−|α|+δ|β|+l−l ′+l ′′−l ′′′

‖[Dl
xn x

l ′
n D

l ′′
yn y

l ′′′
n Dα

ξ ′D
β

x ′ g̃μ](x ′, ξ ′, ·, yn)‖L1(R+) ≤ C |g|∗〈ξ ′, μ〉m−|α|+δ|β|+l−l ′+l ′′−l ′′′ .

So Schur’s test implies that ‖Dα
ξ ′ opn g̃μ‖L(L p(R+)) ≤ C |g|∗〈ξ ′, μ〉m−|α|.We are inter-

ested in the integral kernel

K (x ′, y′, μ) =
∫

ei(x
′−y′)ξ ′ opn g̃μ(x

′, ξ ′)d̄ξ ′

=
∫

LN
(
ei(x

′−y′)ξ ′ − 1
)
opn g̃μ(x

′, ξ ′)d̄ξ ′

with N ∈ N and L := ∑
|α|=1

(x ′−y′)α
|x ′−y′|2 D

α
ξ ′ . We take N = n − 1 and use the fact that

|eit − 1| ≤ 2|t |θ for 0 < θ < min(1, |m|), to get

‖K (x ′, y′, μ)‖L(L p(R+)) ≤ C |g|∗|x ′ − y′|−n+1+θ

∫
|ξ ′|θ 〈ξ ′, μ〉−m−n+1d̄ξ ′ ≤ C |g|∗|x ′ − y′|−n+1+θ 〈μ〉−m+θ .

Choosing N = n we obtain ‖K (x ′, y′, μ)‖L(L p(R+)) ≤ C |g|∗|x ′ − y′|−n〈μ〉−m−1.
The first estimate for 〈μ〉|x ′ − y′| ≤ 1 and the second for 〈μ〉|x ′ − y′| > 1 imply

‖K (x ′, ·, μ)‖L1(Rn−1;L(L p(R+))) ≤ C |g|∗〈μ〉−m and

‖K (·, y′, μ)‖L1(Rn−1;L(L p(R+))) ≤ C |g|∗〈μ〉−m .
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1616 T. Krietenstein, E. Schrohe

In fact, this follows from the the identities

∫

〈μ〉|x ′−y′|≤1
|x ′ − y′|−n+1+θ 〈μ〉θdx ′

=
∫

〈μ〉|x ′−y′|≤1
(〈μ〉|x ′ − y′|)−n+1+θ 〈μ〉n−1 dx ′ =

∫

|w|≤1
|w|−n+1+θ dw <∞

and∫

〈μ〉|x ′−y′|≥1
|x ′ − y′|−n〈μ〉−1 dx ′ =

∫

|w|≥1
|w|−n dw <∞.

Hence the assertion follows with Schur’s test.
For part (c): We recall the well-known fact that every potential operator K can be
written as r+P γ̃ ∗0 , where P is a pseudodifferential operator of order −m − 1 whose
symbol-kernel is given by p̃ = Ek̃; E is Seeley’s extension operator applied to xn ,

and γ̃ ∗0 is the adjoint to the evaluation γ̃0 : Hs
p′(R

n)→ Bs−1/p′
p′ (Rn−1), s > 1/p′. It

is clear that Kμ = r+Pμγ̃ ∗0 . The map

S−11,0(R
n × R

n+1) � 〈ξ, ζ 〉−1 �→ 〈ξ, μ〉−1 ∈ S−11,0(R
n × R

n)

is uniformly bounded with respect to μ. In view of the continuity of γ̃ ∗0 from

B−1/pp (Rn−1) to H−1p (Rn) we have

‖ op(〈ξ, μ〉−1)γ̃ ∗0 ‖L(B−1/pp (Rn−1),L p(Rn))
≤ C .

Define q = p#〈ξ, ζ 〉1 ∈ S−m1,δ (Rn × R
n+1). By part (a)

‖Qμ‖L(L p(Rn)) ≤ C |q|∗〈μ〉−m ≤ C |k|∗〈μ〉−m .

The estimate for Kμ follows.
For part (d) we use a similar approach. We write T = γ0Pe+, where P is a pseudod-
ifferential operator of order m with symbol-kernel p̃ = Et̃ . Clearly Tμ = γ0Pμe+.
By the same argument as in part (c) we have

‖γ0 op(〈ξ, μ〉−1)‖L(L p(Rn);B1−1/p
p (Rn−1)) ≤ C .

Define q = 〈ξ, ζ 〉1#p ∈ S−m+11,δ (Rn × R
n+1). By part (a)

‖Qμ‖L(L p(Rn)) ≤ C |q|∗〈μ〉−m+1 ≤ C |k|∗〈μ〉−m+1.

The estimate for Tμ follows. ��
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Bounded H∞-calculus for a degenerate... 1617

3.2 The principal symbol of the degenerate singular Green operator

We will now apply Agmon’s trick to our problem. We introduce the operator Aθ :=
A + eiθD2

z acting on R
n+ × R. The symbol of Aθ is aθ (x, ξ, ζ ) = a(x, ξ)+ eiθ ζ 2 ∈

S21,0(R
n×R

n+1), where a(x, ξ) is the symbol of A. Assuming that a is homogeneous
of degree 2, there exists a constant c = c(M, ϑ) such that for all 0 < ϑ ≤ |θ | ≤ π

the estimate |aθ (x, ξ, ζ )| ≥ c|ξ, ζ |2 holds. In particular, Aθ is elliptic. After possibly
replacing A by A + c for some positive constant c we may and will assume that the
Dirichlet problem for Aθ is invertible. In the introduction we already pointed out that
the solution operator to the Dirichlet problem is an operator in the Boutet de Monvel
calculus, i.e.

(
(Aθ )+
γ0

)−1
= (

Qθ,+ + GD
θ K D

θ

)
. (3.9)

Wewill need the principal symbols of the operatorsGD
θ and K D

θ and collect the results
to fix some notation.

Remark 3.5 (a) For fixed (x ′, ξ ′), the restriction to the boundary of the principal sym-
bol of Aθ is a polynomial of degree two in ξn . It therefore has two roots, say
±iκ±θ (x ′, ξ ′, ζ ), with Re κ±θ ≥ 0.

(b) We have κ±θ ∈ S11,0(R
n−1 × R

n). Both are strongly elliptic, i.e. Re κ±θ ≥ ω|ξ ′, ζ |
for suitable ω > 0.

(c) The principal symbol of K D
θ ∈ K0

1,0(R
n−1 × R

n) is (κ+θ + iξn)−1.
(d) The principal symbol of GD

θ ∈ G−2,01,0 (Rn−1 × R
n) is

a−1nn (κ+θ + κ−θ )−1(κ+θ + iξn)−1(κ−θ − iηn)−1.
For details see [21, Section 2].

For large −λ = eiθμ2 define

GT
θ := −K D

θ (T K D
θ )−#T ((A−1θ )+ + GD

θ ). (3.10)

The operator GT
λ defined in (1.9) coincides with GT

θ,μ mod O(〈λ〉−N ) for all N ∈ N,

as operators in L p(R
n+). Moreover, let GT ,∗

θ be any operator with the same principal

symbol as GT
θ . Then according to Theorem 3.2 and the lemma below, GT

λ = GT ,∗
θ,μ

mod o(〈λ〉−1), as operators on L p(R
n+).

Lemma 3.6 The operator GT
θ is a singular Green operator with symbol gTθ ∈

G−2,01,1/2(R
n−1 × R

n) and principal symbol

gTθ(−2)(x
′, ξ ′, ζ ; ξn, ηn)=sTθ (x ′, ξ ′, ζ )(κ+θ (x ′, ξ ′, ζ )+ iξn)

−1(κ−θ (x ′, ξ ′, ζ )− iηn)
−1

for suitable sTθ ∈ S−11,1/2

(
R
n−1 × R

n
)
. The corresponding symbol-kernel is

g̃Tθ(−2)(x
′, ξ ′, ζ ; xn, yn) = sTθ (x ′, ξ ′, ζ )e−κ+θ (x ′,ξ ′,ζ )xn e−κ−θ (x ′,ξ ′,ζ )yn .
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1618 T. Krietenstein, E. Schrohe

Proof Modulo smoothing operators GT
θ is the composition of the potential operator

K D
θ , a parametrix S−#θ to the pseudodifferential operator Sθ := T K D

θ on the boundary,
multiplication by the function ϕ1 introduced in (1.2) and the trace operator γ1(Qθ,++
GD

θ ). Note that Qθ,+ +GD
θ maps into the kernel of γ0 so that there is no contribution

fromϕ0γ0.Hence the principal symbol ofGT
θ is given bymultiplication of the principal

symbols of these operators. For the proof of the lemma it is therefore sufficient to
combine the following three statements.

(i) K D
θ = op kθ with kθ ∈ K0

1,0(R
n−1 × R

n) and principal symbol

kθ(0)(x
′, ξ ′, ζ, ξn) = (κ+θ (x ′, ξ ′, ζ )+ iξn)

−1,

which is Remark 3.5(c).
(ii) The symbol s−#θ #ϕ1 of S−#θ ϕ1 is an element of S−11,1/2(R

n−1 × R
n). This is the

content of Lemma 3.8, below.
(iii) γ1(Qθ,+ + GD

θ ) = op tθ with tθ ∈ T −1,01,0 and principal symbol

tθ(−1)(x ′, ξ ′, ζ, ξn) = −an(x ′)−1(κ−θ (x ′, ξ ′, ζ )− iξn)
−1,

which follows from Remark 3.5 and the composition rules.

��

3.3 The parametrix on the boundary

We recall a sufficient condition for the existence of a parametrix.

Theorem 3.7 (Parametrix). Let m ≥ 0 and p ∈ Sm1,0(R
n × R

n). Suppose there exists
a 0 ≤ δ < 1, such that for sufficiently large |ξ | we have the estimates

|p(x, ξ)| ≥ c and (3.11)

|∂β
x ∂

α
ξ p(x, ξ)p(x, ξ)

−1| ≤ C〈ξ 〉−|α|+δ|β| for all α, β ∈ N
n
0 . (3.12)

Then there exists a parametrix p−# ∈ S01,δ(R
n × R

n), i.e.,

p−##p = 1+ r1 and p#p−# = 1+ r2,

with r1, r2 ∈ S−∞(Rn × R
n).

Proof See [28, Chapter 2, Theorem 5.4]. ��
Lemma 3.8 The operator Sθ := T K D

θ has a parametrix with symbol s−#θ in
S01,1/2

(
R
n−1 × R

n
)
. Moreover s−#θ #ϕ1 ∈ S−11,1/2

(
R
n−1 × R

n
)
.

Before going into the proof let us point out that the difference between the Robin
and the degenerate boundary value problem is the order of the operator Sθ which here

123



Bounded H∞-calculus for a degenerate... 1619

is zero due to the zeros of ϕ1 and the resulting loss of ellipticity. The key observation
is that we gain back the loss in order by composing with the multiplication operator
ϕ1.

Proof Wewant to show that the symbol of Sθ = T K D
θ satisfies inequalities (3.11) and

(3.12). Write

T K D
θ = ϕ1γ1K

D
θ + ϕ0γ0K

D
θ = ϕ1�θ + ϕ0,

where �θ := γ1K D
θ is the Dirichlet-to-Neumann operator. It is well-known and a

consequence of Remark 3.5(c) that its symbol πθ is an element of S11,0(R
n−1 × R

n);

its principal symbol is κ+θ . By Remark 3.5(b) we have Reπθ ≥ 1 for sufficiently large
|ξ, ζ |. Hence, the symbol sθ of Sθ satisfies:

|sθ | ≥ |Re(ϕ1πθ + ϕ0)| = ϕ1 Reπθ + ϕ0 ≥ ϕ1 + ϕ0 ≥ c > 0. (3.13)

The constant c exists by assumption. We have to verify the estimates

|∂β

x ′∂
α
ξ ′∂

l
ζ sθ s

−1
θ | ≤ 〈ξ ′, ζ 〉−|α|−l+|β|/2 for all α, β ∈ N

n−1
0 , l ∈ N0.

The estimate is trivial for |β| ≥ 2, as sθ ∈ S11,0(R
n−1 × R

n) and |s−1θ | ≤ c−1 by

Eq. (3.13). Equation (3.13) also shows that (ϕ1πθ )
k/2s−1θ is bounded for k = 1, 2.

The ellipticity of πθ implies that |πθ |−k/2 � 〈ξ ′, ζ 〉−k/2. We obtain the remaining
estimates:

|∂α
ξ ′∂

l
ζ sθ s

−1
θ | ≡ |ϕ1∂α

ξ ′∂
l
ζ πθ s

−1
θ | = |∂α

ξ ′∂
l
ζ πθπ

−1
θ ||ϕ1πθ (ϕ1πθ + ϕ0)

−1| � 〈ξ ′〉−|α|−l

and with the help of the inequality |∂x jϕ1(x)|2 ≤ ‖ϕ′′1‖∞|ϕ1(x)|:

|∂x j ∂α
ξ ′∂

l
ζ sθ s

−1
θ | ≡ |∂x jϕ1∂α

ξ ′∂
l
ζ πθ s

−1
θ | � ‖ϕ′′1‖1/2∞ |(ϕ1πθ )

1/2s−1θ ||πθ |−1/2|∂α
ξ ′∂

l
ζ πθ |

� 〈ξ ′〉1/2−|α|−l .

Here ≡ means equality modulo terms that satisfy the estimate. According to Theo-
rem 3.7, there exists a parametrix to Sθ with symbol s−#θ ∈ S01,1/2(R

n−1 × R
n). We

still need to show that multiplication by ϕ1 reduces the order. As πθ is elliptic, there
exists a parametrix π−#θ such that πθπ

−#
θ − 1 = r ′θ is regularizing, and we find that

ϕ1 = sθ#π
−#
θ − ϕ1#r

′
θ − ϕ0#π

−#
θ .

Composition with ϕ1 or ϕ0 from the left is just pointwise multiplication. Hence we
obtain the improved order of s−#θ #ϕ1 from the identities

s−#θ #ϕ1 ≡ s−#θ #[sθ#π−#θ − ϕ0π
−#
θ ] mod S−∞(Rn−1 × R

n) and

≡ π−#θ − s−#θ #ϕ0π
−#
θ mod S−∞(Rn−1 × R

n).
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1620 T. Krietenstein, E. Schrohe

As ϕ0π
−#
θ , π−#θ ∈ S−11,0 and s−#θ ∈ S01,1/2, this completes the proof. ��

4 Bounded H∞-calculus

In this section we will prove Theorem 1.3.

4.1 The half space and constant coefficients

First, we consider the case where the underlying manifold is the euclidean half-space,
the coefficients of the differential operator are constant and only the top order terms
are non-zero. In symbols, X = R

n+, ai j (x) = ai j ∈ R, b j (x) = 0 and c0(x) = 0.
According to the last section, the resolvent of AT + ν has the following structure:

(AT + ν − λ)−1 = Q′θ,μ,+ + G ′θ,μ + R(λ),

where R(λ) ∈ L(L p(R
n+)) and ‖R(λ)‖ = O(〈λ〉−1−ε) for some ε > 0. For the proof

of Theorem 1.3 it is sufficient to provide Estimate (1.3). According to the equation
above, we may estimate the three terms on the right hand side separately. The estimate
for the first term is well-known, in fact it is the same as in the non-degenerate case.
Any operator whose norm inL(L p(R

n+)) isO(〈λ〉−1−ε), for some ε > 0, is integrable
along the boundary of �θ and therefore the estimate holds. To provide the estimate
for the singular Green part we need the following.

Lemma 4.1 Let σ ∈ S11,0(R
n−1 × R

n) and Re σ(x ′, ξ ′, ζ ) ≥ c|ξ ′, ζ |. Then the map

R+ � t �→ exp(−σ(x ′, ξ ′, ζ )t) ∈ S01,0(R
n−1 × R

n)

is uniformly bounded. In fact, we have a bound C = C(|σ |∗, c) on the seminorms.

Proof Induction over |α| + |β| + l = N shows that Dα
ξ ′D

β

x ′D
l
ζ exp(−σ(x ′, ξ ′, ζ )t) is

a linear combination over all k ≤ N , α1 + · · · + αk = α, β1 + · · · + βk = β, and
l1 + · · · + lk = l. The terms in the linear combination have the following structure:

(
Dα1

ξ ′ D
β1
x ′ D

l1
ζ σ (x ′, ξ ′, ζ ) · · · Dαk

ξ ′ D
βk
x ′ D

lk
ζ σ (x ′, ξ ′, ζ )

)
(−t)k exp(−σ(x ′, ξ ′, ζ )t).

Furthermore, the assumption σ ∈ S11,0(R
n−1 × R

n) implies:

∣∣∣Dα1
ξ ′ D

β1
x ′ D

l1
ζ σ (x ′, ξ ′, ζ ) · · · Dαn

ξ ′ D
βk
x ′ D

lk
ζ σ (x ′, ξ ′, ζ )

∣∣∣

≤
k∏

i=1
|σ |∗|ξ ′, ζ |1−|αi |−li = |σ |k∗|ξ ′, ζ |k−|α|−l .
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Bounded H∞-calculus for a degenerate... 1621

Moreover, we use the fact that sk exp(−s) is bounded on the positive real axis in order
to obtain:

∣∣∣(−t)k exp(−σ(x ′, ξ ′, ζ )t)
∣∣∣

= tk exp(−Re σ(x ′, ξ ′, ζ )t) ≤ tk exp(−c|ξ ′, ζ |t) ≤ c−k |ξ ′, ζ |−kC .

According to the last two estimates, all terms in the linear combination can be estimated
by C |ξ ′, ζ |−|α|−l . ��
Lemma 4.2 A constant C = C(|t |∗,M, ϑ) exists such that

∥∥∥∥
∫

∂�θ

f (λ)G ′λ dλ
∥∥∥∥
B(L p(R

n+))
≤ C‖ f ‖L∞(�ϑ ) for all f ∈ H∞0 (�ϑ).

Proof The boundary of �θ consists of the two rays e±iθR, which can be treated
separately and analogously. Thus, providing the estimate for the following operator is
sufficient:

I+ := 2−1e−iθ
∫

λ=eiθμ2
f (λ)G ′λ dλ =

∫ ∞

0
μ f (μ2eiθ )G ′θ,μ dμ.

For the estimate, we use the explicit description of the symbol-kernel of G ′θ in
Lemma 3.6. Since sTθ ∈ S−11,1/2(R

n−1 × R
n), ζ sTθ (x ′, ξ ′, ζ ) ∈ S01,1/2(R

n−1 × R
n).

According to Remark 3.5, the κ±θ are strongly elliptic and a constant c = c(M, ϑ) > 0
exists such that:

Re κ±θ (x ′, ξ ′, ζ ) ≥ 2c|ξ, ζ |.

Thus, σ±θ (x ′, ξ ′, ζ ) := κ±θ (x ′, ξ ′, ζ )− cζ satisfies the assumption of Lemma 4.1 and
the map, below, is uniformly bounded:

R
2++ � (xn, yn) �→ hθ (x

′, ξ ′, ζ ; xn, yn)
:= ζecζ(xn+yn)g̃′θ (x ′, ξ ′, ζ ; xn, yn) ∈ S01,1/2(R

n−1 × R
n).

Now, we analyze the action of G ′θ,μ in the direction normal to the boundary. To this

end, we define a family of operators that act on S(Rn−1):

[G ′θ,μ(xn, yn)v](x ′) :=
∫

eix
′ξ ′ g̃′θ,μ(x ′, ξ ′; xn, yn)v̂(ξ ′)d̄ξ ′.

Correspondingly, we define Hθ,μ(xn, yn) from hθ . Please note that:

μecμ(xn+yn)G ′θ,μ(xn, yn) = Hθ,μ(xn, yn).
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1622 T. Krietenstein, E. Schrohe

Since the seminorms of hθ are uniformly bounded with respect to (xn, yn) ∈ R
2++,

Theorem 3.2 shows that:

‖μG ′θ,μ(xn, yn)v‖L p(Rn−1) ≤ e−cμ(xn+yn)‖Hθ,μv‖L p(Rn−1)

≤ e−cμ(xn+yn)C‖v‖L p(Rn−1).

Furthermore, if u = v ⊗ w ∈ S(Rn−1)⊗ S(R+) is a simple tensor, then:

[I+u](x ′, xn) =
∫ ∞

0

∫ ∞

0
f (μ2eiθ )[μG ′θ,μ(xn, yn)v](x ′)w(yn) dyndμ.

In order to provide the estimate for I+, it is sufficient to consider simple tensors
because they span a dense subset of L p(R

n+). Therefore:

‖I+u‖L p(R
n+) ≤ ‖ f ‖∞

∥∥∥∥
∫ ∞

0

∫ ∞

0
‖μGθ,μ(xn, yn)v‖L p(Rn−1)|w(yn)| dyndμ

∥∥∥∥
L p(R+)

≤ C‖ f ‖∞‖v‖L p(Rn−1)

∥∥∥∥
∫ ∞

0

∫ ∞

0
exp(−cμ(xn + yn))|w(yn)| dyndμ

∥∥∥∥
L p(R+)

≤ C‖ f ‖∞‖v‖L p(Rn−1)

∥∥∥∥
∫ ∞

0

|w(yn)|
xn + yn

dyn

∥∥∥∥
L p(R+)

≤ C‖ f ‖∞‖v‖L p(Rn−1)‖w‖L p(R+) = C‖ f ‖∞‖u‖L p(R
n+),

where we used L p-boundedness of the Hilbert transform for the latter inequality.
The estimate implies that I+ ∈ B(L p(R

n+)) and ‖I+‖ ≤ C‖ f ‖L∞(�ϑ ). Here, C =
C(M, |t |∗, ϑ) is the constant in the estimate above. ��
We now have proven Theorem 1.3 for diffperential operator with constant coefficients.

Remark 4.3 The above arguments also provide the result for the case of smooth coef-
ficients. However, in this case the constants also depend on the symbol seminorms of
the differential operator.

4.2 The Euclidean half space

Now, we treat the situation where X = R
n+, but the coefficients of the differential

operator may not be constant. We assume that ai j ∈ Cτ (Rn+) for some τ > 0 and
b j , c0 ∈ L∞(Rn+). We use the classical approach of freezing coefficients. We only
freeze the coefficients of the differential operator, not those of the boundary operator.
We use a localization scheme similar to that used by Kunstmann and Weis in [27].
This provides a family of operators that are small perturbations of an operator with
frozen coefficients.Wewill prove that they allow a bounded H∞-calculus in a uniform
manner. By patching together these operators, we can conclude that AT itself allows
a bounded H∞-calculus. We choose a small r > 0, how small we have to chose r
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Bounded H∞-calculus for a degenerate... 1623

will become clear later on. We define the cubes Q = (−r , r)n and Ql := Q + l,
with l ∈ � := r(Z × N0). Observe that Rn+ ⊂ ∪l∈�Ql . We fix a positive function
ψ ∈ C∞c (Q) such that γ1ψ = 0 and

∑

l∈�
ψl(x) = 1 for all x ∈ R

n+, where ψl(x) = ψ(x − l). (4.1)

Moreover, we choose a cut-off function χ ∈ C∞c (Q) such that χ = 1 on suppψ
and define χl(x) := χ(x − l). We define Al as the L p-realization with respect to the
boundary operator T of the following differential operator.

Al = Ac
l +As

l =
∑

|α|=2
aα(l)D

α +
∑

|α|=2
χl(x)[aα(x)− aα(l)]Dα

Observe that Alψl = A′Tψl , where A′T denotes the L p-realization of the principal
part of A. The major technical difficulty is to show that each operator in the family
(Al)l∈� allows a bounded H∞-calculus, with uniform estimates. More precisely, for
suitably chosen r > 0:

Lemma 4.4 The operator Al belongs to H∞(�θ ) for all θ > 0 and l ∈ �. Moreover
there exists a C := C(M, θ, ‖aα‖Cτ , |t |∗) > 0 such that

‖ f (Al)‖B(L p(R
n+)) ≤ C‖ f ‖∞ for all f ∈ H∞(�θ ) and l ∈ �.

We can choose r > 0 such that As
l is a small perturbation of Ac

l + ν, in the sense of
the following result. Recall that the shift ν was introduced to ensure the existence of
a unique solution to the boundary problem.

Theorem 4.5 Let E be a Banach space with the UMD property, let A ∈ S(E) have
a bounded H∞(�ϑ)-calculus, and 0 ∈ ρ(A). Suppose that B is a linear operator in
E such that D(A) ⊂ D(B) and

‖Bu‖E ≤ ε‖Au‖E for all u ∈ D(A),

for some ε > 0. Suppose further that γ ∈ (0, 1) and a constant C > 0 exist such that

B(D(A1+γ )) ⊂ D(Aγ ) and ‖Aγ Bx‖E ≤ C‖A1+γ x‖E for x ∈ D(A1+γ ).

Then A + B has a bounded H∞(�ϑ)-calculus in E, provided ε is sufficiently small.
Moreover, a constant CA+B = CA+B(CA, ε,C) exists such that

‖ f (A + B)‖B(E) ≤ CA+B‖ f ‖∞.

For the proof we refer to [12]. To verify the assumptions of the theorem above, we
observe:
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1624 T. Krietenstein, E. Schrohe

Lemma 4.6 A constant C > 0 exists such that for asl,α := χl(aα − aα(l)):

‖asl,α‖∞ ≤ C‖aα‖Cτ (Rn+)r
τ and ‖asl,α‖Cσ (Rn+) ≤ C‖aα‖Cτ (Rn+)r

τ−σ ,

given that 0 < σ ≤ τ .

Proof We recall that r is proportional to the diameter of the cube Q. Thus,

‖asl,α‖∞ ≤ sup

{ |aα(x)− aα(l)|
|x − l|τ |x − l|τ : x ∈ supp(χl)

}

≤ C‖aα‖Cτ (Rn+)r
τ .

By a similar argument, we obtain the second estimate. ��
Next, we verify that the lemma above implies the following estimate:

‖As
l u‖L p(R

n+) ≤ Cr τ‖(Ac
l + ν)u‖L p(R

n+) for all u ∈ H2
p(R

n+) ∩ ker T . (4.2)

It is well-known that Cτ (Rn+) ↪→ B(Hs
p(R

n+)) as a multiplication operator for 0 ≤
s < τ . Therefore, with s = 0 we obtain:

‖As
l u‖L p(R

n+) ≤
∑

1≤i, j≤n
‖asl,i j‖C(Rn+)‖u‖H2

p(R
n+) ≤ Cr τ‖u‖H2

p(R
n+).

Furthermore, on H2
p(R

n+) ∩ ker T , the norm ‖(Ac
l + ν) · ‖L p(R

n+) and the H2
p(R

n+)
norm are equivalent because (Ac

l + ν) is invertible. Hence, Eq. (4.2) holds. Now, we
compute the domain of (Ac

l + ν)γ for 2γ < min{1/p, τ }. According to Theorem [47,
Theorem 1.15.2], the domain is:

D((Ac
l + ν)γ ) = (L p(R

n+), H2
p(R

n+) ∩ ker T )γ .

Wewrite Ḣ2
p(R

n+) for the closure ofC∞c (Rn+) in H2
p(R

n+). By interpolation, the embed-

ding Ḣ2
p(R

n+) ↪→ H2
p(R

n+) ∩ ker T ↪→ H2
p(R

n+) implies:

Ḣ2γ
p (Rn+) ↪→ (L p(R

n+), H2
p(R

n+) ∩ ker T )γ ↪→ H2γ (Rn+).

As H2γ
p (Rn+) = Ḣ2γ

p (Rn+) for 2γ < 1/p, we conclude that D((Ac
l + ν)γ ) =

H2γ
p (Rn+). Furthermore, the operator (Ac

l +ν)γ is invertible. Thus, ‖(Ac
l +ν)γ ·‖L p(R

n+)
and ‖ · ‖

H2γ
p (Rn+)

are equivalent norms on D((Ac
l + ν)γ ). We make use of Lemma 4.6

and the embedding Cσ (Rn+) ↪→ B(Hs
p(R

n+)) to obtain the following estimate:

‖(Ac
l + ν)γ As

l u‖L p(R
n+) ≤ C‖As

l u‖H2γ
p (Rn+)

≤ Cr τ−2γ ‖u‖
H2+2γ

p (Rn+)
.
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We can further estimate the right hand side with [26, p. 70]:

‖u‖
H2+2γ

p (Rn+)
≤ C‖(ν + Ac

l )u‖H2γ
p (Rn+)

≤ ‖(ν + Ac
l )

1+γ u‖L p(R
n+).

In sum, the following estimate holds for all u ∈ D((ν + Ac
l )

1+γ ):

‖(ν + Ac
l )

γ As
l u‖L p(R

n+) ≤ Cr τ−2γ ‖(ν + Ac
l )

1+γ u‖L p(R
n+). (4.3)

The constants in Eqs. (4.2) and (4.3) are independent of l and r . Therefore, we can
choose r such that Theorem 4.5 applies to ν + Ac

l + As
l and thus Lemma 4.4 holds.

Now we describe the localization scheme. We defineHs
p(R

n+) := l p(�, Hs
p(R

n+)) and
we write Lp(R

n+) if s = 0. We introduce the localization operator L and the patching
operator P with the help of a partition of unity (4.1):

L : L p(R
n+)→ Lp(R

n+), u �→ (ψlu)l∈�.

P : Lp(R
n+)→ L p(R

n+), (ul)l∈� �→
∑

l∈�
χlul .

We also define the operator T : H
2
p(R

n+) → l p(�; B1−1/p
p (Rn+)), (ul)l∈� →

(Tul)l∈� . We collect some properties of these operators, which follow directly form
the definitions:

Lemma 4.7 Let L, P and T be as above. Then

(1) L ∈ B(Hs
p(R

n+);Hs
p(R

n+))
(2) P ∈ B(Hs

p(R
n+); Hs

p(R
n+))

(3) PL = 1
(4) L : H2

p(R
n+) ∩ ker T → H

2
p ∩ kerT

(5) P : H2
p ∩ kerT→ H2

p(R
n+) ∩ ker T

We write Alk := δlk Al , with domain D(Alk) = H2
p(R

n+) ∩ ker T . We define

A : D(A):=H2
p(R

n+) ∩ kerT ⊂ Lp(R
n+)→ Lp(R

n+), (uk)k∈� �→
(

∑

k∈�
Alkuk

)

l∈�
.

(4.4)

Similar we define B and D for the following families of operators.

Blk := δlk Alow + [ψl , A]ψk and Dlk = δlk Alow + ψl [Ak + Alow,ψk].

Here Alow denotes the L p-realisation with respect to the boundary operator T of
A−A′. All sums in (4.4) are finite. In fact, we have a symmetric relation l �� k :⇔
suppψl ∩ suppψk �= ∅ on �. The definition of ψl implies that for fixed l ∈ � the
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1626 T. Krietenstein, E. Schrohe

set �l := {k ∈ � : k �� l} is finite. Obviously Blk = 0 and Dlk = 0 if k �= �l . The
operators above are defined such that they satisfy the following relations.

L A = (A+ B)L on D(A) and (4.5)

AP = P(A+ D) on D(A). (4.6)

For suitably chosen r > 0 we obtain:

Lemma 4.8 The operator A belongs to H∞(�θ ) for each θ > 0.

Proof We fix θ > 0 and choose r > 0 such that Lemma 4.4 applies. In particular,
�θ ⊂ ρ(Al) for all l ∈ � with uniform bounds on the inverse. Therefore, the inverse
of λ−A exists and is given by (λ−A)−1(ul)l∈� = ((λ− Al)

−1ul)l∈� . For each l ∈ �

we have a bounded operator

l̂ : Lp(R
n+)→ L p(R

n+), (uk)k∈� → ul .

Let C be as in Lemma 4.4 and f ∈ H∞∗ (�θ ). Then

‖ f (A)(uk)k∈�‖pLp(R
n+)
=

∑

l∈�

∥∥∥∥l̂
∫

∂�θ

f (λ)(λ+ A)−1(uk)k∈� dλ

∥∥∥∥
p

L p(R
n+)

=
∑

l∈�

∥∥∥∥
∫

∂�θ

f (λ)(λ− Al)
−1ul dλ

∥∥∥∥
p

L p(R
n+)

≤
∑

l∈�
C p‖ f ‖p∞‖ul‖L p(R

n+) = C p‖ f ‖p∞‖u‖pLp(R
n+)
.

This estimate is sufficient to see that A ∈ H∞(�θ ). ��

Next, we observe that both B and D are lower order perturbations of A in the sense
of the following well-known perturbation theorem going back to Amann. For a proof
we refer to [27, Proposition 13.1].

Theorem 4.9 Let A ∈ S(E) have a bounded H∞(�θ )-calculus in E and assume
0 ∈ ρ(A). Let γ ∈ (0, 1) and suppose that B is a linear operator in E satisfying
D(B) ⊃ D(A), and

‖Bu‖E ≤ C‖A1−γ u‖E for all u ∈ D(A),

where C > 0. Then ν + A + B has a bounded H∞(�θ )-calculus in E for ν ≥ 0
sufficiently large.

In particular, for suitably chosen r > 0 we obtain:
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Lemma 4.10 For each θ > 0 a constant ν ≥ 0 exists such that both ν + A+ B and
ν + A+ D belong to H∞(�θ ).

Proof We can assume that 0 ∈ ρ(A), otherwise we consider ν + A. Thus, A(1−γ ) is
invertible and ‖ · ‖D(A1−γ ) is equivalent to ‖A1−γ · ‖Lp(R

n+). According to Lemma 4.8,
the operator A belongs to H∞(�θ ) and therefore has bounded imaginary powers.
According to [47, Theorem 1.15.2], the domain of A1−γ is given by complex interpo-
lation.

D(A1−γ ) = (Lp(R
n+),D(A))1−γ ↪→ (Lp(R

n+),H2
p(R

n+)))1−γ = H
2−2γ
p (Rn+))

We can focus on B, because the arguments for D are the same. A closer look on the
definition of Blk reveals that it is a first order differential operator. In particular, for
each γ < 1/2 we have the standard estimate:

‖Blku‖L p(R
n+) ≤ C‖u‖H1

p(R
n+) ≤ C‖u‖

H2−2γ
p (Rn+)

. (4.7)

Note that the constant C > 0 only depends on the L∞-norm of the coefficients and
thus can be chosen independent of k and l. We write N := supl∈� #{k ∈ � : k �� l}.
Then by estimate (4.7)

‖B(uk)k∈�‖pLp(�)
=

∑

l∈�

∥∥∥∥∥
∑

k �� l
Blkuk

∥∥∥∥∥

p

L p(R
n+)

≤
∑

l∈�

(
∑

k �� l
C ‖uk‖H2−2γ

p (Rn+)

)p

≤
∑

l∈�
C pN p sup

k �� l
‖uk‖p

H2−2γ
p (Rn+)

≤ C pN p
∑

l∈�

∑

k �� l
‖uk‖p

H2−2γ
p (Rn+)

≤ C pN p+1 ∑

l∈�
‖ul‖p

H2−2γ
p (Rn+)

= C pN p+1‖(ul)l∈�‖H2−2γ (Rn+)

≤ C pN p+1‖A1−γ (ul)l∈�‖pLp(R
n+)
.

In the fourth inequality we used the symmetry of the relation �� to change the order
of summation. We finish the proof by the application of Theorem 4.9 to ν+A+ B. ��

Now, we can prove Theorem 1.3 for the case X = R
n+.

Proof For given θ > 0 we choose ν, r > 0 such that Lemma 4.10 applies. For each
λ ∈ �θ the operator λ−(ν+AT ) is invertible with left inverse P(λ−(ν+A+ B))−1L
and right inverse P(λ− (ν + A+ D))−1L . For all f ∈ H∞∗ (�θ ) we have

‖ f (ν + AT )‖ ≤ ‖P‖‖ f (ν + A+ B)‖‖L‖ ≤ C‖ f ‖∞.

Therefore, ν + AT allows a bounded H∞(�θ )-calculus. ��

123



1628 T. Krietenstein, E. Schrohe

4.3 Manifolds

Now, let (X , g) be a manifold with boundary and bounded geometry as in [17], see
also [34]. We choose an atlas of Fermi coordinates κl : Ul ⊂ X → Vl ⊂ R

n
+ with

index set � such that supl∈� |{k ∈ � : Uk ∩ Ul �= ∅}| =: N < ∞. We also choose
a subordinate partition of unity (ψl)l∈� such that ∂νψl = 0 for all l ∈ �. Here, ν
denotes an outward unit normal vector field on ∂X . For each ψl , we choose positive
functions χ ′l , χl ∈ C∞c (Ul) such that χl = 1 on suppψl and χ ′l = 1 on suppχl . We

denote χl,∗ = κl,∗χl ∈ C∞c (Vl) ⊂ C∞c (R
n
+). Similarly, we define χ ′l,∗. Moreover, we

write κ̃l(x ′) := κl(x ′, 0) for the induced chart on the boundary. LetA be a sufficiently
regular M-elliptic second order differential operator on X as in (1.1) and T be a
boundary operator as in (1.2). For each l ∈ �, we define the following operators:

Al := −�(1− χ ′l,∗)+ κl,∗Aκ∗l χ ′l,∗ and Tl := γ0(1− χ ′l,∗)+ κ̃l,∗T κ∗l χ ′l,∗.

Then Al is an M-elliptic second order differential operator on euclidean space with
sufficiently regular coefficients. Moreover, the norms of the coefficients of the local
representations of A are bounded by M . Therefore, the norms of the coefficients of
Al are uniformly bounded with respect to l ∈ � and so are the seminorms |tl |∗. We
define:

Al : D(Al) := {u ∈ H2
p(R

n+) : Tlu = 0} → L p(R
n+), u �→ r+Al e

+u.

Each operator Al satisfies the assumptions in the last subsection. Therefore, we can
apply Theorem 1.3 to Al , which implies that Lemma 4.4 continues to hold. We define
the localization operator and the patching operator by:

L : L p(X)→ Lp(R
n+), u �→ (κl,∗ψlu)l∈N.

P : Lp(R
n+)→ L p(X), (ul)l∈N →

∑

l∈I
κ∗l χl,∗ul .

By definition, u belongs to Hs
p(X) if and only if Lu belongs to H

s
p(R

n+). Moreover,
the norms of u and Lu coincide. Therefore:

• L ∈ B(Hs
p(X);Hs

p(R
n+)),

• P ∈ B(Hs
p(R

n+); Hs
p(X)), and

• PL = 1.

Remark 4.11 Spaces on manifolds with boundary and bounded geometry:

(a) It is natural to define Hs
p(X) as r+Hs

p(X̂). Here r+ is the restriction in the sense

of distributions, Hs
p(X̂) = (I −�g)

−s/2L p(X̂) and X̂ is a manifold with bounded

geometry which contains X . For the existence of X̂ we refer to [6]. The operator
(I −�g)

−s/2 is well defined for all s ∈ R, due to the result of Strichartz in [40].
Since the restriction can be treated analogously to the euclidean or compact case,
we may only consider Hs

p(X̂). Let L be defined as above with respect to an atlas
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of normal coordinates. Then ‖L · ‖Hs
p(R

n) and ‖(I −�g)
s · ‖L p(X̂)

are equivalent
norms; this result is due to H. Triebel, see [48, Theorem 7.4.5]. In [17], it was
observed that an atlas of Fermi coordinates also gives rise to an equivalent norm.

(b) The interpolation results for Hs
p(R

n) extend to Hs
p(X̂). This follows from two facts.

First Hs
p(X̂) is a retract of Hs

p(R
n). Second H

s
p(R

n) is the space of p-summable
sequences with values in Hs

p(R
n).

(c) We may define Besov-spaces via real interpolation or via the localization operator
L . According to part (b) both definitions coincide. The trace theorem holds on
manifolds with boundary and bounded geometry, see [17] for the details.

Furthermore, we define T : H2
p(R

n+) → B
1−1/p
p (Rn−1), (ul)l∈I �→ (Tlul)l∈I .

Using the fact ∂νψl = 0 for all l ∈ � we obtain: The localization operator maps the
kernel of T to the kernel of T and the patching operator maps the kernel of T into the
kernel of T . We define D(A) := H

2
p(R

n+) ∩ kerT. Note that (ul)l∈� ∈ D(A) implies
that ul ∈ D(Al) for all l ∈ �. Therefore, the following definition is reasonable:

A : D(A) := H
2
p(R

n+) ∩ kerT ⊂ Lp(R
n+)→ Lp(R

n+), (ul)l∈� �→ (Alul)l∈�.

Lemma 4.8 continues to hold as it only relies on Lemma 4.4. We define B,D :
H

2
p(R

n+) ⊂ Lp(R
n+)→ Lp(R

n+) as infinite matrices with entries:

Blk := κl∗ [ψl , A]χ ′k,∗κ∗k resp. Dlk := κl,∗ψlκ
∗
k [Ak, χk,∗].

Again, the definition is motivated by the Relations (4.5) and (4.6). The operators
A,B,D, L and P have the same properties as those on the euclidean space. Therefore,
the proof of Theorem 1.3 carries over.

5 Non-smooth boundary operators

In order to treat the case of non-smooth boundary operators, we may assume that
X = R

n+ and A has constant coefficients. The same perturbation arguments as before
will then give the result for the general case. For the sake of simplicitywewillmoreover
suppose thatϕ0 ≡ 1, andϕ1 = ϕ2,withϕ ∈ C2+τ and τ > 0. The operator Sθ = T K D

θ

then is a pseudodifferential operator on the boundary with symbol:

sθ (x, ξ, ζ ) = ϕ2(x ′)πθ (ξ
′, ζ )+ 1 ∈ C2+τ S11,0(R

n−1 × R
n). (5.1)

As in the smooth case, we associate an operator Sλ to Sθ by restricting the additional
covariable to μ, where λ = e±θμ2. The following result is essential.

Proposition 5.1 For sufficiently large |λ| and s < τ − 1, the operator Sλ is invertible
as an unbounded operator in Bs

p(R
n−1) with its maximal domain. Moreover,

S−1λ ϕ2 : Bs
p(R

n−1)→ Bs+1
p (Rn−1) is bounded, (5.2)
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1630 T. Krietenstein, E. Schrohe

and there exists an sTθ ∈ S−11,γ (R
n−1×R

n) and an ε > 0, such that for STλ = op(sTθ,μ)
we have

∥∥∥S−1λ ϕ2 − STλ

∥∥∥L(L p(Rn−1))
≤ C〈λ〉−(1/2+ε). (5.3)

The constant C = C(M, ‖ϕ‖C2+τ ) and the symbol seminorms of sTθ only depend on
M and ‖ϕ‖C2+τ .

Using the above result, the proof of Theorem 1.4 is analogous to that of Theorem 1.3,
from Lemma 3.6 onwards.

Proof of Theorem 1.4 Recall that (A−1λ,+ + GD
λ , K D

λ ) is the inverse to the Dirichlet

problem and GT
λ = −K D

λ S−1λ T (A−1λ,+ + GD
λ ), see (1.9). In view of Eq. (5.2) and

Theorem 3.2, the operator A−1λ,+ + GD
λ + GT

λ maps L p(R
n+) into H2

p(R
n+). Note that

Aλ,+(A−1λ,+ + GD
λ + GT

λ ) = 1 and

T (A−1λ,+ + GD
λ + GT

λ ) = 0.

Therefore, A−1λ,++GD
λ +GT

λ maps L p(R
n+) into the domainD(AT ) and is the resolvent.

According to Eq. (5.3) and Theorem 3.2,

∥∥∥K D
λ (S−1λ ϕ2 − STλ )γ1(A

−1
λ,+ + GD

λ )

∥∥∥L(L p(Rn))
≤ C〈λ〉−(1+ε/2).

Thus, up to an error which is integrable with respect to λ, GT
λ coincides with

GT ,∗
λ = −K D

λ STλ γ1(A
−1
λ,+ + GD

λ ).

This operator has a symbol-kernel as in Lemma 3.6. The only difference is that now
δ = γ instead of δ = 1/2, which does not affect the arguments given in Sect. 4. ��

The rest of this section is dedicated to the proof of Proposition 5.1. Guided by the
smooth case, we define a pseudodifferential operator on the boundary with symbol:

s−#θ (x ′, ξ ′, ζ ) := 1

sθ (x ′, ξ ′, ζ )
. (5.4)

First we have to check that the function above is indeed a symbol. To this end we need
the following estimates.
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Lemma 5.2 Let sθ be as in (5.1). Then for all α, β ∈ N
n with |β| ≤ 2 a constant

C = C(M, ‖ϕ‖C2+τ ) exists such that

∥∥∥∥
1

sθ

∥∥∥∥∞
≤ C,

∥∥∥∥
1

sθ

∥∥∥∥
C2+τ

≤ C〈ξ ′, ζ 〉1+τ/2, (5.5)

∥∥∥∥∥
∂α
ξ sθ

sθ

∥∥∥∥∥∞
≤ C〈ξ ′, ζ 〉−|α|,

∥∥∥∥∥
∂α
ξ sθ

sθ

∥∥∥∥∥
C2+τ

≤ C〈ξ ′, ζ 〉1+τ/2−|α|, (5.6)

∥∥∥∥∥
∂
β
x sθ
sθ

∥∥∥∥∥∞
≤ C〈ξ ′, ζ 〉|β|/2 and

∥∥∥∥∥
∂
β
x sθ
sθ

∥∥∥∥∥
C2+τ−|β|

≤ C〈ξ ′, ζ 〉1+τ/2. (5.7)

Proof We first consider the Estimates (5.5). The function

s−#θ = 1

sθ
= 1

ϕ2πθ + 1
.

is bounded as Re πθ (ξ, ζ ) ≥ c|ξ, ζ | ≥ 0 with a constant c = c(M). To estimate the
Hölder norm we write

s−#θ = f
π
1/2
θ

(ϕ), with fa(s) := 1

(as)2 + 1
.

By elementary calculus, we obtain

f ′a(s) = −2a(as) f 2a (s),
f ′′a (s) = 2a2(3(as)2 − 1) f 3a (s) and

f ′′′a (s) = −24a3((as)3 − (as)) f 4a (s)

Note that, under the assumption that a ∈ �θ for some 0 < θ < π/2, a constant
C = C(θ) exists such that | fa(s)| ≤ C and |as fa(s)| ≤ C . Therefore, ‖ fa(s)‖Ci ≤
C |a|i for i ∈ {0, 1, 2, 3}. By interpolation, we obtain ‖ fa(s)‖C2+τ ≤ C |a|2+τ for
0 < τ < 1. According to [23, Theorem A.8], the composition of C2+τ functions is
again a C2+τ function, and

∥∥∥ f
π
1/2
θ

(ϕ)

∥∥∥
Cτ
≤ C(‖ f

π
1/2
θ

‖C2+τ ‖ϕ‖2+τ

C1 + ‖ f
π
1/2
θ

‖C1‖ϕ‖C2+τ + ‖ f
π
1/2
θ

‖∞)

≤ C(|πθ |1+τ/2 + |πθ |1/2 + 1) ≤ C〈ξ ′, ζ 〉1+τ/2.

Here, the constant C = C(M, θ, ‖ϕ‖C2+τ ) also depends on ‖ϕ‖C2+τ . Next, we con-
sider the Estimates (5.6). For α �= 0

∂α
ξ sθ = ϕ2∂α

ξ πθ = ϕ2πθ

∂α
ξ πθ

πθ

. (5.8)
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As πθ ∈ S11,0(R
n−1 × R

n) is an elliptic symbol, the following estimates hold

∥∥∥∥∥
∂α
ξ πθ

πθ

∥∥∥∥∥∞
≤ C〈ξ 〉−|α| and

∥∥∥∥∥
∂α
ξ πθ

πθ

∥∥∥∥∥
Cτ

≤ C〈ξ 〉−|α|. (5.9)

We recall the well-known estimate for the Hölder norm of a product:

‖gh‖Cσ ≤ ‖g‖Cσ ‖h‖∞ + ‖g‖∞‖h‖Cσ . (5.10)

In view of Eqs. (5.8), (5.9) and (5.10), for the proof of (5.6) it is sufficient to prove:

∥∥∥∥
ϕ2πθ

sθ

∥∥∥∥∞
≤ C and

∥∥∥∥
ϕ2πθ

sθ

∥∥∥∥
C2+τ

≤ C〈ξ ′, ζ 〉1+τ/2.

Using the fact that

ϕ2πθ

sθ
= ϕ2πθ

ϕ2πθ + 1
= 1− 1

ϕ2πθ + 1
= 1− 1

sθ
,

these estimates follow from Estimates (5.5). Finally we consider Estimates (5.7). In
case |β| = 2, they follow from (5.5) and the fact that sθ ∈ C2+τ S11,0(R

n−1 × R
n). If

|β| = 1, we use the fact that (as) fa(s) is bounded. ��
With these estimates at hand we can prove the following result.

Lemma 5.3 Let s−#θ be as in (5.4). Then

s−#θ ∈ C2+τ S01,1/2(R
n−1 × R

n) and

ϕ2s−#θ ∈ C2+τ S−11,1/2(R
n−1 × R

n).

Proof According to Leibniz’ rule, ∂α
ξ s
−#
θ is a linear combination of terms, indexed by

k ≤ |α| and α1 + · · · + αk = α, which have the following structure:

1

sθ

∂
α1
ξ sθ

sθ
· · · ∂

αk
ξ sθ

sθ
.

According to Lemma 5.2, the supremum norm of such a term is bounded by
C〈ξ ′, ζ 〉−|αi | and the Hölder norm is bounded by C〈ξ ′, ζ 〉1+τ/2−|αi |. Therefore, s−#θ

is a symbol of the claimed class. As ϕ only depends on x , ∂α
ξ ϕ

2s−#θ has a similar

structure as ∂α
ξ s
−#
θ . We only have to replace the first factor by

ϕ2

sθ
=

(
ϕ2πθ

sθ

)
π−1θ =

(
1− 1

sθ

)
π−1θ .

Since πθ is elliptic of order 1, we have the claimed reduction in the order. ��
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In order to verify that s−#θ is a coarse parametrix to sθ , we need some results on the
composition of non-smooth pseudodifferential operators. In essence, we follow the
argumentation in [1]. The key tool to handle the composition of non-smooth symbols
is symbol smoothing:

Theorem 5.4 Let p ∈ Cσ∗ Sm1,δ(Rn−1 × R
n) and γ ∈ (δ, 1). Then symbols

p ∈ Sm1,γ (R
n−1 × R

n) and p! ∈ Cσ∗ S
m−(γ−δ)σ
1,γ (Rn−1 × R

n),

exist such that p = p + p!. Moreover,

∂α
x p

 ∈ Sm+δ|α|(Rn−1 × R
n), if |α| ≤ σ and

∂α
x p

 ∈ Sm+δσ+γ (|α|−τ)(Rn−1 × R
n), if |α| > σ.

For the proof of the result, we refer to [46, §1.3].
Let p ∈ C

σp∗ S
mp
1,δp

(Rn−1 × R
n) and q ∈ C

σq∗ S
mq
1,δq

(Rn−1 × R
n). For all k < σq we

define the truncated composition:

tk(p, q) :=
∑

|α|≤k

1

α!D
α
ξ p∂

α
x q.

Moreover, we write t!k (p, q) = tk(p, q!) and t k (p, q) = tk(p, q ), where q and q!

are as in Theorem 5.4 with γ ∈ (δq , 1). Note that t
 
k is defined for all k ∈ N0. Clearly

the truncated composition is a symbol, given as a sum over symbols of different order
and regularity. In order to facilitate the analysis, we set t−1(p, q) := 0 and introduce
the difference dk(p, q) := tk(p, q) − tk−1(p, q). Similarly we define d!

k(p, q) and

d 
k (p, q). From the definition we conclude that:

dk(p, q) ∈ C
min(σp,σq−k)∗ S

mp+mq−(1−δq )k
1,max(δp,δq )

(Rn−1 × R
n), (5.11)

d!
k(p, q) ∈ C

min(σp,σq−k)∗ S
mp+mq−(γ−δq )σq−(1−γ )k
1,max(δp,γ )

(Rn−1 × R
n), (5.12)

d 
k (p, q) ∈ C

σp∗ S
mp+mq−(1−δq )k
1,max(δp,γ )

(Rn−1 × R
n), if k ≤ σq and (5.13)

d 
k (p, q) ∈ C

σp∗ S
mp+mq−(1−δq )σq−(1−γ )(k−σq )

1,max(δp,γ )
(Rn−1 × R

n), if k > σq . (5.14)

To each symbol defined above we associate a pseudodifferential operator. We denote
the operator by capital letters, e.g. P := p(x, D). To further simplify the notation
we drop the dependence on p and q if these are obvious, e.g. tk = tk(p, q) or Tk =
tk(x, D) = tk(p, q)(x, D).
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1634 T. Krietenstein, E. Schrohe

We now analyze the composition. To this end we fix n, n′ ∈ N0, such that n′ ≤ n and
n′ ≤ σq . Then:

PQ = P(Q + Q!) = PQ + PQ! = T  
n + (PQ − T  

n )+ PQ!

= Tn′ + (T  

n′ − Tn′)+ (T  
n − T  

n′)+ (PQ − T  
n )+ PQ!.

Thefirst termon the right hand side is the truncated composition and the other terms are
remainder terms,whichwe nowanalyze.Wedefine Rn′ := T  

n′−Tn′ , Rn,n′ := T  
n−T  

n′ ,

R 
n := PQ − T  

n , and R! := PQ!. In view of Eq. (5.12), the term

Rn′ = T  

n′ − Tn′ = −T !

n′

is a pseudodifferential operator with symbol

rn′ ∈ C
min(σp,σq−n′)∗ S

mp+mq−(γ−δq )σq
max(δp,γ )

(Rn−1 × R
n).

We point out that the following term is a pseudodifferential operator with the same
regularity as p.

Rn′,n = (T  
n − T  

n′) =
n∑

k=n′+1
D 
k .

To be precise, Eqs. (5.13) and (5.14) imply that the symbol belongs to

rn′,n ∈
⎧
⎨

⎩
C

σp∗ S
mp+mq−(1−δq )(n′+1)
max(δp,γ )

if n′ + 1 ≤ σq and

C
σp∗ S

mp+mq−(1−δq )σq−(1−γ )(n′+1−σq )

max(δp,γ )
if n′ + 1 > σq .

We use the well-known fact that PQ ∼∑
k∈N0

D 
k in order to analyze

R 
n = PQ − T  

n ∼
∑

k>n

D 
k .

In view of Eqs. (5.13) and (5.14), the symbol of the operator above belongs to

r  n ∈
⎧
⎨

⎩
C

σp∗ S
mp+mq−(1−δq )(n+1)
max(δp,γ )

if n + 1 ≤ σq and

C
σp∗ S

mp+mq−(1−δq )σq−(1−γ )(n+1−σq )

max(δp,γ )
if n + 1 > σq .

(5.15)

The analysis of R! = PQ! relies on the fact that Q! has lower order than Q.
We now apply the results above to the case of interest, which is p = sθ and

q = s−#θ . The parameters in this case are mp = 1, mq = 0, δp = 0, δq = 1/2 and
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σp = σq = 2 + τ , with τ > 0. We fix n′ = 0, n = 2 and γ ∈ (1/(2 + τ)+ 1/2, 1).
We define 2ε = min((γ − 1/2)(2+ τ)− 1, 1) > 0. Then Eq. (5.12) implies

d!
k ∈ C2+τ−k∗ S−2ε1,γ (Rn−1 × R

n), for k ∈ {0, 1, 2}.

In particular, since R0 = D!
0 we have

R0 : Bs−2ε
p (Rn)→ Bs

p(R
n) for 0 ≤ s < 2+ τ. (5.16)

We make the following observation. According to Lemma 5.2:

d0 = sθ
sθ
= 1,

d1 = −
∑

|α|=1

Dα
ξ sθ

sθ

∂α
x sθ
sθ

∈ C1+τ∗ S−1/21,1/2(R
n−1 × R

n) and

d2 = −
∑

|α|=2,
0<α′<α

1

α!
Dα

ξ sθ

sθ

(
∂α
x sθ
sθ

− 2
∂α−α′
x sθ
sθ

∂α′
x sθ
sθ

)
∈ Cτ∗ S−11,1/2(R

n−1 × R
n).

Please note that these terms have lower order than the general theory implies. We may
write D 

k = Dk − D!
k for k ∈ {1, 2}. Then

D 
1 : Bs−ε

p (Rn)→ Bs
p(R

n), if 0 ≤ s < 1+ τ and

D 
2 : Bs−2ε

p (Rn)→ Bs
p(R

n), if 0 ≤ s < τ.

On the other hand, the general theory implies

D 
2 : Bs

p(R
n)→ Bs

p(R
n), if 0 ≤ s < 2+ τ.

By complex interpolation we obtain

D 
2 : Bs−ε

p (Rn)→ Bs
p(R

n), if 0 ≤ s < 1+ τ.

In particular, as R0,2 = D 
1 + D 

2 we have

R0,2 : Bs−ε
p (Rn)→ Bs

p(R
n) for 0 ≤ s < 1+ τ. (5.17)

According to Eq. (5.15), we have

R 
2 : Bs−2ε

p (Rn)→ Bs
p(R

n) for 0 ≤ s < 2+ τ. (5.18)
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1636 T. Krietenstein, E. Schrohe

Theorem 5.4 yields

Q! : Bs−2ε
p (Rn)→ Bs+1

p (Rn) if 0 ≤ s < 1+ τ.

Since P : Bs+1
p (Rn)→ Bs

p(R
n) if 0 ≤ s < 2+ τ , we obtain

R! : Bs−2ε
p (Rn)→ Bs

p(R
n) if 0 ≤ s < 1+ τ (5.19)

We define RR
θ := Sθ S

−#
θ − I , then RR

θ = R0 + R0,2 + R 
2 + R!. Thus

RR
θ : Bs−ε

p (Rn)→ Bs
p(R

n) if 0 ≤ s < 1+ τ.

We also compute the left remainder. In this case p = s−#θ and q = sθ , thus the
parameters are mp = 0, mq = 1, δp = 1/2, δq = 0 and σp = σq = 2 + τ . We fix
n′ = 0, n = 1 and γ = 1/2. Then (γ − δq)(2 + τ) = 1 + τ/2 ≥ 1 + 2ε, with the
same ε as above. According to Eq. (5.12),

d!
k ∈ C2+τ−k∗ S−2ε−k/21,1/2 (Rn−1 × R

n)

In particular, as R0 = D!
0 we have

R0 : Bs−2ε
p (Rn)→ Bs

p(R
n), for 0 ≤ s < 2+ τ.

As before, we obtain:

d0 = sθ
sθ
= 1 and d1 = −

∑

|α|=1

Dα
ξ sθ

sθ

∂α
x sθ
sθ

∈ C1+τ∗ S−1/21,1/2(R
n−1 × R

n).

Thus, if we write D 
1 = D1 − D!

1 we obtain

D 
1 : Bs−1/2

p (Rn)→ Bs
p(R

n), if 0 ≤ s < 1+ τ.

Since δq = 0 in this case, the general theory implies

D 
1 : Bs

p(R
n)→ Bs

p(R
n), if 0 ≤ s < 2+ τ.

Therefore, by complex interpolation with parameter 1− 2ε we obtain

D 
1 : Bs−ε

p (Rn)→ Bs
p(R

n) if 0 ≤ s < 2+ τ − ε. (5.20)
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Since R0,1 = D 
1, the above result holds for R0,1. We want to point out that τ −ε > 0.

We choose n = 1 in this case, as r 1 already has order −1. We therefore have

R 
1 : Bs−ε

p (Rn)→ Bs
p(R

n) if 0 ≤ s < 2+ τ. (5.21)

Note that qb has order −2ε. Since p has order zero, we obtain

R! : Bs−ε
p (Rn)→ Bs

p(R
n) if 0 ≤ s < 2+ τ.

We define RL
θ := S−#θ Sθ − I , then RL

θ = R0 + R1,0 + R 
1 + R!. Therefore,

RL
θ : Bs−ε

p (Rn)→ Bs
p(R

n) if 0 ≤ s < 2+ τ − ε.

Nowwe analyze the parameter dependence of the above operator. To this end we need
to extend Theorem 3.2 to non-smooth symbols.

Theorem 5.5 Let p ∈ Cσ∗ S−m1,δ (Rn−1 × R
n) and m ≥ 0. Then

Pμ ∈ L(L p(R
n−1); Hs

p(R
n−1)) and ‖Pμ‖ ≤ C |p|∗〈μ〉−m+s,

for 0 ≤ s ≤ m and s < σ(1− δ).

Proof We fix γ ∈ (δ, 1) such that sγ < σ(γ − δ). According to Theorem 5.4
a decomposition p = p + p! exists, with p ∈ S−m1,γ (Rn−1 × R

n) and p! ∈
Cσ∗ S

−m−σ(γ−δ)
1,γ (Rn−1 × R

n). According to Theorem 3.2,

P 
μ ∈ L(L p(R

n−1); Hs
p(R

n−1)) and ‖P 
μ‖ ≤ C |p|∗〈μ〉−m+s .

Note that for any s, s′ ≤ 0 the estimate 〈ξ, μ〉s+s′ ≤ 〈ξ 〉s〈μ〉s′ holds. Therefore, the
map

Cσ∗ S
−m−σ(γ−δ)
1,γ (Rn−1 × R

n) � p �→ pμ ∈ Cσ∗ S−s1,γ (R
n−1 × R

n−1)

is bounded by 〈μ〉−m+s . The result follows from the well-known mapping properties
of non-smooth pseudodifferential operators. ��
Corollary 5.6 The operators RR

λ and RL
λ belong to L(L p(R

n−1)) and their norms are
bounded by C〈λ〉−ε/2, with C = C(M, ‖ϕ‖C2+τ ).

Proof Theorem 5.5 directly applies to all symbols of the components of RR
θ and RL

θ ,

except for R!
θ = PθQ

!
θ , where we have to use the theorem twice. ��

Proposition 5.7 For sufficiently large |λ|, 1 − RR
λ and 1 − RL

λ are invertible in
L(L p(R

n−1)). Moreover, (1 − RR
λ )−1 ∈ L(Bs

p(R
n−1)) for 0 ≤ s < 1 + τ and

(1− RL
λ )
−1 ∈ L(Bs

p(R
n−1)) for 0 ≤ s < 2+ τ − ε.
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Proof Let R = RR
λ or R = RL

λ . According to Corollary 5.6, the L(L p(R
n−1))-norm

of R is less than 1, if |λ| is large. Therefore, the inverse is given by a Neumann series

(1− R)−1 =
∑

k≥0
Rk =

∑

K−1≥k≥0
Rk + RK (1− R)−1.

The finite sum belongs to L(Bs
p(R

n−1)), since R does. We fix K such that K ε > s.

Since Hs′
p (R

n−1) ↪→ Bs
p(R

n−1) for s′ > s, RK ∈ L(L p(R
n−1); Bs

p(R
n−1)). in view

of the fact that Bs
p(R

n−1) ↪→ L p(R
n−1) for s > 0, we obtain RK (1 − R)−1 ∈

L(Bs
p(R

n−1)). ��

Now we can prove Proposition 5.1.

Proof By definition, we have SλS
−#
λ = 1 − RL

λ and S−#λ Sλ = 1 − RR
λ . According

to Proposition 5.7, for sufficiently large |λ|, the left and right inverse to Sλ exist and
belong to L(Bs

p(R
n−1)), if 0 ≤ s < 1+ τ . The inverse is

S−1λ = S−#λ (1− RL
λ )
−1 = (1− RR

λ )−1S−#λ .

Now we consider S−1λ ϕ2 = (1− RR
λ )−1S−#λ ϕ2. In view of Lemma 5.3, ϕ2S−#λ maps

Bs
p(R

n−1) to Bs+1
p (Rn−1) for s < 1 + τ . Moreover, (1 − RR

λ )−1 ∈ L(Bs
p(R

n−1))
for s < 2 + τ − ε, according to Proposition 5.7. Thus, it is sufficient to consider
the commutator [S−#λ , ϕ2]. To this end, we apply the results on the composition to
p = s−#θ ∈ C2+τ S01,1/2 and q = ϕ2 ∈ C2+τ S01,0, we fix n′ = 0, n = 1 and γ < 1
such that (2+ τ)(γ − 1/2) > 1. Then

[S−#θ , ϕ2] = R0 + R0,1 + R 
1 + R!, with :

r0 ∈ C2+τ S−(2+τ)(γ−1/2)
1,γ (Rn−1 × R

n),

r0,1 ∈ S−11,γ (R
n−1 × R

n),

r  1 ∈ S−21,γ (R
n−1 × R

n),

q! ∈ C2+τ S−τ(γ−1/2)
1,γ (Rn−1 × R

n)

Thus, [S−#λ , ϕ2] belongs to L(Bs
p(R

n−1); Bs+1
p (Rn−1)) for 0 ≤ s < 1 + τ and Eq.

(5.2) holds. We observe, that r0,1 = d 
1 = d1 − d!

1 ∈ C1+τ S−1−1/21,γ , since:

d1 =
∑

|α|=1
Dα

ξ s
−#∂α

x ϕ
2 =

∑

|α|=1

Dα
ξ sθ

sθ

∂α
x sθ
sθ

π−1θ ∈ C1+τ S−1−1/21,1/2 (Rn−1 × R
n).
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According to Theorem 5.5, the operator [S−#λ , ϕ2] ∈ L(L p(R
n−1)) and ‖[S−#λ , ϕ2]‖ ∈

O(〈λ〉−(1+ε)/2). Thus

S−1λ ϕ2 − ϕ2S−#λ = [S−#, ϕ2] + RR
λ (1− RR

λ )−1S−#λ ∈ L(L p(R
n−1)) and

‖S−1λ ϕ2 − ϕ2S−#λ ‖ ∈ O(〈λ〉−(1+ε)/2).

We denote by sTθ the smooth part of the symbol of ϕ2S−#θ . According to Lemma 5.3

and Theorem 5.4, sTθ ∈ S−11,γ (R
n−1 × R

n) and ϕ2s−#θ − sTθ ∈ S−(1+ε)
1,γ (Rn−1 × R

n).

In view of Theorem 5.5, we have ϕ2S−#λ − STλ ∈ L(L p(R
n−1)) and ‖ϕ2S−#λ − STλ ‖ ∈

O(〈λ〉−(1+ε)/2). ��

6 The porousmedium equation

In this section, we illustrate the applicability of the theory developed so far to nonlinear
parabolic partial differential equations. A prominent example for this type of equations
is the porous medium Eq. (1.6). It arises for instance in the description of the gas flow
through a porous medium. As pointed out, we consider the case where the initial
value v0 ∈ H2

p(X) satisfies v0 ≥ c for some c > 0 and the boundary value φ

is in C1(J0; B1−1/p
p,T (∂X)), J0 = [0, t0] and compatible with the initial value, i.e.,

φ(0) = T v0. Under this assumption, Theorem 1.9 provides the short time existence
of a solution. We recall a result on short time existence for quasi-linear evolution
equations.

6.1 Quasi-linear evolution equations

Let 1 < q < ∞, E0 be a Banach space, E1 ↪→ E0 densely, J0 = [0, t0] for some
t0 > 0. We consider the quasi-linear problem

u̇(t)+ A(t, u(t))u(t) = F(t, u(t)), t ∈ J0, u(0) = 0. (6.1)

Here Eq := (E0, E1)1−1/q,q , A : J0 × Eq → L(E1, E0) is continuous, and F : J0 ×
Eq → E0 satisfies assumptions of theCaratheodory type, i.e. F(·, u) ismeasurable for
each u ∈ Eq , F(t, ·) is continuous for a.a. t ∈ J0, and f (·) := F(·, 0) ∈ Lq(J0; E0).
Moreover, we assume the following condition on local Lipschitz continuity of A and
F for some R∗ > 0:

(A) For each R ∈ (0, R∗) there is a constant C = C(R) such that

‖A(t, u)v − A(t, ū)v‖E0 ≤ C‖u − ū‖Eq‖v‖E1 , t ∈ J0, u, ū ∈ B(0, R), v ∈ E1.

(F) For each R ∈ (0, R∗) there is a function ψR ∈ Lq(J0) such that

‖F(t, u)− F(t, ū)‖E0 ≤ ψR(t)‖u − ū‖Eq , a.a. t ∈ J0, u, ū ∈ B(0, R).
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Theorem 6.1 Suppose assumptions (A) and (F) are satisfied, and assume that A0 =
A(0, u0) has the property of maximal Lq-regularity. Then there is a t∗ > 0 such
that (6.1) admits a unique solution u on J = [0, t∗] in the maximal regularity class
u ∈ H1

q (J ; E0) ∩ Lq(J ; E1)

The result goes back to [10]. We use the formulation given in [31], except for the fact
that we assume u0 = 0 and require Lipschitz continuity of A and F only for some
R∗ > 0 while in [31, Theorem 3.1] R∗ = ∞ is assumed. The latter can be achieved
easily by modifying A and F outside a neighborhood of zero:
Let A satisfy assumption (A). Fix a positive function χ ∈ C∞(R+), which is 1 on
[0, R∗/2] and 0 on [R∗,∞). We define

Ã(t, u) := χ(‖u‖Eq )A(t, u)+ (1− χ(‖u‖Eq ))A(t, 0).

Then Ã satisfies Assumption (A), with R∗ = ∞. Similarly

F̃(t, u) := χ(‖u‖Eq )F(t, u)+ (1− χ(‖u‖Eq ))F(t, 0).

satisfies Assumption (F), with R∗ = ∞. By definition Ã(0, u0) = A(0, u0) and
therefore Ã(0, u0) has the property of maximal Lq -regularity, if A(0, u0) does. Under
the assumptions of Theorem 6.1, [31, Theorem 3.1] implies that a unique solution
u ∈ H1

q (J ; E0) ∩ Lq(J ; E1) to

u̇ + Ã(t, u) = F̃(t, u), u(0) = u0. (6.2)

exists. It is well-known that the solution belongs to C(J ; Eq). Thus, for a possibly
shorter J wecan assume thatu(t) ∈ B(u0, R∗/2) for all t ∈ J . Therefore, Ã(t, u(t)) =
A(t, u(t)) and F̃(t, u(t)) = F(t, u(t)) for all t ∈ J . Hence, u solves Eq. (6.1).

6.2 Proof of Theorem 1.9

As a first step we reduce to the case of homogeneous boundary condition. To this end,
we need the following result.

Lemma 6.2 Let φ ∈ C1(J0; B1−1/p
p,T (∂X)) and v0 ∈ H2

p(X). Then there exists a

w ∈ C1(J0; H2
p(X)), such that Tw = φ and w(0) = v0.

Proof By Proposition 1.7, T : Hs
p(X) → Bs

p,T (∂X) is linear, bounded and surjec-
tive. According to a result of Michael [30, Corollary, p. 364] every linear bounded
surjective map between two Banach spaces has a continuous right inverse. Hence
there exists a continuous lifting of the continuous map φ̇ : J0 → B1−1/p

p,T , i.e. a map

w̃ ∈ C(J0; H2
p(X)) such that T w̃(t) = φ̇(t). We define

w(t) =
∫ t

0
w̃(s) ds + v0.
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Then w ∈ C1(J0; Hs
p(X)) and

Tw(t) = T
∫ t

0
w̃(s) ds + T v0 =

∫ t

0
φ̇(t)+ φ(0) = φ(t).

Clearly w(0) = v0. ��
We define u := v − w and consider the following parabolic problem:

⎧
⎪⎨

⎪⎩

u̇(t)−�g(u(t)+ w(t))m = −ẇ(t)

Tu(t) = 0

u(0) = 0.

(6.3)

A quick computation shows that v solves (1.6) if and only if u solves (6.3). Therefore,
we focus on Problem (6.3) which we rewrite as a quasi-linear evolution equation.
To this end, we need the following identity which can easily be verified in local
coordinates.

�g(u + w)m =m(u + w)m−1�gu

+ m(m − 1)(u + w)m−2|∇(u + w)|2g + m((u + w))m−1�gw.

The first term on the right hand side is the highest order term. Therefore, we define

A(t, u(t)) := − m(u(t)+ w(t))m−1�g,T and

F(t, u(t)) :=m(m − 1)(u(t)+ w(t))m−2|∇(u(t)+ w(t))|2g
m((u(t)+ w(t)))m−1�g,Tw(t)− ẇ(t).

According to the definitions above, Problem (6.3) is the quasi-linear evolution equa-
tion:

u̇(t)+ A(t, u(t))u(t) = F(t, u(t)), u(0) = 0. (6.4)

In the following, we verify that Theorem 6.1 can be applied to (6.4), which proves
Theorem 1.9. We define E0 = L p(X) and E1 = H2

p(X) ∩ ker T . Then

Eq = (E0, E1)1−1/q,q ↪→ (L p(X), H2
p(X))1−1/q,q = B2−2/q

p,q (X) ↪→ C1(X).

Here, the last embedding holds since 2− 2/q − n/p > 1 > 0 by assumption. Please
note that A(0, u(0)) = mvm−10 �g,T satisfies the assumptions of Theorem 1.3 as v0
is Hölder continuous and strictly positive. Therefore, a suitable shift of A(0, u(0))
allows a bounded H∞-calculus and thus A(0, u(0)) has maximal Lq -regularity. In
order to verify the assumptions (A) and (F) we need the following result, which is
inspired by [33].

123



1642 T. Krietenstein, E. Schrohe

Lemma 6.3 Let w ∈ C(J0;Cτ (X)) with Rew(0, ·) ≥ c > 0. Let

W := {z ∈ C : |z| < ‖w(0, ·)‖Cτ + 3c/4, Re z > c/4}.
Then an interval J = [0, t∗], with t∗ > 0, a neighborhood V of zero in Cτ (X), and a
constant C := C(c, ‖w(0, ·)‖Cτ (X)) exist such that for all f ∈ H∞(W ), t ∈ J , and
u, ū ∈ V the following estimates hold:

‖ f (u + w(t))‖Cτ (X) ≤ C‖ f ‖L∞(W ) and

‖ f (u + w(t))− f (ū + w(t))‖Cτ (X) ≤ C‖ f ‖L∞(W )‖u − ū‖Cτ (X).

Proof Since w depends continuously on t , we can chose a t∗ > 0 such that for all
t ∈ J := [0, t∗] we have ‖w(t) − w(0)‖Cτ (X) ≤ c/8. We choose V := {u ∈ Cτ :
‖u‖Cτ (X) < c/8}. As all functions in V are continuous, we obtain for all t ∈ J :

im V + w(t) ⊂ W ′′, here im V := ∪u∈V im u and

W ′′ := {z ∈ C : |z| < ‖w(0)‖Cτ + c/4, Re z > 3c/4}.
Furthermore, we define

W ′ := {z ∈ C : |z| < ‖w(0)‖Cτ + c/2, Re z > c/2}.
By definition, some distance between the boundary of W ′′ and the boundary of W ′
exists, i.e., d(∂W ′′, ∂W ′) ≥ c/4. Therefore, |η − (u(x) + w(t, x))| ≥ c/4 for all
t ∈ J , u ∈ V , η ∈ ∂W ′ and x ∈ X . It is well-known that such a lower bound implies
that (η − (u(·)+ w(t, ·)))−1 ∈ Cτ (X). Moreover, the following estimate holds:

‖(η − (u(·)+ w(t, ·)))−1‖Cτ (X) ≤ 16/c2‖η − (u(·)+ w(t, ·))‖Cτ (X)

≤ 16/c2(2‖w(0)‖Cτ (x) + c) =: S.
We can estimate the length of the boundary ∂W ′:

|∂W ′| ≤ 2π(‖w(0)‖Cτ (X) + c/2) =: 2πL.

For all u ∈ V , t ∈ J , and x ∈ X we obtain the following identity from the Cauchy
integral representation:

f (u(x)+ w(t, x)) = 1

2π i

∫

∂W ′
f (η)(η − (u(x)+ w(t, x)))−1 dη.

Thus, we obtain the first estimate ‖ f (u + w(t))‖Cτ (X) ≤ LS‖ f ‖H∞(W ). Now, let
u, ū ∈ V , t ∈ J , x ∈ X , and use the resolvent identity to obtain:

f (u(x)+ w(t, x))− f (ū(x)+ w(t, x)) = (ū(x)− u(x))I (t, x), here

I (t, x) := 1

2π i

∫

∂W ′
f (η)(η − (u(x)+ w(t, x)))−1(η − (ū(x)+ w(t, x)))−1 dη
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We can estimate theCτ (X)-norm of I (t, x) as before. Therefore, we obtain the second
claimed estimate. ��
According to Lemma 6.2, w ∈ C1(J0; H2

p(X)). Under the assumptions of Theo-
rem 1.9, H2

p(X) ↪→ Cτ (X) and therefore w ∈ C(J0;Cτ (X)). We chose an interval
J and a neighborhood V according to Lemma 6.3. Therefore, we can choose a neigh-
borhood U of zero in Eq such that its image under the embedding belongs to V . We
apply Lemma 6.3 to f (z) := zm− j , with j ∈ {0, 1}. Therefore, a constant exists such
that for all u, ū ∈ U and t ∈ J :

‖(u + w(t))m− j‖Cτ (X) ≤ C and (6.5)

‖(u + w(t))m− j − (ū + w(t))m− j‖Cτ (X) ≤ C‖u − ū‖Eq . (6.6)

In view of the embeddings Eq ↪→ Cτ (X) and Cτ (X) ↪→ L(E0), Eq. (6.5) implies
that A(t, u) satisfies Assumption (A):

‖A(t, u)v − A(t, ū)v‖E0 ≤ m‖((u + w(t))m−1 − (ū + w(t))m−1)‖L(E0)‖�g,T v‖E0

≤ C‖u − ū‖Eq‖v‖E1 .

Now, we consider F(t, u).

F(t, u)− F(t, ū) =m(m − 1)(u(t)+ w(t))m−1 |∇(u(t)+ w(t))|2
− m(m − 1)(ū(t)+ w(t))m−1 |∇(ū(t)+ w(t))|2

+ m
(
(u(t)+ w(t)))m−1 − (ū(t)+ w(t)m−1

)
�g,Tw(t).

Since w ∈ C1(J ; H2
p(X)), the map t �→ ‖�gw(t, ·)‖E0 belongs to Lq(J ). In view of

Eq. (6.6), we obtain

‖m
(
(u(t)+ w(t)))m−1 − (ū(t)+ w(t)m−1

)

�g,Tw(t)‖E0 ≤ C‖u − ū‖Eq‖�gw(t, ·)‖E0 .

Next, we define h(t, u) := (u + w(t))m−2|∇(u + w(t))|2g

h(t, u)− h(t, ū) =(u + w(t))m−2|∇(u + w(t))|2g − (ū + w(t))m−2|∇(ū + w(t))|2g
=

(
(u + w(t))m−2 − (ū + w(t))m−2

)
|∇(u + w(t))|2g

+ (ū + w(t))m−2
(
|∇(u + w(t))|2g − |∇(ū + w(t))|2g

)

=
(
(u + w(t))m−2 − (ū + w(t))m−2

)
|∇(u + w(t))|2g

+ (ū + w(t))m−2〈∇(u − ū),∇(u + w(t))〉g
+ (ū + w(t))m−2〈∇(ū + w(t)),∇(u − ū)〉g.
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For v, v̄ ∈ Eq we can estimate the Lq inner product of the gradient:

‖〈∇v,∇v̄〉‖E0 ≤ C‖v‖C1(X)‖v̄‖H1
p(X) ≤ C‖v‖Eq‖v̄‖Eq .

Therefore, for all u, ū ∈ U and t ∈ J the following estimates hold

|∇(u + w(t))|2 ≤ ‖u + w(t)‖2Eq
≤ C

|〈∇(u − ū),∇(u + w(t))〉| ≤ ‖u − ū‖Eq‖u + w(t)‖Eq ≤ C‖u − ū‖Eq

|〈∇(ū + w(t),∇(u − ū))〉| ≤ ‖ū + w(t)‖Eq‖u − ū‖Eq ≤ C‖u − ū‖Eq .

In view of Eqs. (6.5) and (6.6), these estimates imply that for all u, ū ∈ U and t ∈ J
the following estimate holds

‖h(t, u)− h(t, ū)‖E0 ≤ C‖u − ū‖Eq .

Thus, F satisfies Assumption (F). We apply Theorem 6.1 to Problem (6.4), which
proves Theorem 1.9.
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