
Mathematische Annalen (2022) 382:607–630
https://doi.org/10.1007/s00208-021-02246-y Mathematische Annalen

Semicontinuity of Gauss maps and the Schottky problem

Giulio Codogni1 · Thomas Krämer2

Received: 24 February 2021 / Revised: 7 July 2021 / Accepted: 9 July 2021 /
Published online: 18 August 2021
© The Author(s) 2021

Abstract
We show that the degree of Gauss maps on abelian varieties is semicontinuous in
families, and we study its jump loci. As an application we obtain that in the case
of theta divisors this degree answers the Schottky problem. Our proof computes the
degree of Gauss maps by specialization of Lagrangian cycles on the cotangent bundle.
We also get similar results for the intersection cohomology of varieties with a finite
morphism to an abelian variety; it follows that many components of Andreotti–Mayer
loci, including the Schottky locus, are part of the stratification of the moduli space of
ppav’s defined by the topological type of the theta divisor.
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1 Introduction

The Gauss map of a hypersurface in projective space is the rational map that sends any
smooth point of the hypersurface to its normal direction in the dual projective space.
The analogous notion of Gauss maps for subvarieties of abelian varieties appears
already in Andreotti’s proof of the Torelli theorem [2]. In contrast to the case of
projective hypersurfaces, the Gauss map for any ample divisor on an abelian variety
is generically finite of degree > 1, and its degree is related to the singularities of
the divisor. We show that this degree is lower semicontinuous in families, and we
study its jump loci. As an application we get that in the moduli space of principally
polarized abelian varieties, the degree of the Gauss map refines the Andreotti–Mayer
stratification and answers the Schottky problem as conjectured in [11]. We work over
an algebraically closed field k with char(k) = 0. In Sect. 7 we obtain similar results
for the intersection cohomology of complex varieties with a finite morphism to an
abelian variety. In particular, many Andreotti–Mayer loci such as the Schottky locus
are determined over the complex numbers already by the topological type of the theta
divisor.

1.1 Gauss maps and their jump loci

Let A be an abelian variety over k. By translations we may identify its tangent spaces
at all points, hence the cotangent bundle T∨A = A × V is trivial with fiber V =
H0(A,�1

A). TheGauss map of a reduced effective divisor D ⊂ A is the rational map

γD : D ��� PV

that sends a smooth point of the divisor to its conormal direction at that point; it
coincides with the rational map given by the linear series PV∨ = |OD(D)|. For an
irreducible divisor this is a generically finite dominant map iff the divisor is ample,
which happens iff the divisor is not stable under translations by any positive dimen-
sional abelian subvariety [32, cor. II.11, lem. II.9]. Even in the generically finite case
the Gauss map can have positive dimensional fibers [4].

For algebraic families of generically finite maps the generic degree always defines
a constructible stratification of the parameter space, but in general it can jump in both
directions (see Example 4.2). Our first semicontinuity result says that for Gauss maps
on abelian varieties this does not happen:

Theorem 1.1 Let A → S be an abelian scheme over a variety S, and let D ⊂ A be
a relatively ample divisor which is flat over S. Let Ds ⊂ As denote their fibers over
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Semicontinuity of Gauss maps 609

s ∈ S, and let γDs be the corresponding Gauss map. Then for each d ∈ N the subsets

Sd = {
s ∈ S | deg(γDs ) ≤ d

} ⊆ S

are closed in the Zariski topology.

The above result does not show where the degree actually jumps. Let us say that an
irreducible subvariety of an abelian variety is negligible if it is stable under translations
by a positive dimensional abelian subvariety. Simple abelian varieties have no negli-
gible subvarieties other than themselves. More generally, by [1, th. 3] an irreducible
closed subvariety of an abelian variety is negligible iff it is not of general type. Our
second result says that in the setting of Theorem 1.1 the degree of theGaussmap jumps
whenever a new component of general type appears in the singular locus Sing(Ds).
To make this precise we specify a curve along which we move inside the parameter
space:

Theorem 1.2 Let S′ ⊂ S be a curve, and fix a point 0 ∈ S′(k). If Sing(D0) has an
irreducible component which is of general type and not contained in the Zariski closure
of

⋃
s∈S′\{0} Sing(Ds), then

deg(γD0) < deg(γDs )

for all s ∈ S′(k)\{0} in some Zariski open neighborhood of the point 0.

The above in particular applies if all components of the singular locus are of general
type and dim(Sing(D0)) > dim(Sing(Ds)) for all s 	= 0. This last condition is
motivated by the case of theta divisors and the Schottky problem.

1.2 Application to the Schottky problem

LetAg be the moduli space of principally polarized abelian varieties of dimension g.
Inside it, consider for d ∈ N the Gauss loci

Gd = {(A,�) ∈ Ag | deg(γ�) ≤ d}

as in [11, sect. 4] The above results show that these loci are closed (Corollary 6.1) and
refine the Andreotti–Mayer stratification (Corollary 6.3). Thus the Gauss loci provide
a solution for the Schottky problem to characterize the closure of the locus of Jacobians
in the moduli space of principally polarized abelian varieties:

Corollary 1.3 Inside Ag we have:

(a) The locus of Jacobians is a component of Gd for d = (2g−2
g−1

)
.

(b) The locus of hyperelliptic Jacobians is a is a component of Gd for d = 2g−1.

The above corollary is shown in Sect. 6 together with an analogous statement for
Prymvarieties. It confirms a conjecture by the first author, Grushevsky and Sernesi [11,
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610 G. Codogni, T. Krämer

Conjecture 1.6]who verified it for g ≤ 4 by an explicit description of theGauss loci. As
pointed out in loc. cit., this is only a weak solution to the Schottky problem: In general
the Gauss loci in the above corollary have more than one irreducible component and
the Jacobian locus is only one of them. The theory of D-modules allows to refine the
degree of the Gauss map to representation theoretic invariants that might distinguish
the Jacobian locus [26].

1.3 The degree of conormal varieties

For the proof of Theorems 1.1 and 1.2 we interpret the degree of the Gauss map as
an intersection number of Lagrangian cycles on the cotangent bundle of the abelian
variety and apply specialization for such cycles [19,34], which we can do because
char(k) = 0. To explain how this works, let us forget about abelian varieties for a
moment and fix any ambient smooth variety W over k. The conormal variety to a
subvariety X ⊂ W is defined as the closure

�X = {(x, ξ) | x ∈ Sm(X), ξ ∈ T∨
x (W ), ξ ⊥ Tx (X)} ⊂ T∨(W )

of the conormal bundle to the smooth locus Sm(X), where the closure is taken in
the total space of the cotangent bundle of the ambient smooth variety. This conormal
variety always has pure dimension n = dim(W ), in fact it is Lagrangian with respect
to the natural symplectic structure on the cotangent bundle. It is also conic, i.e. stable
under the natural action of the multiplicative group on the fibers of the cotangent
bundle. Conversely, any closed conic Lagrangian subvariety of the cotangent bundle
arises like this [23, Lemma 3]. So the map X �→ �X induces an isomorphism

Z (W ) = {cycles onW } ∼−→ L (W ) = {conic Lagrangian cycles on T∨W },

where by a conic Lagrangian cycle we mean a Z-linear combination of closed conic
Lagrangian subvarieties. In the case of projective varieties we can talk about the degree
of conormal varieties:

Definition 1.4 If W is projective, the degree homomorphism on conic Lagrangian
cycles is the map

deg : L (W ) −→ CHn(T∨(W ))
i∗−→ CHn(W ) � Z

which is given by the intersection number with the zero section i : W ↪→ T∨(W ).

Example 1.5 Over the complex numbers the above degree can be computed as fol-
lows. For any constructible function F : W → Z consider the topological Euler
characteristic

χtop(W , F) =
∑

n∈Z
n · χtop(F

−1(n)),
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where χtop(F−1(n)) denotes the alternating sum of the Betti numbers of F−1(n). In
the theory of characteristic classes of singular varieties this definition is applied to
a particular constructible function EuX : W → Z, the local Euler obstruction of a
subvariety X ⊆ W [29, Sect. 3]. Outside of the singular locus Sing(X) ⊆ X it has the
form

EuX (p) =
{
0 for p ∈ W\X ,

1 for p ∈ Sm(X),

but its values on the singular locus depend on the singularities: For instance, if X is a
curve, EuX (p) is the multiplicity of that curve at p. In general, the degree of conormal
varieties in Definition 1.4 can be expressed as an Euler characteristic by the formula

deg(�X ) = (−1)dim(X) · χtop(X ,EuX ),

see [34, Lemme 1.2.1] [17, Prop. 6.1(b)]. The right hand side can be computed easily
as soon as we know the local Euler obstruction. For a smooth rational curve X we
get deg(�X ) = −2 while a nodal or cuspidal cubic has deg(�X ) = −3. Note that a
cuspidal cubic is homeomorphic to a smooth rational curve, so the degree of conormal
varieties is not a topological invariant. Moreover, it can be negative.

1.4 Proof of the semicontinuity theorems

Of course there are no rational curves in abelian varieties, and in the case of abelian
varieties the degree behaves much better. By [37, Th. 1] we have the following result
(see Sect. 5):

Proposition 1.6 If W = A is an abelian variety, then

• deg(�X ) ≥ 0 for any X ⊂ A,

• deg(�X ) > 0 if and only if X is of general type,

• deg(�X ) = deg(γX ) for divisors X ⊂ A with Gauss map γX .

This easily implies Theorem 1.1 when combined with the principle of Lagrangian
specialization which we recall in sect. 2: For any flat family of subvarieties in a smooth
ambient 1-parameter family, the limit of their conormal varieties is an effective conic
Lagrangian cycle whose support contains the conormal variety to the central fiber as a
component, and the total degree of the limit cycle equals the degree of a general fiber.
The same argument shows that our semicontinuity result holds not only for divisors
but for subvarieties of any codimension:

Theorem 1.7 Let A → S be an abelian scheme over a variety S, and let X ⊂ A be an
arbitrary family of subvarieties which is flat over S. Then for each d ∈ N the subsets
Sd = {

s ∈ S | deg(�Xs ) ≤ d
} ⊆ S are closed in the Zariski topology.

It remains to prove Theorem 1.2. Given the interpretation for the degree of Gauss
maps in Proposition 1.6, the proof has nothing to do with abelian varieties: In Sect. 3
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612 G. Codogni, T. Krämer

we show that for any flat family of divisors on a smooth 1-parameter variety, the
specialization of their conormal varieties contains an extra component whenever the
singular locus of the fiber jumps. While the final criterion is phrased only for divisors,
we formulate our arguments as far as possible for subvarieties in arbitrary codimension
to get beyond Theorem 1.2 (see Example 3.6). This is important even if one only wants
to study singularities of divisors: In the theory of Chern classes for singular varieties
one attaches to any subvariety X ⊂ A a characteristic cycle of the form

� = �X +
∑

Z

mZ�Z

where Z runs through certain strata in Sing(X) [23,34], and the topologically mean-
ingful invariant that appears in generalizations of the Gauss-Bonnet index formula is
the total degree deg(�) involving all the strata.

1.5 A topological view on jump loci

In Sect. 7, which is not used in the rest of the paper, we deduce from our previous
results a general semicontinuity theorem for the intersection cohomology of varieties
over the complex numbers. Recall that for a complex variety X , the intersection coho-
mology IH•(X) only depends on its homeomorphism type in the Euclidean topology;
it coincides with Betti cohomology in the smooth case but is better behaved in gen-
eral [6,20,21,24,30]. We denote by

χIC(X) =
∑

i≥0

(−1)i+dim(X) dim IHi (X)

the Euler characteristic of the intersection cohomology. This Euler characteristic is
usually not semicontinuous in families, it can jump in both directions. But for families
of finite branched covers of subvarieties in complex abelian varieties this does not
happen (see Lemma 7.6 and Corollary 7.7):

Theorem 1.8 Let f : X → S be a family of varieties such that each fiber Xs is
generically reduced and admits a finite morphism to an abelian variety. Then for each
d ∈ N0 the loci

Sd := {s ∈ S | χIC(Xs) ≤ d} ⊆ S

are closed in the Zariski topology.

This puts our results in a topological context, since the intersection cohomology of
a complex variety only depends on its homeomorphism type. For instance, it follows
from the above that a singular theta divisor cannot be homeomorphic to a smooth one
(recall that there are examples of normal varieties which are singular but homemorphic
to smooth varieties, such as those byBrieskorn [9,10]). InCorollary 7.9wewill see that
the Jacobian locus appears in the stratification of Ag by the intersection cohomology
of the theta divisor, so we obtain:
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Semicontinuity of Gauss maps 613

Corollary 1.9 The locus of Jacobian varieties in Ag is an irreducible component of
the closure of the locus of all ppav’s whose theta divisor is homeomorphic to a theta
divisor on a Jacobian variety.

It seems an interesting problem to study the topology of theta divisors on abelian
varieties in more detail.

2 Lagrangian specialization

For convenience we include in this section a self-contained review of some basic
facts about the specialization of Lagrangian cycles, which was introduced in relation
with Chern–MacPherson classes [34] and nearby cycles for D-modules and perverse
sheaves [19]. We work in a relative setting over a smooth curve S. The family of our
ambient spaces is given by a smooth dominant morphism of varieties f : W → S
where dim(W ) = n + 1. Let X ⊂ W be a reduced closed subvariety. The relative
smooth locus

Sm(X/S) = { x ∈ Sm(X) | the restriction f |X : X → S is smooth at x }

is nonempty iff dim f (X) > 0, in which case X → S is flat and Sm(X/S) ⊂ X is an
open dense subset because char(k) = 0. Any x ∈ Sm(X/S) is a smooth point of the
fiber Xs = f −1(s) ∩ X over the image point s = f (x). Hence inside the total space

T∨(W/S) = T∨(W )/ f −1T∨(S)

of the relative cotangent bundle, we define the relative conormal variety to X as the
closure

�X/S = {(x, ξ) ∈ T∨(W/S) | x ∈ Sm(X/S), ξ ⊥ Tx (X f (x))} ⊂ T∨(W/S).

Remark 2.1 In [8] the relative conormal variety is instead defined as the closure inside
the absolute cotangent bundle. This notion of relative conormal variety is obtained
from ours by base change via the quotient map T∨(W ) � T∨(W/S), i.e. we have

T∨(W ) ×T∨(W/S) �X/S = {(x, ξ) ∈ T∨(W ) | x ∈ Sm(X/S), ξ ⊥ Tx X f (x)}.

Indeed, both sides are irreducible closed subvarieties of T∨(W )|X . For the right hand
side this holds by definition, for the left hand side it follows from the fact that�X/S ⊂
T∨(X/S) is an irreducible closed subvariety and T∨W → T∨(X/S) is a fibration
with irreducible fibers. So it suffices to show that both sides agree over some open
denseU ⊂ X . We can assume X is flat over S and takeU = Sm(X/S), in which case
the claim becomes obvious.
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614 G. Codogni, T. Krämer

Lemma 2.2 If X is flat and irreducible over S, then so is �X/S.

Proof �X/S is defined as the schematic closure of a locally closed subscheme V of the
relative cotangent bundle T∨(A/S). The subscheme V is the total space of a vector
bundle over a smooth variety, so it is a smooth variety as well. Its schematic closure
is integral, and a morphism from an integral scheme to a smooth curve is flat iff it is
dominant [22, chapter III, Prop. 9.7]. ��

Relative conormal varieties can be seen as families of conormal varieties. In what
follows we denote by

L (W/S) =
⊕

X⊂W

Z · �X/S

the free abelian group on relative conormal varieties to closed subvarieties X ⊂ W
that are flat over S. By the specialization of � ∈ L (W/S) at s ∈ S(k) we mean the
cycle

sps(�) = [
� · f −1(s)

]

which underlies the schematic fiber of the morphism �X/S → S at s. This is again a
conic Lagrangian cycle by the following classical result, see [18, prop. (a), p. 179] or
in an analytic setup [28, Sect. 1.2]:

Lemma 2.3 (Principle of Lagrangian specialization). The specialization at s gives a
homomorphism

sps : L (W/S) −→ L (Ws)

sending effective cycles to effective cycles. On Chow groups it induces the Gysin map
in the bottom row of the following commutative diagram:

L (W/S) L (Ws)

CHn(T∨(W/S)) CHn−1(T∨(Ws))

sps

i∗
s

For any closed subvariety X ⊂ W which is flat over S, there is a finite subset 	 ⊂ S
such that

sps(�X/S) =
{

�Xs for s ∈ S\	,

mXs�Xs + ∑
Z⊂Sing(Xs )

mZ�Z for s ∈ 	,

where mXs ,mZ > 0 and the sum runs over finitely many subvarieties Z ⊂ Sing(Xs).

Proof Note that T∨(Ws) is an effective Cartier divisor in T∨(W ). It intersects properly
any relative conormal variety to a subvariety which is flat over S. Hence it is clear that
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Semicontinuity of Gauss maps 615

the specialization induces on Chow groups the Gysin map defined in [17, Sect. 2.6]
and sends effective cycles to effective cycles.

Now take an irreducible subvariety X ⊂ W which is flat over S. By Lemma 2.2
the morphism �X/S → S is flat and hence all its fibers are pure dimensional of
the same dimension. Furthermore the action of the multiplicative group preserves
the fibers of T∨(W/S) → S and so the fibers of �X/S → S are unions of conic
subvarieties. As the canonical relative symplectic form on T∨(W/S) restricts to the
canonical symplectic form on T∨(Ws) for every s, we conclude that the fibers of
�X/S → S are also Lagrangian and hence a union of conormal varieties, since the
conic Lagrangian subvarieties of the cotangent bundle are precisely the conormal
varieties [23, Lemma 3]. The coefficients are non-negative as the specialization of
effective cycles is effective. Hence sps(�X/S) is a sum of conormal varieties, and
since under the morphism T∨(As) → As its support surjects onto Xs , we conclude
that one of the appearing components must be �Xs .

As �X/S is irreducible and we work over a field of characteristic zero, there exists
a Zariski open dense subset of S over which the fibers of the morphism �X/S → S
are reduced and irreducible. We conclude that for s in this Zariski open dense subset
of S we have sps(�X/S) = �Xs . Moreover, the specialization cannot have any further
components over the relative smooth locus Sm(X/S) ⊆ X , since on that locus also
the morphism �X/S → S restricts to a smooth morphism. ��

We have the following consequence of flatness:

Proposition 2.4 Let X ⊂ W be a closed subvariety which is flat over S, then the
degree

d = deg(sps(�X/S)) is independent of s ∈ S(k).

Proof The cycle class of the specialization sps(�X/S) is the image of [�X/S] under
the Gysin map in Lemma 2.3, and its degree is defined as the intersection number of
this image with the zero section X = X ↪→ W = T∨(W/S). As X and W are flat
over S and X ↪→ W is a regular embedding, the degree is therefore constant by [17,
Th. 10.2] applied to the relative conormal variety V = �X/S . Note that V ↪→ W is
not required to be a regular embedding; in order to apply loc. cit. we only need that
its base change to X is proper over S, which is true. ��
Remark 2.5 For char(k) > 0 the specialization of a family of conormal varieties need
not be a sum of conormal varieties, see [25, p. 215]. Similarly, for char(k) = 0we need
dim(S) = 1, otherwise we would have to restrict the class of morphisms as in [33].
For instance, for S = C

2 � s = (0, 0) we have i−1
s (�X/S) = T∨(W/S)|Xs for the

subvariety X = {((x, y, z), (x2 − y2z, y)) | (x, y, z) ∈ C
3} ⊂ W = C

3 × S.

3 Jump loci for the degree

Let f : W → S be a smooth dominant morphism from a smooth variety to a smooth
curve as above. For any S-flat subvariety X ⊂ W and s ∈ S(k) we have seen that
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616 G. Codogni, T. Krämer

sps(�X/S)−�Xs ≥ 0,where the inequality means that the cycle on the left hand side
is effective or zero. It is natural to ask for which s ∈ S(k) the above inequality is strict.
In the notation of Lemma 2.3 this happens iff mZ > 0 for some Z ⊆ Sing(Xs). The
following provides a sufficient criterion for this to happen for families of divisors:

Proposition 3.1 Assume d = codim(X ,W ) = 1. If Sing(X/S) has an irreducible
component which is contained in the fiber over some point s ∈ S(k), then for this
component Z ⊂ Xs we have

sps(�X/S) − �Xs ≥ �Z .

We divide the proof in several steps. Most of the argument works in arbitrary
codimension d, so for the moment we do not yet assume d = 1. It will be enough to
prove the claim over some open dense subset of W metting Z . Fixing a general point
p ∈ Z(k) and working locally near that point, we can assume that

• Z = Sing(X/S) (equality as a scheme),

• T∨(W/S) � W × V is the trivial bundle with fiber V = T∨
p (Ws),

• X ⊂ W is cut out by a regular sequence f1, . . . , fd ∈ H0(W ,OW ).

By the first item each x ∈ (X\Z)(k) is a smooth point of Xt for t = f (x). Fixing a
trivialization as in the second item, we can furthermore identify the conormal space
to Xt ⊂ Wt at x with a subspace in V = T∨

x (Wt ) of codimension d. Consider the
relative Gauss map

X\Z −→ Gr(d, V )

which sends each point to the corresponding conormal space. This is a rational map
whose locus of indeterminacy is precisely Z . Let γX : X̂ → Gr(d, V ) denote its
resolution of indeterminacy which is obtained by blowing up the base locus Z ⊂ X
as in [17, Sect. 4.4]:

X̂

X Gr(d, V )

πX
γX

We want to control the image of the exceptional divisor EX = π−1
X (Z) ⊂ X̂ under

the map

αX = (πX , γX ) : X̂ → X × Gr(d, V ) ⊂ W × Gr(d, V ) = Gr(d, T∨(W/S)).

Lemma 3.2 The morphism αX is a closed embedding.

Proof By assumption X ⊂ W is cut out by a regular sequence f1, . . . , fd . The same
then holds for each fiber Xt ⊂ Wt . Hence it follows that the relative singular locus
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Semicontinuity of Gauss maps 617

Sing(X/S) is cut out as a closed subscheme of W by f1, . . . , fd and by the d × d
minors

J (i1, . . . , id) := det

⎛

⎜
⎝

∂i1( f1) · · · ∂i1( fd)
...

. . .
...

∂id ( f1) · · · ∂id ( fd)

⎞

⎟
⎠

with 1 ≤ i1 < · · · < id ≤ n, where we fix an arbitrary basis ∂1, . . . , ∂n ∈ V∨ for the
fiber of the relative tangent bundle and regard the basis vectors as relative derivations
for the smooth morphism W → S.

Now let ι : X × Gr(d, V ) ↪→ X × P(�dV ) be the Plücker embedding of the
Grassmannian as a closed subvariety of projective space. We want to show that the
composite

βX := ι ◦ αX : X̂ −→ X × Gr(d, V ) −→ X × P(
∧d V )

is a closed embedding. For this let I �OX be the ideal sheaf of Z ⊂ X . Then we have

X̂ = ProjX RI for the graded Rees algebra RI :=
⊕

n≥0

I n · tn ⊂ OX [t],

where t is a dummy variable to keep track of degrees. The homomorphism

β∗
X : OX ⊗ Sym•

(
d∧

V∨
)

−→ RI =
⊕

n≥0

I n · tn

of graded OX -algebras satisfies

β∗
X (1 ⊗ (∂i1 ∧ · · · ∧ ∂id )) = J (i1, . . . , id)|X · t ∈ I · t

for 1 ≤ i1 < · · · < ik ≤ n. But we have seen above that theOX -module I is generated
by the minors on the right hand side. Hence it follows that β∗

X is an epimorphism in
all degrees and so βX is a closed immersion. ��
Remark 3.3 If d = 1, then Gr(d, V ) = PV and the closed embedding αX induces an
isomorphism

αX : X̂
∼−→ P�X/S .

Indeed, the blowup X̂ is again reduced and irreducible by [22, II.7.16]. Via αX it is
therefore an integral closed subscheme of W ×PV and as such it can be recovered as
the Zariski closure of its restriction over the open dense subset S\{s} ⊂ S, where it
coincides with P�X/S ⊂ W × PV by definition.
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618 G. Codogni, T. Krämer

In particular, one may look at the scheme-theoretic fiber of X̂ over s ∈ S(k) to
compute the multiplicities in sps(�X/S). For d > 1 the situation becomes more
complicated, so in what follows we restrict ourselves to set-theoretic arguments. To
pass back to conormal varieties we look at the projection Fl(d, 1, V ) −→ Gr(d, V )

from the partial flag variety. This projection is a smooth equidimensional morphism of
relative dimension d − 1. On the fiber product Y = X̂ ×Gr(d,V ) Fl(d, 1, V ) consider
the morphism

αY = (πY , γY ) : Y −→ X × PV

where πY : Y → X̂ → X and γY : Y → Fl(d, 1, V ) → PV are the natural composite
maps. Taking the preimage of the previous exceptional divisor EX ⊂ X̂ we get the
following lower bound on the specialization:

Lemma 3.4 The preimage EY = π−1
Y (Z) ⊂ Y has dimension dim(EY ) = n and

satisfies

αY (EY ) ⊂ P(Supp(sps(�X/S))).

Proof The statement about the dimension holds because dim(Y ) = n = dim(V )

and since the subvariety EY ⊂ Y is a divisor, being the preimage of the exceptional
divisor EX ⊂ X̂ under the fibration Y → X̂ . To understand why the image γY (EY ) is
contained in the specialization, recall that f : X → S is smooth over the open subset
S∗ = S\{s}. The identifications

Y ∗ := S∗ ×S Y � S∗ ×S P�X/S ⊂ S∗ × PT∨(W/S)

give the following Cartesian diagram where the vertical arrows are open embeddings
and the top horizontal arrow is a closed immersion:

Y ∗ S∗ ×S PT∨(W/S)

Y PT∨(W/S)

Now X̂ is irreducible as a blowup of an irreducible variety. So Y is irreducible as well,
hence equal to the Zariski closure of its nonempty open subset Y ∗ ⊂ Y . But then

P(sps(�X/S)) = (
closure of S∗ ×S P�X/S in PT∨(W/S)

)
s

= (
closure of the image of Y ∗ in PT∨(W/S)

)
s ⊇ αY (Ys)

and we are done because by construction we have EY ⊆ Ys . ��
Corollary 3.5 If αY : EY → X ×PV is generically finite onto its image, then we have

�Z ⊂ Supp(sps(�X/S)).
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Semicontinuity of Gauss maps 619

Proof Each irreducible component of P(Supp(sps(�X/S))) is the projectivization of
some conormal variety. Each of them has dimension n − 1, so Lemma 3.4 and our
generic finiteness assumption imply that αY (EY ) must appear as one of the compo-
nents. But then this component is �Z because it maps onto Z ⊂ X . ��

Note that by Lemma 3.2 the morphism Y → X ×Fl(d, 1, V ) is a closed immersion
and hence generically finite onto its image. So Corollary 3.5 finishes the proof of
Proposition 3.1 since for codimension d = 1 the morphism Fl(d, 1, V ) → PV is an
isomorphism. This is the only point where we use d = 1. For higher codimension the
morphism αY : EY → X × PV is not always a closed embedding, as the following
example shows, but it may still be generically finite onto its image as needed for
Corollary 3.5:

Example 3.6 Let W = Spec k[x, y, z, s] → S = Spec k[s], and consider the family
of subvarieties

X = { f = g = 0} ⊂ W for

{
f = x2 + y2 + s,

g = x2 + z2 − s.

Here Z = Sing(X/S) ⊂ X is a fat point with ideal sheaf I = (xy, xz, yz) � OX
and looking at the minors of the Jacobian matrix we see that the relative Gauss map
is given in Plücker coordinates on the Grassmannian Gr(2, V ) = Proj k[w1, w2, w3]
by

γX : X\Z −→ Gr(2, V ) = P
2, (x, y, z, s) �→ [w1 : w2 : w3] = [yz : xz : −xy].

Note that the right hand side does not involve the parameter s. Furthermore, we have
(2x2 + y2 + z2)|X = ( f + g)|X = 0 and hence the relative Gauss map γX factors
over

QX = {2w2
2w

2
3 + w2

1w
2
3 + w2

1w
2
2 = 0} ⊂ Gr(2, V ).

Write PV = Proj k[v1, v2, v3] for the dual coordinates vi where the flag variety is
given by

Fl(2, 1, V ) = {v1w1 + v2w2 + v3w3 = 0} ⊂ Gr(2, V ) × PV

then for

QY = {2w2
2w

2
3 + w2

1w
2
3 + w2

1w
2
2 = v1w1 + v2w2 + v3w3 = 0} ⊂ Gr(2, V ) × PV .

we get the following diagram where the squares are Cartesian and the hooked arrows
are closed immersions:

EY Y X ×QY X × Fl(2, 1, V ) X × PV

EX X̂ X ×QX X ×Gr(2, V )
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620 G. Codogni, T. Krämer

The composite of the arrows in the top row is the morphism αY : EY → X × PV
that we are interested in. The diagram shows that it is not a closed immersion, over
Z red = {0} ⊂ X we have the factorization

Ered
Y PV

QY

αY

4:1

where QY → PV is an irreducible cover of generic degree four! However, since the
left diagonal arrow is a closed immersion and hence birational for dimension reasons,
the morphism αY : EY → X × PV is generically finite over its image.

4 Generalities about families of rational maps

Beforewe apply the above toGaussmaps, let us recall some generalities about families
of rational maps. Let f : X → S be a faithfully flat morphism of varieties of relative
dimension n with irreducible fibers. Let L ∈ Pic(X) be a line bundle and V a
rank n + 1 vector subbundle of f∗L . Then for each point s ∈ S(k) we get a linear
seriesVs ⊂ H0(Xs,Ls) andwe denote byφs : Xs ��� PVs the corresponding rational
map. Note that since the source and the target of this map have the same dimension,
the map is a generically finite cover iff it is dominant. So we consider the degree map

deg : S(k) −→ N0, s �→ deg(φs),

where we put deg(φs) = 0 if φs is not dominant.

Lemma 4.1 The degree map deg is constructible.

Proof By [17, Prop. 4.4] we can compute the degree in terms of Segre and Chern
classes as

deg(φs) =
∫

Xs

c1(Ls)
n −

∫

Bs
c(Ls)

n ∩ s(Bs, Xs)

where Bs ⊂ Xs denotes the base locus of the linear series Vs ⊂ H0(Xs,Ls). We can
put together all these fiberwise base loci into a relative base locus and consider the
flattening stratification of this relative base locus. This is a stratification of S such that
on each stratum the above intersection number is constant, hence the function deg is
constructible. ��

However, in general the degree is neither upper nor lower semi-continuous, as the
following variation of [11, Ex. 2.3] shows:

Example 4.2 Let S be a smooth affine curve with two marked points s± ∈ S(k) and
fix positive integers n± ≤ n < 27. Let p j : S −→ P

3 for j = 1, . . . , n be such that
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Semicontinuity of Gauss maps 621

• for t 	= s± the points p j (t) are in general position,
• for t = s± they consist of n± general points on a given line � and n − n± points
in general position not on that line.

For t ∈ S(k) let ft : P3 ��� P
3 be the generically finite rational map defined by a

linear system of four generic cubics passing trough the p j (t). By loc. cit. its degree is

deg( ft ) =
{
27 − n for t 	= s±,

20 − (n − n±) for t = t± and n± ≥ max{4, n − 20},

since in the second case the indeterminacy locus of f± consists of the chosen line �

together with the remaining n − n± points. So the degree is a constructible function
as predicted by Lemma 4.1. However, taking for example (n, n+, n−) = (20, 10, 4)
we obtain an example where the generic value of the degree is seven, jumps up to ten
at one point and down to four at another point. Hence in the same family the degree
can both decrease and increase under specialization.

5 Gauss maps on abelian varieties

We now apply the above to an abelian scheme f : A → S, so in this section we take
W = A. Let X ⊂ A be a closed subvariety which is flat over S. For s ∈ S(k) we have
the Gauss map

γXs : P�Xs −→ PV

where V = H0(As,�
1
As

). If this map is dominant, then for dimension reasons it is a
generically finite cover and we denote by deg(γXs ) its generic degree. If the map is
not dominant we put deg(γXs ) = 0; this occurs iff the subvariety Xs ⊂ As arises by
pull-back from some smaller dimensional abelian quotient variety [37, Th. 1], which
by [1, Th. 3] happens iff Xs is not of general type. The degree of the above Gauss map
is related to the degree of conormal varieties as follows:

Lemma 5.1 We have deg(�Xs ) = deg(γXs ).

Proof The degree of our Gauss map γXs : P�Xs → PV coincides with the degree
considered by Franecki and Kapranov terms of tangent rather than cotangent spaces
in [16, Sect. 2]: Up to the duality Gr(d, V ) � Gr(g−d, V∨) they study the map p ◦q
defined by the diagram

Xs F (d, 1, V ) G(1, V ) = PV

Sm(Xs) G(d, V )

q p
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622 G. Codogni, T. Krämer

where X̃s = Sm(Xs)×G(d,V ) F(d, g−1, V ). By construction X̃s ⊂ P�Xs is an open
subset of the conormal variety, and their map p ◦ q is the restriction of our Gauss map
to this open subset. Hence the claim follows from [16, Prop. 2.2]. ��

In particular deg(�Xs ) ≥ 0. Together with the preservation of the total degree under
Lagrangian specialization this leads to our first semicontinuity result:

Corollary 5.2 The map S(k) → N0, s �→ deg(γXs ) is lower semicontinuous.

Proof By Lemma 4.1, we know that the map is constructible. We have to show that its
values decrease under specialization. For this we may assume that S is a curve, and
after base change to its normalization we may assume this curve to be smooth. Let d
be the value from Proposition 2.4. With notations as in Lemma 2.3 then

deg(�Xs ) =
{
d if s /∈ 	,

d − δ(s) if s ∈ 	,

where δ(s) = ∑
Z⊂Xs

mZ · deg(�Z ) with multiplicities mZ ≥ 0. Now in the case of
abelian varieties the occuring degrees coincide with the degrees of the corresponding
Gaussmaps byLemma5.1. In particular, since the degrees ofGaussmaps are obviously
nonnegative, we have deg(γZ ) ≥ 0 and therefore δ(s) ≥ 0, which proves that the
degree of the Gauss map is constant on an open dense subset and can only drop on the
finitely many points of the complement. ��

To see where the function in the previous corollary actually jumps, recall that a
subvariety Z ⊂ As has Gauss degree deg(γZ ) = 0 iff it is not of general type. Thus
we obtain the following sufficient jumping criterion:

Corollary 5.3 Suppose dim(S) = 1. Let X ⊂ A be a divisor which is flat over S and
let 0 ∈ S(k) be a point such that Sing(X0) has an irreducible component Z which is
of general type and not contained in the closure of

⋃
t 	=0 Sing(Xt ). Then there is an

open dense subset U ⊂ S such that

deg(γXt ) − deg(γX0) ≥ deg(γZ ) > 0 for all t ∈ U (k)\{0}.

Proof The first inequality follows from Proposition 3.1, the second from our assump-
tion that the subvariety Z ⊂ A0 is of general type. ��

6 Application to the Schottky problem

The moduli space Ag of principally polarized abelian varieties of dimension g over
the field k admits the finite filtration · · · ⊆ Gd ⊆ Gd−1 ⊂ · · · ⊆ Gg! = Ag by the
Gauss loci

Gd := {(A,�) ∈ Ag | deg(γ�) ≤ d} ⊆ Ag.

Our semicontinuity result implies:
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Semicontinuity of Gauss maps 623

Corollary 6.1 For any d ∈ N the Gauss loci Gd are closed in Ag.

Proof Themoduli spaceAg has a finite cover by a smooth quasi-projective variety over
which there exists universal theta divisor. On this cover the Gauss maps fit together in
a family of rational maps as in the setting of Sect. 4. The Gauss loci are the level sets
of the degree map, and we have to show that this map is lower-semicontinuous. This
follows from Corollary 5.2. ��

Using our sufficient criterion for jumps in the degree of Gauss maps, we can now
show that the stratification by the Gauss loci refines the stratification by the Andreotti–
Mayer loci

Nc = {(A,�) ∈ Ag | dim Sing(�) ≥ c}

from [3]. Some care is needed because the singular locus of the theta divisor may have
components which are negligible, i.e. not of general type:

Remark 6.2 There are indecomposable ppav’s (A,�) ∈ Ag with a theta divisor for
which Sing(�) ⊂ A is negligible. This even happens for generic ppav’s on certain
irreducible components of Andreotti–Mayer loci: For instance, for g = 5 one can
show that for a generic ppav on the component E5,1 ⊂ N1 from [13, Thm. 4.1(ii)] the
singular locus Sing(�) is an elliptic curve.

A more detailed discussion will be given in a forthcoming work by Constantin
Podelski. In any case negligible components can only appear on decomposable abelian
varieties, hence the following corollary of our jumping criterion covers all Andreotti–
Mayer strata whose general point is a simple abelian variety:

Corollary 6.3 Let c ∈ N, and letN ⊂ Nc be an irreducible component whose general
point is a ppav whose singular locus of the theta divisor has no negligible components.
Then N is an irreducible component of Gd for some d ∈ N.

Proof Let s ∈ N (k) be a general point on the given component. Since the moduli
space of ppav’s is a quasiprojective variety, we may pick an affine curve S ⊂ Ag such
that S∩Nc = {s} and S meetsN transversely. After passing to a finite cover we may
assume that there exists an abelian scheme f : A → S and a universal theta divisor
� ⊂ A over this curve, and by our choice of the curve we have

dim Sing(�t ) < dim Sing(�s) for all t 	= s.

Hence Sing(�s) has an irreducible component not in the closure of
⋃

t 	=s Sing(�t )

and so

deg(γ�t ) > deg(γ�s ) for all t 	= s

by Corollary 5.3. Varying s in an open subset of the component N and varying S
among all curves meeting this component transversely in the chosen point, we get
that some nonempty open subset of N is also an open subset of a Gauss locus Gd
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624 G. Codogni, T. Krämer

for some d ∈ N. Hence the result follows by passing the the closure, since both the
Andreotti–Mayer loci and the Gauss loci are closed in Ag . ��

As an application we get that the stratification by the degree of the Gauss map gives
a solution to the Schottky problem as conjectured in [11], where for the Prym version
we denote by D(g) the degree of the varieties of quadrics in P

g−1 of rank at most
three:

Corollary 6.4 We have the following components of Gauss loci in Ag:

(a) The locus of Jacobians is a component of Gd for d = (2g−2
g−1

)
.

(b) The locus of hyperelliptic Jacobians is a is a component of Gd for d = 2g−1.
(c) The locus of Prym varieties is a is a component of Gd for d = D(g) + 2g−3.

Proof The locus of Jacobians is a component of an Andreotti–Mayer locus by [3],
and by [31, Proposition 3.4] a general Jacobian variety is a simple abelian variety and
thus in particular has no negligible subvarieties other than itself. Furthermore, it is
well-known that the degree of the Gauss map of a Jacobian is d = (2g−2

g−1

)
, see e.g. [2,

proof of prop. 10]. Hence part (a) follows from corollary 6.3. If we replace Jacobians
by hyperelliptic Jacobians, the above arguent works also in the hyperelliptic case, with
the same references. For Prym varieties the argument is again the same but now one
has to replace reference [3] with [14], and reference [2] with [36, Main Theorem]. In
the last reference the reader can also find an explicit expression for the number D(g).

��

7 A topological view on jump loci

In this section we work over the complex numbers with the Euclidean topology. LetW
be a smooth complex projective variety. For a closed subvariety X ⊂ W the singular
locus Sing(X) and the conormal degree deg(�X ) are not topological invariants of the
subvariety, as Example 1.5 shows. But both are related to the intersection cohomology
IH•(X) which only depends on the homeomorphism type of the subvariety in the
Euclidean topology; see [6,20,21,24,30]. The Euler characteristic

χIC(X) =
∑

i≥0

(−1)i+dim(X) dim IHi (X)

can be read off from a generalization of the Gauss-Bonnet theorem: The Kashiwara
index formula [19, Th. 9.1] writes it as a degree in the sense of Definition 1.4. More
precisely

χIC(X) = deg(CC(δX )),

where δX ∈ Perv(W ) denotes the perverse intersection complex of X ⊆ W [5,12]
and where the characteristic cycle CC(δX ) ∈ L (W ) is an effective conic Lagrangian
cycle which contains �X as a component of multiplicity one but may also have as
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Semicontinuity of Gauss maps 625

components the conormal varieties to certain Z ⊆ Sing(X). Passing from conormal
varieties to characteristic cycles restores topological invariance of the degree:

Example 7.1 InW = P
2 the conormal degree for a smooth rational curve differs from

the one for a cuspical cubic, see Example 1.5. But this is compensated by a difference
in

CC(δX ) =
{

�X if X is a smooth rational curve,

�X + �{p} if X is a cuspidal cubic with cusp p.

which in both cases gives the total degree deg(CC(δX )) = −2.

In what follows we want to understand how for a morphism X → S of complex
varieties the intersection cohomology Euler characteristic of the fibers varies. Basic
stratification theory implies:

Lemma 7.2 The map s �→ χIC(Xs) is constructible.

Proof Thehomeomorphism invariance of intersection cohomology [21, Th. 4.1] shows
that for a topologically locally trivial fibration over a connected base, all fibers have
the same intersection cohomology. Any morphism of complex algebraic varieties
restricts to a topologically locally trivial fibration over a Zariski open dense subset of
the target [35, Cor. 5.1], so we are done by Noetherian induction. ��

In general the map in this lemma is neither upper nor lower semicontinuous, the
jumps may go in both directions:

Example 7.3 Let Q ⊂ P
3 be a quadric. Then by [30, Ex. 2.3.21 and Th. 2.4.6] we

have

χIC(Q) =

⎧
⎪⎨

⎪⎩

4 if Q � P
1 × P

1 is smooth,

3 if Q is a cone over a smooth rational curve,

6 if Q is a union of two projective planes.

So for a family of quadrics whose general member is smooth, the number χIC(Q)

jumps down on nodal quadrics but jumps up on reducible quadrics.

Note that here the size of the jumps is precisely the Euler characteristic of the
singular locus. This fits with the following sheaf-theoretic version of the Lagrangian
specialization principle:

Theorem 7.4 Let f : W → S bea smoothproper family over a curve S, and let X ⊂ W
be a closed subvariety such that the morphism f : X → S is flat with generically
reduced fibers. Then there exists d ∈ Z and a finite subset 	 ⊂ S such that

χIC(Xs) =
{
d for s ∈ S\	,

d − deg(�(s)) for s ∈ 	,

where �(s) = sps(CC(δX )) − CC(δXs ) ∈ L (Ws) is an effective cycle.
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Proof We interpret Lagrangian specialization via perverse sheaves. For s ∈ S(C) one
has the functor of nearby cycles�s : Perv(W ) → Perv(Ws), which is an exact functor
with

CC(�s(P)) = sps(CC(P)) for all P ∈ Perv(W )

by [19, Th. 5.5]. Here we abuse notation and viewCC(P) as an element of the group of
relative conic Lagrangian cyclesL (W/S) via Remark 2.1, discarding any component
that is not flat over S. The last part of the specialization Lemma 2.3 has a sheaf-
theoretic version: For any closed S-flat subvariety X ⊂ W such that the map f :
X → S has generically reduced fibers, there exists a finite subset 	 ⊂ S such that the
semisimplification (�s(δX ))ss of the perverse sheaf �s(δX ) has the form

(�s(δX ))ss �
{

δXs for s ∈ S\	,

δXs ⊕ P(s) for s ∈ 	,

where P(s) ∈ Perv(Xs) is a perverse sheaf with support contained in Sing(Xs). So
we get

sps(CC(δX )) = CC(�s(δX )) =
{
CC(δXs ) for s ∈ S\	,

CC(δXs ) + �(s) for s ∈ 	,

where �(s) = CC(P(s)) ∈ L (Ws) is effective, being the characteristic cycle of a
perverse sheaf. Hence the result follows by noting that if f : W → S is proper, then
by Proposition 2.4 the degree d = deg(sps(CC(δX ))) is independent of s. ��

In the case of abelian varieties the positivity of conormal degrees then gives an
analog of Theorem 1.7. The same argument works for a much wider class of varieties,
we only need the following positivity property:

Definition 7.5 A variety X satisfies the signed Euler characteristic property if we
have

χ(X , P) :=
∑

i∈Z
(−1)i dimHi (X , P) ≥ 0 for all P ∈ Perv(X).

The terminology is borrowed from [15]. The above property holds for semiabelian
varieties [16] and hence also for any finite cover of closed subvarieties of them:

Lemma 7.6 If a variety A has the signed Euler characteristic property, then so does
any varietywith a finitemorphism to A. In particular, any varietywith a finitemorphism
to a semiabelian variety has the signed Euler characteristic property.

Proof If f : X → A is a finite morphism, then for any perverse sheaf P ∈ Perv(X)

the direct image is a perverse sheaf R f∗(P) ∈ Perv(A). If A has the signed Euler
characteristic property, which holds for instance for abelian varieties [16], then we get
χ(A, P) = χ(A, R f∗(P)) ≥ 0. ��

123
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The above theorem shows that for any family of such varieties the intersection
cohomology Euler characteristic is semicontinuous:

Corollary 7.7 Let f : W → S be a smooth proper morphism to a variety S, and let
X ⊂ W be a closed subvariety such that f : X → S is flat and all its fibers are
generically reduced and have the signed Euler characteristic property. Then for each
d ∈ N the subsets Sd = {

s ∈ S | χIC(Xs) ≤ d
} ⊆ S are Zariski closed.

Proof We must show that χIC(Xs) cannot increase under specialization. For this we
can assume S is a smooth curve. Then Theorem 7.4 applies, here χ(Xs, P(s)) ≥ 0
since Xs has the signed Euler characteristic property. ��

In deciding where the Euler characteristic actually jumps, we need to be more
careful. Proposition 3.1 gives a way to see extra components in sps(CC(δX )) but does
not guarantee that these enter in a new summand �(s), a priori they could also appear
in CC(δXs ); however, this second case can only happen if CC(δXs ) is reducible, which
one can often exclude by a direct computation.

Let us illustrate this again with theta divisors. Corollary 7.7 says that for d ∈ N the
loci

Xd = {(A,�) ∈ Ag | χIC(�) ≤ d} ⊆ Ag.

are closed, and by the homeomorphism invariance of intersection cohomology they
only depend on the topology of the theta divisor. This provides a topological view on
Andreotti–Mayer loci, for instance:

Corollary 7.8 LetN ⊂ Nc be an irreducible component of an Andreotti–Mayer locus
such that a general point of this component is a ppav (A,�) with the property that

• CC(δ�) is irreducible, and

• Sing(�) has no negligible components.

Then N is also an irreducible component of Xd for some d ∈ N.

Proof Use the same argument as in Corollary 6.3, together with the remark after the
proof of Corollary 7.7. ��

This in particular applies to the locus of Jacobians. In the following corollary we
do not mention hyperelliptic Jacobians because for them CC(δ�) is reducible, and we
haven’t checked what happens for a generic Prym variety. However, we include the
Andreotti–Mayer locus N0 ⊂ Ag of ppav’s with a singular theta divisor:

Corollary 7.9 Inside the moduli space Ag we have:

(1) The locus N0 is equal toXd for d =
{
g! − 1 if g is odd,

g! − 2 if g is even.

(2) The locus of Jacobians is a component ofXd for d = (2g−2
g−1

)
.
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Proof (1) By definitionAg\N0 consists of all ppav’s (A,�)with a smooth theta divi-
sor and for those we know that χIC(�) = g! because for a smooth variety intersection
cohomology equals Betti cohomology. But at a generic point (A,�) of each of the
two components ofN0 the theta divisor has one respectively two nodes, and then

χIC(δ�) =
{
g! − 2k if g is even,

g! − k if g is odd,

where k ∈ {1, 2} denotes the number of nodes [27, proof of prop. 4.2(2)]. Hence the
claim follows by Corollary 7.7. Note that the degree of the classical Gauss map is
deg(��) = g! − 2k in both cases, but for odd g the cycle CC(δ�) = �� + �Sing(�)

is reducible and we cannot directly apply Corollary 7.8.
(2) For Jacobians of nonhyperelliptic curves we know that CC(δ�) = �� is

irreducible by [7, Th. 3.3.1], so if we specialize to such a Jacobian, then any new
component of the specialization must enter in �(s). So the same argument as in
the proof of Corollary 6.4 shows that the locus of Jacobians is a component of Xd

where d = χIC(�) = deg(CC(δ�)) = deg(��) is the degree of the Gauss map for
the theta divisor on a general Jacobian variety as in Corollary 6.4. ��

The above is still only a weak solution to the Schottky problem, though χIC(�)

also appears as the dimension of an irreducible representation of a certain reductive
group which gives more information [26, Sect. 4]. The following example for g = 4
illustrates the difference between the various numerical invariants:

Example 7.10 Let (A,�) ∈ A4.

• If Sing(�) consists of 8 nodes, then deg(γ�) = χIC(δ�) = 8.
• If Sing(�) consists of 5 nodes, then deg(γ�) = χIC(δ�) = 14.
• If (A,�) is a hyperelliptic Jacobian, then deg(γ�) = 8 and χIC(δ�) = 14.

So there are non-homeomorphic theta divisors whose Gauss maps have the same
degree. Are there also homeomorphic theta divisors with different Gauss degrees?
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