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Abstract
The Hardy-Littlewood maximal operator M satisfies the classical Sawyer-type esti-
mate

< Cull fllLrwys
L% (uv)

Mf
B

where u € A1 and uv € A. We prove a novel extension of this result to the general
restricted weak type case. That is, for p > 1, u € AR, and uv? € A,

My
=

=< Cu,v”f”LP»l(u)'

LP®(uvP)

From these estimates, we deduce new weighted restricted weak type bounds and
Sawyer-type inequalities for the m-fold product of Hardy-Littlewood maximal oper-
ators. We also present an innovative technique that allows us to transfer such
estimates to a large class of multi-variable operators, including m-linear Calderén-
Zygmund operators, avoiding the Ay, extrapolation theorem and producing many
estimates that have not appeared in the literature before. In particular, we obtain
a new characterization of AZ}. Furthermore, we introduce the class of weights
that characterizes the restricted weak type bounds for the multi(sub)linear maximal
operator M, denoted by AT, establish analogous bounds for sparse operators and
m-linear Calder6n-Zygmund operators, and study the corresponding multi-variable
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Sawyer-type inequalities for such operators and weights. Our results combine mixed
restricted weak type norm inequalities, AE and Az,z weights, and Lorentz spaces.

Mathematics Subject Classification 42B25 - 46E30

1 Introduction

“Sawyer-type inequalities” is a terminology coined in the paper [19], where the authors
prove thatif u € Ay, and v € A or uv € Ay, then

uv ({x eR": W > t}) < g/ | f () |ux)v(x)dx, t>0, (1.1)
U(.x) t Rn

where T is either the Hardy-Littlewood maximal operator or a linear Calder6n-
Zygmund operator. This result extends some questions previously considered by B.
Muckenhoupt and R. Wheeden in [48], and solves in the affirmative a conjecture
formulated by E. Sawyer in [54] concerning the Hilbert transform. These problems
were advertised by B. Muckenhoupt in [47], where the terminology “mixed type norm
inequalities” was introduced and was also used since then in other papers like [2]
or [44]. In general, this terminology refers to certain weighted estimates for some
classical operators 7', where a weight v is included in their level sets; that is,

{xeR":w>t}, t>0. (1.2)
v(x)

The structure of such sets makes it impossible, or very difficult, to use classical tools
to measure them, such as Vitali’s covering lemma or interpolation theorems.

In this paper, we consider mixed restricted weak type norm inequalities, or Sawyer-
type inequalities for Lorentz spaces; that is, we study estimates of the form

T Vr ¢
w({xew:ﬂw}) =Sl 10 (3

v(x)

where p > 1, T is a classical operator, and u, v, w are weights. We also consider
extensions of such inequalities to the multi-variable setting. Our goal is to prove
estimates like (1.3) for sub-linear and multi-sub-linear maximal operators, and multi-
linear Calder6n-Zygmund operators. Observe that in the classical situation, namely
whenu = w,v = 1,and T is either the Hardy-Littlewood maximal operator or a linear
Calder6n-Zygmund operator, the inequality (1.3) holds if w € AZ} (some authors use
the notation A, 1 for this class of weights, as in [16]). The case when v % 1 is much
more difficult, and in what follows, we will study it in great detail.

The starting point of this paper and our primary motivation to consider Sawyer-
type inequalities for Lorentz spaces comes from the study of the m-fold product of
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Hardy-Littlewood maximal operators,

ME@®)(x) = [[Mfi(x). xeR".

i=1

M. J. Carro and E. R. P. proved in [14] that for 1 < py,..., p, < oo and % =

%—i—- . -—}—pL,andweights Wiy eno, Wy € Axgand vy 1= u)f/p1 . wh!Pm anecessary
condition to have

M®  LPY N (wy) x - x LP N (w,,) —> LP®(vy) (1.4)
is that w; € AE,, fori = 1,...,m. They left as an open question to prove that this

last condition is also sufficient for (1.4) to hold. It is reasonable to think that this
may indeed be true since the endpoint case was proved in [36]. That is, for weights
wi, ..., W, € A, we have that

M® L (wi) x -+ x L (wp) —> LY ™ wp™). (1.5)

To prove this result, one has to control the following quantity for t+ > 0, which is
related to the level sets (1.2):

® — n. . —t
v ({ME(®) > t}) = vy ({x eR": Mfi(x) > M. ij(x)D,

where vy = w;/ "o w,l/ "™ This is achieved by applying the classical Sawyer-type

inequality (1.1) for the Hardy-Littlewood maximal operator M in combination with the
observation that for locally integrable functions hy, ..., hg, ]_[I;zl (Mh j)’] € RHyo,
with constant depending only on k and the dimension 7.

As we will show in Theorem 3, it turns out that the bound (1.4) holds if w; € AZ’
fori =1, ..., m, solving in the affirmative the open question in [14] and completing
the characterization of the restricted weak type bounds of M® for Ay, weights. The
strategy that we follow is similar to the one in [36] for the endpoint case (1.5), but we
have to replace the classical Sawyer-type inequality (1.1) by the estimate obtained in
Theorem 2, which is a new restricted weak Sawyer-type inequality involving the class
of weights AZ}. That is,

=< Cu,v”f“LPJ(u)’ (1-6)

LP-%®(uvP)

Mf
|

forp > 1,u € AR, and uv? € Ax. The AZ} condition on the weight u is a natural
assumption since it is necessary when v & 1. In Lemma 3 we also manage to track
the dependence of the constant Cy, ,, on the weights « and uv”, even in the endpoint
case p = 1, refining the bound (1.1) in [19].
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496 C. Pérez, E. Roure-Perdices

There is no reason to restrict ourselves to the study of one-variable Sawyer-type
inequalities. Quite recently, the bound (1.1) has been extended to the multi-variable

setting in [40]. More precisely, for weights wi, ..., w, € Aj,and v € A,
M) [T, Mf; -
H < |HELE <TT1fl - AD
v L1/m.oo (yy yl/m)y v L1/m.00(yypl/m)

i=1

Inspired by this result, we follow a similar approach to extend our Sawyer-type inequal-
ity (1.6) to the multi-variable setting, obtaining a generalization of (1.7) in Theorem 4.
That is, for weights wy, ..., w,, and v such that fori = 1,...,m, w; € AE and
w;vPi € Ago,

m

<TI0, (8

i=1

H M(E)

v

3 H 17, M,
- v

LP-®(vyoP) LP-®(vyoP)
Observe that this result is an extension of (1.4). To our knowledge, this multi-variable
mixed restricted weak type inequalities for maximal operators involving the AZ)3 con-
dition on the weights have not been previously studied, and we found no record of
them being conjectured in the literature.

Motivated by the conjecture of E. Sawyer in [54], we can ask ourselves if it is
possible to obtain bounds like (1.8) for multi-linear Calderén-Zygmund operators T .

Once again, the endpoint case p; = --- = p,, = | has already been considered and
extensively investigated in [40]. There, it was shown that for weights w1, ..., w, €
Ay, and vy v/ € Ay,
T(f) -
‘ STl - (1.9)
v Ll/m,OO(val/m)

i=1

as a corollary of (1.7), combined with a result in [49], that allows replacing M by T
using an extrapolation type argument based on the A, extrapolation theorem obtained
in [18,22]. We succeed in our goal and manage to get an extension of (1.9) to the general
restricted weak setting. In Theorem 6 we prove, among other things, that for weights
wi,..., Wy, and v such thatfori =1,...,m, w; € AE and w;v” € Ay, and some
other technical hypotheses on the weights,

ST - (1.10)

i=1

H T ()
v

LP-%®(vyoP)

To achieve this, we build upon (1.8), but unlike in [40], we manage to avoid the use
of extrapolation arguments like the ones in [49]. Instead, we present in Theorem 5 a
novel technique that allows us to replace M by T exploiting the fine structure of the
Lorentz space L?*°, the AZ} condition, and the recent advances in sparse domination.

One can even go further and consider inequalities like (1.10) assuming multi-
variable conditions on the weights involved, as it was done in [40] with the endpoint
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case pj = --- = p,, = 1 and weights in Ay. In Sect. 5, we discuss our find-
ings on this matter. There, we introduce the class of weights that characterizes the
restricted weak type bounds of M, denoted by AR study some of its properties,
deduce the corresponding restricted weak type bounds for sparse operators and multi-
linear Calderén-Zygmund operators, and conjecture the main results on Sawyer-type
inequalities with weights in AZ}. It is worth mentioning that we couldn’t find in the lit-
erature any trace of results like (1.10) involving M or multi-linear Calderén-Zygmund
operators, AZ} or AZ? weights, and mixed restricted weak type inequalities.
Curiously, we didn’t find much about Sawyer-type inequalities for Lorentz spaces
apart from the endpoint results studied in [2,19,24,39,40,44,47-49,54], and some
endpoint estimates for multi-variable fractional operators (see [52]), multi-linear
pseudo-differential operators (see [12]), and the Hardy averaging operator (see
[41,43]). As we have seen before, these inequalities are fundamental to understand
the behavior of the operator M®, but they appear naturally in the study of other
classical operators, even in the one-variable case. Consider, for example, the case
of the Hilbert transform H. Indeed, if p > 1 and w € AR, it is well-known that

H : LPY(w) — LP°(w). Hence, duality, linearity, and self-adjointness of H
yield

w < Cy ”f”Lp’,l(w)-

HH(fw)

LY (w)

This is an example of an estimate like (1.3) involving the AZ; condition on the
weights and obtained almost without effort. The same inequality holds for the Hardy-
Littlewood maximal operator M, but we cannot use the same argument, as shown in
[15]. In Theorem 7 we will generalize such a result for M, obtaining as a particular
case, a new characterization of AZ,Z and an alternative proof of the result in [15]. In
[29,35], one can find similar endpoint estimates for Calderén-Zygmund operators,
with p’ = 1 and w € A; (see also [11,50,51,55,56]).

Sawyer-type inequalities also arise in the broadly studied topic involving commuta-
tors of linear operators 7 with a BM O function b, although we will not deal with them
in this paper. The crucial initial observation is that we can write [b, T] as a complex
integral operator using Cauchy’s integral theorem, obtaining that for ¢ > 0,

0. T1f = —— / LDy
{zeC: |z]=¢}

T 2w 72

where
T.(f) = T (—fb> , zeC.
eZ

This approach was introduced in the celebrated paper [17] and was further developed
in [1]. In the context of Lorentz spaces, for p > 1 and a weight w, and in virtue of
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498 C. Pérez, E. Roure-Perdices

Minkowski’s inequality, we get that for any ¢ > 0,

1
I[D, T]f”LP-OO(w) =< g sup ||Tz(f)||Lp»00(w)-

zeC: |z|=¢

Sinceb € BM O, as aconsequence of the John-Nirenberg inequality, there is a constant
so > 0 such that for |z| < 5o, v™! := [e??| = " € A, and hence, it is possible to
deduce weighted inequalities for commutators from estimates of the form

Sl

Vo llpoo(w)

H T(fv)

for a norm or a quasi-norm || - ||x, and v™! € A p- Further results for commutators
involving Sawyer-type inequalities can be found in [6,7] (see also [8,9]).

Recently, E. R. P. has shown in [53] that Sawyer-type inequalities for Lorentz
spaces play a fundamental role in the extension to the multi-variable setting of
the restricted weak type Rubio de Francia’s extrapolation presented in [13,15]. His
approach suggests that Conjecture 1 will be crucial for proving multi-variable extrap-
olation theorems involving weights in Az,z.

2 Preliminaries
2.1 Lorentz spaces and classical weights

Let us recall the definition of the Lebesgue and Lorentz spaces (see [4]). For p > 0
and an arbitrary measure space (X, v), L L(v) is the Lorentz space of v-measurable
functions such that

I llLei) = p/o Mrn'Pdy =/0 frnel?— < oo,

LP(v) is the Lebesgue space of v-measurable functions such that

1/p )
IIfIILp(,,):z(/ |f|pv> <00 (orv—esssup|f| < ooif p=o00),
X X
and LP*°(v) is the Lorentz space of v-measurable functions such that
£ llLrooy o= sup yAY ()P = supt'/? f3(1) < o0,

y>0 t>0

where f,f is the decreasing rearrangement of f with respect to v, defined by
fi@ =infly > 02500 <1}, 450 = v(lx € X1 [f(0)] > 1)),
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If p > 1, then LP'(v) — LP(v) < LP*°(v). Given a o-finite measure space
(X, v), and parameters 0 < r < p < 0o, the quantity

11 1/r
WfWppooy == sup v(E)? - </ |f|’dv)
E

O<v(E)<oo

satisfies that

1/r
p
Il fllLrocwy < NFllppooqy < (E) I f 1Py

This result is classical (see [27, Exercise 1.1.12]), and throughout this paper, we will
refer to these inequalities as Kolmogorov’s inequalities.
Given f € L 110 . (R"), the Hardy-Littlewood maximal operator M is defined by

1
Mf(x) := sup —/ |f()Idy, x €R",
0sx 19l /o

where the supremum is taken over all cubes O € R” containing x. Muckenhoupt
studied the boundedness of M on Lebesgue spaces L” (w) (see [45]). Given a positive
and locally integrable function w, called weight, and 1 < p < oo,

M : LP(w) — LP(w)

if, and only if w € A); thatis, if

p—1
[w]a, = sup <][ w) (][ wl_”/> < 00,
o 0 0

where we use the notation fQ w = ﬁ fQ w(x)dx. Moreover, if 1| < p < oo,
M : LP(w) — LP*°(w)

if, and only if w € A, where a weight w € Ay if

[wla, :=sup (J[ w) Ixow ™l zooqw) = sup <][ w) (ess infw(x)) ™! < co.
0 \Jo 0 \Jo xeQ

Buckley proved in [10] that for 1 < p < oo,

1
Ml Lewy—Lro@w) S [w]A/pp,

and if p > 1, then

e
IM e Lo S wlf T
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500 C. Pérez, E. Roure-Perdices

The restricted weak type bounds of M were studied in [16,31]. For 1 < p < oo,
M : L7 (w) — LP®(w)

if, and only if w € AT, where a weight w is in Az,z (also denoted by A, 1) if

—1
lxow ”Lp’,oo(w)

< 00,
10|

[wlyr = supw(Q)'/?
r 0

or equivalently, if

lwll (= sup su @ (M)Vﬁ < 00
AR TP pew 101 \w(E)

Given a measurable set E, we write w(E) = fE w(x)dx. If w = 1, we simply write
|E|. We have that [w]AZ)z < ||w||A7)z < p[w]A;z. Moreover,

1M Lp1 (wy— Lr-ow) = [w]AZ)Z-

As usual, we write A < B if there exists a positive constant C > 0, independent of A
and B, such that A < CB. If the implicit constant C depends on some parameter «,
we may write <, at our discretion. If A < B and B < A, then we write A ~ B.

We now give the definitions of some other classes of weights that will appear later.
For more information about them, see [19,21,23,26]. Define the class of weights

p=1 p=1
A weight w € Ay if, and only if

1
w(Q)

[w]a,, :=sup / M(wyg) < cc.
0 0

This quantity is usually referred to as the Fujii-Wilson A, constant (see [25]). More
generally, given a weight u, and p > 1, we say that w € A, (u) if

i = (i f, ) (s Ly )
wAp(u) .—Slép M(Q) Qwu M(Q) Qw u < 00,

and w € Aj(u) if

1 —1
(wla, @) = SLQIP (@ /Q wu) lxow™ Il Loo(wu)
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= sgp (u(lQ) /Qwu> (eiseianw(x))_1 < 00,

and as before, we define

Ao () = U A, ().

p>1
If u is a doubling weight for cubes in R”, and w € Ay (1), then

(Wlapw = stép wul(Q) /QMu(wXQ)” < 00,

where

M, f(x) := sup
0

1
d
BXM(Q)/me)w(y) y

is the weighted Hardy-Littlewood maximal operator. If p > 1, then M, is bounded
on L?(wu) if, and only if w € A, (u), provided that u is doubling. Given s > 1, we
say that a weight w € RH; if

[w]RH = sup& <][ ws)l/s o
' o w(@) \Jo

and w € RH if

_ 10| 0|
[WRH, :=sup —— Il xowllL>®") = sup ess sup w(x) < oo.
0

w(Q) o w(Q) xeo

We have that

Avo = U RH;.

l<s<oo

In [36], the following multi-variable extension of the Hardy-Littlewood maximal
operator was introduced in connection with the theory of multi-linear Calder6n-
Zygmund operators:

M(f) :=sup (7[ |fi|>X,

forf = (f1,..., fim), with f; € L}OC(R"), i = 1,...,m. Commonly, this operator
is referred to as the curly operator. For exponents 1 < pi,...,pm < o0, P =
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502 C. Pérez, E. Roure-Perdices

(pl,...,pm),% = p—11+---+pl,andweightsw1,...,wm,withw= (wi, ..., wy),

and vy 1= wf/p‘ wh/Pm

M LPY(wy) X -+ X LP"(wy,,) —> L7 (vy)

if, and only if w € Ap; that is, if

I/p m =\ /P
[W]ap := sup (7[ vw> [1 (7[ w; ) < o0,
0o \Jo i1 Vo

_ N\ /D!
where (JCQ w1 p’) is replaced by (ess infrcg w; (x)~Vif p; = 1. Moreover, if

i
1 <pi,..., pm < 00, then

M LPY(wy) x - -+ x LP"(w,,) —> LP (vy)

if, and only if w € Ap.

We are using throughout the paper the standard notation 7 : X x - -- x X;;, —> Xp
to denote that 7 is a bounded operator from X x --- x X, to Xo, where X; is an
appropriate function space.

2.2 Dyadic grids and sparse collections of cubes

A general dyadic grid & is a collection of cubes in R” with the following properties:

(a) Forany Q € 2, its side length [ is of the form 2K, for some k € Z.
(b) Forall Q,R e 2,0NR e {¥, O, R}.
(¢) The cubes of a fixed side length 2% form a partition of R”.

The standard dyadic grid in R” consists of the cubes 27%([0, 1) + j), with k € Z and
Jj € 7Z". It is well-known (see [29]) that if one considers the perturbed dyadic grids

Do = 2750, )" + j+ (=D'e) 1k € Z, j € 2"},

with o € {0, %}", then for any cube Q C R”, there exist « and a cube Q, € Z,, such
that Q € Qy and g, < 6l¢.

A collection of cubes S is said to be n-sparse if there exists 0 < 1 < 1 such that
for every cube Q € S, there exists a set Eg € Q with n|Q| < |Eg|, and for every
Q#ReS, ERNEg=40.

For more information about these topics, see [34].

2.3 Calderon-Zygmund operators

We say that a function w : [0,00) — [0, 0co) is a modulus of continuity if it is
continuous, increasing, sub-additive and such that w(0) = 0. We say that w satisfies
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the Dini condition if
Lo@)
lwlipini := —~dt < oo.
0 t

We give the definition of the multi-linear w-Calderén-Zygmund operators. We
denote by . (R") the space of all Schwartz functions on R” and by ./ (R") its
dual space, the set of all tempered distributions on R”.

Definition 1 An m-linear w-Calderén-Zygmund operator is an m-linear and contin-
uous operator T : Z(R") x -+ x S (R") — '(R") for which there exists

a locally integrable function K (yg, y1, ..., ym), defined away from the diagonal
Yo =y = -+ = Yp in (Rmym+1, satisfying, for some constant Cx > 0, the size
estimate
Ck
[K(y0, Y15+ --

s Ym)| < ,
" (yo = yil + -+ 1o — ym D

for all (yo, y1,...,Ym) € (R"y"+1 with yo # yj for some j € {1,...,m}, and the
smoothness estimate

|K(y07yla"~’yl'7"'7ym)_K(y()ay]a'-'ayi/a"-aym)|

Cx < lyi — il )
< ® ,
(Iyo =yl +---+1yo — ymD™ \(yo—yil+---+1yo — ym D™

fori =0, ..., m and whenever |y; — y/| < %maxosjfm |vi — y;l, and such that

T(fto-os fm) () =/Rn -~-/nK(x,yl,~~-,ym)f1(y1)---fm(ym)dy1~--dym,

whenever fi,..., fi € €°(R") and x ¢ ﬂ;-"zl supp f, and for some exponents
1 <gq1,...,9m < 0o, T extends to a bounded m-linear operator from L9!(R") x
S LI (R™) to LI(R™), with ¢ = oo 4+ + 2L

If we take w (t) = t® forsome ¢ > 0, we recover the classical multi-linear Calderén-
Zygmund operators. In general, an m-linear w-Calderén-Zygmund operator with @
satisfying the Dini condition can be extended to a bounded operator from L' (R") x

- x LY(R") to L'/™-%°(R™). The multi-linear Calderén-Zygmund theory has been
investigated by many authors. For more information on this matter, see [28,36,42] and
the publications cited there.

3 Sawyer-type inequalities for maximal operators
We devote this section to the study of a novel restricted weak type inequality that

extends the classical Sawyer-type inequality (1.1) for the Hardy-Littlewood maximal
operator. To this end, we will need some previous results.
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504 C. Pérez, E. Roure-Perdices

The following lemma contains well-known results on weights (see [19,21,26,40]),
but we will give most of their proofs since we need to keep track of the constants of
the weights involved.

Lemma 1 Let u and w be weights.

(@) Ifu € Ay, thenu™" € RHwo, and [u="gru,, < [ula,.

(b) Ifu € RHy, and q > 0, then u? € RHo. If ¢ > 1, then [u?]gp,, < [M](Ii?Hoo‘

(¢c) Ifu € RHo, and [ulpu,, < B, then there exists r > 1, depending only on n, f3,
such thatu € A, and [u]a, < cp p. In particular, RHy, C Ao

(d) Ifu € Axo, and w € RHy, then uw € Axo.

(e) Ifu e Ay N RHo, then u ~ 1.
Fixp>1l,and fi,..., fn € L}, (R"), and let v = [/, (Mf;)~.

(f) v? € RHy, and 1 < [VPRuy < Cion,p-
(8) Ifu € Ao, then uv? € Ao, with constant independent of £ = (f1, ..., fm)-

Proof To prove (a), fix a cube Q C R". By Holder’s inequality, we have that

12 12
0] :/ u12172 < (/ u—l) </ u) ’
(@) (@) @)

and hence,

ess supu()™! = (s infu() ! < fuly '(%) < [uls, ][Q u

and the desired result follows taking the supremum over all cubes Q.
The property (b) follows from [21, Theorem 4.2]. Letq > 1,and fixacube Q € R”".

Then,
l/q
ess supu(x) < [M]RHOQ][ u < [ulrH, <][ uq) ,
xeQ 1] 9]

from which the desired result follows, as before.
To prove (c), fix a cube Q € R”, and a measurable set E C Q. Then,

u(E) |E| |E|
esssupu(x) < [ulrp, — < B—.

u(Q) M(Q) (Q) x€Q 10| 10|

In particular, for every ¢ > 0, and § := %, if |[E] < 8|Q], then u(E) < eu(Q), and
the desired result follows from this fact applying the last theorem in [46].

To prove (d), take g, r > 1 such that u € A; and w € A,. We will show that
uw € Ay, fors := g +r — 1. Fix acube Q C R". Then,

][Quw < [wlkm <][Q u) (][Q w>,
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and in virtue of Holder’s inequality with exponent o := 1 + ;%%,

, s—1 , (s—1)/a o (s—1)/a’
(][ (uw)l—s) < (][ u(l—s )a) <][ w(l—s )a)
0 o 0
, q—1 , r—1
Q0 0

so [uwla, < [wlrH, [ula,[wla, < o0

The property (e) follows immediately from Corollary 4.6 in [21].

To prove (f), observe that in virtue of [27, Theorem 7.2.7], we have that for 0 <
§ < 1, (Mf)® € Ay, and [(Mﬁ)S]A] < ICT"&, i = 1,...,m. In particular, w :=

[T (Mf)Y™ € Ay and [wla, < [T/ [(M£YT™ < 125, Since vP = w™"P/3 it

follows from (a) and (b) that

B c mp/é
(WP 1k < [w ™ Tahro < [wl}?? < <ﬁ> :

SO

. en \"P/
1< PIRH, < Cmonp 1= oggfd (1 - 3> '

To prove (g), we already know by (f) that v” € R Hy,, with constant bounded by
Cm,n,p» 80 by (c), there exists r > 1, depending only on m, n, p, such that [v”]4, <
Con,p- Byid), forg > 1suchthatu € Ay, ands = s(m,n,p,q) =q+r —1,
[”UP]AS < Cm,n,p[u]Aq < Q. O

The next lemma gives a result on weights that will be handy later on.

Lemma 2 Let u and v be weights, and suppose that u € As. Then, uv € A if, and
only if v e Axo(ut).

Proof Let us first assume that uv € As. Since u € A, there exists s > 1 such
that u € RH,, and since uv € Ao, there exists » > 1 such that uv € A,. Take
q = =7 > 1. We will show that v € A, (u). Fix a cube Q. Then,

< 1 1 o\
Ip = / vu) ( / v' 4 u)
u(Q) Jo u(Q) Jo
q q—1
:( I ) (L/ vu) <L/(vu)1_q,uq/) .
u(Q) 101 Jo 10l Jo
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g—1

Takea::‘ff_ll=1+m> 1 and observe that (1 —g")o = 1 — ,Tzr—l,

)ﬂ

q'a’ =5, and “~ = 4. Using Holder’s inequality with exponent o, we get that

q—1

o) (o) G )
101 Jo “\IQl Jo 101 Jo
1 A als
(o) k)
101 Jo 101 Jo

q L/ 1—r/>r_1 <M(Q))q
_[M]RH‘(IQI o 0]
Hence,

Ig < [ulf (i/ )(1 /(v )“)H<[u]q [uvla, ,
EERNTe] 10| = PHRH, A

and [v]4 () = SUPg Ig < [u]RH [uv]a, < oo.
For the converse, let us assume that v € Aso(u). It follows from Theorem 3.1 in
[23] that there exist §, C > 0 such that for every cube Q € R” and every measurable

set E C Q,
s
u(E) <c <uv(E)> .
u(Q) uv(Q)
Similarly, since u € Ao, there exist &, ¢ > 0 such that for every cube O € R” and
every measurable set £ C Q,
IEI (u(E))S
101 = \u(@)/ -
so for every cube Q C R” and every measurable set £ C Q,
)
oo (0
10| uv(Q)

and hence, uv € Ax. O

Remark 1 This result is an extension of Lemma 2.1 in [19], where it is shown that if
ue€ Ayandv € Ago(u), then uv € Ay

We introduce a weighted version of the dyadic Hardy-Littlewood maximal operator.

Definition2 Let & be a general dyadic grid in R”, and let u be a weight. For a
measurable function f, we consider the function

M7f() = sup —— / O UGy, x € R,
P50>5x U u(Q) (0]

@ Springer



Sawyer-type inequalities for Lorentz spaces 507

where the supremum is taken over all cubes Q € Z that contain x. If u = 1, we simply
write M7 f.

The following bound for the operator Mu@ is essential.

Theorem 1 Let 2 be a general dyadic grid in R", and let u and v be weights. If
u € Ao and uv € Ax, then there exists a constant C, ,, independent of 9, such that
for every measurable function f,

M7 (fv)
v

< Cupy / | f (o) |u(x)v(x)dx.
er

L2 (yv)

Proof In virtue of Lemma 2, v € Ay (1) and hence, this theorem follows from the
proof of Theorem 1.4 in [19]. O

Remark 2 1f we examine the proof of Theorem 1.4 in [19], and we combine it with

Appendix A in [20], we can take

Cuo =292 r[uv] ;=) 4~V || M, ||

La(uv'=1)°

where r, g > 1 are such that uv € AZz andv € Ay (u).
Remark 3 The bound of Theorem 1 also holds for the weighted Hardy-Littlewood

maximal operator M,,, with constant

C:= 2n6nppp[u]ZRCu,v,
p

where p > 11is such thatu € AZ}.
We can now state and prove the main result of this section.

Theorem 2 Fix p > 1, and let u and v be weights such that u € AZ} and uv? € Ax.
Then, there exists a constant C > 0 such that for every measurable function f,

= ClfllLpaw-

LP-®(yvP)

B
v

Proof Itisknown (see [29,32]) that there exists a collection {Z, }4 of 2" general dyadic
grids in R” such that

2n
Mf <6" > M7f.

a=1
Hence,

on

512"2

a=1

M7«

’

LP(uvP)

[~
v

LP-%°(uvP)
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and it suffices to establish the result for the operator M 7 with 2 a general dyadic
grid in R”.

We first discuss the case p = 1, which was proved in [19]. We reproduce the proof
here keeping track of the constants. By the definition of the A condition,

1 1
@/Qlfli[u]Alu(Q)/Qlflu,

for every cube Q € 2, so we get that M 7 [ =< lula, Mu@ f. This estimate combined
with Theorem 1 gives that

=< [M]A1

L% (uv)

' M (uf Jv)

< [u]Alcu,U/ .
Rn

L% (uv)

and hence, the desired result follows, with C = 24" [u]4,Cy,y.
Now, we discuss the case p > 1. Let us take f = yg, with E a measurable set in
R”, and fix a cube Q € 2. As before, by the definition of the AZ,2 condition,

1 w(EN )\ /7
|Q|/Qf5”“”/‘5< u(0) ) ’

so we get that M'@(XE) < p[u]A;a (M,?(XE))UP. In particular,

1/p
M7 (xe)

<
= P[“]Aﬁ Y

LP->(uvP)

H M7 (xE)

L1 (uvP)

We can now apply Theorem 1 to conclude that

M7 (P xE/vP)

o7 < Cyru(kE).

L% (yvP)

M7 (xE)
vP

Lo yoP) H

Combining all the previous estimates, we have that

1
< 24"[ul = Co B I XE N 11 -
LD (yuP) p

H M(xk)
v

Since p > 1, LP°°(uvP) is a Banach space, and by standard arguments (see
[27, Exercise 1.4.7]), we can extend the previous estimate to arbitrary measurable
functions f, gaining a factor of 4p’ in the constant. Hence, the desired result follows,
with C = 4 - 24" p'[u] A%zc;{,f’p. o
Remark 4 For p = landu € Ay, amore general version of Theorem 2 was established
in [39], replacing the hypothesis thatuv € A, by the weaker assumption thatv € A.

@ Springer



Sawyer-type inequalities for Lorentz spaces 509

It is unknown to us whether the hypothesis that uv? € A4, canbereplacedby v € A
when p > 1.

In virtue of Lemma 1, if u € Asc and v € RHo, then for every p > 1, uv? € A,
and we have a whole class of non-trivial examples of weights that satisfy the hypotheses
of Theorem 2.

Observe that the conclusion of Theorem 2 is completely elementary if p > 1 and
u € Ay, since

’ mf

|

LP>(uvP)

LP (uvP)
l 1

= IMfllLray S WIS I f e S Tadg 1 -

However, this argument doesn’t work in the general case, because the inequality

h

S N Lpoowy
v LP:%(uvP)

may fail for some measurable functions & on R”, and arbitrary weights u# and v,
as can be seen by choosing h(x) = IXI_%X{yeRn:|y\31}(x), u = 1, and v(x) =
h(x) + X{yeRn:|y|<1}(x), with 0 < p < o0.

To provide applications of Theorem 2 we need to give a more precise estimate of the
constant C that appears there in terms of the corresponding constants of the weights
involved. We achieve this in the following lemma.

Lemma 3 In Theorem 2, if r > 1 is such that uv? € Azz, then one can take
C =&, (ular, vlyr),

where & pt [1, oo)2 —> (0, 00) is a function that increases in each variable, and it
depends only on r, p, and the dimension n.

Proof We first discuss the case when r > 1. We already know that we can take

24" [u] 4, Cy,v» p=1,
4. 24np/[M]ARC/ p> 1,

u, P>
and in virtue of Remark 2,

Cuwr = 27" r[uv?142) "V Ml -, -

where r, g > 1 are such that uv? € AR and v” € Ay (u). For convenience, we write

V .= vP. Let us first bound the factor ||M 14 Lauyi-0y° For the space of homogeneous
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type (R", doo, u(x)dx), it follows from the proof of Theorem 1.3 in [30] that

_ —1
M7 -0y = 27714072 (146 80079V 14 [VIG,

where D, := plog, (2" plu] AF)' Now, given a cube Q C R”, and applying Holder’s
inequality with exponent g, we have that

/Muwm)u:/ MVx0) -
0 0 14

= [Mu (VX | g uy1-ay 4V (D1
< IMull Laquvi-ay [V X0 | g uyr-ay 4V (@1
= ||Mu||Lq(uvlfq) uV(Q),

Mu(VXQ) uV(Q)l/q/

Li(uV)

and taking the supremum over all cubes Q, we get that

Vdew) = ||Mu||Lq(uvl—q)-

Combining the previous estimates, we obtain that

1M1

 yiony = 2171q/407P (1 + 6. 8007 ) [V}

q (u)*

Now, we will bound the factor [V]‘i )" In virtue of [29, Proposition 2.2], and using
q

the definitions of [u] Azp and [u] AR and Kolmogorov’s inequalities, we can deduce

that

_ 2 2
[Ulas < caltday, < @p— D ealull =:cpalul e,
P P

and applying Theorem 2.3 in [30], u € RH, fors = 1+ ,and [u]rpH, <

on+le JZP —1

ponlu R
AP

2. Since uV € Ay, Lemma 2 tells us that if we choose ¢’ = 2rs’, then

’ , B 2
[V]Zq,(u) = [M]C]Igfs [uV]er < 249" (2p — 1)9Cr 1)[MV]ArZZ.
Finally, observe that ¢’ = 2"2r¢ n[u]2p ,and 1 < g <2,s0
g 1 P, AR q
P

Cuy < 22Q@"r[uV14R)" % (24'40*P (1 + 6 - 800P))7
x 2% 2r — D 2[uvii,

S 22+nr (2’, _ 1)4}’72’] [uvp]irR

2
Splog, (2 plu] . 10) 2"+2rc,,,,,[u]ApR
X (2”+5rcp P AT R AZ}) s
) A
P
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=: G} (Ul vP14R ),
and the desired result follows, with

& (] . [wv?] | 24 wa, CF ([l ay [uv]gR), p=1
rop ([l [vPlyR) = 4«24”p/[u]A17]aCf’p([u]A;a,[uvp]Azz)l/p, p>1

The case when r = 1 follows, for example, from the case when r = 2 and the fact
that if uv? € Ay, then [uvp]A;z < [uvp]z/z2 < [uvp]z/lz. O

Remark 5 1t would be interesting to obtain the sharp dependence of C on the constants
of the weights involved; our results are most certainly far from optimal.

4 Applications

In this section, we will provide several applications of the Sawyer-type inequality
established in Theorem 2, obtaining mixed restricted weak type estimates for multi-
variable maximal operators, sparse operators and Calderén-Zygmund operators.

The first result that we present is the converse of Theorem 3.3 in [14], that was left as
an open question. Combining both theorems, we obtain the complete characterization
of the restricted weak type bounds of the operator M® for A, weights.

Theorem3 Let 1 < py,..., pm < 00, andlet% = %—i—-u—l—[%.Letwl,...,wm
be weights, with w; € AZ, i =1,...,m. Then, there exists a constant C > 0 such
that the inequality

m
IMEE) [ Lroy < CT ]Il )

i=1

holds for every vector of measurable functions £ = (f1, ..., fm).
Proof The case when p; = --- = p,, = 1 was proved in [36], and we build upon that
proof to demonstrate the remaining cases.

We can assume, without loss of generality, that f; € L2°(R"),i = 1,..., m. Fix

t > 0 and define
Ei:={xeR":t < M®(f)(x) < 21}.
Fori =1, ...,m, and taking 0; := ]_[j#i(ij)’], we have that
E,={x e R" : 17;(x) < Mf;(x) < 2t0;(x)}.
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Using the fact that v; € R Hy, with constant independent of f (see Lemma 1), Holder’s
inequality, and Theorem 2, we obtain that

M®(f) p
M®(f)(t) M®(f)(2t) = /E/ Vy =< ,/Et ( P )

m

1 » p/pi
< t—pi: (/E,(Mfl) lwi>

1

m p/pi
<2 =r [ (/{Mﬁ | o w,-)
: =L >t

i=1

p
<2"cy .. H AN ity
1—1

Iterating this result, we get that for each r > 0 and every natural number N,

Myge g (1) < 2"PCY L. Chy i zip > H LN iy T Fhtmny @YD),
=0
and letting N tend to infinity, the last term vanishes, and we conclude that
NG ZZ(ZW Cy... C,iitip ﬁ LA et -
i=1
Observe that in virtue of Lemma 1, fori = 1, ..., m, we have that wiﬁfi € Ay,

where s; > 1 depends only on m, n, p;, and

2 .
[w; pl] ; < [w; pl]Ax Smon, pi [wt]Azl, ,Sm n,pi [wt]AI;lza
Si pi

so by Lemma 3, we have that C; < &' ([w,]AR Conn,pi [w ,]2p’ /1y and hence, the
desired result follows, with

2m+1 m

B mn Sis p,([wt]AR Cmnp,[ 1]2171/5,)
i=1

which depends on the constants of the weights wy, ..., w,, in an increasing way. O
The next application that we provide is an extension of Theorem 2 to the multi-

variable setting, which in turn, extends Theorem 3. The proof is based on the previous
one, and is similar to that of Theorem 1.4 in [40].
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Theorem4 Let1 < py,..., pm < 00, andlet% = %—i—---—l—}%.Letwl, ..., Wy be
m

weights, with w; € AZ,?, i=1,...,m. Letv be aweight such that vwv? is a weight,

and wivPi € Ay, i = 1,..., m. Then, there exists a constant C > 0 such that the

inequalities

hold for every vector of measurable functions £ = (f1, ..., fm).

m
< Tl Lr )
i=1

LPS(vgoP) H LP (nyvP)

Proof The first inequality follows from the fact that M (f) < M®(f). For the second
one, we can assume, without loss of generality, that f; € L°(R"),i =1, ..., m. Fix
vy, R > 0 and define

={x eR":|x| <R, yv(x) < M®(£)(x) < 2yv(x)}.
Fori =1, ..., m, and taking v; := ]_[j#i(ij)_l, and v; := v;v, we have that

={x eR": x| < R, yvi(x) < Mfi(x) < 2yv;(x)}.

Since ; € RHy, and w;vP € Ay, we have that w,vp’ € Ao, with constant
independent of f (see Lemma 1). In virtue of Holder’s inequality and Theorem 2, we

get that

®
vy v? ({x e R": |x|] <R, —M M) > y})
v(x)

®
v(x)

M®(f))p 1 = /
— WP " < —
/E,é‘vv S/ER< y ’ <y1’.1_[ ER

p/pi
(M fi)Pi wi>
i=l1 y

p/pi T
< gy 1>p1—[ /M <2cl R TTI -
{ f’>y} yP i=1 .

Iterating this result, we deduce that for each y > 0 and every natural number N,

M2 () (x) }>
=y

v [ {x e R" : |x| < R,
v(x)

N

P p p
<omre? .. ch sz 1"[||fl||w1(w)

]_

M® ¢
+ vyv? <{x eR": |x| <R, M= ®)(x) - 2N+1y}),
v(x)
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and letting first N tend to infinity, and then R, the last term vanishes, and we conclude
that

(m+1)17
vwvl’ 2
Mg O) = 55— 1‘[||fl||L,,,.<w)
Fori = 1,...,m, if we take ¢; > 1 such that w;v? € AR, in virtue of

pi

Lemma 1, we have that w;v;" € As, where s; > 1 depends only on m, n, p;, gi,

and [w;v f’]AR Smon,pingi (Wi v/"]AR, so by Lemma 3, we have that C; <

&7 i ([wilar s Cinn, py g [wivP ]2‘1‘/?’) and hence, the desired result follows, with
AR 41 pl T PrsYi

Qi

2m+1 m

_ n ) pi124i/si
C= (2p_1)1/p1_[gé‘iypi([w‘]f\§’ Cm,n,pi,q,-[wtv ] ).
1=
O
Remark 6 In the case when p; = --- = p,, = 1, the previous result is a corollary of
Theorem 1.4 in [40].
Observe that if we take weights w; € AZS, i=1,...,m,and v € RHyo, then the

hypotheses of Theorem 4 are satisfied.
The next result will be crucial to work with Calderén-Zygmund operators in the
mixed restricted weak setting.

Theorem5 Let 0 < p < 00, let S be an n-sparse collection of cubes, and let v, w be
weights. Suppose that there exists 0 < ¢ < 1 such thate < p, wv™° € Ao, and

e ] w(Q)
[V lRH () = sUp

o wv=*(Q)

I xov™*llLoow) < o0.

Then, there exists a constant C > 0, independent of S, such that the inequality

H As(®) ' M(f)
v Lrow) LP- ()
holds for every vector of measurable functions £ = (f1, ..., fm)-

Proof In virtue of Kolmogorov’s inequalities, we obtain that

As ()
X

1_1
< w | wcr
LP-®w) O<w(F)<oo v

L#(w)

” As(f)

v
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where the supremum is taken over all measurable sets F with 0 < w(F) < oo. For
one of such sets F, and W := wv ¢, we have that

e i— | fil
<[, Zo(T )
LE(w) R" hes

_Z(Hf |f,) (W(;Q)/QXFW>W(3Q):

QeS

H As(f)

v

Since W € Ao, there exists r > 1 such that W € AZQ. Hence,

1E| <W(Q)

1/r
=W .
W(E)> IWllax < o0

sup s
0 ECQ 101

By hypothesis, S is n-sparse, so for each Q € S,

n

W3Q) < (FIIWIIAF) W(Eg).

Using this, we get that

3n
< <7||W||Aga) 3

= (11,11) (g o) o
=<—||W||AR) Z/E (1_[][ |ﬁ> (W(;Q)/QXFWW::”

QeS

The sides of an n-dimensional cube have Lebesgue measure 0 in R”, so we can
assume that the cubesin S are open. For Q € Sandz € E g, wedefine 0% := Q(z, ),
the open cube of center z and side length twice the side length of Q. We have that
Eg CQCQ°C30,s0

(H][Q |fi|) XEo(2) < M) (2),
i=1

and

1
W<M .
weo) Jo Y W(QZ)/ xeW = Miy ()
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Since the sets {Eg}pecs are pairwise disjoint, and using Holder’s inequality with
exponent £ > 1,

3" " X
11 < <;|IW||A3> /Rn/\/l(f)gMiv(XF)W

3" " ME)\
<{—IW] R) < ) My (XF) || ey
n AJ v LP/e:%0 () ” v ”L(]/ i
po(3 e s [ MO
< —|IW] 72) M ey, w(F) » H ’
p—¢& ( n Ar ” W“LW) '(w) Vo llLroew)

Observe that for every measurable function g, || My, (&)L w) =< llgllLow). and
by standard arguments (see [27, Theorem 7.1.9]), it is easy to show that

1My (DN Loy Sn [V TRH ) 181121 ()

In particular, and applying Marcinkiewicz’s interpolation theorem (see [4, Theorem
4.13]), we conclude that

—&
C —& 4
| p3 ”L(p/s)’,](w) < Cnpelv " Ipp ) < 0°-

Combining the previous estimates, we obtain that

1

1
w(} )717_;
LF(UJ)

o 1/e
p 3n r B 1—&
: (p —¢ <7”W”AF en.pe 0 ko)

and the desired result follows, with

o 1/e
. p 3" )r 1%
C= inf — | Wlla= | ¢ =1,/ .

r>1: WeAR (p —& < n IWllag | enp.e R Hoo (w)

H As(f)
XF

M(f)

v

’

LP° (w)

m}

Remark7 For 0 < p < 1, if we take v such that v e Ao for some § > 0, and
w = uv?, withu € Ay, then the previous result can be established via an extrapolation
argument (see [49, Theorem 1.1]).

Under the conditions that 0 < p < 1, and w = uv”, we can find weights u and
v that satisfy the hypotheses of Theorem 1.1 in [49] but not the ones of Theorem 5,
and vice versa. If we take a non-constant weight u € Aj, and v = u=1/P then
v € RHy C Ao, and uv? = 1, but for every 0 < & < 1 such that ¢ < p, we have
that v™¢ = u®/P € Ay, and since u is non-constant, v¢ ¢ RHso. Similarly, if we
take a non-constant weight v € Ay, and u = v~7, then uv?” = 1, and for every ¢ > 0,
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uvP™® = v7f € RHy C Ay, but u € RHy and is non-constant, so u ¢ A (see
Lemma 1).

The previous examples show that, sometimes, some of the hypotheses of Theorem 5
may be redundant. Let us be more precise on this fact. If w € Ay, and wv™ is a
weight, then [v™°]grp, ) < oo implies that wv™° € A.. Indeed, given a cube
0O C R”, and a measurable set E C Q, we have that

wv 4 (E) . / -
wv~—¢(Q) o wv~—¢(Q) QXE

w(E) 13 & w(E)

wv—¢(Q) ”XQU ”L (w) = [v™ ]RHoo(w) (Q)

and since w € Ao, there exist §, C > 0 such that

o e (5).
w(Q) |O]
SO

wv*(E) _ Clv¢] (|E|>
w0 E(0) R ANT]

and hence, wv™¢ € Ay (see [23]).

The next application of Theorem 2 follows from the combination of Theorems 4 and
5, and gives us mixed restricted weak type bounds for multi-variable sparse operators
that can also be deduced for other operators, such as multi-linear Calderén-Zygmund
operators, using sparse domination techniques (see [37]).

Theorem6 Letl < py, ..., pm < oo,andletl = L+~ + 1 CAlso, letwyq, ..., wy
be weights, with w; € Ap i=1,...,m, and write vy = wp/p1 ...w,’f,/p”’.Letvbea
weight such that vy v?P is a weight, and wivPt € Ao, i =1, ..., m. Moreover, suppose

that there exists 0 < ¢ < lsuchthate < p, vwvP~ ¢ € Awo, and[v_s]RHm(Uva) < 0.
Then, there exists a constant C > 0 such that the inequality

holds for every vector of measurable functions £ = (f1, ..., fm), where T is either a
sparse operator of the form

T(f)
v

m
< Tl Lr )
i=1

LP:® (pyvP)

As(f) = (1’[][ ﬁ) X0 @1

QeS8
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where S is an n-sparse collection of dyadic cubes, or any operator that can be con-
veniently dominated by such sparse operators, like m-linear w-Calderon-Zygmund
operators with w satisfying the Dini condition.

Remark 8 In the case when p; = --- = p,, = 1, and T is a multi-linear Calderdn-
Zygmund operator, the previous result follows from Theorem 1.9 in [40].

In general, there are examples of weights that satisfy the hypotheses of Theo-

rem 6 apart from the constant weights. For instance, if 1 < py,..., pn < m/, we
can take w; = (Mh)1=P)/™ with by € L}, (R"), i =1,...,m,and v = vy, /7.
Indeed, in virtue of Theorem 2.7 in [13], we have that w; € AE, i=1,...,m,

\ pi/m
and w;vPi = (]_[j#(th)l/pf) € Aj. Observe that vyv? = 1, and v =

N 1/m
(]_[;-"zl(Mh,-)l/Pi) € Ap,soforevery ¢ > 0, vyv? ¢ =v7% € RHy C Axo.
The last application that we provide of Theorem 2 can be interpreted as a dual
version of it, and generalizes [15, Proposition 2.10].

Theorem 7 Fix p > 1, and let u and v be weights such that u € AR, uvP € Aso, and
for some 0 < ¢ <1, uvP~* is a weight and [v"¥1r g, uvr)y < 00. Then, there exists a
constant C > 0 such that for every measurable function f,

M(fuvP=1)
|

, < C”f”Ll’/'l(uvP)' (4‘2)
L7 (u)

Proof 1t is known (see [32]) that there exist a collection {Z,} of 2" general dyadic
grids in R”, and a collection {S, }4 of %-Sparse families of cubes, with S, € Z,, such
that for every measurable function F,

2"
MF <2-12" )" As, (IF)).
a=1
Hence,
p—1 2 p—1
HM(fuv ) <2 3 [AsOS ™D |
u L% (u) el u L% (u)

By duality, and self-adjointness of As,, and in virtue of Holder’s inequality, we
have that

As, (| f luvP~1) _
H— <p sup As, (1 fluv?H]g|
u LP"(u) gl p1g,=<1/R"
=p sup /Ifluvp_lAsa(lgI)
I8l p.1 gy <1 /R
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As, (gD
<p sup —e o
I8l p.t =1 v LP-%(yyP)

”f”Lp’,l(uUp)’

and the desired result follows from Theorem 5 and Theorem 2. O

Remark 9 1t is clear from the previous proof that Theorem 7 is also true for operators
that can be conveniently dominated by sparse operators Ag,. Even more, for a self-
adjoint operator 7', and by duality, an inequality like (4.2) follows immediately from
an inequality like (1.6), with T in place of M.

Note that for p > 1,if u € A), and v is a weight, then for every measurable
function f,

= M (fuv?™ D Ly -0y

H M(fuvP™h)
u LY (u)

‘M(fuv”‘l)
u

S ‘

LP' (1)
,S [M]Ap”f”Lp’(uUp) 5, [M]Ap||f||L1)’.l(uUp)-

Hence, we obtain the conclusion of Theorem 7 without assuming that for some 0 <
e < 1, [v"*lRH, (wvr) < 00. We would like to prove Theorem 7 without this technical

hypothesis, but unfortunately, at the time of writing, we don’t know how to do it.
Observe that if v = 1, then in Theorem 7 we can take ¢ = 1, and C = Cp, p[u]ﬁ;rz1 ,
p
and the dependence on u of the constant C is explicit, although the exponent p + 1
may not be sharp. Also, by testing on characteristic functions and using Kolmogorov’s
inequalities, we see that the condition that u € AZ,2 is necessary. This argument yields

a new characterization of AZ,Z weights and refines [15, Proposition 2.10].

Theorem 8 Fix p > 1, and let u be a weight. If u € AR, then for every measurable
function f,

p+1
~n,p [u]AZ}Z ”f”Lp/,](u).

u

HM(fu)

LY (1)

Moreover, if such an inequality holds for some constant C > 0, then u € AT, and
[u] AR <p'C.

5 Sawyer-type inequalities and multi-variable conditions on weights

In [40, Theorem 1.5], Li, Ombrosi, and Picardi obtained an endpoint Sawyer-type
inequality for the operator M involving Ay weights. It is natural to ask if something
similar can be done in the general restricted weak setting, establishing a result for M
like the one in Theorem 4, but assuming a multi-variable condition on the tuple of
weights involved instead of imposing an individual condition on each weight. In this
section we study this question.
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In view of Theorem 4 for v = 1, it is reasonable to begin with the characterization
of the weights for which the operator M and its centered version M€ are bounded in
the restricted weak setting. This will give us the appropriate multi-variable condition
on the weights. We use ideas from [16, Section 3] and [27, Theorem 7.1.9].

Theorem9 Let1 < py, ..., pm < oo,and% = %+-~-+$.Letw1,...,wm,and
v be weights. The inequality

m
IM® ey < C [T ot 5.1)
i=1
holds for every vector of measurable functions f if, and only if
m 0w ey

[w. v,z = stépv(Q)l/ ]—[ o W)~ 0. (5.2)
i=1

Proof First, recall that by [27, Theorem 1.4.16.(v)] (see also [3, Theorem 4.4]), we
have that

1
Nl < SUP {/R F81wr 1 ity < 1} < gl sy

Now, fix a cube Q, and y > 1, and fori = 1,...,m, choose a non-negative
function f; such that || f; |l »;. ) = 1 and
fi={ fitowihw = —lxew 'l (5.3)
0 ! Rr RAQT "= Y pi O%i Npriooqyy '

Since

oo
— i < M(®),
<E|Q|/Q|fl>xg< ®

the hypothesis (5.1) and (5.3) imply that

m | xow; ,
V(Q)”p]_[ |Q| <y"pi... puC,

and hence, [w, v]A;)z <pr...pmC < o0.
For the converse, suppose that the quantity [w, v] AR < 0. Observe that

ME(E) < M(E) < 2" ME(),
so it suffices to establish the result for the operator M°.
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If forsomei = 1,...,m, || fi ||Lp,-,1(wi) = 00, then there is nothing to prove, so
we may assume that ”ﬁ”Lpi,l(w[_) < ooforeveryi = 1,...,m. Fix A > 0, and let
E, = {x e R": M”(f) (x) > A}. We first show that this set is open. If for some
i=1,....m, f;i ¢ Lloc (R™), then E; = R". Otherwise, observe that for any r > 0,
and x € R”, the function

l_! |Q(x Nl Jow,r Ll

is continuous. Indeed, if x, — xg, then |Q(x,,r)] — |Q(xo,r)|, and also
f 0Gon.r) | fil — f 0(xo.r) | fi| by Lebesgue’s dominated convergence theorem. Since
|Q(x0, r)| # 0, the result follows. This implies that M€ (f) is the supremum of con-
tinuous functions and hence, it is lower semi-continuous, and the set E is open.

Given a compact subset K of E,, for any x € K, select an open cube Q centered
at x such that

m

1
|fil > 4
EIQxI 0.

In virtue of [27, Lemma 7.1.10] , we find a subset {Qj}j.\’:1 of {Qyx : x € K} such
that K C Uﬁv 1 Q. and Zjv 1 X0; < 72". Then, by Hélder’s inequality for Lorentz
spaces, (5.2), discrete Holder’s inequality with exponents ,and [16, Lemma 2.5],

N m 4
1
v<K><Zv<Q1>sﬁZ (Q)) (l‘[@/ Iﬁl>
j=1 i=1 =it
N
1 _
=5 Zv(Q,)]"[ 105171 fix0, 1]y X0, 1||1L’p;,m(w_)
j=1 i=1 !
(w,v]" N m
A
= — 2 [1fxe] g,
j=li=l
[w’ V]ZR m N p/pl
P
SA—/’H Z”_leQ]”Lp,l(w)
i=1 \j=1
(w, V]” m
< 72— 1‘[||f,||L,,,1(w)

Taking the supremum over all compact subsets K of E; and using the inner regularity
of v(x)dx, we obtain (5.1) with constant

C =2""72"P[w, v] 4.
P
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O

Remark 10 In fact, we have proved that

—nm
-[W, U]A;} < ||MC||1—[;71:1 L]7i.l(wi)_)Lp,DO(U) < 72n/p[W, V]Aiff

I—[;nzl Pi

and

1
T, Vlag = WMl et Lroe) = 272w, ]y
1=
Remark 11 Observe that if M is bounded as in (5.1), then for every cube Q, if we
choose f1 =---= fin = xo, we get that

1/p m 1/pi
v <pt...pmC (7[ wi) ,
(1" I(,

and Lebesgue’s differentiation theorem implies that v < [/, w?/”"

HAA
In virtue of Theorem 9, we define the following class of weights.

Definition3 Let1 < py,..., pm < oo,and% = %—i—-u—i—plm.Letwl,...,wm,and

v be weights. We say that (wy, . .., wy, v) belongs to the class AF if [w, V]AZ} < 00.

The condition that defines the class of Az,z weights depends on their behavior on
cubes, and has been obtained following the ideas of Chung, Hunt, and Kurtz (see [16]).
One can ask if it is possible to obtain a different condition, resembling the one obtained
by Kerman and Torchinsky (see [31]). Our next theorem gives a positive answer to
this question, recovering their results in the case when m = 1 and w; = v.

1

Theorem 10 Let 1 < py,..., pm <oo,and%=E+~~~—|—me.Letw1,...,wm,

and v be weights. The following statements are equivalent:

@ [IM®)Lroowy < CTTZ) 1 fill poiot ) Jor every .
B) M) ooy < e TTimy wi(ENYP for every @ = (XEy, -+ XE,)-
(©)

m

E; N )
lw, v|l 4= := sup v(Q)\/P l_[ sup Mwi(&)—l/m < 00,
P 9] i=1 O<w; (E;)<0oo |Q|
d) (Wi, ..., wm,v) € AR.
Moreover, if (wy, ..., Wy, V) € AR, and v € Ao, then
T:LP Y (wy) x -+ x LPm Y (w,,) — L), (5.4)
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where T is either a sparse operator as in (4.1), or any operator that can be conveniently
dominated by such sparse operators, like m-linear w-Calderon-Zygmund operators
with w satisfying the Dini condition.

Proof 1t is clear that (a) implies (b), and we have already proved in Theorem 9 that (a)
and (d) are equivalent. Let us show that (b) implies (c). Fix a cube O and measurable
sets E;,fori =1,...,m,with0 < w; (E;) < 00. Since

CEN Q|
_ M ,
(l_[ 0] )XQS V)

i=1

we apply (b) to conclude that

m m

|EiN Q) |

v )P < c[JwiEn'r,
i=1 i=1

O]
and hence, ||w, v||A;a <c¢ < o0.
We now prove that (c) is equivalent to (d). First, observe that foreveryi = 1, ..., m,
ENQl |Ei|

sup — = — 1
0<w; (Ej)<oo w; (E;)'/ P EcQ wi (E)!/Pi

where the first supremum is taken over all measurable sets E; such that 0 < w; (E;) <
00, and the second one is taken over all non-empty measurable sets E; € Q. Now, in
virtue of [16, Lemma 2.8] and Kolmogorov’s inequalities, we have that

—1 |El| -1
. / < _ < . w. /
”XQU)l ”Lpi'oo(w,-) = Esll;p w,-(E,-)l/l’i = Di ”XQ i ”Lpl-,oc(w

3

i)
and hence, [w, U]AZ} < |w, v||Al7)z < p1...pmlw, I)]Az)z.

Note that a similar argument to the one in the proof of Theorem 5 shows that for
0 <e <1suchthate < p,andr > 1 such thatv € Azz,

IMs®llLroow)y < IAsUED I Lrooq) < Cs,n,n,p,r[‘)];/;fz”MS(f)”Lf"w(v)a (5.5

where

Ms () := sup 7[|fi| X0s
s QES(E 0 ) ©

and since S is a countable collection of dyadic cubes, the proof of Theorem 9 can be
rewritten to show that

Mg : LPV Y (wy) x - x LPmY(w,) — LP®(v)
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if, and only if

—1
mAlxow; Tl e
_ 1/p L7 (wy)
[w. vl 2= sup (@) ] |1 < 0,
i

10|

which is true, since [w, v]A;)zS < [w, v]Az)z < 00. Moreover,

m[w’ v]AI?S = ”MS”H?:] Lril w)—Lpoo ) = [W: U]A;},s’

so (5.5) implies that

r/e
- < . <
l_[f"=1 D [w, V]Al’l)is = ||-A‘S‘||]‘L’_”:1 LPi-l (w;)—LP-®(v) = Cs,n,n,p,r[v]Azz[W» V]Aﬁs'

(5.6)

Finally, in virtue of Theorem 1.2 and Proposition 3.1 in [37] (see also [33, The-
orem 3.1]), if T is an m-linear w-Calderén-Zygmund operator with w satisfying the
Dini condition, then there exists a dimensional constant 0 < n < 1 such that given
compactly supported functions f; € L'(R"), i = 1, ..., m, there exists an 7)-sparse
collection of dyadic cubes S such that

IT(fis-- s Sl = enCr As (D).

Hence, (5.4) follows from (5.6) and the standard density argument in [27, Exercise
1.4.17]. Moreover,

r/e
||T||l‘[;,”=| LPi- (w;j)—LP:%(v) = CnCTCs,n,n,p,r[V]Aza [w, V]A;%-

O

Remark 12 Given weights wi, ..., Wy, and v = [[/L, w’ /P the equivalence

between (b) and (c) in Theorem 10 can be found in [5]. Moreover, if p; = --- =
pm = 1, then the equivalence between (a) and (d) can be found in [36]. Observe that
if w € Ap, then (wq, ..., Wy, Vw) € A;,z. In [36], strong and weak type bounds for
m-linear Calder6n-Zygmund operators were established for the first time for tuples of
weights in Ap. In [42], these results were extended to m-linear w-Calderén-Zygmund
operators with ||o||pini < 00.

‘We can now state our main conjecture on Sawyer-type inequalities with AZ} weights,
a complete multi-variable version of Theorem 2 for M.

Conjecture 1 Letl§p1,...,pm<oo,andlet%=%+-~+ﬁ.Letw1,...,wm,

and v be weights, and suppose that (w1, ..., wy, V) € Az,z. Let v be a weight such
that vvP € A. Then, there exists a constant C > 0 such that the inequality
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M(F) -
H < Tl Ln ) (5.7)
Vo llLpooquup) e
holds for every vector of measurable functions f = (fi, ..., f).
Remark 13 This conjecture is true in the case when p; = --- = p,, = l and v = vy,

as shown in [40, Theorem 1.5]. We don’t know if the hypothesis that vv? € Ay, can
be replaced by v® € Ay for some § > 0.

In virtue of Holder’s inequality, if w € ]—[;-"=1 AZ, then (wy, ..., Wy, Vw) € AZ)Z,
so this conjecture extends the result for M presented in Theorem 4. Also, combining
such conjecture with Theorem 5, we would get a generalization of Theorem 6 in the
line of [40, Theorem 1.9].

As it happens in the one-dimensional case, the conclusion of Conjecture 1 is com-

pletely elementary if 1 < py,..., pn < 00, W € Ap, and v = vy, since
M) M(f)
H < ||l— = [IME) Ly
Ul Lpoo(pyuP) UVl Lp(vyoP)
Pl Py M Pl Py M
max{—",..., 7t} max{—-,..., 2}
5 [W]AP i ! l_[ ”ﬁ ”Lpi (w,) s [W]AP r ’ 1_[ ”ﬁ ”Lpi,l(wl.)»

i=1 i=1

where we have used the sharp estimates for M proved in [38, Theorem 1.2].
In the general case, observe that for every 6 > 0,

m
XQ
M(®) < [w, v,z sup —=— [T I fixoll Lot )
Py v(Ql/p Pl

" 1/0

_ X0 : 6 _. 0 1/6

= [w, v]Az’z <SLle —V(Q)G/p 1_{ IlﬁXQ||Lpi,l(u)i)) =:[w, V]AZ,QNw,v(f) )
i=

and

1/6
Ny (®
< [w, V]A;} Vv )
LP-®(vuP) Lpr/0:00(yyp/0)

v

=2

with V := v?. We suspect that a wise choice of 6 (maybe # = p or § = mp) and the
argument in the proof of Theorem 1.5 in [40] could lead to some advances towards
our conjecture. This idea requires further investigation.
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