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Abstract

The Milnor number 4 ¢ of a holomorphic function f: (C", 0) — (C, 0) with an iso-
lated singularity has several different characterizations as, for example: 1) the number
of critical points in a morsification of f, 2) the middle Betti number of its Milnor fiber
M, 3) the degree of the differential d f* at the origin, and 4) the length of an analytic
algebra due to Milnor’s formula u y = dimg¢ O,/ Jac(f). Let (X, 0) C (C", 0) be an
arbitrarily singular reduced analytic space, endowed with its canonical Whitney strat-
ification and let f: (C",0) — (C, 0) be a holomorphic function whose restriction
fI(X,0) has an isolated singularity in the stratified sense. For each stratum .7, let
u r(a; X, 0) be the number of critical points on ., in a morsification of f[(X, 0). We
show that the numbers u ¢ (a; X, 0) generalize the classical Milnor number in all of the
four characterizations above. To this end, we describe a homology decomposition of
the Milnor fiber M |(x,0) in terms of the 11 r (or; X, 0) and introduce a new homological
index which computes these numbers directly as a holomorphic Euler characteristic.
We furthermore give an algorithm for this computation when the closure of the stratum
is a hypersurface.
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1 Summary of results
The Milnor number p ¢ is one of the central invariants of a holomorphic function
f:(C",0) — (C,0

with isolated singularity. It has—among others—the following characterizations, cf.
[29, Chapter 7] and [1, Chapter 2].

1) Itis the number of Morse critical points in a morsification f;, of f.
2) Itis equal to the middle Betti number of the Milnor fiber

My =B.Nf'({8), e>8>0.

3) Itis the degree of the map

1
——df: 9B, —» §!
|df] ‘

for some choice of a Hermitian metric on (C", 0).
4) Tt is the length of the Milnor algebra

On/ Jac(f),

where Jac(f) = (af ﬂ) is the Jacobian ideal of f.

axy’ > dxp
In this note we consider the more general setup of an arbitrary reduced complex
analytic space (X, 0) C (C",0) and a holomorphic function f: (C",0) — (C,0),
whose restriction f|(X, 0) to (X, 0) has an isolated singularity in the stratified sense.
To this end, we will assume that (X, 0) is endowed with a complex analytic Whitney
stratification § = {.¥,}yeca With finitely many connected strata .. There always
exists a Milnor fibration for the restriction f[(X,0) of any function f to (X, O0),
regardless of whether or not f|(X, 0) has isolated singularity; see [23], or [14]. Denote

the corresponding Milnor fiber by

Myix.00 = B: N X N f1({8)),

where X is a suitable representative, B, a ball of radius ¢ centered at the origin in C",
and € > 6 > 0 sufficiently small.
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A generalization of Milnor's formula 903

We introduce invariants u r(a; X, 0) of f](X, 0)—see Definition 5—which gener-
alize the classical Milnor number simultaneously in all of these four characterizations.
Let X, = 7@1 be the closure of the stratum .%, and d(«) its (complex) dimension.
Then for every o € A the number ¢ (a; X, 0) is

1’) the number of Morse critical points on the stratum .#, in a morsification of f". For
the definition of morsifications in this context see Sect. 3.1.

2’) the number of direct summands for « in the homology decomposition of the Milnor
fiber M r|(x 0y, see Proposition 1.

3’) the Euler obstruction Eud/ (Xq, 0) of the 1-form d f on (X, 0), see Definition 8
and Corollary 3.

4) the derived homological index

e X,0) = (DY@ y (Ro (22,077 A ) ).

i.e. the Euler characteristic of a finite complex of coherent Ox-modules, cf. The-
orem | and Corollary 4.

A similar discussion for the generalizations of 1)-3) has been carried out by Seade
et al. in [30]. The study of homology decomposition for the Milnor fiber has been
initiated by Siersma [31] in the case that not only f|(X, 0) but also the space (X, 0)
itself has isolated singularity. See also the closely related bouquet decomposition of
the Milnor fiber [33] due to Tibdr and the article [28] by Massey for a decomposition
similar to Proposition 1 in terms of hypercohomology of constructible sheaves. The
definition of the Euler obstruction of a 1-form goes back to MacPherson [27], but
can also be adapted from the analogous notion for vector fields as described in [2] by
Brasselet et al. We will use the definition by Ebeling and Gusein-Zade from [8].

Contrary to those previous topological considerations for the generalizations of
1)-3), we will describe the Euler obstructions Eud/ (X«, 0) as an analytic invariant
in Theorem 1. This allows us to also generalize the characterization 4) of the Milnor
number to 4°). For the particular case when .7, is a hypersurface, an algorithm for the
computation of the numbers 1 ¢ (cr; X, 0) as a homological index is given in Sect. 5.

Example 1 The following example illustrates the setup considered in this article. Let

X C C3 be the Whitney umbrella given by the equation & = y* — xz> = 0 and
endowed with the stratification

Zo = {0},
1 ={y=z2=0\ A,
S =X\ (SHU.A).

This stratification is known to satisfy the Whitney conditions A and B (Fig. 1).
As a function f: C* — C with isolated singularity on (X, 0) we consider

f(x,y,Z)ZYZ—(X—Z)Z.
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904 M. Zach

Fig.1 The Whitney Umbrella with 1) its three strata, 2) the zero level of f and the critical points of f|X,
and level sets of f of 3) a regular value of f|X, and 4) a critical value of f|X

Note that f does not have isolated singularity on C3. Its restriction f|X to X, however,
has only isolated critical points in the stratified sense (cf. Definitions 1 and 2 below)
at the points

0=(0,0,0) and pos= (3. £ —3).

In particular, there are no critical points of the restriction f|.#; = —x2 of f to the
first stratum .1 = C* since 0 ¢ .. It will become clear later, why we label the last
two of these points with indices 6 and 7. We will usually have to neglect these points,
since we are interested in the local behaviour of f on the germ (X, 0) of X at the
origin 0 € C3. As we shall see in Example 2, we have

pr©O: X, 00 =1, pp(1sX,00=1, wp(2X,0=5
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A generalization of Milnor's formula 905

for the restriction f|(X, 0) at this point.

2 Background and motivation

Suppose the function f, the space (X, 0), and its stratification have been chosen as in
1’) to 4’) from Sect. 1. An application of [30, Proposition 2.3] by Seade et al. shows
that

(@ X,0) = (=7 - Bug (74, 0)

where Eu s (?a, O) is the Euler obstruction of the function f on (L4, 0) from [2].

It is defined as follows.

Let v: X — X be the Nash transformation of (X, 0). Then there always exists a
continuous alteration v of the gradient vector field grad f on (C", 0) which is tangent
to the strata of (X, 0), and a lift v*v of v to the Nash bundle T on X. Over the
link K = 3B, N X of (X, 0) this lift is well defined as a non-zero section in T up to
homotopy. Now Eu ¢ (X, 0) is the obstruction to extending v*v as a nowhere vanishing
section to the interior of X. The same procedure can then be applied to the closure of
a stratum (%, 0) in place of (X, 0).

Based on this notion, Seade et al. discuss a generalization of 1)-3) in [30] which is
similar to the one presented here. To understand how our approach came about to also
include 4), i.e. Milnor’s formula, we have to consider the article [30] in the context of
a series of papers by various authors on different indices of vector fields and 1-forms
on singular varieties. A thorough survey of the results from that time is [9].

One of these indices—the GSV index of a vector field—is particularly close to the
idea of the Euler obstruction. The GSV index was first defined in [13, Definition 2.1
ii)] for the following setup:

Let (X, 0) = (g~ 1({0}), 0) C (C"*!, 0) be anisolated hypersurface singularity and
v the germ of a vector field on ((C"+1 , O) which has an isolated zero at the origin and
is tangent to (X, 0). The GSV index Indgsy (v, X, 0) of v on (X, 0) is the obstruction
to extending the section v|K as a C*°-section of the tangent bundle from the link
K = X N 3B, to the interior of the Milnor fiber B, N g~!({8}). Here we deliberately
identify the link K with the boundary 9B, N g 1 ({8}) of the Milnor fiber and the
section v|K with its image under this identification.

In [12], Gémez-Mont introduces the homological index of a vector field v on (X, 0)
as above in order to obtain an algebraic formula' for the GSV index. The homological
index is defined as Indpom (v, X, 0) = x (.{2)‘(’0, v), i.e. the Euler characteristic of the
complex

v v v v — v
0«— Oxo«— Ry« Ry« < 9?{,01 «— Q%00 (D

1 Algebraic formulae for the GSV index of v on (X, 0) were also given in [13], but only under the additional
assumption that v was also tangent to all fibers of f.
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906 M. Zach

where -Q)[;,o denotes the module of universally finite Kéhler differentials on (X, 0)
and v is the homomorphism given by contraction of a differential form with the vector
field v. Later on in his article, Gobmez-Mont generalizes the GSV index in the obvious
way to the setting of an arbitrary complex space (X, 0) with an isolated singularity
and a fixed smoothing X’ of (X, 0). He proves in [12, Theorem 3.2] that

Indgsv (v, X, X") — Indhom (v, X, 0) = k(X, X") @)

with k(X, X’) a constant depending only on (X, 0) and the chosen smoothing, but
independent of the vector field v. This is an important intermediate step for the com-
putation of the GSV index from the homological index, but it remains to determine
the constant k(X, X').

For an isolated hypersurface singularity (X,0) = (g~'({0}), 0) and its canonical
smoothing X’ = B, N g_l({rS}), & > & > 0 this is done in [12, Section 3.2]: in this
case k(X, X") = 0 so that the homological index and the GSV index really coincide.
In the general case, however, the constant k(X, X’) is a non-trivial invariant of the
singularity and its smoothing.

From our point of view, the main novelty in the approach by Gémez-Mont was the
introduction of derived geometry in this setting and its comparison with topological
invariants in Eq. (2). To prove it, he uses the fact that both indices obey the law
of conservation of number which states, roughly speaking, that the total number of
indices is preserved under small perturbations of the vector field. For the GSV index
this is immediate from the definition since it only depends on the homotopy class of the
non-zero section v|K on the boundary. For the homological index Indpom (v, X, 0) this
follows from a result in [11] which states that, more generally, the law of conservation
of number holds for the holomorphic Euler characteristic of a complex of coherent
sheaves with finite dimensional cohomology under arbitrary small perturbations of
the (co-)boundary maps. The complex (‘Q).(,w v) in (1) with perturbations of v is
a particular instance of this situation and, hence, for suitable representatives and v
sufficiently close to v one has

Indhom (v, X,0) = Y Indhom (7, X, p).
peX

To conclude the proof of Eq. (2), observe that at smooth points p € Xie; the GSV
index and the homological index coincide so that any deformation of v to some v
necessarily changes the two indices at the origin by the same amount. Consequently,
the difference of these two indices is a locally constant function in v. The general claim
then follows from the fact that for the choice of a sufficiently small ball B, around the
origin, the set of those vector fields on B, N X with an isolated zero on (X, 0) form
an open and connected set in the Banach space of continuous vector fields on B, N X
which are holomorphic in the interior, cf. [12, Theorem 3.2].
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A generalization of Milnor's formula 907

In this article, we will not be dealing with vector fields, but with holomorphic 1-
forms.? This is more natural in the context of morsifications and it has several further
advantages. For example, we can drop the tangency conditions to (X, 0) which we
had to impose on a vector field. It is straightforward—and even easier—to also define
the Euler obstruction Eu® (X, 0) of a 1-form w with isolated zero on (X, 0): again,
let v: X — X be the Nash transformation. Then there is a natural pullback v*w of
w to a section of the dual of the Nash bundle and this section does not vanish on
v~ 1 (3B, N X) whenever w has an isolated zero on (X, 0) in the stratified sense. The
Euler obstruction of such an @ on (X, 0) is the obstruction to extending v*w as a
nowhere vanishing section to the interior of X.

There is a natural notion of the homological index for a 1-form w with isolated zero
on any purely n-dimensional complex analytic space (X, 0) with isolated singularity.
In [10], Ebeling et al. define

Indpom (@, X, 0) = (=1)"x (2% g, @ A —)
where (.Q;(’O, w A —) is the complex

WA [OVN [O2N

9;})1 2% 0 )

with differential given by the exterior multiplication with w. Note that in case
(X,0) = (C",0) is smooth and w = df is the differential of a function f with
isolated singularity on (X, 0), the homological index coincides with the classical Mil-
nor number. This is due to the fact that the complex (3) is the Koszul complex in the
partial derivatives g—){ of f which is known to be a free resolution of the Milnor algebra
for an isolated hypersurface singularity.

When (X, 0) has isolated singularity, there is no immediate interpretation for the
homological index of w in terms of previously known invariants. However, it is rel-
atively easy to see with the same reasoning as for indices of vector fields that the
difference

Eu”(X, 0) — Indpom (@, X, 0) = k'(X, 0) 4)

is also a constant, independent of the 1-form w. Again, both invariants satisfy the law
of conservation of number. Suppose we have chosen a suitable representative X of
(X, 0) and a sufficiently small ball B,. Then for any holomorphic 1-form " on X
which has only isolated zeroes on the smooth part X;ee of X and which is sufficiently

2 In fact, the original definition of the Euler obstruction by MacPherson in [27] was phrased in terms of
radial 1-forms and only later the use of vector fields became popular following the work of Brasselet and
Schwartz [3].
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908 M. Zach

close to the original 1-form w, we have

Eu®(X, 0) — Indpom (@, X, 0)
= > E(X.p)— Y Indwom(@. X, p)

peXNB; peXNB;

= Eu/ (X, 0) = Indpom (@, X, 0+ > (Eu” (X, p) — Indpom (@, X, )
PEXregNBe

= Eu? (X, 0) — Indpom («, X, 0).

This holds because, again, Eu® (X, p) = Indpom (@', X, p) at smooth points p € Xreg
so that the difference of these two indices at the origin is a locally constant function of
. A similar reasoning as for the homological index for vector fields above can now
be made to conclude that k' (X, 0) is well defined invariant of (X, 0).

The formula (4) can only be used to compute Eu” (X, 0) from the homological index
Indjng (@, X, 0) up to the constant k’(X, 0) which is a sort of “residual homological
index”. Since this invariant of (X, 0) is unknown in general, we propose a modification
of the homological index in Sect. 4 which directly computes the Euler obstruction, i.e.
for which the residual homological index always vanishes by construction. This new
index will be based on the Nash transformation v: X — X of (X, 0), the complex

of sheaves (Q‘, Vo A —) on X, and the derived pushforward of this complex along

the proper map v. It will therefore be called the derived homological index and it is
in general different from the homological index defined in [10] and also harder to
compute. However, the derived homological index has the further advantage that it is
defined for arbitrarily singular spaces (X, 0).

3 Generalizations of the Milnor number

We briefly recall the necessary definitions of singularity theory on stratified spaces,
cf. [24]. Let U C C" be an open domain, X C U a closed, reduced complex analytic
set, and f: U — C a holomorphic function.

Definition 1 Suppose S = {¥y}ueca is a complex analytic Whitney stratification of
X. A point p € X is a regular point of f|X in the stratified sense, if it is a regular
point of the restriction f|.%, of f to the stratum .¥;, containing p.

The existence of complex analytic Whitney stratifications was shown by Hiron-
aka [21]. In [26, Corollaire 6.1.8] L& and Teissier constructed a canonical Whitney
stratification for reduced, equidimensional complex analytic spaces, and in [32] it was
shown that this stratification is minimal. Whenever one of these strata consists of sev-
eral components, we shall in the following consider each one of these components as
a stratum of its own and—unless otherwise specified—use this stratification on any
given reduced equidimensional complex analytic space X.
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A generalization of Milnor's formula 909

Definition 2 We say that f has an isolated singularity at (X, p), if there exists a
neighborhood U’ of p such that all points x € U’ N X \ {p} are regular points of f in
the stratified sense for the canonical Whitney stratification of X.

We give a brief definition of the Milnor fibration of f|(X, p) in this setting, cf. [24,
Paragraphe (3.3) and Lemme 3.5]. Let B, be the ball of radius ¢ around p in C". There
exists &g > 0 such that for every g9 > ¢ > 0 the intersections d B, N X is transversal in
the stratified sense, see e.g. [14, Part I, Section 1.4], [6], or [5]. Since f is a stratified
submersion on (X, 0) away from the origin, the central fiber X N f T f(pdis again
Whitney stratified by the intersections of the strata of X with f “T{f(p)}). We can
apply the same arguments so that also d B N X N £~ ({ f(p)}) is a stratified transverse
intersection for all &g > ¢ > 0. Fix one such ¢ = g9 > 0. Applying Thom’s isotopy
lemma, we find that for sufficiently small ¢ 3> § > 0 the restriction of f

f:B.nXnf(Dy) - D; )

is a proper C-fiber bundle over the punctured disc Di C C of radius § > 0 around
f(p): the Milnor fibration of f|(X, p). The fiber

Mpix.p) = B: N XN ({8}

is unique up to homeomorphism and thus an invariant of f|(X, p).

3.1 Morsifications

For functions on stratified spaces the simplest singularities are the stratified Morse
critical points. They generalize the classical Morse critical points of a holomorphic
function in the sense that every function f with an isolated singularity on (X, p)
can be deformed to a function with finitely many stratified Morse critical points on
X, cf. Corollary 2. Thus, they are the basic building blocks for the study of isolated
singularities on stratified spaces.

Definition 3 (cf. [14, Section 2.1]) A point p € ., C X is a stratified Morse critical
point of f|X if

i) the point p is a classical Morse critical point of the restriction f|.#% of f to the
stratum .%.

ii) the differential d f (p) of f at p € C" does not annihilate any limiting tangent
spaces T C T,C" from other adjacent strata . of X at p.

Consider a point p € U and the germ f: (C", p) — (C, f(p)) of f at p. An
unfolding of f at p is a map germ

F: (C" p) x(C,0) = (C, f(p) x (C,0), (x,1) > (fi(x),1)

such that f = fp. It is clear that whenever p € X, any unfolding of f induces an
unfolding F|(X, p) x (C, 0) of f|(X, p).
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910 M. Zach

Fig.2 The real picture of the
polar curves from Example 2 for
the morsification of f on the
regular locus of X; visualized as
hyperplane sections together
with the critical points of f; for
t=1

Definition4 Let (X, p) C (C", p) be a reduced complex analytic space and
f:(C", p) — (C, f(p)) aholomorphic function with isolated singularity on (X, p).
An unfolding F of f induces a morsification of f|(X, p), if there exists an open
neighborhoods V' C C” of p and an open disc T C C around the origin such that
f:1X has only Morse critical pointsin X NV forall0 #¢ € T.

For the existence of morsifications and the density of Morse functions in the strat-
ified setting see for example [14]. We will usually take f;(x) = f(x) —¢-I(x) fora
generic linear form / € Hom(C”, C), cf. [25] and Corollary 2.

We may choose the open neighborhood V' in Definition 4 to be an open Milnor ball
B for f|(X, p). Then for t = n # 0 sufficiently small, all Morse critical points of
fy on X N B, arise from the original singularity of fp at 0 € X and we can count the
number of Morse critical points of f; on each stratum .7, in X N B,.

Definition 5 We define the numbers u ¢ (a; X, 0) of f[(X, p) to be the number of
Morse critical points on the stratum .#, in a morsification of f|(X, p).

These numbers clearly depend on the choice of the stratification. However, it follows
from [30, Proposition 2.3], that they do not depend on the choice of the morsification
F|(X, p) of f|(X, p). This fact will also be a consequence of Theorem 1.

Example 2 We continue with Example 1. As a morsification of f|(X,0) we may
choose

fi(x,v,2) =y — (x —2)> — t(x 4+ 22).

Clearly, 1 7 (0; X, 0) = 1, because .# is a one-point stratum and any such point is a
critical point of a function in the stratified sense.

On . the function f;; has exactly one Morse critical point for  # 0 (not pictured
in Fig. 2). This can be verified by classical methods: note that X| = 71 is smooth
and the restriction of f to X is an ordinary A; singularity. The given morsification
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A generalization of Milnor's formula 911

is moving this critical point from x = 0 to x = —¢/2 so that for ¢ # 0 it really lies in
the stratum .7].
In order to compute u r(2; X, 0) let

I' ={(x,1) € Xreg x C: x is a critical point of f; on Xeg}

be the global curve of critical points of f; on the regular part X s = .% of the whole
affine variety X C C3. Using a computer algebra system, one can verify that the
critical points of f; on (X, 0) sweep out seven branches in I" under the variation of ¢.
Five of these branches

0, NG -t
=101, Dao)=|£V3|., Iys=|LiV3
—t NG -t

pass through the origin 0 € C3, i.e. they arise from the critical point of f on (X, 0).
Note that I'4 5(¢) does not have real coordinates for # € R \ {0} so that these branches
do not appear in the real picture in Fig. 2. However, their behaviour is symmetric to
what happens with the real branches I 3(¢). Each one of these branches corresponds
to a Morse critical point of f; on .5 C X and we drew them as dots in Fig. 2 for
t = 1. Thus we have

nr0; X,00 =1, pur(1;X,00=1, ur2;X,0)=5.
The remaining two branches

3 _

>
To7() = | +,/2

-3

L
2
—9t

2

are swept out from the points pg and p7 and do not contribute to the number
nr(2; X,0) of f|(X,0) at the origin. They lay on the horizontal component of the
polar curve in the lower half of Fig. 2.

3.2 Homology decomposition for the Milnor fiber

The Milnor fiber M ¢|(x,0) of a holomorphic function f on a complex analytic space
(X, 0) C (C",0) is by construction a topologically stable object: by virtue of Thom’s
Isotopy Lemma, small perturbations of the defining equation f* do not alter M 7|(x o)
up to homeomorphism. Consequently, in a morsification F' = (f;, t) of f|(X,0) we
may identify the Milnor fiber M r(x 0

Mpix0=B:NXNf'{sH = B.nXn f ({8
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912 M. Zach

Fig.3 Morsification of f|X in a Milnor ball: 1) the Milnor fiber of f|X, 2) the same fiber of f;;|X. 3) and
4) depict passing the first critical value of f|X

and the generic fiber B, N X N f,)_1 ({8}) of f;, for suitable choices of ¢ > 6 > n > 0.
For the previous example this is illustrated in the first two pictures of Fig. 3.

The classical theory of morsifications (see e.g. [1]) can be generalized to this setting
using stratified Morse theory [14, Part II]. This leads to the following homology
decomposition for the Milnor fiber:

Proposition1 Let (X,0) C (C",0) be a complex analytic space, S = {Fy}uca a

complex analytic Whitney stratification of X with connected strata, L(X, %) the
complex link of X along the stratum %, C(L(X, %)) the real cone over it,

f:(C"0) — (C,0)

a holomorphic function with an isolated singularity on (X, 0) in the stratified sense,
and M y\(x 0y its Milnor fiber on X. Then the reduced homology of the Milnor fiber
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A generalization of Milnor's formula 913

decomposes as

(e X,0)
H (Mpx0) =P B  He-aeii (CLEX. ). LX. Sa)),  (6)
acA  i=l

where d(a) = dim(.#,) is the complex dimension of the stratum ./, and i ¢ (a; X, 0)
the number of Morse critical points on ./ in a morsification of f.

Proposition 1 shows that the characterizations 1°) and 2”) of the numbers s (cr; X, 0)
in Sect. 1 coincide. We will give a proof below, but first discuss some relations of
Proposition 1 with various other results.

For f and (X, 0) as in Proposition 1 the vanishing Euler characteristic of f|(X, 0)
is defined to be the reduced topological Euler characteristic of the Milnor fiber
x (M fal X,())). Now the homology decomposition provides a formula for this invariant
as a linear combination of the numbers u ¢ (a; X, 0):

Corollary 1 In the same setup as in Proposition 1 the vanishing Euler characteristic

of f1(X,0)is

X (Mpix.0) =D e X, 00 (=D (1= x(LX, Z))).

acA

Note that the coefficients (—1)?@~1. (1 — x (L(X, %)) depend only on the germ
(X, 0), but not on the function f.

Remark 1 When (X, 0) is smooth, this formula reduces to the equality X (M) = ur
of the classical Milnor number and the reduced Euler characteristic of the Milnor fiber.

In the case where (X, 0) is equidimensional of dimension d with an isolated sin-
gularity at the origin, the right hand side has two summands:

T (Mpix.00) =T (L AOD) + (=D pp (X, 0).

The first one corresponds to the zero-dimensional stratum .y = {0} C X and the
other one to the stratum .%] = Xe, of smooth points of X. Since .#}) is only a point,
the number 1 £ (0; X, 0) is always equal to one and £(X, {0}) is the classical complex
link of (X, 0). We wrote u (X, 0) for the only other number of Morse critical points,
omitting the index « of the stratum.

We will see later on in Corollary 3 that u#(X, 0) equals Eud/ (X, 0) and then
Corollary 1 recovers a formula from [8, Proposition 4]:

1 (X,0) = Eu/ (X,0) = (=D (x(LX, {0)) — x (M fix.0)-

See also the discussion of the relation with the Lé-Greuel formula in Example 4 below
for the case that (X, 0) is an isolated complete intersection singularity.
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Remark2 We may also relate Corollary 1 to some results from [8] around the radial
index for continuous 1-forms w with isolated singularity on (X, 0) as defined by
Ebeling and Gusein-Zade in [10, Definition 2.1] and [8, Section 1]. Suppose (X, 0)
is equidimensional of complex dimension d. Then according to [8, Theorem 3] the
(complex) radial index of the 1-form d f is

Indraa(df, X, 0) = (=D9(1 - XM r1(x,0)))-

Substituting this into Corollary 1 we recover the formula from [8, Theorem 4]

Indra(df, X,0) = Y Bu®/ (L, 0) - (=D (1 — x (L (X, 7))

acA
in the special case where the 1-form w is of the form d f for some function f.

Proof of Proposition T Choose ¢ > 0 sufficiently small so that the squared distance
function to the origin 7> : C" — Rx( does not have any critical points in the ball B
neither on X nor on X N f~1({0}). After shrinking & > 0 once more, if necessary, we
may assume that the space B, N X N f ~1({0}) is a deformation retract of B, N X N
£~ Y(Dj) for sufficiently small ¢ > § > 0. In particular, the space B, N X N f~!(Ds)
is contractible.

Its boundary (B, N X N f ~'(Ds)) is topologically stable under small perturbations
of f. So is the Milnor fiber

Mysx0=B.NXNfH{8H CaB: N XN fH(Ds)).

In any unfolding F = (f;, t) of f we may therefore identify the pairs

(B:nx 0 700 Mpx)) = (B 0 X0 £ (Do), B0 X0 £ (6D)

for sufficiently small ¢ > 6 > n > 0.

After modifying f, a little more we may assume that all critical values {c;}
of fy are distinct points in the disc Ds. Choose non-intersecting differentiable paths
yi: [0, 1] = Ds from § to ¢; and let y; ([0, 1]) be its image in Ds. By virtue of Thom’s
First Isotopy Lemma, the map

N
i=1

fot BeNX N f7 1 (Ds) — Ds

is a CO-fiber bundle away from the points ¢; and the space B, N X N f,7_1 (Ds) retracts

onto £, (UL, 1410, 1D).

Along each path y;, one attaches a so called thimble to B, N X N fnfl({S}) =
M y|(x,0)- This thimble is given by the product of the tangential and the normal Morse
datum of f;, at the critical point p; over c;. See [14] for a definition of these. Altogether,
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we obtain

Ho(Mf((x.0)
= Hopr (BN X 0 7' (Ds). Myix.))

= Howr (B N X0 £ (Ds). BN X0 £ (6D)

N
= Hopi (Bs nxnf! (U yi ([0, 1])) B.NXN S ({8}))
i=1

N N
= Hop (Bs nxnf," (U yi ([0, 1])) BN XN S (U yi ([0, 1))))
i=1 i=1

g (e X,0)
=@ D Herr (10, 11,000, 1D x (CLX, S0, £X, S2))
acA i=1
1f (@ X,0)
=@ P Hedwri (CEX, L), LX, L)
acA i=1
This finishes the proof of Proposition 1. O

Remark 3 The existence of a homology decomposition as in (6) also follows from the
bouquet decomposition of the Milnor fiber due to Tibar [33] which is stronger in the
sense that it holds on a homotopy level. But since its proof is not built on morsifications,
itis a priori not clear that in general the numbers which play the corresponding role of
the ¢ (a; X, 0) in the resulting homology decomposition coincide with the number
of Morse critical points in a morsification. The interplay of Proposition 1 with Tibar’s
bouquet decomposition will be studied in a forthcoming note.

Example 3 We continue with Example 2. For t = 1 the critical point of the morsified
function fi on .7 is (—1/2,0,0)7. On . C X they are

0 1 —1 1
pi=| 0], ppa=|xl), pas=|xi|, pe7=|=x3
—1 1 —1 -3

The complex links £(X, .%,) of X along the different strata are the following.

For .y = {0}, it is the complex link of the Whitney umbrella (X, 0) itself, which
is known to be the nodal cubic. Hence (X, .7) = S! is homotopy equivalent to a
circle.

Along . the normal slice of X consists of two complex lines meeting transversally.
The complex link is therefore a pair of points £(X, .%1) = {q1. ¢2}.

For the third stratum .%%, the normal slice is a single point and the complex link is
empty. We adapt the convention that the real cone over the empty set C () = {pt} is
the vertex pt of the cone (Fig. 4).
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916 M. Zach

Fig.4 Morsification of f|X in a Milnor ball: 1) and 2) passing the critical point of f;;|X on %, 3) and 4)
passing another two critical points on .#5, one being on the backside

The homology decomposition for the Milnor fiber thus reads

Ho(Mf)(x.0))
5
= Ho1(C(SY). S @ Ho(C({q1. 02D). (1. 021) © D He—1({p1)

i=1

= 7[1 @ Z[1] & (Z[1])°

where we write Z[e] for a shift of Z by e in the homological degree. In combination
with the bouquet decomposition theorem from [33], we may even infer that M 7|(x o)
is homotopy equivalent to a bouquet of seven circles.
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At this point it is apt to compare our results to the well known Lé-Greuel formulas
for isolated complete intersection singularities [16,22]. As we will see, the numerical
invariants considered there are in general different from our numbers w ¢ (a; X, 0).

Example 4 Suppose h = x*> + y> — z% so that X = {h = 0} C C? is the double cone
and let

f:C*=C, x,y, 20 x-2.

Then both (X, 0) and (XN £~ ({0}), 0) are isolated complete intersection singularities
with Milnor fibers My cr,0) and M r|(x 0. respectively. It is well known that these
Milnor fibers are homotopy equivalent to a bouquet of spheres of real dimension d
equal to their complex dimensions, cf. [19], and we obtain the numbers

bh|((C3,0) ;= rank H» (Mh\(C3,O)) =1 and bf\(X,O) :=rank H; (Mf|(Xy())) =35,

i.e. the classical Milnor numbers of the ICIS.

If we were to compute these numbers using the Lé-Greuel formulas, [22, Theorem
3.7.1]and [16, Korollar 5.5], we would proceed as follows. For suitable representatives
we consider the restriction of the function f to the Milnor fiber My c3 o), 1.e. the

canonical smoothing of (X, 0). We may choose a small, generic perturbation f of f
which has only Morse critical points on M, c3 ) and deliberately identify M r|(x0)
with the subspace

My x,00 = Mpc3,0) N F71dsh

for some 1 > |§| > 0. A part of the long exact sequence of the pair
(Mh|(<c3,0), Mf|(x,0)) then reads

0— HZ(MhI((C3.,0)) — HZ(Mh\((C},O)? Mf|(x70)) — H (Mf|(X,())) — 0

and it is easy to see using Morse theory that the term in the middle is a free Z-module
of rank r equal to the number of Morse critical points of f on My c3,0)-

Now by,|(c3,0) = 1 canbe deduced directly from Milnor’s classical formula. Accord-
ing to [16, Korollar 5.5], the number r can be computed as the length of an algebra:

r =dim¢ C{x, v, z}/ <h M>

(x,y,2)

By the last term we mean the 2 x 2-minors of the Jacobian matrix of /& and f. Then
the exact sequence above yields b ¢(x,0) = 5.

Let us now compute the homology of M r|(x,0) along the lines of Proposition 1.
The difference is that we do not consider a morsification of f on the smoothing of
(X, 0), but on the singular space itself. We choose this morsification to be

F=(f,):(C0)x (C,0) — (C,0) x (C,0), ((x,y,2),1) > (x-(z+1),1).

@ Springer



918 M. Zach

and one finds that f; has Morse critical points on the two-dimensional stratum .9 :=
Xreg at only four points

X +t/2 X 0
y| = 0 and y| ==t
b4 —t/2 z —t

Thus, u r(2; X, 0) = 4 in this example and there is a free direct summand of rank 4
in the homology decomposition (6) of M r|(x o).

The part of the decomposition of Hy(M f|(x,0)) that is yet missing stems from the
critical point of f; on the zero dimensional stratum .y = {0} of X at the origin. It
is now easy to see that the complex link £(X, {0}) is nothing but the Milnor fiber of
the restriction of the function % to the hyperplane {x = 0} and therefore homotopy
equivalent to a single sphere of dimension 1.

Altogether, this again yields Hy(M f(x,0) = Z @ 7% to be free of rank 5, but with
an additional decomposition of this homology group as a direct sum. Note, however,
that this decomposition depends on the particular choice of the space (X, 0) and
the function f or—equivalent to that—it depends on the particular regular sequence
(h, f).Itis not an invariant of the ICIS (X N f~1({0}), 0) C (C3, 0) since the latter
is defined by the ideal (%, f) which could also be given by any other set of generators.

Also note that in this example, the homological index as it was defined by W.
Ebeling, S. Gusein-Zade, and J. Seade is in fact

Indhom(df, X,0)) =r =6

due to [10, Theorem 3.2 (iii)]. That means, similar to the GSV index [12], it measures
the number of critical points of a perturbation f of the function f on the smoothing
of (X, 0) and might therefore be better suited for the study of functions on isolated
hypersurface and complete intersection singularities.

3.3 The Euler obstruction of a 1-form
In [30, Proposition 2.3], J. Seade et al. proved that
wr(y: X,0) = (=)™ Euy (X, 0)

for the top dimensional stratum? 7, . The Euler obstruction of a function is defined
using the gradient vector field grad f. For the purposes of this note, it is more natural
to consider the 1-form d f and its canonical lift to the dual 2! of the Nash bundle as
we will describe below. This provides the notion of the Euler obstruction Eud/ (X, 0)
of the 1-form d f on (X, 0), as was first defined by Ebeling and Gusein-Zade in [8]. In
this section, we will follow their example and also consider the slightly more general
case of an arbitrary 1-form w on (X, 0).

3 Or, in case (X, 0) is reducible, the union of the top dimensional strata.
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A generalization of Milnor's formula 919

Throughout this section, we let U C C” be an open domain and X C U areduced,
complex analytic space. Suppose that X is equidimensional of dimension d. On the
set of nonsingular points X,.; we can consider the map

@: Xreg — Grass(d,n), pr— [T,X C T,C"] @)

taking any point p to the class of its tangent space 7, X as a subspace of 7,C" by
means of the embedding of X.

Definition 6 The Nash transformation of X is the complex analytic closure of the
graph

X ={(p, @(p)) : p € Xreg} C U x Grass(d, n)

together with its projections

N

Grass(d, n).

The restriction of thg tautological bundle on U x Grass(d, ”~) to X will be referred to
as the Nash bundle 7. The dual bundle will be denoted by £2!.

For the dual of the Nash bundle there is a natural notion of pullback of 1-forms on
X which is defined as follows. We can think of a point (p, V) € X as a pair of a point
p € X and a limiting tangent space V from Xie, at p. The space V can be considered
both as a subspace of 7,,C" and as the fiber of the Nash bundle T at the point (p, V).
Let us denote by (-, -) the canonical pairing between a vector space and its dual. For
a 1-form w on C”, a limiting tangent space V at p and a vector v € V we define

(Vo (p, V), v) = ((p). v). ®)

Here we consider v as a point in the fiber of the Nash bundle over the point (p, V) € X
on the left hand side and as a vector in V C T,C" on the right hand side.

In order to define the Euler obstruction of a 1-form, we need to adapt Definitions 1
and 3 in this setup. Since for 1-forms there is no associated Milnor fibration, we may
drop the assumption that the stratification of X satisfies Whitney’s condition B.

Definition 7 Let w be a holomorphic 1-formon U C C" and suppose S = {-%y }aea is
a complex analytic stratification of X C U satisfying Whitney’s condition A. We say
that w|(X, p) is nonzero at a point p € X in the stratified sense if w does not vanish
on the tangent space T,.#3 of the stratum .4 containing p. We say that a 1-form
on U has an isolated zero on (X, p), if there exists an open neighborhood U’ of p
such that w is nonzero on X in the stratified sense at every pointx € U' N X \ {p}.
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If in the following we do not specify a stratification, we again choose S to be the canon-
ical Whitney stratification for a reduced, equidimensional complex analytic space X.

It is an immediate consequence of the Whitney’s condition A that at every point
p € X such that the restriction w|.#;, of w to the stratum .#;, containing p is non-
zero, also the pullback v*w is non-zero at any point (p, V) € v ({p}) in the fiber of
v: X — X over p. In particular, v*w is a nowhere vanishing section on the preimage
of a punctured neighborhood U’ of p whenever w has an isolated zero on (X, p) in
the stratified sense.

Definition 8 (cf. [8]) Let (X, p) C (C", p) be an equidimensional, reduced, complex
analytic space of dimension d and w the germ of a 1-form on (C”, p) such that w|(X, p)
has an isolated zero in the stratified sense. The Euler obstruction Eu® (X, p) of w on
(X, p) is defined as the obstruction to extending v*w as a nowhere vanishing section of
the dual of the Nash bundle from the preimage v—! (3 B, N X) of the real link d B, N X
of (X, p) to the interior of v I B, NX ) of the Nash transform. More precisely, it is
the value of the obstruction class

Obs(v*w) € H (v_l(Bg N X), v (3B, N X))

of the section v*w on the fundamental class of the pair
(v 1B, N X), v 1(3B: N X)):

Eu’(X, p) = (Obs(v*a)), I:V_I(Bs NX). v 9B, N X)]).

As we shall see below, the Euler obstruction of a 1-form w with isolated singularity
on (X, p) counts the zeroes on X e, of a generic deformation w;, of w. In the case w =
d f for some function f with isolated singularity on (X, p), these zeroes correspond
to Morse critical points of f;, on Xie, in an unfolding. We have seen before that these
are not the only critical points of f,.

Definition 9 Suppose S = {7, }uca is acomplex analytic stratification of X satisfying
Whitney’s condition A. A point p € X is a simple zero of w|X, if the following holds.
Let ./ be the stratum containing p and o (w|-#3) the section of the restriction w|.#3
as a submanifold of the total space of the vector bundle .Q(ly,ﬂ . Denote the zero section

by ¢ (0).

i) The intersection of o (w|-#) and the zero section
o(w|Fg) My a(0)

in the vector bundle 2!, on Sg is transverse at p.
7p

ii) w does not annihilate any limiting tangent space V from a higher dimensional
stratum at p.

Whenever w = d f for some holomorphic function f, this reduces precisely to the
definition of a stratified Morse critical point p of f|X, Definition 3.
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Analogous to morsifications we define an unfolding of a 1-form w. Since .Q[l] is
trivial, we can consider w as a holomorphic map U — C”". An unfolding of w is then
given by a holomorphic map germ

W: (C", p) x (C,0) = (C",w(p)) x (C,0), (x,1) = (wr(x),1).

Proposition 2 Any [-form w with an isolated zero on (X, p) admits an unfolding
W = (wy, t) as above on some open sets U’ x T such that for a sufficiently small ball
B. C U’ around p and an open subset 0 € T’ C T one has

i) X N Bg retracts onto the point p,
il) w = wg on U’ and o has an isolated zero on X N U’,
iii) foreveryt € T', t # 0, the I-form w; has only simple isolated zeroes on X N By
and is nonzero on X N U’ at all boundary points x € X N 9 B,.

Moreover, w; can be chosen to be of the form w; = w — t - dl for a linear form
| € Hom(C", C).

Definition 10 We define the multiplicity u®(«; X, p) of w|(X, p) to be the number
of simple zeroes of w; on ., for t # 0 in an unfolding as in Proposition 2.

Again, we clearly have s (a; X, p) = ,udf(a; X, p) in the case where w = d f is
the differential of a function f with isolated singularity on (X, p). As a straightforward
consequence we obtain:

Corollary 2 For a holomorphic function f: U — C with an isolated singularity in
the stratified sense at (X, p) a morsification F = (f;, t) of f|(X, p) can be chosen
to be of the form

fi=f—t-l
for a linear form | € Hom(C", C).

A statement similar to Corollary 2 has been proven by L€ in [25]. In order to be
self-contained, we include a proof of our version for morsifications of 1-forms.

Proof of Proposition 2 We will show using Bertini-Sard-type methods that there exists
a dense set A € P(Hom(C", C)) of admissible lines such that the linear form / in
Proposition 2 can be chosen to be an arbitrary non-zero linear form with [/] € A.
For a fixed o let X, = ?ﬁx be the closure of the stratum .%,, d(«) its dimension,
and v: Xo — X, its Nash transform. Denote the fiber of v over the point p € X by
E. Since the question is local in p, we may restrict our attention to arbitrary small

open neighborhoods of E of the form v~!(U’) for some open set U’ 5 p. Set
N = {(x, V,9) € Xo x Hom(C", C) : 9|V = v¥w(x, V)]

and let 7: N — X, and p: N — Hom(C”", C) be the two canonical projections.
It is easy to see that N has the structure of a principle C"~¢_bundle over X,. In
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particular, the open subset .7, = (v o 7)~!(#,) C N is a complex manifold of
dimension n.

Let @: N --» P(Hom(C", C)) be the rational map sending a point (x, V, ¢) to
the class [¢] € P(Hom(C", C)). Since w had an isolated zero on (X, p), this map is
regular on the dense open subset N \ (7 o v) ! ({p}) which in particular contains .
In order to work with regular and proper maps, we may resolve the indeterminacy of
@ and obtain a commutative diagram

Ty —= N
o~ \

S~ N —L = Hom(C", C) - — = P(Hom(C", C)).

ya(%f(a

11

v

ya(%xa

Suppose L € P(Hom(C", C)) is a regular value of <5|<Y?a, then é_l({L}) N 5’%, isa
smooth complex analytic curve. If we let C C N be the image in N of its analytic
closure in N , then evidently p|C: C — L is a finite, branched covering at 0 € L. It
follows a posteriori from the Curve Selection Lemma that p is a submersion at every
point (x, V, ¢) € CN.¥, inaneighborhood of E. An inspection of the differential of p
at such a point (x, V, ¢) reveals that the transversality requirement i) in Definition 9 is
satisfied for the 1-form w—dg¢ at x. Conversely, this means that for every nonzero linear
form [ € L and every sufficiently small # # 0 the 1-form @ — ¢ - d/ has only isolated
zeroes at those points x € .7, for which (x, V, ¢ - I) € C. Repeating this process for
every stratum, we obtain a dense set A; C P(Hom(C", C)) of pre-admissible lines.

In order to verify also the requirement ii) in Definition 9, we proceed as follows. Let
Yy = Xo \ -7 be the union of limiting strata of ., and Y,.Y, 7, and Y, their preimages
in Xq, N,and N, respectively. These three spaces might have rather difficult geometry,
but evidently dim Yo < dim N = n and the map Yo — Yy is surjective.

There exists adense subset Ay C P(Hom(C", C)) such that the restriction & |1A/a has
at most discrete fibers over A;. To see this, we may for example stratify Yo by finitely
many locally closed complex submanifolds M; and choose A, as the set of all regular
values of <I3|Mi. Since dim M; < dim I?a < n, the fiber Q = (@WQ)’] (L) of a point
L € Ajis discrete and so is its image Q C N, because N — Nis proper. This means
that for a given [ € L there are only finitely many preimages (x, V,1) € p~'(L), i.e.
the set of points x € X, for which w — dl annihilates a limiting tangent space V at x
is finite in a neighborhood of p. We may choose U’ and B, sufficiently small to avoid
those points.

To conclude the proof set A = A1 N Az, choose a linear form 0 # [ € L for some
L € A and adjust the choices of U’ and B, accordingly. Since d B, N X is compact
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there will be no zeroes of w; = w — t - dI on the boundary for small variations of ¢
and T’ can be chosen so that this holds for all 7 € T". a

We are now prepared to show equivalence of 1’) and 3°), in parallel to [30, Propo-
sition 2.3].

Proposition 3 For every I-form w on U with an isolated zero on (X, p) we have
I’Lw(a’ Xv p) = Euw(X(Xv p)v

where Xy = 7@1 is the closure of the stratum .#.

Proof Choose a representative
W=(w;,t): U xT—-C"xT

of an unfolding of w|(X, p) and a ball B, C U’ as in Proposition 2. The Euler
obstruction of w at (X, p) depends only on its obstruction class

Obs(v*w) € HX¥ (™1 (B: N Xo), v 1 (0B: N Xa)).

Being a homotopy invariant, this class does not change under small perturbations and
it is therefore evident from the definitions that for every n € T and every « € A one
has

Eu®(Xa, p) = <Obs(v*a)), [v_l(Bs N Xe), v (@B N XO,)]>

- <0bs(u*w,), [v_l (B N X,), v~ (9B N Xa)]>.

We may therefore select one n # 0 and use w, instead of w to compute the Euler
obstruction. The evaluation of the obstruction class counts the number of zeroes of
wy,. Observe that by construction, v*w is nonzero at any point (x, V') € f(a \ v A,
because w, does not annihilate any limiting tangent space V at x. Thus, the zeroes of
v¥*w, are located in v 1(A%). At every such zero (x, V) € v (. F) of w;, the intersec-
tion of o (w,|-”%) and the zero section in .Q is transverse with positive orientation
and therefore contributes an increment of 1 to the Euler obstruction. Consequently,
Eu® (X, p) coincides with u®(«; X, p). O

Corollary 3 Whenever f: U — C is a holomorphic function with isolated singularity
on (X, p), we have

(e X, p) = Eu'/ (Xa, p).
Example 5 We continue with Example 3. For @ = 0 the real link of (%, 0) is empty
and the Euler obstruction is 1 by convention.

In the case o = 1 the closure X| = =7 1 of the stratum . is already a smooth
line. Consequently, the Nash transformation v : X 1 — X is an isomorphism and !
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coincides with the usual sheaf of Kihler differentials. In this case, the Euler obstruction
of df on (X1, 0) coincides with the degree of the map

a5

: 9B, N X, — S\
1dfl

Since 0 € X is a classical Morse critical point, d f has a simple, isolated zero on
(X1, 0) and therefore

df
ldfl

In this particular case of a function on a complex line, the computation of the Euler
obstruction reduces to Rouché’s theorem.

For ¢« = 2 we really need to work with the Nash transformation and the morsi-
fication F = (f;,t) of f|(X,0). To this end, we identify Grass(2, 3) with its dual
Grassmannian Grass(1, 3) = P? via

Eud/ (X1, 0) = deg

V > V1 ={¢ € Hom(C?,C) : ¢|V = 0}.

In homogeneous coordinates (sg : s1 : s2) of P2 the rational map @ from (7) is given
by the differential of A:

X S0 —72
D: S — IEDZ, vyl s | = 2y
z 52 —2xz

The equations for X C P2 x C? are rather complicated, but they simplify in the canon-
ical charts of P> x C3. We will consider the chart so # 0, leaving the computations in
the other charts to the reader. The equations for X read

122 12 1 2
X =280 y=o50s. o= o)

In partlcular we can use (z, s1) as coordinates on XN {so #0} = C2. The exceptional
set E C X, i.e.thesetof points g € X,atwhichv: X — X isnotalocal isomorphism,
is the preimage of the x-axis in C3. In the above coordinates it is given by

E={z=0}={0} xCcC>=Xn{sy#0}.

Let O(—1) be the (relative) tautological bundle on P> x C3. The dual bundle
O(1) has a canonical set of global sections e, e, e2 in correspondence with the
homogeneous coordinates (sg : s1 : s2). With these choices the differential of f; =
y? — (x — 2)* — t(x + 2z) pulls back to

vidf = (—2(x —2) —1)-eg+2y-e1 + 2(x —2) —21) - ez
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We consider v* d f; as a section in S~21, the dual of the Nash bundle 7. Note that T
appears as part of the Euler sequence

0T >0} —=0z(1) —=0

on X. The standard trivialization of 7" in the chart sy # 0 is given by the sections

—51 —5

V1 1 , v =

1

and therefore the zero locus of v*d f; on X is given by the equations v*d f;(vy) =
v*d f;(v2) = 0. Substituting all the above expressions we obtain

1
vidfi(v) = (=s1) (z2 - Ezzs% +2z7 — t)

1 1 1
v dfi(v2) = <1 + 5“%) : <522S12 - 2z> +1 <§zs12 — 2) :

It is easy to see that for t = 0 the exceptional set E = {z = 0} is contained in the zero
locus of v* d fy. In particular, the zero locus is non-isolated and we can not use v* d fj
to compute the Euler obstruction as in the proof of Proposition 3.

For n # 0, however, the zero locus of v* d f; consists of only finitely many points.
A primary decomposition reveals that there are seven branches

. —\ - Vi oo AN -3
Fl(l)=<0), F2,3(t)=(:t%ﬁ>, F4,5(t)=<:|:%>»r6,7=<i\/63_ﬁ>

in the local coordinates (z, s1) of X. They are precisely taken to the corresponding
branches I () from Example 2 by v. Again, only the first five of them have limit points
close to v~ 1({0}) for t — 0, i.e. only the first five branches contribute to Eud/ (X, 0)
for sufficiently small ¢ > n > 0. Therefore,

Eul/ (X,0) =5 = pus(2; X, 0),

as anticipated.

Remark 4 Definition 10 and Proposition 2 suggest yet another interpretation of the
numbers u®(«; X, p), namely as microlocal intersection numbers—a point of view
which has also been used in [28]. For a stratum ., of X and its closure X, one can
define the conormal cycle of .7, as

Ay ={(p,x) € 2}, :x € Sy, ¢|Te Sy =0}
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This is an analytic subvariety of the total space of the vector bundle .Q,]J So is
the section o(w) of w on U. In this context, Proposition 2 appears as a moving
lemma, which puts the two varieties in a general position. Clearly, the local inter-
section multiplicity (Ay o o (w)) of the two varieties at (p, 0) € Q}] coincides with
u?(o; X, p) = Eu?(Xy, p). See also [2, Corollary 5.4].

4 The Euler obstruction as a homological index

Throughout this section let again U C C" be an open domain and X C U a closed,
equidimensional, reduced, complex analytic space.

For a holomorphic function f: U — C with an isolated singularity on X at a
point p € X, Proposition 3 and Corollary 3 suggest the following interpretation of
the Euler obstruction: in a morsification F = (f, ) of f|(X, p) the singularities
of f|(X, p) become Morse critical points on the regular strata .#,. In this sense, a
morsification separates the singularities of the function f|(X, p) from the singularities
of the space (X, p) itself. The Euler obstructions Eud/ (X4, p) of df on the closures
Xy = %4 of the strata know the outcome of this separation beforehand and even
without a given concrete morsification. A particular, but remarkable consequence of
these considerations is that Eud/ (Xg, p) = 0forall« € A whenever f does not have
a singularity on (X, p)—independent of the singularities of the germ (X, p) itself.

Suppose for the moment that also the space (X, p) has itself only an isolated
singularity so that the homological index Indhom (d f, X, p) as in [10] is defined. The
comparison of Eud/ (X, p) with Indpom(d £, X, p) is based on the fact that both the
Euler obstruction and the homological index satisfy the law of conservation of number
and that they coincide at Morse critical points. In an arbitrary unfolding F' = (f;, t) of
f1(X, p) we can therefore use both the Euler obstruction and the homological index
to count the number of Morse critical points on Xtz arising from f|(X, p). But for a
fixed unfolding parameter r = 7 only the Euler obstruction Eu/7(X, p) can be used
to measure whether f; is still singular at (X, p) or whether all singularities of f have
left from the point p for + = n # 0. If the latter is the case—as for example in a
morsification—the homological index Indhom (d £, X, p) is

Indpom (d f, X, p) = Indnom (df, X, p) — Eu¥/ (X, p) = —K'(X, p).

The number k'(X, p) is an invariant of the space (X, p), but unknown in general.
Therefore, the homological index Indpom(df, X, p) can not be used to count the
number of Morse critical points on X, in a morsification; it only separates the sin-
gularities of the function f from the singularities of X up to an unknown quantity.
We return to the more general setting of an arbitrarily singular X C U. Suppose w
is a holomorphic 1-form on U and let p € X be a point for which w has an isolated
zero on (X, p). Then Eu®(Xy, p) is counting the number of simple zeroes on .7,
close to p in a generic perturbation w;; of w. It is evident from the construction that we
may restrict our attention to the case where X = X, = ?a is irreducible and reduced
and we only need to consider isolated zeroes of w, on X;eg. Translating the previous
discussion to this setting we see that—conversely—a homological index I (w, X, p)
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has to coincide with the Euler obstruction Eu®” (X, p) whenever the following two
conditions are met:

(1) I(w, X, p) coincides with Eu® (X, p) at any smooth point p of X.
(+) For every singular point p of X one has

I(w,X,p)=0

whenever w is a 1-form such that w|(X, p) is nonzero or has at most a simple zero
at p in the stratified sense.

It is therefore worthwhile to investigate once again the structural reasons as to why ()
is satisfied for Indhom (@, X, p) at smooth points and why Eu® (X, p) = 0 whenever
w has at most a simple zero on X at a point p on a lower dimensional stratum. We
will exploit these reasons for the construction of the derived homological index in
Theorem 1 which then satisfies (1) and (&) simultaneously.

The fact that the homological index of a 1-form w with an isolated zero at a smooth
point (X, p) = (C", p) coincides with its Euler obstruction and its topological index
is based on the following observation. In local coordinates xt, ..., x, of (X, p), the
complex (3) becomes a Koszul complex on the local ring Oy, in the components of
w =Y 7, wi dx;. Since O, is Cohen-Macaulay and the zero locus of w is isolated,
the w; must form a regular sequence on Oy , and the following lemma applies, cf. [4,
Corollary 1.6.19].

Lemma1 Let (R, m) be a Noetherian local ring, M = R”" a free module, v =
(v, ..., v,)T € M an element and

K*(w,R): 0 R M —22 NP —2 9)
NI A N M 0

the Koszul complex associated to v. We consider R = /\0 M to be situated in degree
zero, M = /\] M in degree one, etc.

i) Whenever (vi, ..., v;) is a regular sequence on R as an R-module, then (9) is
exact except for the last step where we find

H" (K*(v, R)) = R/(v1. ..., v).

ii) Whenever v ¢ mM, the Koszul complex is exact.

Consequently, Indhom (@, X, p) = dim¢ Ox /{1, ..., w,) at a smooth point p
of X and this evaluates to 1 on simple zeroes of w. Part ii) of this lemma explains why
the homological index of w is zero at all smooth points where w does not vanish.

From this viewpoint, the difficulty in comparing the Euler obstruction of a 1-form
w at a singular point p of X with its homological index at p stems from the fact that
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the restriction w|(X, p) is not anymore an element of a free module, but of the module
of Kihler differentials .Q)l( - The key idea is to address this issue by replacing .Q)l( »

and o with the Nash bundle 2! and the section v*w. In order to work with finite
Ox-modules we need to consider the derived pushforward of the associated bundles.
The following Lemma establishes the requirement () for the derived homological
index in Theorem 1 as motivated from Lemma 1 ii).

Lemma2 Let U C C" be an open domain, X C U an irreducible and reduced closed
analytic subspace of dimension d, and v: X — X its Nash transformation. For any
point p € X the stalk at p of the complex of sheaves

Ry, (f.?', vio A —)
p

is exact, whenever w does not annihilate any limiting tangent space V from Xyeg at p.

Proof The statement that w does not annihilate any limiting tangent space V of a top-
dimensional stratum at p is equivalent to saying that v*w is nonzero at every point
(p,V) e X in the fiber v—! ({p}) of the Nash transformation over p. If v*w is nonzero
then, according to Lemma 1 ii), the complex of sheaves

0 0)‘( vion ol vion o2 Vien Ve Hd-1 v oA od 0 (10)

is exact along v~ ({p}) and therefore quasi-isomorphic to the zero complex. Conse-
quently, also the stalk at p of the derived pushforward of this complex has to vanish.
O

Theorem 1 Suppose U C C" is an open domain, X C U a reduced, equidimensional
complex analytic subspace of dimension d, endowed with a complex analytic stratifi-
cation satisfying Whitney’s condition A. Let  be a holomorphic I-form on U with an
isolated zero on X in the stratified sense at a point p. Then

Eu?(X, p) = (—1)¥y <Rv* ((z',v*am—) ) (11)
14

where v: X — X is the Nash transformation and (2°,v*w A —) is the complex of
coherent sheaves on X given by the exterior powers of the Nash bundle and multipli-
cation with v*w.

Corollary 4 Let (X, p) C (C", p) be a reduced complex analytic space with a complex
analytic Whitney stratification S = {-%y}qca- Suppose

f:(C" p)— (C0

is a_holomorphic function with an isolated singularity on (X, p). For a € A let
v: Xy — Xy be the Nash transformation of the closure X, = S and Qé the k-th
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exterior power of the dual of the Nash bundle on X . Then
gl X,0) = (=)*@y (Rv* (9 vRdf A —) ) : (12)
P

Proof We may apply Theorem 1 to the space X, = .#, and the restriction of the
1-form d f to it. O

Proof of Theorem 1 The sheaves in the complex Ruv, (£2°,v*w A —) are finite O,-
modules since the morphism v is proper. By assumption, @ has an isolated zero on
(X, p) in the stratified sense and hence Lemma 2 implies that the cohomology of this
complex is supported at the origin. In particular, its Euler characteristic is finite.

Suppose W = (wy, t) is an unfolding of | (X, p) as in Proposition 2 and—possibly
after shrinking U—Ilet

W:UxT —-C"xT

be a suitable representative thereof. Denote by n: U x T — T the projection
to the parameter ¢. The unfolding of @ induces a family of complexes of sheaves
(f}', V¥ar A —) on the Nash transform X and hence also on the derived pushfor-
ward. This furnishes a complex of coherent sheaves

R, (!}', vio; A —)

on U x T which becomes a family of complexes over T via the projection 7. Clearly,
every sheaf R¥v,$2” is m-flat. We may apply the main result of [12]: there exist
neighborhoods p € U’ C U and 0 € T’ C T such that for every n € T’ we have

(=) x <]Rv* (f.?', Vi A —)p) = (=1 Z X (Rv* (Q‘, Vi, A —)x) ,
U

X€

13)

i.e. the Euler characteristic satisfies the law of conservation of number.

Suppose U’, T" and B, have also been chosen as in Proposition 2 and fix n € T/,
n # 0. By construction, w, has only simple, isolated zeroes on the interior of X N B,
and none on the boundary.

Whenever x € (X \ Xeg) N B is such a point, at which w;; has a simple zero outside
Xieg, the restriction of w;, to any limiting tangent space V of X, at x is nonzero and
consequently

Ry, (f), Vi A —) Z4is 0
X
according to Lemma 2.
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Whenever x € Xieg N B, is a point with a simple zero of w, at x we find the
following. The Nash transformation v is a local isomorphism around x and therefore

Ry, (f?‘, Vi, A —) = (.Q)‘(x wy A —)

X

is the Koszul complex on the modules .Qé‘( .- Lemma 1 allows us to compute the Euler
characteristic

D7y (2% opA—) =1

The statement now follows from the principle of conservation of number. O

5 Explicit computations for a function on a singular hypersurface

The following section will be phrased in purely algebraic terms. This is due to the
fact that the complex numbers do not form a computable field and also the ring of
convergent power series is often unavailable in computer algebra systems for symbolic
computations. For these reasons, we will assume that both (X, 0) C (C”, 0) and either
f or w as in Theorem 1 or Corollary 4 are algebraic and defined over some finite
extension field K of Q. More generally, we will work with proper maps

(X, P’ x {0H——=P" x (C", 0)

X, 00— (C", 0

of algebraic spaces and coherent algebraic sheaves F on X which are given in terms
of some finitely presented, graded module M over the ring

(K[-xlv"'1xn]<x1 ..... x,,)) [s0, ..., 8]

In our applications in Sect. 5.2 the map 7 will be the projection of the Nash transfor-
mation and F should be thought of as one of the exterior powers of the dual of the
Nash bundle.

It is well known that for any coherent algebraic sheaf F on X the sheaves R” 7, (F)
are Ox-coherent. Let O, (’)éi( ,and F" be the respective analytifications. Grauert’s
theorem on direct images [15] assures that also the direct images R” 7w, (F’ h) are (’)é’(-
coherent and using Cech cohomology we obtain a natural morphism of cohomology
sheaves

g: RPm (F) — RPm (F).
for every p.
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Whenever F is given by a graded module M as above, one can express the higher
direct images of F in terms of the cohomology of the relative twisting sheaves O(—w)
on P x (C",0) (cf. Propositions 4, Proposition 5 below) and vice versa for the
respective analytifications. Now the formal completions of the rings

Clxt,....xs} and  Clxy, ..., Xnl(xy,ox)
are isomorphic and so are the formal completions of
RP7L(O(—w)) and RPrL(O"(—w))

for all p and w.

In the particular cases we will be considering, the sheaf F—or, more generally, a
complex of sheaves F*—will always be of a form such that the modules R? 7, F and
RP 7 (FM), or, respectively, the cohomology sheaves of R, F* and Rz, (F*)", have
at most isolated support at the origin. Thus, in either one of the settings the canonical
maps to the formal completions of the cohomology modules are isomorphisms of
vector spaces and it follows that the comparison morphisms ¢ above are isomorphisms
in this case as well. With the given restrictions on F or F*, we may therefore carry
out all the computations of the Euler characteristics of the coherent analytic sheaves
derived from F" or (F*)" on X" in the purely algebraic setting over the field K.

Example 6 We continue with Example 5 and prepare for the explicit computation. As
previously discussed, the only interesting stratum of X is .7’ = Xreg. To compute the
number u ¢(2; X, 0) we will describe a complex of graded S-modules representing
(2%, v* df A—=).Weset A =C[x, y, z], S = Also, s1, s2] and consider S as a homo-
geneous coordinate ring of ]P’i over A. The ideal J C § of homogeneous equations

for the Nash transform X is obtained from the equations for the total transform by
saturation: denote by L the ideal of 2 x 2-minors of the matrix

50 S1 82
dx dy 9z
Over X, these equations describe the graph of the rational map @ underlying the
Nash blowup (7). Now

J=(h)+L):(y,2),
where (y, z) is the ideal defining the singular locus of X on which @ is not defined.
Let Q7 be the module representing /\” Q with Q the tautological quotient bundle

on Pf‘. A graded, free resolution of the Q7 is given by appropriate shifts of the Koszul
complex in the s-variables. Let

0 =s0-e0+s1-e1+s52-er€ HPY, O(1)3) = (53)1
be the tautological section. Together with
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V' df = —2(x —2)-e0+2y-e1 +2(x —2) e € HOPZ, O3) = (53)0

we obtain the following double complex.

0 0 0
vidfa vEdfA
0 0" o' 0* 0
I3 & 3
OH—/\OS3 vedfA /\1S3 vEdfA /\2S3%0
oA OA

0— > (/\0 S3> ® S(—1) LY (/\1 33) ® S(—1) —=0

on

0

(/\0 s3) ®S(=2) — =0

0

For every g the module M representing the restriction A? .{21 of Q7 to X is given
by 09 ® S/J. The complex of sheaves (£2°, v*d f A —) on X is thus represented by
the complex of graded modules

(M® v df A=) =(0°®S/J,v'df A—).
As we shall see in the next section, Proposition 5, we can compute the derived push-

forward Rv*(fZ‘, v*df A —) via a truncated Cech—double—complex on the complex
of modules (M*®, v*df A —).

5.1 Derived pushforward on relative projective space

Let A be a commutative Noetherian ring. We set S = Al[sy, .. ., s,] and consider § as
a graded A-algebra. On the geometric side let

w: Py — Spec A
be the associated projection. Let O = § be the structure sheaf of P, and O(—w) the

relative twisting sheaves for w € Z. Given a finitely generated graded S-module M let
M be the corresponding of O-modules on P, . We will first describe how to compute

Ry, (M) as a complex of finitely generated A-modules up to quasi-isomorphism and
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then generalize these results for complexes of finite, graded S-modules (M*®, D*®) and
their associated complexes of sheaves on [P, .

To this end, we may use Cech cohomology with respect to the canonical open
covering of IP", . For a graded S-module M let

crimy= P M Slsigs, - si)) '

O<ip<ij<--<ip=<r

These modules are not finitely generated over S, but they have a natural structure as a
direct limit of finite S-modules given by the submodules

. 1

CP (M) = M ——.
Sd( ) ' @ ' ® (Siosil cees )d

O<ip<ij<--<ip=<r p

5 The Cech complex on M is obtained from cr (M) and the differentials d: C» (M) —
CP*+1(M) taking an element

ail,...,ip

(Sig =+ 8i,)

to the element in CP+1 (M) with its ( Jo, - - -, jp+1)-th component given by

p+1

k .
Z( 1)%s Jk JOsewos Jiesees Jp41”

Y
(SJO s]p-H )

As usual, the hat * indicates that the index is to be omitted. We will write
HP (M) = HP (é'(M)) and  HP,(M) = H” ( V;d(M))

for the p-th cohomology of the Cech complex on a module M and its truncations.
The modules S(—w) and the corresponding twisting sheaves O(—w) have a well
known cohomology, see [20, Chapter II1.5]. We deliberately identify

S(-w) = P R°m.(Od — w))

deZ

and set

E(-w) = @ R’ m(0d — w)) = H" (S(—w))).

deZ

The last term has a structure as a direct limit of S-modules via the maps

Wy: S+ D) —w)/(sd, .. sd) = HL (S(—w) € H (S(—w)),
1

l » ——.
(s0---s-)¢
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The pairing of monomials

Swyx E(—w—r—1)— A

1 1 ifeg;,=6—1 Vi
so0gY g | re
(0 ! ' s(’)gos{j‘u-sf’

0 otherwise

provides us with an identification

E(—w —r — 1) Z Homs(S(w), A) (14)

for all w € Z. Note that this pairing is compatible with the natural S-module
structure on both sides.

Proposition4 Let M be a graded S-module and

K*: 0 M ¢

6910 1S( tho)%ea,l 1S( W1, )"

) D—r+| B,

@ —1S( W—r,i_ ,)%Gaﬂ_r l

ip_i= 1S(_w—r—l,i,r,1)

an exact complex. Let (@lr:zl E(We.i,), D.) be the complex with the S-module

@::]’::1 E(w_g,i_,) as in (14) in cohomological degree —k and D¥ the differentials
induced by the same differentials as those in K°®. Then there is a short exact sequence

0—>M—HM) —=H" (@ﬁ;l E(—w.:), D') S—

and isomorphisms

ﬁ.
HP (M) = H"™" | €D E(~w,.,). D*

ie=1

forO<p<r.

Proof The statements follow from a diagram chase in the double complex (15). Note
that in (15) all columns but the last one are exact by construction. The same holds for

all rows but the first one. Since taking cohomology commutes with direct sums, the
complex

B
P E(-w...). D*

le=1

is identical with the last column of (15), while the first row is the Cech complex
on M.

O
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We can use Proposition 4 to describe Rz, (M) as a complex of finite A-modules.
Choose any

d>max{w_g;, :0>—k>—-r—1}—

and let

Bk Bk
_ Sdr+1) —w_gi,)
v+ D T D ECvi

(50> +-s88)

ik=1 i=1

be the inclusions of finite S-modules as before. The restriction on the choice of d
assures that the degree zero part of every E(—w_y ;_,) is fully contained in the image

of lIJd_k. Consequently, the homomorphism of complexes in degree zero

2

Pe
Sd(r+1) —wei,) ~
(1 @ 2~ D* @E We D°®
d ~ (s(‘)l,...,sf) | (e,
le= 0 l.— 0

is an isomorphism of complexes of finite A-modules.
In other words, there is a short exact sequence of free finite A-modules

0 MO ROT[*(M) H_r <®l._l S(d(r+l) YZJ; l.) Do) 0
0 ,,,,,, 0

and isomorphisms

RPm (M) = HP™" @S(d(r+1)—w.,.)/ .54, D
ie=1 0

forO<p<r.

In terms of Cech-cohomology this implies the following. We may replace every
Cech complex Ce (K ~P) in (15) by its truncation CV’; 4(K™P) and restrict to the degree
zero strands in each term. Another diagram chase reveals a quasi-isomorphism

R.(M) = C2,(M)o (16)
as complexes of finite A-modules.

Proposition 5 Let M*® be a bounded complex of finitely generated, graded S-modules
and K*4 -5 M9 q graded free resolution of every M7 with

B-p.q

@ S (_w*P,Q»i—p,q) .

i—pg=1
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Choose d > max {u)_p,q,,;M M1 £0,—p > —r — 1} — r. Then Rn*(M’) is
quasi-isomorphic to the degree zero part of the total complex of the double complex
C;‘d' with terms Cg’dq = Céd(Mq):

Ror, (M*) =i Tot (c;d(M°))0 .
Proof The right derived pushforward of a single sheaf M on IP", is usually defined via
injective resolutions of M and it is well known that the resulting complex is quasi-
isomorphic to the Cech complex on M for the affine covering above. For a complex
of sheaves M* the derived pushforward can be computed as the total complex of a
double complex 1** of injective sheaves which forms an injective resolution of M®.
There is a corresponding spectral sequence identifying this total complex with the
total complex of the Cech double complex for M* up to quasi isomorphism analogous
to the case of a single sheaf. The result now follows from (16): On the first page of

the spectral sequence of the Cech double complex C*(M*) we may replace each term
HP(C*(M1?)) with the truncation HP(C;d(M‘)). O

5.2 An algorithm for the derived homological index

Let (X,0) C (C",0) be a reduced algebraic hypersurface defined over some finite
extension K of (Q and w an algebraic 1-form with an isolated zero on (X, 0) in the strati-
fied sense and defined over the same field. We briefly describe how to use Proposition 5
in order to compute the Euler obstruction Eu® (X, 0) as in (11) from Theorem 1.

Set A = K[x1,..., %y ](x;,....x,) and let S = A[sy, ..., s,] be the graded ring in
the s-variables. Let J be the homogeneous ideal of S defining the Nash transform
X c P! x (C", 0) and M4 the graded modules presenting the duals of the exterior
powers of the Nash bundle £29 on X joint with the morphisms given by the pullbacks
v*w as in Example 6. To compute the Euler obstruction Eu® (X, 0) as a homological
index we proceed as follows.

1) We compute a partial graded free resolution of every one of the M7 using standard
bases and a mixed ordering whose first block is graded and global in the s-variables
and whose second block is local in the x-variables, cf. [17].

2) From this we obtain the bound d on the pole order for the Cech double complex and
we can build the truncated Cech double complex CV’; 4(M*®) as a double complex
of finite S-modules.

3) The degree-0-strands of C 2 4 (M*) are finite A-modules generated by monomials
in the s-variables. We can choose generators and relations accordingly and extract
the induced matrices for v*w A — and the maps of the Cech complexes over A
from the corresponding maps defined over S.

4) Since w had an isolated zero, the cohomology of the resulting total complex must
be finite over K. We can proceed by the usual standard basis methods for the
computation of Euler characteristics.

These computations apply in particular to the case X = .7 and w = df as in
Corollary 4.
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Table 1 The shifts w), ; » in the graded resolutions of the M9

q\p 0 -1 -2 -3 -4 -5 -6
0 o! 011422 1326 2432 3l - -
1 03 0311326 11322235 21631241 3742 41 B
2 03 0311425 11522636 1122431942 2331645 3344 41

Remark 5 Note that in Proposition 5 we do not need to compute a quasi-isomorphism
of M* with a complex of free S-modules by means of a double complex, but only
resolutions of the individual terms M?. With a view towards the application of Propo-
sition 5 for the computation of (11) this entails that the number d can be chosen once
and for all for a given space (X, 0) and then used for every 1-form w with an isolated
zero on (X, 0).

Example 7 We continue with Example 6 and compute i r(2; X, 0) by means of For-
mula (12) in Corollary 4. The algorithm above has been implemented in the computer
algebra system Singular [7] and the computations were carried out over the rings

ring S = 0,(s(0..2),x,y,2),(dp(3),ds(3));
with a mixed ordering and the ring
ring A = 0,(x,y,z),ds;

with a local ordering.

As a first step, we need to determine the bound d in Proposition 5 and therefore
compute graded resolutions of the modules M7 in Example 6. The shifts w), ;, as in
Proposition 5 are gathered in Table 1 where we write wX whenever the shift w appears
exactly k times among the generators of the respective module.

We deduce from Table 1 that choosing d = 2 is sufficient for our computations and
proceed to assemble the truncated Cech double complex with terms

= @ mie L
= o ‘ (SigSiy -+ Si,)
O<ip<iy<--<ip=<r P

=M1 ® D s+

O<ig<ij<--<ip=<r
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Table 2 Number of generators 0 1 ) 3

in the total complex and its

degree-0-part #gen’s over S 3 12 19 12
#gen’s over A 18 1188 4123 2628

This complex now takes the form

0 0 0

00— M°® S(—6) M'® S(—6) M?® S(—6) —0
00— M"® (S(—4)° ——= M'® (S(-4))} —= M? ® (S(—4))> —=0

0——=M"® (5(-2)° —= M'® (5(-2)) —= M?® (S(-2))> —=0

0 0 0

with the horizontal maps being induced by exterior multiplication with v*d f on the
first factor and the vertical maps by the Cech differentials on the second factor of the
respective tensor products. Note that these maps are both merely those of the Koszul
complex in the components of v*d f and the sequence (sg, s%, s%), respectively.

The associated total complex is again a complex of finite S-modules. The number
of generators of the modules involved is listed in the second row of Table 2. In order
to extract the degree-0-part, i.e. the corresponding complex of A-modules, we choose
the appropriate monomial bases in the s-variables. As the reader can see from the
third row of Table 2, this immediately pushes the number of generators and the size of
the involved matrices towards sizes which are impossible to treat without the aid of a
computer. Nevertheless, the computations are feasible and a modern desktop computer
takes only fractions of a second to compute the cohomology of this complex. The result
is

n* (Rv* (fz v df A —)) = it (Tot ce, (M')O) = {5 fork=2.""

0 otherwise

where we write /¥ (-) for the vector space dimension of the k-th homology of a complex.
Comparing this with Formula (12) confirms the result: ¢ (2; X, 0) = 5.

We conclude this section with two more remarks.
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Remark 6 As the previous example suggests, it is essential to use mixed orderings with
a local block for the affine variables for the computation of the homological index.
Indeed, if one chooses a global ordering on the variables x, y, z, one will obtain the
value 7 for k = 2 in (17), i.e. one again also counts the two critical points of f on X
away from the origin.

Remark 7 In this section we have restricted ourselves to the case of a function f on a
hypersurface (X, 0) C (C", 0). Thereason for this is that in this case the Grassmannian
involved in the computation of the Nash blowup can be identified with P"~! and
there is a well established theory and notation for the twisting sheaves O(—e) and
their cohomology. Theoretically, it would also be possible to do similar computations
for varieties (X, 0) of arbitrary codimension ¢ in (C", 0) by means of the Pliicker
embedding

Grass(c, n) — p)-1,

In practice, however, this introduces a very inconvenient amount of homogeneous
variables and new equations coming from the Pliicker relations. Furthermore, the
description of the tautological bundle over the Grassmannian and its cohomology in
terms of the twisting sheaves is more complicated for general c. This leads us to
exclude the general case from our discussion for now.
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